Research Reports

HEI’s mission is to provide credible science to support environmental regulations and other policy decisions. The results of each HEI-funded project undergo peer-review by outside scientists and the Health Review Committee. The HEI Research Reports contain the Investigator’s Report and the Review Committee’s evaluation of the study, summarized in a Commentary or short Critique.

ISSN 1041-5505 (print)        ISSN 2688-6855 (online) 

Research Report 83
Douglas W. Dockery
C Arden Pope III
Richard E Kanner
G Martin Villegas
Joel Schwartz
1999

Drs. Douglas Dockery at the Harvard School of Public Health and C. Arden Pope III at Brigham Young University speculated that exposure to PM might lead to a transient drop in blood oxygenation, which might have serious consequences in humans with heart or lung problems. The investigators designed a study to increase the possibility of observing PM effects by testing a potentially at-risk group (the elderly) at a time of year that historically had experienced relatively high levels of PM (the winter).

Research Report 65-XIII
Kent E Pinkerton
Barbara L Weller
Margaret G Ménache
Charles G Plopper
1998

Ozone, a common outdoor air pollutant, is a highly reactive gas and a major component of smog. A public health concern is that prolonged exposure to ozone might damage the airways and contribute to the development of noncancerous respiratory diseases. To examine this issue, the Health Effects Institute collaborated with the NTP to provide HEI-funded investigators access to animals that underwent the same rigorously controlled ozone exposure and quality assurance processes along with the animals used for NTP studies. One of the NTP/HEI investigator groups, Dr.

Research Report 82
Edward L Avol
William Navidi
Edward B Rappaport
John M Peters
1998

Dr. John Peters and colleagues of the University of Southern California School of Medicine compared the lung function, respiratory symptoms, activity levels, and bronchodilator use of 10- to 12-year-old healthy, asthmatic, and wheezy children. They conducted the study in Southern California during mid-spring (when ozone levels were expected to be low) and late summer (when ozone levels were expected to be high).

Research Report 81
Ira B Tager
Patrick L Kinney
1998

Dr. Ira Tager and colleagues at the University of California at Berkeley (UCB), and Dr. Patrick Kinney and colleagues at the School of Public Health, Columbia University objectives were to develop new methods for estimating an individual's past exposure to ozone.

Research Report 80
Stephen R Thom
Harry Ischiropoulos
1997

Dr. Thom and Dr. Ischiropoulos at the University of Pennsylvania Medical Center examined the effects of low concentrations of carbon monoxide on platelets and cells isolated from blood vessels. The investigators exposed blood platelets (taken from rats) and endothelial cells (isolated from bovine blood vessels) to varying concentrations of carbon monoxide and measured how much nitric oxide was released. To determine if exposure to carbon monoxide causes endothelial cells to produce peroxynitrite, the investigators looked for markers of its presence in the culture medium and in the cells.

Research Report 79
James S Ultman
Abdellaziz Ben-Jebria
Craig S MacDougall
Marc L Rigas
1997

Dr. Ultman and his colleagues at Pennsylvania State University redesigned their first-generation analyzer that measures the dose of inhaled ozone to reduce electronic noise (interference) and improve the signal's stability. To do so, they adjusted each parameter that influenced the analyzer's performance: the flow of the air sample into the instrument, the pressure in the chamber where the air sample and the reactant gas mixed, the relative amounts of the reactant gas and air sample, and electronic variables (frequency and voltage).

Research Report 77
Michele A Medinsky
David C Dorman
James A Bond
Owen R Moss
Derek B Janszen
Jeffrey I Everitt
1997

Dr. Medinsky and colleagues of the Chemical Industry Institute of Toxicology sought to determine how formate, a metabolite produced when methanol is broken down by the body, is formed and removed in monkeys after they have been exposed to methanol vapors. The investigators exposed female cynomolgus monkeys to environmentally relevant concentrations (10, 45, or 200 parts per million) of methanol vapors and to one high dose (900 ppm) for two hours.

Research Report 78
John R Balmes
Mark W Frampton
1997

Dr. John Balmes and colleagues of the University of California, San Francisco, and Dr. Mark Frampton and associates of the University of Rochester characterized ozone-induced responses in two different study populations: normal and asthmatic men and women in the Balmes study (Part I), and male and female nonsmokers and smokers in the Frampton study (Part II). The investigators addressed three issues: (1) Is an individual's reactivity to inhaled methacholine related to changes in lung function after exposure to ozone? (2) What is the relation between ozone-induced airway inflammation and changes in lung function? and (3) Do the changes in lung function and markers of inflammation in response to ozone exposure differ between normal people and people with asthma?

Research Report 65-XII
Jack R Harkema
Paul J Catalano
Jon Hotchkiss
1997

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. The Health Effects Institute collaborated with the NTP to provide eight HEI-funded investigators access to animals that underwent the same rigorously controlled ozone inhalation protocol and quality assurance processes along with the NTP animals. HEI funded this follow-on study to allow Dr.

Research Report 58-IV
John Spengler
Margo Schwab
Aidan McDermott
William E Lambert
Jonathan M Samet
1996

Nitrogen dioxide is a ubiquitous air pollutant resulting from the combustion of fossil fuels. Indoor levels of nitrogen dioxide are often higher than outdoor concentrations, especially in homes where there are unvented heating and cooking appliances that utilize natural gas, kerosene, coal, or wood. Drs. John Spengler, Jonathan Samet, and their colleagues determined the impact of housing characteristics and the type and use of cooking ranges on nitrogen dioxide levels in infants' bedrooms in Albuquerque.