Research Reports

HEI’s mission is to provide credible science to support environmental regulations and other policy decisions. The results of each HEI-funded project undergo peer-review by outside scientists and the Health Review Committee. The HEI Research Reports contain the Investigator’s Report and the Review Committee’s evaluation of the study, summarized in a Commentary or short Critique.

ISSN 1041-5505 (print)        ISSN 2688-6855 (online) 

Research Report 62
Beatrice A Wittenberg
Jonathan B Wittenberg
1993

Human exposure to carbon monoxide can occur from automobile emissions, industrial processes, sidestream or mainstream cigarette smoke, and poorly ventilated appliances such as space heaters and gas stoves. Most researchers consider the major mechanism for the toxicity of carbon monoxide to be its ability to compete with oxygen for binding to hemoglobin, the protein that transports oxygen through the bloodstream and releases it to cells and tissues.

Research Report 61
Roger W Giese
Paul Vouros
1993

Both environmental and genetic factors are believed to contribute to the multistage process that results in carcinogenesis. Therefore, determining the health risks associated with exposure to known and suspected carcinogenic chemicals is essential for informed decision-making by regulatory agencies. Dr. Roger W. Giese and colleagues at Northeastern University developed sensitive and specific techniques for measuring polycyclic aromatic hydrocarbon (PAH)-DNA adducts, a class of DNA adducts associated with exposure to constituents of diesel emissions and other combustion products.

Research Report 60
Hanspeter Witschi
Michael A Breider
Hildegard M Schuller
1993

Ozone and nitrogen dioxide are highly reactive oxidant gases that are derived from the combustion of fossil fuels and the atmospheric transformation of these combustion products. A major unanswered question is whether or not exposure to oxidant air pollutants contributes to lung cancer. Dr. Witschi and colleagues at the University of California at Davis examined whether exposure to ozone or nitrogen dioxide enhances the development of tumors induced by the chemical carcinogen diethylnitrosamine (DEN), particularly neuroendocrine tumors, in the respiratory tract of hamsters.

Research Report 56
Susan T Bagley
Linda D Gratz
David G Leddy
John H Johnson
1993

Devices have been developed to reduce particle emissions from vehicles with diesel engines, such as a trap that filters the particles from the exhaust. Periodically, the trap is cleaned (regenerated) by electric heating, thereby burning the particles before they can clog the trap. There is concern that potentially harmful chemicals associated with the particles may be emitted from the trap during normal use and regeneration. Dr.

Research Report 58-I & II
Jonathan M Samet
William E Lambert
1993

This publications contains two reports by Drs. Jonathan M. Samet, John D. Spengler, and colleagues, who conducted a prospective investigation of 1,205 healthy infants living in homes with gas or electric stoves in Albuquerque, NM. Nitrogen dioxide exposures were carefully estimated from repeated measurements in multiple locations in the subjects' homes throughout the entire 18-month observation period. Respiratory illnesses were monitored prospectively using a surveillance system based on daily parental diaries of respiratory signs and symptoms. Parental reports of illness episodes were validated in a subset of the population by comparison with clinical diagnoses and microbiological testing. Potential confounding factors that influence respiratory infections were reduced by selecting subjects whose parents did not smoke or intend to use day-care services outside the home.

Research Report 57
Arthur Penn
1993

Carbon monoxide is a ubiquitous air pollutant. It is found in cigarette smoke and emissions from motor vehicles, industrial processes, and poorly ventilated combustion sources. Dr. Penn and his colleagues at New York University Medical Center sought to determine whether chronic exposure to ambient levels of carbon monoxide is also a risk factor for developing atherosclerosis because this disease is the leading contributor to deaths by heart attack and stroke in the United States.

Research Report 59
J Dennis McCool
Jonathan M Samet
1993

This document contains two reports by Drs. McCool and Samet and their colleagues who were funded to develop and test methods for measuring ventilation in freely mobile subjects at home or at work. Drs. Dennis McCool and Domyung Paek at the Memorial Hospital in Rhode Island measured ventilation with a body surface displacement (BSD) model. Each subject wore wide elastic bands containing coated wire coils around the chest and abdomen and had special magnets affixed to the breastbone and navel, which yielded data about their breathing patterns, breath frequency, and ventilation. In the second study, Dr. Jonathan Samet and colleagues at Johns Hopkins University wanted to develop methods for estimating ventilation from heart rate for future epidemiologic studies. They used the Heartwatch, a portable, commercial device combining a small transmitter worn on the subject's chest with a wristwatch-style receiver that records heart rate.

Research Report 55
Veronica M Maher
Nitai P Bhattacharyya
M Chia-Miao Mah
Janet Boldt
Jia-Ling Yang
J Justin McCormick
1993

Nitropyrenes, which form during diesel fuel combustion, cause mutations and are carcinogenic in some animals. Dr. Veronica Maher and colleagues at Michigan State University studied the effect of nitropyrene-DNA adducts on gene mutation. The investigators exposed a specific gene, in culture, to each of two nitropyrene derivatives. They then (1) compared the number of adducts formed by each derivative, (2) analyzed the chemical structure of the adducts, and (3) determined in which region of the DNA the adducts formed.

Research Report 54
Bruce A Freeman
Peter C Panus
Sadis Matalon
Barbara J. Buckley
R Randall Baker
1993

Ozone and nitrogen dioxide are significant outdoor and indoor air pollutants that can cause lung damage. Both are termed oxidant gases because the oxygen atoms they contain react with a variety of lung components and produce injury. Dr. Bruce Freeman and colleagues at the University of Alabama, Birmingham examined oxidant injury to alveolar epithelial cells and tested whether supplementing the levels of antioxidants would modify the cells' resistance to damage.

Research Report 53
George J Jakab
Terence H Risby
David R Hemenway
1992
Topics: 

Dr. George Jakab and associates the Johns Hopkins University School of Public Health examined the effects of inhaled formaldehyde, an airway irritant that is part of motor vehicle emissions, on alveolar macrophages. The investigators exposed mice to varying levels of formaldehyde alone or to formaldehyde mixed with carbon black particles. Carbon black particles were chosen because of their similarity to combustion derived particles. Different alveolar macrophage functions were evaluated using two assays.