Research Reports

HEI’s mission is to provide credible science to support environmental regulations and other policy decisions. The results of each HEI-funded project undergo peer-review by outside scientists and the Health Review Committee. The HEI Research Reports contain the Investigator’s Report and the Review Committee’s evaluation of the study, summarized in a Commentary or short Critique.

ISSN 1041-5505 (print)        ISSN 2688-6855 (online) 

Research Report 128
Mark L Witten
Simon S Wong
Nina N Sun
Ingegerd Keith
Chol-Bum Kweon
David E Foster
James J Schauer
Duane L Sherrill
2005

Dr. Witten and colleagues investigated the inflammatory effects of diesel exhaust exposure on rat airways. The investigators focused on the role of neurogenic inflammation, an inflammatory response defined by the release of neuropeptides, such as substance P (SP), from sensory nerve fibers known as C fibers located within the lung tissue. Neurogenic inflammation has been implicated in responses to inhaled irritants such as ozone and cigarette smoke and has been implied to play a role in asthma.

Research Report 126
Mark W Frampton
Mark J Utell
Wojciech Zareba
Günter Oberdörster
Christopher Cox
Li-Shan Huang
Paul E Morrow
F Eun-Hyung Lee
David Chalupa
Lauren M Frasier
Donna M Speers
Judith Stewart
2004

Dr. Frampton and his colleagues evaluated the effects of exposing healthy and mildly asthmatic men and women to laboratory-generated ultrafine carbon particles. They hypothesized that ultrafine particle exposure would activate leukocytes and endothelial cells and lead to an inflammatory response in the airway and in the blood; and that it also might affect respiration and cardiac electrophysiologic function. They further hypothesized that effects would be greater in people with asthma than in healthy people.

Research Report 123
Francesca Dominici
2004

This report describes a study funded under the Walter A. Rosenblith New Investigator Award. Dr Francesca Dominici and colleagues at Johns Hopkins University developed more flexible methods and statistical models for the National Morbidity, Mortality, and Air Pollution Study database.

Research Report 125
James S Ultman
Abdellaziz Ben-Jebria
Steven F Arnold
2004

Dr James Ultman and colleagues at Pennsylvania State University recruited 32 men and 28 women to examine differences in ozone uptake in the lung. The subjects (all non smokers) first took a series of single breaths of air–ozone mixtures, which allowed the investigators to examine how ozone was distributed in the airways and where the major fraction of ozone was taken up. In a follow-up test, the subjects pedaled a bicycle ergometer to produce conditions of moderate exercise for one hour while breathing clean air, followed by a third test while breathing ozone at 0.25 ppm).

Research Report 122
Alison S Geyh
Susanne Hering
Nathan Kreisberg
Walter John
2004

Dr Alison S Geyh and colleagues at Johns Hopkins University evaluated the personal and microenvironmental aerosol speciation sampler (PMASS) prototype developed by Dr. Susanne Hering with HEI funding (HEI Research Report 114). The precision and accuracy of the prototype, which measures PM2.5 mass, elemental and organic carbon, sulfate, and nitrate, was evaluated in two locations with different PM composition. Baltimore, Maryland (outdoors), and Fresno, California (indoors). Geyh and colleagues set a target of 10% precision and 10% accuracy for all species measured.

Research Report 121
Beverly Cohen
Maire SA Heikkinen
Yair Hazi
Hai Gao
Paul Peters
Morton Lippmann
2004

Dr. Beverly Cohen and her colleagues at New York University School of Medicine tested the performance of iron nanofilms to collect and measure sulfuric acid particles of different sizes under a variety of temperature and humidity conditions. The iron nanofilm detector is a thin iron-coated silicon chip. Particles would react with the iron, creating an elevated site or bump on the film surface, which can be visualized using an atomic force microscope.

Research Report 120
Jack R Harkema
Gerald Keeler
James Wagner
Masako Morishita
Edward Timm
Jon Hotchkiss
Frank Marsik
Timothy Dvonch
Norbert Kaminski
Edward Barr
2004

Dr. Jack Harkema and colleagues at Michigan State University conducted a 2-year study with rats to evaluate the short-term effects of inhaling concentrated ambient particles derived from the air in an area of Detroit, Michigan that has a high incidence of childhood asthma. The investigators used two animal models, BN rats that were sensitized with ovalbumin to induce some features of asthma, and F344 rats pretreated with endotoxin to have some features of mild bronchitis. Animals were exposed for 10 hours/day for 1 day or for 4 or 5 consecutive days.

Research Report 094-III
Michael J Daniels
Francesca Dominici
Scott L Zeger
Jonathan M Samet
2004

In Part III of the National Morbidity, Mortality, and Air Pollution Study (NMMAPS), Dr. Daniels and colleagues at Johns Hopkins University and Harvard University evaluated the shape of the relation between PM10 concentrations measured at fixed monitoring sites and daily mortality among residents from all causes (excluding accidental causes), from all cardiovascular and respiratory causes combined, and from causes other than cardiovascular-respiratory disease.

Research Report 119
Robert A Yokel
Janelle S Crossgrove
2004

Drs. Yokel and Crossgrove at the University of Kentucky Medical Center studied the mechanisms by which manganese enters and leaves the brain across the blood–brain barrier and, in particular, whether transporter molecules are involved. The investigators used in vivo brain perfusion in rats as well as in vitro tests in several cell lines to assess specific characteristics of manganese transport, such as pH and energy dependence. Manganese transport rates were compared with those of sucrose and dextran, which do not easily cross the blood–brain barrier.

Research Report 117
Debra L Laskin
Lisa Morio
Kimberly Hooper
Tsung-Hung Li
Brian Buckley
Barbara J Turpin
2003

Dr. Laskin and her colleagues at the Environmental and Occupational Health Sciences Institute at Rutgers University tested the hypothesis that oxidants in ambient air, such as hydrogen peroxide, may be transported by fine particulate matter into the lungs and thus contribute to lung tissue injury. The investigators used ammonium sulfate particles because of their prevalence in the ambient air of the eastern United States and their reportedly low toxicity in animals and humans.