Research Reports

HEI’s mission is to provide credible science to support environmental regulations and other policy decisions. The results of each HEI-funded project undergo peer-review by outside scientists and the Health Review Committee. The HEI Research Reports contain the Investigator’s Report and the Review Committee’s evaluation of the study, summarized in a Commentary or short Critique.
Research Report 122
Alison S Geyh
Susanne Hering
Nathan Kreisberg
Walter John
November 2004

Dr Alison S Geyh and colleagues at Johns Hopkins University evaluated the personal and microenvironmental aerosol speciation sampler (PMASS) prototype developed by Dr. Susanne Hering with HEI funding (HEI Research Report 114). The precision and accuracy of the prototype, which measures PM2.5 mass, elemental and organic carbon, sulfate, and nitrate, was evaluated in two locations with different PM composition. Baltimore, Maryland (outdoors), and Fresno, California (indoors). Geyh and colleagues set a target of 10% precision and 10% accuracy for all species measured.

Research Report 121
Maire SA Heikkinen
Yair Hazi
Hai Gao
Paul Peters
Morton Lippmann
September 2004

Dr. Beverly Cohen and her colleagues at New York University School of Medicine tested the performance of iron nanofilms to collect and measure sulfuric acid particles of different sizes under a variety of temperature and humidity conditions. The iron nanofilm detector is a thin iron-coated silicon chip. Particles would react with the iron, creating an elevated site or bump on the film surface, which can be visualized using an atomic force microscope.

Research Report 120
Jack R Harkema
Gerald Keeler
James Wagner
Masako Morishita
Edward Timm
Jon Hotchkiss
Frank Marsik
Timothy Dvonch
Norbert Kaminski
Edward Barr
August 2004

Dr. Jack Harkema and colleagues at Michigan State University conducted a 2-year study with rats to evaluate the short-term effects of inhaling concentrated ambient particles derived from the air in an area of Detroit, Michigan that has a high incidence of childhood asthma. The investigators used two animal models, BN rats that were sensitized with ovalbumin to induce some features of asthma, and F344 rats pretreated with endotoxin to have some features of mild bronchitis. Animals were exposed for 10 hours/day for 1 day or for 4 or 5 consecutive days.

Research Report 094-III
Michael J Daniels
Francesca Dominici
Scott L Zeger
Jonathan M Samet
May 2004

In Part III of the National Morbidity, Mortality, and Air Pollution Study (NMMAPS), Dr. Daniels and colleagues at Johns Hopkins University and Harvard University evaluated the shape of the relation between PM10 concentrations measured at fixed monitoring sites and daily mortality among residents from all causes (excluding accidental causes), from all cardiovascular and respiratory causes combined, and from causes other than cardiovascular-respiratory disease.

Research Report 119
Robert A Yokel
Janelle S Crossgrove
January 2004

Drs. Yokel and Crossgrove at the University of Kentucky Medical Center studied the mechanisms by which manganese enters and leaves the brain across the blood–brain barrier and, in particular, whether transporter molecules are involved. The investigators used in vivo brain perfusion in rats as well as in vitro tests in several cell lines to assess specific characteristics of manganese transport, such as pH and energy dependence. Manganese transport rates were compared with those of sucrose and dextran, which do not easily cross the blood–brain barrier.

Research Report 117
Debra L Laskin
Lisa Morio
Kimberly Hooper
Tsung-Hung Li
Brian Buckley
Barbara J Turpin
December 2003

Dr. Laskin and her colleagues at the Environmental and Occupational Health Sciences Institute at Rutgers University tested the hypothesis that oxidants in ambient air, such as hydrogen peroxide, may be transported by fine particulate matter into the lungs and thus contribute to lung tissue injury. The investigators used ammonium sulfate particles because of their prevalence in the ambient air of the eastern United States and their reportedly low toxicity in animals and humans.

Research Report 118
Henry Gong Jr
Constantinos Sioutas
William S Linn
December 2003

Dr. Henry Gong Jr and his colleagues at the Los Amigos Research and Education Institute used a Harvard ambient particle concentrator to assess the effects of exposure to concentrated ambient particles (CAPs) on healthy and asthmatic people. 12 healthy individuals and 12 individuals with mild asthma were exposed to either filtered air or CAPs with a maximum exposure level of 200 µg/m3 for two hours while exercising intermittently on a stationary bicycle.

Research Report 112
Stephen T Holgate
Thomas Sandström
et al.
Stephen T Holgate
Robert B Devlin
et al.
December 2003

Stephen Holgate and his colleagues at the University of Southampton proposed that inflammatory changes in lung fluids and blood from humans exposed to PM were related to the chemical composition of the particles. He obtained samples from two human studies in which participants were exposed to diesel exhaust and concentrated ambient particles (CAPs). At a Swedish laboratory 25 healthy and 12 asthmatic participants were exposed to diesel exhaust or filtered air on separate days. At a US laboratory, 12 healthy participants were exposed to filtered air and 30 different healthy participants were exposed to a range of CAPs concentrations. All participants underwent bronchoscopy to obtain lung tissues and fluids to analyze inflammatory markers, including numbers of specific white blood cells, expression of activation markers, and levels of cytokines in addition to analysis of lung function, lung fluids, and blood.

Research Report 116
Richard J Albertini
Radim J Šrám
Pamela M Vacek
Jeremiah Lynch
Janice A Nicklas
Nico J van Sittert
Peter J Boogaard
Rogene F Henderson
James A Swenberg
Ad D Tates
Jonathan B Ward Jr
Michael Wright
et al.
June 2003

Dr. Albertini and colleges organized a group of researchers from the United States, Czech Republic, The Netherlands, and the United Kingdom to determine whether biomarkers in the blood and urine of workers exposed to butadiene in occupational settings correlated with their personal exposure. Samples were collected from male workers employed either in a plant that used butadiene and styrene to produce rubber polymer in Prague. They also collected blood and urine from male administrative workers at the plant who had no direct occupational exposure to butadiene and served as control subjects.

Research Report 115
Qingshan Qu
Roy Shore
Guilan Li
Ximei Jin
Lung Chi Chen
Assieh A Melikian
David Eastmond
Stephen Rappaport
Heyi Li
Doppalapudi Rupa
Suramya Waidyanatha
Songnian Yin
Huifang Yan
Min Meng
Witold Winnik
et al.
June 2003

Dr. Qingshan Qu and colleagues at the New York University School of Medicine recruited 181 healthy workers in several factories in the Tianjin region of China. These subjects formed part of a cohort of thousands identified by the US National Cancer Institute (NCI) and the China Academy of Preventive Medicine for a study to evaluate tumor incidence in benzene exposed workers (NCI/China study).