Diesel Exhaust

This page has a list of publications and news articles related to Air Pollution - Diesel Exhaust. Find more information about our research on Air Pollution.

Research Report 46
Frederick A Beland
1991

Nitropyrenes are a class of chemicals found in diesel engine exhaust that can form DNA adducts and are suspected animal carcinogens. Dr. Beland at the University of Arkansas for Medical Sciences examined the relationship between DNA adducts and cancer in laboratory animals treated with 1-nitropyrene, the major nitropyrene present in diesel engine exhaust. The investigator used state-of-the-art techniques to study DNA adducts formed from 1-nitropyrene under different conditions of exposure, with an emphasis on identifying unique adducts that had not been recognized before.

Research Report 45
Michael T Kleinman
William J Mautz
1991

The human health effects that result from breathing air pollutants depend on the amount of pollutant inhaled from the air (exposure dose) and the amount of inhaled material that stays in the respiratory tract (retained dose). Because the retained dose of a pollutant may damage the respiratory tract and cause disease, it is a key factor for determining appropriate government regulations for air pollutants. Drs.

Research Report 40
CP Yu
KJ Yoon
1991

This report describes a study by Drs. Yu and Yoon to mathematically predict the lung burden in rats and humans of diesel exhaust particles (DEP) from automobile emissions. Building on a previously constructed model describing DEP deposition, the present work focused on clearance and retention of DEPs deposited in the lung. The transport rates of each component of DEPs were derived using experimental data and mathematical approximations. The complete model was first developed for rats and then extrapolated to humans of different age groups.

Research Report 37
David A Johnson
R Steve Winters
Kwan R Lee
Craig E Smith
1990

This report describes a study by Dr. Johnson and colleagues to test the hypothesis that inhaled oxidants can cause lung damage by inactivating the proteinase inhibitors that normally protect the lung from proteolysis. In the first set of experiments, the functional activity of rat alpha-1-proteinase inhibitor (á1-PI) was measured in rat lung lavage fluid from rats exposed acutely or chronically to varying concentrations of NO2, diesel exhaust, O3, and O3 in conjunction with CO2.

Research Report 33
Marc B Schenker
Steven J Samuels
Norman Y Kado
S Katharine Hammond
Thomas J Smith
Susan R Woskie
1990

This report describes a study by Dr. Schenker and colleagues to investigate the usefulness of urinary mutagenicity as a biological marker of occupational diesel exhaust exposure. Personal exposure to diesel exhaust over 2 consecutive work shifts was monitored via personal air samplers in 87 railroad workers, with adjustment for first-hand and environmental tobacco smoke exposure. Urine samples collected at the end of shifts were evaluated for mutagenicity and analyzed for any correlation with diesel exhaust exposure.

Research Report 34
Alan M Jeffrey
Regina M Santella
Diana Wong
Ling-Ling Hsieh
Volker Heisig
George Doskocil
Soraya Ghayourmanesh
1990

This report describes a study by Dr. Jeffrey and colleagues to investigate the potential genotoxicity of components of diesel engine emissions using a variety of biological systems. In the first set of in vitro experiments, radiolabeled nitropyrenes were administered to DNA isolated from human bronchial tissue, mouse embryo fibroblasts, and rabbit tracheal tissue, and elution times were compared by high-pressure liquid chromatography. Antisera antibodies were also prepared against DNA modified by 1-nitrosopyrene to test for the presence of DNA adducts.

Research Report 32
Richard C Moon
Kandala VN Rao
Carol J Detrisac
1990

This report describes a study by Dr. Moon and colleagues to investigate the carcinogenic potential of 1-nitropyrene, a mutagenic constituent of diesel exhaust particles, using a hamster respiratory-carcinogenesis model. Male hamsters were exposed to 1 or 2 mg of 1-nitropyrene via intratracheal administration either once or twice a week for 92 weeks. In order to study activity as a cocarcinogen, 1 or 2 mg of 1-nitropyrene was administered in combination with 0.25 mg of the known environmental carcinogen benzo[α]pyrene once per week for 92 weeks.

Research Report 31
Frederick A Beland
1989

This report describes a study by Dr. Beland to investigate the extents to which 1-nitropyrene and 1,6-dinitropyrene, two PAHs found in diesel exhaust, bind DNA in order to better understand the higher relative mutagenicity of 1,6-Dinitropyrene. DNA binding was determined in rats by assay of tissue isolated from a variety of organs. A subset of rats was pretreated with 1-nitropyrene to determine any effect on induction of nitroreductases and subsequent DNA binding by both nitropyrenes.

Research Report 26
Uwe Heinrich
Ulrich Mohr
Rainer Fuhst
Carsten Brockmeyer
1989

This report describes a study by Dr. Heinrich and colleagues to investigate the effects of exposure to NO2 and SO2 or diesel engine exhaust on tumor formation in hamsters. Hamsters were exposed for 6, 10.5, 15, or 18 months to whole diesel exhaust, diesel exhaust without particles, or a mixture of NO2 and SO2. Additional groups of animals exposed to each test atmosphere were also injected with 3 or 6 mg of diethylnitrosamine/kg body weight to evaluate any enhancing effect of diethylnitrosamine on exposure-related changes.

Special Report
Health Effects Institute
1988

The use of ceramic particulate traps, in conjunction with manganese fuel additives, has been viewed as a way to reduce emissions of particulate matter from diesel-fueled vehicles. This Special Report focuses on the potential health effects from increased public exposure to manganese emissions from such use.