Air Pollution

This page has a list of publications and news articles related to Air Pollution. Find more information about our research on Air Pollution.
Research Report 124
Annette Peters
et al.
Douglas W Dockery
et al.
June 2005

This report contains two studies, by Drs. Annette Peters and Douglas Dockery. Dr. Peters and her colleagues evaluated the association between nonfatal myocardial infarction (MI) and exposure to particulate matter just prior to the event. She asked 691 patients in hospitals in Augsburg, Germany who survived an MI to provide hourly details about their activities 4 days before MI onset. The investigators used a case-crossover analysis to determine whether exposure to pollutants was associated with onset of MI. Dr. Dockery and colleagues assessed the correlation between short-term increases in ambient concentrations of particulate matter and the risk of possibly life-threatening arrhythmias in patients with implanted cardioverter defibrillators (ICDs). The investigators studied 195 patients from Boston, MA who had either single or dual-chamber ICD's and used logistic regression models to determine whether exposure to air pollutants was associated with arrhythmias.

Research Report 123
Francesca Dominici
December 2004

This report describes a study funded under the Walter A. Rosenblith New Investigator Award. Dr Francesca Dominici and colleagues at Johns Hopkins University developed more flexible methods and statistical models for the National Morbidity, Mortality, and Air Pollution Study database.

Research Report 122
Alison S Geyh
Susanne Hering
Nathan Kreisberg
Walter John
November 2004

Dr Alison S Geyh and colleagues at Johns Hopkins University evaluated the personal and microenvironmental aerosol speciation sampler (PMASS) prototype developed by Dr. Susanne Hering with HEI funding (HEI Research Report 114). The precision and accuracy of the prototype, which measures PM2.5 mass, elemental and organic carbon, sulfate, and nitrate, was evaluated in two locations with different PM composition. Baltimore, Maryland (outdoors), and Fresno, California (indoors). Geyh and colleagues set a target of 10% precision and 10% accuracy for all species measured.

Research Report 121
Maire SA Heikkinen
Yair Hazi
Hai Gao
Paul Peters
Morton Lippmann
September 2004

Dr. Beverly Cohen and her colleagues at New York University School of Medicine tested the performance of iron nanofilms to collect and measure sulfuric acid particles of different sizes under a variety of temperature and humidity conditions. The iron nanofilm detector is a thin iron-coated silicon chip. Particles would react with the iron, creating an elevated site or bump on the film surface, which can be visualized using an atomic force microscope.

Special Report 15
Health Effects Institute
April 2004

A Special Report by the HEI International Scientific Oversight Committee of HEI Public Health and Air Pollution in Asia (PAPA) Program (a program of the Clean Air Initiative for Asian Cities). This first publication to come from HEI's PAPA Program was undertaken to help inform the Clean Air Initiative for Asian Cities. This special report has identified and summarized more than 135 studies of air pollution and health conducted across Asia. In addition, it critically reviews for the first time a key subset of these studies: 28 studies of daily mortality. The report is a valuable resource for policy makers in Asia and beyond.

Research Report 119
Robert A Yokel
Janelle S Crossgrove
January 2004

Drs. Yokel and Crossgrove at the University of Kentucky Medical Center studied the mechanisms by which manganese enters and leaves the brain across the blood–brain barrier and, in particular, whether transporter molecules are involved. The investigators used in vivo brain perfusion in rats as well as in vitro tests in several cell lines to assess specific characteristics of manganese transport, such as pH and energy dependence. Manganese transport rates were compared with those of sucrose and dextran, which do not easily cross the blood–brain barrier.

Special Report
Health Effects Institute
May 2003

Over the past decade, time-series studies conducted in many cities have contributed information about the association between daily changes in concentrations of airborne particulate matter (PM) and daily morbidity and mortality. In 2002, however, investigators at Johns Hopkins University and at Health Canada identified issues in the statistical model used in the majority of time-series studies. This HEI Special Report details attempts to address several questions raised by these discoveries.

Research Report 114
Susanne Hering
Nathan Kreisberg
Walter John
February 2003

Dr. Susanne Hering of Aerosol Dynamics Inc and her colleagues set out to design and validate a personal monitoring sampler for particles smaller than 2.5 µm (PM2.5) that is suitable for subsequent chemical speciation work. The sampler intended to meet the measurement needs for PM2.5 mass concentration and several of its major constituents including elemental carbon, organic carbon, sulfates, and nitrates.

Communication 9
Health Effects Institute
August 2001

The fuel efficiency and durability of diesel technology are particularly desirable in the transportation and construction industries. Concerns about the health effects of diesel particulate emissions have led to progressively stricter emission standards, which can be met only through new technologic advances and fuel modifications. The cerium-based fuel additive Eolys, used in conjunction with a particulate filter, is one of the approaches being considered. However, this additive will result in emissions of cerium compounds and an increase in cerium in the ambient air and soil.

Research Report 94-I
Jonathan M Samet
Francesca Dominici
Scott L Zeger
Joel Schwartz
Douglas W Dockery
June 2000

In an effort to address the uncertainties regarding the association between PM and daily mortality, and to determine the effects of other pollutants on this association, HEI funded the National Morbidity, Mortality, and Air Pollution Study (NMMAPS). Dr Jonathan Samet and his colleagues at Johns Hopkins University, in collaboration with investigators at Harvard University, conducted this time-series study in large cities across the US where levels of PM and gaseous pollutants were varied.