HEI Energy Releases Its First Set of Research Reports
The inaugural set of studies focused on potential exposures to air emissions, water quality changes, and noise from oil and gas operations in the US. Learn More
This page is a list of publications in reverse chronological order. Please use search or the filters to browse by research areas, publication types, and content types.
Displaying 241 - 250 of 361. Show 10 | 25 | 50 | 100 results per page.
In an effort to improve air quality and decrease dependence on petroleum, alternative fuels such as methanol have been considered to substitute for gasoline or diesel fuel. Methanol is also a candidate to provide the hydrogen for fuel cells. Before people are exposed to increased concentrations of methanol, the potential health effects of such exposures require study. Dr. Burbacher and colleagues of the University of Washington studied the effects of long-term exposure to methanol vapors on metabolism and reproduction in adult female monkeys (Macaca fascicularis) and developmental effects in their offspring, who were exposed prenatally to methanol.
In a follow-up study to previous research, Dr. Mercer and colleagues at Duke University exposed three groups of rats continuously for six weeks to 2 or 6 ppm nitric oxide (NO) or to filtered air to learn more about the toxicity of NO so as to compare it with two other important oxidants, ozone and nitrogen dioxide (NO2). At the end of the exposure period he used an electron microscope to measure the number of holes in the alveolar septa and to observe other structural changes, such as in the surface area and the number and type of other abnormalities in the alveolar septa.
Dr. Melikian and colleagues at the American Health Foundation developed and validated a novel, practical method for assaying metabolites of benzene in humans methods using a technique known as Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry (LC-ESI-MS/MS) to measure benzene metabolites in human urine.
A Special Report of the Institute's Diesel Epidemiology Expert Panel. Although epidemiologic data have been used generally to identify the hazards associated with exposure to diesel exhaust, questions remain as to whether the human data can be used to develop reliable estimates of the magnitude of any risk for lung cancer (that is, through quantitative risk assessment [QRA]), and whether new research efforts could provide any additional data needed. In response to such issues, the Health Effects Institute initiated the Diesel Epidemiology Project in 1998.
Dr. Navidi and colleagues at the University of Southern California discussed the development of three sophisticated statistical methods that would improve the estimates of the health effects of air pollution obtained from epidemiologic studies. First, they took a standard case-crossover design and introduced a bidirectional element where control data were obtained both before and after the health event of interest.
Dr. Kleeberger and colleagues at Johns Hopkins University compared ozone-induced inflammation, epithelial cell injury, and epithelial cell proliferation (a marker of cell injury) in three types of mice: mice with a normal content of mast cells, mutant mice without mast cells, and mutant mice whose mast cells were repleted by a bone marrow transplant from normal mice. Each group of mice was exposed to clean air or to ozone for varying lengths of time.
Dr. Arey and colleagues of the University of California, Riverside, examined the genotoxic potential of two PAHs (naphthalene and phenanthrene) that are common air pollutants, and a subset of their atmospheric transformation products. The investigators evaluated the genotoxicity of these compounds using a variety of human cell lines with a range of metabolic capabilities. They examined the ability of these compounds to produce small-scale (damage to genes) and large-scale (damage to chromosomes) genetic damage.
Drs. Douglas Dockery at the Harvard School of Public Health and C. Arden Pope III at Brigham Young University speculated that exposure to PM might lead to a transient drop in blood oxygenation, which might have serious consequences in humans with heart or lung problems. The investigators designed a study to increase the possibility of observing PM effects by testing a potentially at-risk group (the elderly) at a time of year that historically had experienced relatively high levels of PM (the winter).
Communication 6 contains proceedings from a workshop held in Brussels, Belgium, June 29–30 1998. Presentations focused on butadiene ambient concentrations, metabolism, mutagenicity, epidemiology, and a panel discussion on Butadiene Risk Assessment in the Regulatory Framework.
Daniel L. Albritton and Daniel S. Greenbaum, cochairs. Report of the PM Measurements Research Workshop, Chapel Hill NC, July 22 and 23, 1998. Aeronomy Laboratory of the National Oceanic and Atmospheric Administration, Boulder, CO, and Health Effects Institute, Cambridge, MA.