HEI Energy Releases Its First Set of Research Reports
The inaugural set of studies focused on potential exposures to air emissions, water quality changes, and noise from oil and gas operations in the US. Learn More
This page is a list of publications in reverse chronological order. Please use search or the filters to browse by research areas, publication types, and content types.
Displaying 251 - 260 of 361. Show 10 | 25 | 50 | 100 results per page.
Ozone, a common outdoor air pollutant, is a highly reactive gas and a major component of smog. A public health concern is that prolonged exposure to ozone might damage the airways and contribute to the development of noncancerous respiratory diseases. To examine this issue, the Health Effects Institute collaborated with the NTP to provide HEI-funded investigators access to animals that underwent the same rigorously controlled ozone exposure and quality assurance processes along with the animals used for NTP studies. One of the NTP/HEI investigator groups, Dr.
Dr. John Peters and colleagues of the University of Southern California School of Medicine compared the lung function, respiratory symptoms, activity levels, and bronchodilator use of 10- to 12-year-old healthy, asthmatic, and wheezy children. They conducted the study in Southern California during mid-spring (when ozone levels were expected to be low) and late summer (when ozone levels were expected to be high).
Dr. Ira Tager and colleagues at the University of California at Berkeley (UCB), and Dr. Patrick Kinney and colleagues at the School of Public Health, Columbia University objectives were to develop new methods for estimating an individual's past exposure to ozone.
Dr. Thom and Dr. Ischiropoulos at the University of Pennsylvania Medical Center examined the effects of low concentrations of carbon monoxide on platelets and cells isolated from blood vessels. The investigators exposed blood platelets (taken from rats) and endothelial cells (isolated from bovine blood vessels) to varying concentrations of carbon monoxide and measured how much nitric oxide was released. To determine if exposure to carbon monoxide causes endothelial cells to produce peroxynitrite, the investigators looked for markers of its presence in the culture medium and in the cells.
Dr. Ultman and his colleagues at Pennsylvania State University redesigned their first-generation analyzer that measures the dose of inhaled ozone to reduce electronic noise (interference) and improve the signal's stability. To do so, they adjusted each parameter that influenced the analyzer's performance: the flow of the air sample into the instrument, the pressure in the chamber where the air sample and the reactant gas mixed, the relative amounts of the reactant gas and air sample, and electronic variables (frequency and voltage).
Communication 5 contains proceedings of a workshop held in Cambridge, MA, December 3–4 1996. Presentations included: Current Understanding of the Health Effects of Particles and the Characteristics That Determine Dose or Effect; Particle Formation in Combustion; The EPA Particle Emissions Testing Procedure; Characterizing Particulate Matter in Motor Vehicle Exhaust; Atmospheric Aerosol Transformation; Generating Particles for Laboratory Studies; and Issues and Research Needs for Particle Characterization.
Dr. Medinsky and colleagues of the Chemical Industry Institute of Toxicology sought to determine how formate, a metabolite produced when methanol is broken down by the body, is formed and removed in monkeys after they have been exposed to methanol vapors. The investigators exposed female cynomolgus monkeys to environmentally relevant concentrations (10, 45, or 200 parts per million) of methanol vapors and to one high dose (900 ppm) for two hours.
Dr. John Balmes and colleagues of the University of California, San Francisco, and Dr. Mark Frampton and associates of the University of Rochester characterized ozone-induced responses in two different study populations: normal and asthmatic men and women in the Balmes study (Part I), and male and female nonsmokers and smokers in the Frampton study (Part II). The investigators addressed three issues: (1) Is an individual's reactivity to inhaled methacholine related to changes in lung function after exposure to ozone? (2) What is the relation between ozone-induced airway inflammation and changes in lung function? and (3) Do the changes in lung function and markers of inflammation in response to ozone exposure differ between normal people and people with asthma?
Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. The Health Effects Institute collaborated with the NTP to provide eight HEI-funded investigators access to animals that underwent the same rigorously controlled ozone inhalation protocol and quality assurance processes along with the NTP animals. HEI funded this follow-on study to allow Dr.
The Phase I.B Report of the Particle Epidemiology Evaluation Project. The Health Effects Institute began the Particle Epidemiology Evaluation Project in 1994 to evaluate the emerging epidemiologic evidence of a relation between particulate air pollution and daily mortality. In Phase I.B, Drs. Jonathan M. Samet and Scott L. Zeger and their colleagues at the Johns Hopkins University School of Hygiene and Public Health (1) compared approaches for controlling the effects of weather variables when analyzing the connection between air pollution and daily mortality, primarily focusing on Synoptic Weather Categories, an approach newly proposed by Dr. Laurence S. Kalkstein of the University of Delaware; and (2) evaluated the association between particulate air pollution and daily mortality in the Philadelphia metropolitan area using statistical models that included data for five pollutants regulated under the Clean Air Act Amendments of 1990 (referred to as criteria pollutants).