Biological Methods

This page has a list of publications and news articles related to Innovative Strategies - Biological Methods. Find more information on Innovation in HEI's research programs.

Communication 1
Health Effects Institute

HEI Communications 1 contains abstracts for six feasibility studies that were funded under RFA 89-2: Health Effects of Chronic Ozone Inhalation: Collaborative National Toxicology Program–Health Effects Institute Studies: Pilot Studies.

Research Report 45
Michael T Kleinman
William J Mautz

The human health effects that result from breathing air pollutants depend on the amount of pollutant inhaled from the air (exposure dose) and the amount of inhaled material that stays in the respiratory tract (retained dose). Because the retained dose of a pollutant may damage the respiratory tract and cause disease, it is a key factor for determining appropriate government regulations for air pollutants. Drs.

Research Report 40
KJ Yoon

This report describes a study by Drs. Yu and Yoon to mathematically predict the lung burden in rats and humans of diesel exhaust particles (DEP) from automobile emissions. Building on a previously constructed model describing DEP deposition, the present work focused on clearance and retention of DEPs deposited in the lung. The transport rates of each component of DEPs were derived using experimental data and mathematical approximations. The complete model was first developed for rats and then extrapolated to humans of different age groups.

Research Report 39
James S Ultman
Abdellaziz Ben-Jebria

This report describes a study by Drs. Ultman and Ben-Jebria to develop a chemiluminescent ozone analyzer and constructed an ozone bolus generator with the goal of using bolus concentration-response methods to noninvasively measure the longitudinal distribution of ozone absorption in human lungs. The analyzer was based on the chemiluminescent reaction between 2-methyl-2-butene and ozone. Validation of the system was performed in excised pig and sheep tracheas, and the resulting absorption coefficient was computed.

Research Report 10

Dr. Yu's project addressed several important issues regarding improved quantification of dose from known concentrations of atmospheric particulate matter. By focusing first on a specific category of automotive-derived particles, diesel exhaust particulate, Dr. Yu was able to characterize those aerosol properties (such as the mass medican aerodynamic diameter and size distribution) that influence regional deposition. After formulating a mathematical deposition model, Dr.