Register For HEI's Annual Conference 2025

Sunday, May 4 - Tuesday, May 6, 2025 at the Austin Marriott Downtown Hotel in Austin, Texas.

Particulate Matter

This page has a list of publications and news articles related to Air Pollution - Particulate Matter. Find more information about our research on Air Pollution.

Research Report 112
Stephen T Holgate
Thomas Sandström
et al.
Stephen T Holgate
Robert B Devlin
et al.
2003

Stephen Holgate and his colleagues at the University of Southampton proposed that inflammatory changes in lung fluids and blood from humans exposed to PM were related to the chemical composition of the particles. He obtained samples from two human studies in which participants were exposed to diesel exhaust and concentrated ambient particles (CAPs). At a Swedish laboratory 25 healthy and 12 asthmatic participants were exposed to diesel exhaust or filtered air on separate days. At a US laboratory, 12 healthy participants were exposed to filtered air and 30 different healthy participants were exposed to a range of CAPs concentrations. All participants underwent bronchoscopy to obtain lung tissues and fluids to analyze inflammatory markers, including numbers of specific white blood cells, expression of activation markers, and levels of cytokines in addition to analysis of lung function, lung fluids, and blood.

Research Report 118
Henry Gong Jr
Constantinos Sioutas
William S Linn
2003

Dr. Henry Gong Jr and his colleagues at the Los Amigos Research and Education Institute used a Harvard ambient particle concentrator to assess the effects of exposure to concentrated ambient particles (CAPs) on healthy and asthmatic people. 12 healthy individuals and 12 individuals with mild asthma were exposed to either filtered air or CAPs with a maximum exposure level of 200 µg/m3 for two hours while exercising intermittently on a stationary bicycle.

Special Report
Health Effects Institute
2003

Over the past decade, time-series studies conducted in many cities have contributed information about the association between daily changes in concentrations of airborne particulate matter (PM) and daily morbidity and mortality. In 2002, however, investigators at Johns Hopkins University and at Health Canada identified issues in the statistical model used in the majority of time-series studies. This HEI Special Report details attempts to address several questions raised by these discoveries.

Communication 10
Health Effects Institute
2003

Communication 10 contains proceedings of a workshop held in Baltimore, MD, December 4–6 2002. The workshop sought to address the search for a "Diesel Signature": Do We Have a Diesel Signature? Where Do We Go From Here? Communication 10 includes a workshop summary and reports from speakers on: Health Studies of Diesel Particulate Matter; Future Trends of Diesel Emissions; Diesel and Gasoline Particle Characteristics; Approaches to Particle Characterization; Diesel Source Signature Studies; Emissions and Air Quality Studies; Data Analysis Approaches.

Research Report 114
Susanne Hering
Nathan Kreisberg
Walter John
2003

Dr. Susanne Hering of Aerosol Dynamics Inc and her colleagues set out to design and validate a personal monitoring sampler for particles smaller than 2.5 µm (PM2.5) that is suitable for subsequent chemical speciation work. The sampler intended to meet the measurement needs for PM2.5 mass concentration and several of its major constituents including elemental carbon, organic carbon, sulfates, and nitrates.

Research Report 110
Ann E Aust
James C Ball
Autumn A Hu
JoAnn S Lighty
Kevin R Smith
Ann M Straccia
John M Veranth
Willie C Young
2002

Dr. Aust and her colleagues at Utah State University and Ford Motor company hypothesized that transition metals (metals that can participate in possibly toxic oxidative reactions) associated with particulate matter are released within lung epithelial cells and catalyze the formation of reactive oxygen species. The investigators focused their study on coal fly ash that was produced in the laboratory and separated into four size fractions.

Research Report 111
Christine Nadziejko
Kaijie Fang
Lung Chi Chen
Beverly Cohen
Margaret Karpatkin
Arthur Nádas
2002

Dr. Nadziejko and her colleagues at the New York University School of Medicine evaluated the effects of exposing healthy rats to concentrated ambient particles (CAPs) and changes in blood coagulation parameters. The investigators measured platelet number, blood cells counts, and levels of fibrinogen, thrombin-antithrombin complex, tissue plasminogen activator, plasminogen activator inhibitor, and factor VII of rats that were exposed to concentrated New York City particles and filtered air for 6 hours. Blood samples were obtained before and after exposure using an indwelling catheter.

Perspectives 2
Health Effects Institute
2002

Perspectives 2 is the second of a series produced by the HEI Health Review Committee to integrate findings across several HEI studies or entire research programs. The intent is to describe and interpret results bearing on important and timely issues for a broad audience interested in environmental health.

Research Report 107
Alan W Gertler
et al.
Daniel Grosjean
et al.
2002

This report describes two studies that measured emissions in roadway tunnels. Dr. Alan Gertler and colleagues at the Desert Research Institute studied particulate matter emissions in the Tuscarora Mountain Tunnel located on the Pennsylvania Turnpike. Dr Daniel Grosjean and colleague at DGA, Inc studied carbonyl emissions in the Tuscarora Mountain Tunnel and in the Caldecott Tunnel in California. The unique environment in tunnel studies allows the investigators to measure emission rates averaged over many vehicles, to determine the physical and chemical character of emissions under ambient conditions, and in some instances to compare current emissions with past emissions at the same location. Both groups of investigators also measured emissions at times when the proportions of gasoline engine vehicles and diesel engine vehicles differed, allowing them to estimate the differences between emissions from the two sources.

Research Report 105
George D Leikauf
Susan A McDowell
Scott C Wesselkamper
Clay R Miller
William D Hardie
Kelly Gammon
Pratim P Biswas
Thomas R Korfhagen
Cindy J Bachurski
Jonathan S Wiest
Klaus Willeke
Eula Bingham
John E Leikauf
Bruce J Aronow
et al.
2001

Dr. Leikauf and colleagues at the University of Cincinnati Medical Center hypothesized that the response of mice exposed to high concentrations of inhaled nickel particles was under genetic control. Using nickel, a transition element shown to cause adverse effects at high concentrations in ambient air, the investigators sought to identify the genes involved in controlling the inflammatory and toxic effects of continuous exposure to nickel particles.

Research Report 106
Lester Kobzik
Carroll-Ann W Goldsmith
Yao Yu Ning
Guozhong Qin
Bill Morgan
Amy Imrich
Joy Lawrence
GG Krishna Murthy
Paul J Catalano
2001

Dr. Lester Kobzik and colleagues at the Harvard School of Public Health used a mouse model of asthma to evaluate how inhaling pollutants affects the airways. The mice were sensitized to the allergen ovalbumin, which induces a lung condition in the mice similar to that found in people with asthma. The investigators hypothesized that exposure to concentrated ambient particles (CAPs) plus ozone would cause a synergistic (or greater-than-additive) response in the mice.

Research Report 104
Renaud Vincent
Premkumari Kumarathasan
Patrick Goegan
Stephen G Bjarnason
Josée Guénette
Denis Bérubé
Ian Y Adamson
Suzanne Desjardins
Richard T Burnett
Frederick J Miller
Bruno Battistini
2001

Dr. Renaud Vincent and his colleagues of Health Canada, Ottawa, hypothesized that ambient PM would cause changes in certain cardiovascular parameters. The investigators implanted rats with radiotransmitters to collect continuous data and indwelling catheters for repeated blood sampling. The animals were exposed to clean air or one of four types of resuspended particles: ambient particles (Ottawa dust), ambient particles that had been washed in water to remove soluble components, diesel soot, or carbon black.

Research Report 96
Günter Oberdörster
Jacob N Finkelstein
Carl Johnston
Robert Gelein
Christopher Cox
Raymond Baggs
Alison CP Elder
2001

Dr Günter Oberdörster and colleagues at the University of Rochester School of Medicine and Dentistry hypothesized that inhaled ultrafine particles induce an inflammatory response in the airways of mice and rats and that animals with preexisting airway inflammatory conditions may be particularly vulnerable. The investigators focused on inhaled carbon and platinum particles because these elements are constituents of particles found in urban atmospheres.

Perspectives 1
Health Effects Institute
2001

Perspectives 1 is the first of a series produced by the HEI Health Review Committee to integrate findings across several HEI studies or entire research programs. The intent is to describe and interpret results bearing on important and timely issues for a broad audience in terested in environmental health.

Research Report 101
Per Gerde
Bruce A Muggenburg
Margot Lundborg
Yohannes Tesfaigzi
Alan R Dahl
2001

Dr. Gerde and colleagues at the Lovelace Respiratory Research Institute examined the effects of organic compounds in diesel exhaust such as genotoxic polynuclear aromatic compounds (PAHs). The investigators removed most of the organic compounds from diesel exhaust particles and bound radioactive Benzo[a]pyrene (BaP), a type of PAH is known to cause cancer in laboratory animals, to them. They exposed the lower respiratory tract of three dogs to the particles and measured the levels of particle-bound BaP and free BaP released from particles in the peripheral region of the lungs.

Research Report 99
Harvey Checkoway
Drew Levy
Lianne Sheppard
Joel D Kaufman
Jane Koenig
David Siscovick
2000

Dr Checkoway and colleagues at the University of Washington tested the primary hypothesis that increases in daily fine particle levels were related to increased risk of out-of-hospital sudden cardiac arrest. Sudden cardiac arrest and questionnaire data, and exposure data were obtained from the Puget Sound Clean Air Agency (Seattle WA). The investigators used a case-crossover study design; for each case of sudden cardiac arrest, a time period when the person was disease free was selected as a matched "referent" period.

Research Report 98
H-Erich Wichmann
Claudia Spix
Thomas Tuch
Gabriele Wölke
Annette Peters
Joachim Heinrich
Wolfgang Kreyling
Joachim Heyder
2000

Dr H-Erich Wichmann and colleagues at the National Research Center for Environment and Health in Germany prospectively studied the association of daily mortality data with the number and mass concentrations of ultrafine and fine particles in Erfurt, Germany. Concentrations were measured near a road and a time-series approach was used to look at short-term changes in particle concentration and concurrent deaths due to cardiovascular and respiratory causes over a period of 3.5 years.