Publications

This page is a list of publications in reverse chronological order. Please use search or the filters to browse by research areas, publication types, and content types.

Displaying 191 - 200 of 300. Show 10 | 25 | 50 | 100 results per page.


Acute Effects of Ambient Ozone on Asthmatic, Wheezy, and Healthy Children

Edward L Avol
William Navidi
Edward B Rappaport
John M Peters
May 1998
Research Report 82

Dr. John Peters and colleagues of the University of Southern California School of Medicine compared the lung function, respiratory symptoms, activity levels, and bronchodilator use of 10- to 12-year-old healthy, asthmatic, and wheezy children. They conducted the study in Southern California during mid-spring (when ozone levels were expected to be low) and late summer (when ozone levels were expected to be high).

Methods Development for Epidemiologic Investigations of the Health Effects of Prolonged Ozone Exposure

Ira B Tager
Patrick L Kinney
March 1998
Research Report 81

Dr. Ira Tager and colleagues at the University of California at Berkeley (UCB), and Dr. Patrick Kinney and colleagues at the School of Public Health, Columbia University objectives were to develop new methods for estimating an individual's past exposure to ozone.

Mechanism of Oxidative Stress from Low Levels of Carbon Monoxide

Stephen R Thom
Harry Ischiropoulos
December 1997
Research Report 80

Dr. Thom and Dr. Ischiropoulos at the University of Pennsylvania Medical Center examined the effects of low concentrations of carbon monoxide on platelets and cells isolated from blood vessels. The investigators exposed blood platelets (taken from rats) and endothelial cells (isolated from bovine blood vessels) to varying concentrations of carbon monoxide and measured how much nitric oxide was released. To determine if exposure to carbon monoxide causes endothelial cells to produce peroxynitrite, the investigators looked for markers of its presence in the culture medium and in the cells.

Improvement of a Respiratory Ozone Analyzer

James S Ultman
Abdellaziz Ben-Jebria
Craig S MacDougall
Marc L Rigas
October 1997
Research Report 79

Dr. Ultman and his colleagues at Pennsylvania State University redesigned their first-generation analyzer that measures the dose of inhaled ozone to reduce electronic noise (interference) and improve the signal's stability. To do so, they adjusted each parameter that influenced the analyzer's performance: the flow of the air sample into the instrument, the pressure in the chamber where the air sample and the reactant gas mixed, the relative amounts of the reactant gas and air sample, and electronic variables (frequency and voltage).

Formation and Characterization of Particles: Report of the 1996 HEI Workshop

Health Effects Institute
September 1997
Communication 5

Communication 5 contains proceedings of a workshop held in Cambridge, MA, December 3–4 1996. Presentations included: Current Understanding of the Health Effects of Particles and the Characteristics That Determine Dose or Effect; Particle Formation in Combustion; The EPA Particle Emissions Testing Procedure; Characterizing Particulate Matter in Motor Vehicle Exhaust; Atmospheric Aerosol Transformation; Generating Particles for Laboratory Studies; and Issues and Research Needs for Particle Characterization.

Pharmacokinetics of Methanol and Formate in Female Cynomolgus Monkeys Exposed to Methanol Vapors

Michele A Medinsky
David C Dorman
James A Bond
Owen R Moss
Derek B Janszen
Jeffrey I Everitt
June 1997
Research Report 77

Dr. Medinsky and colleagues of the Chemical Industry Institute of Toxicology sought to determine how formate, a metabolite produced when methanol is broken down by the body, is formed and removed in monkeys after they have been exposed to methanol vapors. The investigators exposed female cynomolgus monkeys to environmentally relevant concentrations (10, 45, or 200 parts per million) of methanol vapors and to one high dose (900 ppm) for two hours.

Effects of Ozone on Normal and Potentially Sensitive Human Subjects

John R Balmes
Mark W Frampton
June 1997
Research Report 78

Dr. John Balmes and colleagues of the University of California, San Francisco, and Dr. Mark Frampton and associates of the University of Rochester characterized ozone-induced responses in two different study populations: normal and asthmatic men and women in the Balmes study (Part I), and male and female nonsmokers and smokers in the Frampton study (Part II). The investigators addressed three issues: (1) Is an individual's reactivity to inhaled methacholine related to changes in lung function after exposure to ozone? (2) What is the relation between ozone-induced airway inflammation and changes in lung function? and (3) Do the changes in lung function and markers of inflammation in response to ozone exposure differ between normal people and people with asthma?

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part XII: Atrophy of Bone in Nasal Turbinates

Jack R Harkema
Paul J Catalano
Jon Hotchkiss
April 1997
Research Report 65-XII

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. The Health Effects Institute collaborated with the NTP to provide eight HEI-funded investigators access to animals that underwent the same rigorously controlled ozone inhalation protocol and quality assurance processes along with the NTP animals. HEI funded this follow-on study to allow Dr.

Particulate Air Pollution and Daily Mortality: The Phase I Report of the Particle Epidemiology Evaluation Project. Phase I.B: Analyses of the Effects of Weather and Multiple Air Pollutants

Health Effects Institute
March 1997
Special Report

The Phase I.B Report of the Particle Epidemiology Evaluation Project. The Health Effects Institute began the Particle Epidemiology Evaluation Project in 1994 to evaluate the emerging epidemiologic evidence of a relation between particulate air pollution and daily mortality. In Phase I.B, Drs. Jonathan M. Samet and Scott L. Zeger and their colleagues at the Johns Hopkins University School of Hygiene and Public Health (1) compared approaches for controlling the effects of weather variables when analyzing the connection between air pollution and daily mortality, primarily focusing on Synoptic Weather Categories, an approach newly proposed by Dr. Laurence S. Kalkstein of the University of Delaware; and (2) evaluated the association between particulate air pollution and daily mortality in the Philadelphia metropolitan area using statistical models that included data for five pollutants regulated under the Clean Air Act Amendments of 1990 (referred to as criteria pollutants).

Nitrogen Dioxide and Respiratory Illness in Children. Part IV: Effects of Housing and Meteorologic Factors on Indoor Nitrogen Dioxide Concentrations

John Spengler
Margo Schwab
Aidan McDermott
William E Lambert
Jonathan M Samet
December 1996
Research Report 58-IV

Nitrogen dioxide is a ubiquitous air pollutant resulting from the combustion of fossil fuels. Indoor levels of nitrogen dioxide are often higher than outdoor concentrations, especially in homes where there are unvented heating and cooking appliances that utilize natural gas, kerosene, coal, or wood. Drs. John Spengler, Jonathan Samet, and their colleagues determined the impact of housing characteristics and the type and use of cooking ranges on nitrogen dioxide levels in infants' bedrooms in Albuquerque.