Publications

This page is a list of publications in reverse chronological order. Please use search or the filters to browse by research areas, publication types, and content types.

Displaying 226 - 250 of 306. Show 10 | 25 | 50 | 100 results per page.


Pulmonary Toxicity of Inhaled Diesel Exhaust and Carbon Black in Chronically Exposed Rats. Part I: Neoplastic and Nonneoplastic Lung Lesions

Joe L Mauderly
M Burton Snipes
Edward Barr
Steven A Belinsky
James A Bond
Antone L Brooks
I-Yiin Chang
Yung S Cheng
Nancy A Gillett
William C Griffith
Rogene F Henderson
Charles E Mitchell
Kristen J Nikula
October 1994
Research Report 68-I

Dr. Mauderly and coworkers exposed F344/N rats to clean air or to one of two levels (2.5 or 6.5 mg of particles/m3 of diesel exhaust or air) of either emissions from a light-duty diesel engine or carbon black particles. The exposures lasted for 16 hours/day, 5 days/week, for 24 months. The carbon black particles were similar to the soot particles in the diesel engine exhaust; however, they contained markedly lower amounts of adsorbed organic compounds.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part IV: Effects on Expression of Extracellular Matrix Genes

William C Parks
Jill D Roby
October 1994
Research Report 65-IV

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. Prolonged ozone exposure may injure respiratory tissue, leading to the development or exacerbation of chronic lung diseases such as fibrosis or emphysema. An excess of connective tissue can lead to fibrosis and changes in connective tissue are believed to be an underlying cause of emphysema. Dr.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part III: Effects on Complex Carbohydrates of Lung Connective Tissue

Bhandaru Radhakrishnamurthy
September 1994
Research Report 65-XIII

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. The study of the effects of long-term ozone exposure on lung complex carbohydrates, described in this report, was one of eight laboratory studies supported by the NTP/HEI collaborative agreement. In addition to studying lung and nasal structure and function, investigators studied other constituents of lung connective tissue. Dr.

Noninvasive Determination of Respiratory Ozone Absorption: The Bolus-Response Method

James S Ultman
Abdellaziz Ben-Jebria
Shu-Chieh Hu
August 1994
Research Report 69

Dr. James Ultman and colleagues at Pennsylvania State University used a fast-responding ozone measurement system, which they had developed with previous HEI support, to noninvasively measure the absorption of inhaled ozone in different regions of the respiratory tract of healthy adult men. While the subject was breathing through the measurement apparatus, a narrow 10-mL bolus of ozone was introduced into the inhaled air at a predetermined point.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part II: Mechanical Properties, Responses to Bronchoactive Stimuli, and Eicosanoid Release in Isolated Large and Small Airways

John L Szarek
August 1994
Research Report 65-II

Ozone is a major outdoor air pollutant and short term inhalation can produce temporary chest discomfort, and transient changes in breathing patterns and lung function. Because a large number of people are exposed to levels of ozone sufficient to cause effects on breathing, it is important to understand the short- and long-term consequences of these exposures for human health. Dr.

Nitrogen Dioxide and Respiratory Illness in Children. Part III: Quality Assurance in an Epidemiologic Study

William E Lambert
Jonathan M Samet
Betty J Skipper
Alice H Cushing
William C Hunt
Stephen A Young
Leroy C McLaren
Margo Schwab
John Spengler
July 1994
Research Report 58-III

This report describes the quality assurance and quality control program developed for the previously reported epidemiologic study of nitrogen dioxide (NO2) and respiratory illness in children (Health Effects Institute Research Report 58, Parts I and II). The specific aims of the program were to make certain that data were sufficiently accurate, complete, verifiable, and retrievable.

Development of Methods for Measuring Biological Markers of Formaldehyde Exposure

Timothy R Fennell
June 1994
Research Report 67

Dr. Fennell at the Chemical Industry Institute of Toxicology sought to develop new methods for improving the detection of formaldehyde-DNA adducts in exposed cells and tissues. The investigator treated formaldehyde-DNA adducts with sodium bisulfite, a compound that reacts with these adducts and traps them as stable compounds, and then tested different analytical techniques for separating and detecting the adducts. He exposed pure DNA, cell nuclei, and cells in culture to formaldehyde and treated them with sodium bisulfite under a variety of experimental conditions.

The Effects of Copollutants on the Metabolism and DNA Binding of Carcinogens

Paul C Howard
Frederick A Beland
May 1994
Research Report 66

High doses of inhaled diesel engine exhaust produce lung tumors in laboratory animals and may cause cancer in humans. Nitropyrenes are products of diesel engine exhaust and can be activated by the body\'s metabolism to form highly reactive products that interact with DNA to form DNA adducts. The adducts can interfere with the normal processes of DNA replication and can lead to genetic mutations that may result in carcinogenesis. Dr.

Consequences of Prolonged Inhalation of Ozone on F344/N Rats: Collaborative Studies. Part I: Content and Cross-Linking of Lung Collagen

Jerold A Last
Thomas R Gelzleichter
Jack R Harkema
Susan Hawk
April 1994
Research Report 65-I

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. The study of the effects of long-term ozone exposure on lung collagen, described in this report, was one of eight studies in a Collaborative Project supported by the NTP and the HEI. The others included studies of lung biochemistry, structure, and function, and one study of nasal structure and function. Dr.

Biomonitoring of Nitropolynuclear Aromatic Hydrocarbons via Protein and DNA Adducts

Karam El-Bayoumy
Bruce E Johnson
Ajit K Roy
Pramod Upadhyaya
Syrus J Partian
April 1994
Research Report 64

Exposure to polycyclic aromatic hydrocarbons (PAHs) and their nitro-substituted derivatives (nitro-PAHs), products of incomplete combustion, is widespread. This is of concern because individual PAHs and PAH-containing mixtures cause tumors in animals and they are suspected to contribute to human cancer. To asses their carcinogenic potential in humans, biomarkers of PAH exposure that measure the internal dose or the effective dose need to be developed. Dr.

Environmental Epidemiology Planning Project

Health Effects Institute
March 1994
Communication 3

HEI conducted the Environmental Epidemiology Planning Project in order to identify research needs and opportunities in selected areas of environmental epidemiology. Working groups in each selected area prepared documents composed of individually authored papers. The Planning Project documents were originally published in Environmental Health Perspectives (December 1993, Vol. 102).

Development of Samplers for Measuring Human Exposure to Ozone

Jack D Hackney
Petros Koutrakis
Yukio Yanagisawa
February 1994
Research Report 63

Ozone is a highly reactive gas that is a pervasive air pollutant at ground level. It is a major component of urban smog, forming when emissions from mobile and industrial sources interact with sunlight. Assessing the risk of adverse health effects from such exposures is difficult because only limited data are available on the actual ozone concentrations that people experience. Under the HEI ozone sampler program, three studies were designed to advance the development and testing of personal ozone samplers. The studies were conducted by Dr. Hackney and colleagues at Rancho Los Amigos Medical Center (Part I), Dr. Koutrakis and colleagues at the Harvard School of Public Health (Part II), and Dr. Yanagisawa from the Harvard School of Public Health (Part III). 

Effects of Carbon Monoxide on Isolated Heart Muscle Cells

Beatrice A Wittenberg
Jonathan B Wittenberg
December 1993
Research Report 62

Human exposure to carbon monoxide can occur from automobile emissions, industrial processes, sidestream or mainstream cigarette smoke, and poorly ventilated appliances such as space heaters and gas stoves. Most researchers consider the major mechanism for the toxicity of carbon monoxide to be its ability to compete with oxygen for binding to hemoglobin, the protein that transports oxygen through the bloodstream and releases it to cells and tissues.

Methods Development Toward the Measurement of Polyaromatic Hydrocarbon–DNA Adducts by Mass Spectrometry

Roger W Giese
Paul Vouros
October 1993
Research Report 61

Both environmental and genetic factors are believed to contribute to the multistage process that results in carcinogenesis. Therefore, determining the health risks associated with exposure to known and suspected carcinogenic chemicals is essential for informed decision-making by regulatory agencies. Dr. Roger W. Giese and colleagues at Northeastern University developed sensitive and specific techniques for measuring polycyclic aromatic hydrocarbon (PAH)-DNA adducts, a class of DNA adducts associated with exposure to constituents of diesel emissions and other combustion products.

Failure of Ozone and Nitrogen Dioxide to Enhance Lung Tumor Development in Hamsters

Hanspeter Witschi
Michael A Breider
Hildegard M Schuller
September 1993
Research Report 60

Ozone and nitrogen dioxide are highly reactive oxidant gases that are derived from the combustion of fossil fuels and the atmospheric transformation of these combustion products. A major unanswered question is whether or not exposure to oxidant air pollutants contributes to lung cancer. Dr. Witschi and colleagues at the University of California at Davis examined whether exposure to ozone or nitrogen dioxide enhances the development of tumors induced by the chemical carcinogen diethylnitrosamine (DEN), particularly neuroendocrine tumors, in the respiratory tract of hamsters.

Characterization of Particle- and Vapor-Phase Organic Fraction Emissions of a Heavy-Duty Diesel Engine Equipped with a Particle Trap and Regeneration Controls

Susan T Bagley
Linda D Gratz
David G Leddy
John H Johnson
July 1993
Research Report 56

Devices have been developed to reduce particle emissions from vehicles with diesel engines, such as a trap that filters the particles from the exhaust. Periodically, the trap is cleaned (regenerated) by electric heating, thereby burning the particles before they can clog the trap. There is concern that potentially harmful chemicals associated with the particles may be emitted from the trap during normal use and regeneration. Dr.

Nitrogen Dioxide and Respiratory Illness in Children, Part I: Health Outcomes, and Part II: Assessment of Exposure to Nitrogen Dioxide

Jonathan M Samet
William E Lambert
June 1993
Research Report 58-I & II

This publications contains two reports by Drs. Jonathan M. Samet, John D. Spengler, and colleagues, who conducted a prospective investigation of 1,205 healthy infants living in homes with gas or electric stoves in Albuquerque, NM. Nitrogen dioxide exposures were carefully estimated from repeated measurements in multiple locations in the subjects' homes throughout the entire 18-month observation period. Respiratory illnesses were monitored prospectively using a surveillance system based on daily parental diaries of respiratory signs and symptoms. Parental reports of illness episodes were validated in a subset of the population by comparison with clinical diagnoses and microbiological testing. Potential confounding factors that influence respiratory infections were reduced by selecting subjects whose parents did not smoke or intend to use day-care services outside the home.

Research Priorities for Mobile Air Toxics

Health Effects Institute
June 1993
Communication 2

Communication 2 provides information to decision makers on research that is potentially capable of narrowing uncertainties related to the health effects of specific air toxics. This report is based on the Mobile Air Toxics Workshop held in Monterey, CA, December 4–6 1992.

Do Electric or Magnetic Fields Cause Adverse Health Effects?

Health Effects Institute
June 1993
Special Report

HEI's Research Plan to Narrow the Uncertainties. This report of the HEI Electric and Magnetic Fields (EMF) Research Planning Committee presents a 5-7 year research program intended to clarify whether or not there are adverse health effects from exposure of the public to EMF from electric power transmission, machinery, or household appliances.

Determination of the Atherogenic Potential of Inhaled Carbon Monoxide

Arthur Penn
May 1993
Research Report 57

Carbon monoxide is a ubiquitous air pollutant. It is found in cigarette smoke and emissions from motor vehicles, industrial processes, and poorly ventilated combustion sources. Dr. Penn and his colleagues at New York University Medical Center sought to determine whether chronic exposure to ambient levels of carbon monoxide is also a risk factor for developing atherosclerosis because this disease is the leading contributor to deaths by heart attack and stroke in the United States.

Noninvasive Methods for Measuring Ventilation in Mobile Subjects

J Dennis McCool
Jonathan M Samet
May 1993
Research Report 59

This document contains two reports by Drs. McCool and Samet and their colleagues who were funded to develop and test methods for measuring ventilation in freely mobile subjects at home or at work. Drs. Dennis McCool and Domyung Paek at the Memorial Hospital in Rhode Island measured ventilation with a body surface displacement (BSD) model. Each subject wore wide elastic bands containing coated wire coils around the chest and abdomen and had special magnets affixed to the breastbone and navel, which yielded data about their breathing patterns, breath frequency, and ventilation. In the second study, Dr. Jonathan Samet and colleagues at Johns Hopkins University wanted to develop methods for estimating ventilation from heart rate for future epidemiologic studies. They used the Heartwatch, a portable, commercial device combining a small transmitter worn on the subject's chest with a wristwatch-style receiver that records heart rate.

Mutations Induced by 1-Nitrosopyrene and Related Compounds During DNA Recombination by These Compounds

Veronica M Maher
Nitai P Bhattacharyya
M Chia-Miao Mah
Janet Boldt
Jia-Ling Yang
J Justin McCormick
March 1993
Research Report 55

Nitropyrenes, which form during diesel fuel combustion, cause mutations and are carcinogenic in some animals. Dr. Veronica Maher and colleagues at Michigan State University studied the effect of nitropyrene-DNA adducts on gene mutation. The investigators exposed a specific gene, in culture, to each of two nitropyrene derivatives. They then (1) compared the number of adducts formed by each derivative, (2) analyzed the chemical structure of the adducts, and (3) determined in which region of the DNA the adducts formed.

Oxidant Injury to the Alveolar Epithelium: Biochemical and Pharmacologic Studies

Bruce A Freeman
Peter C Panus
Sadis Matalon
Barbara J Buckley
R Randall Baker
January 1992
Research Report 54

Ozone and nitrogen dioxide are significant outdoor and indoor air pollutants that can cause lung damage. Both are termed oxidant gases because the oxygen atoms they contain react with a variety of lung components and produce injury. Dr. Bruce Freeman and colleagues at the University of Alabama, Birmingham examined oxidant injury to alveolar epithelial cells and tested whether supplementing the levels of antioxidants would modify the cells' resistance to damage.

Use of Physical Chemistry and in Vivo Exposure to Investigate the Toxicity of Formaldehyde Bound to Carbonaceous Particles in the Murine Lung

George J Jakab
Terence H Risby
David R Hemenway
October 1992
Research Report 53

Dr. George Jakab and associates the Johns Hopkins University School of Public Health examined the effects of inhaled formaldehyde, an airway irritant that is part of motor vehicle emissions, on alveolar macrophages. The investigators exposed mice to varying levels of formaldehyde alone or to formaldehyde mixed with carbon black particles. Carbon black particles were chosen because of their similarity to combustion derived particles. Different alveolar macrophage functions were evaluated using two assays.

Carbon Monoxide Exposure of Subjects with Documented Cardiac Arrhythmias

Bernard R Chaitman
Thomas E Dahms
Sheila Byers
Lisa W Carroll
Liwa T Younis
Robert D Wiens
September 1992
Research Report 52

Drs. Chaitman and coworkers at the St. Louis University School of Medicine examined whether there is a link between carbon monoxide exposure and arrhythmias in subjects with coronary artery disease. Carbon monoxide is a ubiquitous air pollutant. It is found in cigarette smoke and emissions from motor vehicles, industrial processes, and poorly ventilated combustion sources. The investigators studied 25 men and 5 women, aged 45 to 77 years, all of whom were nonsmokers with stable coronary artery disease and who had moderate levels of ventricular arrhythmias.