Publications

This page is a list of publications in reverse chronological order. Please use search or the filters to browse by research areas, publication types, and content types.

Displaying 126 - 150 of 289. Show 10 | 25 | 50 | 100 results per page.


Manganese Toxicokinetics at the Blood-Brain Barrier

Robert A Yokel
Janelle S Crossgrove
January 2004
Research Report 119

Drs. Yokel and Crossgrove at the University of Kentucky Medical Center studied the mechanisms by which manganese enters and leaves the brain across the blood–brain barrier and, in particular, whether transporter molecules are involved. The investigators used in vivo brain perfusion in rats as well as in vitro tests in several cell lines to assess specific characteristics of manganese transport, such as pH and energy dependence. Manganese transport rates were compared with those of sucrose and dextran, which do not easily cross the blood–brain barrier.

Peroxides and Macrophages in the Toxicity of Fine Particulate Matter in Rats

Debra L Laskin
Lisa Morio
Kimberly Hooper
Tsung-Hung Li
Brian Buckley
Barbara J Turpin
December 2003
Research Report 117

Dr. Laskin and her colleagues at the Environmental and Occupational Health Sciences Institute at Rutgers University tested the hypothesis that oxidants in ambient air, such as hydrogen peroxide, may be transported by fine particulate matter into the lungs and thus contribute to lung tissue injury. The investigators used ammonium sulfate particles because of their prevalence in the ambient air of the eastern United States and their reportedly low toxicity in animals and humans.

Health Effects of Acute Exposure to Air Pollution

Stephen T Holgate
Thomas Sandström
et al.
Stephen T Holgate
Robert B Devlin
et al.
December 2003
Research Report 112

Stephen Holgate and his colleagues at the University of Southampton proposed that inflammatory changes in lung fluids and blood from humans exposed to PM were related to the chemical composition of the particles. He obtained samples from two human studies in which participants were exposed to diesel exhaust and concentrated ambient particles (CAPs). At a Swedish laboratory 25 healthy and 12 asthmatic participants were exposed to diesel exhaust or filtered air on separate days. At a US laboratory, 12 healthy participants were exposed to filtered air and 30 different healthy participants were exposed to a range of CAPs concentrations. All participants underwent bronchoscopy to obtain lung tissues and fluids to analyze inflammatory markers, including numbers of specific white blood cells, expression of activation markers, and levels of cytokines in addition to analysis of lung function, lung fluids, and blood.

Controlled Exposures of Healthy and Asthmatic Volunteers to Concentrated Ambient Particles in Metropolitan Los Angeles

Henry Gong Jr
Constantinos Sioutas
William S Linn
December 2003
Research Report 118

Dr. Henry Gong Jr and his colleagues at the Los Amigos Research and Education Institute used a Harvard ambient particle concentrator to assess the effects of exposure to concentrated ambient particles (CAPs) on healthy and asthmatic people. 12 healthy individuals and 12 individuals with mild asthma were exposed to either filtered air or CAPs with a maximum exposure level of 200 µg/m3 for two hours while exercising intermittently on a stationary bicycle.

Assessing the Health Impact of Air Quality Regulations: Concepts and Methods for Accountability Research

Health Effects Institute
September 2003
Communication 11

A document from the HEI Accountability Working Group. Evaluating the extent to which air quality regulations improve public health is part of a broad effort—termed accountability—to assess the performance of all environmental regulatory policies. Communication 11 sets out a conceptual framework for accountability research and identifies types of evidence required and methods by which the evidence can be obtained.

Validation and Evaluation of Biomarkers in Workers Exposed to Benzene in China

Qingshan Qu
Roy Shore
Guilan Li
Ximei Jin
Lung Chi Chen
Assieh A Melikian
David Eastmond
Stephen Rappaport
Heyi Li
Doppalapudi Rupa
Suramya Waidyanatha
Songnian Yin
Huifang Yan
Min Meng
Witold Winnik
et al.
June 2003
Research Report 115

Dr. Qingshan Qu and colleagues at the New York University School of Medicine recruited 181 healthy workers in several factories in the Tianjin region of China. These subjects formed part of a cohort of thousands identified by the US National Cancer Institute (NCI) and the China Academy of Preventive Medicine for a study to evaluate tumor incidence in benzene exposed workers (NCI/China study).

Biomarkers in Czech Workers Exposed to 1,3-Butadiene: A Transitional Epidemiologic Study

Richard J Albertini
Radim J Šrám
Pamela M Vacek
Jeremiah Lynch
Janice A Nicklas
Nico J van Sittert
Peter J Boogaard
Rogene F Henderson
James A Swenberg
Ad D Tates
Jonathan B Ward Jr
Michael Wright
et al.
June 2003
Research Report 116

Dr. Albertini and colleges organized a group of researchers from the United States, Czech Republic, The Netherlands, and the United Kingdom to determine whether biomarkers in the blood and urine of workers exposed to butadiene in occupational settings correlated with their personal exposure. Samples were collected from male workers employed either in a plant that used butadiene and styrene to produce rubber polymer in Prague. They also collected blood and urine from male administrative workers at the plant who had no direct occupational exposure to butadiene and served as control subjects.

Biomarkers in Czech Workers Exposed to 1,3-Butadiene: A Transitional Epidemiologic Study

Richard J Albertini
Radim J Šrám
Pamela M Vacek
Jeremiah Lynch
Janice A Nicklas
Nico J van Sittert
Peter J Boogaard
Rogene F Henderson
James A Swenberg
Ad D Tates
Jonathan B Ward Jr
Michael Wright
et al.
June 2003
Research Report 116

Dr. Albertini and colleges organized a group of researchers from the United States, Czech Republic, The Netherlands, and the United Kingdom to determine whether biomarkers in the blood and urine of workers exposed to butadiene in occupational settings correlated with their personal exposure. Samples were collected from male workers employed either in a plant that used butadiene and styrene to produce rubber polymer in Prague. They also collected blood and urine from male administrative workers at the plant who had no direct occupational exposure to butadiene and served as control subjects.

Revised Analyses of Time-Series Studies of Air Pollution and Health

Health Effects Institute
May 2003
Special Report

Over the past decade, time-series studies conducted in many cities have contributed information about the association between daily changes in concentrations of airborne particulate matter (PM) and daily morbidity and mortality. In 2002, however, investigators at Johns Hopkins University and at Health Canada identified issues in the statistical model used in the majority of time-series studies. This HEI Special Report details attempts to address several questions raised by these discoveries.

Improving Estimates of Diesel and Other Emissions for Epidemiologic Studies

Health Effects Institute
April 2003
Communication 10

Communication 10 contains proceedings of a workshop held in Baltimore, MD, December 4–6 2002. The workshop sought to address the search for a "Diesel Signature": Do We Have a Diesel Signature? Where Do We Go From Here? Communication 10 includes a workshop summary and reports from speakers on: Health Studies of Diesel Particulate Matter; Future Trends of Diesel Emissions; Diesel and Gasoline Particle Characteristics; Approaches to Particle Characterization; Diesel Source Signature Studies; Emissions and Air Quality Studies; Data Analysis Approaches.

A Personal Particle Speciation Sampler

Susanne Hering
Nathan Kreisberg
Walter John
February 2003
Research Report 114

Dr. Susanne Hering of Aerosol Dynamics Inc and her colleagues set out to design and validate a personal monitoring sampler for particles smaller than 2.5 µm (PM2.5) that is suitable for subsequent chemical speciation work. The sampler intended to meet the measurement needs for PM2.5 mass concentration and several of its major constituents including elemental carbon, organic carbon, sulfates, and nitrates.

Benzene Metabolism in Rodents at Doses Relevant to Human Exposure from Urban Air

Kenneth W Turteltaub
Chitra Mani
February 2003
Research Report 113

Drs Turteltaub and Mani at Lawrence Livermore National Laboratory investigated benzene metabolism in rodents over a large dose range that encompassed concentrations close to those of human ambient exposure. Understanding benzene metabolism at low exposure levels is critical to benzene assessment to determine the shape of the dose-response curve at low concentrations.The investigators administered radioactive benzene to mice and rats and subsequently analyzed bone marrow, liver, urine, and plasma from these animals.

Particle Characteristics Responsible for Effects on Human Lung Epithelial Cells

Ann E Aust
James C Ball
Autumn A Hu
JoAnn S Lighty
Kevin R Smith
Ann M Straccia
John M Veranth
Willie C Young
December 2002
Research Report 110

Dr. Aust and her colleagues at Utah State University and Ford Motor company hypothesized that transition metals (metals that can participate in possibly toxic oxidative reactions) associated with particulate matter are released within lung epithelial cells and catalyze the formation of reactive oxygen species. The investigators focused their study on coal fly ash that was produced in the laboratory and separated into four size fractions.

Effect of Concentrated Ambient Particulate Matter on Blood Coagulation Parameters in Rats

Christine Nadziejko
Kaijie Fang
Lung Chi Chen
Beverly Cohen
Margaret Karpatkin
Arthur Nádas
October 2002
Research Report 111

Dr. Nadziejko and her colleagues at the New York University School of Medicine evaluated the effects of exposing healthy rats to concentrated ambient particles (CAPs) and changes in blood coagulation parameters. The investigators measured platelet number, blood cells counts, and levels of fibrinogen, thrombin-antithrombin complex, tissue plasminogen activator, plasminogen activator inhibitor, and factor VII of rats that were exposed to concentrated New York City particles and filtered air for 6 hours. Blood samples were obtained before and after exposure using an indwelling catheter.

Ozone-Induced Modulation of Airway Hyperresponsiveness in Guinea Pigs

Richard B Schlesinger
Mitchell Cohen
Terry Gordon
Christine Nadziejko
Judith T Zelikoff
Maureen Sisco
Jean F Regal
Margaret G Ménache
June 2002
Research Report 109

Dr. Schlesinger and colleagues at the New York University School of Medicine used a well-established animal model of airway hyperresponsiveness (a heightened tendency of the bronchial airways to constrict) and allergic asthma to determine whether ozone can induce airway hyperresponsiveness or exacerbate existing airway hyperresponsiveness. Male and female guinea pigs were exposed to ozone concentrations comparable to levels to which humans are exposed during periods of ozone pollution.

Case-Cohort Study of Styrene Exposure and Ischemic Heart Disease

Genevieve M Matanoski
Xuguang Tao
May 2002
Research Report 108

Drs. Matanoski and Tao at Johns Hopkins University examined the relationship between styrene exposure and heart disease in workers in styrene-butadiene polymer manufacturing plants between 1943 and 1982. Workers who had died from ischemic heart disease were compared to a subgroup of all men employed in two styrene-butadiene polymer manufacturing plants during that time. Individual exposure histories were determined from job records, or constructed using a statistical method to estimate exposure when records were missing.

Research Directions to Improve Estimates of Human Exposure and Risk from Diesel Exhaust

Health Effects Institute
April 2002
Special Report

A Special Report of the Institute's Diesel Epidemiology Working Group. The Diesel Epidemiology Working Group was formed in the fall of 2000 to (1) review reports from 6 diesel feasibility studies funded by HEI to provide information on potential study populations and on exposure assessment methods; and (2) consider the results of the feasibility studies and other ongoing research in order to develop a new research agenda to seek better information for quantitative risk assessment of lung cancer and other chronic diseases that may result from exposure to diesel exhaust. The 6 feasibility studies described in this report were funded by HEI to provide insight about whether a new retrospective or prospective epidemiologic study could provide data to improve estimates of cancer risk from exposure to diesel exhaust, and about whether new methods of exposure analysis would allow us to reevaluate older epidemiologic studies.

Understanding the Health Effects of Components of the Particulate Matter Mix: Progress and Next Steps

Health Effects Institute
April 2002
Perspectives 2

Perspectives 2 is the second of a series produced by the HEI Health Review Committee to integrate findings across several HEI studies or entire research programs. The intent is to describe and interpret results bearing on important and timely issues for a broad audience interested in environmental health.

Emissions from Diesel and Gasoline Engines Measured in Highway Tunnels

Alan W Gertler
et al.
Daniel Grosjean
et al.
January 2002
Research Report 107

This report describes two studies that measured emissions in roadway tunnels. Dr. Alan Gertler and colleagues at the Desert Research Institute studied particulate matter emissions in the Tuscarora Mountain Tunnel located on the Pennsylvania Turnpike. Dr Daniel Grosjean and colleague at DGA, Inc studied carbonyl emissions in the Tuscarora Mountain Tunnel and in the Caldecott Tunnel in California. The unique environment in tunnel studies allows the investigators to measure emission rates averaged over many vehicles, to determine the physical and chemical character of emissions under ambient conditions, and in some instances to compare current emissions with past emissions at the same location. Both groups of investigators also measured emissions at times when the proportions of gasoline engine vehicles and diesel engine vehicles differed, allowing them to estimate the differences between emissions from the two sources.

Pathogenomic Mechanisms for Particulate Matter Induction of Acute Lung Injury and Inflammation in Mice

George D Leikauf
Susan A McDowell
Scott C Wesselkamper
Clay R Miller
William D Hardie
Kelly Gammon
Pratim P Biswas
Thomas R Korfhagen
Cindy J Bachurski
Jonathan S Wiest
Klaus Willeke
Eula Bingham
John E Leikauf
Bruce J Aronow
et al.
December 2001
Research Report 105

Dr. Leikauf and colleagues at the University of Cincinnati Medical Center hypothesized that the response of mice exposed to high concentrations of inhaled nickel particles was under genetic control. Using nickel, a transition element shown to cause adverse effects at high concentrations in ambient air, the investigators sought to identify the genes involved in controlling the inflammatory and toxic effects of continuous exposure to nickel particles.

Effects of Combined Ozone and Air Pollution Particle Exposure in Mice

Lester Kobzik
Carroll-Ann W Goldsmith
Yao Yu Ning
Guozhong Qin
Bill Morgan
Amy Imrich
Joy Lawrence
GG Krishna Murthy
Paul J Catalano
December 2001
Research Report 106

Dr. Lester Kobzik and colleagues at the Harvard School of Public Health used a mouse model of asthma to evaluate how inhaling pollutants affects the airways. The mice were sensitized to the allergen ovalbumin, which induces a lung condition in the mice similar to that found in people with asthma. The investigators hypothesized that exposure to concentrated ambient particles (CAPs) plus ozone would cause a synergistic (or greater-than-additive) response in the mice.

Inhalation Toxicology of Urban Ambient Particulate Matter: Acute Cardiovascular Effects in Rats

Renaud Vincent
Premkumari Kumarathasan
Patrick Goegan
Stephen G Bjarnason
Josée Guénette
Denis Bérubé
Ian Y Adamson
Suzanne Desjardins
Richard T Burnett
Frederick J Miller
Bruno Battistini
October 2001
Research Report 104

Dr. Renaud Vincent and his colleagues of Health Canada, Ottawa, hypothesized that ambient PM would cause changes in certain cardiovascular parameters. The investigators implanted rats with radiotransmitters to collect continuous data and indwelling catheters for repeated blood sampling. The animals were exposed to clean air or one of four types of resuspended particles: ambient particles (Ottawa dust), ambient particles that had been washed in water to remove soluble components, diesel soot, or carbon black.

Acute Pulmonary Effects of Ultrafine Particles in Rats and Mice

Günter Oberdörster
Jacob N Finkelstein
Carl Johnston
Robert Gelein
Christopher Cox
Raymond Baggs
Alison CP Elder
August 2001
Research Report 96

Dr Günter Oberdörster and colleagues at the University of Rochester School of Medicine and Dentistry hypothesized that inhaled ultrafine particles induce an inflammatory response in the airways of mice and rats and that animals with preexisting airway inflammatory conditions may be particularly vulnerable. The investigators focused on inhaled carbon and platinum particles because these elements are constituents of particles found in urban atmospheres.

Evaluation of Human Health Risk from Cerium Added to Diesel Fuel

Health Effects Institute
August 2001
Communication 9

The fuel efficiency and durability of diesel technology are particularly desirable in the transportation and construction industries. Concerns about the health effects of diesel particulate emissions have led to progressively stricter emission standards, which can be met only through new technologic advances and fuel modifications. The cerium-based fuel additive Eolys, used in conjunction with a particulate filter, is one of the approaches being considered. However, this additive will result in emissions of cerium compounds and an increase in cerium in the ambient air and soil.

Reanalysis of the Harvard Six Cities Study and the American Cancer Society Study of Particulate Air Pollution and Mortality

Health Effects Institute
July 2001
Special Report

A Special Report of the Institute's Particle Epidemiology Reanalysis Project. The overall objective of this project was to conduct a rigorous and independent assessment of the findings of the Harvard Six Cities and American Cancer Society Studies of air pollution and mortality. This objective was met in two parts. In Part I: Replication and Validation, the Reanalysis Team led by Dr. Daniel Krewski sought to replicate the original studies via a quality assurance audit of a sample of the original data and to validate the original numeric results.