This page is a list of publications in reverse chronological order. Please use search or the filters to browse by research areas, publication types, and content types.

Displaying 151 - 175 of 289. Show 10 | 25 | 50 | 100 results per page.

Characterization and Mechanisms of Chromosomal Alterations Induced by Benzene in Mice and Humans

David A Eastmond
Maik Schuler
Chris Frantz
Hongwei Chen
Robert Parks
Ling Wang
Leslie Hasegawa
June 2001
Research Report 103

Dr. Eastmond and colleagures at the University of California, Riverside investigated whether chromosomal changes could be used as biomarkers of benzene exposure in mice and humans. The first part of the study involved detecting chromosomal alterations in cells using a modification of a molecular cytogenetic technique known as fluorescence in situ hybridization (FISH). Eastmond and colleagues evaluated the frequency of such chromosomal aberrations in the erythrocytes (red blood cells) from the bone marrow of mice exposed to various doses of benzene and for different exposure durations.

Airborne Particles and Health: HEI Epidemiologic Evidence

Health Effects Institute
June 2001
Perspectives 1

Perspectives 1 is the first of a series produced by the HEI Health Review Committee to integrate findings across several HEI studies or entire research programs. The intent is to describe and interpret results bearing on important and timely issues for a broad audience in terested in environmental health.

Metabolism of Ether Oxygenates Added to Gasoline

Jun-Yan Hong
et al.
Wolfgang Dekant
et al.
Janet Benson
et al.
May 2001
Research Report 102

The three research projects contained in this report were initiated to increase our knowledge of the metabolism of ether oxygenates in humans and other species. Adding oxygenates, such as MTBE (methyl tert-butyl ether), to gasoline promotes more efficient combustion and reduces emission of carbon monoxide, ozone-forming hydrocarbons, and some air toxics, by increasing the oxygen content of the fuel. On the other hand, some oxygenates may increase emission of toxic compounds such as formaldehyde or acetaldehyde, and increased use of MTBE in fuel in the early 1990s led to complaints of unpleasant odor, headaches, and burning of eyes and throat. The studies were conducted by Dr Jun-Yan Hong (the University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School), Dr Wolfgang Dekant (University of Würzburg), and Dr Janet Benson (Lovelace Respiratory Research Institute).

Respiratory Epithelial Penetration and Clearance of Particle-Borne Benzo[a]pyrene

Per Gerde
Bruce A Muggenburg
Margot Lundborg
Yohannes Tesfaigzi
Alan R Dahl
April 2001
Research Report 101

Dr. Gerde and colleagues at the Lovelace Respiratory Research Institute examined the effects of organic compounds in diesel exhaust such as genotoxic polynuclear aromatic compounds (PAHs). The investigators removed most of the organic compounds from diesel exhaust particles and bound radioactive Benzo[a]pyrene (BaP), a type of PAH is known to cause cancer in laboratory animals, to them. They exposed the lower respiratory tract of three dogs to the particles and measured the levels of particle-bound BaP and free BaP released from particles in the peripheral region of the lungs.

Respiratory Tract Toxicity in Rats Exposed to Mexico City Air

Owen R Moss
Elizabeth A Gross
R Arden James
Derek B Janszen
Paul W Ross
Kay C Roberts
Andrew M Howard
Jack R Harkema
Lilian Calderon-Garciduenas
Kevin T Morgan
March 2001
Research Report 100

Dr. Moss of CIIT evaluated the effects of rats exposed to ambient air in a highly polluted area in southwestern Mexico City. Pathologists have found evidence of cell damage and inflammation in nasal tissue from some human residents of this highly polluted area that was not present in people living in areas of the country with cleaner air and this study sought to determine if those effects could be replicated in rats.

A Case-Crossover Analysis of Fine Particulate Matter Air Pollution and Out-of-Hospital Sudden Cardiac Arrest

Harvey Checkoway
Drew Levy
Lianne Sheppard
Joel D Kaufman
Jane Koenig
David Siscovick
December 2000
Research Report 99

Dr Checkoway and colleagues at the University of Washington tested the primary hypothesis that increases in daily fine particle levels were related to increased risk of out-of-hospital sudden cardiac arrest. Sudden cardiac arrest and questionnaire data, and exposure data were obtained from the Puget Sound Clean Air Agency (Seattle WA). The investigators used a case-crossover study design; for each case of sudden cardiac arrest, a time period when the person was disease free was selected as a matched "referent" period.

Health Implications of Technological Responses to Climate Change

The Heinz Center
Health Effects Institute
November 2000
Workshop Report

Report of a workshop held November 29-30, 2000, sponsored by The H. John Heinz III Center for Science, Economics and the Environment, and the Health Effects Institute. 

Daily Mortality and Fine and Ultrafine Particles in Erfurt, Germany. Part I: Role of Particle Number and Particle Mass

H-Erich Wichmann
Claudia Spix
Thomas Tuch
Gabriele Wölke
Annette Peters
Joachim Heinrich
Wolfgang Kreyling
Joachim Heyder
November 2000
Research Report 98

Dr H-Erich Wichmann and colleagues at the National Research Center for Environment and Health in Germany prospectively studied the association of daily mortality data with the number and mass concentrations of ultrafine and fine particles in Erfurt, Germany. Concentrations were measured near a road and a time-series approach was used to look at short-term changes in particle concentration and concurrent deaths due to cardiovascular and respiratory causes over a period of 3.5 years.

Identifying Subgroups of the General Population That May Be Susceptible to Short-Term Increases in Particulate Air Pollution: A Time-Series Study in Montreal, Quebec

Mark S Goldberg
John C Bailar III
Richard T Burnett
Jeffrey R Brook
Robyn Tamblyn
Yvette Bonvalot
Pierre Ernst
Kenneth M Flegel
Ravinder K Singh
Marie-France Valois
October 2000
Research Report 97

Dr. Mark Goldberg and his colleagues at McGill University conducted a time-series study in Montreal using available data from the Quebec Health Insurance Plan and mortality and air pollution data to better the understanding of the mortality-particulate association. Because of the comprehensive nature of this health insurance database, the investigators were able to link individual deaths in Montreal to medical information up to 5 years before death.

Association of Particulate Matter Components with Daily Mortality and Morbidity in Urban Populations

Morton Lippmann
Kazuhiko Ito
Arthur Nádas
Richard T Burnett
August 2000
Research Report 95

Dr Morton Lippmann and colleagues at the New York University School of Medicine attempted to identify and characterize components of PM and other air pollution mixtures that were associated with excess daily deaths and elderly hospital admissions in and around the area of Detroit, Michigan. Using publicly available data from 1985-1990 and 1992-1994, the investigators used statistical models to weigh the strength of one pollutant or two pollutants concurrently.

National Morbidity, Mortality, and Air Pollution Study. Part II: Morbidity and Mortality from Air Pollution in the United States

Jonathan M Samet
Scott L Zeger
Francesca Dominici
Frank Curriero
Ivan Coursac
Douglas W Dockery
Joel Schwartz
Antonella Zanobetti
June 2000
Research Report 94-II

The National Morbidity, Mortality, and Air Pollution Study (NMMAPS) was designed to select multiple locations based on the specific criteria of population size and availability of PM10 data from the US Environmental Protection Agency's Aerometric Information Retrieval System (AIRS) database, and to apply the same statistical procedures to all locations. Dr Jonathan Samet and his colleagues Johns Hopkins University conducted a time-series study of mortality effects in large US cities representing various levels of PM10 and gaseous pollutants.

National Morbidity, Mortality, and Air Pollution Study. Part I: Methods and Methodologic Issues

Jonathan M Samet
Francesca Dominici
Scott L Zeger
Joel Schwartz
Douglas W Dockery
June 2000
Research Report 94-I

In an effort to address the uncertainties regarding the association between PM and daily mortality, and to determine the effects of other pollutants on this association, HEI funded the National Morbidity, Mortality, and Air Pollution Study (NMMAPS). Dr Jonathan Samet and his colleagues at Johns Hopkins University, in collaboration with investigators at Harvard University, conducted this time-series study in large cities across the US where levels of PM and gaseous pollutants were varied.

Effects of Concentrated Ambient Particles in Rats and Hamsters: An Exploratory Study

Terry Gordon
Christine Nadziejko
Lung Chi Chen
Richard B Schlesinger
April 2000
Research Report 93

Dr Terry Gordon and colleagues at the New York University School of Medicine conducted an exploratory study to test the effects of exposure to PM derived from New York City air on the rodent cardiopulmonary system. They hypothesized that PM would have greater, possibly fatal, effects in animals with compromised cardiopulmonary function than in normal animals. Gordon and colleagues exposed animals for up to 6 hours to concentrated particles that ranged from approximately 150 to 900 µg/m3.

1,3 Butadiene: Cancer, Mutations, and Adducts

Rogene F Henderson
Leslie Recio
Vernon E Walker
Ian A Blair
James A Swenberg
March 2000
Research Report 92

As part of the Health Effects Institute's air toxics research program, five independent studies were designed to advance our understanding of the roles of different metabolites in 1,3-butadiene (BD)-induced carcinogenesis and of the differences in sensitivity among species, and to develop methods for identifying and measuring biomarkers. The investigators focused on two BD metabolites (1,2-epoxy-3-butene [BDO] and 1,2,3,4-diepoxybutane [BDO2]) that researchers had suspected may play a role in BD carcinogenesis. The studies were conducted by Dr. Rogene Henderson (Lovelace Respiratory Research Institute), Dr. Leslie Recio (CIIT), Dr. Vernon Walker (New York State Department of Health), Dr. Ian Blair (University of Pennsylvania), and Dr. James Swenberg (University of North Carolina at Chapel Hill).

Mechanisms of Morbidity and Mortality from Exposure to Ambient Air Particles

John J Godleski
Richard L Verrier
Petros Koutrakis
Paul J Catalano
February 2000
Research Report 91

Dr John Godleski and colleagues at Harvard School of Public Health conducted an exploratory study to test the effects of particulate matter exposure in dogs, which share many features of the human cardiovascular system. The investigators hypothesized that particulate matter might affect the animals' cardiac function, leading to arrhythmia, and might induce inflammatory responses and changes in pulmonary mechanical measurements. Twelve dogs were exposed to concentrated ambient particles (CAPs) that were 30 times their level in ambient Boston air.

Aldehydes (Nonanal and Hexanal) in Rat and Human Bronchoalveolar Lavage Fluid After Ozone Exposure

Mark W Frampton
William A Pryor
Rafael Cueto
Christopher Cox
Paul E Morrow
Mark J Utell
November 1999
Research Report 90

Dr. Pryor and colleagues at Louisiana State University developed methods for measuring ozone reaction products in in vitro models of lung lining fluids exposed to ozone and in lung fluids from rats exposed to ozone. During the study, Dr. Mark Frampton of the University of Rochester provided Pryor with lung fluids from humans exposed to air or ozone under controlled conditions. Frampton and colleagues exposed exercising smokers and nonsmokers to filtered air or to 0.22 parts per million (ppm) ozone for four hours.

Diesel Workshop: Building a Research Strategy to Improve Risk Assessment

Health Effects Institute
October 1999
Communication 7
Communication 7 contains proceedings from a workshop held in Stone Mountain, GA, March 7–9 1999. The following topics were discussed: Risk Assessments of Diesel Emissions: Framework for Building a Research Strategy; Chemical and Physical Properties of Diesel Engine Emissions; Assessment of Exposure to Diesel Engine Emissions; What Do Published Epidemiology Studies Tell Us About Exposure-Response?; What Will Epidemiology Studies Now Underway Tell Us About Exposure-Response?; What Will Epidemiology Studies Now Underway Tell Us About Exposure-Response?; and Consideration of Health Endpoints Other Than Cancer in Future Risk Assessments of Diesel Emissions.

The Health Effects of Fine Particles: Key Questions and the 2003 Review

Health Effects Institute
October 1999
Communication 8
Report of the Joint Meeting of the EC and HEI, held in Brussels, Belgium, January 14–15 1999. The following topics were discussed: What Are People Exposed To and Where Do Particles Come From? What Is Known About the Health Effects of PM? What New Research Results Are Emerging? and Outstanding Questions and Gaps for 2003 and Beyond.

Reproductive and Offspring Developmental Effects Following Maternal Inhalation Exposure to Methanol in Nonhuman Primates

Thomas Burbacher
October 1999
Research Report 89

In an effort to improve air quality and decrease dependence on petroleum, alternative fuels such as methanol have been considered to substitute for gasoline or diesel fuel. Methanol is also a candidate to provide the hydrogen for fuel cells. Before people are exposed to increased concentrations of methanol, the potential health effects of such exposures require study. Dr. Burbacher and colleagues of the University of Washington studied the effects of long-term exposure to methanol vapors on metabolism and reproduction in adult female monkeys (Macaca fascicularis) and developmental effects in their offspring, who were exposed prenatally to methanol. 

Morphometric Analysis of Alveolar Responses of F344 Rats to Subchronic Inhalation of Nitric Oxide

Robert R Mercer
September 1999
Research Report 88

In a follow-up study to previous research, Dr. Mercer and colleagues at Duke University exposed three groups of rats continuously for six weeks to 2 or 6 ppm nitric oxide (NO) or to filtered air to learn more about the toxicity of NO so as to compare it with two other important oxidants, ozone and nitrogen dioxide (NO2). At the end of the exposure period he used an electron microscope to measure the number of holes in the alveolar septa and to observe other structural changes, such as in the surface area and the number and type of other abnormalities in the alveolar septa.

Development of Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry Methods for Determination of Urinary Metabolites of Benzene in Humans

Assieh A Melikian
Min Meng
Ray O’Connor
Peifeng Hu
Seth M Thompson
June 1999
Research Report 87

Dr. Melikian and colleagues at the American Health Foundation developed and validated a novel, practical method for assaying metabolites of benzene in humans methods using a technique known as Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry (LC-ESI-MS/MS) to measure benzene metabolites in human urine.

Diesel Emissions and Lung Cancer: Epidemiology and Quantitative Risk Assessment

Health Effects Institute
June 1999
Special Report

A Special Report of the Institute's Diesel Epidemiology Expert Panel. Although epidemiologic data have been used generally to identify the hazards associated with exposure to diesel exhaust, questions remain as to whether the human data can be used to develop reliable estimates of the magnitude of any risk for lung cancer (that is, through quantitative risk assessment [QRA]), and whether new research efforts could provide any additional data needed. In response to such issues, the Health Effects Institute initiated the Diesel Epidemiology Project in 1998.

Statistical Methods for Epidemiologic Studies of the Health Effects of Air Pollution

William Navidi
Duncan Thomas
Bryan Langholz
Daniel Stram
May 1999
Research Report 86

Dr. Navidi and colleagues at the University of Southern California discussed the development of three sophisticated statistical methods that would improve the estimates of the health effects of air pollution obtained from epidemiologic studies. First, they took a standard case-crossover design and introduced a bidirectional element where control data were obtained both before and after the health event of interest.

Mechanisms of Response to Ozone Exposure: The Role of Mast Cells in Mice

Steven R Kleeberger
Malinda Longphre
Clarke G Tankersley
April 1999
Research Report 85

Dr. Kleeberger and colleagues at Johns Hopkins University compared ozone-induced inflammation, epithelial cell injury, and epithelial cell proliferation (a marker of cell injury) in three types of mice: mice with a normal content of mast cells, mutant mice without mast cells, and mutant mice whose mast cells were repleted by a bone marrow transplant from normal mice. Each group of mice was exposed to clean air or to ozone for varying lengths of time.

Evaluation of The Potential Health Effects of the Atmospheric Reaction Products of Polycyclic Aromatic Hydrocarbons

Andrew J Grosovsky
Jennifer C Sasaki
Janet Arey
David Eastmond
Karyn K Parks
Roger Atkinson
March 1999
Research Report 84

Dr. Arey and colleagues of the University of California, Riverside, examined the genotoxic potential of two PAHs (naphthalene and phenanthrene) that are common air pollutants, and a subset of their atmospheric transformation products. The investigators evaluated the genotoxicity of these compounds using a variety of human cell lines with a range of metabolic capabilities. They examined the ability of these compounds to produce small-scale (damage to genes) and large-scale (damage to chromosomes) genetic damage.