Publications

This page is a list of publications in reverse chronological order. Please use search or the filters to browse by research areas, publication types, and content types.

Displaying 321 - 330 of 340. Show 10 | 25 | 50 | 100 results per page.


Respiratory Infections in Coal Miners Exposed to Nitrogen Oxides

Michael Jacobsen
Tom A Smith
J Fintan Hurley
Alastair Robertson
Ralph Roscrow
1988
Research Report 18

This report investigated the association of occupational exposure to nitrogen oxides with respiratory infections in British coal miners. Dr. Jacobsen and colleagues leveraged data from the Pneumoconiosis Field Research Study, a long-term epidemiological study of British coal miners with information for the years 1953-1978.

Studies on the Metabolism and Biological Effects of Nitropyrene and Related Nitro-polycyclic Aromatic Compounds in Diploid Human Fibroblasts

Veronica M Maher
Joe Dale Patton
J Justin McCormick
1988
Research Report 17

This report describes a study by Dr. Maher and colleagues to investigate the biological effects of nitropyrene compounds, found in diesel emission particulate, on diploid human fibroblasts in culture in order to better evaluate potential health effects. Diploid human fibroblasts from normal individuals and individuals with a genetic predisposition to cancer were studied and compared through a series of experiments.

Metabolism and Biological Effects of Nitropyrene and Related Compounds

Charles M King
1988
Research Report 16

This report describes a study by Dr. King to investigate in rats the carcinogenic properties of nitropyrene and related compounds and how these compounds are metabolically activated in target tissues. Nitropyrenes and related nitroaromatics are of interest because of their ubiquity in diesel emissions and reported carcinogenicity.

Susceptibility to Virus Infection with Exposure to Nitrogen Dioxide

Thomas J Kulle
Mary Lou Clements
1988
Research Report 15

This report addressed the hypothesis that exposure to oxidant air pollutants enhances susceptibility to viral infection. Drs. Kulle and Clements exposed healthy human volunteers who were seronegative to cold-adapted influenza A virus to clean air or nitrogen dioxide concentrations of 1, 2, or 3 ppm for two hours a day for three consecutive days. Live influenza A virus was administered intranasally to all participants after the second day of exposure.

The Effects of Ozone and Nitrogen Dioxide on Lung Function in Healthy and Asthmatic Adolescents

Jane Koenig
William E Pierson
Susan Gayle Marshall
David S Covert
Michael S Morgan
Gerald van Belle
1988
Research Report 14

This report investigated whether asthmatic and healthy adolescents differ in their sensitivity to near-ambient concentrations of ozone and nitrogen dioxide. Dr. Koenig and colleagues exposed healthy and asthmatic participants to concentrations of 0.12 and 0.18 ppm ozone or 0.12 and 0.18 ppm nitrogen dioxide during rest or rest followed by moderate exercise.

Effects of Nitrogen Dioxide on Alveolar Epithelial Barrier Properties

Edward D Crandall
Jeffrey M Cheek
Marian E Shaw
Edward M Postlethwait
1987
Research Report 13

This report describes a study by Dr. Crandall and colleagues to investigate the ability of nitrogen dioxide (NO2) to adversely alter the barrier and transport properties of mammalian alveolar epithelium and cause pulmonary edema. Rat type II alveolar cell monolayers cultured on non-porous and porous surfaces were used as models of isolated alveolar epithelium for in vitro exposure to NO2.

Neurotoxicity of Prenatal Carbon Monoxide Exposure

Laurence D Fechter
1987
Research Report 12

This report describes a study by Dr. Fechter to investigate the effect of prenatal and neonatal exposure to low levels of carbon monoxide (CO) on the developing rat brain. Groups of rats were exposed prenatally, or prenatally plus 10 days neonatally to take into account the fact that the developing rat brain is considerably less mature at birth than the primate brain. Consequently, rats were exposed to CO concentrations ranging from 75-300 ppm through the period of neuronal proliferation and into the period of synapse formation.

Effects of Ozone and Nitrogen Dioxide on Human Lung Proteinase Inhibitors

David A Johnson
1987
Research Report 11

Addressing the need for better assessment of human exposure to mobile source emissions, this report investigates proteinase inhibitor activity as a potential biomarker of oxidant exposure. In this study by Dr. Johnson, human participants were exposed to 0.5 ppm ozone for four hours on consecutive days and to concentrations ranging from 0.6-2 ppm nitrogen dioxide for three hours. Blood samples were obtained and the functional activity of the proteinase inhibitors, alpha-1-proteinase, and bronchial leukocyte proteinase was assessed.

Predictive Models for Disposition of Inhaled Diesel Exhaust Particles in Humans and Laboratory Species

CP Yu
GB Xu
1987
Research Report 10

Dr. Yu's project addressed several important issues regarding improved quantification of dose from known concentrations of atmospheric particulate matter. By focusing first on a specific category of automotive-derived particles, diesel exhaust particulate, Dr. Yu was able to characterize those aerosol properties (such as the mass medican aerodynamic diameter and size distribution) that influence regional deposition. After formulating a mathematical deposition model, Dr.

Biochemical and Metabolic Response to Nitrogen Dioxide-Induced Endothelial Injury

Jawaharlah M Patel
Edward R Block
1987
Research Report 9

Nitrogen dioxide is a ubiquitous air pollutant resulting from the combustion of fossil fuels. Since NO2 is a reactive free radical, one postulated mechanism on NO2 pulmonary injury involves peroxidation of membrane lipids. Dr. Patel and colleagues at the University of Florida evaluated the dose- and time-dependent effects of NO2 exposure by measuring metabolic function, biochemical and biophysical parameters. The porcine pulmonary artery and aortic endothelial cells in monoculture cells were exposed to 3 or 5ppm of NO2 or air for 3-24 hours.