# HE

#### APPENDICES AVAILABLE ON THE HEI WEBSITE

**Special Report 22** 

Impacts of Shipping on Air Pollutant Emissions, Air Quality, and Health in the Yangtze River Delta and Shanghai, China

Zhang et al.

Appendix A. Methods

**Appendix B. Emissions Results** 

Appendix C. Air Quality Results

Appendix D. Health Analysis Results

**Appendix E. Evaluation Results** 

Appendix F. Future (2030) Ship Activity, Emissions, Air Quality, and Health Results

These Appendices were reviewed solely for spelling, grammar, and cross-references to the main text. They have not been formatted or fully edited by HEI.

Correspondence concerning this Special Report may be addressed to Dr. Yan Zhang, Department of Environmental and Engineering Sciences, Fudan University, Shanghai 200438, China; e-mail: yan\_zhang@fudan.edu.cn; or Allison Patton, Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110, U.S.A.; e-mail: apatton@healtheffects.org.

The final contents of this document have not been reviewed by private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views or policies of these parties, and no endorsement by them should be inferred.

© 2019 Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110-1817

HEI Special Report 22, Zhang, Appendices A-F (available on the HEI website)



**Figure A.1. Monthly average wind field at sea-level pressure in spring**: (March, April, and May, a-c), summer (June, July, and August, d-f), autumn (September, October, and November, g-i), and winter (December, January, and February, j-l) in 2015.

Table A.1. Main engine and auxiliary emissions factors used for ships with AIS tracking in the present study (g/kWh)

| Machine | Fuel | Engine | $SO_2$ | NO <sub>x</sub> | СО  | NMVO | PM10  | PM <sub>2.5</sub> |
|---------|------|--------|--------|-----------------|-----|------|-------|-------------------|
| Туре    | type | Туре   |        |                 |     | Cs   |       |                   |
| ME      | RO   | SSD    | 10.30  | 18.1            | 0.5 | 0.3  | 1.378 | 1.22              |
| ME      | RO   | MSD    | 11.31  | 14.0            | 1.1 | 0.2  | 1.22  | 1.22              |
| ME      | RO   | HSD    | 11.31  | 12.7            | 1.1 | 0.2  | 0.650 | 0.50              |
| AE      | MD   | MSD    | 2.12   | 13.9            | 1.1 | 0.2  | 0.328 | 0.30              |

Abbreviations: ME = main engine; AE = auxiliary engine; RO = residual oil; MD = marine distillate; SSD = slow speed diesel; MSD = medium speed diesel; HSD = high speed diesel.

| Load | NO <sub>x</sub> | CO    | NMVOCs | $PM_{10}$ ,             |
|------|-----------------|-------|--------|-------------------------|
|      |                 |       |        | PM <sub>2.5</sub> , OC, |
|      |                 |       |        | EC                      |
| 0.01 | 11.47           | 19.32 | 59.28  | 19.17                   |
| 0.02 | 4.63            | 9.68  | 21.18  | 7.29                    |
| 0.03 | 2.92            | 6.46  | 11.68  | 4.33                    |
| 0.04 | 2.21            | 4.86  | 7.71   | 3.09                    |
| 0.05 | 1.83            | 3.89  | 5.61   | 2.44                    |
| 0.06 | 1.60            | 3.25  | 4.35   | 2.04                    |
| 0.07 | 1.45            | 2.79  | 3.52   | 1.79                    |
| 0.08 | 1.35            | 2.45  | 2.95   | 1.61                    |
| 0.09 | 1.27            | 2.18  | 2.52   | 1.48                    |
| 0.10 | 1.22            | 1.96  | 2.20   | 1.38                    |
| 0.11 | 1.17            | 1.79  | 1.96   | 1.30                    |
| 0.12 | 1.14            | 1.64  | 1.76   | 1.24                    |
| 0.13 | 1.11            | 1.52  | 1.60   | 1.19                    |
| 0.14 | 1.08            | 1.41  | 1.47   | 1.15                    |
| 0.15 | 1.06            | 1.32  | 1.36   | 1.11                    |
| 0.16 | 1.05            | 1.24  | 1.26   | 1.08                    |
| 0.17 | 1.03            | 1.17  | 1.18   | 1.06                    |
| 0.18 | 1.02            | 1.11  | 1.11   | 1.04                    |
| 0.19 | 1.01            | 1.05  | 1.05   | 1.02                    |

Table A.2. Low load adjustment multipliers (LLAM) for main engine emission factors relative to SO<sub>2</sub> and a load of 0.2 or higher (which had multipliers of 1)

|   | Engine type           | $PM_{10}$ | PM <sub>2.5</sub> | NO <sub>x</sub> | $SO_x$ | CO  | NMVOC |
|---|-----------------------|-----------|-------------------|-----------------|--------|-----|-------|
|   | Middle speed          | 1.5       | 1.2               | 13.0            | 11.5   | 1.1 | 0.5   |
| C | and A superval at al. | 0011      |                   |                 |        |     |       |

Table A.3. Emission factors for the main engine (g/kWh)

Source: Agrawal et al. 2011

Table A.4. Fuel correction factor for sulfur content of fuel (unitless)

| Fuel type            | S%     | PM   | NO <sub>x</sub> | SO <sub>x</sub> | СО | NMVOC |
|----------------------|--------|------|-----------------|-----------------|----|-------|
| General diesel fuels | 0.005% | 0.17 | 0.94            | 0.002           | 1  | 1     |

Source: Agrawal et al. 2011

| Run | Run name                                                                 | Initial                         | Roundary                        | Land                                                                                   | Shinning and                                                                                                                                                                             |
|-----|--------------------------------------------------------------------------|---------------------------------|---------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #   | Kun name                                                                 | Conditions                      | conditions                      | Based<br>Emissions                                                                     | port-related<br>emissions                                                                                                                                                                |
|     | Domain 1 (D1),                                                           |                                 |                                 |                                                                                        |                                                                                                                                                                                          |
|     | 81-km                                                                    |                                 |                                 |                                                                                        |                                                                                                                                                                                          |
| 1   | D1 baseline                                                              | defined by<br>default<br>values | defined by<br>default<br>values | National-<br>scale land-<br>based<br>emissions<br>inventory<br>(Tsinghua<br>and IIASA) | National-scale<br>shipping<br>inventory based<br>on AIS                                                                                                                                  |
|     | Domain 2 (D2),<br>27-km                                                  |                                 |                                 |                                                                                        |                                                                                                                                                                                          |
| 2   | D2 baseline                                                              | defined by<br>default<br>values | D1<br>baseline                  | National-<br>scale land-<br>based<br>emissions<br>inventory<br>(Tsinghua<br>and IIASA) | National-scale<br>shipping<br>inventory based<br>on AIS                                                                                                                                  |
|     | Domain 3 (D3),<br>9-km                                                   |                                 |                                 |                                                                                        |                                                                                                                                                                                          |
| 3   | D3 baseline                                                              | defined by<br>default<br>values | D2<br>baseline                  | Local land-<br>based<br>emissions<br>inventory<br>(SAES)                               | YRD shipping<br>emissions<br>inventory based<br>on AIS +;<br>Shanghai river<br>ship emission<br>based on visa<br>data (without<br>AIS +);<br>Container trucks<br>and port<br>machineries |
| 4   | Remove all<br>coastal ships,<br>ocean-going<br>ships and<br>inland ships | defined by<br>default<br>values | D2<br>baseline                  | Local land-<br>based<br>emissions<br>inventory<br>(SAES)                               | Container trucks<br>and port<br>machineries                                                                                                                                              |
| 5   | Remove 12-<br>200 NM                                                     | defined by<br>default           | D2<br>baseline                  | Local land-<br>based                                                                   | Ship emissions<br>less than 12 NM                                                                                                                                                        |

Table A.5. Baseline and future CMAQ simulations with details of their inputs

HEI Special Report 22, Zhang, Appendices A–F (available on the HEI website) 5

|    | shipping<br>sources                                          | values                          |                | emissions<br>inventory<br>(SAES)                         | from shore                                                                                                                                                                           |
|----|--------------------------------------------------------------|---------------------------------|----------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6  | Remove 24-<br>200 NM<br>shipping<br>sources                  | defined by<br>default<br>values | D2<br>baseline | Local land-<br>based<br>emissions<br>inventory<br>(SAES) | Ship emissions<br>less than 24 NM<br>from shore                                                                                                                                      |
| 7  | Remove 48-<br>200 NM<br>shipping<br>sources                  | defined by<br>default<br>values | D2<br>baseline | Local land-<br>based<br>emissions<br>inventory<br>(SAES) | Ship emissions<br>less than 48 NM<br>from shore                                                                                                                                      |
| 8  | Remove 96-<br>200 NM<br>shipping<br>sources                  | defined by<br>default<br>values | D2<br>baseline | Local land-<br>based<br>emissions<br>inventory<br>(SAES) | Ship emissions<br>less than 96 NM<br>from shore                                                                                                                                      |
|    | Domain 5 (D5),<br>1 km                                       |                                 |                |                                                          |                                                                                                                                                                                      |
| 9  | D4 baseline                                                  | defined by<br>default<br>values | D3<br>baseline | Local land-<br>based<br>emissions<br>inventory<br>(SAES) | OGVs, coastal<br>vessels, and<br>local shipping<br>inventory for<br>inland water<br>developed by<br>SEMC and<br>Fudan<br>University;<br>Container trucks<br>and in-port<br>machinery |
| 10 | Remove cargo<br>trucks and in-<br>port operating<br>machines | defined by<br>default<br>values | D3<br>baseline | Local land-<br>based<br>emissions<br>inventory<br>(SAES) | OGVs, coastal<br>vessels, and<br>local shipping<br>inventory for<br>inland water<br>developed by<br>SEMC and<br>Fudan<br>University                                                  |
| 11 | Remove inland-water-                                         | defined by default              | D3<br>baseline | Local land-<br>based                                     | OGVs, coastal<br>vessels; In-port                                                                                                                                                    |

HEI Special Report 22, Zhang, Appendices A–F (available on the HEI website) 6

|    | going ships     | values     |          | emissions   | operating        |
|----|-----------------|------------|----------|-------------|------------------|
|    | (including      |            |          | inventory   | machines         |
|    | international   |            |          | (SAES)      | (SAES);          |
|    | ships operating |            |          |             | Container trucks |
|    | on the rivers)  |            |          |             | (STDR)           |
| 12 | Remove coastal  | defined by | D3       | Local land- | Inland-water     |
|    | ships and       | default    | baseline | based       | ships; In-port   |
|    | ocean-going     | values     |          | emissions   | operating        |
|    | vessels         |            |          | inventory   | machines         |
|    |                 |            |          | (SAES)      | (SAES);          |
|    |                 |            |          |             | Container trucks |
|    |                 |            |          |             | (STDR)           |

| Health<br>Endpoints                 | Pollutants/<br>Exposure<br>Duration             | References            | Coefficients (β)                            | Location |
|-------------------------------------|-------------------------------------------------|-----------------------|---------------------------------------------|----------|
| Mortality, stroke                   | PM <sub>2.5</sub> , long-<br>term               | Cohen et al. (2017)   | Pooled: 0.00118<br>(0.000477, 0.00154)      | Global   |
| Mortality, COPD                     |                                                 |                       | Pooled: 0.00073<br>(0.00042, 0.00106)       |          |
| Mortality, IHD                      |                                                 |                       | Pooled: 0.00147<br>(0.00117, 0.00171)       |          |
| Mortality, lung cancer              |                                                 |                       | Pooled: 0.000934<br>(0.000470, 0.00125)     |          |
| Mortality, all cause                | PM <sub>2.5</sub> , long-<br>term<br>exposures  | Burnett et al. (2018) | Pooled: 0.000144<br>(0.000117,<br>0.000171) | Global   |
| Mortality, stroke                   |                                                 |                       | (0.000140,<br>0.000429)<br>Pooled: 0.000251 |          |
| Mortality, COPD                     |                                                 |                       | (0.000118,<br>0.000383)<br>Pooled: 0.000336 |          |
| Mortality, IHD                      |                                                 |                       | (0.000301, 0.000365)                        |          |
| Mortality, lung cancer              |                                                 |                       | Pooled: 0.000294<br>(0.000173,<br>0.000414) |          |
| Mortality, all cause                | PM <sub>2.5</sub> , short-<br>term<br>exposures | Chen et al. (2017)    | 0.000219<br>(0.000184,<br>0.000250)         | China    |
| Mortality,<br>cardiovascular        | -                                               |                       | 0.000269<br>(0.000223,<br>0.000315)         | _        |
| Mortality,<br>respiratory           |                                                 |                       | 0.000289<br>(0.000228,<br>0.000356)         |          |
| Hospital<br>admission, all<br>cause | PM <sub>2.5</sub> , short-<br>term<br>exposures | Tian et al.<br>(2019) | 0.000189<br>(0.000129,<br>0.000246)         | China    |

Table A.6. Summary of the main features of health impact functions (HIFs) included in this analysis

Abbreviations: COPD = chronic obstructive pulmonary disease, IHD = ischemic heart disease.

| Uaalth andrainta                       |           | Baseline rates (10 <sup>-3</sup> /year) |          |  |
|----------------------------------------|-----------|-----------------------------------------|----------|--|
| Health endpoints                       | Age group | YRD                                     | Shanghai |  |
| Mortality, all cause <sup>a</sup>      | 0-99      | 7.61                                    | 6.01     |  |
|                                        | 25-44     | 0.81                                    | 0.58     |  |
|                                        | 45-54     | 4.44                                    | 3.64     |  |
|                                        | 65-99     | 39.35                                   | 38.84    |  |
| Mortality, cardiovascular <sup>a</sup> | 0-99      | 1.23                                    | 0.77     |  |
| Mortality, respiratory <sup>a</sup>    | 0-99      | 0.65                                    | 0.54     |  |
| Mortality, stroke                      | 25-44     | 0.05                                    | 0.04     |  |
|                                        | 45-54     | 0.50                                    | 0.38     |  |
|                                        | 65-99     | 7.23                                    | 5.42     |  |
| Mortality, IHD                         | 25-44     | 0.05                                    | 0.03     |  |
|                                        | 45-54     | 0.31                                    | 0.22     |  |
|                                        | 65-99     | 5.54                                    | 6.68     |  |
| Mortality, COPD                        | 25-44     | 0.01                                    | 0.01     |  |
|                                        | 45-54     | 0.13                                    | 0.10     |  |
|                                        | 65-99     | 4.75                                    | 4.80     |  |
| Mortality, lung cancer                 | 25-44     | 0.03                                    | 0.02     |  |
|                                        | 45-54     | 0.52                                    | 0.49     |  |
|                                        | 65-99     | 2.63                                    | 2.67     |  |
| Hospital admissions, all cause         | 0-99      | 17.87                                   | 22.11    |  |

Table A.7. Summary of the baseline mortality and morbidity rates for health outcomes studied in the YRD and Shanghai in 2015

<sup>a</sup>To obtain a mortality rate for all-causes of death for each age group, we (1) divided death counts by mortality rates to obtain the population numbers of each age group; (2) summed the total population of all age groups; (3) summed the total number of deaths from all causes for all age groups; and (4) calculated the all-cause mortality rate for all ages.

Abbreviations: COPD, chronic obstructive pulmonary disease, IHD, ischemic heart disease.

Source: China CDC, personal communication, June 2018.

#### References

Agrawal A, Aldrete G, Anderson B, Pirveysian Z, Ray J. 2011. Port of Los Angeles air emissions inventory 2010[a]. ADP#050520-525. Los Angeles: Port of Los Angeles.

Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope CA, 3rd, et al. 2018. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences of the United States of America 115:9592–9597.

Chen R, Yin P, Meng X, Liu C, Wang L, Xu X, et al. 2017. Fine particulate air pollution and daily mortality. A nationwide analysis in 272 Chinese cities. Am J Respir Crit Care Med 196:73–81.

Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases study 2015. Lancet 389:1907–1918.

Tian Y, Liu H, Liang T, Xiang X, Li M, Juan J, et al. 2019. Fine particulate air pollution and adult hospital admissions in 200 Chinese cities: A time-series analysis. International Journal of Epidemiology 48:1142–1151.

#### **Appendix B. Emissions Results**



Figure B.1. Emission share (%) of 4 pollutants (SO<sub>2</sub>, NO<sub>x</sub>, PM<sub>2.5</sub>, and VOCs) for shipping in the YRD region in 2015 in spring (March, April, May), summer (June, July, August), autumn (September, October, November), and winter (December, January, February).



Figure B.2. Spatial distribution of SO<sub>2</sub> emissions (metric tons/km<sup>2</sup>) from shipping in the YRD region in (a) spring; (b) summer; (c) autumn; and (d) winter.

| Sources            | Year | Geographic scope (Study area)                                                                                            | Spatial resolution | SO <sub>2</sub> (metric tons) | NOx (metric<br>tons) | PM <sub>2.5</sub> (metric<br>tons) | PM <sub>10</sub> (metric<br>tons) |
|--------------------|------|--------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------|----------------------|------------------------------------|-----------------------------------|
| Current study      | 2015 | Expand to 200 NM (27°N - 35°N,116.5°E<br>- 126°E)                                                                        | 9 km × 9km         | 2.2×10 <sup>5</sup>           | 4.7×10 <sup>5</sup>  | 2.7×10 <sup>4</sup>                | 2.93×10 <sup>4</sup>              |
| Chen et al. (2017) | 2014 | At least 400 km from the coast; results for<br>the YRD region only (full model domain<br>was 14°N - 41°N, 102°E – 126°E) | 0.005°×0.005°      | 3.6 × 10 <sup>5</sup>         | 6.1×10 <sup>5</sup>  | 4.9×10 <sup>4</sup>                | /                                 |
| Liu et al. (2018)  | 2013 | Results presented here for YRD only (modeling domain was all of China)                                                   | 1 km × 1 km        | (3.19±0.17) ×10 <sup>5</sup>  | /                    | /                                  | (3.97±0.29) ×10 <sup>4</sup>      |
| Fu et al. (2017)   | 2013 | Latitude and longitude not provided                                                                                      | 1 km × 1 km        | 2.7×10 <sup>5</sup>           | 3.6×10 <sup>5</sup>  | /                                  | 3.3×10 <sup>4</sup>               |

#### Table B.1. Comparison of YRD ship emissions in the current study with other studies

/ = not available.

| Reference           | Year | Shipping activity<br>data source | SO2<br>(metric<br>tons) | NO <sub>x</sub><br>(metric<br>tons) | PM <sub>2.5</sub><br>(metric<br>tons) | PM <sub>10</sub><br>(metric<br>tons) |
|---------------------|------|----------------------------------|-------------------------|-------------------------------------|---------------------------------------|--------------------------------------|
| This study          | 2015 | AIS                              | 4.9×10 <sup>4</sup>     | 1.2×10 <sup>5</sup>                 | 5.8×10 <sup>3</sup>                   | 6.4×10 <sup>3</sup>                  |
| Fu et al.<br>(2017) | 2013 | AIS                              | 5×10 <sup>4</sup>       | 7×10 <sup>4</sup>                   | /                                     | 6.5×10 <sup>3</sup>                  |
| Fu et al.<br>(2012) | 2010 | Shipping visas                   | $3.5 \times 10^4$       | 5.7×10 <sup>4</sup>                 | 3.7×10 <sup>3</sup>                   | 4.6×10 <sup>3</sup>                  |

 Table B.2. Comparison of emissions from ships in Shanghai in the current study with other studies

/ = not available.

#### References

Chen D, Wang X, Li Y, Lang J, Zhou Y, Guo X, et al. 2017. High-spatiotemporal-resolution ship emission inventory of China based on AIS data in 2014. Science of The Total Environment 609:776-787; https://doi.org/10.1016/j.scitotenv.2017.07.051.

Fu M, Liu H, Jin X, He K. 2017. National- to port-level inventories of shipping emissions in China. Environ Res Letters 12:114024; doi:10.1088/1748-9326/aa897a.

Fu Q, Shen Y, Zhang J. 2012. On the ship pollutant emission inventory in Shanghai port. Journal of Safety and Environment 12:57-64.

Liu H, Meng ZH, Shang Y, Lv ZF, Jin XX, Fu ML, et al. 2018. Shipping emission forecasts and cost-benefit analysis of China ports and key regions' control. Environ Pollut 236:49-59; 10.1016/j.envpol.2018.01.018.

#### **Appendix C. Air Quality Results**



Figure C.1. Contribution of shipping sources to ambient SO<sub>2</sub> concentrations ( $\mu$ g/m<sup>3</sup>) in the YRD region: spring (a), summer (b), autumn (c), and winter (d).



Figure C.2. Contribution of shipping sources on ambient NO<sub>x</sub> concentrations ( $\mu$ g/m<sup>3</sup>) in YRD region: spring (a), summer (b), autumn (c), and winter (d).



Figure C.3. Contribution of shipping sources to ambient O<sub>3</sub> concentrations (ppb) in YRD region: spring (a), summer (b), autumn (c), and winter (d).



Figure C.4. Contribution of shipping sources to ambient PM<sub>2.5</sub> concentrations  $(\mu g/m^3)$  in the YRD region: spring (a), summer (b), autumn (c), and winter (d).



Figure C.5. Seasonal average contributions of ship-related SO<sub>2</sub> concentrations ( $\mu$ g/m<sup>3</sup>) in 16 core YRD cities.



Figure C.6. Seasonal average contributions of ship-related NO<sub>x</sub> concentrations ( $\mu$ g/m<sup>3</sup>) in 16 core YRD cities.



Figure C.7. Seasonal average contributions of ship-related O<sub>3</sub> concentrations (ppb) in 16 core YRD cities.



Figure C.8. Seasonal average contributions of ship-related PM<sub>2.5</sub> concentrations  $(\mu g/m^3)$  in 16 core YRD cities.



Figure C.9. Contributions to PM<sub>2.5</sub> concentrations (µg/m<sup>3</sup>) from shipping emissions at distances within (a, f) 12 NM of shore (including inland waters); (b, g) 12 to 24 NM from shore; (c, h) 24 to 48 NM from shore; (d, i) 48 to 96 NM from shore; and (e, j) 96 to 200 NM from shore in January 2015 (a-e) and in June 2015 (f-j).



Figure C.10. Cumulative contributions of shipping emissions to SO<sub>2</sub> concentrations (a, c) and PM<sub>2.5</sub> concentrations (b, d) in January 2015 (a, b) and in June 2015 (c, d) in the YRD at distances within 12 NM of shore (including inland waters), 24 NM from shore, 48 NM from shore, 96 NM from shore, and 200 NM from shore. Names of coastal cities are bold in the legend.



Figure C.11. Contributions to SO<sub>2</sub> concentrations ( $\mu$ g/m<sup>3</sup>) from inland-water ships (a-d), coastal ships (e-h), and containercargo trucks and port terminal equipment (i-l) in spring (a, e, i), summer (b, f, j), autumn (c, g, k), and winter (d, h, l).



Figure C.12. Contributions to NO<sub>x</sub> concentrations ( $\mu$ g/m<sup>3</sup>) from inland-water ships (a-d), coastal ships (e-h), and containercargo trucks and port terminal equipment (i-l) in spring (a, e, i), summer (b, f, j), autumn (c, g, k), and winter (d, h, l).



Figure C.13. Contributions to O<sub>3</sub> concentrations (ppb) from inland-water ships (a-d), coastal ships (e-h), and container-cargo trucks and port terminal equipment (i-l) in spring (a, e, i), summer (b, f, j), autumn (c, g, k), and winter (d, h, l).







Figure C.15. Population-weighted PM<sub>2.5</sub> ( $\mu$ g/m<sup>3</sup>) and average PM<sub>2.5</sub> ( $\mu$ g/m<sup>3</sup>) caused by different ship-related sources in Shanghai, in January (a) and in June (b).



Figure C.16. Population-weighted PM<sub>2.5</sub> caused by all pollution sources (a, e), inland-water ships (b, f), coastal ships (c, g), and container-cargo trucks and port terminal equipment (d, h) in 16 districts in Shanghai, in January 2015 (a-d) and June 2015 (e-h).

| Reference         | Period                  | Method              | Spatial<br>Resolution              | Contribution of<br>ship emissions to<br>PM2.5 <sup>a</sup> |
|-------------------|-------------------------|---------------------|------------------------------------|------------------------------------------------------------|
| YRD               |                         |                     |                                    |                                                            |
| Current study     | 2015                    | WRF/CMAQ<br>model   | 9 km × 9 km                        | 0.4–1.3 μg/m <sup>3</sup> ,<br>0.5–2.5%                    |
| Lv et al. (2018)  | 2015                    | WRF/CMAQ<br>model   | 36 km × 36<br>km                   | 1.0–2.7 μg/m <sup>3</sup> ,<br>2.0–7.8%                    |
| Chen et al.       | 2014                    | WRF/CMAQ            | $9 \text{ km} \times 9 \text{ km}$ | /,                                                         |
| (2019)            |                         | model               |                                    | 1.2-6.2%                                                   |
| Shanghai          |                         |                     |                                    |                                                            |
| This study        | 2015                    | WRF/CMAQ<br>model   | 1 km × 1 km                        | $1.0-2.5 \ \mu g/m^3$                                      |
| Lv et al. (2018)  | 2015                    | WRF/CMAQ<br>model   | 36 km × 36<br>km                   | $2.8-5.2 \ \mu g/m^3$                                      |
| Liu et al. (2017) | Apr 2009<br>to Jan 2013 | ATOFMS measurements | /                                  | 1-10%                                                      |

Table C.1. Comparison of the ship-related PM<sub>2.5</sub> concentrations in the current study with the estimates in other studies

<sup>a</sup> Absolute contribution ( $\mu$ g/m<sup>3</sup>) or relative (%) of all pollution sources.

Abbreviations: / = not available; ATOFMS = aerosol time-of-flight mass spectrometer.

Table C.2. Average and peak contributions of ship emissions to ambient  $SO_2$  and  $PM_{2.5}$  concentrations in different offshore coastal areas of the YRD region in January and June 2015

| Offshore distance                | Average contribution ( $\mu$ g/m <sup>3</sup> ) |       |         |                   | Maximum contribution ( $\mu$ g/m <sup>3</sup> ) |        |         |      |
|----------------------------------|-------------------------------------------------|-------|---------|-------------------|-------------------------------------------------|--------|---------|------|
|                                  | SO                                              | 2     | PM      | PM <sub>2.5</sub> |                                                 | $SO_2$ |         | 2.5  |
|                                  | January                                         | June  | January | June              | January                                         | June   | January | June |
| Inland and within 12 NM of shore | 0.52                                            | 0.70  | 0.24    | 0.56              | 6.00                                            | 8.79   | 1.62    | 4.02 |
| 12-24 NM                         | 0.005                                           | 0.007 | 0.01    | 0.04              | 0.03                                            | 0.05   | 0.05    | 0.20 |
| 24-48 NM                         | 0.01                                            | 0.009 | 0.04    | 0.07              | 0.06                                            | 0.05   | 0.11    | 0.34 |
| 48-96 NM                         | 0.02                                            | 0.008 | 0.07    | 0.07              | 0.05                                            | 0.03   | 0.14    | 0.30 |
| 96-200 NM                        | 0.00                                            | 0.001 | 0.003   | 0.01              | 0.004                                           | 0.003  | 0.02    | 0.05 |

#### References

Chen D, Tian X, Lang J, Zhou Y, Li Y, Guo X, et al. 2019. The impact of ship emissions on PM2.5 and the deposition of nitrogen and sulfur in Yangtze River Delta, China. Science Total Environ 649:1609-1619; 10.1016/j.scitotenv.2018.08.313.

Liu Z, Lu X, Feng J, Fan Q, Zhang Y, Yang X. 2017. Influence of Ship Emissions on Urban Air Quality: A Comprehensive Study Using Highly Time-Resolved Online Measurements and Numerical Simulation in Shanghai. Environ Sci Technol 51:202-211; 10.1021/acs.est.6b03834.

Lv Z, Liu H, Ying Q, Fu M, Meng Z, Wang Y, et al. 2018. Impacts of shipping emissions on PM2.5 pollution in China. Atmos Chem Phys 18:15811-15824; 10.5194/acp-18-15811-2018.

#### **Appendix D. Health Analysis Results**



Figure D.1. Health impacts of long-term exposure to PM<sub>2.5</sub> from port emissions using the integrated exposure response (IER) function on mortality in the YRD region: (A) stroke mortality; (B) chronic obstructive pulmonary disease mortality; (C) ischemic heart disease mortality; and (D) lung cancer mortality.



Figure D.2. Impacts of short-term PM<sub>2.5</sub> exposure from ship emissions on mortality in the YRD region in the baseline year: (A) all-cause mortality; (B) cardiovascular mortality; and (C) respiratory mortality.



Figure D.3. Hospital admissions associated with short-term PM<sub>2.5</sub> exposure from port emissions using in YRD region.



Figure D.4. Health impacts of long-term PM<sub>2.5</sub> exposure from inland shipping using the integrated exposure response (IER) function on mortality in Shanghai: (A) stroke mortality; (B) chronic obstructive pulmonary disease mortality; (C) ischemic heart disease mortality; and (D) lung cancer mortality.



Figure D.5. Impacts of long-term PM<sub>2.5</sub> exposure from coastal shipping using the integrated exposure response (IER) function on mortality in Shanghai: (A) stroke mortality; (B) chronic obstructive pulmonary disease mortality; (C) ischemic heart disease mortality; and (D) lung cancer mortality.



Figure D.6. Impacts of long-term PM<sub>2.5</sub> exposure from cargo trucks and port machinery using the integrated exposure response (IER) function on mortality in Shanghai region: (A) stroke; (B) chronic obstructive pulmonary disease; (C) ischemic heart disease; and (D) lung cancer.



Figure D.7. Impacts of short-term PM<sub>2.5</sub> exposure from inland shipping on mortality in Shanghai: (A) all-cause mortality; (B) cardiovascular mortality; and (C) respiratory mortality.



Figure D.8. Impacts of short-term PM<sub>2.5</sub> exposure from coastal shipping on mortality in Shanghai region: (A) all-cause mortality; (B) cardiovascular mortality; and (C) respiratory mortality.



Figure D.9. Impacts of short-term PM<sub>2.5</sub> exposure from diesel cargo trucks and port machinery on mortality in Shanghai: (A) all-cause mortality; (B) cardiovascular mortality; and (C) respiratory mortality.



Figure D.10. Hospital admissions associated with short-term PM<sub>2.5</sub> exposure from port emissions in Shanghai: (A) inland shipping; (B) coastal shipping; and (C) diesel cargo trucks and port machinery.



Figure D.11. Cause-specific mortality impacts of long-term PM<sub>2.5</sub> exposures from ship emissions using the integrated exposure response (IER) functions in 16 core cities of the YRD region: (A) stroke mortality; (B) chronic obstructive pulmonary disease mortality; (C) ischemic heart disease mortality; (D) lung cancer mortality.



Figure D.12. Impacts of short-term PM<sub>2.5</sub> from ship emissions on mortality in 16 core cities of the YRD region in the baseline year: (A) all-cause mortality; (B) cardiovascular mortality; and (C) respiratory mortality.

| Endpoints                                        | Shanghai<br>domain 4<br>1*1 km | Shanghai<br>extracted from<br>domain 3<br>9*9 km | YRD<br>domain 3<br>9*9 km |
|--------------------------------------------------|--------------------------------|--------------------------------------------------|---------------------------|
| Sum of cause-<br>specific mortality <sup>b</sup> | 236                            | 1118                                             | 3591                      |
| Stroke                                           | 36                             | 227                                              | 749                       |
| COPD                                             | 99                             | 453                                              | 1452                      |
| IHD                                              | 40                             | 164                                              | 549                       |
| Lung Cancer                                      | 60                             | 273                                              | 841                       |

Table D.1. Comparison of mean impacts of long-term PM<sub>2.5</sub> exposure on mortality in Shanghai and YRD region using emission inventories from domains 3 and 4<sup>a</sup>

<sup>a</sup> Shanghai (1\*1km), sum of health impacts from 3 three scenarios using emission inventory of domain 4; Shanghai of YRD (9\*9km), health impacts in Shanghai of the YRD region using emission inventory of domain 3; YRD (9\*9km), health impacts in the YRD region using emission inventory of domain 3. The definitions of Shanghai city and the Shanghai modeling domain are not identical, so the results here are not expected to be the same as those reported in the 16 core city analyses.

<sup>b</sup> The sum of cause-specific mortality is the sum of mortality from stroke, COPD, IHD, and lung cancer associated with long-term exposure to  $PM_{2.5}$ . In the absence of a reliable concentration–response function for all natural-cause mortality associated with  $PM_{2.5}$ , this estimate is provided for comparison with mortality from short-term exposure to  $PM_{2.5}$ .

| Table D.2. Summary of mean number of deaths associated with long-term and short-    |
|-------------------------------------------------------------------------------------|
| term exposure to PM2.5 from shipping-related emissions in 16 core cities of the YRD |
| region in 2015                                                                      |

| City <sup>a</sup> | Loi    | ng-term | Exposi | ure    | Short-term Exposure |          |             |  |
|-------------------|--------|---------|--------|--------|---------------------|----------|-------------|--|
|                   | Stroke | COPD    | IHD    | Lung   | Total               | Cardio-  | Respiratory |  |
|                   |        |         |        | Cancer | non-                | vascular |             |  |
|                   |        |         |        |        | accidental          |          |             |  |
| Changzhou         | 9.3    | 18.9    | 6.8    | 11.2   | 16.1                | 1.1      | 0.6         |  |
| Hangzhou          | 29.5   | 58.3    | 20.9   | 33.3   | 46.6                | 3.2      | 1.8         |  |
| Huzhou            | 11.2   | 21.3    | 8.7    | 13.8   | 18.4                | 1.3      | 0.7         |  |
| Jiaxing           | 29.2   | 54.5    | 22.1   | 34.0   | 44.4                | 3.0      | 1.7         |  |
| Nanjing           | 13.7   | 27.9    | 10.2   | 18.1   | 23.9                | 1.6      | 0.9         |  |
| Nantong           | 35.0   | 68.2    | 25.9   | 37.2   | 43.1                | 3.0      | 1.7         |  |
| Ningbo            | 52.6   | 98.3    | 38.0   | 54.1   | 61.0                | 4.2      | 2.4         |  |
| Shanghai          | 182.7  | 370.8   | 131.4  | 223.3  | 310.8               | 21.3     | 12.1        |  |
| Shaoxing          | 22.8   | 44.0    | 15.9   | 24.9   | 30.5                | 2.1      | 1.2         |  |
| Suzhou            | 45.6   | 83.3    | 33.2   | 51.9   | 67.7                | 4.6      | 2.6         |  |
| Taichou           | 55.3   | 97.6    | 42.5   | 55.6   | 59.2                | 4.1      | 2.3         |  |
| Taizhou           | 12.3   | 24.2    | 9.1    | 14.4   | 19.0                | 1.3      | 0.7         |  |
| Wuxi              | 15.6   | 31.5    | 11.8   | 20.6   | 26.9                | 1.8      | 1.0         |  |
| Yangzhou          | 9.0    | 17.9    | 6.3    | 10.4   | 14.5                | 1.0      | 0.6         |  |
| Zhenjiang         | 5.2    | 10.9    | 4.0    | 6.9    | 9.3                 | 0.6      | 0.4         |  |
| Zhoushan          | 7.1    | 14.6    | 5.1    | 5.8    | 5.4                 | 0.4      | 0.2         |  |
| 16 core           | 536.0  | 1042.3  | 391.8  | 615.5  | 796.7               | 54.6     | 31.0        |  |
| cities (sum)      |        |         |        |        |                     |          |             |  |

<sup>a</sup> Names of coastal cities in bold.

#### **Appendix E. Evaluation**

### APPENDIX E, SECTION 1. EVALUATION OF REPRESENTATIVE MONTHS

Based on 12 months:



Based on 4 representative months (January, April, June, and October):



HEI Special Report 22, Zhang, Appendices A–F (available on the HEI website) 47

Difference (%):



Figure E.1. Annual average PM<sub>2.5</sub> in the YRD based on (A) the full year and (B) 4 representative months, with (C) the percentage difference between the annual average PM<sub>2.5</sub> concentrations estimated by these two averages.

#### **APPENDIX E, SECTION 2. CMAQ MODEL EVALUATION**

#### Methods

We conducted both visual and statistical evaluation of the CMAQ model simulations for 2015. Model evaluation statistics were calculated as defined by Eder and Yu (2007):

$$NMB = \frac{\sum_{i=1}^{n} (S_i - O_i)}{\sum_{i=1}^{n} O_i} \times 100\% (1)$$

$$NME = \frac{\sum_{i=1}^{n} |S_i - O_i|}{\sum_{i=1}^{n} O_i} \times 100\% (2)$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (S_i - O_i)^2}{n}} (3)$$

$$r = \frac{\sum_{i=1}^{n} (S_i - \bar{S}) (O_i - \bar{O})}{\sqrt{\sum_{i=1}^{n} (S_i - \bar{S})^2 \sum_{i=1}^{n} (O_i - \bar{O})^2}} (4)$$

where

 $S_i$  = the daily-average simulated data at a certain monitoring station, day i  $O_i$  = the daily-average observation data at a certain monitoring station, day i  $\overline{S}$  = the average simulated data at a certain monitoring station of all days  $\overline{O}$  = the average observation data at a certain monitoring station of all days n = the total numbers of days of the monitoring stations for which the simulated results are

compared with the observed ones

#### Results

Our evaluation of the simulated daily and monthly average concentrations by comparison with monitoring results in the YRD region showed that the model was able to capture the spatial variation of shipping-related  $PM_{2.5}$  and  $SO_2$  concentrations, especially in Shanghai, along the Yangtze River, and along the coastal area of Zhejiang Province. Simulated results for January and June 2015 were mostly consistent with measurements made during the same month (Appendix E, Figure E.2).

In most of the 16 core cities, measured SO<sub>2</sub> and PM<sub>2.5</sub> concentrations were underestimated to varying degrees (normalized mean bias [NMB] ranged from -36% to -18% for SO<sub>2</sub> and -34% to 8% for PM<sub>2.5</sub>, respectively) (Appendix E, Table E.1). Deviations between the simulation results and the monitoring data could be explained by uncertainties in the emission inventories and in the meteorological and air quality models.



Figure E.2. The simulated (grid) and observed (circles) SO<sub>2</sub> concentration distribution in the YRD region in January 2015 (a) and June 2015 (c); the simulated (grid) and observed (circles) PM<sub>2.5</sub> concentration distribution in the YRD region in January 2015 (b) and June 2015 (d).

| City      |       |       |         | $SO_2$ |                         |      |       |       |         | PM <sub>2.5</sub> |                         |      |
|-----------|-------|-------|---------|--------|-------------------------|------|-------|-------|---------|-------------------|-------------------------|------|
|           | Obs.  | Sim.  | NMB (%) | NME(%) | RMSE ( $\mu g m^{-3}$ ) | r    | Obs.  | Sim.  | NMB (%) | NME (%)           | RMSE ( $\mu g m^{-3}$ ) | r    |
| Changzhou | 31.24 | 20.14 | -35.55  | 40.85  | 15.79                   | 0.80 | 74.21 | 68.27 | -8.01   | 32.51             | 31.99                   | 0.76 |
| Hangzhou  | 16.84 | 13.75 | -18.35  | 28.74  | 6.77                    | 0.83 | 59.35 | 56.96 | -4.03   | 28.21             | 22.05                   | 0.75 |
| Huzhou    | 19.25 | 14.73 | -23.52  | 38.81  | 11.45                   | 0.80 | 65.13 | 70.50 | 8.25    | 45.60             | 39.17                   | 0.47 |
| Jiaxing   | 25.37 | 16.84 | -33.67  | 50.58  | 17.31                   | 0.75 | 61.31 | 57.01 | -7.02   | 33.98             | 29.96                   | 0.65 |
| Nanjing   | 22.39 | 16.38 | -20.60  | 26.50  | 10.13                   | 0.76 | 68.20 | 55.71 | -14.06  | 27.80             | 32.30                   | 0.60 |
| Nantong   | 32.73 | 22.05 | -32.66  | 49.69  | 23.21                   | 0.70 | 68.69 | 51.15 | -25.54  | 39.27             | 37.23                   | 0.69 |
| Ningbo    | 16.20 | 10.47 | -35.42  | 42.01  | 7.64                    | 0.83 | 55.47 | 48.06 | -13.37  | 34.51             | 28.49                   | 0.75 |
| Shanghai  | 19.16 | 12.32 | -35.72  | 40.23  | 10.72                   | 0.83 | 63.64 | 67.77 | 6.50    | 36.18             | 28.71                   | 0.75 |
| Shaoxing  | 22.47 | 14.63 | -34.91  | 40.03  | 10.36                   | 0.80 | 61.90 | 56.86 | -8.15   | 34.06             | 27.21                   | 0.70 |
| Suzhou    | 21.37 | 15.16 | -29.09  | 37.26  | 10.39                   | 0.85 | 67.11 | 56.45 | -15.89  | 33.41             | 28.76                   | 0.76 |
| Taichou   | 10.72 | 7.55  | -29.64  | 34.07  | 5.25                    | 0.80 | 47.55 | 43.69 | -8.11   | 35.35             | 24.09                   | 0.52 |
| Taizhou   | 29.64 | 20.84 | -29.70  | 61.53  | 22.63                   | 0.67 | 74.56 | 62.82 | -15.75  | 31.75             | 33.49                   | 0.63 |
| Wuxi      | 24.64 | 18.89 | -23.35  | 30.85  | 10.58                   | 0.87 | 73.45 | 59.36 | -19.20  | 31.80             | 30.92                   | 0.77 |
| Yangzhou  | 25.78 | 18.75 | -27.31  | 44.22  | 15.17                   | 0.62 | 62.30 | 60.12 | -3.50   | 46.10             | 37.08                   | 0.57 |
| Zhenjiang | 29.65 | 21.50 | -27.51  | 39.49  | 16.23                   | 0.61 | 67.78 | 62.61 | -7.63   | 33.88             | 30.31                   | 0.59 |
| Zhoushan  | 9.99  | 8.04  | -19.60  | 40.42  | 6.73                    | 0.64 | 30.13 | 19.81 | -34.28  | 49.15             | 16.82                   | 0.78 |

Table E.1. Statistical metrics of the model evaluation for January and June case<sup>a</sup>

<sup>a</sup> Observed data (Obs.) and simulated data (Sim.) for each city are the average of monthly values of January and June case. NMB, NME, RMSE, and *r* were calculated based on the daily-average observed and simulated data.

## APPENDIX E, SECTION 3. SENSITIVITY ANALYSIS OF HEALTH IMPACT FUNCTIONS

**Table E.2.** Impacts of long-term  $PM_{2.5}$  exposure from ship emissions on cause-specific mortality in the YRD region in 2015.

| Endpoints      | GBD IER                 | GEMM (15 cohorts)             | GEMM (14 cohorts)           |
|----------------|-------------------------|-------------------------------|-----------------------------|
| Sumª           | 3592.5 (2414.6, 6856.7) | 20271.1 (15252.8,<br>25259.6) | 18873.2 (13474,<br>24239.5) |
| Stroke         | 749.3 (439.6, 1592.5)   | 4260.4 (1898.3, 6597.2)       | 2912.1 (338.2, 5456.2)      |
| COPD           | 1452.6 (968.6, 2806.3)  | 2219.9 (1047.7, 3381.4)       | 1731.4 (641.1, 2811.9)      |
| IHD            | 549.6 (392, 1408.2)     | 3841.8 (3390.4, 4290.6)       | 2320.4 (1500.1, 3134.8)     |
| Lung<br>Cancer | 841 (614.4, 1049.7)     | 1595.4 (942.9, 2242.2)        | 1459.3 (604.4, 2305.2)      |

<sup>a</sup>For the IER, this value is the sum of mortality from stroke, COPD, IHD, and lung cancer associated with long-term exposure to PM<sub>2.5</sub>. In the absence of a reliable concentration–response function for all natural-cause mortality associated with PM<sub>2.5</sub>, this estimate is provided for comparison with mortality from short-term exposure to PM<sub>2.5</sub> and with the GEMM estimates. The GEMM provides a function for all-natural cause mortality that includes both the specific causes listed as well as others.

Abbreviations: stroke = cerebrovascular disease; COPD = chronic obstructive pulmonary disease, IHD = ischemic heart disease.

Notes: GBD IER: estimates generated from IER 2015; GEMM (15 cohorts): estimates generated from GEMM functions of 15 cohorts, including Chinese male cohorts; GEMM (14 cohorts): estimates generated from GEMM functions of 14 cohorts, without Chinese male cohorts.

| Scenario                                      | Endpoints        | GBD IER                | GEMM (15<br>cohorts)    | GEMM (14<br>cohorts)    |
|-----------------------------------------------|------------------|------------------------|-------------------------|-------------------------|
| Inland shipping in<br>Shanghai                | Sum <sup>a</sup> | 135.5 (95.4,<br>260.8) | 746.8 (561.6,<br>931.1) | 621.2 (443.2,<br>798.4) |
|                                               | Stroke           | 20.8 (12.5, 46.4)      | 118.8 (52.8,<br>184.3)  | 69.5 (8.1, 130.6)       |
|                                               | COPD             | 56.8 (39, 115.4)       | 85.9 (40.5, 131.1)      | 57.7 (21.3, 93.9)       |
|                                               | IHD              | 23.1 (17.2, 57.2)      | 184.6 (162.8,<br>206.3) | 94.6 (61.1, 127.9)      |
|                                               | Lung<br>Cancer   | 34.8 (26.7, 41.8)      | 62.0 (36.6, 87.3)       | 48.9 (20.2, 77.5)       |
| Coastal/international<br>shipping in Shanghai | Sum <sup>a</sup> | 55.1 (38.3,<br>106.1)  | 302.0 (227.1,<br>376.6) | 264.6 (188.7,<br>340.1) |
|                                               | Stroke           | 8.6 (5.1, 18.9)        | 49.8 (22.1, 77.4)       | 31.1 (3.6, 58.4)        |
|                                               | COPD             | 23.2 (15.8, 46.3)      | 35.3 (16.6, 53.9)       | 25.1 (9.3, 40.9)        |
|                                               | IHD              | 9.6 (7.1, 24.3)        | 74.4 (65.6, 83.1)       | 40.4 (26.1, 54.7)       |
|                                               | Lung<br>Cancer   | 13.7 (10.4, 16.7)      | 25.5 (15.0, 35.9)       | 21.5 (8.9, 34.0)        |
| Diesel cargo<br>trucks and port               | Sum <sup>a</sup> | 45.6 (31.9, 88)        | 255.6 (192.2,<br>318.7) | 219.2 (156.4,<br>281.8) |
| machinery in<br>Shanghai                      | Stroke           | 6.9 (4.2, 15.4)        | 41.7 (18.5, 64.7)       | 24.7 (2.9, 46.4)        |
| Shunghui                                      | COPD             | 19.1 (13, 38.6)        | 29.6 (13.9, 45.2)       | 20.2 (7.4, 32.8)        |
|                                               | IHD              | 7.8 (5.8, 19.6)        | 62.9 (55.5, 70.3)       | 32.8 (21.2, 44.3)       |
|                                               | Lung<br>Cancer   | 11.8 (8.9, 14.4)       | 21.4 (12.6, 30.2)       | 17.3 (7.2, 27.4)        |

Table E.3. Impacts of annual average PM<sub>2.5</sub> exposure from shipping-related sources on cause-specific mortality in Shanghai in 2015.

<sup>a</sup> For the GBD IER, this the sum of mortality from stroke, COPD, IHD, and lung cancer associated with long-term exposure to  $PM_{2.5}$ . In the absence of a reliable concentration–response function for all natural-cause mortality associated with  $PM_{2.5}$ , this estimate is provided for comparison with total all-cause mortality estimated using the GEMM. The GEMM provides a function for all-natural cause mortality that includes both the specific causes listed as well as others.

Abbreviations: stroke = cerebrovascular disease; COPD = chronic obstructive pulmonary disease, IHD = ischemic heart disease.

Notes: GBD IER: estimates generated from IER 2015; GEMM (15 cohorts): estimates generated from GEMM functions of 15 cohorts, including Chinese male cohorts; GEMM (14 cohorts): estimates generated from GEMM functions of 14 cohorts, without Chinese male cohorts.

## Appendix F. Future (2030) Ship Activity, Emissions, Air Quality, and Health Results

Table F.1. Estimated YRD regional total ship traffic activity and actual GDP by year

| ~~~ |      |                                             |                                                         |  |  |  |  |  |  |  |
|-----|------|---------------------------------------------|---------------------------------------------------------|--|--|--|--|--|--|--|
|     | Year | Estimated ship traffic activity in YRD, kWh | Actual GDP in the YRD region, billion yuan <sup>a</sup> |  |  |  |  |  |  |  |
|     | 2013 | $5.1 \times 10^{10}$                        | 10198.9                                                 |  |  |  |  |  |  |  |
|     | 2014 | $4.8 \times 10^{10}$                        | 11863.6                                                 |  |  |  |  |  |  |  |
|     | 2015 | $1.1 \times 10^{11}$                        | 13857.0                                                 |  |  |  |  |  |  |  |
|     | 2016 | $1.2 \times 10^{11}$                        | 14719.4                                                 |  |  |  |  |  |  |  |
|     | 2017 | $1.4 \times 10^{11}$                        | 16517.1                                                 |  |  |  |  |  |  |  |
|     | 2030 | 1.9×10 <sup>11</sup>                        | 19815.51 (projected to 2030)                            |  |  |  |  |  |  |  |

<sup>a</sup> Source: National Bureau of Statistics of China (*http://data.stats.gov.cn/*). See Figure 5.8 for visualization of these data.

Table F.2. Estimated YRD regional total ship emissions for 2015 and for three scenarios in 2030

|                   | 2015     | 2030 current policy  | 2030 stricter policy scenario | 2030 aspirational policy |
|-------------------|----------|----------------------|-------------------------------|--------------------------|
|                   |          | scenario (Future S1) | (Future S2)                   | scenario (Future S3)     |
| $SO_2$            | 219645.5 | 59011.5              | 48530.8                       | 20143.6                  |
| $NO_x$            | 472743.5 | 409546.3             | 296471.5                      | 151423.9                 |
| PM <sub>2.5</sub> | 27863.2  | 7571.2               | 6158.8                        | 2697.4                   |

See Figure 5.9 for visualization of these data.



Figure F.1. Spatial distribution of ship traffic activities (kwh/grid) in the YRD region in (a) 2013, (b) 2014, (c) 2015, (d) 2016, (e) 2017, and (f) projected to 2030.



Figure F.2. Contributions of absolute contributions (top) and relative contributions (bottom) of ship emissions to the annual mean SO<sub>2</sub> concentrations in the YRD region in 2030 under the current policy (S1, left), stricter policy (S2, middle), and aspirational policy (S3, right) scenarios.



Figure F.3. Contributions of absolute contributions (top) and relative contributions (bottom) of ship emissions to the annual mean NO<sub>x</sub> concentrations in the YRD region in 2030 under the current policy (S1, left), stricter policy (S2, middle), and aspirational policy (S3, right) scenarios.



Figure F.4. Annual average contributions of ship-related SO<sub>2</sub> concentrations in 16 core YRD cities in 2015 and under the current policy (S1), stricter policy (S2), and aspirational policy (S3) scenarios for 2030.



Figure F.5. Annual average contributions of ship-related NO<sub>x</sub> concentrations in 16 core YRD cities in 2015 and under the current policy (S1), stricter policy (S2), and aspirational policy (S3) scenarios for 2030.



Figure F.6. Annual average contributions of ship-related PM<sub>2.5</sub> concentrations in 16 core YRD cities in 2015 and under the current policy (S1), stricter policy (S2), and aspirational policy (S3) scenarios for 2030.



Figure F.7. Mortality contributed by long-term exposure to PM<sub>2.5</sub> from ship emissions in the YRD region in 2030 under the current policy scenario (S1) using integrated exposure response (IER) functions: (A) stroke mortality; (B) chronic obstructive pulmonary disease mortality; (C) ischemic heart disease mortality; and (D) lung cancer mortality.

2

24



Figure F.8. Mortality contributed by long-term exposure to PM<sub>2.5</sub> from ships in 2030 in the YRD region under the stricter policy scenario (S2) using integrated exposure response (IER) functions: (A) stroke mortality; (B) chronic obstructive pulmonary disease mortality; (C) ischemic heart disease mortality; and (D) lung cancer mortality.

24

3



Figure F.9. Mortality contributed by long-term exposure to PM<sub>2.5</sub> from ships in 2030 in the YRD region under the Aspirational Scenario 2 (S3) in the YRD using integrated exposure response (IER) function: (A) stroke mortality; (B) chronic obstructive pulmonary disease mortality; (C) ischemic heart disease mortality; and (D) lung cancer mortality.

5



Figure F.10. Mortality contributed by short-term exposure to PM<sub>2.5</sub> from ships in 2030 in the YRD under the current policy scenario (S1): (A) all-cause mortality; (B) cardiovascular mortality; and (C) respiratory mortality.



Figure F.11. Mortality contributed by short-term exposure to PM<sub>2.5</sub> from ships in 2030 from ship emissions in the YRD under the stricter policy scenario (S2): (A) all-cause mortality; (B) cardiovascular mortality; and (C) respiratory mortality.



Figure F.12. Mortality contributed by short-term exposure to PM<sub>2.5</sub> from ships in 2030 in the YRD for the aspirational policy scenario (S3): (A) all-cause mortality; (B) cardiovascular mortality; and (C) respiratory mortality.