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ABOUT HEI

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent
research organization to provide high-quality, impartial, and relevant science on the effects of air
pollution on health. To accomplish its mission, the Institute

e identifies the highest-priority areas for health effects research

e competitively funds and oversees research projects

*  provides an intensive independent review of HEI-supported studies and related research
e integrates HEI's research results with those of other institutions into broader evaluations

®  communicates the results of HEI's research and analyses to public and private decision-
makers.

HEI typically receives balanced funding from the US Environmental Protection Agency and the
worldwide motor vehicle industry. Frequently, other public and private organizations in the United
States and around the world also support major projects or research programs. HEI has funded
more than 390 research projects in North America, Europe, Asia, and Latin America, the results
of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, diesel
exhaust, ozone, particulate matter, and other pollutants. These results have appeared in more
than 275 comprehensive reports published by HEI, as well as in more than 2,500 articles in peer-
reviewed literature.

HEI's independent Board of Directors consists of leaders in science and policy who are
committed to fostering the public—private partnership that is central to the organization. The
Research Committee solicits input from HEIl sponsors and other stakeholders and works with
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and oversee
their conduct. The Review Committee or Panel, which has no role in selecting or overseeing
studies, works with staff to evaluate and interpret the results of funded studies and related
research.

All project results and accompanying comments by the Review Committee or Panel are widely
disseminated through HEI's website (www.healtheffects.org), reports, newsletters, annual conferences,
and presentations to legislative bodies and public agencies.


http://www.healtheffects.org




ABOUT THIS REPORT

Research Report 238, Ambient Air Pollution and COVID-19 in California, presents a research
project funded by the Health Effects Institute and conducted by Dr. Michael Kleeman at the
University of California, Davis, and colleagues. The report contains three main sections:

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the study
and its findings; it also briefly describes the Review Committee’s comments on the study.

The Investigators’ Report, prepared by Kleeman and colleagues, describes the scientific
background, aims, methods, results, and conclusions of the study.

The Commentary, prepared by members of the Review Committee with the assistance
of HEI staff, places the study in a broader scientific context, points out its strengths and
limitations, and discusses remaining uncertainties and implications of the study’s findings for
public health and future research.

This report has gone through HEI's rigorous review process. When an HEI-funded study is
completed, the investigators submit a draft final report presenting the background and results of
the study. Outside technical reviewers first examine this draft report. The report and the reviewers’
comments are then evaluated by members of the Review Committee, an independent panel of
distinguished scientists who are not involved in selecting or overseeing HEI studies. During the
review process, the investigators have an opportunity to exchange comments with the Review
Committee and, as necessary, to revise their report. The Commentary reflects the information
provided in the final version of the report.

Although this report was produced with partial funding by the United States Environmental
Protection Agency under Assistance Award CR-83998101 to the Health Effects Institute, it has
not been subjected to the Agency’s peer and administrative review and may not necessarily reflect
the views of the Agency; thus, no official endorsement by it should be inferred. The contents of
this report also have not been reviewed by private party institutions, including those that support
the Health Effects Institute, and may not reflect the views or policies of these parties; thus, no
endorsement by them should be inferred.
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PREFACE

HEI's Program on Air Pollution, COVID-19, and

Human Health

INTRODUCTION

On January 20, 2020, the US Centers for Disease Control
and Prevention (CDC) confirmed the first case of COVID-19
in the United States. On March 20, after more than 118,000
cases in 114 countries and 4,291 deaths, the World Health
Organization (WHO) declared a global COVID-19 pandemic,
and countries around the world began instituting preventive
measures (e.g., lockdowns) to slow the spread of disease. The
closing of nonessential businesses in many locations around
the world led to reduced emissions of air pollutants from the
energy sector and other industries and significantly reduced
traffic volumes due to stay-at-home policies.

Although there has been an enormous cost to
this pandemic, both human and economic, it created
unprecedented conditions that lent themselves to timely and
novel air pollution research aimed at exploring policy-relevant
topics, including key factors that contributed to changing
patterns of air pollution over space and time, potential benefits
to human health associated with such changes in exposures,
and relationships between past or current exposures to
air pollution and susceptibility to the effects of COVID-19
infections (Boogaard et al. 2021).

Because of known associations between air pollution
and respiratory hospitalizations and mortality, researchers
quickly initiated investigations into potential links between
air pollution exposure and COVID-19 (Liang et al. 2020;
Wau et al. 2020). There were many unique challenges to this
task because the context within which we study associations
between air pollution and health was altered due to
widespread changes to daily life related to the pandemic (e.g.,
changes in emission sources, behaviors that affect exposures,
and healthcare access and use). Furthermore, COVID-
19 outcomes are difficult to study due to various factors,
including initial lack of testing, inconsistency in diagnoses, and
healthcare systems being overloaded. COVID-19 incidence
data — and to a lesser extent mortality data — have also
been underestimated in all countries, thus affecting all analyses
(Copat et al. 2020). Moreover, the spread of the disease has
been shown to be highly dynamic both in time and space.
Most transmission has been caused by a few superspreading
events influenced by human behavior, socioeconomic and
demographic factors (e.g., household size and multigeneration
households), and compliance with control measures (Chang
et al. 2021, Samet et al. 2021).

Health Effects Institute Research Report 238 © 2026

In May 2020, only 2 months after the WHO declared the
COVID-19 outbreak a global pandemic, HEI issued Request
for Applications (RFA) 20-1B that sought to fund studies
to investigate potential associations between air pollution,
COVID-19, and human health. HEl formulated specific
research objectives where it expected to make a valuable
contribution to this rapidly expanding new field of research.
HEI was interested in applications for studies designed
specifically to address the following questions on this topic:

1. Accountability Research: What are the effects
of the unprecedented interventions implemented to
control the COVID-19 pandemic on emissions, air
pollution exposures, and human health? Emerging
evidence suggested that changes in economic activity
and human mobility following government restrictions
led to noticeable reductions in pollutant emissions and
pollutant concentrations in ambient air — in particular,
nitrogen dioxide (NO,) — in many cities around the
world (Ogen 2020; Schiermeier 2020; Zhang et al.
2020).

The observed changes in air quality presented a unique
opportunity for accountability research on this “natural
experiment” HEl acknowledged that it could be
difficult for investigators to find control populations not
affected by the interventions; in addition, interventions
in various locations occurred during different periods.
Moreover, there would be challenges related to the
major reorientating of healthcare systems to deal with
COVID-19 and accompanying challenges in estimating
comparable hospitalization rates and other health
outcomes at a time when utilization of healthcare
was changed and diagnostic criteria for COVID-19
and respiratory outcomes were also variable across
time and space. Studies investigating health effects are
needed to account for those kinds of changes.

2. Susceptibility Factors: Are individuals or
populations who have been chronically or acutely
exposed to higher levels of air pollution at greater
risk of mortality from COVID-19 compared to
those exposed to lower levels of air pollution? Do
the potential effects differ by race or ethnicity or by
measures of socioeconomic status?

Limited evidence from the 2002-2004 SARS outbreak
indicated a possible association between higher air
pollution concentrations and higher-than-expected
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death rates (Cui et al. 2003; Kan et al. 2005). Early evidence
suggested that individuals with existing comorbidities (e.g.,
diabetes, high blood pressure, or heart and lung diseases)
might be more susceptible to the effects of a COVID-19
infection and at higher risk of mortality from COVID-
19 (Wang et al. 2020; Yang et al. 2020). There was also
evidence that racial and socioeconomic disparities might
lead to higher observed risks (Brandt et al. 2020).

Because exposure to air pollution is also known to
contribute to the development of such underlying diseases
(Cohen et al. 2017; HEI 2019), air pollution might also
increase susceptibility to morbidity and mortality from
COVID-19, possibly in ways that we do not fully understand
(Conticini et al. 2020).

STUDY SELECTION

HEI established an independent Panel of outside experts to
review all applications submitted in response to the RFA. The
HEI Research Committee reviewed the Panel's suggestions
and recommended five studies for funding to HEl's Board of
Directors, which approved funding in December 2020. Members
of the Research Committee with any conflict of interest were
recused from all discussions and from the decision-making
process. This Preface summarizes the five studies, HEI's oversight
process, and the review process for the final reports.

OVERVIEW OF THE AIR POLLUTION, COVID-
19, AND HUMAN HEALTH STUDIES

HEI expected to make a valuable contribution to this rapidly
expanding new field of research with the five studies funded
under RFA 20-1B (Preface Table).

Zorana Andersen of the University of Copenhagen and
colleagues used a population-based nationwide cohort of 3.7
million Danish adults to investigate whether long-term exposure
to air pollution is associated with increased risk of COVID-
19-related morbidity and mortality and to identify the most
susceptible groups by age, sex, socioeconomic status, ethnicity,
and comorbidity (Andersen et al. 2023).

Kai Chen of Yale University and colleagues assessed the
effects of the first COVID-19 lockdowns on air quality and
associated mortality in regions of four countries (Germany,
Italy, China, and the United States). First, they evaluated changes
in NO2 and PMZ5 concentrations, before and after accounting
for meteorology and temporal trends in air quality. Then they
found prepandemic associations of mortality with NO, and PM,
concentrations and applied those to the changes in air quality
during the lockdowns to estimate the effects of lockdowns on
mortality related to air pollution (Chen et al. 2025).

Michael Kleeman of the University of California Davis
and colleagues evaluated the chronic and short-term effects of
air pollution exposure on COVID-19 progression, mortality,
and long-term complications among hospitalized patients across

Southern California using electronic health records from the
Kaiser Permanente healthcare database. First, they used chemical
transport and land use regression models to develop chronic
and short-term daily PM,,, NO,, and O, exposure estimates at
multiple spatial resolutions. They then assessed the association
between exposure and COVID-19 outcomes from June 2020 to
January 2021, and with long-COVID-19 diagnoses up to 12 months
following discharge from the hospital.

Jeanette Stingone of Columbia University and colleagues
evaluated the interactions between chronic air pollution exposure
and neighborhood vulnerability in relation to adverse COVID-19
outcomes in New York City. They used electronic health record
data with more than 37,000 COVID-19 patients from five large
hospital systems to evaluate long-term air pollution exposures in
relation to COVID-19 hospitalization after visiting the emergency
department, inpatient length of stay, acute respiratory distress
syndrome, pneumonia, ventilator use, need for dialysis, and death.
They also conducted an additional analysis evaluating excess all-
cause mortality using public administrative data.

Cathryn Tonne of ISGlobal and colleagues are assessing
whether long-term exposure to air pollution increased
the risk of COVID-19 hospitalization and mortality in the
general population of 5 million people in Catalonia, Spain, and
whether short-term exposure to air pollution increased the
risk of COVID-19 hospitalization after visiting the emergency
department and mortality among the 300,000 people who
tested positive for SARS-COV-2 during the study period
(Tonne et al. 2024).

PROTOCOLS AND FUTURE DIRECTIONS

Throughout its portfolio, HEl emphasizes the importance
of data access and transparency because they underpin high-
quality research that is used in policy settings (see Policy on the
Provision of Access to Data Underlying HEI-Funded Studies). During
the studies, members of HEl's Research Committee provided
advice and feedback on the study designs, analytical plans, and
study progress. The studies were subject to HEl's special quality
assurance procedures that included quality assurance audits by an
independent audit team prior to publication of the final reports.
HEI plans to publish an overall summary and interpretation of
the COVID-19 research program once all studies have been
reviewed.
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HEI STATEMENT

Synopsis of Research Report 238

Ambient Air Pollution and COVID-19 in Southern

California

BACKGROUND

Exposure to air pollution has been linked with
increased risks of influenza, respiratory syncytial
virus, and other types of respiratory infection.
Some epidemiological studies conducted early
in the COVID-19 pandemic reported that rates of
COVID-19 death were higher in areas with greater
levels of air pollution, suggesting a possible asso-
ciation between air pollution and risk of death
or poor health outcomes due to COVID-19. The
early studies, however, had notable methodolog-
ical shortcomings (e.g., a lack of high-resolution
estimates of exposure or detailed information on
individuals, such as socioeconomic status) and
thus had a high potential for biased results. To
investigate the potential associations between air
pollution, COVID-19, and human health further,
HEI funded five studies in various countries in
the fall of 2020. This Statement highlights a study
conducted by Dr Michael Kleeman and colleagues
at the University of California, Davis.

APPROACH

The investigators used two sources of health
data, one from the California Department of Public
Health (CDPH) and the other from the Kaiser Per-
manente Southern California (KPSC) healthcare
system, from June 2020 through January 2021. The
CDPH data included information on about 773,000
COVID-19 cases and 14,000 deaths due to COVID-
19 across 308 ZIP codes in Los Angeles County.
The KPSC cohort consisted of more than 20,000
adult patients in Southern California who were
diagnosed with COVID-19 and hospitalized within
21 days of a positive COVID-19 diagnosis or test,
and this dataset contained detailed information on
patient characteristics and all aspects of patient
care.

Two different approaches were used to esti-
mate outdoor air pollutant concentrations. The
investigators used both an advanced chemical
transport model and a land use regression sta-

What This Study Adds

This study evaluated associations between
estimated outdoor air pollution concen-
trations and risk of COVID-19 disease,
COVID-19 disease progression or recovery,
deaths due to COVID-19, and long COVID-
19 conditions among a study population in
Southern California.

The study used administrative data from the
state of California and a cohort of hospital-
ized patients with COVID-19 from a large
healthcare system, combined with high-
resolution estimates of outdoor air
pollution concentrations calculated using
chemical transport and statistical land use
regression models.

Kleeman and colleagues found that
increased risk of COVID-19 death was
associated with estimated annual average
exposures to ultrafine particulate matter,
fine particulate matter, and several specific
components of fine particulate matter; how-
ever, their findings on associations between
ozone exposure and COVID-19 death in

the administrative and healthcare system
datasets were inconsistent.

Exposures to several pollutants were also
associated with progression from hospital-
ization to more severe COVID-19 illness
and with several long COVID-19 outcomes.

The findings from this study provide

useful insights into how air pollution might
contribute to adverse COVID-19 health
outcomes, and these insights might apply

to future respiratory infectious disease pan-
demics. However, the findings reported here
likely only apply to individuals who become
severely ill, requiring hospitalization.

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Michael
Kleeman at the University of California, Davis, and colleagues. Research Report 238 contains the detailed Investigators’ Report and
a Commentary on the study prepared by the HEI Review Committee.

Health Effects Institute Research Report 238 © 2026
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tistical model to produce highly refined estimates of
daily outdoor concentrations of ultrafine particulate
matter, fine particulate matter, fine particulate matter
components, nitrogen dioxide, and ozone at multiple
spatial resolutions for 2016, 2019, and 2020. Average
long-term (annual) and short-term (30-day) exposure
estimates were linked to ZIP codes for the CDPH data
and patients’ residential addresses in the KPSC cohort.

Kleeman and colleagues used various regression
modeling approaches to evaluate associations between
both single- and multipollutant air pollution expo-
sures and COVID-19 outcomes. To analyze outcomes
regarding COVID-19 cases and deaths in the CDPH
data, the investigators used negative binomial models
with adjustment for ZIP code-level demographic and
socioeconomic factors. For the KPSC cohort, they used
Cox proportional hazards models to analyze outcomes
of patient deaths and multistate survival modeling to
analyze outcomes related to patients transitioning to
recovery or more severe states of illness (i.e., admis-
sion to intensive care, needing ventilation, or death).
The investigators also evaluated whether weather
(temperature and relative humidity) influenced the
effect of long-term outdoor air pollution exposures on
the risk of COVID-19 death. Additionally, they used
logistic regression to analyze long COVID-19 outcomes
3 months and 12 months after discharge from the hos-
pital in the KPSC cohort.

KEY RESULTS

Air Pollution Exposure Estimated outdoor air
pollution exposures varied across the different types
of analyses and statistical methods used in the study.
The range of estimated average long-term (annual) air
pollutant exposures in Southern California was around
9-13 pg/m?® for fine particulate matter, 13—22 parts per
billion for nitrogen dioxide, and 55-66 parts per billion
for ozone. In general, the statistical model produced
higher estimates of nitrogen dioxide exposure around
Los Angeles than did the chemical transport model;
these models also produced different estimates of
where exposures to fine particulate matter were highest
in southern California. For most of the analyses in this
study, the investigators used outdoor air pollution
concentrations estimated using the chemical transport
model.

COVID-19 Cases and Deaths In the CDPH dataset,
Kleeman and colleagues observed that higher estimated
exposures to ultrafine particulate matter, fine particulate
matter, and some of its components, and ozone were
associated with elevated risks of COVID-19 incidence
and death, with the strongest risks being associated
with ozone concentrations. The two-pollutant models
showed slightly elevated risks of both COVID-19 inci-
dence and death associated with most combinations of
these pollutants. In the KPSC cohort, the investigators
observed that elevated risks of COVID-19 death were

associated with exposures to most particulate matter
pollutants and nitrogen dioxide but not with ozone; the
risk estimates for fine particulate matter and nitrogen
dioxide generally remained elevated in two-pollutant
models. The investigators found that higher tempera-
tures and higher relative humidity levels weakened the
associations between long-term air pollutant exposures
and risk of COVID-19 death.

Transition to More Severe COVID-19 States Greater
estimated long-term exposures to fine particulate mat-
ter, nitrogen dioxide, and ozone were associated with
higher risks of progressing to more severe COVID-19
illness. Greater estimated long-term exposures to fine
particulate matter were also associated with higher
risks of progressing from more severe COVID-19 illness
to death. Across these three pollutants, the risk of
deterioration (defined as a patient progressing from
hospitalization to needing ventilation or intensive
care) associated with the highest (versus the lowest)
level of exposure increased by as much as 16% to
21%, depending on the pollutant. Among the analyzed
associations between pollutant exposures and risk of
transition to adverse COVID-19 outcomes, the strongest
risk estimate was observed for the association between
ozone exposure and transitioning from recovery after
COVID-19 hospitalization to death. The two-pollutant
models also demonstrated that exposures to fine partic-
ulate matter, nitrogen dioxide, and ozone were gener-
ally associated with elevated risks of transitioning from
COVID-19 hospitalization to deterioration.

Long COVID-19 Higher estimated short-term
exposures to ultrafine particulate matter, fine par-
ticulate matter nitrate, and ozone were associated
with increased risks for long COVID-19 outcomes in
the 3 months following discharge from the hospital
(Statement Figure), including pulmonary, cardiomet-
abolic, and cardiac outcomes, but not neurological
outcomes. The strongest risk estimate per unit increase
in estimated pollutant exposure was observed for the
association between short-term particulate matter
nitrate exposure and cardiometabolic long COVID-19.
In two- or three-pollutant models, risk estimates for
short-term ultrafine particulate matter exposures and
long COVID-19 outcomes remained elevated (as did the
risk estimate for short-term ozone exposure and pul-
monary long COVID-19). Fewer positive associations
were observed between short-term air pollution expo-
sures and long COVID-19 outcomes in the 12 months
following discharge from the hospital.

INTERPRETATION AND CONCLUSIONS

In its independent evaluation of the Investigators’
Report on this study, the HEI Review Committee
concluded that the study improved the level of
understanding about associations between exposures
to outdoor air pollution and adverse health outcomes
of COVID-19. Specifically, the study demonstrated



Research Report 238

Cardiac

QOdds Ratio

Ultrafine
particles

Fine particles Fine particles
nitrate

Ozone

Nitrogen
dioxide

Statement Figure. Associations between short-term air pollutant exposures and long COVID-19 outcomes occurring
within 3 months after hospital discharge in the Kaiser Permanente Southern California cohort. These results from single-
pollutant models show odds ratios and 95% confidence intervals estimated per interquartile range increases in pollutant
exposure (estimated from the chemical transport model). Source: Adapted from Investigators’ Report Figure 18.

that multiple air pollutants were associated with
increased risks of COVID-19 incidence, death due to
COVID-19, progression to more severe illness after a
COVID-19 diagnosis, and long COVID-19 outcomes.
The Committee especially appreciated that Kleeman
and colleagues explored factors that had not previously
been investigated in earlier studies, such as COVID-19
health outcomes specific to multiple different health
states and long COVID-19 conditions, as well as the
effect of weather on the outcomes of interest. The Com-
mittee also valued the use of individual-level health
information obtained from a large healthcare system
and the calculation of highly refined estimates of long-
term and short-term exposures to multiple outdoor
air pollutants, including specific components of fine
particulate matter.

This study provided further evidence of an asso-
ciation between fine particulate matter, as well as
nitrogen dioxide (only in the KPSC cohort), and an
increased risk of death due to COVID-19. The findings
contributed new information indicating that long-term
exposures to fine particulate matter, nitrogen dioxide,

and ozone each were associated with transitioning
from COVID-19 hospitalization to deterioration to more
severe illness, whereas short-term exposures to ultra-
fine particulate matter, fine particulate matter nitrate,
and ozone were associated with several long COVID-
19 outcomes. However, the ability to generalize the
findings of this study to the broader population may be
limited because the current population has now gained
some form of natural or vaccine-induced immunity to
COVID-19.

Overall, this study offers both additional evidence
and new contributions that enable a better understand-
ing of the relationship between outdoor air pollution
and adverse health outcomes of COVID-19, thus pro-
viding valuable insights that might be relevant to future
outbreaks of other infectious respiratory diseases.
Importantly, although air pollution is an important
modifiable environmental risk factor, efforts to improve
air quality as a means of reducing health risks should
be viewed as part of a broader collection of public
health and prevention measures aimed at reducing the
adverse health effects of future outbreaks.
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ABSTRACT

Introduction As of December 2023, more than 6.9 million
people globally had died from COVID-19, including more
than 1.165 million deaths in the United States. It is estimated
that approximately 18.8 million people in the United States
have experienced post-acute COVID-19 conditions, also
known as post-acute sequelae of SARS-CoV-2 (PASC) or long
COVID, in the first 3 years after the pandemic. Although some
initial cases of long COVID have resolved, with the ongoing
incidence of COVID-19, roughly 17.8 million persons in the
United States continue to suffer from long COVID at the time
of this writing.* Preliminary evidence early in the COVID-19
pandemic suggested that exposure to air pollution increased
the likelihood of contracting COVID-19 and worsened out-
comes for those who became ill. The validity of these findings
was uncertain, however, as few studies used highly accurate
exposure models incorporating individual-level data on
patient characteristics and risk factors. Although the COVID-
19 public health emergency has ended, the disease continues
to pose substantial risks to individual and population health.
At the time of this writing, nearly 35,000 individuals per
week are hospitalized with COVID-19 in the United States,
and the weekly number of COVID-19-related deaths ranges
from 900 to 1,400.

Methods Inthisstudy, we investigated relationships between
ambient air pollution and COVID-19-related outcomes,
including incidence, severity, mortality, and long COVID
conditions. We used advanced models to estimate exposures,
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incorporating numerous air pollutants, particle species, and
wildfire emissions. We used administrative COVID-19 data
and several cohorts of patients from a large health system,
and each was formed to evaluate different hypotheses.

Daily air pollution exposures for Southern California were
estimated with high spatial and chemical resolution, using a
combination of land use regression and chemical transport
models for the years 2016, 2019, and 2020. Exposure variables
included ozone (O,’), nitrogen dioxide (NO,), fine particulate
matter (PM) <2.5 pm in aerodynamic diameter (PM, mass),
ultrafine PM <0.1 pm in aerodynamic diameter (PM,,), and
major sources or chemical components of PM in each size
fraction. Exposures for multiple study populations were
investigated using statistical analysis methods to test for
associations with COVID-19-related outcomes, including the
following:

e COVID-19 cases (N = 773,374) and deaths (N = 14,311), by
age, race, and sex, for 308 ZIP codes in Los Angeles County
between June 19 and January 3, 2021. A negative binomial
regression was performed for both individual and multiple
ambient air pollutants to evaluate their associations with
COVID-19 incidence and mortality.

e Patients with COVID-19 who were admitted to Kaiser
Permanente Southern California (KPSC) hospitals
between June 1, 2020, and January 30, 2021 (N = 21,415).
Cox proportional hazards models were used to evaluate
associations between ambient air pollutant exposure and
COVID-19 mortality. A subset was of KPSC patients with
COVID-19 who received care exclusively in KPSC hospi-
tals (N = 15,978). A multistate survival model was used to
examine how air pollution affects the transition to recov-
ery or deterioration to more severe COVID-19 states (e.g.,
intensive care admission or death). A subset was of KPSC
patients with COVID-19 who maintained membership
with KPSC for 1 year after hospital discharge (N =12,634).
We combined a set of 45 diagnoses of post-acute sequelae
of SARS-CoV-2 (PASC) into categories based on organ sys-
tems and then studied a subset of these PASC categories
that could be affected by air pollution, including cardiac,
cardiometabolic, pulmonary, and neurological conditions.
Logistic regression was used to evaluate associations
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between 30-day air pollution exposure before hospital
admission and PASC conditions diagnosed at 3 months
and 12 months post-discharge.

Results PM_ ,, O,, NO,, and PM, , elemental carbon expo-
sures were identified as risk factors for COVID-19 incidence
and mortality in the general population of Los Angeles
County. Air pollution exposures were also significantly asso-
ciated with COVID-19 mortality in the cohort of hospitalized
KPSC patients, controlling for other individual health risks.
Incremental increases equivalent to the interquartile range for
several pollution exposure concentrations were significantly
associated with increased mortality, including PM,, mass
(hazard ratio [HR], 1.12), PM_,(HR, 1.06), PM, _ nitrate (HR,
1.12), PM, ; elemental carbon (HR, 1.07), PM, , on-road diesel
(HR, 1.06), and PM, . on-road gasoline (HR, 1.07). Humidity
and temperature in the month of diagnosis were significant
negative predictors of COVID-19 mortality and negative
modifiers of the air pollution effects. Results of the multistate
analysis were consistent with these findings and further
suggested that O,, NO,, and PM, _ each were associated with
deteriorating health states. Increased PM,. concentration
was associated with increased risk of deterioration to both
intensive care admission (HR, 1.16) and death (HR = 1.11).
Effects of O, were similar to those of PM, _, but O, also affected
the transition from recovery to death (HR, 1.24). Several air
pollutants — particularly O,, PM, ,, and PM, , nitrate — were
significantly associated with several long COVID outcomes,
including cardiac, cardiometabolic, and pulmonary condi-
tions.

Conclusions  Broadly, we concluded that several common
air pollutants are associated with COVID-19 incidence, mor-
tality, and progression to more severe states of illness, includ-
ing long COVID conditions. Air pollution is a modifiable
environmental risk factor that could be altered to improve
the prognosis of COVID-19, thereby also reducing the pub-
lic health impacts of coronaviruses now and in the future.
This is particularly important for preventing long COVID,
as evidence suggests that PASC conditions can occur even
in vaccinated individuals. Given that 10% to 30% of indi-
viduals with COVID-19 will experience some form of PASC,
which can have lifelong debilitating effects,® the importance
of addressing modifiable environmental risk factors, such
as air pollution, cannot be underestimated. A recent Lancet
editorial noted that societal investment in understanding the
pathogenesis of long COVID and preventive measures has
lagged well behind the levels needed to effectively treat and
mitigate this complex disease.® Our research focused mostly
on hospitalized patients, but it also included one study on the
general population effects. The results of both analyses were
generally concordant, although our most important findings
likely apply only to patients hospitalized with COVID-19.
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CHAPTER 1: INTRODUCTION AND

OUTLINE

The COVID-19 pandemic represents one of the largest
threats to population health in more than a century. As of
December 2023, more than 690 million people worldwide
had been diagnosed with COVID-19, resulting in more than
6.9 million deaths.” As of 2023, nearly 35,000 individuals per
week are hospitalized with COVID-19 in the United States,
and the weekly number of COVID-19-related deaths ranges
from 900 to 1,400.*® Moreover, many of those affected will
experience post-acute sequalae of SARS-CoV-2(PASCs), also
known as long COVID, a condition that affects approximately
10% to 30% of patients with COVID-19.° Earlier conservative
estimates suggested that roughly 65 million people globally
suffer from long COVID,® and the most recent research indi-
cates that long COVID has affected some 18.8 million people
in the United States alone.'® In addition, more than 25% of
those with long COVID experience activity limitations, which
can affect their ability to work.?® Due to inconsistent testing
and various other factors, estimating the likely number of
cases of long COVID is complicated. Despite a lack of accu-
rate estimates of the number of cases of COVID-19, even a
conservative calculation based on a 10% to 30% incidence of
long COVID among hospitalized cases alone would indicate
that 3,500-10,500 new cases of long COVID occur per week
in the United States.

Although researchers have extensively investigated the
etiology of acute COVID-19, there remain considerable
uncertainties about how potential risk factors influence the
incidence and severity of the disease, mortality, and the
development of PASC conditions. Recent evidence from
North America, Asia, and Europe implicates air pollution as a
risk factor that affects the incidence, prognosis, and mortality
rate of COVID-19.* Limited evidence based on small stud-
ies from Sweden and Saudi Arabia suggests that air pollution
is a risk factor for developing long COVID; however, these
studies were conducted in environments with very high or
low exposure to air pollutants, raising questions about their
generalizability. 40 141

Biologically plausible mechanisms suggest that exposure
to air pollution may render people more susceptible to
contracting COVID-19 and, furthermore, that once infection
occurs, greater exposure to air pollution may worsen the
prognosis.**** For example, nitrogen dioxide (NO,), a marker
of traffic-related air pollution,”*® probably increases the
risk of lung infections by impairing the function of alveolar
macrophages and epithelial cells in the lungs.*® Findings
from epidemiological and toxicological studies align with a
large body of research linking air pollution to risk of viral and
bacterial respiratory infections,'”** chronic respiratory mor-
bidities (e.g., asthma, chronic obstructive pulmonary disease,
lung cancer),** hospitalizations,®! and mortality.*¢

Our review of the literature on air pollution exposure and
COVID-19 outcomes identified a limited number of studies
that used individual-level data, controlling for potential
confounders, to evaluate outcomes related to disease severity
or mortality.?*# These studies were focused on the early
phases of the pandemic, possibly resulting in lower statistical
power due to a relatively small number of deaths. Some of the
mortality studies used high-quality exposure estimates, but
none assessed the contribution of particle sources or ultrafine
particle concentrations. Also, none of these studies examined
interactions between air pollution and meteorological vari-
ables, such as temperature and humidity.

This study makes several contributions to the literature.
Specifically, we expanded the evidence base by using a large
sample of individual data, a longer study period than found
in existing studies, exposure models capable of assessing
particle species and sources, and meteorological variables
(Chapter 5). We also employed a multistate model (Chapter
6). No previous studies have used a multistate model to
examine the progression to more severe states of disease and
the likelihood of recovery from acute COVID-19 during and
after hospitalization. Moreover, only limited evidence on
potential associations between air pollution exposures and
long COVID exists; as previously described, the two existing
well-conducted studies have several limitations (e.g., small
sample size, inaccurate characterization of exposures, and
questionable representativeness of the high and low exposure
profiles), highlighting the need for further research on this
disease that poses a large threat to public health. Here we
address such limitations in existing studies on long COVID by
incorporating a larger sample from an area with air pollution
exposures more typical of those observed in the United States
and Europe, a speciated exposure model, and specific time
windows of exposure (Chapter 7). More generally, few exist-
ing studies of COVID-19 severity or mortality or long COVID
have attempted to comprehensively estimate air pollution
exposures that incorporate different particle physicochemical
species and sources.

In this context, we addressed several central research
objectives. Firstly, we assessed whether greater air pollution
exposures led to increased risk of COVID-19 incidence and
death among confirmed COVID-19 cases in a population
sample from Southern California. This study is built on
previous evidence* but expanded the analysis with speciated
and source-specific particle estimates using individual-level
health data. Secondly, we assessed associations between a
wide array of air pollution estimates and mortality among
patients in the Kaiser Permanente Southern California (KPSC)
health system (which has an excellent electronic health
records [EHR] system) who were hospitalized with COVID-19
across Southern California. In a novel addition to previous
research, we also investigated the impact of temperature and
humidity as both a direct risk factor and a modifying influ-
ence on the health effects of air pollution. We extended this
analysis with a multistate investigation of how air pollution
influenced the progression of COVID-19 to recovery, more
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severe states of illness (i.e., admission to an intensive care
unit), and death, as well as the progression from recovery to
death. Lastly, we investigated the relationship between air
pollution exposure and long COVID in a subcohort of the
KPSC data.
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CHAPTER 2: SPECIFIC AIMS AND

GENERAL APPROACH

Stated generally, we hypothesized that air pollution
exposures could increase the risk of COVID-19 infection,
progression from COVID-19 to more severe states of illness,
and death due to COVID-19. We also hypothesized that air
pollution would increase the risk of developing PASC condi-
tions, or long COVID.

Beyond the introductory chapters (Chapters 1 and 2), this
report is organized into the following sections: exposure mod-
eling (Chapter 3), population health impacts of air pollution
on COVID-19 incidence and mortality in Los Angeles (Chap-
ter 4), associations between air pollutants, meteorology, and
COVID-19 mortality (Chapter 5), multistate analysis of the
relationship between air pollution exposure and progression
from COVID-19 to more severe states of illness (Chapter 6),
long COVID in relation to air pollution exposures (Chapter
7), and a concluding chapter synthesizing important findings
and emphasizing public health implications (Chapter 8).
Except for Chapter 8, all chapters are written as stand-alone
components of the study to enhance readability. Our central
aims and hypotheses are outlined below.

AIM 1: DEVELOP CHRONIC AND SUBCHRONIC AIR
POLLUTION EXPOSURE FIELDS

Exposure fields were developed for periods before the
COVID-19 pandemic (2016 and 2019) to analyze the effects
of chronic air pollution and for a period during the pandemic
(2020) to analyze the effects of shorter-term (subchronic,
30-day) changes in air pollution concentrations. The sub-
chronic exposure fields accounted for both modified behavior
patterns (traffic, air travel, restaurant dining) during the
pandemic and the exceptionally severe wildfire season in
2020. Our original intention was to test whether any of the air
quality changes were associated with COVID-19 incidence,
severity, and mortality. The majority of cases of COVID-19,
however, occurred late in the year, when air pollution pat-
terns had largely returned to their historical norms. The low
case count during periods of altered air pollution reduced the
statistical power and caused other artifacts in the statistical
analysis. Therefore, we had no testable hypotheses related to
Aim 1, although the exposure fields associated with this aim
are used in the subsequent aims.

AIM 2: HIGH-RESOLUTION SPATIAL ANALYSIS

The strength of the association between air pollution
and COVID-19 outcomes can be artificially weakened by
incomplete exposure estimates and inconsistent reporting of
health outcomes across different jurisdictions nationwide.
County-level estimates, for example, may reflect substantial
errors regarding exposure, as air pollution can vary consider-
ably within counties. Analyses that are specific to a smaller

geographical area with a large population, consistent health
reporting practices, and accurate pollution exposure estimates
are more likely to detect an association between air pollution
and COVID-19 incidence or mortality with greater precision
than analyses specific to larger spatial units. Earlier studies
in Los Angeles reported positive associations but lacked
individual health data as well as data on particle species and
sources. In this project, we quantified associations between
air pollution and COVID-19 incidence and mortality by
using high-resolution (e.g., 30-m to 1-km) spatial modeling of
exposures to analyze data for 308 out of 584 ZIP codes in Los
Angeles County that represented approximately 10 million
residents, 773,374 cases of COVID-19, and 14,311 deaths due
to COVID-19. This aim had one associated hypothesis:

e Hypothesis 1: Studies using high-quality data to assess air
pollution and COVID-19 within small neighborhoods will
detect associations more accurately than will national or
statewide analyses, which would be subject to substantial
case-ascertainment bias and exposure misclassification.

AIM 3: MORTALITY AND MULTISTATE HEALTH
EFFECTS OF CHRONIC AIR POLLUTION EXPOSURE

We studied questions about mortality and progression to
either more severe illness states or recovery in a cohort of
patients with confirmed COVID-19 who were members of the
KPSC health system. The EHRs for KPSC patients contain
detailed demographic and health information for each patient.
Multiple exposure models were used to cover a broad range of
potentially relevant pollutants. This aim was associated with
two hypotheses:

e Hypothesis 2A: Patients living in areas with higher chronic
and subchronic air pollution exposures who are hospi-
talized with COVID-19 will be more likely to progress to
serious illness requiring admission to the intensive care
unit (ICU) or death than those living in lower pollution
areas.

e Hypothesis 2B: Patients living in areas with higher chronic
and subchronic air pollution exposures who were hospi-
talized with COVID-19 will be less likely to transition
toward recovery and more likely to die than those living in
lower pollution areas.

AIM 4: LONG COVID

Preliminary findings suggest that patients who recover
from the acute effects of COVID-19 may experience PASC
conditions known as long COVID. We studied the relationship
between air pollution exposure and increased incidence of
PASC conditions at 3 months and 12 months after discharge
from the hospital. PASC conditions were defined as a set of
45 diagnoses described in detail by Tartof and colleagues.*
We collaborated with a KPSC hospitalist to create clinically
meaningful categories that group these 45 diagnostic codes by
organ system. This aim had one associated hypothesis:
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e Hypothesis 3: Exposure to air pollution will increase
the risk of developing long COVID, or PASC conditions,
in patients who have recovered from the acute effects of

COVID-19.

Many of the aims and research hypotheses evolved as new
information became available during the study. Most notably,
because of very low case counts, we were unable to fully test
hypotheses related to modified air pollution exposure during
lockdown periods in the initial stages of the pandemic. By
contrast, we were able to greatly expand the sophistication
of the long COVID analysis by incorporating the outcomes of
work performed at KPSC to define PASC conditions. Overall,
the research summarized in this report was adapted to the
dynamic environment of the COVID-19 pandemic to answer
the most important research questions within the confines of

the time and resources available for the project.

Research Roadmap?

Research Aim

Description of Methods

Aim 1: Generate exposure fields

o Generate land use regression exposure fields

e Generate chemical transport model exposure fields

Chapter 3: Development of Chronic and Subchronic Exposure
Fields / Methods / Land Use Regression Model

Chapter 3: Development of Chronic and Subchronic Exposure
Fields / Methods / Chemical Transport Model

Appendix A. Supplemental Information for Chapter 3: Develop-
ment of Chronic and Subchronic Exposure Fields

Appendix E. Supplemental Information for Chapter 7: Associ-
ation Between Air Pollution and Post-Acute Sequelae of SARS-
CoV-2

Aim 2: High-resolution spatial analysis

Chapter 4: Risks of Species-Specific Air Pollution for COVID-19 Inci-
dence and Mortality in Los Angeles / Study Design and Methods

Aim 3: Multistate health effects of chronic and sub-
chronic air pollution

Chapter 5: Air Pollution and Meteorology as Risk Factors for COVID-
19 Mortality in Southern California / Materials and Methods

Chapter 6: Air Pollution and Sequelae of COVID-19: A Multistate
Analysis / Methods

Aim 4: Long COVID-19

Chapter 7: Association Between Air Pollution and Post-Acute
Sequelae of SARS-CoV-2 (PASC)

“The term “synergy” refers to a joint effect that exceeds the additive effect expected from the individual items.* We use “synergism” to explain the cumu-
lative risk index findings in Chapter 4. When the cumulative risk index is greater than the sum of the individual relative risks for single pollutants, we call
this “synergism between pollutants.” We use the term “interaction” to describe the influence of other meteorological variables on the slope of the concen-
tration—response function for given air pollutants. The term “effect modification” is reserved for subgroup analyses in which the air pollution concentra-
tion-response function differs across certain subgroups, such as patients with obesity and patients with normal body weight. The terms “long COVID” and
“PASC” are used interchangeably in the literature. In Chapter 7, after a general introduction that clarifies this interchangeability, we have largely used the

term “PASC” as the predominant term in this report.

10
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CHAPTER 3: DEVELOPMENT OF

CHRONIC AND SUBCHRONIC
EXPOSURE FIELDS

INTRODUCTION

Air pollution exposure fields can be estimated using
ground-based monitoring data,** land use regression (LUR)
models,* satellite observations,*” chemical transport models
(CTMs),* or data fusion techniques that combine these
methods of estimation.*” Each technique has strengths and
weaknesses, depending on the nature of the target pollutant.
Some pollutants have sharp spatial gradients and/or random
time variability, whereas other pollutants are more uniformly
distributed in space and time. Some pollutants are routinely
measured at numerous locations, and others are measured
only in the context of special studies. This complex exposure
landscape involving various pollutants requires a combina-
tion of methods to span the full range of exposure variables
that may be of interest in studying associations between air
pollution and COVID-19.

In the present study, we generated air pollution exposure
fields by using both LUR models to achieve high spatial res-
olution for traditional pollutants and CTMs to span a broad
range of chemical species, particle size fractions, and source
tracers. Each exposure field was produced with the maximum
possible spatial resolution for that model for the entire KPSC
service area and with daily time resolution for the years
2016, 2019, and 2020. The basic methods used to generate
the exposure fields are summarized in the following sections.
Additionally, this chapter presents the time-averaged results
from the LUR model and CTM and compares overlapping
pollutant-specific exposures predicted by both the LUR and
CTM modeling approaches.

METHODS

LAND USE REGRESSION MODEL

In the land use regression (LUR) model, exposure fields for
daily concentrations of NO, and fine particulate matter (PM)
<2.5 pm in aerodynamic diameter (PM, mass) were devel-
oped using the deletion/substitution/addition algorithm.*¢-0
This algorithm is an aggressive model search algorithm that
iteratively generates polynomial generalized linear models
based on the existing terms in the current “best” model and
the following three steps: (1) a deletion step that removes a
term from the model, (2) a substitution step replacing one
term with another, and (3) an addition step that adds a term
to the model. The search for the “best” estimator starts with
the base model specified by “formula,” which is typically the
intercept model, unless the user requires a number of terms

to be forced into the final model. Before searching through the
statistical model space of polynomial functions, the datasets
for a specific year and specific type (e.g., saturation or govern-
ment continuous monitoring) are randomly assigned into v
folds (or groups) of roughly equal numbers of observations in
each fold. Data in one fold are used for validation, and data in
the remaining folds are used for prediction or model training.
This process is repeated v times, until all folds are used for
validation. The polynomial within the search space that min-
imizes the cross-validated risk is selected as the prediction
algorithm. The use of v-fold randomization out-of-sample
cross-validation helped avoid model overfitting. We limited
the predictors to linear terms (i.e., the maximum sum of pow-
ers in each variable was 1) and disallowed any interaction.
Further, we modeled the repeated measures in our annual
models to account for the fact that measurements for a given
site could be taken multiple times during the training period.

CHEMICAL TRANSPORT MODEL

Chemical transport models (CTMs) predict pollutant
concentration fields using fundamental equations based on
conservation of mass, fluid mechanics, chemical kinetics, and
thermodynamic equilibrium. The University of California,
Davis/California Institute of Technology (UCD/CIT) airshed
model used in this project was a reactive three-dimensional
CTM predicting the evolution of gas- and particle-phase
pollutants in the atmosphere in the presence of emissions,
transport, deposition, chemical reaction, and phase change,
as represented by Equation 1.

oC;
ot

+ VuxC; = VKVC; + E; — 8; + RI(C) + R™(C) -
(Equation 1)

where C, is the concentration of gas- or particle-phase species
i at a particular location as a function of time #; u is the wind
vector; K is the turbulent eddy diffusivity; E, is the emissions
rate; S, is the loss rate; R$* is the change in concentration due
to gas-phase reactions; R is the change in concentration
due to particle-phase reactions; and R is the change in
concentration due to phase change.”* Loss rates include both
dry and wet deposition. Phase change for inorganic species
occurs using a kinetic treatment for gas-particle conversion®
driven toward the point of thermodynamic equilibrium.%
Phase change for organic species is treated as a kinetic pro-
cess, with vapor pressures of semivolatile organics calculated
using the two-product model.*

The basic capabilities of the UCD/CIT model are similar to
those of the Community Multiscale Air Quality model main-
tained by the US Environmental Protection Agency (EPA);
however, the UCD/CIT model has several source apportion-
ment features and higher particle size resolution, making
it attractive for this project. The UCD/CIT model explicitly
tracks the mass and number concentrations of particles in 15
discrete size bins, ranging from 10-nm to 10-pm, with tracer
species used to quantify source contributions to the primary
particle mass in each bin.

11
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Further details of the UCD/CIT model, including the mete-
orological fields and emissions inventories used to drive the
model, are provided in Appendix A. Note: Appendices are
available on the HEI website.

Statistical Bias Correction  The accuracy of CTM exposure
fields is typically determined by the accuracy of the input data
used to drive the CTM calculations and/or the completeness
of the model formulation. Random errors and systematic
errors that change with time and location are often present in
concentration fields predicted by CTMs. Measurements can be
combined with CTM predictions to improve the accuracy of the
pollutant concentration fields while retaining the rich informa-
tion describing multiple pollutants and source apportionment
information that is inherent in CTM predictions. This fusion
of measurements and model predictions can be especially
valuable in the setting of wildfire events, which often produce
extremely high exposure concentrations over limited periods
of time. The statistical bias correction performed for the years
2016, 2019, and 2020 is described further below:

e Year 2016: For the exposure fields developed for 2016, the
bias in CTM predictions at each monitoring location was
combined with the CTM predictions for concentrations
of both primary particles emitted from nine different
source categories and secondary nitrate and sulfate PM
to form a time series that was analyzed using multiple
linear regression (MLR) based on Equation 2. An intercept
was not considered in the regression equation, given the
assumption that any constant bias introduced by abnor-
mally high boundary conditions or underpredicted wind
speeds would manifest as overpredictions in the indicated
particle metrics. An intercept (i.e., constant bias) could
potentially introduce overlap or “double counting” in the
regression model formulation.

Bias = al x Tracerl + a2 x Tracer2 + ---
all x Nitrate + all x Sulfate + al2 x Ammonium

(Equation 2)

Here a, represents regression coefficients; nitrate, sulfate,
and ammonium are the concentrations of these chemical
components in fine particles; and Tracer, represents the
concentrations of primary fine particles emitted from (1)
on-road gasoline vehicles, (2) off-road gasoline vehicles,
(3) on-road diesel vehicles, (4) off-road diesel vehicles,
(5) biomass combustion, (6) food cooking, (7) aircraft, (8)
natural gas combustion, and (9) all other sources.

The time series from all 40 sites included in the study
were combined into a single dataset with 452 data points
to support the 12 independent variables in the regression
analysis. Multiple MLR models were explored, with non-
zero coefficients eventually selected for the source tracers
for off-road gasoline vehicles, on-road diesel vehicles,
biomass combustion, food cooking, and all other sources,
as well as inorganic ions. A single set of regression coeffi-
cients was able to explain the bias, with an R* = 0.82 and a
regression slope of 0.92.
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+ a9 x Tracer9 +

The MLR bias equation (Equation 3) was applied to each
CTM grid cell to predict the bias in CTM concentrations.
The baseline CTM concentrations were then adjusted
using the equation

bias
biascor = Chaseli 1 - ————
Chias Chbaseline x ( C’baselme)

(Equation 3)

where Cbias__is the bias predicted by the MLR Equation
2, and Chaseline is the original CTM prediction.

The corrected PM,, mass concentrations had a mean
fractional bias of 0. 181 significantly improving the accu-
racy of the exposure fields in 2016. Further details of the
improvements to CTM exposure fields for the year 2016
are presented in Appendix A.

Years 2019 and 2020: In recent years, techniques such
as data fusion and machine learning have been used to
improve predictions of air quality. In this study, a random
forest regression (RFR) technique was used to reduce
bias in the PM, , concentration predicted by the UCD/CIT
source- orlented CTM for the years 2019 and 2020. RFR is
a powerful statistical machine learning approach that has
advantages over traditional methods, such as bias correc-
tion and MLR.%-%

Four major support elements were used in the current RFR
approach: surface monitoring data from the US EPA and
Purple Air, Moderate Resolution Imaging Spectroradiome-
ter (MODIS) aerosol optical depth retrievals, meteorology
data from the Weather Research and Forecasting model,
and CTM results from the UCD/CIT model. The fractional
bias values between UCD/CIT PM, variables and EPA
daily average observations were calculated as training
targets in the RFR approach. (Fractional bias is defined in
Appendix Table E1.) Models for each month of the year
were trained independently. The correction factor (CF)
that can be applied to the PM, mass predicted by the UCD/
CIT model is calculated in Equation 4 as

CFPMZ,Em{)SS = (2 + FBPMZSmaSs ) / (2 - FBPMZ.Em{)SS )

(Equation 4)
where FB is the fractional bias.

This training process used for PM, , mass was also applied
to five additional predicted concentrations, including PM,
organic compounds (OC), PM, . elemental carbon (EC),
PM, . ammonium, PM, , nitrate, and PM, , sulfate. Some of
these species also appear as training support variables in
Appendix Table E2. In these cases, the RFR training proce-
dure was modified to remove the target variable from the
list of training support variables. The final step of the RFR
method involved calculating the mean correction factor
based on the weighted fraction average of the correction
factor values derived from the six sets of RFR training.
This approach optimized improvements across all PM
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variables. Further details of the improvements to CTM
exposure fields for the years 2019 and 2020 are presented
in Appendix E.

volatile organic compounds (VOCs) mix with biogenic VOCs,
resulting in a VOC/NO, ratio with maximum efficiency for
forming O,.

RESULTS

DISCUSSION AND CONCLUSION

Both LUR and CTM exposure fields were produced with
daily time resolution for the years 2016, 2019, and 2020. All
exposure fields are available for download, as described in the
Data Availability Statement. The following sections summa-
rize some of the major spatial and temporal trends inherent in
each exposure field. These fields were subsequently used for
the epidemiological analyses conducted in this project.

LAND USE REGRESSION MODELS

Figures 1 and 2 show The seasonal average variation in
LUR model predictions for exposure fields regarding NO, and
PM, . mass in Southern California, with 100-m spatial reso-
lution in 2020. Predicted NO, concentrations were highest
along transportation corridors, reflecting the predominance
of emissions from mobile sources. By contrast, LUR model
predictions for PM, . mass concentrations were more uniform,
peaking outside Los Angeles. Supporting information regard-
ing the LUR model is provided in Appendix A.

CHEMICAL TRANSPORT MODELS

Figure 3 displays the annual average concentrations pre-
dicted by the CTM calculations for the year 2020, with 1-km
spatial resolution. PM,, mass concentrations peaked in the
urban areas of Southern California and in the San Joaquin
Valley surrounding Bakersfield to the north. Ultrafine PM
<0.1 pm in aerodynamic diameter (PM,,) concentrations had
sharper spatial gradients around major sources of emissions.
Notably, predicted PM, , mass concentrations peaked around
military bases using aviation fuel with a higher sulfur content
than that of commercial aviation fuel. The accuracy of these
PM, , concentration peaks has not been verified with ground-
based measurements. As the population size in the affected
zones is small relative to that of the major cities, however, the
uncertainty regarding exposure in these zones is not expected
to significantly influence the results of the epidemiological
analysis. PM,_ EC is a primary pollutant that is mainly
associated with diesel engines, and concentrations of this
pollutant were predicted to be highest in urban centers with
major transportation corridors. Spatial gradients for PM,  EC
were relatively sharp. PM, _ nitrate is a secondary pollutant
with smoother spatial gradtents Predicted PM, ; nitrate con-
centrations were highest in the San Joaquin Valley north of
Southern California, reflecting the high concentrations of pre-
cursor ammonia and oxides of nitrogen (NO ). Predicted NO,
concentrations were highest in urban centers and agricultural
regions, where fertilized soils can emit NO_. Ozone (O,) con-
centrations predicted by the CTM were highest downwind of
major urban centers, where diluted concentrations of NO_and

PM,. mass and NO, exposure fields were predicted
using both LUR models and the CTM. The two independent
approaches understandably produced different estimates.
Both models predicted significant NO, concentrations over
the city of Los Angeles, but the LUR model predicted higher
concentrations than did the CTM. Given that statistical bias
corrections were not applied to gas-phase species in the CTM
calculations and that the monitoring network for NO, is quite
dense in urban locations, the fine-grained details of NO, con-
centrations in urban Los Angeles are likely better represented
by the LUR model. Regionally, the CTM predicted enhanced
NO, concentrations in areas with significant agricultural
activities. Fertilized soils release NO, into the atmosphere,
which can significantly increase concentrations of NO,.*° The
CTM calculations included soil NO,_ emissions, enhancing
the predicted NO, concentrations in the San Joaquin Valley
and the Imperial Valley. Fertilized soils were not a predictor
of NO, concentrations in the LUR models.

PM, . mass concentrations predicted by the LUR model
peaked in the arid regions in the eastern portion of California,
presumably reflecting the prevalence of windblown dust.
By contrast, PM,, mass concentrations predicted by the
CTM peaked most strongly over Los Angeles and in the San
Joaquin Valley north of Los Angeles. Predicted PM, , concen-
trations from the CTM also showed hotspots correspondlng
to wildfire locations during the simulation period. The LUR
model indirectly accounted for wildfires by incorporating
satellite-observed aerosol optical depth as a predictor. The
CTM used estimates of wildfire emissions from the Global
Fire Emissions Database, which contains data based on
satellite observations of burned areas. The degree to which
plumes of wildfire emissions mix vertically varied in each
model, leading to different estimates of the effect of wildfires
on ground-level concentrations.

Overall, the level of agreement between exposure fields
generated by the LUR model and the CTM model provides
a quality control/quality assurance check on the results
of epidemiological analyses conducted using those fields.
Epidemiological results that are consistent across different
exposure estimates are considered extremely robust, whereas
epidemiological results that change depending on the method
used to generate the exposure fields should be evaluated with
additional sensitivity analyses to build confidence in the
findings.
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Figure 1. Seasonal average variation in NO, exposure fields predicted using the LUR model for
Southern California, 2020. Exposure fields are presented for the spring (A), summer (B), fall (C),
and winter (D). ppb = parts per billion.
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Figure 2. Seasonal average variation in PM, ; mass exposure fields predicted using the LUR
model for Southern California, 2020. Exposure fields are presented for the spring (A), summer
(B), fall (C), and winter (D).
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Figure 3. Annual average pollutant concentrations predicted by the CTM for Southern California, 2020. Concentrations are presented
for PM, , mass (A), PM_, mass (B), 1-hour maximum O, (C), NO, (D), PM, , elemental carbon (E), and PM, , nitrate (F). All particulate
matter species have units of pg/m?, and all gas species have units of ppb. ppb = parts per billion.
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CHAPTER 4: SPECIES-SPECIFIC AIR
POLLUTION AS A RISK FACTOR FOR

COVID-19 INCIDENCE AND MORTALITY
IN LOS ANGELES

INTRODUCTION

COVID-19 caused over 6.9 million deaths worldwide
during the period from the initial detection of the etiologic
virus, SARS-CoV-2, in December 2019 to mid-2023.% These
deaths associated with the COVID-19 pandemic occurred
against a background of other disease-related burdens,
including air pollution, which causes approximately 7
million excess deaths each year and was the fifth leading
cause of global mortality in 2015.*” Possible synergistic
relationships between air pollutants and viral infection
have been demonstrated in both ex vivo and in vitro stud-
ies, supporting the biological plausibility of interactions
between air pollution and host defenses against viral
infections.”* For example, PM, . penetrates deep into the
respiratory system, where it can irritate the lung alveoli.®
These injury pathways align with extensive evidence
from epidemiological studies demonstrating associations
between air pollution and risk of respiratory conditions,
including asthma, pneumonia, chronic obstructive pul-
monary disease (COPD), nasopharyngeal cancer, and lung
cancer.®% Additionally, a review of multiple cohort stud-
ies indicated that the excess risks of all-cause mortality per
additional 10-pg/m® increment in long-term exposure to
PM, _ and NO, were 6% and 5%, respectively.*

Ecological studies suggest that chronic exposure to
air pollution exacerbates risks of COVID-19 incidence,
severity, and mortality. Previous work has found that
residential exposure to NO, was significantly associated
with COVID-19 incidence, mortality, and fatality in Los
Angeles.”” In Italy, researchers identified significant
correlations between COVID-19 case counts and 3-year
(2017-2019) average levels of PM, ., PM <10 pm in aero-
dynamic diameter (PM, ), and NO, as well as the number
of days exceeding the regulatory limits for O,.°® At the
county level in the United States, COVID-19 mortality in
2020 increased by 8% per 1-ng/m?® increase in PM, ..%° Two
studies involving hospitalized KPSC patients reaffirmed
significant associations between both COVID-19 prognosis
and mortality and long-term exposure to air pollutants,
such as PM_ ,, PM, . mass, and PM, , on-road gasoline and
diesel.”

0.1°

Quantifying associations between air pollution expo-
sures and COVID-19 outcomes is a complex task. Statisti-
cal models must adjust for confounding factors, including
demographics, meteorological conditions, and socioeco-
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nomic status. Higher maximum daily temperature and rel-
ative humidity have been reported to modify associations
between PM concentrations and death due to COVID-19.7°
Confounding effects of race, ethnicity, and income status
on the relationship between air pollutants and COVID-19
outcomes also have been reported. A meta-analysis of 68
studies indicated that racial/ethnic minority populations
with lower socioeconomic status had higher incidence
rates and severity of COVID-19.”" People of color and
low-income communities are disproportionately exposed
to PM,. and NO, emissions from transportation and
industrial sources.®*727% Additionally, successive variants
of SARS-CoV-2 have demonstrated different rates of trans-
missibility and mortality. For example, the Delta variant
was approximately 60% more transmissible than the
Alpha variant, which was considered highly infectious. In
Scotland, the rise of the Delta variant of SARS-CoV-2 in
late 2020 contributed to a higher risk of hospitalization for
COVID-19, compared to the corresponding risk associated
with the Alpha variant from April to May 2021.7

Although the relationship between criteria air pollut-
ants (e.g., PM, NO,, O,) and COVID-19 outcomes has been
widely discussed, there has been little study of associa-
tions between COVID-19 and specific air pollutant species
at a fine spatial resolution (e.g., at the census tract or ZIP
code level). In this study, we assessed the spatial and
temporal associations between PM, ,, PM,  mass, PM,
EC, PM, . on-road gasoline and diesel vehicles, NO,, and
O, at the ZIP code level and the outcomes of COVID-19
incidence and mortality among the general population in
Los Angeles County.

STUDY DESIGN AND METHODS

COVID-19 OUTCOME DATA

Daily numbers of COVID-19 cases and deaths in
Los Angeles County were obtained from the California
Department of Public Health (CDPH). To ensure consis-
tency across SARS-CoV-2 variants, we targeted the period
when the Delta variant was dominant. From June 19 to
December 19, 2020, the Delta variant accounted for more
than 50% of the COVID-19 cases in California.”® Given the
assumptions of a typical incubation period of COVID-19
and the majority of COVID-19-related deaths occurring 2
weeks after infection, we added a 2-week buffer after the
period dominated by the Delta variant. Thus, the study
period spanned from June 19, 2020, to January 3, 2021.
Before its release by the CDPH, the COVID-19 dataset was
initially aggregated by ZIP code and stratified by sex, age
categorized by 10-year age groups, and race and ethnicity
(including non-Latino White, non-Latino Black, non-
Latino Asian, Latino/Hispanic, and other racial/ethnic
groups). In accordance with the CDPH data use agreement
safeguarding confidentiality, data for any ZIP code with
a cumulative count less than 10 were suppressed. The
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final dataset used for analysis included a total of 773,374
COVID-19 cases and 14,311 deaths that occurred during
the study period in Los Angeles County.

EXPOSURE ASSESSMENT USING ANNUAL EXPOSURE
FIELDS FOR 2019

Exposure fields for air pollutant concentrations across
Southern California were simulated using the UCD/CIT
CTM UCD/CIT, which predicts gaseous and particulate
pollutant concentrations in the atmosphere on the basis of
emissions, transport, deposition, chemical reactions, and
phase changes.”®”® The model calculations incorporate the
emissions from nine major source categories to provide
source apportionment estimates in the exposure fields.
The CTM exposure fields of air pollutant concentrations
for 2019 were estimated using a 1-km scale. The model
calculates concentrations of all photochemical pollutants
and incorporates explicit tracers for major pollutant
sources, such as traffic. The daily exposure data, including
1-hour maximums for O, and daily averages for all other
pollutants, were aggregated to an annual scale in the pres-
ent study.

We used the 2019 annual mean pollutant concentrations
as indicators to examine the relationship between chronic
exposure to air pollution and COVID-19 cases and deaths
that occurred during the ensuing study period. Pollutants
analyzed in the study included PM_,, PM,  mass, PM,
nitrate, PM, . EC, PM, . on-road gasoline vehicles, NO,,
and 1-hour maximum O,. PM, , on-road gasoline vehicles,
which is used to track contributions from gasoline-pow-
ered mobile sources, was assigned to emissions from the
California Air Resources Board inventory that uses the
on-road gasoline vehicle PM profile. PM concentrations
were estimated in micrograms per cubic meter (pg/m?),
and gaseous pollutants were estimated in parts per million
by volume (ppm).

To specify the difference in associations attributed to
exposure modeling methodologies, we also generated expo-
sure fields of air pollutant concentrations using an LUR
for the 2019 annual mean concentrations of PM, , (ng/m?)
and NO, (ppm). The LUR model applied the deletion/sub-
stitution/addition machine learning algorithm to account
for approximately 600 covariates, such as traffic, land
cover, and distance to roadways at different Euclidean buf-
fers around pollution monitors to predict annual NO, con-
centrations in California at a spatial resolution of 100 m.”
For comparison with results from the CTM, the LUR data
were initially aggregated to a spatial resolution of 1 km. In
the following sections, the two estimates of PM, ./NO, gen-
erated by different modeling methodologies are denoted as
PM, /NO, (CTM) and PM, /NO, (LUR).

Individual panels in Figure 4 show unique geospatial
layers for residential areas, ZIP code boundaries, and
raw PM, . mass concentrations, which were combined to

estimate pollution levels for residential areas by ZIP code
in Los Angeles. All exposure fields were cut to the resi-
dential areas to estimate the annual mean exposure to air
pollutants during 2019. Data on residential land use in Los
Angeles were obtained from the California statewide par-
cel boundary dataset.” Mean residential exposure data for
each ZIP code within the county were then extracted using
the ZIP code boundary polygon obtained from the City of
Los Angeles GeoHub open data portal.” The city of Avalon
(ZIP code 90704) was excluded from the analysis, given its
location on Santa Catalina Island, which is situated off the
coast of Southern California. Thus, a total of 308 ZIP codes
were analyzed in this study.

STATISTICAL ANALYSIS

A negative binomial regression was performed for each
air pollutant to evaluate associations with COVID-19.
Poisson models were also used to evaluate the outcomes
of COVID-19 cases and deaths, and dispersion tests were
conducted using the AER package in R.*° The null hypoth-
esis for the AER dispersion test assumes equidispersion
in a Poisson model, whereas the alternative hypothesis
assumes either overdispersion or underdispersion. Addi-
tionally, as no zeros were observed in the cumulative
outcomes throughout the study period, we concluded
that there were no issues involving zero-inflation in the
models. After testing for overdispersion and zero-inflation
in the Poisson models for COVID-19 cases and deaths, we
determined that negative binomial models would be more
appropriate than Poisson models.

To account for potential confounding factors, all mod-
els were adjusted for covariates, including demographic
variables (e.g., sex, non-White race, advanced age), socio-
economic factors (e.g., median income, mean homeowner
occupancy rate), and factors pertaining to chronic health
conditions (e.g., mean prevalence of current smoking
status and obesity). The older adult population in this
study was defined as individuals who were 70 years of age
or older, as the raw data were categorized by 10-year age
groups. ZIP code-level data on total population, median
income, and homeowner occupancy rate were obtained
from the US Census Bureau’s American Community Sur-
vey 1-year estimates for 2020.*' Data on mean prevalence
of current smoking status and obesity were downloaded
from the 2020 release of ZIP Code Tabulation Area—level
estimates provided by the Centers for Disease Control and
Prevention.®* Total population in each ZIP code was used
as an offset in the NB models to calculate the incidence
rate ratios (IRRs) and 95% confidence intervals (CIs) for
COVID-19 incidence and mortality associated with pollut-
ant concentrations standardized by the interquartile range

(IQR).

Two-pollutant NB models were also used to differenti-
ate between the effects of PM, ., NO,, and O,. An additive
effect of two or more items is considered the baseline for
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Figure 4. Geospatial data for Los Angeles County, California, 2019. The panels present residential areas (A), boundaries for 308 ZIP
codes in Los Angeles County (B), the exposure field for the 2019 annual mean PM, , mass concentrations (ug/m®) predicted using the

CTM (C), and the final geospatial data representing residential exposure to 2019 annual mean PM, , mass concentrations (ug/m?) by ZIP
code (D).
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the detection of synergy.** The joint effects of two pol-
lutants were assessed by comparing the individual IRRs
derived from one-pollutant models for each pollutant to
the multiplied product of the IRRs from the two-pollutant
model.

Additionally, we utilized the Global Moran’s I test
to determine the spatial pattern in the distribution of
COVID-19 cases and deaths. This test provides a statistical
measure for assessing spatial autocorrelation, which refers
to the degree of similarity or clustering in spatial data.
Both COVID-19 cases and deaths showed a clustered dis-
tribution, as the Global Moran’s I statistics (P < 2.2e® for
both distributions) exceeded the range of random spatial
autocorrelation. Hence, using the CARBayes package in
R,*® we utilized a spatial generalized linear mixed model
with a binomial distribution to adjust for potential resid-
ual spatial autocorrelation among COVID-19 cases and
deaths. The CARBayes package applies random effects
with a conditional autoregressive (CAR) prior distribution
to model the spatial autocorrelation.®® Additionally, a
Spearman rank correlation matrix was applied to the
non-normally distributed pollutant concentrations, using
the stats package in R.** All analyses and figure generation
were implemented in R Studio version 4.2.2.

DESCRIPTIVE SUMMARY

Descriptive statistics for COVID-19 incidence and
mortality, as well as the 2019 annual mean pollutant
concentrations for ZIP codes in Los Angeles, are presented
in Table 1. During the study period, the median total num-
ber of COVID-19 cases and deaths across ZIP codes was
1,753 and 40, respectively. Among the 308 ZIP codes in
Los Angeles County, 17 were excluded from the analysis
of COVID-19 incidence, and 40 were excluded from the
analysis of COVID-19 mortality, per the CDPH protocol for
data suppression.

The spatial distributions of the 2019 annual mean res-
idential exposure to PM,  (CTM/LUR), NO, (CTM/LUR),
and O, are illustrated in Figure 5. Although the estimated
statistical distributions of pollutants across different
modeling methodologies were similar, the spatial patterns
differed notably. Figure 6 shows a stable trend in COVID-
19 incidence and mortality over time, with relatively low
numbers of COVID-19 cases and deaths occurring from
June 19, 2020, to the middle of November 2020. COVID-19
cases and deaths escalated sharply from mid-November
2020 until peaking in late January 2021.

Acorrelation matrix for pollutantsis presented in Table 2.
Most particle-phase species were moderately to highly
correlated with each other and with NO,. By contrast, O,
was negatively correlated with all other pollutants. The
correlation coefficients between CTM and LUR model
predictions for PM, , and NO, were r = 0.78 and r = 0.81,
respectively (data not shown), indicating strong agreement
despite notable variation between the two methodologies.

ONE-POLLUTANT NEGATIVE BINOMIAL MODEL

The risk plots in Figure 7 display the IRRs for COVID-
19 incidence and mortality per additional IQR increment
based on the single-pollutant models. Certain pollutants
were found to be associated with higher risks for both
COVID-19 incidence and mortality, including PM,,
(incidence IRR, 1.156; mortality IRR, 1.145), PM, _ (LUR)
(incidence IRR, 1.111; mortality IRR, 1.173), PM, EC
(incidence IRR, 1.08; mortality IRR, 1.137), PM, , tracer 1
(incidence IRR, 1.085; mortality IRR, 1.144), and O, (inci-
dence IRR, 1.121; mortality IRR, 1.268). Other pollutants
were significantly associated with only one outcome in the
single-pollutant models. For example, NO, (LUR) was only
positively associated with COVID-19 incidence, whereas
PM, , nitrate was only positively associated with COVID-
19 mortality. Furthermore, the statistical significance of
risks regarding COVID-19 varied by exposure modeling
methodology in the single-pollutant models. Although the
CTM estimates for PM, . mass demonstrated no significant
risks associated with COVID-19, the LUR model estimate
for this pollutant showed significant risks for both COVID-
19 incidence and mortality. Similarly, the significance of
COVID-19 risks associated with NO, differed across mod-
eling methods and outcomes. All IRRs and corresponding
95% CIs derived from the single-pollutant models are
available in Appendix B.

TWO-POLLUTANT NEGATIVE BINOMIAL MODEL

The two-pollutant models focused on combinations
between O, and CTM/LUR modeling of PM, . and NO, (Fig-
ure 8). Significantly elevated risks of COVID-19 incidence
and mortality were found per additional IQR increment
in both NO, (CTM/LUR) and PM,, (CTM/LUR), after
controlling for O,. Likewise, risks of COVID-19 incidence
and mortality were slightly increased per additional IQR
increment in O,, after controlling for either PM, , (CTM/
LUR) or NO, (CTM/LUR). These results were consistent
with the negative correlations between O, and other pol-
lutants (Table 2). The IRRs of PM, , generally declined with
controlling for NO,, suggesting that the effects of PM, . on
COVID-19 outcomes were cancelled out by NO,, regardless
of the modeling methodology.

The joint effect of two pollutants on risks of COVID-19
outcomes refers to the product of each IRR in the two-
pollutant model. For example, the joint effect of NO,
(CTM) and PM, , (CTM) on COVID-19 incidence was 1.13
x 0.947 = 1.07 (Appendix B), which was greater than the
individual effect of either pollutant (NO, IRR, 1.053; PM, ,
IRR, 1.022). This suggests that NO, (CTM) and PM, , (CTM)
have a synergistic effect on COVID-19 incidence. This
process was repeated for each two-pollutant model. Syn-
ergistic effects of two pollutants on COVID-19 incidence
and mortality were found for most combinations of O,and
CTM/LUR modeling of PM, , or NO,. No synergistic effects
were found for combinations of NO, (LUR) and PM,
(LUR).
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Table 1. Descriptive Statistics for (a) COVID-19 Incidence and Mortality and (b) 2019 Annual Mean Pollutant
Concentrations for Particulate Matter (ng/m?®) and Gaseous Pollutants (ppb) by ZIP Code in Los Angeles County

(a) COVID-19 Incidence and Mortality by ZIP Code

Min Mean (SD) Median (IQR) Max NA

Cases  Total count? 1 2,658 (2,655) 1,753 (852-3,574) 14,965 17
Male (%)°® 46.3 (7.5 45.6 (44.1-47.3) 17

Older adults (%)¢ 92.3 (4.3) 93.2 (90.3-95.2) 17
Non-White (%) ¢ 59.5 (20 64.6 (42.9-75) 17

Deaths Total count® 3 3 (44 0 (19-74) 235 40
Male (%)® 54.6 (17.8 58.8 (49.8-64.7) 40

Older adults (%)¢ 42.8 (23.4 39.5 (27.6-52.1) 40
Non-White (%) ¢ 67.8 (30.3 73.7 (45.7-100) 40

(b) 2019 Annual Mean Pollutant Concentrations by ZIP Code

Pollutant Min Mean (SD) Median (IQR) Max NA

(CTM) M, , (ng/m?) 0.51 0.91 (0.14) 0.91 (0.84-1.02) 1.20 0

PM, _ nitrate (ng/m°) 0.32 5(0.35) 1.6 (1.37-1.74) 2.17 0

PM, . mass (pg/m’) 4.24 11.12 (2.18) 11.77 (10.52—12.65) 15.02 0

PM, . EC (ng/m?) 0.06 0.51(0.2) 0.54 (0.4-0.65) 1.01 0

PM, . on-road gasoline(jg/m®) 0.02 0.23 (0.1) 0.24 (0.17-0.3) 0.45 0

O3 (ppb) 39.35 54.62 (6.66) 54.52 (49.67-59.42) 69.92 0

NO, (ppb) 0.90 14.68 (6.38) 15.87 (10.34-18.81) 29.49 0

(LUR) PM, . mass (pg/m’) 3.87 8.76 (1.77) 9.0 (7.67-9.89) 14.47 6

NOZ (ppb) 4.50 14.78 (4.04) 15.3 (12.98-17.35) 26.02 6

NO, (ppb) 4.50 14.78 (4.04) 15.3 (12.98-17.35) 26.02 6

Max = maximum; Min = minimum; NA = not available.

Total numbers of COVID-19 cases and deaths were 773,374 and 14,311, respectively.

The numbers of males among the COVID-19 cases and deaths were 351,409 and 8,292, respectively.

The numbers of older adults (aged =70 yr) among the COVID-19 cases and deaths were 724,628 and 5,913, respectively.

The numbers of individuals of non-White race/ethnicity among the COVID-19 cases and deaths were 540,196 and 11,245, respectively.

SPATIAL CONDITIONAL AUTOREGRESSIVE MODEL

The spatial conditional autoregressive (CAR) model
demonstrated a divergent relationship between COVID-19
outcomes and PM, , estimated by different exposure mod-
eling methodologies. Elevated risks of COVID-19 incidence
and mortality were observed for most pollutants, except
for PM,  nitrate, ozone, and NO, (LUR) as shown in Table
3. PM, (CTM) showed a 51gn1ﬁcant positive association
with COVID-19 incidence and mortality. The narrow Cls
for several pollutants resulted from employing the Markov
Chain Monte Carlo (MCMC) simulation; specifically, we
configured the model to generate 10,000 MCMC samples
in each chain.
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DISCUSSION

This study used negative binomial and spatial CAR
models to explore associations between species or
source-specific PM, gaseous pollutants, and COVID-19
outcomes. The NB models were used to estimate the effect
of predictors on COVID-19 outcomes (counts of cases
and deaths), whereas the spatial CAR models specifically
addressed spatial dependencies by including a spatial
random effect. In both models, we found elevated risks
of COVID-19 incidence and mortality with higher levels
of PM, ,, O,, and markers of combustion sources, includ-

0.1’

ing NO, and PM, , EC. Generally, the effect estimates for
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Figure 5. Spatial distribution of 2019
annual mean residential pollutant
exposures in Los Angeles County,
California. Pollutant exposure data are
presented for PM, , predicted using the
CTM (A), PM, , predicted using the LUR
model (B), NO, predicted using the CTM
(C), NO, predicted using the LUR model
(D), and O, (E).
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Figure 6. Time series of COVID

-19 cases (A) and deaths (B) in Los Angeles County,

California from June 19, 2020, to January 3, 2021.
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atios for COVID-19 incidence (A) and mortality (B) per
r pollutant exposures in Los Angeles County, California
3, 2021. Data are based on the results of single-pollutant

COVID-19 incidence from the
CAR model were slightly lower
than those from the negative bino-
mial model, suggesting that spatial
dependence influenced the health
effects of air pollutants in the
negative binomial models.”085-%
The negative association between
PM, , nitrate and the incidence of
COVID-19 in the CAR model may
be attributed to the role of this pol-
lutant as a subset of PM, . mass as
well as the availability of both NO_
and ammonia. Furthermore, both
O, and PM,, nitrate are products
of a common atmospheric photo-
chemical reaction system. We ran
a two-pollutant CAR model and
confirmed that the association
between PM, _nitrate and COVID-
19 incidence changed from
negative (IRR, 0.986) to positive
(IRR, 1.055) after incorporating
O, into the CAR model. Isolating
the effect of PM, | nitrate is more
complex, and the CAR model did
not account for confounding from
other pollutants. Except the neg-
ative association between PM,
nitrate and COVID-19 incidence,
our findings are consistent with
several previous studies that
also found positive associations
between air pollutants and
COVID-19 incidence and mor-
tality, specifically for PM, , NO,,
and 0O,7°%% Additionally, the
large sample size used in the CAR
model may increase the statistical
power to detect effects, leading to
smaller CIs for some pollutants.

The CTM and LUR modeling
approaches used in this study
yielded somewhat different results
due to differences in data source,
methods, and spatial resolution.
These differences also reflect the
assumptions underlying each
approach. The CTM calculated
pollutant concentrations based on
fundamental equations conserving
mass and energy, combined with
rate equations predicting chemical
transformations. By contrast, the
LUR model used statistical meth-
ods to estimate the relationship
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Table 2. Pearson Correlations Between Air Pollutants

CT™M LUR
PM,,
PM, PM, PM,, On-Road PM,
Pollutant PM,, nitrate mass EC Gasoline NO, 0, mass NO,
CTM PMm 1 0.18 0.70 0.77 0.71 0.71 —0.04
PM, _ nitrate 1 0.56 0.49 0.49 0.49 -0.22
PMZ.5 mass 1 0.94 0.90 0.90 —0.51
PMZ.5 EC 1 0.98 0.79 —0.36
PM, . on-road 1 0.98 -0.30
gasoline
NO, 1 -0.42
O3 1
LUR PM, , mass 1 0.83
NO, 1
Table 3. Spatial Conditional Autoregressive Model for Each Air Pollutant
COVID-19 Outcome IRR 95% CI Pollutant
Incidence 1.211 (1.2-1.22) PM,,
0.968 (0.968-0.968) PMZ'5 nitrate
1.003 (1.003-1.003) PM,_ (CTM)
1.224 (1.201-1.253) PM, . (LUR)
1.076 (1.071-1.079) PM, EC
1.043 (1.043-1.043) PM, , on-road gasoline
1.271 (1.271-1.271) 03
1.034 (1.034-1.034) NO2 (CT™M)
1.107 (1.107-1.107) NO2 (LUR)
Mortality 1.172 (1.055-1.305) PM, ,
1.108 (0.985-1.305) PM, . nitrate
1.194 (1.052-1.373) PM, . (CTM)
1.128 (1.006-1.261) PM, ., (LUR)
1.226 (1.076-1.392) PM, . EC
1.239 (1.09-1.403) PM, . on-road gasoline
1.132 (0.83-1.411) O3
1.21 (1.044-1.372) NO, (CTM)
1.095 (0.969-1.213) NO, (LUR)
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between pollutant concentrations and land use, physical
geography, and transportation factors. The LUR method
captures less of the regional pattern but is more influenced
at the neighborhood level by traffic and land use data.
Additionally, the CTM involves estimates of NO, and PM,
exposure that rely extensively on field monitoring data for
cross-validation or bias correction.

Synergy refers to a joint effect that exceeds the additive
effects expected from the individual items.** We found
synergistic effects on COVID-19 incidence and mortality
with most of the two-pollutant combinations among O,,
PM,  (CTM/LUR), and NO, (CTM/LUR). These findings
align with the results of a study that investigated the
synergistic effects of PM, , and O, on the risk of preterm
birth, which found that interactions between high levels
of PM,, and O, increased the risk of preterm birth by
230% compared to the expected outcome based on the
sum of the effects of each pollutant; similarly, the authors
reported that the joint effect of high levels of NO, and O,
contributed to a 181% excess risk of preterm birth.*® The
influence of confounding due to other pollutants, however,
cannot be distinguished from the combined effect. Source-
specific types of PM were excluded from the two-pollutant
models, as the total mass, by definition, includes some
of the source- or species-specific components. Pollutants
with exposure estimates derived from different methods
also were not combined in the same two-pollutant model
to avoid introducing uncertainty about whether observed
differences resulted from actual effects or differences in
the specifications of the exposure models.

To minimize the potential for bias due to changes in
transmissibility and disease severity associated with
different variants of SARS-CoV-2, our study focused on
the period in which the Delta variant accounted for more
than 50% of confirmed COVID-19 cases, as indicated by a
previous study of patients hospitalized for COVID-19 in
Southern California.” Vaccination status was not consid-
ered in the data analysis, as the study period was focused
on the latter half of 2020, when vaccines were not readily
available. A study in Israel that used multivariate linear
regression with controlling for demographic characteristics
and vaccination rates proposed the presence of positive
associations between the Delta variant—-dominated wave of
COVID-19 that occurred in the summer of 2021 and long-
term exposure to PM, , PM, ., NO,, carbon monoxide, and
sulfur dioxide.”

10° 2.5

A strength of our study was the estimation of exposure
in residential areas to pollutants. Rather than computing
the overall mean concentrations of pollutants for each ZIP
code, we more realistically considered residential expo-
sure by extracting exposure fields from only the residential
areas within each unit. Though individual-level data were
not attainable in this study, we were able to adjust for
demographic factors by using COVID-19 data from the
CDPH, which provided proportions by sex, race/ethnicity,

and age categories, aggregated by ZIP code. Additionally,
the use of source and species-specific PM helped identify
the independent effects of these pollutants as contributors
to elevated risks of COVID-19 outcomes.

This study offers several improvements compared to
a previous analysis of the association between air pollu-
tion and COVID-19 outcomes in Los Angeles.®” A prior
study utilizing individual-level data found no significant
interactions among variables representing various sociode-
mographic, lifestyle, and health-related factors.® Firstly,
the present study used ZIP code-level data on COVID-19
incidence and mortality, with the numbers of cases and
deaths stratified by sex, race/ethnicity, and age category,
whereas the previous study used neighborhood-level data
for the numbers of COVID-19 cases and deaths. Secondly,
this study assessed exposures on the basis of 2019 data
for LUR modeling of NO, and PM, , as well as 2019 data
for CTM-based estimates of species-specific PM, ., NO,,
and O,; by contrast, the prior study used 2016 data for
LUR modeling of NO,. Furthermore, our analysis specif-
ically focused on the period in which the Delta variant
of SARS-CoV-2 was predominant. These methodological
advancements reduced uncertainty and provided a better
understanding of the relationship between air pollution
and COVID-19 outcomes.

This study also has a few limitations that warrant
consideration. First, several ZIP codes were suppressed
because of concerns about confidentiality. Second, annual
mean pollutant concentrations were used as a proxy for
chronic exposure, but the acute effects of air pollution
were not considered. Third, data on COVID-19 outcomes
were aggregated at the ZIP code level, as individual-level
data with residential information were inaccessible.
Lastly, occupation, which can alter the risks of both expo-
sure to and incidence of COVID-19, was not accounted for
in the study. In addition, although our model incorporated
several covariates, including age, sex, race/ethnicity, and
socioeconomic status, environmental factors other than
air pollution were not taken into consideration. Some
environmental factors may influence both air pollution
levels and COVID-19 outcomes. For example, meteoro-
logical factors affect the dispersion and concentration of
air pollutants, yet lower temperatures and lower levels of
humidity have been demonstrated to be favorable for the
transmission of COVID-19 in China.?* The risk of COVID-
19 mortality was found to be 47% lower in areas of India
with the highest versus the lowest district-level scores
on the normalized difference vegetation index (NDVI), a
measure of greenness.? Although meteorological variables
were not directly incorporated in the statistical analysis
in the present study, the CTM uses meteorological con-
ditions, including temperature, relative humidity, wind
speed, wind direction, total solar radiation, and ultraviolet
solar radiation, as inputs in simulating the transport, trans-
formation, deposition, and formation of air pollutants.*
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CONCLUSION

This study adds to the growing body of evidence
suggesting that air pollution affects the risks of COVID-
19 incidence and mortality. The findings presented here
also provide critical insights into the spatial associations
between source and species-specific air pollutants and
COVID-19 incidence and mortality, adjusted for demo-
graphic characteristics, socioeconomic status, and some
chronic conditions (such as smoking and obesity). Future
studies can benefit from integrating short-term exposure
data and daily individual-level data on COVID-19 out-
comes to clarify the relationship between air pollution and
COVID-19, particularly among both racial/ethnic minority
populations and people with pre-existing conditions.
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CHAPTER 5: AIR POLLUTION AND
METEOROLOGY AS RISK FACTORS FOR

COVID-19 MORTALITY IN SOUTHERN
CALIFORNIA

INTRODUCTION

The COVID-19 pandemic represents one of the largest
threats to population health in more than a century. As of
December 2023, more than 690 million people worldwide
have been diagnosed with COVID-19, resulting in more
than 6.9 million deaths.” Although researchers have exten-
sively investigated the etiology of COVID-19, there remain
considerable uncertainties about how potential risk factors
may influence the incidence and severity of the disease
as well as resulting mortality. Recent evidence from North
America, Asia, and Europe implicates air pollution as a
risk factor that affects the incidence, prognosis, and mor-
tality rate of COVID-19.10-2

Biologically plausible mechanisms suggest that expo-
sure to air pollution may render people more susceptible
to contracting COVID-19, and that once infection occurs,
greater exposure to air pollution may worsen the prog-
nosis of the disease.”**® For example, NO,, a marker for
traffic-related air pollution,?*° likely increases the risk
of lung infections by impairing the function of alveolar
macrophages and epithelial cells in the lung.’* Findings
from epidemiological and toxicological studies align with
a large body of research linking air pollution to risk of viral
and bacterial respiratory infections,'”*? chronic respiratory
morbidities (e.g., asthma, chronic obstructive pulmonary
disease, lung cancer),** hospitalizations,®* and mortal-
ity.35738

Our review of the growing literature on air pollution
exposure and COVID-19 outcomes identified only five
other mortality studies that have used individual-level
data and controlled for potential confounders.?**# These
studies were focused on the early phases of the pandemic,
possibly resulting in lower statistical power due to a
relatively small number of deaths. Some of these studies
used high-quality exposure estimates, but none assessed
particle source contributions or ultrafine particle concen-
trations. Also, none of these studies examined interactions
between air pollution and meteorological variables such as
temperature and humidity.

In the present study, we expanded the evidence base
by using a large sample of individual-level data, a longer
study period, exposure models capable of assessing parti-
cle species and sources, and meteorological variables. In
this context, we addressed two research objectives. Firstly,
we assessed whether greater air pollution exposures led

to increased risk of death among patients with confirmed
COVID-19 who were members of the KPSC healthcare
system. Secondly, we investigated whether meteorological
variables influenced the risk of death due to COVID-19 or
modified associations between air pollution and COVID-
19 mortality.

MATERIALS AND METHODS

KPSC COHORT AND HEALTH DATA

KPSC is a large integrated healthcare system with
aracially, ethnically, and socioeconomically diverse mem-
bership of 4.7 million people residing across nine South-
ern California counties. The KPSC membership, described
elsewhere in further detail,” approximately represents
the overall population of the second-largest urban region
in the United States. KPSC maintains an integrated Elec-
tronic Health Record (EHR) data system that captures all
aspects of patient care, including diagnoses, inpatient and
outpatient visits, pharmacy encounters, and laboratory
tests.

Clinical care changed rapidly during the first months of
the COVID-19 pandemic. Thus, the observation period for
this study began on June 1, 2020, by which time new stan-
dards of care for COVID-19, such as placing patients in the
prone position, had become more common. We identified
KPSC patients with a positive COVID-19 molecular diag-
nostic test and/or diagnosis (ICD-10 codes B34.2, B97.29,
J12.89, J20.8, J22, J80, or U07.1) that occurred from June
1, 2020, to January 30, 2021. We included both COVID-19
diagnoses and tests because patients could have received
a COVID-19 test outside of the KPSC health system and
subsequently been diagnosed with COVID-19 at a KPSC
facility, without being retested. The selected ICD-10 codes
were those that have been used to identify COVID-19 in
other research. We also worked with KPSC hospitalists to
identify appropriate ICD-10 codes for this study.

The study cohort comprised patients who were 18
years of age or older at the time of their positive COVID-
19 test or diagnosis. To reliably assess comorbidities, the
population sample was limited to patients who had been
KPSC members for at least 1 year before being diagnosed
with or testing positive for COVID-19. We defined COVID-
19-related hospitalizations as those occurring within 21
days of the patient’s COVID-19 diagnosis or positive test (N
= 316,224).” Less severe (i.e., nonhospitalized) cases were
excluded, which limits the generalizability of our results
to more severely ill (i.e., hospitalized) cases. We limited
the study population to hospitalized patients rather than
all patients with a positive COVID-19 test, as testing could
have occurred after contact with an individual with SARS-
CoV-2 or upon hospital admission after the onset of severe
illness. Such timing would lead to uncertainty about the
window of time within which testing could have occurred
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in different patients, thereby introducing substantial errors
in the study follow-up times and thus leading to biased
results in the statistical models. Restricting the study
population to hospitalized patients removed any uncer-
tainty about the timing of hospitalization and thus also
eliminated the related potential errors and bias. Patients
who died up to 90 days after their initial hospitalization
were included in the study cohort. (Further details on the
ascertainment of death data are provided in Appendix
C.) Patients whose KPSC membership ended during the
90-day observation window and patients hospitalized for
childbirth were excluded from the study. After application
of the eligibility and exclusion criteria, the cohort used for
data analysis consisted of 21,415 patients. This study was
approved by the Kaiser Permanente Institutional Review
Board.

The KPSC EHR includes information on patient age
and sex. Member race/ethnicity categories have been
created using a validated algorithm that uses multiple data
sources.”

Five broad comorbidity categories used in prior COVID-
19 research were created to identify comorbidities that
may increase an individual’s risk of severe COVID-19 out-
comes.”*” We used Elixhauser disease categories to define
specific disease categories that are relevant to COVID-19
(Appendix C).

We collected data on four individual-level confounders
that were considered in the analysis: body mass index
(BMI), smoking status, Exercise Vital Sign (EVS) value,
and MediCalstatus (low income). BMI is an important
risk factor for COVID-19 mortality.? The most recent BMI
value available in the patient EHR was used to represent
this potential confounder.®® BMI data were cleaned using
validated algorithms to delete biologically implausible
values. In the KPSC health system, smoking status and EVS
data (coded as min/wk of moderate to vigorous exercise)
are collected during each in-person outpatient healthcare
encounter. Smoking status (ever-smoker vs. never-smoker)
was coded based on information provided during the
patient’s last encounter before their COVID-19 test or
diagnosis, dating back up to 4 years. All EVS data for the
past 4 years were identified for every patient. The median
number of minutes of exercise per week was calculated
for use in the analysis.” We used enrollment at KPSC via
MediCal to identify patients with very low income.

We queried vaccination status and found that only
33 patients in the study cohort were vaccinated against
COVID-19 prior to hospitalization. Thus, approximately
99.85% of the cohort was unvaccinated during the study
period.

In accordance with common practices in analyzing
EHR data, we added predictors of community-level socio-
economic status (SES) to serve as a proxy for individual
SES and to adjust for community-level effects of social
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determinants of health.”-'®* Community-level predictors
at the census block group level were obtained from the
2018 American Community Survey, including a validated
Neighborhood Deprivation Index (NDI), a measure of
crowding (the proportion of households with more than
one occupant per home), and the proportion of workers
aged 16 years or older who commute to work via public
transportation.**

GridMET meteorological data are high—spatial reso-
lution (approximately 4-km) surface meteorological data
covering the contiguous United States. We acquired Grid-
MET daily maximum temperature and relative humidity
data for the entire study period by using Google Earth
Engine.’® The GridMET data for the home address of each
study participant were aggregated to monthly means for
the period up to the month of hospitalization for COVID-
19.

EXPOSURE ASSESSMENT: CHEMICAL
TRANSPORT MODEL

Exposure simulations were carried out across California
using the UCD/CIT source-oriented, three-dimensional,
reactive chemical transport model (CTM).*** The UCD/CIT
model predicts the evolution of gas- and particle-phase
pollutants in the atmosphere in the presence of emissions,
transport, deposition, chemical reaction, and phase
change. The pressing timeline for conducting this study
during an ongoing public health crisis necessitated lever-
aging past efforts that had prepared and validated CTM
inputs. We previously reported CTM exposure fields with
4-km resolution over California for the years 2000-2016.1%
The most recent year in this time range (i.e., 2016) was
selected as the starting point for characterizing chronic
exposure in the present study. Meteorology and emissions
inputs for the year 2016 were downscaled to improve spa-
tial resolution to 1 km. Bias in the raw CTM output fields
was removed using a constrained regression model based
on source apportionment tags and the difference between
predicted and measured concentrations. Appendix
Figure A13 illustrates the stability of the exposure fields
for O, and PM, ; across the years 2016, 2019, and 2020.
Although factors such as wildfires, behavioral changes
associated with COVID-19, and weather patterns driven
by El Nifio-Southern Oscillation cause some year-to-year
variation, the major spatial patterns for these and other
exposures are stable over time (Appendix A).

CTM predictions include a wide range of pollutants.
For our study area, we estimated PM, , mass, PM, _ nitrate,
PM, . OC, PM, , EC, PM,,, NO,, and O,. We also extracted
PM source tracers for on-road diesel, on-road gasoline,
and biomass combustion. These exposure fields were
assigned to the geocoded home addresses of the patients
in the study cohort. Although the exposure fields were
restricted to 2016, we accounted for population mobility
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by assigning exposures to each address for any patient in
the cohort who had moved within the past 5 years. We
then performed time-weighted averaging of the exposures
to account for mobility effects for those who had moved
during the preceding 5 years.

STATISTICAL ANALYSIS

We used Cox proportional hazards models with adjust-
ment for potential individual- and neighborhood-level
confounders. All models were stratified at baseline by age,
sex, and race/ethnicity. Age was categorized by 5-year
age groups. We controlled for potential nonindependence
at the census tract level by using a sandwich estimator,
which allowed for robust variance estimation. All statis-
tical analyses were performed using the R version 4.0.4.5

The Cox model estimates the instantaneous hazard of
dying during follow-up as

hij(t) = hos(t)exp(BPy; + 6Xij + CZij + fWaiy)
(Equation 5)
CFn,.  =(2 +FB,, )/(2 —FB,, )

where hl.].(t) is the hazard function for the ith subject in the
jth census tract neighborhood; h,(t) is the baseline hazard
function for stratum s (i.e., age, race, and sex); Pii is the air
pollution exposure metric of interest (e.g., PM, ) standard-
ized to the IQR for individual 1 in census tract j; X, represents
individual-level risk factors (i.e., smoking status, exercise,
BML, poverty) for individual 7 in census tract j; Z, represents
neighborhood-level risk factors (i.e., deprivation index,
proportion of workers aged 16 or older taking public transit,
crowding) for individual i in census tract j; W, represents
weather conditions (i.e., maximum temperature and humid-
ity) for individual i at the ¢ month of admission in census
tract j; and §,6,¢ f: are regression coefficients.

Equation 5 above represents the general form of the
model. Confounders were selected for each pollutant,
according to the following procedure: We ran unadjusted
models stratified by age, race/ethnicity, and sex for each
pollutant exposure. We tested every possible confounder
(BMI, smoking status, etc.) one at a time with each pollu-
tion estimate. We included any confounder that changed
the unadjusted pollution coefficient by at least 10%. We
subsequently ran the adjusted models for all pollution
exposures that included variables meeting the 10%
criterion. Exposures were standardized for comparison
across pollutants by dividing each by their respective
IQR. For pollutants with statistically significant effects at
conventional levels (P < 0.05) after adjustment, we then
conducted stratified analyses on variables that could mod-
ify the association between air pollution and COVID-19
mortality, including race/ethnicity, sex, age, and number
of chronic disease categories.

We also tested for interaction by running models with a
multiplicative term involving one pollutant and one mete-
orological variable. When statistically significant interac-
tions were present based on the P value of the interaction
term, we stratified the HR estimates for the pollutant by
tertile of the meteorological variable.

We examined two-pollutant models (i.e., O, and NO,,
NO, and PM, mass, and O, and PM, mass). We also
explored the concentration-response functions for each
pollutant that had a significant individual effect in a fully
adjusted model. The concentration-response functions
were estimated using the pspline function in the gam
package in R.

We also investigated the potential influence of different
SARS-CoV-2 variants by performing sensitivity analyses
restricted to periods in which the Delta variant was dom-
inant. The CDPH has performed retrospective genomic
analyses on specimens from all stages of the COVID-19
pandemic  (https://data.chhs.ca.gov/dataset/covid-19-vari-
ant-data). Early in the present study, five different variants
of SARS-CoV-2 were circulating. The Delta variant was
dominant throughout much of the study period, although
the Omicron variant became dominant approximately
during the last 1 month of the study. It is likely, however,
that many of the hospitalizations that occurred over the
last weeks to months of the study were due to infections
with the Delta variant, given the latency period of the
infection and the time required for a person to become ill
enough to require hospitalization.

Sensitivity analyses focused on the period from June
19, 2020, to January 3, 2021. The start date of this period
corresponds to the initial date on which the Delta variant
accounted for more than 50% of the COVID-19 cases. The
Delta variant lost dominance (i.e., accounting for less
than 50% of COVID-19 cases) as of December 19, 2020.
We added a 2-week buffer to the end date of the period of
Delta-dominant cases, given the assumption that it would
have taken at least 2 weeks after the onset of infection
for many of the Delta-related hospitalizations and deaths
to occur. Thus, we conservatively used January 3, 2021,
as the end date of the period included in the sensitivity
analysis. We also reran the analyses for PM,  using this
restricted time period to enable comparison of the results
with those from the main analysis.

RESULTS

DESCRIPTIVE STATISTICS

Table 4 displays the demographic and clinical charac-
teristics of the cohort of 21,415 KPSC patients hospitalized
with COVID-19, of whom 4,815 died within 90 days after
hospitalization. The median age of patients was 64 years
(IQR, 52-75), and 58% were male. Among patients in the
cohort, 56% were of Hispanic origin, 23% were White,
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Table 4. Demographic and Clinical Characteristics of Hospitalized Patients with COVID-19, by Outcome

Outcome Within 90 Days
Total Alive Deceased

(N = 21,415) (N =16,600) (N = 4,815)
Characteristic n (%) n (%) n (%)
Age at diagnosis (yr)? 64 (52—75) 61 (50-72) 4 (64-83)
Race/ethnicity
White 4,861 (23%) 3,550 (21%) 1,311 (27%)
Asian/Pacific Islander 2,281 (11%) 1,801 (11%) 480 (10.0%)
Black 1,851 (8.6%) 1,444 (8.7%) 407 (8.5%)
Hispanic 12,077 (56%) 9,541 (57%) 2,536 (53%)
Other/multiple/unknown 345 (1.6%) 264 (1.6%) 81 (1.7%)
Sex
Female 9,067 (42%) 7,284 (44%) 1,783 (37%)
Male 12,348 (58%) 9,316 (56%) 3,032 (63%)

Smoking status

Never-smoker 13,392 (63%)
Ever-smoker 7,738 (36%)
Unknown 285 (1%)
BMI? 1 (27-36)
Unknown 608 (3%)
Medicaid

No 18,722 (87%)
Yes 2,693 (13%)
Exercise Vital Sign® 0 (0-90)
Unknown 748 (4%)
Percentage of housing units with >1 occupant/room?® 0.09 (0.03-0.18)
Unknown 598 (3%)
NDI® 0.42 (-0.28 to 1.25)
Unknown 6 (0%)

Percentage of workers aged 216 yr commuting by 0.02 (0.00-0.05)

public transportation®

Unknown 599 (3%)
BMI category

Normal weight 2,777 (13%)
Overweight 5,933 (28%)
Obesity, class 1 5,669 (26%)
Obesity, class 2/3 6,193 (29%)
Underweight 235 (1.1%)
Unknown 608 (3%)
Frailty (Lancet index)? 5(2-12)
Unknown 4,608 (22%)
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10,825 (65%)
5,542 (33%)
233( %)
1 (27-36)
502 (3%)

14,596 (88%)

2,004 (12%)

0 (0-100)

625 (4%)

0.09 (0.03-0.18)
466 (3%)

0.43 (-0.27 to 1.25)
5 (0%)

0.02 (0.00-0.05)

465 (3%)

1,876 (11%
4,468 (27%
4,543 (27%
5,075 (31%
136 (0.8%

502 (3%

5 (2-10

)
)
)
)
)
%)
)
4,008 (24%)

2,567 (53%)
2 196( 6%)
2 (1%)
(25 35)
106 (2%)

4,126 (86%)

689 (14%)

0 (0-65)

123 (3%)

0.08 (0.03-0.18)
132 (3%)

0.40 (-0.30 to 1.26)
1 (0%)

0.02 (0.00-0.05)

134 (3%)

901 (19%)
1,465 (30%)
1,126 (23%)
1,118 (23%)

9 (2.1%)
106 (2%)

9 (4-18)

00 (12%)

Continues next page
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Table 4. (continued)

Outcome Within 90 Days
Total Alive Deceased
(N =21,415) (N = 16,600) (N = 4,815)
Characteristic n (%) n (%) n (%)
Elixhauser Comorbidity Index® 3.0 (1.0-5.0) 2.0 (1.0-5.0) 5.0 (2.0-7.0)
Cardiovascular disease 8,637 (40%) 5,625 (34%) 3,012 (63%)
Unknown 410 (2%) 349 (2%) 61 (1%)
Hypertension 12,369 (58%) 8,738 (53%) 3,631 (75%)
Unknown 410 (2%) 349 (2%) 61 (1%)
COPD 4,519 (21%) 3,276 (20%) 1,243 (26%)
Unknown 410 (2%) 349 (2%) 61 (1%)
Diabetes 9,524 (44%) 6,887 (41%) 2,637 (55%)
Unknown 410 (2%) 349 (2%) 61 (1%)
Other Elixhauser diagnosis 13,627 (64%) 9,878 (60%) 3,749 ( 8%)
Unknown 410 (2%) 349 (2%) 1 (1%)
Skilled nursing facility flag 293 (1.4%) 136 (0.8%) 157 (3 3%)
County of residence
Kern 543 (2.5%) 435 (2.6%) 108 (2.2%)
Los Angeles 10,580 (49%) 8,226 (50%) 2,354 (49%)
Orange 2,142 (10%) 1,744 (11%) 398 (8.3%)
Riverside 2,372 (11%) 1,755 (11%) 617 (13%)
San Bernardino 2,890 (13%) 2,131 (13%) 759 (16%)
San Diego 1,874 (8.8%) 1,512 (9.1%) 362 (7.5%)
Ventura 423 (2.0%) 338 (2.0%) 85 (1.8%)
Unknown 591 (3%) 459 (3%) 132 (3%)
COVID-19 surge-related case (first hospital 15,090 (70%) 11,378 (69%) 3,712 (77%)
admission after Nov 16, 2020)
Days of follow-up® 7 (4-16) 6 (4-11) 7 (10-27)

iMedian (IQR).

11% were Asian/Pacific Islanders, 8.6% were Black, and
1.6% were of other or unknown race/ethnicity. Approxi-
mately 37% of patients had ever been smokers, and 13% of
patients had health insurance through MediCal, a govern-
ment health program for low-income persons.

The distribution of hospital admission dates for all
patients in the study cohort is presented in Figure 9, which
shows a large surge in admissions from November 2020
to the end of the study period. Most hospitalized patients
were overweight or obese, with 29% meeting the criteria
for overweight, 27% having class 1 obesity, and 30%
having class 2 or higher obesity. Comorbidities identified
in the patients’ medical histories included cardiovascular
disease (41%), hypertension (59%), COPD (22%), diabetes
(45%), and other chronic conditions (65%), as summarized
in Table 4.

Patients who died within 90 days after their first hospi-
talization were older (median age, 74 years vs. 61 years),
more likely to be male (63% vs. 56%), and more likely
to have ever been smokers (46% vs. 34%), compared to
those who remained alive during this period. Addition-
ally, patients who died had more comorbidities (median
Elixhauser Comorbidity Index, 5.0 vs. 2.0) and a greater
prevalence of chronic diseases, including cardiovascular
disease (63% vs. 35%), hypertension (76% vs. 54%), dia-
betes (55% vs. 42%), and COPD (26% vs. 20%).

Descriptive statistics for pollutant exposures among the
patients in the study cohort are shown in Table 5. Many of
the pollutants were moderately to highly correlated with
one another (Table 6). For example, PM, , mass and PM, ,
nitrate were strongly correlated (r = 0.9). O, was the least
correlated with the other pollutants and, as expected, had
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Figure 9. Hospital admission dates in 2020-2021 among the study cohort of patients hospitalized with COVID-19 in Southern

California.

Table 5. Descriptive Statistics for Pollutant Exposures Among Hospitalized Patients with COVID-19, by Outcome

Outcome Within 90 Days
Total Alive Deceased

Characteristic (N = 21,415) (N = 16,600) (N = 4,815)
NO, (ppb)

Median (IQR) 21 (13, 25) 21 (13, 25) 20 (14, 25)

Mean (SD) 19 (7) 19 (7) 19 (7)

Range 1,39 1,39 2,36
0, maximum (ppb)

Median (IQR) 66 (60, 72) 66 (60, 72) 67 (60, 73)

Mean (SD) 66 (8) 66 (8) 66 (8)

Range 40, 84 40, 84 43, 83

PM, . mass (pg/m,)
Median (IQR)
Mean (SD)

Range

PM, , nitrate (ng/m’)
Median (IQR)
Mean (SD)

Range

32

12.30 (10.50, 14.00)
12.34 (2.40)
5.77, 27.70

3.81 (2.88, 4.54)
3.64 (1.18)
0.19, 7.16

12.30 (10.50, 14.00)
12.33 (2.39)
5.77, 27.70

3.80 (2.86, 4.53)
3.63 (1.17)
0.19, 7.16

12.40 (10.60, 14.00)
12.39 (2.44)
6.05, 23.80

3.84 (2.93, 4.56)
3.67 (1.20)
0.26, 7.02

Continues next page
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Table 5. (continued)

Characteristic

Total
(N = 21,415)

Outcome Within 90 Days
Alive Deceased
(N = 16,600) (N = 4,815)

PM, , organic compounds (ng/m®)
Median (IQR)
Mean (SD)
Range
PM,, (png/m?)
Median (IQR)
Mean (SD)
Range
PM, . elemental carbon (pg/m?)
Median (IQR)
Mean (SD)
Range
On-road diesel PM, _ (ng/m®)
Median (IQR)
Mean (SD)
Range
On-road gasoline PM, , (ng/m®)
Median (IQR)
Mean (SD)
Range
Biomass combustion PM, . (ng/m?)
Median (IQR)
Mean (SD)
Range
Relative humidity (%)
Median (IQR)
Mean (SD)
Range
Unknown
Temperature (°C)
Median (IQR)
Mean (SD)
Range

Unknown

2.07 (1.56, 2.60)
2.08 (0.69)
0.31, 8.24

0.90 (0.72, 1.07)
0.89 (0.29)
0.22, 6.63

0.47 (0.33, 0.59)
0.47 (0.19)
0.05, 1.53

0.30 (0.19, 0.41)
0.32 (0.18)
0.01, 1.78

0.071 (0.052, 0.093)
0.073 (0.029)
0.003, 0.213

1.01 (0.73, 1.26)
1.02 (0.46)
0.01, 9.93

70 (58, 82)
70 (14)
25, 99

6

21.1 (20.0, 25.0)
22.9 (5.2)

5.9, 44.6

6

2.08 (1.56, 2.60)
2.08 (0.69)
0.31, 8.24

0.90 (0.72, 1.07)
0.89 (0.29)
0.26, 6.63

0.47 (0.33, 0.60)
0.47 (0.19)
0.06, 1.52

0.30 (0.19, 0.41)
0.32 (0.18)
0.01, 1.76

0.072 (0.052, 0.094)
0.073 (0.030)
0.003, 0.213

1.01 (0.73, 1.27)
1.02 (0.45)
0.01, 9.93

71 (59, 82)
70 (14)
25, 99

6

21.1 (20.0, 25.9)
23.1 (5.2)

5.9, 44.5

6

2.05 (1.57, 2.56)
2.07 (0.68)
0.32, 7.59

0.91 (0.74, 1.06)
0.90 (0.29)
0.22, 4.20

0.46 (0.34, 0.58)
0.47 (0.19)
0.05, 1.53

0.29 (0.20, 0.40)
0.32 (0.18)
0.02,1.78

0.071 (0.052, 0.091)
0.072 (0.029)
0.003, 0.194

0.99 (0.72, 1.25)
1.02 (0.49)
0.01, 9.03

67 (57, 79)
68 (14)
31, 98

0

20.8 (19.9, 22.5)
22.3 (4.9)
7.2,44.6

0
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Table 6. Correlations Between Pollutants and Meteorological Variables

Biomass
o, PM, PM,, On-Road On-Road Comb-
Maxi- PM,, PM,, Organic Elemental Diesel Gasoline ustion Relative Temp-

NO, mum Mass Nitrate Compounds PM , Carbon PM,, PM,, PM,, Humidity erature
NO, 1.000 —0.255 0.715 0.615 0.843  0.691 0.849  0.731 0.842 0.522 0.232  0.077
O, maximum —-0.255 1.000 0.263 0.304 -0.286  0.090 -0.066 0.090 -0.175 -0.291 -0.584  0.093
PM, , mass 0.715 0.263 1.000 0.898 0.683 0.839 0.885  0.893 0.804 0.253 -0.021  0.114
PM, , nitrate 0.615 0.304 0.898 1.000 0.519 0.659 0.728  0.705 0.693 0.095 -0.002 0.125
PM, , organic 0.843 —0.286 0.683 0.519 1.000 0.797 0.857  0.742 0.847 0.793 0.248  0.047
compounds
PM,, 0.691 0.090 0.839 0.659 0.797 1.000 0.817 0.751 0.716  0.464 -0.032  0.062
PM, . elemental car- 0.849 -0.066 0.885 0.728 0.857  0.817  1.000  0.929 0.933 0.414 0.154  0.089
bon
On-road diesel PM,,  0.731 0.090 0.893 0.705 0.742 0.751  0.929  1.000 0.866  0.352 0.046  0.081
On-road gasoline 0.842 -0.175 0.804 0.693 0.847 0.716  0.933  0.866 1.000 0.449 0.270  0.076
PMZ,S
Biomass 0.522 —-.291 0.253 0.095 0.793 0.464 0.414 0.352 0.449 1.000 0.193 -0.006
combustion PM, |
Relative humidity 0.232 -0.584 —-0.021 -0.002 0.248 -0.032 0.154  0.046 0.270  0.193 1.000  0.237
Temperature 0.077 0.093 0.114 0.125 0.047 0.062 0.089  0.081 0.076 -0.006 0.237  1.000

negative associations with NO, (r = 0.26) and some of the
particle species or source tracers.

Figure 10 displays the spatial distributions of several
pollutants across Southern California in 2016, including
PM, . mass, PM, _ nitrate, PM, , EC, and PM, as well as
PM, , on-road gasoline and diesel. The spatial patterns dif-
fered substantially among several pollutants. For example,
PM, . on-road gasoline displayed variation consistent with
highways that carry large volumes of traffic, whereas PM,
mass and PM, , nitrate had relatively consistent exposures
across the region, likely because secondary formation
of these particles in the atmosphere contributed a large
portion of the mass. All pollutants had relatively higher
concentrations in the inland areas of San Bernardino and
Riverside.

RESULTS FROM ADJUSTED MODELS

The confounders selected for each pollutant in the
adjusted models are shown in Appendix Table C1. The
main results regarding associations between air pollution
and COVID-19-related death are presented in Figure 11
and Appendix Table C3. After adjustment for confound-
ing, several air pollutants were significantly associated
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with dying among hospitalized patients with COVID-19,
including PM, , mass (hazard ratio [HR], 1.12; 95% CI,
1.06-1.17), PM, , nitrate (HR, 1.12; 95% CI, 1.07-1.17),
PM, . EC (HR, 1.07; 95% CI, 1.03-1.13), PM,, (HR, 1.06;
95% CI, 1.02-1.10), PM,, on-road diesel (HR, 1.06; 95%
CL, 1.03-1.10), and PM, _ on-road gasoline (HR, 1.07; 95%
CI, 1.02-1.13). The effects of PM,  mass were partly con-
founded by NO, in the two-pollutant models but remained
significantly associated with an increased risk of death
(Figure 11). During the period in which the Delta variant
of SARS-CoV-2 was dominant, the findings on associations
between PM, . mass and COVID-19-related death were
similar to results from the main model (HR, 1.13; 95% CI,
1.07-1.20).

The effects of gaseous species were sensitive to adjust-
ment for co-pollutants. In particular, NO, was significantly
associated with the risk of death (HR, 1.10; 95% CI,
1.04-1.16), whereas exposure to O, had a positive but
nonsignificant effect on mortality risk (HR, 1.02; 95% CI,
0.96—1.08). Because inverse spatial patterns can lead to
positive confounding,?* we also ran co-pollutant models
that included O,and NO,. In those models, NO, exposure
remained significantly associated with an elevated risk of
death, but O, exposure showed no significant effects. When
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Figure 10. Spatial distributions of the predicted exposure fields for specific particulate matter air pollutants in Southern California,
2016. Data are presented for PM, , mass (A), PM,, (B), PM, _ elemental carbon (C), PM, , nitrate (D), PM, , on-road diesel (E), and PM,
on-road gasoline (F). All units are pg/m®.
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Figure 11. Risk plots showing hazard ratios for COVID-19 mortality per additional IQR increment in air pollutant exposures among
patients hospitalized with COVID-19 in Southern California. Data are based on results from adjusted models controlling for

confounders.

both PM, . and NO, were included in the same model,
adjustment for the confounding effect of PM, , reduced the
effect of NO, to the null (Figure 11).

Higher temperatures (HR, 0.92; 95% CI, 0.89-0.95) and
higher humidity (HR, 0.82; 95% CI, 0.78—0.86) during the
month in which a patient was diagnosed with COVID-19
were significantly associated with a lower risk of death.

STRATIFICATION ANALYSES

All variables included in the subgroup analyses demon-
strated no significant impact on the relationship between
air pollution concentrations and death among hospitalized
patients with COVID-19, with statistical significance based
on the Q statistic for each analysis (Appendix Tables C4
and C6).

INTERACTION MODELS WITH METEOROLOGICAL
VARIABLES

After determining that temperature and humidity
significantly modified the effects of air pollution on risk
of death among hospitalized patients with COVID-19, we
ran analyses that stratified by tertile for these variables to
visualize the effect modification of the association between
PM, . and risk of death (Figure 12). Effect modification by
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strata of temperature and humidity in the analyses for
other pollutants is displayed in Appendix Figure C1. For
most of the pollutants, an elevated risk of death was seen
only in the two lower tertiles of temperature. Effect modifi-
cation was particularly pronounced for humidity, with the
effects of most pollutants showing a graded decline with
increased humidity. Overall, most effects of exposure to
pollutants were present only in the two lower tertiles of
humidity.

CONCENTRATION-RESPONSE ANALYSIS

Concentration—response curves are shown in Figure 13.
For most of the pollutants, we observed fairly linear
curves if sufficient data were available to support the
spline derivation. Some pollutants, such as PM,  EC and
PM, . on-road diesel, displayed a supralinear response,
with a steeper response curve at low levels of exposure to
the pollutant. This type of supralinear function has been
observed in many studies of air pollution and mortality.'*
Humidity displayed a clear linear negative association
with the risk of death in hospitalized patients with COVID-
19. Temperature demonstrated a U-shaped curve, with
risk of death appearing to be higher at lower temperatures,
although there were insufficient data to support the spline
derivation; the inverse curve appeared linear.
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Figure 12. Risk plots of hazard ratios for COVID-19 mortality per additional IQR increment in PM, , mass exposure, stratified by
tertile of maximum temperature (A) and relative humidity (B) during the month of diagnosis, among patients hospitalized with
COVID-19 in Southern California. Stratified risk plots for other pollutants are presented in Appendix C.
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Figure 13. Concentration-response functions for pollutants and meteorological variables. Units of measurement are pg/m? for all
pollutant concentrations, degrees Celsius for temperature, and percentage for relative humidity.

DISCUSSION AND CONCLUSION

In this study, we evaluated whether chronic exposure
to air pollution and meteorological factors at the time
of diagnosis affected the risk of death in patients hospi-
talized with COVID-19. We found that the risk of death
after COVID-19-related hospitalization was significantly
associated with exposure to PM,_ mass, PM, ,, and sev-
eral of the particle species or source tracers. The effects
associated with PM, . mass were reduced, but remained
significantly elevated, in a model that included NO,;

however, the effect of NO, was reduced to a nonsignificant
level in the two-pollutant model. Some species, such as
PM, . OC, demonstrated elevated yet statistically nonsig-
nificant relative risks; the association between the PM,
biomass combustion and risk of death was not statistically
significant. During late summer and early fall, wildfires
are the predominant source of biomass combustion, which
produces significant organic carbon (Chapter 7). Most of
the recent wildfires, however, occurred months before the
large surge in COVID-19 cases and deaths that occurred
from late October 2020 to early January 2021.
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Meteorology is associated with the transmission of
COVID-19,"%” and recent studies have shown that meteoro-
logical conditions likely affected COVID-19 mortality rates
in Europe.?” These researchers proposed that humidity
may interfere with both the viral defenses of the nasal
mucosa and the sputum deeper in the airway, resulting in
more severe infection and subsequently contributing to a
poor prognosis after the virus becomes established in the
respiratory tract, particularly in the nose.?”'® Temperature
and humidity can also affect the size of viral droplets and
persistence of the virus in ambient air, although the extent
to which these effects could affect disease severity is
unknown.® Our study demonstrated significant negative
associations between both temperature and humidity and
the risk of death in hospitalized patients with COVID-19.
We also found significant effect modification of the asso-
ciations between air pollution and mortality, with lower
temperature and humidity generally associated with larger
air pollution effects. If viral defenses are indeed influenced
by meteorology, this lends biological plausibility to both
the direct effects of humidity and temperature and their
effect modification of the association between air pollution
and COVID-19 mortality.

Comparing the results of our study to the findings of
other mortality studies provides several relevant insights.
Chen and colleagues® investigated the effect of air pollu-
tion on COVID-19 severity and mortality, using data on
KPSC members and a California Line Source Dispersion
Model (CALINE) that estimated traffic exposures (freeway
and nonfreeway) using NO_concentrations. For each stan-
dard deviation increase in the level of nonfreeway NO_,
the odds of ICU admission were 1.11 (95% CI, 1.04-1.19),
and the odds of death were 1.10 (95% CI, 1.03-1.18).
Exposure to several other freeway pollutants, however,
had protective effects.”! Including regional PM, , and NO,
as confounders attenuated the effects by 19% to 26%; after
this adjustment for confounding, exposure to freeway NO_
demonstrated a significantly protective effect on mortality
(ORR, 0.94; 95% CI, 0.88-1.01). Exposure measurement
error may have been present in this study, given the inabil-
ity of the CALINE dispersion model to handle complex
traffic, terrain, and meteorological conditions, all of which
exist in Southern California.'’®'"" The present study had
a longer follow-up period (with about 4.5 times as many
deaths) than did the study by Chen and colleagues, which
also may have contributed to differences in the findings.

Additionally, a follow-up to this study, which used the
same health data but relied on inverse-distance averaging
to interpolate data from government monitors, identified
significant chronic effects associated with PM,, expo-
sure and subchronic effects of exposure to NO,.** This
follow-up study, however, also had a high probability of
exposure measurement error, given the spatial variation in
these pollutants and the sparse data support available from
the relatively few government monitors, each covering
thousands of square kilometers.*!
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Another study from the United Kingdom relied on UK
Biobank data and used an agnostic exposomic approach
to evaluate many risk factors for COVID-19 incidence
and mortality.** Although mild associations with PM,
exposure were present in univariate models, these associ-
ations were eliminated in multivariate models, leading the
authors to conclude there was little evidence of an inde-
pendent association between air pollution and COVID-19
mortality. This study, however, involved relatively few
deaths and may have lacked power to detect subtle effects
of air pollution.

A study using data from hospitalized patients in New
York City reported an association between each 1-pg/
m? increase in PM, . exposure and risk of mortality (risk
ratio, 1.11; 95% CI, 1.02-1.21).%® Given the reported IQR
of 0.7 pg/m?, the rate ratio would be approximately 1.08.
Neither black carbon nor NO, exposure was significantly
associated with COVID-19 mortality. Notably, this study
also found that Hispanic ethnicity significantly modified
the association between air pollution and risk of COVID-
19-related death; these results differ from our finding of no
significant effect modification by racial/ethnic subgroups.
This study lacked individual data on certain potential
risk factors for COVID-19 mortality, including obesity
and smoking; consequently, residual confounding in the
results cannot be ruled out.

A study involving a large administrative cohort from
Rome, Italy, identified significant associations between
both NO, and PM, . exposure and COVID-19 mortality.*
The associations in that study were somewhat smaller
than those found in our study, although there is overlap
between the Cls for both studies.*” The range of PM, . expo-
sures in the Italian cohort was much smaller than what we
observed in Southern California, which may partly explain
the smaller effects observed in Rome.

The present study has several limitations. For instance,
although we controlled for several individual confound-
ers (e.g., smoking status and obesity), the data from the
KPSC health system did not include potentially important
confounding variables, such as occupational status.
Nascent research suggests that some occupational groups
in California have an increased risk of mortality from
COVID-19, particularly in the farming, material moving,
transportation, and construction sectors, all of which may
involve elevated occupational exposure to air pollution.'*?
It is possible that the lack of data on occupational status
could have biased our results, although it is important to
consider that there are numerous complexities involved
in analyzing and interpreting data on COVID-19 mortality
risk in different occupational groups.#113

An additional limitation of the present study involves
the temporal mismatch between the exposure fields from
2016, which predated the study by roughly 3 years, and
other more current sources of data. Overall spatial pat-
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terns of exposure are unlikely to have changed over this
intervening period. Some portions of our study period,
however, overlapped with the COVID-19-related lock-
down period, during which traffic emissions were lower.''4
Therefore, patients in the study cohort may have experi-
enced lower exposures to air pollution than they would
have under normal conditions; we did not account for this
factor in our exposure or statistical models. The impact
of this limitation would have resulted in overestimating
the near-source traffic exposures of patients, which may
have biased some results toward the null hypothesis. In
our study, the risks of COVID-19 mortality associated with
exposure to near-road pollutants, such as PM, | EC, PM, ,,
PM, . on-road diesel, and PM,, on-road gasoline, were
lower than the risks associated with PM, . mass and PM,
nitrate exposures; these findings may reflect the lack of
capacity in our exposure model to account for potential
effects of the COVID-19 lockdown. Despite this limitation,
our study still demonstrated significant associations
between several near-source pollutants and COVID-19
mortality. We were also unable to account for the acute
effects of air pollution that may have contributed to the
risks of COVID-19 mortality. Currently, we are extending
the CTM to derive contemporaneous estimates of acute
and chronic exposure to pollutants.

Another concern with observational studies of COVID-
19 and resulting mortality pertains to the different
SARS-CoV-2 variants that emerged and gained dominance
during the course of the pandemic. If certain variants were
more virulent than others, as appears likely,'*® and these
virulent variants coincidentally emerged during periods
with high levels of air pollution, the associations between
air pollution exposure and COVID-19 mortality could be
confounded by the virulence of the SARS-CoV-2 variants.
In this study, the Delta variant was dominant during the
majority of the study period. We performed sensitivity tests
on the PM,, model by restricting the analysis to periods
when Delta was the dominant variant; the results from the
restricted analysis were virtually the same as those from
the full analysis. Given the similarity in these findings, we
concluded that our results were not likely confounded by
differing levels of virulence among SARS-CoV-2 variants.

We used data on time-to-event after hospitalization to
avoid bias in our follow-up periods, which could have
varied considerably if we had used the date of COVID-19
diagnosis as the starting point for each patient in the study.
A more general concern about collider bias has been raised
regarding studies of COVID-19 and hospitalization. If the
tracking of COVID-19 begins at the point of infection, hos-
pitalization can be a collider variable, as both COVID-19
and air pollution exposure could increase the risk of hos-
pitalization. As a follow-up, our study began at the point
of hospitalization; however, the hospitalization event is
not a collider variable. Nevertheless, restricting the study
population to hospitalized patients likely reduced the
generalizability of our results to hospitalized individuals
rather than the general population.

Other environmental variables, including wind speed
and ultraviolet radiation, have also been implicated in the
spread and severity of COVID-19. Both of these variables
were purposefully included in our CTM for exposures.
Wind speed, in particular, has a major impact on ambient
concentrations of several pollutants, and we were con-
cerned that including wind speed as a distinct variable
would induce collinearity into the model. In reviewing
the literature on wind speed, we also found that most of
the influence of this meteorological parameter affects the
transmission of COVID-19 but not the severity of symp-
toms or risk of death.¢19 Ultraviolet B (UVB) radiation
potentially influences COVID-19 outcomes via its relation-
ship to vitamin D deficiency, which has been identified
as a risk factor for more severe COVID-19 outcomes.''®* We
visually explored the 1-km UVB fields used as inputs in
the CTM used in this study. UVB levels were higher inland
and lower near the Pacific coastline, likely due to fog and
cloud cover. Recent UVB exposure modeling, however,
estimates that personal behavior and occupation are much
more important predictors of UVB exposure than ambient
levels alone, which often account for little of the explained
variation in objectively measured UVB.'71® Therefore,
ambient levels of UVB are unlikely to be reasonable prox-
ies for UVB exposure and subsequent deficiency.

Additionally, we queried our database to identify
patients with vitamin D deficiency and performed strati-
fied analyses to assess whether air pollution contributed
to worse outcomes in these patients. Of the patients in
the study cohort, 4,142 (19.34%) had a laboratory vitamin
D test within 1 year before their COVID test date; among
those who had a vitamin D test, 1,524 (7.13% of the total
cohort) were deficient in vitamin D (i.e., 25-hydroxyvita-
min D laboratory result <30 ng/mL) based on their most
recent vitamin D laboratory result before hospitalization.
As this subgroup of patients with vitamin D deficiency
is a relatively small proportion of the entire cohort (and
likely represents an underestimate of the actual size of the
subgroup), we were unable to stratify the analysis.

Virucidal activity also decreases in the presence of
higher levels of UVB radiation,'*®!* although this effect
would be more likely to influence viral transmission and
not disease severity. Furthermore, most of the COVID-19
cases likely occurred as a result of exposure to SARS-CoV-2
in an indoor environment, where ambient UVB radiation
would likely have minimal impact on virucidal activity.'*®
Future research is nevertheless needed to determine
whether vitamin D deficiency modifies the effects of air
pollution exposure on COVID-19 severity.

Saturation of ICU capacity, another possible factor
affecting survival in COVID-19 patients, may have acted as
a confounder in this study. Internal data and consultations
with attending physicians revealed, however, that despite
the described surge in COVID-19 cases (Figure 9), the KPSC
ICUs were never saturated beyond capacity during this
period. The health system did not run out of ventilators
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or physical space for admitting seriously ill patients with
COVID-19. An overflow facility that could have accepted
KPSC patients was never used. Thus, saturation of the ICU
is unlikely to have confounded our results.

The observational nature of this study precludes causal
interpretation of the results. Our findings nevertheless
enable us to conclude that chronic exposure to air pollu-
tion in Southern California is associated with increased
risk of death from COVID-19. Better knowledge about envi-
ronmental factors, such as air pollution and meteorology,
could be used by communities and local governments to
target neighborhoods with higher risks of COVID-19 mor-
tality. Such information could also be used by healthcare
systems to assist clinicians in better estimating the likely
severity of disease in patients residing in areas with high
levels of air pollution. Minimizing transmission and reduc-
ing the severity of COVID-19 through nonpharmaceutical
interventions, such as masking and economic shutdowns,
remains problematic over the longer term,'® given the
social and environmental costs of such approaches. Fur-
thermore, modeling suggests that nonpharmaceutical mea-
sures have the potential to increase the severity of other
respiratory viral outbreaks in the future.'®® Pharmaceutical
measures like vaccines continue to have mixed results,
partly because of vaccine hesitancy in some locations
and population groups.'?® By contrast, air pollution is
a modifiable environmental risk factor that could affect
disease severity across the entire population. Reducing air
pollution may thus provide a more sustainable means of
reducing COVID-19 severity, thereby yielding substantial
population benefits. Mitigating air pollution may also
lessen the risks of catastrophic outcomes due to future
pandemics fueled by novel viruses, while also beneficially
affecting a wide array of other health endpoints.
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CHAPTER 6: AIR POLLUTION AND

PROGRESSION OF COVID-19: A
MULTISTATE ANALYSIS

INTRODUCTION

Although vaccines are critically important in reducing
the severity of COVID-19 infections, vaccination against
COVID-19 has demonstrated mixed results as a strategy
for disease control, partly because of vaccine hesitancy
in some population groups and geographic locales.’** The
limitations of such pharmaceutical interventions have
prompted interest in the modification of environmental
risk as a potential approach to reducing the severity of
COVID-19 after infection occurs.

Air pollution is a pervasive yet modifiable environ-
mental exposure. Studies using individual-level data have
revealed that air pollution can lead to increased risk of
hospitalization, ICU admission, and death.?38-41122-124 T
date, no studies have investigated how air pollution affects
patients’ progression from hospital admission for COVID-
19 to outcomes such as admission to the ICU, death, or
recovery. Increasing the body of knowledge about how
air pollution may influence the progression of COVID-19
through possible states of severity or recovery or both can
help strengthen understanding of how this ubiquitous
environmental exposure affects prognosis in COVID-19.
Such information would provide another strategy for
mitigating the severity of COVID-19 while circumventing
debates about vaccine efficacy and safety.

In this study, we used a unified multistate survival
model to investigate how air pollution affects transitions
between different states of health that can occur after
hospitalization with COVID-19. We hypothesized that 1)
patients living in areas with higher chronic exposure to air
pollution who are hospitalized with COVID-19 are more
likely to progress toward serious illness requiring ICU
admission or death than are patients with less exposure
to air pollution, and 2) patients living in areas with higher
chronic exposure to air pollution who are hospitalized
with COVID-19 will be less likely than those living in
areas with less chronic air pollution exposure to transition
toward sustained recovery.

METHODS

KPSC COHORT AND HEALTH DATA

The KPSC membership of 4.7 million people broadly
represents the overall population of Southern Califor-
nia.** KPSC maintains an EHR in an integrated system that

captures all aspects of patient care, including diagnoses,
inpatient and outpatient encounters, pharmacy encoun-
ters, and laboratory tests.

We identified KPSC patients with a positive COVID-19
molecular diagnostic test and/or diagnosis of COVID-19
based on prior testing (ICD-10 codes B34.2, B97.29,J12.89,
J20.8, J22, J80, or U07.1) that occurred from June 1, 2020,
to January 30, 2021. Given that rapid changes in clinical
care occurred over the first months of the pandemic, we
chose to begin the observation period for this study on
June 1, 2020, by which time new standards of care for
COVID were more widely implemented.

The study cohort included patients aged 18 years or
older at the time of their COVID-19 diagnosis or positive
COVID-19 test. To reliably assess comorbidities, we
restricted eligibility to those who had been KPSC mem-
bers for at least 1 year before their COVID-19 diagnosis or
positive test or both. COVID-19-related hospitalizations
were defined as those that occurred within 21 days
of a patient’s COVID-19 diagnosis or positive test (N =
316,224).% The study cohort comprised only hospitalized
patients rather than all those who tested positive for
COVID-19, as testing may have occurred after contact
with an infected person or upon hospital admission
after the onset of severe illness. Such timing could lead
to uncertainty about the window of time within which
testing could have occurred in different patients, thereby
introducing substantial errors in the study follow-up
times and thus leading to biased results in the statistical
models. Limiting the study to hospitalized patients elim-
inated these concerns, as there was no uncertainty about
the date of hospitalization. Approximately one-quarter
of patients included in the initial sample were ineligi-
ble because they received treatment outside the KPSC
system, making it unfeasible to reliably ascertain their
course of treatment. Patients whose KPSC membership
ended during the 90-day observation window or who
were hospitalized for childbirth were excluded from the
study. Patients who died up to 90 days after either their
initial hospitalization or a readmission after discharge
were included in the study cohort. (Further details on the
ascertainment of death data are provided in Appendix
D.) The final cohort used for data analysis consisted of
15,978 patients with complete medical records. A flow
chart depicting the selection criteria for the study popu-
lation is presented in Figure 14. This study was approved
by the Kaiser Permanente Institutional Review Board.

DEMOGRAPHICS AND COVARIATES

The EHR in the KPSC health system includes infor-
mation on patient age, sex, and race/ethnicity.®® The
most recent BMI value available in the patient EHR
was used to represent this potential confounder.®® BMI
data were cleaned using validation algorithms to delete
biologically implausible values. In the HPSC health
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Positive COVID-19 test
N = 316,224

Hospitalized within 21 days
of positive COVID-19 test
N =21,997

Incomplete exposure information

Hospitalized within 21 days
of positive COVID-19 test
(mortality cohort)

N =21,415

¥

N =582

Hospitalized outside KPSC

Hospitalized patients treated
within KPSC health system

(multi-state cohort
N =15,978

h J

N =5,437

Figure 14. Flow chart depicting selection of the study cohort used in the multistate survival model.

system, smoking status and EVS data (coded as min/wk
of moderate to vigorous exercise) are collected during
each in-person outpatient healthcare encounter,” and
we used data on these factors as potential confounders.
Smoking status (ever-smoker or never-smoker) was coded
based on the information provided during the patient’s
last encounter before their COVID-19 test or diagnosis,
dating back up to 4 years. Patients who were enrolled
at KPSC via MediCal (i.e., state-sponsored medical care
for patients in poverty) were classified as having a very
low income. We did not include COVID-19 vaccination
status in the analysis, as COVID-19 vaccines were not
yet widely available by the end of the study period.
(A total of 19 patients in the study cohort had been
vaccinated against COVID-19 before hospitalization.)
In summary, four individual-level confounders were
considered in the analysis: smoking status (ever-smoker
vs. never-smoker), BMI and BMI?, MediCal enrollment
(as a proxy for poverty), and EVS data (as an estimation
of the usual number of minutes per week of moderate to
vigorous exercise).
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CONTEXTUAL VARIABLES

We added predictors of community-level SES to the
proxy for individual SES and adjusted for community-level
effects of social determinants of health.®*'** Communi-
ty-level predictors at the census block group level were
obtained from the 2018 American Community Survey.!%?
These predictors included the previously validated NDI,
a measure of crowding (the percentage of households
with more than one occupant per home) that was used
as a proxy for poor housing quality, and the percentage
of workers aged 16 years or older who commute to work
via public transportation (which is associated with low
income in Southern California)."”

Because previous research has indicated that meteo-
rological conditions can affect the severity of COVID-19,
we obtained GridMET surface meteorological data (with
approximately 4-km resolution) to estimate daily maximum
temperature and relative humidity for the entire study period
by using Google Earth Engine.’® GridMET data for the home
address of every study participant were aggregated to monthly
means for the month of hospitalization with COVID-19.
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Although the evidence is mixed, some research indi-
cates that tree canopy and green cover can have a bene-
ficial effect on respiratory health outcomes.’ Emerging
evidence from county-level analyses in the United States
also indicates that green space may be associated with
COVID-19 mortality."*® We therefore included as a poten-
tial confounder a high-resolution metric of green space
based on satellite retrievals compiled by the National
Agriculture Imagery Program.?’

EXPOSURE ASSESSMENT: CHEMICAL TRANSPORT
MODEL

Exposure simulations were carried out across California,
using the UCD/CIT source-oriented, three-dimensional,
reactive chemical transport model (CTM).'** The UCD/CIT
model predicts the evolution of gas- and particle-phase
pollutants in the atmosphere in the presence of emissions,
transport, deposition, chemical reaction, and phase
change. The pressing timeline for conducting this study
during an ongoing public health crisis necessitated lever-
aging past efforts that had prepared and validated CTM
inputs. We previously reported CTM exposure fields with
4-km resolution over California for the years 2000-2016.%
We re-estimated exposures for 2016 at 1-km resolution.
Meteorology and emission inputs for the year 2016 were
downscaled to improve spatial resolution to 1 km. Bias in
the raw CTM output fields was minimized using a con-
strained regression model based on source apportionment
tags and the difference between predicted and measured

State 1:
COVID-19 diagnosis and ;
first hospitalization within | 2

State 2:

KPSC facility within 21 Experienced first

days deterioration event (ICU Sl

admission, ventilation)
N = 6,390

N =15,978

62

concentrations. (Further details on methods used for the
CTM are available in Appendix A.)

In this study, we estimated PM, , mass, NO,, and O,.
Subchronic exposure fields were assigned to the geocoded
home address of the cohort members. The exposure fields
were intended to account for spatial patterns of chronic
exposure, which are relatively stable over the 4-5 years
that ensued between the exposure modeling and formation
of the study cohort. We accounted for residential mobility
of patients by using a weighted average of exposures based
on time spent at each residential address.

STATISTICAL ANALYSIS

We implemented a multistate survival model, using the
mstate package in R.™** These models used a time-to-event
process to evaluate the instantaneous hazard of transitioning
from one health state to another (e.g., from the ICU to death).
The six health event states used in the model, along with the
number of patients for each state and transition event, are
presented in Figure 15. The multistate models essentially
represent an extension of the Cox proportional hazards model
to more than two states (e.g., alive or dead), allowing for effi-
cient modeling of all predefined transition states. Compared
to conventional Cox models for time-to-event processes, mul-
tistate models can simultaneously model dynamic transitions
between multiple events, avoiding a loss of statistical power
that can result from dividing the states into smaller samples,
potentially leading to false-negative findings. Including mul-
tiple health states can also lead to novel insights about the

Exclude
State 4: person-time of
) . patients after
Last discharge from they are admitted
G KPSC facility (not to a non-KPSC
hospitalized at 90 days) [eSisliEl
— N = 13,056
3,800
2,414

State 3:
L] Death (in or out of
hospital)
N = 2,946

90-day Study Period

Figure 15. Health states and transition events between states in a multistate survival model, with number of patients by state and
transition event. In the study cohort, 270 patients with COVID-19 who entered the hospital experienced no transition events but

remained hospitalized for the entire study period.
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relationship between intermediate endpoints and death (e.g.,
ICU to death).'” We assumed that time spent in any given
state did not influence the time spent in any other state (i.e.,
Markov assumption); this assumption effectively resets the
follow-up time to zero once a patient enters a given state.

For a sensitivity analysis, we also ran Cox proportional
hazards models to examine how air pollution exposure influ-
ences time between health states, by constructing a dataset
consisting of patients who entered one health state and then
transitioned to another state. We applied the same rules as
those used in the multistate model. (Technical details on
definitions of the states depicted in Figure 15 are available
in Appendix D.) Confounders were included in the model if
they changed the pollution coefficient by 10% or more in the
Cox models. Confounders were selected separately for each
of the transition events. (Further information on the included
confounders is presented in Appendix Tables D2-D4.) In con-
ducting a sensitivity analysis, we also included all possible
individual confounders along with most of the contextual
variables (i.e., temperature, humidity, green space, and neigh-
borhood deprivations) while excluding the proportion of
housing units with more than one occupant per room and the
proportion of workers aged 16 or older using public transit, as
these factors were collinear with neighborhood deprivation.
We included age and sex as stratification variables in the
baseline hazard. Confounders were included as linear terms
or categorical variables, as shown in Appendix Tables D2-D4.

We also ran a series of two-pollutant models, including
models for PM, . and NO,, PM, _ and O,, and NO, and O,.

RESULTS

Demographic and clinical characteristics of patients in
the study cohort, stratified by major health event states, are
presented in Table 7. Patients who experienced deteriora-
tion events after hospitalization (defined as admission to
the ICU or use of intensive oxygen therapy) were older than
those who did not progress to more severe states of health.
Among hospitalized patients, the rate of deterioration was
higher among Hispanic patients than among patients in
other racial/ethnic groups. White patients experienced a
higher rate of death compared to patients of other races
or ethnicities. Rates of hospitalization, deterioration, and
death were much higher among men than among women,
and men had a lower rate of recovery than did women.
Patients who deteriorated or died had higher rates of
chronic disease, compared to those who recovered. Patients
who experienced deterioration or died had slightly higher
PM,, and O, exposures, on average, than did all patients
who were hospitalized or those who recovered; whereas,
NO, exposures were generally similar across each of the
health event transitions, with very slightly less exposure
among patients who died. Similarly, patients who experi-
enced deterioration or died generally resided in areas with
lower ambient temperatures and humidity levels during
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the month in which they were diagnosed, compared to all
hospitalized patients or those who recovered.

The possible transition events between health states, as
well as the numbers and proportions of patients who expe-
rienced each health state event, are presented in Appendix
Tables D6 and D7 and depicted in Figure 15. Many of the
hospitalized patients experienced deterioration, with most
deaths occurring in patients who first deteriorated.

The multistate model results for PM,  exposure are
shown in Table 8 and Figure 16. Most of the transitions
between events had the expected sign on the coefficients.
Comparing the lowest quartile to the highest quartile of
PM, , exposure, the HR for experiencing the transition from
hospitalization to a deterioration event was 1.16 (95% CI,
1.12-1.20). Similarly, comparing these quartiles of PM,
exposure, the HR for transitioning from deterioration to
death was 1.11 (95% CI, 1.04-1.17). The level of PM,
exposure was not significantly associated with the risk of
experiencing other transition events except, notably, the
transition from recovery to death, for which the HR was
1.10 (95% CI, 0.97-1.25).

Results for O, were largely consistent with those for
PM, (Table 8 and Figure 16). Comparing the lowest
quartile to the highest quartile of O, exposure, the HR for
transitioning from hospitalization to deterioration was
1.21 (95% CI, 1.13-1.28). The HR for transitioning from
hospitalization to recovery was 0.96 (95% CI, 0.91-1.00),
suggesting that those living in areas with lower O, expo-
sure were more likely to recover than those living in areas
with higher levels of O,. The point estimate of the HR for
transitioning from hospitalization to death was elevated,
although this association with O, exposure was not statisti-
cally significant. Comparing the lowest vs. highest quartile
of O, exposure, the HR for transitioning from deterioration
to death was 1.08 (95% CI, 0.98—-1.19), which was of bor-
derline significance. The strongest association with O, was
seen for the transition from recovery to death, with an HR
of 1.24 (95% CI, 1.01-1.51), implying that those who lived
in areas with greater O, exposure were more likely to die
after discharge from the hospital than those in areas with
lower levels of O,.

Effects of NO, exposure (i.e., lowest vs. highest quartile)
were somewhat weaker than those for O, or PM, , (Table
8 and Figure 16). The HR for transitioning from hospi-
talization to deterioration was 1.19 (95% CI, 1.13—1.24).
Unexpectedly, based on a small group of 62 patients, the
HR for transitioning directly from hospitalization to death
was 0.60 (95% CI, 0.40-0.90). The HR for the transition
from deterioration to death was elevated, but the associ-
ation was not statistically significant (HR, 1.07; 95% CI,
0.99-1.16).

The sensitivity analysis that included all patients and
most of the contextual confounders of the effects of pol-
lutant exposure largely supported all of the main results,
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Table 7. Demographic and Clinical Characteristics and PM, ,, NO,, and O, Exposures of Patients Hospitalized with COVID-19,

by Health Event
Ever Recovered/
All Hospitalized Ever Deteriorated Discharged Died
Characteristic (N =15,978) (N =6,390) (N =13,056) (N = 2,946)

6,390 (40.0%)
2,946 (18.4%)
13,056 (81.7%)

Deterioration date indicator 0/1°
Died indicator 0/1*

Recovery indicator 0/1*

Age index

Median (IQR) 63 (51, 74)
Mean (SD) 62 (16)
Range 18, 105
Race/ethnicity®

Asian/Pacific Islander 1,810 (11.3%)
Black 1,342 (8.40%)
Hispanic 9,538 (59.7%)
White 3,143 (19.7%)
Other/multiple/unknown 145 (0.91%)
Sex?

Female 6,700 (41.9%)
Male 9,278 (58.1%)
Medicaid®

No 13,961 (87.4%)
Yes 2,017 (12.6%)

Exercise Vital Sign

Median (IQR) 0 (0, 95)
Mean (SD) 62 (97)
Range 0, 1,050
Unknown 529 (3.31%)

Housing units with >1 occupant/room (%)

Median (IQR) 0.10 (0.03, 0.19)

Mean (SD) 0.12 (0.12)
Range 0.00, 0.78
Unknown 384 (2.40%)

Neighborhood Deprivation Index

Median (IQR) 0.45 (-0.24 to

1.28)
Mean (SD) 0.58 (1.03)
Range -1.56 to 5.28
Unknown 4 (0.03%)

6,390 (100.0%)
2,572 (40.3%)
3,800 (59.5%)

65 (55, 75)
64 (15)
18, 102

743 (11.6%)
477 (7.46%)
4,037 (63.2%)
1,082 (16.9%)
51 (0.80%)

2,288 (35.8%)
4,102 (64.2%)

5,545 (86.8%)
845 (13.2%)

0 (0, 90)

57 (90)

0, 1,050
224 (3.51%)

0.10 (0.03, 0.20)
0.13 (0.12)
0.00, 0.71

153 (2.39%)

0.52 (-0.19 to
1.36)

0.64 (1.03)
-1.56 to 5.28
2 (0.03%)

3,800 (29.1%)
470 (3.60%)
13,056 (100.0%)

61 (50, 72)
60 (16)
18,105

1,492 (11.4%)
1,107 (8.48%)
7,788 (59.7%)
2,550 (19.5%)

119 (0.91%)

5,715 (43.8%)
7,341 (56.2%)

11,482 (87.9%)
1,574 (12.1%)

0 (0, 100)
65 (100)

0, 1,050
452 (3.46%)

0.09 (0.03, 0.19)
0.12 (0.12)
0.00, 0.78

322 (2.47%)

0.45 (-0.25 to
1.28)

0.57 (1.03)
-1.511t05.28
3 (0.02%)

2,572 (87.3%)
2,946 (100.0%)
470 (16.0%)

73 (63, 82)
72 (13)
18, 105

311 (10.6%)
241 (8.18%)
1,702 (57.8%)
666 (22.6%)
26 (0.88%)

1,041 (35.3%)
1,905 (64.7%)

2,515 (85.4%)
431 (14.6%)

0 (0, 75)
47 (82)

0, 1,050
68 (2.31%)

0.10 (0.03, 0.19)
0.12 (0.11)
0.00, 0.71

67 (2.27%)

0.46 (-0.25 to
1.33)

0.59 (1.04)
-1.56 to 4.08
1 (0.03%)

Continues next page
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Table 7. (continued)

Characteristic

All Hospitalized

(N =15,978)

Ever Deteriorated

(N = 6,390)

Ever Recovered/
Discharged
(N =13,056)

Died
(N = 2,946)

Workers aged >16 yr commuting by public transportation (%)

Median (IQR)

Mean (SD)

Range

Unknown

BMI (kg/m?)

Median (IQR)

Mean (SD)

Range

Unknown

Elixhauser comorbidities

Median (IQR)

Mean (SD)

Range

Elixhauser, combined CVD*
Unknown

Elixhauser, combined hypertension®
Unknown

Elixhauser, combined pulmonary
disease®

Unknown

Elixhauser, combined diabetes®
Unknown

Elixhauser, combined other*
Unknown

Relative Humidity (%)

Median (IQR)

Mean (SD)

Range

Temperature (°C)

Median (IQR)

Mean (SD)

Range

Smoking status?

Never-smoker

Ever-smoker

Unknown

46

0.02 (0.00, 0.06)
0.04 (0.06)
0.00, 0.83

383 (2.40%)

31 (27, 36)
32 (8)

13, 88

429 (2.68%)

2.00 (1.00, 5.00)
3.08 (2.88)
0.00, 18.00

5,570 (34.9%)

391 (2.45%)

8,651 (54.1%)

391 (2.45%)

3,013 (18.9%)

391 (2.45%)
6,882 (43.1%)
391 (2.45%)
9,406 (58.9%)
391 (2.45%)

72 (59, 82)
71 (14)
33,99

21.1 (20.1, 25.3)
23.1(4.8)
5.9, 38.5

10,246 (64.1%)
5,543 (34.7%)
189 (1.18%)

0.02 (0.00, 0.06)
0.04 (0.06)
0.00, 0.58

153 (2.39%)

32 (28, 37)
33 (8)

14, 88

189 (2.96%)

3.00 (1.00, 5.00)
3.26 (2.92)
0.00, 17.00

2,375 (37.2%)

156 (2.44%)

3,722 (58.2%)

156 (2.44%)

1,260 (19.7%)

156 (2.44%)
3,114 (48.7%)
156 (2.44%)
3,817 (59.7%)
156 (2.44%)

70 (58, 80)
69 (14)
33, 99

21.0 (20.0, 23.5)
22.7 (4.6)
8.7, 38.5

3,890 (60.9%)
2,421 (37.9% %)
79 (1.24%)

0.02 (0.00, 0.06)
0.04 (0.06)
0.00, 0.83

321 (2.46%)

31 (27, 36)
32 (8)

13, 87

362 (2.77%)

2.00 (1.00, 4.00)
2.82 (2.76)
0.00, 18.00

4,037 (30.9%)

332 (2.54%)

6,595 (50.5%)

332 (2.54%)

2,346 (18.0%)

332 (2.54%)
5,265 (40.3%)
332 (2.54%)
7,331 (56.2%)
332 (2.54%)

73 (60, 82)
71 (14)
33,98

21.2 (20.2, 25.9)
23.2 (4.8)
5.9, 38.0

8,655 (66.3%)
4,241 (32.5%)
160 (1.23%)

0.02 (0.00, 0.05)
0.04 (0.06)
0.00, 0.58

67 (2.27%)

30 (26, 35)
31 (8)
13, 88
60 (2.04%)

4.0 (2.0, 6.0)
4.4 (3.1)

0.0, 16.0
1,630 (55.3%)
56 (1.90%
2,106 (71.5%
56 (1.90%

(
(
(
682 (23.2%

)
)
)
)
56 (1.90%)
1,598 (54.2%)
56 (1.90%)
2,142 (72.7%)
56 (1.90%)

68 (58, 79)
68 (13)
33, 98

20.9 (20.0, 22.7)
22.4 (4.4)
10.5, 38.5

1,598 (54.2%)
1,323 (44.9%)
25 (0.85%)

Continues next page
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Table 7. (continued)

Characteristic

All Hospitalized
(N =15,978)

Ever Deteriorated
(N =6,390)

Ever Recovered/
Discharged
(N =13,056)

Died
(N = 2,946)

PM, . mass (pg/m®)
Median (IQR)
Mean (SD)

Range

NO, (ppb)

Median (IQR)
Mean (SD)
Range

0, maximum (ppb)
Median (IQR)
Mean (SD)

Range

12.60 (11.00, 14.20)
12.63 (2.36)
6.12, 27.70

22 (15, 25)
20 (7)
1, 34

66 (60, 73)
66 (8)
40, 84

12.80 (11.30, 14.40)
12.87 (2.33)
6.53, 26.30

22 (16, 25)
20 (6)
1, 33

67 (61, 74)
67 (8)
43, 84

12.60 (10.90, 14.20)
12.58 (2.34)
6.12, 27.70

22 (14, 25)
20 (7)
1, 34

66 (60, 72)
66 (8)
42, 84

12.80 (11.20, 14.40)
12.84 (2.44)
6.50, 23.80

21 (15, 25)
20 (7)
2,33

67 (61, 74)
67 (8)
43, 83

CVD = cardiovascular disease.
“Presented data are n (%).

Table 8. Effects of Pollutant Exposure on Transitions Between COVID-19-Related Health States® Results of Single- and
Multipollutant Models

Hospitalization  Hospitalization = Hospitalization Deterioration Deterioration

to Deterioration to Recovery to Death to Recovery to Death Recovery to Death
Single Pollutant HR 95%CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI
PM, . mass 1.16 1.12,1.20 1.00 0.97,1.03 0.74 0.51,1.08 0.96 0.92,1.01 1.11 1.04,1.17 1.1 0.97,1.25
0, maximum® 1.21 1.13,1.28 0.96 0.91,1.00 146 0.87,246 0.98 0.91,1.05 1.08 0.98,1.19 1.24 1.01,1.51
NO, 1.19 1.13,1.24 1.01 0.97,1.04 0.60 0.40,090 1.03 0.97,1.09 1.07 0.99,1.16 1.03 0.86,1.23
Two Pollutants
PM, . mass 1.13 1.09,1.17 1.01 0.98,1.03 0.67 0.45,1.00 096 0.91,1.01 1.10 1.04,1.17 1.07 0.93,1.23
O, maximum 1.13 1.06,1.21 0.96 0.91,1.01 1.68 0.98,2.90 1.00 0.92,1.08 1.03 0.94,1.14 1.19 0.95,1.48
O, maximum 1.24 117,132 096 0.92,1.01 1.39 0.85,2.28 0.98 0.91,1.05 1.11 0.99,1.23 1.27 0.99,1.61
NO, 1.21 1.15,1.26 1.00 0.97,1.04 0.59 0.38,0.92 1.03 0.96,1.10 1.08 1.00,1.17 1.03 0.86,1.23
PM, , mass 1.11 1.05,1.17 0.98 0.94,1.03 1.00 0.58,1.73 0.90 0.84,0.96 1.14 1.04,1.25 1.21 0.99,1.49
NO 1.07 1.00,1.14 1.02 0.97,1.08 0.62 0.32,1.23 1.13 1.04,1.24 0.94 0.83,1.06 0.85 0.64,1.13

2

“Transitions between COVID-19-related states of health are depicted by arrows in Figure 15.
"Daily maximum 1-hr average O, concentration.
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A PM PM, 5 (mass) effect estimates standardized by interquartile range, from multistate model
(A) PM,
mass effect

estimates -
100097108 -

State 1:
COVID-19 diagnosis and
first hospitalization

et State 2:
Experienced first
deterioration event (ICU

0.96 {0.92-1.07)

within KPSC facility
within 21 days
N =15,978

admission, ventilation)
N = 6,390

1.16° (1.12-1.20)

T 1.11° (1.04-1.17) )

074 (0.51-1.08 .

90-day Study Period

asignificant at p < 0.05 (95% Cl)

Adjusted for temperature and humidity, stratified by age group (5-year), sex, and race/ethnicity

el  hospitalized at 90 days)

Exclude
person-time of
patients after
they are admitted
to anon-KPSC
hospital

State 4:
Last discharge from
KPSC facility (not

N = 13,056

1.10 (0.97-1.25)

State 3:
Death (in or out of
hospital)
N=2946

bsignificant at p < 0.01 (99% Cl)

Ozone effect estimates standardized by interquartile range, from multistate model
(B) O, effect
estimates

0.96 (0.91-1.00),

State 1:
COVID-19 diagnosis and
first hospitalization within

KPSC facility within
pANCEVE

N =15,978

0.98 (0.91-1.05)
State 2: 2
Experienced first =
deterioration event (ICU
admission, ventilation)

1.21° (1.13-1.28)
N =6,390

1.08 (0.98-1.19)

1.46 (0.87-2.46)

90-day Study Period

ssignificant at p < 0.05 (95% Cl)

Adjusted for temperature and humidity, stratified by age group (5-year), sex, and race/ethnicity

Exclude
person-time of
patients after
they are admitted
to a non-KPSC
hospital

State 4:
Last discharge from
KPSC facility (not

hospitalized at 90 days)
N = 13,056

1.24% (1.01-1.51)

State 3:
Death (in or out of
hospital)

N =2,946

bsignificant at p < 0.01 (99% Cl)

NO, effect estimates standardized by interquartile range, from multistate model
(C) NO,
effect

estimates

1.01 0.97-1.04)
== 1.03 (0.97-1.09)

State 1: )
COVID-19 diagnosis and g
first hospitalization within

State 2:
Experienced first
— deterioration event (ICU

149 (1.13-1.24) ¢

admission, ventilation)
N = 6,390

KPSC facility within
PANCEVEY
N =15,978

1.07 (0.99-1.16)

0.60° (0.40-0.90)

90-day Study Period

asignificant at p < 0.05 (95% Cl)

Figure 16. Effect estimates for select pollutants in a multistate survival model. Hazard ratios (95% ClIs) are presented for exposure
effects of PM, _ mass (A), O, (B), and NO, (C). Results are adjusted for temperature and relative humidity as confounders, stratified by

age group (5-year), sex, and race/ethnicity. aP < 0.05. bP < 0.01 (99% ClIs).
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Adjusted for temperature and humidity, stratified by age group (5-year), sex, and race/ethnicity

Exclude
person-time of
patients after
they are admitted
to a non-KPSC
hospital

State 4:

Last discharge from
KPSC facility (not
hospitalized at 90 days)
N = 13,056

1.03 (0.86-1.23)

State 3:
Death (in or out of

hospital)
N=2946

bsignificant at p < 0.01 (99% Cl)
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except for a slightly lower effect of O, exposure on the risk
of transitioning from hospitalization to ICU admission
(Appendix Table D9).

We also ran two-pollutant models for all possible
combinations (Table 8). The effect of PM, _ exposure on the
risk of transitioning from hospitalization to deterioration
remained significantly elevated but was attenuated when
NO, was included in the model. For the transition from
deterioration to recovery, the effects of PM,_ exposure
became larger and statistically significant when NO, was
included in the model, indicating that patients living in
less polluted areas were more likely to recover than those
living in more polluted places. Effects of PM, , exposure on
both the transitions from deterioration to death and from
recovery to death became stronger in the model including
PM, _ and NO,, with the association for the latter transition
approaching statistical significance in the two-pollutant
model.

Most of the effects of NO, were attenuated and not
statistically significant in the two-pollutant models with
PM, ., although the risk of transitioning from hospitaliza-
tion to deterioration remained elevated and nearly signif-
icant. In the two-pollutant models with NO, and PM, ,
some of the effects of NO, changed direction, with NO,
exposure becoming negatively associated (although not
significantly) with both transitioning from deterioration to
death and from recovery to death. In the model with PM, _,
the association between NO, exposure and the transition
from deterioration to recovery became statistically signifi-
cant, meaning that patients living in areas with higher NO,
exposure were more likely to recover after a deterioration
event — an unlikely result that probably reflects instability
in the estimation that is due to collinearity between the
two pollutants.

When NO, was included in the two-pollutant models,
the effect of O, exposure on the risk of transitioning from
hospitalization to deterioration remained of similar size
and remained statistically significant, and the effect on the
transition from hospitalization to recovery was attenuated
and of borderline significance. Other results continued to
display similar patterns but were mildly attenuated in size
and significance.

With PM, , in the two-pollutant model, the effects of O,
exposure were mixed, and only the association with tran-
sitioning from hospitalization to deterioration remained
statistically significant. When PM,  was included in the
model, the HR for the effect of O, exposure on the transition
from hospitalization to death became higher and borderline
significant. The two-pollutant model revealed that PM,
confounded the effect of O, exposure on the transition from
deterioration to death, with the adjusted effects being two-
thirds smaller than in the single-pollutant model.

Results for the Cox model are also shown in Appen-
dix Table D8. The directions of the associations between

pollutant exposure and the transitions between health
event states were mostly as expected, and the results were
remarkably similar to those from the multistate model.

DISCUSSION AND CONCLUSION

We hypothesized that greater exposure to air pollution
would relate to increased risk of deterioration events and
death among patients hospitalized with COVID-19. We
also hypothesized that air pollution would affect the path-
ways to recovery, with those living in areas with higher
levels of air pollution being less likely to recover from
COVID-19. The results of this study generally confirmed
both hypotheses.

All studied pollutants significantly affected the tran-
sition from hospitalization to deterioration. Although
PM, . was the only pollutant that significantly affected the
transition from deterioration to death, there was evidence
that exposure to O, and, to a lesser extent, NO, elevated
the risk of this transition. Exposure to O, significantly
influenced the transition to recovery, with those living
in areas with higher levels of O, having a lower chance of
recovery. Exposure to O, increased the risks of death after
recovery and discharge from the hospital. This outcome
may have occurred if patients living in more polluted areas
were more likely to experience cardiopulmonary effects of
long COVID, making them more susceptible to the effects
of air pollution.

Unexpectedly, there was a negative association between
PM, . and NO, exposures and the risk of transitioning
from hospitalization to death; however, O, exposure was
positively associated with a large increased risk of this
outcome. Only a small number of patients (n = 62) in
the analysis cohort transitioned from hospitalization to
death, potentially leading to instabilities in the statistical
inferences, making these results potentially unreliable and
difficult to interpret. The unexpected finding regarding
NO, and PM, ,, therefore, could have occurred because of
unstable statistical inference resulting from insufficient
sample size. Moreover, we conducted detailed investi-
gations, including chart reviews, for these 62 patients.
(Data on patient characteristics for the group of those who
experienced this transition, compared to other transition
groups, as well as additional discussion, are presented in
Appendix Table D10.) This additional analysis suggested
that the unexpected findings may have been due to mis-
classification of COVID-19 deaths in older adult patients
with other strong risk factors for death who, by chance,
lived in areas with lower exposure to PM, , and NO,,.

The consistency in the results from the multistate
and Cox models further supports the conclusion that air
pollution exposure contributes to the progression from
hospitalization to deterioration and from deterioration to
death in patients with COVID-19. Additionally, exposure
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to air pollution reduces the chances of sustained recovery,
with positive associations between recovery being defined
as discharge from the hospital for 90 days and death. Our
analyses were based on the Markov assumption that time
spent in a previous health state did not influence subse-
quent transition states. Thus, we would expect similar
results from the Cox model and the multistate survival
model, provided that the statistical power was not substan-
tially lowered in the Cox model. When this phase of the
study was being conducted, COVID-19 remained a novel
virus, and we lacked sufficient prior knowledge to deter-
mine how time spent in one COVID-19-related health state
may influence future transitions to other states of health.
It is plausible that patients who spent a much longer time
in the ICU had a higher probability of dying; however, it is
also possible that the opposite is true if patients who were
severely ill were admitted to the ICU and died very soon
thereafter. At the time of the study, we were unable to pre-
dict how the amount of time a patient spent in one health
state would influence their subsequent transitions to other
states of health; thus, we made the simplifying Markov
assumption, which was prudent under the circumstances.
Given the novelty of both COVID-19 and our analysis, we
are unable to conjecture how changing this assumption
to account for patients’ time spent in previous states may
have influenced our results.

A weakness in our analysis is the fact that we did not
allow for a state representing readmission to the hospital
after discharge. In examining the data, we realized that
several patients were readmitted multiple times after
discharge, with 22.6% of the 2,830 readmitted patients
having multiple readmissions. The heterogeneity in this
group led us to conclude that classifying all readmitted
patients in the same group would have potentially resulted
in ascertainment bias for this health state. We did, how-
ever, allow for the readmitted patients to follow all six
transition states after readmission to the hospital, where
about 22% of the readmitted patients eventually died.

Other limitations of the study stemmed from the use of
EHRs. Specifically, we defined deaths as all-cause mortal-
ity. Data from EHRs do not include information on deaths
that occur outside of a healthcare facility (e.g., hospital).
Mortality data are available from state death records. The
cause of death-specific details in death records, however,
are only published with multiyear delays, and the coding
of cause of death is complex and subject to significant
ascertainment bias. In the setting of infectious diseases,
such as COVID-19, diverse pathways may lead directly
to death or exacerbate existing diseases, resulting in
premature death. Thus, COVID-19-related mortality has
routinely been identified via EHRs by identifying patients
with COVID-19-related diagnoses and then identifying
those patients whose death can be ascertained via all-cause
death records within a predetermined time frame after the
diagnosis.’*-1* We did not exclude suicides and accidents,
as both could have been affected by neurological and
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physical effects of COVID-19.° Nonetheless, some deaths
may have occurred without the patient having COVID-19.
For example, among the 62 patients who transitioned
directly from hospital admission to death, detailed chart
reviews of approximately 14% of these patients revealed
that several of them had serious chronic diseases, such as
stage IV breast cancer or recent coronary events. As we
were unable to ascertain whether COVID-19 played an
aggravating role in these deaths, we included all deaths
in the analysis and did not evaluate the risk of infection
related to disease or progression. Any discussion of the
links between infection to subsequent severity would only
be speculative on our part, precluding our ability to offer
further discussion.

Overloading of the ICU, with resulting degradation of
care, was a potential concern. To address this, we consulted
with both hospital administrators and clinicians attending
to patients with COVID-19. We also queried an internal
KPSC system that tracked ICU utilization. We determined
that KPSC did not run out of ventilators or physical space
for admitting seriously ill patients with COVID-19. An
overflow facility that could have accepted KPSC patients
was never used. For some patients, however, inten-
sive-level care was provided outside of the physical ICU.

In accordance with the study design, we excluded
patients who received care outside the KPSC health
system; these patients composed about 25% of the total
number of patients admitted to the hospital (Appendix
Table D5). Compared with patients who received care at
a KPSC facility, patients treated outside the KPSC system
were older, were more likely to be White and less likely
to be Hispanic, included a higher proportion of smokers,
and had slightly lower air pollution exposures. We are
unable to conjecture about how these differences may
have affected our results, although the composition of
the study population may limit the generalizability of the
findings to patients treated within the KPSC health system.
Nonetheless, the internal validity of the findings would be
maintained.

Another potential weakness of this study is the use
of exposure fields for 2016 in relation to outcomes that
occurred in 2020-2021. The overall pattern of air pollutant
exposures in Southern California, however, is generally
consistent over time, given the major meteorological, topo-
graphical, and transportation influences throughout the
region. Inland areas around San Bernardino and Riverside
have consistently higher levels of pollution than do areas
in the west of the region, because of the prevailing west-
erly winds from the Pacific Ocean, temperature inversions
that form inland and keep the pollution close to ground
level, and physical blocking from the mountain ranges that
are present in the north, east, and south of the region.'*
Earlier studies demonstrated that the spatial pattern for
PM, , exposure has been maintained over 10 years.*** Thus,
in the context of our assessment of chronic exposure to



M. Kleeman et al.

air pollution, it is unlikely that the spatial patterns would
have changed dramatically over the 4-5 years between the
estimation of exposures and the assessment of COVID-19
severity.

An exception to the likelihood of relatively sustained
spatial patterns of air pollutants may be the COVID-19
lockdown period in 2020, when traffic levels were substan-
tially reduced. Recent studies have shown that near-source
NO, declined by approximately 20% to 25% during this
period.’* Near-source traffic pollution estimated during
normal conditions in 2016 may have overestimated expo-
sures during the lockdown. Although such overestimation
could possibly affect the accuracy of exposure estimations,
this relatively short-term event is unlikely to affect the lon-
ger-term chronic exposures that we hypothesized would
lead to more severe adverse outcomes of COVID-19. The
1-km scale of our model outputs may have imparted rel-
atively more error in the estimated NO, exposures, which
often vary sharply near emission sources, such as major
roads and highways, potentially attenuating the reported
effects of NO,.

Because of the waves of COVID-19 that occurred in the
region, including one major wave occurring from November
2020 to January 2021 and a smaller wave in June and July
2020, we were unable to evaluate the relative contribution
of acute exposures to air pollution, as these periods had
fairly similar short-term exposures. Therefore, we cannot
rule out the possibility that short-term pollutant exposures
during the lockdown period may also have influenced
the sequelae of COVID-19. The strong consistency of the
spatial patterns over time, combined with the short period
of the lockdown, however, likely mitigated this potential
source of error in the estimation of exposures.

Despite these limitations, our findings strengthen the
body of evidence that air pollution contributes to most
aspects of the sequelae experienced by patients with
COVID-19. The reported results have several possible
implications for medical practice, public health policies,
and individual behavior. First, physicians treating patients
with COVID-19 could benefit from knowing the likely air
pollution exposures of these patients, as this information
may help clinicians specifically target the most efficacious
treatments to patients at high risk for severe outcomes.
Second, public health decision-makers would benefit from
having this information to inform their decisions about
future controls on air pollution. Third, many areas that
have experienced or are experiencing severe COVID-19
outbreaks and the associated demands on the healthcare
system and increased mortality (e.g., Southern California,
Northern Italy, India, China) continue to experience air
pollution levels that exceed both World Health Organiza-
tion guidelines and local air quality regulations. Fourth, if
the information is properly communicated, people living
in high-exposure environments could be less hesitant to
receive the COVID-19 vaccination if they are aware that

they have an elevated risk of severe COVID-19 outcomes
because of their exposure to air pollution. In summary,
reducing air pollution could provide an important means
of reducing the severity of both COVID-19 and possibly
other novel viruses that may emerge in the future. Such
reductions may thus protect vast populations from the
most severe outcomes of various viruses.
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CHAPTER 7: ASSOCIATION BETWEEN

AIR POLLUTION AND POST-ACUTE
SEQUELAE OF SARS-COV-2

INTRODUCTION

Post-acute sequelae of SARS-CoV-2 (PASC, also known
as long COVID) can be a debilitating illness that occurs
after SARS-CoV-2 infection.® It is estimated that PASC has
affected more than 7.3% of the US population, nearly 18.8
million people, in the first 3 years after the pandemic.'?
Recent studies show that approximately 17.8 million
people in the United States continue to experience PASC
symptoms, with higher rates of PASC among women than
men.! In the United States, the economic costs of PASC,
resulting from reduced quality of life, lost earnings, and
increased medical expenses, likely exceed $3 trillion in
the United States.'”’

PASC represents a multisystem syndrome that leads
to an array of outcomes. Although approximately 60% to
70% of the specific etiologies are still being investigated,
biologically plausible mechanisms have been identified.'®
Studies using individual-level data have demonstrated
a relationship between air pollution and both COVID-19
incidence and severity.’*® Many of the same mechanisms
that influence disease severity in COVID-19 could con-
tribute to PASC, including oxidative stress in the lung,
inflammation, and suppression of the immune system.

Three recent studies have reported an association
between air pollution and risk of PASC.***'*? One such
study focused on a cohort of young adults in Stockholm,
Sweden."® Of the 753 individuals surveyed, 116 (15%)
displayed symptoms of PASC, which persisted for at least
2 months after infection. Air pollution exposures were
estimated with a dispersion model and appeared to be very
low overall, with a PM, . annual mean of 6.39 mg/m®. For
each incremental increase in PM, , concentration that was
equivalent to the IQR, the authors reported adjusted odds
ratios (ORs) of 1.28 (95% CI, 1.02—-1.60) for long COVID,
1.65 (95% CI, 1.09-2.50) for dyspnea, and 1.29 (95% CI,
0.97-1.70) for altered smell or taste. Other modeled pollut-
ant exposures were also associated with elevated risks of
outcomes related to PASC

The second study enrolled 500 adults in the Makkah
region of Saudi Arabia, with a final sample of 410 indi-
viduals included in the analysis."! Exposures to PM, and
PM, _ were assessed with ground-based monitoring stations
assigned to subregions of the study area. Levels of air pol-
lutants were very high, with PM, , seasonal means ranging
from 67.0 mg/m? to 233.5 mg/m? Of the 410 individuals
in the study cohort, 140 (34%) reported having at least
one symptom of long COVID. For each increase in PM,
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exposure equivalent to the IQR, the authors reported a
rate ratio of 1.28 (95% CI, 1.06—1.54), which is remarkably
similar to the comparable result reported in the Swedish
study. Exposure to PM,  was also associated with elevated
risks of a similar magnitude. All study participants had
received two doses of vaccine, indicating that elevated
risks of PASC associated with air pollution exposure exist
even after vaccination.

A third study utilized an exploratory exposomic
approach and EHR data from Florida and New York City
to evaluate nearly 200 risk factors for long COVID."** The
study used several publicly available exposure estimates
assigned to the ZIP code of residence for each patient.
Investigators reported positive associations between long
COVID-19 and exposure to air pollutants, including several
air toxics and speciated particles (e.g., ammonium). The
relatively coarse resolution of the exposure assignments at
the ZIP code level, however, could have introduced mea-
surement error that may have biased some results toward
the null hypothesis.

These three studies collectively suggest that exposure
to common air pollutants may increase the risk of PASC
symptoms; however, two of the studies had relatively
small sample sizes, and the other study used low-resolu-
tion exposure assignments. Moreover, the Swedish study
reported remarkably low levels of air pollution, whereas
the Saudi Arabian study involved extremely high levels
of pollution. Given the substantial consequences of PASC
and the apparent inability of vaccines to completely
prevent PASC symptoms after infection,’*® a need exists
to investigate whether air pollution increases the risk of
PASC in larger study populations, with well-characterized
exposures assigned at high resolution to the home address
of participants.

In this study, we hypothesized that exposure to air
pollutants would be associated with elevated risk of PASC
in a cohort of patients hospitalized with COVID-19 in
Southern California. Our previous research indicated that
air pollution exposure increased the risk of death after
hospitalization in this cohort and that air pollution was
associated with progression to more severe states of ill-
ness, such as admission to the ICU."**'# The present study
extended the analysis of this cohort to investigate the risk
of developing PASC in relation to air pollution exposure.

KPSC COHORT AND HEALTH DATA

We identified 12,634 patients who were 18 years of
age or older at the time of their COVID-19 diagnosis or
positive COVID-19 test; hospitalized with COVID-19 from
June 1, 2020, to January 31, 2021; and alive at the time of
discharge. The Delta variant of SARS-CoV-2 was dominant
during most of this period, and nearly all enrolled patients
were unvaccinated.'** A COVID-19-related hospitalization
was defined as a hospitalization occurring within 21 days
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of a positive COVID-19 test. To
enable assessment of comor-
bidities, only patients who
were members of the KPSC
health system for 12 months
before and after being diag-
nosed with or testing positive
for COVID-19 were included
in the study. A flowchart sum-
marizing the construction of
the cohort used for analysis is
presented in Figure 17.

DEFINITION OF PASC

PASC conditions were de-
fined as a set of 45 diagno-
ses described in detail else-
where.** We collaborated with
a KPSC hospitalist to create
clinically meaningful cate-
gories grouping these 45 di-
agnostic codes by organ sys-
tem; these categories included
pulmonary, cardiac, derma-
tologic, cardiometabolic, en-
docrine, gastroenterological,
hematological, renal, neuro-
logical, constitutional (e.g.,
fatigue, malaise), and psychi-
atric diseases. We then se-
lected a subgroup of these
categories, which represent-
ed specific biological sys-
tems that we expected would
be most affected by air pol-
lution; this subgroup includ-
ed cardiac, cardiometabolic,
pulmonary, and neurologi-
cal conditions.’***** We used
a conservative definition of
PASC, such that those patients
presenting with a new disease
or condition (e.g., atrial fibril-
lation) during their hospital
stay would not be counted
as having a PASC condition
if they were subsequently
diagnosed with the same
condition after discharge.

Cohort:

N = 316,224

COVID Cases
Hospitalized within 21 days of positive test
N = 21,997

Positive COVID cases with 1 year continuous KPSC enroliment before index

Data from claims
N = 5,520

Survived through Hospital Discharge

N=14,154

Died during hospitalization
N =2,323

Y

KPSC Membership discontinued

during 1-year follow-up

N =688

KPSC Membership continued
1 year after Hospital
Discharge
N = 13,466

h
Final Cohort

N =12,634

v

Missing AQ exposure/
geocoding data
N =378
Missing BMI
N =176
Missing Smoking
N =21
Missing NDI
N=1
Missing EVS
N = 256

Figure 17. Flow chart depicting selection of the study cohort for an analysis of air pollutant

exposures and risk of long COVID in Southern California.

To avoid identification bias involving pre-existing conditions, patients diagnosed with any of the PASC condi-
tions during the 12 months prior to hospitalization or during hospitalization were excluded from being a candi-
date for that PASC condition in the context of this study. Patients were considered to have a PASC condition in
the cardiac, cardiometabolic, pulmonary, or neurological categories if they had at least one diagnosis in that cat-
egory during a healthcare encounter within 3 months or 12 months after discharge from their first COVID-19—

related hospitalization.
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For a sensitivity analysis, we further separated the sub-
group of pulmonary diseases into PASC diagnoses related
to (Group 1) bronchitis, cough, or cold-related symptoms;
(Group 2) oxygen- and breathing-related illnesses (e.g.,
dyspnea, hypoxemia); or (Group 3) serious respiratory or
cardiorespiratory disease (e.g., pulmonary edema, intersti-
tial lung disease). Of the 12,634 patients in the analysis
cohort of this study, 7,753 (61.4%) developed one or more
PASC conditions within 12 months of hospital discharge.

EXPOSURE MODEL

Exposures to NO,, O,, PM, , mass, PM_ ,, PM, , EC, PM,
nitrate, and PM,, biomass combustion were specified
using a CTM as described in Appendix E.'**14 The CTM
predictions were combined with available ground-based
and satellite measurements, using an RFR model to
remove bias in predictions. All exposures were assigned
on the basis of the home address of each study participant
as 30-day and 365-day averages before their COVID-19—
related hospital admission.

STATISTICAL ANALYSIS

We used conditional logistic regression to evaluate the
association between air pollution exposure and a PASC
diagnosis. All models were stratified to control for age, sex,
and race/ethnicity. We included several confounding vari-
ables a priori, including smoking status, exercise, BMI, and
poverty as indicated by enrollment in MediCal (a govern-
ment assistance program for persons in poverty). Neighbor-
hood-level confounding variables included a deprivation
index, proportion of workers aged 16 or older taking public
transit (another marker of deprivation), temperature, and
humidity in the month of the initial COVID-19 diagnosis,
and the NDVI (a measure of green cover locally, extracted
from the Terra MODIS Vegetation Indices [MOD13Q1.006]
16-day global dataset with a resolution of 250 m).

For those pollutants found to be significantly associated
with PASC outcomes in single-pollutant models, we ran
deviation from the mean models; these models included
the annual mean, calculated as the average exposure 1
year before hospital admission, and the deviation from
the annual mean for the 30-day exposure used in the main
analysis. Including both the 365-day average and the devi-
ation terms in the same model allowed us to investigate
whether associations were likely driven by relatively acute
exposures 30 days before hospitalization, longer-term
annual average exposures before admission, or both. We
also ran the 365-day exposure as a separate model to
further investigate which exposure window appeared to
influence the observed associations.

We conducted sensitivity analyses, including two- and
three-pollutant models for PM, ,, PM, ,, O,, and NO,. We

2.5 0.1°
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also performed separate analyses for wildfires, but found
that the majority of COVID-19 hospitalizations in the study
occurred nearly 90 days after the wildfire activity in 2020.
The temporal misalignment between the timing of wild-
fire-related exposures and the dates of hospital admission
likely biased findings toward the null hypothesis or even
negative associations (Appendix Figure E2). Therefore,
we conducted sensitivity analyses with the wildfire tracer
removed from the PM, , mass variable to assess whether
the temporal misalignment had biased the PM, . results
toward either the null hypothesis or negative relationships.

RESULTS

A descriptive summary of the study cohort is presented
in Table 9. Women were more likely than men to expe-
rience the PASC condition. Patients with higher rates of
exercise were less likely to experience PASC, compared
to patients who exercised less. Patients with lower BMIs
were less likely than those with higher BMIs to experience
PASC. Otherwise, there were no notable differences in the
incidence of PASC by demographic characteristics.

The number of patients diagnosed with each PASC
diagnosis group is displayed in Table 10. For all diagnosis
groups, the ascertainment of PASC within the 12-month
follow-up identified a larger proportion of patients than
did ascertainment within the 3-month follow-up. Pulmo-
nary diagnoses were the most commonly identified PASC
diagnosis group within both the 3-month and 12-month
follow-ups, with neurological diagnoses being the next
most prevalent at both ascertainment points.

Average pollutant exposures in the 30-day and 365-day
exposure windows before hospitalization are summarized
in Table 11. Additionally, the correlations between pollut-
ant exposures of the study participants over the 30 days
before their hospitalization with COVID-19 are presented
in Table 12. Exposures to PM, , mass and PM, _ from wild-
fires (PM, , biomass combustion) were moderately highly
correlated, reflecting the substantial influence of very high
wildfire-related pollutant concentrations on a limited
number of study participants. The correlation between
PM, , mass and PM,, mass not associated with wildfires
(PM, . mass without PM,  biomass combustion) better
represented the exposures experienced by the majority of
study participants. All other correlations between air pol-
lutant exposures, summarized in Table 12, had r values of
less than 0.6. Correlations between NO, and O, exposures
were negative, likely reflecting the titration of O, in zones
with fresh NO_emissions.

Appendix Figure E2 shows the time history of wild-
fire-related exposures during the study period. Exposure
concentrations were highest during the wildfire season,
beginning in late August 2020 and lasting through early
November 2020. By coincidence, the surge in COVID-19
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Table 9. Descriptive Characteristics of the Study Cohort Used to Investigate Associations Between Air Pollution

Exposures and PASC Outcomes

PASCs at 12 Months

No PASCs PASCs Total

(N =4,881) (N =7,753) (N =12,634) P value
Age at index, mean (SD) 60.9 (17.18) 62.5 (15.58) 61.9 (16.23) <0.000a
Race/ethnicity, n (%) 0.48012
Asian/Pacific Islander 587 (12.0%) 857 (11.1%) 1,444 (11.4%)
Black 439 (9.0%) 678 (8.7%) 1,117 (8.8%)
Hispanic 2,813 (57.6%) 4,561 (58.8%) 7,374 (58.4%)
Other/multiple/unknown 42 (0.9%) 70 (0.9%) 112 (0.9%)
White 1,000 (20.5%) 1,587 (20.5%) 2,587 (20.5%)
Sex, n (%) <0.000b
Female 1,938 (39.7%) 3,654 (47.1%) 5,592 (44.3%)
Male 2,943 (60.3%) 4,099 (52.9%) 7,042 (55.7%)
Smoking, n (%) 0.04282
Ever-smoker 1,616 (33.1%) 2,703 (34.9%) 4,319 (34.2%)
Never-smoker 3,265 (66.9%) 5,050 (65.1%) 8,315 (65.8%)
BMI (kg/m2), mean (SD) 31.8 (7.91) 32.6 (7.74) 32.3(7.81)  <0.0001a
Medicaid, n (%) 0.00132

No
Yes

4,309 (88.3%)
572 (11.7%)

6,692 (86.3%)
1,061 (13.7%)

11,001 (87.1%)
1,633 (12.9%)

Exercise Vital Sign_ Mean (SD) 68.1 (103.97)

NDI, Mean (SD) 0.6 (1.04)

61.2 (95.11) 63.9 (98.68) 0.00741

0.5 (1.01) 0.6 (1.02) 0.44381

aKruskal-Wallis P value.
bChi-square P value.

hospitalizations occurred in midsummer and early winter,
temporally opposite the peak of the wildfire cycle.

SINGLE-POLLUTANT MODELS AND SENSITIVITY
ANALYSES

All significant associations between 30-day single-
pollutant exposures and the PASC outcomes ascertained
within 3 months and 12 months are summarized in Table
13. For each exposure increment equivalent to the IQR,
exposure to PM, | was significantly associated with several
PASC outcomes at 3 months, including cardiac outcomes
(OR, 1.115; 95% CI, 1.006-1.235), cardiometabolic out-
comes (OR, 1.130; 95% CI, 1.038-1.230), and pulmonary
outcomes (OR, 1.062; 95% CI, 1.009-1.118). O, exposure
was associated with pulmonary outcomes at 3 months (OR,
1.097; 95% CI, 1.019-1.180), and PM, , nitrate exposure
was associated with cardiometabolic outcomes at 3 months
(OR, 1.181; 95% CI, 1.013-1.377). Exposures to NO, and

PM, . EC were not significantly associated with any PASC
outcome, although several risk estimates for each pollutant
were elevated. Exposure to PM, . mass (OR, 0.935; 95% CI,
0.876-0.998) was negatively associated with pulmonary
outcomes at 3 months. Similarly, exposure to PM,, OC,
a major component of wildfire smoke, had a borderline
significant negative association with pulmonary outcomes
(OR, 0.959; 95% CI, 0.914—1.006) at 3 months, with a nearly
identical result for the corresponding 12-month outcome.

We found fewer significant associations with the
12-month PASC outcomes compared to the PASC outcomes
at 3 months. In many cases, the directions of the effects
at 3 months and 12 months were consistent (Table 13
and Figure 18). For PM_, exposure, the associations with
PASC outcomes that were significant at 3 months were not
statistically significant and of much smaller magnitude at
12 months, with point estimates being at least 50% less
than those at 3 months. By contrast, associations between
O, exposure and pulmonary outcomes and associations
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Table 10. PASC Diagnosis Groups

Incidence at

Incidence at

Diagnosis Group Diagnoses 3 Months 12 Months

Cardiac Arrhythmias, myocarditis/pericarditis, stress cardiomyop- 524 (4.3%) 778 (6.5%)
athy

Cardiometabolic Diabetes, renal disease, arrhythmias 757 (6.4%) 1,203 (10.4%)

Pulmonary Bronchitis, chest/throat, cough, dyspnea, hypoxemia, ILD, 2,859 (23.1%) 4,130 (34.0%)
PE/DVT, pulmonary edema

Neurologic Ataxia/trouble walking, autonomic dysfunction, delirium 1,550 (12.6%) 2,817 (23.2%)

Pulmonary (group
1 only)

Pulmonary (group
2 only)

Pulmonary (group
3 only)

or encephalopathy, dementia, encephalitis, headache, myo-

neural disorders, ophthalmologic conditions following

stroke, Parkinsonism and other extrapyramidal syndromes,
peripheral nerve disorders, seizures, stroke, stroke (intra-

cranial hemorrhage), stroke (ischemic), vertigo

Bronchitis, chest/throat, cough

Dyspnea, hypoxemia

ILD, PE/DVT, pulmonary edema

1,213 (10.3%)

1,821 (15.3%)

406 (3.4%)

2,197 (19.1%)

2,497 (21.5%)

626 (5.4%)

DVT = deep vein thrombosis; ILD = interstitial lung disease; PE = pulmonary embolism.

Table 11. Average Pollutant Exposures 30 Days and 365 Days Prior to COVID-19-Related Hospitalization

30 Days 365 Days

Characteristic Median (IQR) Mean (SD) Range Median (IQR) Mean (SD) Range
Temperature (°C) 15.1 (13.84,16.23) 15.22 (1.52) 12.84, 20.14 NA
Relative humidity (%) 12.36 (11.53, 14.59) 13.00 (1.85) 9.74, 19.97
NDVI 164 (149, 178) 163 (24) 73,212
NO2 (ppb) 14 (9, 21) 15 (7) 1,41 13.4 (9.4, 16.9 13.2 [5 0) 1.0, 31.2
0, (ppb) 48 (43, 56) 2 (12) 33,108 7 (52, 63 8(7) 36, 85

M, ,(ng/m?) 0.83 (0.66, 1.01) 0.87 (0 34) 0.14, 4.30 0.99 (0.85, 1.08) 0.96 (0 17) 0.18, 4.00
PM,, elemental carbon 0.59 (0.40, 0.82) 0.62 (0.28) 0.02, 3.87 0.58 (0.43, 0.68) 0.56 (0.18) 0.06, 1.35
(ng/m?)
PM, , mass (pg/m?) 12.9 (10.2, 15.6) 13.1 (4.6) 2.0, 94.0 13.14 (11.56, 14.35) 12.85 (2.17) 4.14, 28.58
PM, , nitrate (ng/m?) 1.91 (0.89, 3.10) 2.07 (1.31) 0.00, 9.42 1.63 (1.26, 1.89) 1.57 (0.44) 0.14,5.15
PM, , organic compounds 2.13 (1.39, 2.89) 2.37 (1.60) 0.08, 37.25 2.53(1.99,2.91) 2.48(0.70) 0.23, 8.86
(ng/m’)
PM, . biomass combustion ~ 0.39 (0.12, 0.83) 1.07 (2.58) 0.01, 81.21 1.71 (1.14, 1.91) 1.60 (0.84) 0.05, 15.85
(ng/m?)
LUR NO, (ppb) 17.0 (12.6, 21.7) 17.2 (6.1) 0.0, 42.4 14.6 (10.9,17.2) 14.3 (4.1) 0.0, 37.5
LUR PM, , (ng/m?) 10.28 (8.90, 11.74) 10.53 (2.74) 0.00, 25.45 10.08 (9.01, 11.11) 10.02 (1.82) 0.00, 17.87
PM,, without biomass 12.2 (9.6, 14.6) 12.0 (3.6) 1.9,25.7 11.68(10.29, 12.64) 11.25 (1.83) 3.27,19.81

combustion (pg/m?)

NA = not available.
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Table 12. Pearson Correlations Between Pollutant Exposures for Study Participants 30 Days Before COVID-19-Related

Hospitalization.
PMZ'5
Pm, (without
Pm, Biomass biomass NO,
NO, o, Mass  Combustion combustion) PM (LUR)
NO2 1.00 -0.53 0.33 -0.07 0.47 0.06 0.79
O3 -0.53 1.00 0.13 0.29 -0.05 0.49 -0.62
PMZ5 mass 0.33 0.13 1.00 0.62 0.83 0.42 0.27
PM, . biomass combustion -0.07 0.29 0.62 1.00 0.08 0.03 -0.05
PM, _ (without biomass combustion) 0.47 -0.05 0.83 0.08 1.00 0.52 0.38
PM&1 0.06 0.49 0.42 0.03 0.52 1.00 -0.16
NO2 (LUR) 0.79 -0.62 0.27 -0.05 0.38 -0.16 1.00

Table 13. Significant Associations Between Air Pollutant Exposures and PASC Diagnosis Groups at 3 Months and 12
Months After Hospital Discharge: Results of Single-Pollutant Models

PASC Group Pollutant Outcome Time (Months) Estimate (95% CI)
Cardiac PM, , 3 1.115% (1.006, 1.235)
Cardiac PM, , nitrate 12 1.204*(1.032, 1.405)
Cardiac PM, . biomass combustion 3 0.956* (0.915, 0.999)
Cardiometabolic/ diabetes PM, _ nitrate 3 1.181%(1.013, 1.377)
Cardiometabolic/ diabetes PM, , 3 1.130" (1.038, 1.230)
Cardiometabolic/ diabetes PM, . nitrate 12 1.160% (1.023, 1.314)
Pulmonary PM,, 3 1.062° (1.009, 1.118)
Pulmonary 0, 3 1.097° (1.019, 1.180)
Pulmonary PM, 3 0.935% (0.876, 0.998)
Pulmonary 0, 12 1.082* (1.012, 1.156)
Pulmonary PM, . (without biomass combustion) 12 0.926* (0.871, 0.985)
Pulmonary PM, , mass 12 0.924" (0.872, 0.980)

2P < 0.05.

"P < 0.01.

between PM,  nitrate exposure and cardiometabolic out-
comes were similarly elevated at 3 months and 12 months.
Exposure to PM,_ mass was negatively associated with
pulmonary outcomes in both analysis windows. Negative
effects of wildfire-related exposures on cardiac outcomes
became nonsignificant in the 12-month models, possibly
reflecting even more severe temporal misalignment
between COVID-19 incidence and the wildfires. Several
other outcomes at 12 months were significantly associated
with pollutant exposures, including the relationship
between PM, _ nitrate exposure and cardiac outcomes (OR,
1.204; 95% CI, 1.032—1.405).

We further investigated the negative effect of PM, , mass
exposure on pulmonary outcomes in sensitivity analyses.
Specifically, we removed the wildfire component of PM,
mass and controlled for co-pollutants (Table 14). In all
instances, the negative effects of PM,, mass exposure
became nonsignificant in the 3-month analysis. Removing
the temporally misaligned wildfire component of PM,
mass did not eliminate the negative associations, but the
results were no longer statistically significant. Controlling
for O, further reduced the effect sizes of PM, mass and
rendered them nonsignificant.
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Figure 18. Odds ratios for pollutant exposures significantly associated with specific groups of PASC outcomes at 3 months and 12
months among patients hospitalized for COVID-19 in Southern California. Data are based on results from single-pollutant models.

We investigated different exposure models for findings
that were statistically significant in single-pollutant mod-
els. Specifically, we investigated whether the 30-day expo-
sure, the 365-day exposure, or the deviation of the 30-day
mean from the 365-day mean was driving the observed
associations (Table 15). All ORs resulting from these alter-
native exposure models were positive, suggesting that both
the 30-day and 365-day exposures may have influenced
the development of PASC symptoms.

We also ran analyses using the 365-day mean in sin-
gle-pollutant models. These models using the 365-day
means generally demonstrated pollutant exposure effects,
some of which were significantly elevated. Most of the
effects, however, were smaller than those seen in the
models using the 30-day mean, except for the effect of O,
exposure on pulmonary outcomes at 12 months, which
was slightly larger.

We extracted the Akaike information criterion (AIC)
for all models (Appendix Table E6). In six out of eight
models, the 30-day exposure window had the lowest AIC.
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In two models, the AIC was lower for the 365-day expo-
sure window (i.e., the effect of PM,  nitrate exposure on
cardiometabolic outcomes at 3 months and the effect of O,
exposure on pulmonary outcomes at 12 months). We used
the log likelihood ratio test to separately compare the devi-
ation models with two terms to the 356-day mean models,
which demonstrated that there was no improvement in the
model fit. Thus, the deviation models yielded inconclu-
sive results, as including both terms simultaneously did
not show improvement over the use of the single 365-day
exposure window.

We replicated all results in Appendix Table E4 with
a sandwich estimator, which provided a robust variance
to account for the nonindependence of patients within
the same census tracts. The results of this analysis are
presented in Appendix Table E7. Most ORs were either
unchanged or slightly elevated. The overall conclusions
remained constant, with the same pollutant exposures
demonstrating statistically significant effects quantified by
elevated ORs of similar magnitude.
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Table 14. PM, , Sensitivity Analyses for Pulmonary PASC Outcomes at 3 Months and 12 Months After Hospital Discharge

Pollutant

Estimate (95% CI)
3-Month PASC Outcome

12-Month PASC Outcome

PM, , (CTM)
PM, . minus wildfire (CTM)
PM, , (CTM), controlled for O,

PM, . minus wildfire (CTM), controlled for O,

0.935* (0.876-0.998)

0.951 (0.888-1.018)

0.958 (0.894-1.026)

0.982 (0.911-1.059)

0.924% (0.872-0.980)

0.926° (0.871-0.985)

0.940 (0.883-1.001)

0.946 (0.884-1.012)

2P < 0.05.
bP <0.01.

Table 15. Results Comparing Various Exposure Time Windows with Different Model Specifications

Estimate Estimate
Outcome Estimate (95% (95% CI) (95% CI)
Time CI) Estimate (95%CI) 30-Day Deviation 365-Day from
PASC Group Pollutant (Months) 30-Day 365-Day from 365-Day Deviation Model
Cardiac PMm 3 1.115*(1.006, 1.078 (0.954, 1.110 (0.985, 1.095 (0.971,
1.235) 1.218) 1.252) 1.236)
Cardiac PM, , nitrate 12 1.204* (1.032, 1.115 (0.997, 1.114 (0.959, 1.078 (0.955,
1.405) 1.246) 1.293) 1.216)
Cardiometabolic/ diabetes PM, . nitrate 3 1.181° (1.013, 1.147" (1.026, 1.046 (0.903, 1.1312 (1.001,
1.377) 1.283) 1.213) 1.277)
Cardiometabolic/ diabetes PMO,l 3 1.130" (1.038, 1.046 (0.944, 1.146"(1.038, 1.069 (0.966,
1.230) 1.158) 1.266) 1.183)
Cardiometabolic/ diabetes PM, _ nitrate 12 1.1602 (1.023, 1.103% (1.008, 1.073 (0.952, 1.079 (0.979,
1.314) 1.207) 1.210) 1.190)
Pulmonary PI\/IO_1 3 1.0622 (1.009, 1.040 (0.980, 1.0612 (1.000, 1.052 (0.990,
1.118) 1.104) 1.125) 1.117)
Pulmonary O3 3 1.097° (1.019, 1.082* (1.012, 1.101 (0.958, 1.106" (1.022,
1.180) 1.156) 1.264) 1.196)
Pulmonary O3 12 1.082° (1.012, 1.111? (1.040, 1.026 (0.905, 1.113%(1.037,
1.156) 1.186) 1.164) 1.195)
aP < 0.05.
bP < 0.01.
MULTIPOLLUTANT MODELS and three-pollutant models; the ORs from three-pollutant
models were similar for the 12-month outcome (OR, 1.179;
We ran multipollutant models for PM_,, PM, , O,, and 95% CI, 0.987—1.407) and the 3-month outcome.

NO, (30-day exposures) for any outcome that demonstrated
a significant association in the single-pollutant models.
The multipollutant models were constructed as either
two- or three-pollutant models, with the three-pollutant
models including either PM, _ mass or PM,_ ,. The results of
the multipollutant models are depicted in Figures 19 and
20. In the multipollutant models, all effects of exposures
to PM, . and PM, ., minus wildfire smoke on cardiac PASC
outcomes became nonsignificant. We observed positive
associations between NO, and cardiac outcomes in two-

For the pulmonary PASC outcomes, several pollutant
exposures continued to display significant ORs, especially
in the three-pollutant models for both the 3-month and
12-month follow-up periods. In both models (i.e., 3 and
12 months), NO, and O, exposures had positive and sta-
tistically significant or borderline effects, whereas PM,
exposure continued to be negatively associated with the
pulmonary outcomes, although in two-pollutant models
with O,, the effects were confounded.
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Figure 19. Odds ratios for 30-day exposure effects on cardiac (A), cardiometabolic (B), and pulmonary (C) PASC outcomes at 3
months among patients hospitalized for COVID-19 in Southern California. Data are based on results from multipollutant models.
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PM,  as a potential confounding predictor of pulmonary
outcomes the effect of O, exposure remained significantly
elevated in every model, with effect sizes generally similar
to those in single-pollutant models. In three-pollutant
models, the effects of NO, and PM_ , exposures were dimin-
ished by confounding; whereas in two- -pollutant models,
the effect of NO, exposure was affected by confounding,
but the effect of PM , exposure remained elevated and, in
some instances, significantly so.

Multipollutant models of the effect of PM , exposure
on cardiac outcomes at 3 months were largely unaffected
by confounding due to NO, alone, O, alone, or NO, and
O, together. The smaller associations identified in the
single-pollutant models for 12-month outcomes persisted
in the multipollutant models.

For the cardiometabolic outcomes, the effects of NO,
exposure were slightly amplified when other pollutants
were included in the model. Specifically, the effects of
NO, on the 12-month outcome became slightly larger
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Figure 20. Odds ratios for 30-day exposure effects on cardiac (A), cardiometabolic (B), and pulmonary (C) PASC outcomes at 12
months among patients hospitalized for COVID-19 in Southern California. Data are based on results from multipollutant models.
In multipollutant models that included PM, , rather than in models including either PM,, alone or PM, and O,

together; the point estimates for the 3-month outcome were
similar. None of the effects of PM, , exposure approached
statistical significance for either the 3-month or 12-month
cardiometabolic outcomes. The effects of PM , exposure
on the 3-month cardiometabolic outcomes remained
significant when either NO,, O,, or both were included in
the model. As with the single-pollutant models, the effects
of PM, , exposure were smaller in size and generally non-
significant for the 12-month cardiometabolic outcomes.
The effect of O, exposure on cardiometabolic outcomes
was not statistically significant in single-pollutant models
and remained nonsignificant when other pollutants were
included in the model.

DISCUSSION AND CONCLUSION

Our findings from the single- and multipollutant
models examining associations between air pollution
exposures and PASC are summarized in Figures 18-20.
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Many of the potential risks associated with pollutant
exposures appeared elevated but did not reach statistical
significance, likely indicating a lack of statistical power to
detect effects on several of the outcomes. We also observed
some negative associations between PASC and exposures
to PM, , wildfire tracer, PM, . mass, and, in some models,
PM, OC and PM, _ EC, both of which are associated with
Wlldﬁre events. As described above, when we further
controlled for co-pollutants, removed the wildfire tracer
from PM, mass, or did some combination of both, all
negative associations became statistically nonsignificant.
(A summary of the sensitivity analyses of the effects of
PM, , biomass combustion is presented in Table 14.) Given
the results of these analyses, we concluded that these
unexpected protective effects resulted from the temporal
misalignment of wildfire smoke exposures and the surge
in COVID-19 cases that occurred in late 2020.

The strongest negative associations with PM, . expo-
sures were observed for the groups of PASC pulmonary
outcomes that included the most serious conditions and
diseases (Group 3; data not shown). This finding suggests
a survival effect, whereby patients with severe pulmonary
disease were more likely to die before they could be ascer-
tained in the study as having a PASC outcome. Patients
who died before PASC ascertainment were excluded from
the analysis, which may have biased the effect estimates
downward for the more serious pulmonary outcomes. In
our earlier studies, PM, _ exposure was the strongest pre-
dictor of mortality.”'?* This finding suggests that deaths
that occurred before PASC ascertainment may likely have
been due to conditions included in the pulmonary group
of PASC outcomes, which would have spuriously contrib-
uted to the negative findings.

Among the positive findings, O, exposure was strongly
and robustly associated with pulmonary outcomes, sug-
gesting that patients living in areas with higher levels of
O, either 30 days or 365 days before their hospitalization
were more likely to experience PASC, compared to those
living in areas with less exposure to O,. These associations
were present at both the 3-month and 12-month analysis
windows after hospital discharge. Including co-pollutants
in the models revealed minimal effects of confounding
in the association between O, exposure and pulmonary
outcomes.

Exposure to PM, | nitrate was strongly associated with
cardiac and cardiometabolic PASC outcomes. These asso-
ciations were significant at either the 3-month or 12-month
follow-up times for different outcomes; the magnitudes of
effects were similar for both follow-up times, suggesting
stable results that may have reached statistical significance
with a larger sample size. For cardiometabolic outcomes at
3 months and 12 months, the 365-day exposure window
for PM,  nitrate also displayed significant effects, suggest-
ing that both the acute and longer-term exposures may
have contributed to this association.
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At the 3-month follow-up, PM,_, exposure was sig-
nificantly associated with cardlac cardiometabolic,
and pulmonary outcomes; however, these effects, while
remaining positive, became considerably smaller and
did not reach statistical significance at the 12-month fol-
low-up. It is unclear why these effects became smaller and
nonsignificant in the ensuing 9 months after completion
of the 3-month follow-up. It is possible, however, that
the relatively short exposure window of 30 days before
hospitalization could have failed to capture important
aspects of exposure that occurred after discharge from
the hospital; with the longer follow-up, this deficiency
in fully assessing exposure could have been exacerbated.
Generally, we would expect that the closer temporality
between the 30-day exposure window and the 3-month
follow-up would result in more accurate exposure esti-
mates, compared to the 12-month follow-up, at which
time the exposures could have occurred up to 1 year
before the ascertainment of PASC conditions. This could
have heightened exposure measurement error, which may
have biased the 12-month follow-up analyses toward the
null hypothesis. Future research could usefully investigate
other exposure windows.

Taken together, our results suggest that exposure to air
pollution — particularly O,, PM,  nitrate, and PM_,
could increase patients’ risk of experiencing PASC. These
results broadly concur with the findings of prior studies
conducted in Sweden, Saudi Arabia, and the United
States,'** which reported positive associations between
exposure to air pollutants and the development of PASC
outcomes.™'*! The present study, however, strengthens
the evidence base, given the larger cohort size sampled
from a region with pollutant exposures that are somewhat
higher than the US average but probably more representa-
tive of general population exposures than those in either
the Swedish study, with very low exposure levels, or
the Saudi Arabian study, with extremely high levels of
exposure. Additionally, our study used high-resolution
exposure modeling combined with the home address of
patients, improving the exposure assessments compared
to those in the prior US study that used ZIP codes for
residential addresses.

Approximately 17.8 million people in the United States
continue to experience long COVID. Thus, the findings
presented here suggest that mitigating air pollution could
be a means of reducing the incidence of PASC. Although
vaccines and other preventive measures, such as social
distancing, remain the primary line of defense against
SARS-CoV-2, variable uptake of COVID-19 vaccines and
difficulty in maintaining the social measures over long
periods underscore the importance of preventive measures
that target ubiquitous and modifiable exposures, such as
air pollution, and require no individual decision-making
or actions. Moreover, PASC can occur in vaccinated
patients,”" which further highlights the importance of
pursuing all available risk-reduction strategies.
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CHAPTER 8: SYNTHESIS,

INTERPRETATION, AND IMPLICATIONS
OF FINDINGS

In this study, we investigated relationships between
ambient air pollution and aspects of COVID-19 incidence,
severity, and mortality, as well as conditions consis-
tent with long COVID (also known as PASC). We used
advanced CTMs and LUR models to estimate pollutant
exposures. Our ability to assess exposure to numerous air
pollutants, particle species, and other pollutant sources,
such as wildfire smoke, represents a primary strength of
the study. We used administrative public health surveil-
lance data on COVID-19 and several distinct cohorts of
hospitalized patients with COVID-19, each drawn from
the patient membership of the KPSC health system, to
evaluate different hypotheses. Broadly, we demonstrated
that exposures to several common air pollutants are associ-
ated with COVID-19 incidence and mortality, progression
from hospitalization to more severe health states, and long
COVID conditions, or PASC. Although the public health
emergency surrounding COVID-19 has passed, the disease
continues to pose substantial risks to individual and pop-
ulation health. As of December 2023, COVID-19 continued
to result in nearly 35,000 persons being hospitalized and
900-1,400 deaths per week in the United States.®

Approximately 10% to 30% of individuals with COVID-
19 will experience some form of long COVID, which can
have lifelong and debilitating effects. Thus, the importance
of addressing modifiable environmental risk factors, such
as air pollution, cannot be underestimated. As noted in a
recent Lancet editorial, the societal investment in gaining
an understanding of both the pathogenesis of long COVID
and potential measures to prevent its development has
lagged well behind the actual levels needed to effectively
treat and mitigate the clinical features and effects of this
complex disease.®

The results of our study broadly support the hypotheses
that air pollution increases an individual’s risk of COVID-
19, although our study investigating this outcome relied
solely on administrative data from the state of California.
Nonetheless, that study suggested that several air pollut-
ants contributed to increased incidence of COVID-19, a
finding that is consistent with earlier ecological studies
from Los Angeles* and the broader literature. Our study,
however, could not control for many potentially important
determinants of COVID-19 transmission, such as occupa-
tional exposure or residential crowding; this limitation
must be taken into account in considering our results
regarding associations with COVID-19 incidence.

We investigated COVID-19 mortality by using adminis-
trative data as well as individual patient data. Both analyses

suggested that mortality due to COVID-19 is significantly
associated with common air pollution exposures. Our anal-
yses based on individual patient data indicated that mete-
orological factors, specifically temperature and humidity,
also influence COVID-19 mortality. These meteorological
variables also modified the relationship between air pollu-
tion and mortality, with cooler and less humid conditions
(typical of winter weather in the study area) accentuating
the effects of air pollution on COVID-19 mortality.

We extended our patient-level analyses with the use of
multistate models to investigate the progression of COVID-
19 in hospitalized patients. These results demonstrated
that exposure to air pollution was significantly associated
with progression toward more extreme states of illness,
such as admission to the ICU and, ultimately, death. The
multistate models also showed that O, exposure was
significantly related to death after recovery from COVID-
19. These results corroborate our previous findings on
mortality but also highlight the concept that air pollution
may also affect both the severity of COVID-19 and the
likelihood of recovery among patients discharged after
hospitalization for COVID-19.

Finally, our in-depth investigation of air pollution and
long COVID revealed significant associations between
PASC conditions and several air pollutants, namely O,,
PM,,, and PM,, nitrate. We also identified unexpected
protective effects associated with exposure to PM,, and
various species related to wildfires. After conducting
extensive sensitivity analyses, however, we concluded
that these seemingly protective effects likely resulted
from temporal misalignment between wildfire smoke and
COVID-19 incidence as well as a lack of control for other
co-pollutants, such as O,, which was also a significant
positive predictor of pulmonary PASC outcomes.

Our findings on long COVID are perhaps the most
novel and important findings of our investigations, given
that long COVID continues to affect nearly 18 million
people in the United States, many who experience severe
debilitation and loss of work,’! and can even occur in
vaccinated individuals, although vaccination reduces
the risk of developing PASC conditions.’' All of these
factors point to the ongoing, sizeable impact of COVID-19
on public health, which may not be completely mitigated
with pharmaceutical and nonpharmaceutical control
measures. Additionally, research suggests that symptoms
of long COVID partly depend on the severity of the initial
infection and the number of times a person is infected,
both of which appear to be influenced by exposure to air
pollutants.*

STRENGTHS AND LIMITATIONS

We encountered several challenges in conducting the
data analyses for this study. First, the various exclusions
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required for the mortality, multistate, and long COVID
analyses necessitated the use of different analysis cohorts
for each substudy. Consequently, direct comparisons of
results across substudies are somewhat problematic, as we
cannot determine whether observed differences resulted
from underlying differences in the composition of the
cohorts. Nevertheless, we did note corroborative findings
among the analyses overall. Second, the majority of the
study cohort was composed of patients diagnosed with
COVID-19 during a large surge in cases that occurred from
November 2020 to January 2021. This characteristic of the
study population limited our ability to thoroughly investi-
gate the influence of highly temporally variable exposures,
such as wildfire smoke or pollution reductions resulting
from prior COVID-19 lockdown periods. The temporal
distribution of the study population likely also introduced
a negative bias in some of our findings, given that only
a small number of COVID-19 hospitalizations occurred
during the period when exposure to wildfire smoke was
high. Third, with regard to the transmission question, we
did not use formal infectious disease models that rely on
factors like social interaction data; instead, our findings
based on administrative data for the study cohort were
associative and subject to possible confounding.

Despite these challenges, the investigations described
in this report had many strengths. First, we estimated
exposures by using two advanced exposure models, and
we investigated several different pollutant exposures that
had high temporal and spatial resolution. Second, for
most of the studies, we used well-characterized clinical
cohorts from the membership of the KPSC health system,
which is largely representative of the overall population
of Southern California. As previously noted, however, the
analytical requirements of each substudy necessitated the
use of different subsets of the overall cohort. For the inves-
tigation regarding long COVID, we worked closely with
clinicians and epidemiologists from the KPSC system to
define outcomes likely indicative of long COVID, recogniz-
ing that the science underlying these definitions continues
to evolve. The long COVID-19-related outcomes that we
investigated have prior evidence of being associated with
air pollution; given our reliance on prior evidence, how-
ever, we may have missed some relevant novel findings.

On balance, our research demonstrates that exposure
to air pollution likely contributes to heightened risks of
developing COVID-19, experiencing more severe health
states during hospitalization for COVID-19, dying from
COVID-19, and experiencing long COVID. Recent studies
have shown that the risk of long COVID increases each
time an individual is infected with SARS-CoV-2, such
that those who have had three SARS-CoV-2 infections
are 2.6 times more likely to experience long COVID than
those who have had only one such infection.® Thus, if air
pollution increases the risk of SARS-CoV-2 infection, as
our findings suggest, this presents another pathway from
air pollution exposure to long COVID conditions. Thus,
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both preventing SARS-CoV-2 infection and reducing the
severity of COVID-19 disease could reduce risks for devel-
oping long COVID. Furthermore and more specifically,
reduced air pollution might also lead to decreased risks of
long COVID, via biological pathways such as reduced oxi-
dative stress, systemic inflammation, and immunological
dysregulation. Future research is needed to examine these
common biological mechanisms underlying the health
effects of air pollution on long COVID, investigate these
relationships in other populations with different pollutant
exposure profiles, and examine wider exposure windows
that would facilitate the assessment of longer-term and/or
ongoing air pollution exposures.

CONFOUNDING

In observational epidemiology, residual confounding
due to missing or mis-specified variables that can simul-
taneously influence both the exposure and outcome is a
chief concern regarding the validity of the results of sta-
tistical analyses. Our approach to addressing confounding
evolved as parts of our work underwent independent peer
review by academic journals and as knowledge about
potential risk factors for COVID-19 emerged. During peer
review of the multistate model (Chapter 6), one reviewer
asked us to include all potential confounders in the model
a priori. We adopted this suggestion and compared the
results of the updated model to those of the models chosen
by the 10% selection rule that we had used in Chapter 5
and in the initial analyses of EHR data in Chapter 6. In
the multistate analysis, the inclusion of additional con-
founders had minimal effect on the estimated associations
between air pollutant exposures and the severity of health
states experienced by hospitalized patients with COVID-
19. In the multistate analyses and all subsequent analyses
of PASC outcomes, we then included all confounders a
priori to avoid similar criticisms in future work.

We used several strategies to address spatial con-
founding. First, for the models based on EHR data from
the HPSC health system, we used well-specified individ-
ual-level data, which would presumably have reduced
residual spatial confounding. In examining the various
risks investigated in this study for positive or negative
confounding, we were unable to draw firm conclusions.
In some instances, a model including the confounders
demonstrated larger effects than did a minimally adjusted
model; in other instances, however, models including
confounders revealed negative confounding that reduced
the magnitude of effect of the pollution exposure. We
were unable to draw generalized conclusions from this
comparison of the fully versus minimally adjusted models,
apart from noting that several confounders substantially
affected the final associations reported as our main results;
this observation suggests that the inclusion of confounders
likely reduced residual spatial variation.
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Second, we included contextual neighborhood vari-
ables, intended to further reduce residual confounding.
Several of these variables were selected using our initial
10% criterion, demonstrating potential confounding that
was controlled in the models. Based on emerging evidence
of a potential protective effect of green space on COVID-19
severity,'?® we also included the NDVI as a confounder.
Additionally, although we did not initially include the
meteorological variables as confounders in the mortality
analyses, we decided to test the sensitivity of the results
by including the temperature and humidity variables
as confounders, given the evolving knowledge base on
COVID-19 severity and the potential role of meteorology,
which can also influence air pollutant concentrations.
Unlike many of the other confounders that minimally
influenced the estimated pollution coefficients, inclusion
of temperature and humidity substantially affected pollut-
ant coefficients, particularly for PM, . and O,, with PM,
having larger effects and O, having smaller effects with the
meteorological variables in the model. Both meteorolog-
ical variables also demonstrated significant interactions
with the pollutant effects, revealing potentially important
multiplicative risks that had not been explored in other
studies of COVID-19 mortality. In all of our studies using
the KPSC cohorts, we also used a sandwich estimator to
account for possible nonindependence in the census tracts
where patients lived, thereby providing a robust variance
estimate that accounts for clustering.

Along with the administrative data in Los Angeles County,
which contained only minimal information on individual
characteristics, we also included data on variables such as
smoking and obesity (obtained from PLACES, a Centers for
Disease Control and Prevention online tool that provides
access to US health-related data) to compensate for missing
individual confounders. In this analysis (Chapter 4), which
involved large sample sizes due to the complete population
coverage, we formally assessed residual autocorrelation using
a Global Moran’s I test, which was significant. We then refit
the models with a Bayesian CAR model that used the nearest
neighbors for the spatial weight matrix. Results changed only
slightly for most pollutants when we explicitly accounted
for spatial autocorrelation in the model specification; for
PM, , nitrate, however, the combination of a CAR model and
controlling for O, as a co-pollutant changed the demonstrated
effect from a negative association to a positive association.

For the Cox (Chapter 5), multistate (Chapter 6), and
logistic regression (Chapter 7) analyses, we did not attempt to
formally evaluate residual spatial variation, as the relatively
limited sample size was likely too small to support estimation
of stable spatial random effects that could be discerned from
background variability. If such analyses had been possible,
they may have revealed residual spatial confounding. Our
decision in this setting was informed by prior modeling using
even larger cohorts," with which we attempted to fit random
effects that could be used to probe (and potentially adjust for)
residual spatial confounding by including new contextual

variables or spatially autoregressive error terms. The sample
size and number of events, although larger than in most exist-
ing studies, limited our ability to formally evaluate residual
spatial confounding in the same way that we addressed this
concern in the larger cohort involving administrative data
from Los Angeles County. We recommend that any future
studies use larger samples, which would provide sufficient
power for formal analyses of residual spatial confounding.

GENERALIZABILITY

As mentioned in several chapters of this report, our results
are not likely to be generalizable to the entire population of
the study area. Given that all patients in these studies were
hospitalized with COVID-19, generalizability is probably
restricted to hospitalized patients, who would be among
the more severely ill patients with this disease. In some
instances, patients who rapidly died outside the hospital
setting may have been more ill, but we lacked data to address
this question. Earlier analyses cited in Chapter 5 have shown
that the population of patients in the KPSC membership
approximates the characteristics of the general population
of Southern California. Consequently, the generalizability
of our findings likely extends to other hospitalized patients
in Southern California, but we cannot assert generalizability
beyond this region.

As this study occurred during a period when the popula-
tion was largely unvaccinated, it is difficult to predict how
vaccination and natural immunity acquired through infection
would influence the results or whether the results are gen-
eralizable to current populations. Existing evidence suggests
that vaccinations reduce the severity of both COVID-19 and
long COVID, or PASC conditions. To date, only one study
has investigated whether vaccination minimizes the risk of
COVID-19 severity.”® That study reported that air pollution
continued to exacerbate the risks of COVID-19, although
vaccination appeared to lower the elevated risks associated
with PM, ; exposure. Another study from Spain suggested
that air pollution can affect antibody response to vaccination,
potentially reducing the efficacy of vaccines.’” This topic
merits further research, especially if vaccination partly blunts
the adverse effects of air pollution exposure on COVID-19
and, conversely, if air pollution reduces vaccine efficacy.
Given this complex interplay, we cannot predict whether our
findings would be generalizable to a vaccinated population.

EFFECTS OF PARTICLE SPECIES AND TRACERS

One of the biggest strengths of this study is the use of the
CTM, which allowed us to investigate specific chemical spe-
cies of PM, ; and source tracers, such as wildfires and traffic-
related air pollution. Some of the tracers and PM, , species
contribute very little to mass concentrations; however, they
were still highly predictive of all the COVID-19 outcomes that
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we investigated. These effects may indicate that the specific
constituents or the mixture of pollutants associated with
them are more toxic. Alternatively, this finding could indicate
that the potentially more toxic pollutants concentrate in areas
with more susceptible populations, which would suggest that
the observed associations could be the combined result of
heightened toxicity and higher susceptibility, as observed in
recent studies in Los Angeles.’® In the analyses using EHR
data, we identified significant associations between COVID-
19 mortality and traffic-related pollution represented by
either specific tracers for on-road diesel or gasoline exhaust
or chemical species known to be associated with traffic, such
as EC and PM,,

Notably, PM, , nitrate, which represents a secondary pol-
lutant with more spatially smooth patterns, displayed larger
effects in the mortality analysis than any of the traffic-related
species or tracers.

In the long COVID analysis, we also observed PM, _ nitrate
having some of the strongest associations with cardiac and
cardiometabolic PASC outcomes. Exposure to PM, , also dis-
played significant associations with cardiac, cardiometabolic,
and pulmonary PASC outcomes, although these effects were
of smaller magnitude than those with PM,, nitrate. Thus,
the results of the speciated analysis suggest that pollutants
showing fine-scale variations as well as those with large-
area variations are associated with long COVID outcomes,
although the regional-scale constituent is related to the larger
effect sizes when evaluated across the IQR exposure incre-
ment. As previously stated, the PM mass attributable to these
species or markers, particularly the traffic-related markers, is
quite small. The results of our analyses do not clarify whether
these effects are due to heightened toxicity per unit mass, the
mixtures associated with these PM species or tracers, or ele-
vated susceptibility among populations in areas with higher
concentrations of these species or tracers. Notably, however,
research in other health outcomes has demonstrated similar
associations with pollutants that account for small propor-
tions of the total mass, such as the relationship between
barium exposure and birth outcomes, as recently reported
from studies in Los Angeles.”™ As the science of pollutant
exposures advances toward more refined analyses of species
and tracers, there is a need for further research into how
and why exposures assessed as having relatively small mass
concentrations appear to be associated with several quite
different COVID-19-related health outcomes.

METEOROLOGY VERSUS SEASONALITY

The observed confounding and effect modification
due to temperature and humidity in the mortality study
(Chapter 5) provided novel contributions to the literature
on air pollution and COVID-19 severity. Although we
highlighted the biological plausibility of this finding,
given the impacts of cooler and drier conditions on muco-
ciliary dysfunction and respiratory barrier impairment,
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it is possible that seasonality more generally affected our
results. Like other viral respiratory diseases, COVID-19
has demonstrated increased incidence and mortality in
the late fall and early winter period, when humidity and
temperature tend to be lower. Although respiratory viruses
are more frequently transmitted during the winter months,
partly due to the heightened probability of transmission
associated with increased human activity indoors, this pat-
tern does not necessarily result in more severe outcomes of
infection, which would support the role of meteorological
factors in exacerbating severity. We investigated whether
the KPSC health system was overwhelmed by cases during
the fall-winter surge that occurred during the period of our
study and found that at no time was the ICU or ICU-level
care unavailable to patients, which rules out this factor as
a confounder of the results pertaining to the meteorologi-
cal variables. Another hypothesis is that individuals have
worse immune responses during the winter as a result
of depleted vitamin D levels, which are associated with
lower sunlight exposure, as discussed in Chapter 6. We
attempted to obtain vitamin D data on patients in the study
cohort but found that the EHRs likely provided incomplete
information on vitamin D deficiency. The lack of these data
on vitamin D status tempers the meteorology findings, as
lower vitamin D levels also could have coincided with the
fall-winter period, leading to increased mortality among
patients with COVID-19 who may have had reduced
immune response to the virus in those seasons.

IMPLICATIONS FOR FUTURE PANDEMICS

As previously discussed, the generalizability of our
findings to current populations with some immunity due
to natural infection or vaccination cannot be directly deter-
mined from our findings, because our results were based
on an unvaccinated population. Nevertheless, future novel
respiratory viruses with the potential to generate pandem-
ics could emerge, and our findings suggest that reducing
ambient exposure to air pollution could lead to a lower
incidence of infection, fewer severe outcomes, and, if
applicable, reduced development of post-acute symptoms
and conditions. Although some of the pollutants that were
significantly associated with COVID-19-related outcomes
in our studies, such as PM, , and O,, are already regulated,
our findings also point to novel exposures, such as PM_
and PM, , nitrate, neither of which is currently regulated.
Given the wide range of health benefits that can accrue
from reducing air pollution, such as preventing chronic
diseases and lowering rates of hospital admissions and
mortality, the additional possibility of reducing the risks
of infection and severe outcomes associated with future
novel viruses further incentivizes efforts to achieve contin-
ued reductions in ambient air pollution.
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current project can be accessed at https://doi.org/10.5281/
zenodo.12674134 in comma-separated value files or GIS
raster files for easy interpretation by other researchers.
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these materials to the methods and findings described in the
report. A subset of exposure data was provided to ERG; how-
ever, COVID-19 incidence and mortality data were not shared
due to confidentiality restrictions. ERG was nonetheless able
to review data-processing code to verify that key calculations
were implemented as described.

The audit identified opportunities to improve clarity and
accuracy in portions of the report text. Minor discrepancies
were noted but were addressed and did not affect the study’s
findings or conclusions. Because ERG did not have access
to all the underlying data, auditors were unable to inde-
pendently reproduce all numerical results; however, exposure
values were reproduced when feasible, numerical values were
checked for internal consistency, and reported analyses were
consistent with the code. Audit findings were documented in
an ERG audit report and an HEI follow-up memorandum.

Overall, the audit did not identify issues that materially
affected the study’s results, and the audit team concluded that
the final report accurately represents the research conducted,
with primary analyses clearly documented, and the study
followed valid, documented procedures.
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SUPPLEMENTARY APPENDICES ON THE HEI
WEBSITE

Appendices A through E contain material not included
in the main report. They are available on the HEI website.

Appendix A. Supplemental Information for Chapter 3:
Development of Chronic and Subchronic Exposure Fields

Appendix B. Supplemental Information for Chapter 4:
Risks of Species-Specific Air Pollution for COVID-19
Incidence and Mortality in Los Angeles
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Appendix C. Supplemental Information for Chapter 5: Air
Pollution and Meteorology as Risk Factors for COVID-19
Mortality in Southern California

Appendix D. Supplemental Information for Chapter 6: Air
Pollution and Sequelae of COVID-19: A Multistate Analysis

Appendix E. Supplemental Information for Chapter
7: Association Between Air Pollution and Post-Acute
Sequelae of SARS-CoV-2
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INTRODUCTION

The COVID-19 pandemic led to unprecedented conditions
that lent themselves to timely and novel air pollution research
exploring important policy-related questions. As described in
the Preface to this report, HEI issued Request for Applications
20-1B: Air Pollution, COVID-19, and Human Health to solicit
proposals for research on new and important aspects of the
intersection between air pollution exposures and COVID-19
health outcomes. In particular, HEI was interested in studies
exploring whether people exposed to higher levels of air
pollution were at greater risk of death from COVID-19 than
were populations with lower levels of air pollution exposures
and whether potential associations between air pollution and
COVID-19 outcomes differed by race, ethnicity, or measures
of socioeconomic status.

In response to the Request for Applications, Dr. Michael
Kleeman of the University of California, Davis, submitted an
application to HEI titled “Ambient Air Pollution and COVID-
19 in California.” Kleeman and colleagues proposed to
develop high-resolution estimates of chronic and short-term
exposures to ambient air pollution across Southern California
and to evaluate the potential associations between air pollu-
tion exposures and COVID-19 disease progression, long-term
COVID-19 complications, and mortality due to COVID-19 by
using electronic health records from the Kaiser Permanente
Southern California (KPSC) health system. Additionally, the
investigators proposed to examine the association between air
pollution exposures and COVID-19 incidence and mortality
across neighborhoods in Los Angeles County. HEI's Research
Committee recommended funding Kleeman’s study because
the investigators were proposing methods for answering novel
questions, had access to a unique dataset (namely, detailed
individual-level data from the KPSC database), and planned
to examine various air pollutant exposures (i.e., nitrogen

Dr. Michael Kleeman’s 2-year study, “Ambient Air Pollution and COVID-19
in California,” began in April 2021. Total expenditures were $495,122. The
draft Investigators’ Report was received for review in January 2024. A re-
vised report, received in August 2024, was accepted for publication in Sep-
tember 2024. During the review process, the HEI Review Committee and
the investigators had the opportunity to exchange comments and clarify
issues in the Investigators’ Report and its Commentary. Review Committee
member Michael Jerrett did not partake in the review of the report due to
a conflict of interest.

This report has not been reviewed by public or private party institutions,
including those that support the Health Effects Institute, and may not re-
flect the views of these parties; thus, no endorsements by them should be
inferred.

* A list of abbreviations and other terms appears at the end of this volume.
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dioxide [NO,], ozone [O,], particulate matter [PM] mass con-
centrations, and major sources and chemical components of
PM <2.5 nm in aerodynamic diameter [PM, ]).

This Commentary, which provides the HEI Review Com-
mittee’s independent evaluation of the study, is intended
to aid HEI sponsors and the public by highlighting both the
strengths and limitations of the study and putting the results
presented in the Investigators’ Report into a broader scientific
and regulatory context.

SCIENTIFIC BACKGROUND

Research from toxicological and population health studies
has demonstrated an association between air pollution expo-
sure and the risk of acute lower respiratory infections (i.e.,
bronchitis, bronchiolitis, and pneumonia), influenza, and
respiratory syncytial virus."” Research on such respiratory
infections is complicated, however, and has yielded mixed
findings regarding the role of air pollution.*

Several early epidemiological studies suggested possible
positive associations between air pollution and COVID-19.57
However, the potential for bias in those results was high,
partly because early in the pandemic, it was difficult to obtain
reliable data identifying individuals who were infected
with the SARS-CoV-2 virus or seriously ill with COVID-19,
and because accuracy and availability of testing varied by
location and over time. Additionally, estimating ambient air
pollution exposures was complicated by the varying degrees
of severity and duration of COVID-19 lockdown policies and
the atypical levels of pollutant emissions and daily mobility
patterns associated with these policies. Results from these
early studies were difficult to compare and generalize, given
different study designs, approaches to estimating exposure
(i.e., short-term versus long-term exposures), and outcome
definitions (e.g., disease incidence, prevalence, severity, or
case fatality rates).

Importantly, nearly all of the initial published studies in
this field were based on cross-sectional analyses or ecological
study designs.*'* They evaluated associations between area-
based estimates of pollution (i.e., averaged across counties
rather than estimated for each individual) and area-based
rates of disease incidence or mortality, for which individu-
al-level risks could not be derived. Three early reviews high-
lighted the need for studies to use individual-level data and
high spatial resolution measures of air pollution, to control
for confounding, and to assess effect modification.’>** These
reviews all concluded that although early evidence indicated
that both short- and long-term exposure to air pollution could
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be associated with COVID-19 outcomes, those studies had
moderate to high overall risks of bias that precluded drawing
conclusions about potential causal relationships.

At the time Kleeman and colleagues began their study,
the available literature included little high-quality evidence,
partly due to weaknesses in study designs. Kleeman’s study
aimed to address several limitations, notably by using a large
database of individual-level health records and developing
air pollution exposure estimates with high spatial resolution.
Additionally, the investigators sought to evaluate questions
that had not yet been addressed in the scientific literature on
air pollution and COVID-19, such as multistate health effects
(i.e., disease progression from one state of health to another,
such as from hospitalization to death) and long-term compli-
cations of COVID-19 (i.e., long COVID-19).

SUMMARY OF APPROACH AND METHODS

STUDY OBJECTIVES

Kleeman and colleagues aimed to investigate the relation-
ships between ambient air pollution exposures and COVID-
19 incidence, progression, and mortality, as well as long
COVID-19 outcomes (which pertain to a variety of debilitating
symptoms that can occur after serious COVID-19 disease)."®
The specific aims of the study were as follows:

e Aim 1: Generate high-resolution air pollution exposure
estimates for PM,, mass and components, ultrafine PM
<0.1 pm in aerodynamic diameter (PM,,) mass, NO,, and
O, at multiple spatial resolutions across Southern Califor-
nia.

e Aim 2: Conduct a spatial analysis by Los Angeles County
ZIP codes to quantify associations between estimated air
pollution concentrations and COVID-19 incidence and
mortality across neighborhoods, using high spatial resolu-
tion exposure estimates that include PM, . components.

e Aim 3: Examine COVID-19 mortality and multistate health
effects in Southern California by assessing the association
between air pollution exposures and both mortality and
the progression from COVID-19 hospitalization to more
severe disease states or recovery among a cohort of patients
hospitalized with COVID-19 as documented in the KPSC
healthcare database.

e Aim 4: Examine long COVID-19 in Southern California by
assessing the relationship between ambient air pollutant
exposures and diagnosis of conditions associated with
long COVID-19 outcomes among the KPSC cohort.

Kleeman and colleagues obtained ZIP code-level counts of
COVID-19 cases and deaths in Los Angeles County between
June 19, 2020, and January 3, 2021, based on data from the
California Department of Public Health (CDPH). For the KPSC
cohort, the investigators used electronic health records from
the KPSC healthcare system to create a cohort of more than

80

20,000 adults across Southern California who had been diag-
nosed with COVID-19 between June 1, 2020, and January 30,
2021, were hospitalized within 21 days of a positive COVID-
19 test, and had been KPSC members for at least 1 year.

The investigators generated estimates of daily ambient
PM, , PM, components (species and sources), PM,,, NO,,
and O, concentrations for 2016, 2019, and 2020 at multiple
spatial resolutions using a chemical transport model (CTM)
and a land use regression (LUR) model. Chronic (annual
average) and short-term (30-day average) exposure estimates
for the ambient air pollutants were assigned to the residential
address of each patient in the KPSC cohort (or to each ZIP
code in the CDPH data).

Kleeman and colleagues used various regression modeling
approaches to evaluate associations between both single and
multipollutant air pollution exposures and COVID-19 out-
comes, as described in further detail in the Methods section.
An analysis evaluating whether changes in air quality were
associated with COVID-19 incidence, severity, and mortality
was originally intended to be conducted alongside the gen-
eration of high-resolution ambient air pollution estimates
specific to Aim 1. However, low numbers of COVID-19 cases
during the lockdown period that affected air pollution pat-
terns in California (i.e., earlier in 2020) resulted in insufficient
statistical power to conduct such an analysis.

METHODS AND STUDY DESIGN

Study Population

The CDPH data included counts of COVID-19 cases and
COVID-19 deaths that occurred between June 19, 2020, and
January 3, 2021, by ZIP code in Los Angeles County. These
data included ZIP code-level demographic information on
age, sex, and race/ethnicity.

KPSC is a regional entity of Kaiser Permanente, a large
integrated healthcare system and one of the oldest and largest
not-for-profit health plans in the United States. KPSC has a
racially, ethnically, and socioeconomically diverse member-
ship of 4.8 million members across nine counties in Southern
California. The KPSC study cohort consisted of adults (aged
18 years or older) in Southern California who had been hospi-
talized within 21 days of a clinical diagnosis of COVID-19 or
a positive COVID-19 test that occurred between June 1, 2020,
and January 30, 2021, and who had been KPSC members
for at least 1 year. The KPSC data included individual-level
information on demographic and health characteristics such
as age, sex, race/ethnicity, body mass index (BMI), and level
of exercise.

Patient deaths were included in the cohort data for patients
who died 90 or fewer days after their initial hospitalization.
Patients whose KPSC membership ended within 90 days
after hospitalization were excluded from the cohort. In anal-
yses for Aim 3, patients who received treatment outside the



KPSC system were excluded. Additionally, the investigators
defined deterioration due to COVID-19 as admission to the
intensive care unit (ICU) or the need for ventilation. Analyses
for Aim 4 also included patients who were discharged after
hospitalization with COVID-19 and who were KPSC members
for at least 1 year before and after their COVID-19 diagnosis.

Long COVID-19 was defined using a set of clinically
meaningful categories based on 45 diagnostic codes® and
grouped by organ system. Patients were considered to have
long COVID-19 if they had received one or more cardiac, car-
diometabolic, pulmonary, or neurological diagnoses within
3 to 12 months after discharge from their COVID-19-related
hospitalization.

The investigators linked both the KPSC and CDPH data
with area-level characteristics, including data on the Neigh-
borhood Deprivation Index, income, crowding, temperature,
relative humidity, and green space. Temperature and relative
humidity were daily maximums (using Gridded Surface
Meteorological data)'” and aggregated to monthly means for
each patient’s residential address during the 1-month period
before their COVID-19 hospitalization. An overview of the
study populations and health outcomes of interest for each
aim, by chapter of the Investigators’ Report, is presented in
Commentary Table 1.

Exposure Estimation

The investigators used a CTM to generate estimates of
daily air pollutant exposure for PM,, (mass), PM, (mass
and components), NO,, and O, in Southern California. They
also used an LUR model to generate estimates of daily air
pollutant exposures for PM, _ (mass) and NO,. Daily estimates
were averaged to reflect chronic (annual) and short-term
(30-day) exposures, with data for specific pollutants, types of
exposure, and years depending on the particular analysis for
each aim (Commentary Table 1). Estimates were assigned to
the residential address of each patient (in the KPSC cohort) or
each ZIP code (in the CDPH data).

Daily PM,_ and NO, concentrations were estimated at
100-m resolution for the years 2019 and 2020 with an LUR
model that used a deletion/substitution/addition algorithm.®
Daily concentrations of a large number of pollutants (Com-
mentary Table 1) at 1-km resolution were produced for the
years 2016, 2019, and 2020 by using the University of Cali-
fornia, Davis/California Institute of Technology (UCD/CIT) air
quality model.'* % UCD/CIT is a three-dimensional CTM that
simulates the evolution of gas and particle phase pollutants
in the atmosphere based on emissions, transport, deposition,
chemical reaction, and phase change.

Main Epidemiological Analyses

To assess the associations between various air pollutant
exposures (Commentary Table 1) and COVID-19 cases and
COVID-19 deaths across Los Angeles County ZIP codes (Aim
2), Kleeman and colleagues used negative binomial regression
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models. In the single-pollutant models, the investigators
adjusted for several ZIP code-level covariates, including
demographic variables (e.g., sex, race, age) and socioeconomic
and health-related variables (e.g., income, smoking status,
obesity). Associations were reported as incidence rate ratios
(IRRs) and 95% confidence intervals (CIs), with pollutant
exposures standardized by their interquartile range (IQR).
The investigators also used two-pollutant models to assess
confounding by PM, ., NO,, and O,.

2.5°

To assess the associations between various air pollutant
exposures and both COVID-19 mortality and progression to
more severe COVID-19 states or recovery (Aim 3), the inves-
tigators conducted two analyses. First, they used single- and
two-pollutant Cox proportional hazards models to assess
associations between various air pollutant exposures and
patient deaths in the KPSC cohort. The study team adjusted
their models for several individual and community-level
covariates, such as BMI, level of exercise, Neighborhood
Deprivation Index, temperature, and relative humidity,
depending on the ambient air pollutant. Associations were
analyzed per IQR increment in ambient air pollutant exposure
and reported as hazard ratios (HRs) with 95% Cls.

Second, Kleeman and colleagues used a multistate survival
model*" ** to assess associations between PM, _, NO,, and O,
exposures and patient transitions to recovery or deteriora-
tion to more severe COVID-19 states or outcomes (i.e., ICU
admission, ventilation, or death). The investigators examined
six transition states: (1) hospitalization to deterioration (i.e.,
ICU admission or need for ventilation), (2) hospitalization
to recovery, (3) hospitalization to death, (4) deterioration to
recovery, (5) deterioration to death, and (6) recovery to death.
It was assumed that the amount of time a patient existed in
any given state did not influence their time spent in any other
state (i.e., a Markovian assumption). The study team ran sin-
gle- and two-pollutant models adjusted for both individual-
and community-level covariates, and they reported HRs with
95% ClIs standardized by the IQR for estimated concentrations
of each ambient air pollutant.

To evaluate long COVID-19 outcomes (Aim 4), the inves-
tigators used logistic regression to examine the associations
between chronic and short-term exposures to various air
pollutants before hospital admission and long COVID-19
diagnoses within 3 months after hospital discharge, as well as
within 12 months after hospital discharge. The investigators
conducted analyses with single-, two-, and three-pollutant
models adjusted for both individual- and community-level
covariates. Associations were reported as odds ratios (ORs)
with 95% CIs per IQR increment increase in exposure to
ambient air pollutants.

Additional Analyses

Kleeman and colleagues also evaluated associations
between ambient air pollutant exposures and COVID-19
deaths for potential effect modification by temperature
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Commentary Table 1. Summary of COVID-19 Outcomes, Pollutant Exposures, and Methods by Study Aim and Chapter of

the Investigators’ Report

Study Aim, Study
Chapter Population Health Outcomes Year Pollutant Exposures Methods
Aim 1, Chapter 3 N/A N/A 2016, Chronic (2016, 2019, LUR model (PM, , and
2019, 2020 annual average) and NO, only) and CTM
2020 short-term (30-day aver- (PM, ,, PM, ,, PM, , com-
age) PM, , PM, ., PM, | ponents [species and
organic compounds, PM, . sources], NO,, O,)
elemental carbon, PM,
nitrate, PMZ_5 source trac-
ers, NO,, O,
Aim 2, Chapter 4 N=773,374 COVID-19 cases 2019 Chronic (2019 annual  Negative binomial regres-
cases and and deaths average) PM, , PM, .,  sion models with adjust-
N=14,311 PM, , organic compounds, — ment for sex, race/ethnic-
deaths in Los PM, , elemental car- ity, age >70 yr, median
Angeles County bon, PM, _nitrate, PM income, mean home-
(CDPH) 25 25
on-road gasoline tracer, owner occupancy rate,
NO,, O, mean prevalence of cur-
rent smoking status, mean
prevalence of obesity
Aim 3, Chapter 5 N=21,415 COVID-19 deaths 2016 Chronic (2016 annual Cox proportional haz-
hospitalized average) PM, , PM, , ard regression models
KPSC patients PM, _organic com-  with adjustment for vari-
pounds, PM, , elemen- ous demographic, socio-
tal carbon, PM, _ nitrate, economic, chronic health,
PM, . on-road gasoline and area-level charac-
tracer, PM, ; on-road die- teristics depending on
sel tracer, PM, _ biomass the ambient air pollut-
combustion tracer, NO,  ant (Investigators’ Report
(CTM), O, Appendix B Table B1)
Aim 3, Chapter 6 N=15,978 COVID-19 hospital- 2016 Chronic (2016 annual Multistate survival regres-
hospitalized ization, recovery, average) PM, ,NO,, O,  sion models with adjust-
KPSC patients deterioration, and ment for various demo-
death graphic, socioeconomic,
chronic health, and area-
level characteristics
depending on the ambi-
ent air pollutant (Investi-
gators’ Report Appendix
D Table D2)
Aim 4, Chapter 7 N=12,634 Cardiac, cardiomet- 2019, Chronic (365-day aver- Logistic regression mod-
hospitalized abolic, pulmo- 2020 age before hospitaliza- els with adjustment for

KPSC patients

nary, and neurolog-
ical long COVID-19
outcomes within

3 months to 12
months after hospi-
tal discharge

tion) and short-term (30-
day average) PM, , PM, ,
PM, , organic compounds,
PM, , elemental carbon,
PM, , nitrate, PM, , bio-
mass combustion tracer,
NO,, O,

smoking, exercise, BMI,
status of MediCal enroll-
ment, and area-level
deprivation, proportion of
people taking public tran-
sit, temperature, relative
humidity, and greenspace

BMI = body mass index; CDPH = California Department of Public Health; CTM = chemical transport model; KPSC = Kaiser Permanente South-
ern California; LUR = land use regression; N/A = not applicable.
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and relative humidity in the KPSC cohort. The study team
implemented Cox proportional hazard regression models
with an interaction term between one ambient air pollutant
and one meteorological variable. If the interaction term was
significant (i.e., P value <0.05), stratified models were run by
tertiles of temperature or relative humidity. Analyses of effect
modification were conducted for both single- and two-pollut-
ant models, with associations reported as HRs with 95% Cls,
standardized by IQR of the ambient air pollutant exposures.

SUMMARY OF KEY FINDINGS

STUDY POPULATION CHARACTERISTICS

The CDPH study population included 773,374 cases of
COVID-19 and 14,311 COVID-19 deaths across 308 ZIP codes
in Los Angeles County. In this study population, patients
diagnosed with COVID-19 were on average predominantly
female (54.6%), 70 years of age or older (93.7%), and non-
White (69.8%), whereas COVID-19 deaths occurred primarily
in patients who were male (57.9%), less than 70 years of age
(58.7%), and a race/ethnicity other than White (78.6%).

The KPSC cohort included 21,994 adults hospitalized
within 21 days of a COVID-19 diagnosis or positive COVID-19
test; however, the analysis population varied by study aim
(Commentary Table 1). Generally, patients in this cohort
were primarily older (median age: 64 years), male (57.7%),
Hispanic/Latino (56.4%), and had comorbidities (mean Elix-
hauser index: 3.0). Those who deteriorated (i.e., admitted to
the ICU or received ventilation) or died after hospitalization
were predominantly 65 years of age or older, male, and His-
panic/Latino. Women were more likely than men to experi-

ence long COVID-19 outcomes. Patients diagnosed with long
COVID-19 outcomes within 3 months and within 12 months
after being discharged from the hospital had lower rates of
exercise and higher BMIs compared to those who were not
diagnosed with long COVID-19 over these follow-up periods;
no other noteworthy differences were observed between these
groups.

EXPOSURE ESTIMATION AND ASSESSMENT

The PM,, and NO, exposure estimates generated using
LUR and CTM approaches for Aim 1 produced different
estimates, which was understandable given the differences
in the underlying methods for each model (Investigators’
Report Figure 5). For example, both the LUR model and CTM
estimated high annual average concentrations of NO, around
Los Angeles in 2020, but the LUR model estimates were
higher than those produced by the CTM. Similarly, the CTM
predicted high annual average concentrations of PM, , around
Los Angeles and in the San Joaquin Valley region north of Los
Angeles in 2020, whereas the LUR model predicted the high-
est PM, . concentrations in the eastern region of the state (i.e.,
San Bernardino, Riverside, and Imperial counties) in 2020.

The median of estimated chronic exposures to various
measures of PM mass and components, NO,, and O, varied
across the analyses for each aim (Commentary Table 2). The
upper range of the median of estimated pollutant concentra-
tions across all study aims was around 13 pg/m® for PM, _, 22
parts per billion (ppb) for NO,, and 66 ppb for O,. The median
of short-term (30-day average) estimated exposures was fairly
similar to the medians of estimated chronic exposures. Gen-
erally, many of the ambient air pollutants were moderately
to highly correlated with one another (e.g., PM,  and PM_ ).

Commentary Table 2. Ranges of the Median of Estimated Exposures to Ambient Air Pollutants Across Study Aims?

Range of the Median of Estimated

Range of the Median of Estimated

Ambient Air Pollutant Chronic Concentrations Short-Term Concentrations
PM, | 0.91-0.99 pg/m® 0.83 pg/m?®
PM, 9.0-13.1 pg/m?® 10.3-12.9 pg/m®
PM, . elemental carbon 0.47-0.58 png/m? 0.59 pg/m?®
PM, . organic compounds 2.07-2.53 pg/m® 2.10 pg/m?®
PM, , nitrate 1.60-3.81 pg/m® 1.91 pg/m?
PM, . on-road gasoline tracer 0.24-0.30 pg/m® N/A
PM, . on-road diesel® 0.07 pg/m?® N/A
PM, . biomass combustion 1.01-1.71 pg/m?® 0.39 pg/m?®
NO, 13.4-22.0 ppb 14.0-17.0 ppb
0, 54.5-66.0 ppb 48.0 ppb

N/A = not applicable; ppb = parts per billion.

2Chronic exposures were based on annual average air pollutant concentrations across the study cohort. Short-term exposures were based on 30-day average air pol-

lutant concentrations across the study cohort.
*Only used in one analysis (Aim 4).

83



HEI Commentary on Investigators’ Report by M. Kleeman et al.

Ozone was the least correlated with the other ambient air
pollutants and was inversely correlated with NO,.

MAIN EPIDEMIOLOGICAL ANALYSES

Associations Between Chronic Exposures to Air
Pollutants and COVID-19 Outcomes (Aim 2)

In the CDPH study population, single-pollutant models
demonstrated higher risks of COVID-19 incidence and
mortality per IQR increment increase in chronic exposure
to several ambient air pollutants, including PM,,, PM,
(mass, elemental carbon, nitrate, and from on-road gasoline
vehicles), and O, (Commentary Figure 1). Generally, the mag-
nitude of the associations was slightly stronger for the risk of
COVID-19 death compared to COVID-19 incidence. Estimates
of PM, , produced by the LUR model demonstrated statisti-
cally significant associations with both COVID-19 incidence
and mortality, whereas the estimates produced by the CTM
demonstrated elevated associations with these outcomes but
were not statistically significant. Risk estimates ranged in
magnitude from 1.02 to 1.27. The strongest risk estimate was
observed for COVID-19 death per IQR increase in estimated
O, concentration (IRR: 1.27; 95% CI: 1.17, 1.37).

The two-pollutant models demonstrated elevated risks
of COVID-19 incidence and mortality per IQR increase in
estimated NO, and PM, _ concentrations, after controlling for
O,, and elevated risks per IQR increase in estimated O, con-
centratlon after controlling for PM, or NO, (Investigators’
Report Figure 8). As seen in results from the single-pollutant
models, the strongest IRRs were observed for associations
between O, concentrations and COVID-19 deaths (IRR [con-
trolling for NO,]: 1.42; 95% CI: 1.23, 1.56 and IRR [controlling
for PM, , (CTM)]: 1.37; 95% CI: 1.26, 1.50). The associations
between PM, . concentrations and both COVID-19 incidence
and mortahty were generally attenuated after controlling for
NO,. Results were similar regardless of the exposure mod-
ehng method (i.e., LUR or CTM) used to estimate PM, , and
NO, concentrations, although the associations observed usmg
exposure estimates generated by the LUR model were often
larger in magnitude compared to the associations based on
CTM-generated exposure estimates.

Associations Between Estimated Chronic Exposures to Air
Pollutants and COVID-19 Progression or Death (Aim 3)

In the KPSC cohort, the investigators reported positive
associations between COVID-19 deaths and IQR increases in
exposures to each of the ambient air pollutants evaluated in
single-pollutant models, except for PM, | organic compounds
(although this association was nearly statlstlcally significant),
PM, . from biomass combustion, and O, (a finding in contrast
to the results observed in Aim 2) (Commentary Figure 2).
Reported risk estimates were generally moderate in size,
and the risk estimates that were strongest in magnitude were
observed for PM, , (estimated by the CTM): HR: 1.12; 95% CL:
1.06, 1.17, PM, _ nitrate: HR: 1.12; 95% CL: 1.07, 1.17, and
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NO,: HR: 1.10; 95% CI: 1.04, 1.16. In two-pollutant models,
the HRs generally remained elevated for associations between
COVID-19 death and PM, ; exposures, as did the association
with NO, when controlling for O,, with some fluctuations in
magnitude (Investigators’ Report Figure 11). However, the
association with NO, was attenuated in models controlling
for PM, ..

In analyses of the progression to more severe COVID-19
states, Kleeman and colleagues reported elevated HRs in sin-
gle-pollutant models of the associations between PM, ., NO,,
and O, exposures (comparing the highest versus lowest quar-
tiles of exposure) and several COVID-19-related transitional
states: the transition from hospitalization to deterioration, the
transition from deterioration to death, and the transition from
recovery to death (Commentary Table 3). For example, HRs
for the associations between the highest (versus the lowest)
quartile of exposure to each pollutant and the transition from
COVID-19 hospitalization to deterioration were 1.16 (PM, ),
1.19 (NO,), and 1.21(0,).

In two-pollutant models across multiple combinations
of PM, ., NO,, and O, exposures, HRs for the transition from
COVID-19 hospitalization to deterioration remained elevated,
with small to modest changes in magnitude compared to the
HRs from the single-pollutant models (Investigators’ Report
Table 8). The results from analyses for other transition states
demonstrated no clear pattern in the changes in direction or
magnitude of the associations across combinations of PM, ,
NO,, and O, exposures in the two-pollutant versus single-
pollutant models.

Associations Between Estimated Air Pollutant Exposures
and Long COVID-19 (Aim 4)

In analyses of the KPSC cohort, the investigators reported
mixed results regarding associations between short-term
exposures to different ambient air pollutants and specific
types of long COVID-19 outcomes diagnosed within 3 months
of hospital discharge (Commentary Figure 3). Elevated odds
of several long COVID-19 outcomes were reported per IQR
increment increase in short-term exposures to PM_,, PM,
nitrate, and O,. No statistically significant associations
between NO, exposure and any long COVID-19 outcome
were observed (although the odds ratio for cardiometabolic
long COVID-19 was elevated). Additionally, no significant
associations between any short-term air pollutant exposures
and neurological long COVID-19 were reported. Interestingly,
the investigators observed a modest-sized inverse associa-
tion between estimated PM, _ exposure and pulmonary long
COVID-19, although this association was not robust in various
sensitivity analyses adjusting for O, and PM, ; from biomass
combustion (Investigators’ Report Table 14).

The observed associations between ambient air pollutant
exposures and a diagnosis of long COVID-19 within 12 months
after hospital discharge were often in the same direction (i.e.,
positive or inverse) as — but generally weaker in magnitude
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Commentary Figure 1. Associations between estimated chronic pollutant concentrations and COVID-19 incidence and
mortality in the California Department of Public Health cohort. Results shown are incidence rate ratios and 95%
confidence intervals estimated per interquartile range increase in 2019 annual average pollutant concentrations. The
results are from single-pollutant models that included adjustment for neighborhood characteristics (i.e., demographic,
socioeconomic, and chronic health factors). CTM = chemical transport model; LUR = land use regression. Source:
Adapted from Investigators’ Report Figure 7.
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Commentary Figure 2. Associations between estimated chronic pollutant concentrations and COVID-19 deaths in the Kaiser
Permanente Southern California cohort. Results shown are hazard ratios and 95% confidence intervals estimated per interquartile
range increase in 2016 annual average exposures. The results are from single-pollutant models that included adjustment for individual
(e.g., body mass index, exercise) and neighborhood (e.g., Neighborhood Deprivation Index) characteristics. Source: Investigators’ Report
Appendix C Table C3.
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Commentary Table 3. Associations Between Estimated Ambient Air Pollutant Concentrations and COVID-19 Transition

States, Based on Single-Pollutant and Two-Pollutant Models®

Ambient Air Pollutant
PM, NO, 0,
Single- Single- Single-

Transition Pollutant Two-Pollutant Pollutant Two-Pollutant Pollutant Two-Pollutant

State Model Model Model Model Model Model
Hospitaliza- 1.16 NO,: 1.19 PM, : 1.21 PM,
tiOp to deterio- (1.12, 1.20) 1.11 (1.05, 1.17) (1.13, 1.24) 1.07 (1.00, 1.14) (1.13, 1.28) 1.13 (1.06, 1.21)
ration 0,: 0,: NO,:
1.13 (1.09, 1.17) 1.21 (1.15, 1.26) 1.24 (1.17, 1.32)
Hospitalization 1.00 NO,: 1.01 PM, .: 0.96 PM, ;:
to recovery (0.97, 1.03) 0.98 (0.94, 1.03) (0.97, 1.04) 1.02 (0.97, 1.08) (0.91, 1.00) 0.96 (0.91, 1.01)
O, O, NO,:
1.01 (0.98, 1.03) 1.00 (0.97, 1.04) 0.96 (0.92, 1.01)
Hospitalization 0.74 NO,: 0.60 PM, .: 1.46 PM,
to death (0.51, 1.08) 1.00 (0.58, 1.73) (0.40, 0.90) 0.62 (0.32, 1.23) (0.87, 2.46) 1.68 (0.98, 2.90)
O, O, NO,:
0.67 (0.45, 1.00) 0.59 (0.38, 0.92) 1.39 (0.85, 2.28)
Deterioration 0.96 NO,: 1.03 PM, : 0.98 PM,
to recovery (0.92, 1.01) 0.90 (0.84, 0.96) (0.97, 1.09) 1.13 (1.04, 1.24) (0.91, 1.05) 1.00 (0.92, 1.08)
O, O, NO,:
0.96 (0.91, 1.01) 1.03 (0.96, 1.10) 0.98 (0.91, 1.05)
Deterioration 1.11 NO,: 1.07 PM,,: 1.08 PM,:
to death (1.04, 1.17) 1.14 (1.04, 1.25) | (0.99, 1.16) 0.94 (0.83,1.06) | (0.98, 1.19) 1.03 (0.94, 1.14)
0, O, NO,:
1.10 (1.04, 1.17) 1.08 (1.00, 1.17) 1.11 (0.99, 1.23)
Recovery to 1.10 NO,: 1.03 PM,,: 1.24 PM,:
death (0.97, 1.24) 1.21 (0.99, 1.49) | (0.86, 1.23) 0.85 (0.64,1.13) | (1.01, 1.51) 1.19 (0.95,1.48)
0, 0, NO,:
1.07 (0.93, 1.23) 1.03 (0.86, 1.23) 1.27 (0.99, 1.61)

“Results shown are hazard ratios and 95% confidence intervals. Source: Investigators’ Report Table 8.

than — the reported associations with long COVID-19 diagno-
sis within 3 months after discharge.

In two- or three-pollutant models, positive associations
were only observed between short-term PM_ , exposures and
cardiac, cardiometabolic, and pulmonary long COVID-19
outcomes, as well as between short-term O, exposures and
pulmonary long COVID-19 outcomes, diagnosed within 3
months after hospital discharge. The association between esti-
mated PM, . exposure and pulmonary long COVID-19 became
attenuated when controlling for O, exposure in two-pollutant
models and when controlling for both O, and NO, exposure
in three-pollutant models.

Additional Analyses

Kleeman and colleagues evaluated the effect modification
by temperature and relative humidity on the association

86

between ambient air pollutant exposures and COVID-19
deaths. In models stratified by temperature tertile, elevated
risks of death were generally observed in the lower two
tertiles of temperature (i.e., among patients exposed to lower
mean monthly temperatures over the month before COVID-
19 hospitalization), and no association was observed in the
highest tertile of temperature (i.e., among patients exposed
to the highest mean monthly temperatures over the month
before COVID-19 hospitalization). For example, associations
between estimated PM, _ exposure and COVID-19 death across
tertiles of temperature ranged from an HR > 1.02 for tertile 1
(monthly mean temperatures of 5.90°C to 20.29°C) to an HR
< 1.00 in tertile 3 (monthly mean temperatures of 22.20°C
to 44.60 °C) (Investigators’ Report Figure 12). A similar yet
often more pronounced pattern was observed for associations
between ambient air pollutant exposures and COVID-19
death across tertiles of relative humidity (Investigators’
Report Appendix C Figure C1). These findings collectively



Long COVID-19 Outcome

w1 T 1 T

PMq 1 PM, ¢ NO, 05

Review Committee HEI

Cardiac

I . 1 .

PM 5 PM 5 PMz ¢ PMz ¢
Nitrate Organic Compounds Elemental Carbon Biomass Combustion

Cardiometabolic

/AR R R I

PM, , PM, 5 NO, 0,

Odds Ratio

PMq PM, NO; 0,

09

PM, , PM, 5 NO, 0,

Neurological

Pulmonary

S I S

1 I =
PM, 5 PM, 5 PM, ¢ PM, ¢
Nitrate Organic Compounds Elemental Carbon Biomass Combustion
PMz5 PMz5 PM;¢ PM;¢
Nitrate Organic Compounds Elemental Carbon Biomass Combustion
PM, 5 PM, 5 PM, ¢ PM, ¢
Nitrate Organic Compounds Elemental Carbon Biomass Combustion

Commentary Figure 3. Associations between estimated short-term pollutant concentrations and long COVID-19 outcomes diagnosed
within 3 months after hospital discharge in the Kaiser Permanente Southern California cohort. Results shown are odds ratios and
95% confidence intervals estimated per interquartile range increase in 30-day average pollutant exposures. The results are from single-
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Deprivation Index) characteristics. Source: Investigators’ Report Figure 18.

suggest that higher temperatures and higher relative humidity
both weaken the association between ambient air pollutant
exposures and COVID-19 death.

HEI REVIEW COMMITTEE’S EVALUATION

Overall, this study provided important contributions to
understanding potential associations between chronic and
short-term exposures to ambient air pollution and several
COVID-19-related health outcomes. Kleeman and colleagues
observed elevated risks of COVID-19 incidence and mortality,
progression to more severe health states during COVID-19
hospitalization, and long COVID-19 outcomes among patients
with elevated estimated exposure to several air pollutants.
The investigators also found that both temperature and rel-
ative humidity modified associations between air pollutant
exposures and COVID-19 mortality, with stronger associa-
tions observed at lower temperature and relative humidity
and weaker associations observed at higher temperature and
relative humidity. Chronic exposures to PM, ., NO,, and O,
were all associated with progression to more severe states
of COVID-19, whereas short-term exposures to PM, , were

consistently associated with multiple types of long COVID-19
outcomes diagnosed within 3 months after discharge from the
hospital.

In its independent evaluation of the Investigators’ Report,
the HEI Review Committee noted that the comprehensive set
of analyses supported by high-resolution exposure estimates
and individual-level electronic health records from a large
healthcare database was a particular strength of the study. The
Committee also thought that the findings were interesting and
relevant, especially those related to the progression to more
severe states of COVID-19 and long COVID-19 outcomes,
which are outcomes that are not susceptible to bias from
selective testing and diagnosis, the same way that COVID-19
incidence is.

The Committee commented that the findings were not
wholly generalizable, given the population of hospitalized
individuals that composed the main study cohort and the
widespread immunity to COVID-19 that is now prevalent in
the overall population. The Committee also noted that the
strength of the investigators’ conclusions, highlighting air
pollution as a modifiable environmental risk factor that could
be altered to improve the prognosis for patients with COVID-
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19, might preferably be somewhat tempered in light of some
of the limitations of this study. Overall, however, the study
has provided valuable insights into the role of air pollution
in exacerbating the severity of disease and adverse health
outcomes, and these insights might be useful in the context of
future infectious respiratory disease outbreaks.

The Committee noted several additional study strengths
and limitations, which are highlighted below.

EVALUATION OF STUDY DESIGN, DATASETS, AND
ANALYTICAL APPROACHES

The HEI Review Committee acknowledged several
strengths of the study design, such as the generation of
high-resolution chronic and short-term exposure estimates
for multiple ambient air pollutants and the detailed speciated
exposure estimates for PM, _ components, which had not been
investigated in earlier studies on the effects of air pollution
on COVID-19 outcomes. Another strength was assembling a
main study cohort based on a large sample of individual-level
electronic health records from a large integrated healthcare
database that included data on all aspects of patient care, as
well as many patient-specific demographic and clinical char-
acteristics. The Committee also appreciated the exploration
of the multistate COVID-19 health outcomes, long COVID-19
outcomes, and effect modification of observed associations by
meteorology, all of which had not previously been rigorously
explored in relation to air pollution and COVID-19 outcomes.
In general, the Committee was impressed with the thorough
examination of each aim, which was accomplished by con-
ducting a strategically designed series of analyses.

The Committee noted a few limitations related to exposure
assignment and some analytical approaches. The Committee
thought that the use of different exposure models (i.e., LUR
modeling versus CTM approaches) to provide a quality check
on the epidemiological results was sensible, although the
influences of the differing exposure estimates on COVID-19
outcomes were explored only in the analysis of CDPH data
for Los Angeles County (Aim 2). It would have also been
interesting to explore the impact of modeling differences in
some of the analyses of the KPSC cohort.

The Committee also wondered whether the differences in
temporality across analyses might have influenced the results;
specifically, chronic exposures were defined using average
annual exposure estimates for 2016 in some analyses but for
2019 in other analyses. Similarly, Committee members won-
dered whether average exposures during the 30 days before
hospitalization were the most appropriate length of time to
define short-term exposures in the analyses of long COVID-19
outcomes. Other studies evaluating other COVID-19 out-
comes, such as incidence, hospitalization, and death,***also
have used 30-day average estimates of ambient air pollutant
concentrations to represent short-term exposures, although
it is unclear whether this choice was based on biological
mechanisms or some other reason. Future work in this area
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could benefit from including additional sensitivity analyses
to explore the effects of such nuances in defining short-term
exposures, as well as the choice of the year for the annual
averages used to represent chronic or long-term exposures.

Regarding some of the analytical methods used in this
study, the Committee remained somewhat skeptical of the use
of the Markovian assumption in the analysis of associations
between air pollutant exposures and multistate health effects
of COVID-19. This assumption presumes that the amount of
time that a patient exists in any given state (e.g., hospitaliza-
tion, deterioration to more severe COVID-19 states) does not
influence their time spent in any other state. However, the
Committee noted that it might be more reasonable to assume
that, for example, a patient’s progression from hospitalization
to ICU admission and from ICU admission to death is, in fact,
partially influenced by their time spent in prior states. They
were curious about how the use of an alternative assumption
or relaxation of the Markovian assumption (e.g., the use of
a semi-Markov model in which the hazard depends on the
time spent in the current state and thus affects the likelihood
of transitioning to another state)*** might have changed
the results of this analysis. Although the investigators
acknowledged this point, they noted that they were unable
to characterize how time spent in one state would influence
subsequent transitions, thus choosing to make the simplifying
Markovian assumption.

The Committee noted that the investigators’ choice of
terminology at times created confusion in interpreting the
study’s findings. For instance, the term “effect” was used in
a way that could imply causality, despite being intended as a
measure of association.?”” Similarly, in analyzing associations
between air pollutant exposures and COVID-19 incidence
and deaths in Los Angeles County, the investigators used the
word “synergy” to describe an independent effect rather than
an interaction while also referring to synergy in the context of
a statistical method for assessing multiplicative interactions
on an additive scale.

EVALUATION OF FINDINGS AND INTERPRETATION

The Committee generally agreed with the presentation
and interpretation of the findings in this study. Kleeman and
colleagues reported positive associations between chronic air
pollutant exposures and COVID-19 incidence, progression
to more severe states of COVID-19 during hospitalization,
and death. They also reported positive associations between
chronic and short-term air pollutant exposures and several
long COVID-19 outcomes (i.e., cardiac, cardiometabolic,
and pulmonary conditions). The elevated risks of COVID-19
incidence and mortality demonstrated by the investigators
are largely consistent with the findings of other studies
using the KPSC database.”*** Other HEI-funded studies
using individual-level data from Denmark? and Spain® also
have demonstrated elevated risks of COVID-19 mortality
associated with PM, _ and NO,; however, those studies both
reported inverse associations between COVID-19 mortality



and O,, whereas this study reported a positive association for
this relationship in the CDPH cohort and no association in
the KPSC cohort. The Committee noted that the inconsistency
in the findings on the association between O, exposure and
COVID-19 mortality in the CDPH data versus the KPSC cohort
was unexpected, especially given the strength of the reported
associations between O, exposure and other COVID-19 out-
comes examined in this study. This inconsistency might be
due to differences in the spatial scale of the data (i.e., ZIP
code-level data in the CDPH data versus individual-level
data in the KPSC cohort). Interestingly, another study using
the KPSC database also found no association between long-
term O, exposure and COVID-19 mortality,”® and a different
study that analyzed KPSC data reported a positive association
between long-term O, exposure and COVID-19 incidence.*
However, differences in the specific air pollutants, exposure
definitions, and COVID-19 outcomes examined across such
studies limit the ability to directly compare their results.

Looking beyond the COVID-19 pandemic, the investigators
noted that their findings have broader implications for future
infectious disease outbreaks. They indicated that their results
suggest that reducing air pollution exposures could lead to
decreased incidence of infections, less severe outcomes, and,
potentially, a reduction in the development of post-acute
conditions. The Committee agreed that the findings provide
useful insights into the role of air pollution in adverse health
outcomes; furthermore, the Committee concurred that their
insights can be applied to future outbreaks involving novel
infectious respiratory diseases and contribute useful informa-
tion regarding both the progression of such diseases to more
severe states of illness and the development of post-acute
conditions. The Committee noted that the results of this study
are most relevant for severe COVID-19 outcomes, as many of
the analyses were conducted using a cohort of hospitalized
patients (i.e., those severely ill with COVID-19) — a limitation
that was appropriately acknowledged by the investigators.
Additionally, the Committee wondered how the findings
might translate to the current general population that is either
largely vaccinated against COVID-19 or has obtained natural
immunity through prior disease. Kleeman and colleagues also
discussed the generalizability of their findings to the current
population, which has much lower rates of severe disease, as
an area that merits further research. Nonetheless, the Commit-
tee generally thought that the results might be relevant and
applicable in the setting of a new respiratory disease to which
the population has no immunity.

The investigators also referred to vaccine hesitancy among
certain populations and in some locations as a motivation
for studying modifiable environmental risk factors (e.g., air
pollution). Throughout the report, they noted the importance
of preventive measures that target such modifiable exposures.
The Committee agreed that studying the complex interplay
between air pollution and COVID-19 is worthwhile. However,
the role of air pollution and other environmental risk factors
should be viewed as one component that can be targeted
alongside multiple other public health and preventive
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measures pertinent to future infectious respiratory disease
outbreaks, but likely not as a solution to address vaccine
hesitancy.

The Committee had additional thoughts on some other
specific results of this study. The Committee appreciated the
exploration of effect modification by temperature and relative
humidity on the association between air pollutant exposures
and COVID-19 mortality, which remains understudied in
the context of air pollution and COVID-19. Kleeman and
colleagues reported that both higher temperature and higher
relative humidity weakened the associations between expo-
sures to most of the examined air pollutants and risk of death
due to COVID-19. The investigators further posited that this
finding might be biologically plausible if cooler and less
humid conditions interfere with viral defenses in the human
nose. The Committee noted that these results could partially
reflect seasonality (i.e., the variations in infectious disease
that coincide with seasonal patterns throughout the year),
which the investigators acknowledged might have generally
affected their findings in this analysis. Although focused on
transmission and infection, some studies in China that have
explored the relationship between meteorology, air pollution,
and seasonal influenza have also shown effect modification
by temperature and humidity, with higher temperature and
higher humidity being associated with decreased risk of
influenza transmission and infection.**!

In analyses of air pollutant exposures and multistate
COVID-19 health effects, Kleeman and colleagues found that
exposure to air pollution was positively associated with pro-
gression to more severe states or outcomes, such as admission
to the ICU, death after deterioration to more severe states, and
death after recovery and discharge from the hospital (only for
chronic exposure to O,). The investigators noted that these
results corroborate their earlier findings regarding COVID-19
deaths and further underscore that the results imply that air
pollution could affect both COVID-19 severity and a healthy
recovery among patients discharged from the hospital.
Although the Committee generally found these conclusions
to be reasonable and commended the investigators on their
exploration of multistate COVID-19 outcomes, the Committee
wondered how greatly the use of a Markovian assumption (as
previously described) influenced the direction and magnitude
of the observed associations.

The Committee found the analyses of associations between
air pollutant exposures and long COVID-19 outcomes espe-
cially interesting. Kleeman and colleagues highlighted their
results on long COVID-19 as potentially the most important
findings of their study and noted that long COVID-19 con-
tinues to affect more than 6% of the US population, with
implications for individuals and the public health system
more broadly.*>** Indeed, in a recent review, researchers
described the difficulties in studying and managing long
COVID-19, given the range and severity of health impacts
and the ongoing questions related to biological mechanisms,
treatment efficacy, and susceptibility.® Other research has
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demonstrated that long COVID-19 outcomes might be asso-
ciated with the severity of COVID-19 and the recurrence of
infection.®® The current study provides additional evidence
that both the incidence and severity of long COVID-19 might
be positively associated with air pollution.

The investigators reported elevated risks of cardiac,
cardiometabolic, and pulmonary long COVID-19 outcomes
associated with exposures to several air pollutants (PM,,,
PM, . nitrate, and O,). Other studies assessing the relationship
between air pollution and long COVID-19 have also found
positive associations between several air pollutants and long
COVID-19.7% Whereas those other studies all reported posi-
tive associations between PM, ; and long COVID-19, Kleeman
and colleagues observed no or inverse (for pulmonary long
COVID-19 outcomes) associations between estimated PM,
exposure and long COVID-19; after sensitivity analyses,
however, the observed inverse association between estimated
PM, .exposure and pulmonary long COVID-19 outcomes was
found to be null. The investigators suggested several areas for
future research in this context, including the exploration of
common biological mechanisms between air pollution health
effects and long COVID-19, examination of these relation-
ships in populations with different profiles of air pollution
exposure, and evaluation of longer-term and ongoing air
pollution exposures.

CONCLUSIONS

Overall, Kleeman and colleagues have provided evidence
of associations between chronic and short-term exposures
to air pollution and COVID-19 incidence and mortality,
progression to more severe states of COVID-19, and long
COVID-19 outcomes. The use of individual-level electronic
health records from a large healthcare database and fine-scale
exposure assessment were particular strengths of the study.
Additionally, the investigators conducted novel analyses of
associations between air pollutant exposures and multistate
COVID-19 health effects and long COVID-19 outcomes and
evaluated effect modification by temperature and relative
humidity on associations between exposure to ambient air
pollution and COVID-19 mortality.

Kleeman and colleagues reported elevated risks of
COVID-19 incidence and mortality associated with expo-
sures to PM, |, PM, ., some PM, . components, and O, across
neighborhoods in Los Angeles County based on data from the
California Department of Public Health. Using a study cohort
based on a large healthcare database, the investigators also
reported elevated risks of COVID-19 mortality associated with
all ambient air pollutants examined in the study, except for
O, and some PM components, across Southern California.
Furthermore, PM, ., NO,, and O, exposures were all found
to significantly affect the progression from hospitalization
to more severe COVID-19 states (i.e., admission to the ICU
or need for ventilation), whereas exposure to PM, , was most
consistently associated with long COVID-19 outcomes. Cer-
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tain methodological choices, such as the use of a Markovian
assumption in the multistate health effects model, might have
affected some of the reported findings.

Ultimately, this study presents findings from a comprehen-
sive set of analyses that contribute both new and corroborating
evidence of associations between air pollution and COVID-19
health outcomes. The study is the fifth and final in a series of
HEI-funded studies investigating the association between air
pollution and COVID-19. The designs of these studies differ
with regard to the assessed exposures, the COVID-19 out-
comes investigated, and the analytical approaches. Nonethe-
less, the resulting body of work published thus far generally
demonstrates elevated risks of COVID-19 mortality associated
with several ambient air pollutants, including PM, ;and NO,.
Although the results of this study by Kleeman and colleagues
might not be generalizable to the broader US population
because the current general population has now gained some
form of natural or vaccine-induced immunity to COVID-19,
the findings provide valuable insights into the potential role
of air pollution in the risk of adverse health outcomes that
might be relevant to future infectious respiratory disease
outbreaks. However, although air pollution is an important
modifiable environmental risk factor, efforts to improve
air quality as a strategy for reducing health risks should be
viewed as one part of a compendium of public health and
preventive measures targeting future outbreaks.
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particulate matter <0.1 pm in
aerodynamic diameter
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particulate matter <10 pm in
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parts per billion
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