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A B O U T  H E I

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the Institute 

•	 identifies the highest-priority areas for health effects research 

•	 competitively funds and oversees research projects 

•	 provides an intensive independent review of HEI-supported studies and related research 

•	 integrates HEI’s research results with those of other institutions into broader evaluations 

•	 communicates the results of HEI’s research and analyses to public and private decision-
makers. 

HEI typically receives balanced funding from the US Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the United 
States and around the world also support major projects or research programs. HEI has funded 
more than 390  research projects in North America, Europe, Asia, and Latin America, the results 
of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, diesel 
exhaust, ozone, particulate matter, and other pollutants. These results have appeared in more 
than 275 comprehensive reports published by HEI, as well as in more than 2,500 articles in peer-
reviewed literature. 

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Research Committee solicits input from HEI sponsors and other stakeholders and works with 
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and oversee 
their conduct. The Review Committee or Panel, which has no role in selecting or overseeing 
studies, works with staff to evaluate and interpret the results of funded studies and related 
research. 

All project results and accompanying comments by the Review Committee or Panel are widely 
disseminated through HEI’s website (www.healtheffects.org), reports, newsletters, annual conferences, 
and presentations to legislative bodies and public agencies. 

http://www.healtheffects.org
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A B O U T  T H I S  R E P O RT

Research Report 238, Ambient Air Pollution and COVID-19 in California, presents a research 
project funded by the Health Effects Institute and conducted by Dr. Michael Kleeman at the 
University of California, Davis, and colleagues. The report contains three main sections:

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the study 
and its findings; it also briefly describes the Review Committee’s comments on the study.

The Investigators’ Report, prepared by Kleeman and colleagues, describes the scientific 
background, aims, methods, results, and conclusions of the study.

The Commentary, prepared by members of the Review Committee with the assistance 
of HEI staff, places the study in a broader scientific context, points out its strengths and 
limitations, and discusses remaining uncertainties and implications of the study’s findings for 
public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. Outside technical reviewers first examine this draft report. The report and the reviewers’ 
comments are then evaluated by members of the Review Committee, an independent panel of 
distinguished scientists who are not involved in selecting or overseeing HEI studies. During the 
review process, the investigators have an opportunity to exchange comments with the Review 
Committee and, as necessary, to revise their report. The Commentary reflects the information 
provided in the final version of the report. 

Although this report was produced with partial funding by the United States Environmental 
Protection Agency under Assistance Award CR–83998101 to the Health Effects Institute, it has 
not been subjected to the Agency’s peer and administrative review and may not necessarily reflect 
the views of the Agency; thus, no official endorsement by it should be inferred. The contents of 
this report also have not been reviewed by private party institutions, including those that support 
the Health Effects Institute, and may not reflect the views or policies of these parties; thus, no 
endorsement by them should be inferred. 
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HEI’s Program on Air Pollution, COVID-19, and  
Human Health

INTRODUCTION

On January 20, 2020, the US Centers for Disease Control 
and Prevention (CDC) confirmed the first case of COVID-19 
in the United States. On March 20, after more than 118,000 
cases in 114 countries and 4,291 deaths, the World Health 
Organization (WHO) declared a global COVID-19 pandemic, 
and countries around the world began instituting preventive 
measures (e.g., lockdowns) to slow the spread of disease. The 
closing of nonessential businesses in many locations around 
the world led to reduced emissions of air pollutants from the 
energy sector and other industries and significantly reduced 
traffic volumes due to stay-at-home policies. 

Although there has been an enormous cost to 
this pandemic, both human and economic, it created 
unprecedented conditions that lent themselves to timely and 
novel air pollution research aimed at exploring policy-relevant 
topics, including key factors that contributed to changing 
patterns of air pollution over space and time, potential benefits 
to human health associated with such changes in exposures, 
and relationships between past or current exposures to 
air pollution and susceptibility to the effects of COVID-19 
infections (Boogaard et al. 2021).

Because of known associations between air pollution 
and respiratory hospitalizations and mortality, researchers 
quickly initiated investigations into potential links between 
air pollution exposure and COVID-19 (Liang et al. 2020; 
Wu et al. 2020). There were many unique challenges to this 
task because the context within which we study associations 
between air pollution and health was altered due to 
widespread changes to daily life related to the pandemic (e.g., 
changes in emission sources, behaviors that affect exposures, 
and healthcare access and use). Furthermore, COVID-
19 outcomes are difficult to study due to various factors, 
including initial lack of testing, inconsistency in diagnoses, and 
healthcare systems being overloaded. COVID-19 incidence 
data — and to a lesser extent mortality data — have also 
been underestimated in all countries, thus affecting all analyses 
(Copat et al. 2020). Moreover, the spread of the disease has 
been shown to be highly dynamic both in time and space. 
Most transmission has been caused by a few superspreading 
events influenced by human behavior, socioeconomic and 
demographic factors (e.g., household size and multigeneration 
households), and compliance with control measures (Chang 
et al. 2021, Samet et al. 2021).

In May 2020, only 2 months after the WHO declared the 
COVID-19 outbreak a global pandemic, HEI issued Request 
for Applications (RFA) 20-1B that sought to fund studies 
to investigate potential associations between air pollution, 
COVID-19, and human health. HEI formulated specific 
research objectives where it expected to make a valuable 
contribution to this rapidly expanding new field of research. 
HEI was interested in applications for studies designed 
specifically to address the following questions on this topic: 

1.	 Accountability Research: What are the effects 
of the unprecedented interventions implemented to 
control the COVID-19 pandemic on emissions, air 
pollution exposures, and human health? Emerging 
evidence suggested that changes in economic activity 
and human mobility following government restrictions 
led to noticeable reductions in pollutant emissions and 
pollutant concentrations in ambient air — in particular, 
nitrogen dioxide (NO2) — in many cities around the 
world (Ogen 2020; Schiermeier 2020; Zhang et al. 
2020). 

	 The observed changes in air quality presented a unique 
opportunity for accountability research on this “natural 
experiment.” HEI acknowledged that it could be 
difficult for investigators to find control populations not 
affected by the interventions; in addition, interventions 
in various locations occurred during different periods. 
Moreover, there would be challenges related to the 
major reorientating of healthcare systems to deal with 
COVID-19 and accompanying challenges in estimating 
comparable hospitalization rates and other health 
outcomes at a time when utilization of healthcare 
was changed and diagnostic criteria for COVID-19 
and respiratory outcomes were also variable across 
time and space. Studies investigating health effects are 
needed to account for those kinds of changes. 

2.	 Susceptibility Factors: Are individuals or 
populations who have been chronically or acutely 
exposed to higher levels of air pollution at greater 
risk of mortality from COVID-19 compared to 
those exposed to lower levels of air pollution? Do 
the potential effects differ by race or ethnicity or by 
measures of socioeconomic status?

	 Limited evidence from the 2002–2004 SARS outbreak 
indicated a possible association between higher air 
pollution concentrations and higher-than-expected 
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death rates (Cui et al. 2003; Kan et al. 2005). Early evidence 
suggested that individuals with existing comorbidities (e.g., 
diabetes, high blood pressure, or heart and lung diseases) 
might be more susceptible to the effects of a COVID-19 
infection and at higher risk of mortality from COVID-
19 (Wang et al. 2020; Yang et al. 2020). There was also 
evidence that racial and socioeconomic disparities might 
lead to higher observed risks (Brandt et al. 2020). 

	 Because exposure to air pollution is also known to 
contribute to the development of such underlying diseases 
(Cohen et al. 2017; HEI 2019), air pollution might also 
increase susceptibility to morbidity and mortality from 
COVID-19, possibly in ways that we do not fully understand 
(Conticini et al. 2020). 

STUDY SELECTION

HEI established an independent Panel of outside experts to 
review all applications submitted in response to the RFA. The 
HEI Research Committee reviewed the Panel’s suggestions 
and recommended five studies for funding to HEI’s Board of 
Directors, which approved funding in December 2020. Members 
of the Research Committee with any conflict of interest were 
recused from all discussions and from the decision-making 
process. This Preface summarizes the five studies, HEI’s oversight 
process, and the review process for the final reports.

OVERVIEW OF THE AIR POLLUTION, COVID-
19, AND HUMAN HEALTH STUDIES 

HEI expected to make a valuable contribution to this rapidly 
expanding new field of research with the five studies funded 
under RFA 20-1B (Preface Table). 

Zorana Andersen of the University of Copenhagen and 
colleagues used a population-based nationwide cohort of 3.7 
million Danish adults to investigate whether long-term exposure 
to air pollution is associated with increased risk of COVID-
19-related morbidity and mortality and to identify the most 
susceptible groups by age, sex, socioeconomic status, ethnicity, 
and comorbidity (Andersen et al. 2023).

Kai Chen of Yale University and colleagues assessed the 
effects of the first COVID-19 lockdowns on air quality and 
associated mortality in regions of four countries (Germany, 
Italy, China, and the United States). First, they evaluated changes 
in NO2 and PM2.5 concentrations, before and after accounting 
for meteorology and temporal trends in air quality. Then they 
found prepandemic associations of mortality with NO2 and PM2.5 

concentrations and applied those to the changes in air quality 
during the lockdowns to estimate the effects of lockdowns on 
mortality related to air pollution (Chen et al. 2025).

Michael Kleeman of the University of California Davis 
and colleagues evaluated the chronic and short-term effects of 
air pollution exposure on COVID-19 progression, mortality, 
and long-term complications among hospitalized patients across 

Southern California using electronic health records from the 
Kaiser Permanente healthcare database. First, they used chemical 
transport and land use regression models to develop chronic 
and short-term daily PM2.5, NO2, and O3 exposure estimates at 
multiple spatial resolutions. They then assessed the association 
between exposure and COVID-19 outcomes from June 2020 to 
January 2021, and with long-COVID-19 diagnoses up to 12 months 
following discharge from the hospital.  

Jeanette Stingone of Columbia University and colleagues 
evaluated the interactions between chronic air pollution exposure 
and neighborhood vulnerability in relation to adverse COVID-19 
outcomes in New York City. They used electronic health record 
data with more than 37,000 COVID-19 patients from five large 
hospital systems to evaluate long-term air pollution exposures in 
relation to COVID-19 hospitalization after visiting the emergency 
department, inpatient length of stay, acute respiratory distress 
syndrome, pneumonia, ventilator use, need for dialysis, and death. 
They also conducted an additional analysis evaluating excess all-
cause mortality using public administrative data. 

Cathryn Tonne of ISGlobal and colleagues are assessing 
whether long-term exposure to air pollution increased 
the risk of COVID-19 hospitalization and mortality in the 
general population of 5 million people in Catalonia, Spain, and 
whether short-term exposure to air pollution increased the 
risk of COVID-19 hospitalization after visiting the emergency 
department and mortality among the 300,000 people who 
tested positive for SARS-COV-2 during the study period 
(Tonne et al. 2024).

PROTOCOLS AND FUTURE DIRECTIONS

Throughout its portfolio, HEI emphasizes the importance 
of data access and transparency because they underpin high-
quality research that is used in policy settings (see Policy on the 
Provision of Access to Data Underlying HEI-Funded Studies). During 
the studies, members of HEI's Research Committee provided 
advice and feedback on the study designs, analytical plans, and 
study progress. The studies were subject to HEI's special quality 
assurance procedures that included quality assurance audits by an 
independent audit team prior to publication of the final reports. 
HEI plans to publish an overall summary and interpretation of 
the COVID-19 research program once all studies have been 
reviewed.
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H E I  S TAT E M E N T
Synopsis of Research Report 238

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Michael 
Kleeman at the University of California, Davis, and colleagues. Research Report 238 contains the detailed Investigators’ Report and 
a Commentary on the study prepared by the HEI Review Committee.

Ambient Air Pollution and COVID-19 in Southern 
California 

What This Study Adds
	● This study evaluated associations between 

estimated outdoor air pollution concen-
trations and risk of COVID-19 disease, 
COVID-19 disease progression or recovery, 
deaths due to COVID-19, and long COVID-
19 conditions among a study population in 
Southern California.

	● The study used administrative data from the 
state of California and a cohort of hospital-
ized patients with COVID-19 from a large 
healthcare system, combined with high- 
resolution estimates of outdoor air 
pollution concentrations calculated using 
chemical transport and statistical land use 
regression models.

	● Kleeman and colleagues found that 
increased risk of COVID-19 death was 
associated with estimated annual average 
exposures to ultrafine particulate matter, 
fine particulate matter, and several specific 
components of fine particulate matter; how-
ever, their findings on associations between 
ozone exposure and COVID-19 death in 
the administrative and healthcare system 
datasets were inconsistent.

	● Exposures to several pollutants were also 
associated with progression from hospital-
ization to more severe COVID-19 illness 
and with several long COVID-19 outcomes. 

	● The findings from this study provide 
useful insights into how air pollution might 
contribute to adverse COVID-19 health 
outcomes, and these insights might apply 
to future respiratory infectious disease pan-
demics. However, the findings reported here 
likely only apply to individuals who become 
severely ill, requiring hospitalization.

BACKGROUND 

Exposure to air pollution has been linked with 
increased risks of influenza, respiratory syncytial 
virus, and other types of respiratory infection. 
Some epidemiological studies conducted early 
in the COVID-19 pandemic reported that rates of 
COVID-19 death were higher in areas with greater 
levels of air pollution, suggesting a possible asso-
ciation between air pollution and risk of death 
or poor health outcomes due to COVID-19. The 
early studies, however, had notable methodolog-
ical shortcomings (e.g., a lack of high-resolution 
estimates of exposure or detailed information on 
individuals, such as socioeconomic status) and 
thus had a high potential for biased results. To 
investigate the potential associations between air 
pollution, COVID-19, and human health further, 
HEI funded five studies in various countries in 
the fall of 2020. This Statement highlights a study 
conducted by Dr Michael Kleeman and colleagues 
at the University of California, Davis.

APPROACH 

The investigators used two sources of health 
data, one from the California Department of Public 
Health (CDPH) and the other from the Kaiser Per-
manente Southern California (KPSC) healthcare 
system, from June 2020 through January 2021. The 
CDPH data included information on about 773,000 
COVID-19 cases and 14,000 deaths due to COVID-
19 across 308 ZIP codes in Los Angeles County. 
The KPSC cohort consisted of more than 20,000 
adult patients in Southern California who were 
diagnosed with COVID-19 and hospitalized within 
21 days of a positive COVID-19 diagnosis or test, 
and this dataset contained detailed information on 
patient characteristics and all aspects of patient 
care. 

Two different approaches were used to esti-
mate outdoor air pollutant concentrations. The 
investigators used both an advanced chemical 
transport model and a land use regression sta-

Health Effects Institute Research Report 238 © 2026 
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tistical model to produce highly refined estimates of 
daily outdoor concentrations of ultrafine particulate 
matter, fine particulate matter, fine particulate matter 
components, nitrogen dioxide, and ozone at multiple 
spatial resolutions for 2016, 2019, and 2020. Average 
long-term (annual) and short-term (30-day) exposure 
estimates were linked to ZIP codes for the CDPH data 
and patients’ residential addresses in the KPSC cohort.

Kleeman and colleagues used various regression 
modeling approaches to evaluate associations between 
both single- and multipollutant air pollution expo-
sures and COVID-19 outcomes. To analyze outcomes 
regarding COVID-19 cases and deaths in the CDPH 
data, the investigators used negative binomial models 
with adjustment for ZIP code-level demographic and 
socioeconomic factors. For the KPSC cohort, they used 
Cox proportional hazards models to analyze outcomes 
of patient deaths and multistate survival modeling to 
analyze outcomes related to patients transitioning to 
recovery or more severe states of illness (i.e., admis-
sion to intensive care, needing ventilation, or death). 
The investigators also evaluated whether weather 
(temperature and relative humidity) influenced the 
effect of long-term outdoor air pollution exposures on 
the risk of COVID-19 death. Additionally, they used 
logistic regression to analyze long COVID-19 outcomes 
3 months and 12 months after discharge from the hos-
pital in the KPSC cohort.

KEY RESULTS 

Air Pollution Exposure	  Estimated outdoor air 
pollution exposures varied across the different types 
of analyses and statistical methods used in the study. 
The range of estimated average long-term (annual) air 
pollutant exposures in Southern California was around 
9–13 µg/m3 for fine particulate matter, 13–22 parts per 
billion for nitrogen dioxide, and 55–66 parts per billion 
for ozone. In general, the statistical model produced 
higher estimates of nitrogen dioxide exposure around 
Los Angeles than did the chemical transport model; 
these models also produced different estimates of 
where exposures to fine particulate matter were highest 
in southern California. For most of the analyses in this 
study, the investigators used outdoor air pollution 
concentrations estimated using the chemical transport 
model.

COVID-19 Cases and Deaths	   In the CDPH dataset, 
Kleeman and colleagues observed that higher estimated 
exposures to ultrafine particulate matter, fine particulate 
matter, and some of its components, and ozone were 
associated with elevated risks of COVID-19 incidence 
and death, with the strongest risks being associated 
with ozone concentrations. The two-pollutant models 
showed slightly elevated risks of both COVID-19 inci-
dence and death associated with most combinations of 
these pollutants. In the KPSC cohort, the investigators 
observed that elevated risks of COVID-19 death were 

associated with exposures to most particulate matter 
pollutants and nitrogen dioxide but not with ozone; the 
risk estimates for fine particulate matter and nitrogen 
dioxide generally remained elevated in two-pollutant 
models. The investigators found that higher tempera-
tures and higher relative humidity levels weakened the 
associations between long-term air pollutant exposures 
and risk of COVID-19 death.

Transition to More Severe COVID-19 States	  Greater 
estimated long-term exposures to fine particulate mat-
ter, nitrogen dioxide, and ozone were associated with 
higher risks of progressing to more severe COVID-19 
illness. Greater estimated long-term exposures to fine 
particulate matter were also associated with higher 
risks of progressing from more severe COVID-19 illness 
to death. Across these three pollutants, the risk of 
deterioration (defined as a patient progressing from 
hospitalization to needing ventilation or intensive 
care) associated with the highest (versus the lowest) 
level of exposure increased by as much as 16% to 
21%, depending on the pollutant. Among the analyzed 
associations between pollutant exposures and risk of 
transition to adverse COVID-19 outcomes, the strongest 
risk estimate was observed for the association between 
ozone exposure and transitioning from recovery after 
COVID-19 hospitalization to death. The two-pollutant 
models also demonstrated that exposures to fine partic-
ulate matter, nitrogen dioxide, and ozone were gener-
ally associated with elevated risks of transitioning from 
COVID-19 hospitalization to deterioration. 

Long COVID-19	  Higher estimated short-term 
exposures to ultrafine particulate matter, fine par-
ticulate matter nitrate, and ozone were associated 
with increased risks for long COVID-19 outcomes in 
the 3 months following discharge from the hospital 
(Statement Figure), including pulmonary, cardiomet-
abolic, and cardiac outcomes, but not neurological 
outcomes. The strongest risk estimate per unit increase 
in estimated pollutant exposure was observed for the 
association between short-term particulate matter 
nitrate exposure and cardiometabolic long COVID-19. 
In two- or three-pollutant models, risk estimates for 
short-term ultrafine particulate matter exposures and 
long COVID-19 outcomes remained elevated (as did the 
risk estimate for short-term ozone exposure and pul-
monary long COVID-19). Fewer positive associations 
were observed between short-term air pollution expo-
sures and long COVID-19 outcomes in the 12 months 
following discharge from the hospital.

INTERPRETATION AND CONCLUSIONS 

In its independent evaluation of the Investigators’ 
Report on this study, the HEI Review Committee 
concluded that the study improved the level of 
understanding about associations between exposures 
to outdoor air pollution and adverse health outcomes 
of COVID-19. Specifically, the study demonstrated 
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that multiple air pollutants were associated with 
increased risks of COVID-19 incidence, death due to 
COVID-19, progression to more severe illness after a 
COVID-19 diagnosis, and long COVID-19 outcomes. 
The Committee especially appreciated that Kleeman 
and colleagues explored factors that had not previously 
been investigated in earlier studies, such as COVID-19 
health outcomes specific to multiple different health 
states and long COVID-19 conditions, as well as the 
effect of weather on the outcomes of interest. The Com-
mittee also valued the use of individual-level health 
information obtained from a large healthcare system 
and the calculation of highly refined estimates of long-
term and short-term exposures to multiple outdoor 
air pollutants, including specific components of fine 
particulate matter. 

This study provided further evidence of an asso-
ciation between fine particulate matter, as well as 
nitrogen dioxide (only in the KPSC cohort), and an 
increased risk of death due to COVID-19. The findings 
contributed new information indicating that long-term 
exposures to fine particulate matter, nitrogen dioxide, 

and ozone each were associated with transitioning 
from COVID-19 hospitalization to deterioration to more 
severe illness, whereas short-term exposures to ultra-
fine particulate matter, fine particulate matter nitrate, 
and ozone were associated with several long COVID-
19 outcomes. However, the ability to generalize the 
findings of this study to the broader population may be 
limited because the current population has now gained 
some form of natural or vaccine-induced immunity to 
COVID-19.

Overall, this study offers both additional evidence 
and new contributions that enable a better understand-
ing of the relationship between outdoor air pollution 
and adverse health outcomes of COVID-19, thus pro-
viding valuable insights that might be relevant to future 
outbreaks of other infectious respiratory diseases. 
Importantly, although air pollution is an important 
modifiable environmental risk factor, efforts to improve 
air quality as a means of reducing health risks should 
be viewed as part of a broader collection of public 
health and prevention measures aimed at reducing the 
adverse health effects of future outbreaks.

Statement Figure. Associations between short-term air pollutant exposures and long COVID-19 outcomes occurring 
within 3 months after hospital discharge in the Kaiser Permanente Southern California cohort. These results from single-
pollutant models show odds ratios and 95% confidence intervals estimated per interquartile range increases in pollutant 
exposure (estimated from the chemical transport model). Source: Adapted from Investigators’ Report Figure 18.
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ABSTRACT

Introduction	 As of December 2023, more than 6.9 million 
people globally had died from COVID-19, including more 
than 1.165 million deaths in the United States. It is estimated 
that approximately 18.8 million people in the United States 
have experienced post-acute COVID-19 conditions, also 
known as post-acute sequelae of SARS-CoV-2 (PASC) or long 
COVID, in the first 3 years after the pandemic. Although some 
initial cases of long COVID have resolved, with the ongoing 
incidence of COVID-19, roughly 17.8 million persons in the 
United States continue to suffer from long COVID at the time 
of this writing.1–3 Preliminary evidence early in the COVID-19 
pandemic suggested that exposure to air pollution increased 
the likelihood of contracting COVID-19 and worsened out-
comes for those who became ill. The validity of these findings 
was uncertain, however, as few studies used highly accurate 
exposure models incorporating individual-level data on 
patient characteristics and risk factors. Although the COVID-
19 public health emergency has ended, the disease continues 
to pose substantial risks to individual and population health. 
At the time of this writing, nearly 35,000 individuals per 
week are hospitalized with COVID-19 in the United States, 
and the weekly number of COVID-19–related deaths ranges 
from 900 to 1,400.4

Methods	    In this study, we investigated relationships between 
ambient air pollution and COVID-19-related outcomes, 
including incidence, severity, mortality, and long COVID 
conditions. We used advanced models to estimate exposures, 

incorporating numerous air pollutants, particle species, and 
wildfire emissions. We used administrative COVID-19 data 
and several cohorts of patients from a large health system, 
and each was formed to evaluate different hypotheses. 

Daily air pollution exposures for Southern California were 
estimated with high spatial and chemical resolution, using a 
combination of land use regression and chemical transport 
models for the years 2016, 2019, and 2020. Exposure variables 
included ozone (O3

*), nitrogen dioxide (NO2), fine particulate 
matter (PM) ≤2.5 μm in aerodynamic diameter (PM2.5mass), 
ultrafine PM ≤0.1 μm in aerodynamic diameter (PM0.1), and 
major sources or chemical components of PM in each size 
fraction. Exposures for multiple study populations were 
investigated using statistical analysis methods to test for 
associations with COVID-19–related outcomes, including the 
following:

•	 COVID-19 cases (N = 773,374) and deaths (N = 14,311), by 
age, race, and sex, for 308 ZIP codes in Los Angeles County 
between June 19 and January 3, 2021. A negative binomial 
regression was performed for both individual and multiple 
ambient air pollutants to evaluate their associations with 
COVID-19 incidence and mortality.

•	 Patients with COVID-19 who were admitted to Kaiser 
Permanente Southern California (KPSC) hospitals 
between June 1, 2020, and January 30, 2021 (N = 21,415). 
Cox proportional hazards models were used to evaluate 
associations between ambient air pollutant exposure and 
COVID-19 mortality. A subset was of KPSC patients with 
COVID-19 who received care exclusively in KPSC hospi-
tals (N = 15,978). A multistate survival model was used to 
examine how air pollution affects the transition to recov-
ery or deterioration to more severe COVID-19 states (e.g., 
intensive care admission or death). A subset was of KPSC 
patients with COVID-19 who maintained membership 
with KPSC for 1 year after hospital discharge (N = 12,634). 
We combined a set of 45 diagnoses of post-acute sequelae 
of SARS-CoV-2 (PASC) into categories based on organ sys-
tems and then studied a subset of these PASC categories 
that could be affected by air pollution, including cardiac, 
cardiometabolic, pulmonary, and neurological conditions. 
Logistic regression was used to evaluate associations 

mailto:mjkleeman%40ucdavis.edu?subject=
mailto:mjkleeman%40ucdavis.edu?subject=
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between 30-day air pollution exposure before hospital 
admission and PASC conditions diagnosed at 3 months 
and 12 months post-discharge.

Results  	  PM0.1, O3, NO2, and PM2.5 elemental carbon expo-
sures were identified as risk factors for COVID-19 incidence 
and mortality in the general population of Los Angeles 
County. Air pollution exposures were also significantly asso-
ciated with COVID-19 mortality in the cohort of hospitalized 
KPSC patients, controlling for other individual health risks. 
Incremental increases equivalent to the interquartile range for 
several pollution exposure concentrations were significantly 
associated with increased mortality, including PM2.5 mass 
(hazard ratio [HR], 1.12), PM0.1(HR, 1.06), PM2.5 nitrate (HR, 
1.12), PM2.5 elemental carbon (HR, 1.07), PM2.5 on-road diesel 
(HR, 1.06), and PM2.5 on-road gasoline (HR, 1.07). Humidity 
and temperature in the month of diagnosis were significant 
negative predictors of COVID-19 mortality and negative 
modifiers of the air pollution effects. Results of the multistate 
analysis were consistent with these findings and further 
suggested that O3, NO2, and PM2.5 each were associated with 
deteriorating health states. Increased PM2.5 concentration 
was associated with increased risk of deterioration to both 
intensive care admission (HR, 1.16) and death (HR = 1.11). 
Effects of O3 were similar to those of PM2.5, but O3 also affected 
the transition from recovery to death (HR, 1.24). Several air 
pollutants — particularly O3, PM0.1, and PM2.5 nitrate — were 
significantly associated with several long COVID outcomes, 
including cardiac, cardiometabolic, and pulmonary condi-
tions. 

Conclusions	  Broadly, we concluded that several common 
air pollutants are associated with COVID-19 incidence, mor-
tality, and progression to more severe states of illness, includ-
ing long COVID conditions. Air pollution is a modifiable 
environmental risk factor that could be altered to improve 
the prognosis of COVID-19, thereby also reducing the pub-
lic health impacts of coronaviruses now and in the future. 
This is particularly important for preventing long COVID, 
as evidence suggests that PASC conditions can occur even 
in vaccinated individuals. Given that 10% to 30% of indi-
viduals with COVID-19 will experience some form of PASC, 
which can have lifelong debilitating effects,5 the importance 
of addressing modifiable environmental risk factors, such 
as air pollution, cannot be underestimated. A recent Lancet 
editorial noted that societal investment in understanding the 
pathogenesis of long COVID and preventive measures has 
lagged well behind the levels needed to effectively treat and 
mitigate this complex disease.6 Our research focused mostly 
on hospitalized patients, but it also included one study on the 
general population effects. The results of both analyses were 
generally concordant, although our most important findings 
likely apply only to patients hospitalized with COVID-19.
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CHAPTER 1: INTRODUCTION AND 
OUTLINE 

The COVID-19 pandemic represents one of the largest 
threats to population health in more than a century. As of 
December 2023, more than 690 million people worldwide 
had been diagnosed with COVID-19, resulting in more than 
6.9 million deaths.7 As of 2023, nearly 35,000 individuals per 
week are hospitalized with COVID-19 in the United States, 
and the weekly number of COVID-19–related deaths ranges 
from 900 to 1,400.160 Moreover, many of those affected will 
experience post-acute sequalae of SARS-CoV-2(PASCs), also 
known as long COVID, a condition that affects approximately 
10% to 30% of patients with COVID-19.5 Earlier conservative 
estimates suggested that roughly 65 million people globally 
suffer from long COVID,5 and the most recent research indi-
cates that long COVID has affected some 18.8 million people 
in the United States alone.1,2  In addition, more than 25% of 
those with long COVID experience activity limitations, which 
can affect their ability to work.8,9 Due to inconsistent testing 
and various other factors, estimating the likely number of 
cases of long COVID is complicated. Despite a lack of accu-
rate estimates of the number of cases of COVID-19, even a 
conservative calculation based on a 10% to 30% incidence of 
long COVID among hospitalized cases alone would indicate 
that 3,500–10,500 new cases of long COVID occur per week 
in the United States.

Although researchers have extensively investigated the 
etiology of acute COVID-19, there remain considerable 
uncertainties about how potential risk factors influence the 
incidence and severity of the disease, mortality, and the 
development of PASC conditions. Recent evidence from 
North America, Asia, and Europe implicates air pollution as a 
risk factor that affects the incidence, prognosis, and mortality 
rate of COVID-19.10–23 Limited evidence based on small stud-
ies from Sweden and Saudi Arabia suggests that air pollution 
is a risk factor for developing long COVID; however, these 
studies were conducted in environments with very high or 
low exposure to air pollutants, raising questions about their 
generalizability.140, 141

 Biologically plausible mechanisms suggest that exposure 
to air pollution may render people more susceptible to 
contracting COVID-19 and, furthermore, that once infection 
occurs, greater exposure to air pollution may worsen the 
prognosis.24–28 For example, nitrogen dioxide (NO2), a marker 
of traffic-related air pollution,29,30 probably increases the 
risk of lung infections by impairing the function of alveolar 
macrophages and epithelial cells in the lungs.31 Findings 
from epidemiological and toxicological studies align with a 
large body of research linking air pollution to risk of viral and 
bacterial respiratory infections,17,32 chronic respiratory mor-
bidities (e.g., asthma, chronic obstructive pulmonary disease, 
lung cancer),33–35 hospitalizations,31 and mortality.36–38

 Our review of the literature on air pollution exposure and 
COVID-19 outcomes identified a limited number of studies 
that used individual-level data, controlling for potential 
confounders, to evaluate outcomes related to disease severity 
or mortality.21,38–41 These studies were focused on the early 
phases of the pandemic, possibly resulting in lower statistical 
power due to a relatively small number of deaths. Some of the 
mortality studies used high-quality exposure estimates, but 
none assessed the contribution of particle sources or ultrafine 
particle concentrations. Also, none of these studies examined 
interactions between air pollution and meteorological vari-
ables, such as temperature and humidity. 

This study makes several contributions to the literature. 
Specifically, we expanded the evidence base by using a large 
sample of individual data, a longer study period than found 
in existing studies, exposure models capable of assessing 
particle species and sources, and meteorological variables 
(Chapter 5). We also employed a multistate model (Chapter 
6). No previous studies have used a multistate model to 
examine the progression to more severe states of disease and 
the likelihood of recovery from acute COVID-19 during and 
after hospitalization. Moreover, only limited evidence on 
potential associations between air pollution exposures and 
long COVID exists; as previously described, the two existing 
well-conducted studies have several limitations (e.g., small 
sample size, inaccurate characterization of exposures, and 
questionable representativeness of the high and low exposure 
profiles), highlighting the need for further research on this 
disease that poses a large threat to public health. Here we 
address such limitations in existing studies on long COVID by 
incorporating a larger sample from an area with air pollution 
exposures more typical of those observed in the United States 
and Europe, a speciated exposure model, and specific time 
windows of exposure (Chapter 7). More generally, few exist-
ing studies of COVID-19 severity or mortality or long COVID 
have attempted to comprehensively estimate air pollution 
exposures that incorporate different particle physicochemical 
species and sources. 

In this context, we addressed several central research 
objectives. Firstly, we assessed whether greater air pollution 
exposures led to increased risk of COVID-19 incidence and 
death among confirmed COVID-19 cases in a population 
sample from Southern California. This study is built on 
previous evidence42 but expanded the analysis with speciated 
and source-specific particle estimates using individual-level 
health data. Secondly, we assessed associations between a 
wide array of air pollution estimates and mortality among 
patients in the Kaiser Permanente Southern California (KPSC) 
health system (which has an excellent electronic health 
records [EHR] system) who were hospitalized with COVID-19 
across Southern California. In a novel addition to previous 
research, we also investigated the impact of temperature and 
humidity as both a direct risk factor and a modifying influ-
ence on the health effects of air pollution. We extended this 
analysis with a multistate investigation of how air pollution 
influenced the progression of COVID-19 to recovery, more 
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severe states of illness (i.e., admission to an intensive care 
unit), and death, as well as the progression from recovery to 
death. Lastly, we investigated the relationship between air 
pollution exposure and long COVID in a subcohort of the 
KPSC data. 
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CHAPTER 2: SPECIFIC AIMS AND 
GENERAL APPROACH

Stated generally, we hypothesized that air pollution 
exposures could increase the risk of COVID-19 infection, 
progression from COVID-19 to more severe states of illness, 
and death due to COVID-19. We also hypothesized that air 
pollution would increase the risk of developing PASC condi-
tions, or long COVID. 

Beyond the introductory chapters (Chapters 1 and 2), this 
report is organized into the following sections: exposure mod-
eling (Chapter 3), population health impacts of air pollution 
on COVID-19 incidence and mortality in Los Angeles (Chap-
ter 4), associations between air pollutants, meteorology, and 
COVID-19 mortality (Chapter 5), multistate analysis of the 
relationship between air pollution exposure and progression 
from COVID-19 to more severe states of illness (Chapter 6), 
long COVID in relation to air pollution exposures (Chapter 
7), and a concluding chapter synthesizing important findings 
and emphasizing public health implications (Chapter 8). 
Except for Chapter 8, all chapters are written as stand-alone 
components of the study to enhance readability. Our central 
aims and hypotheses are outlined below.

AIM 1: DEVELOP CHRONIC AND SUBCHRONIC AIR 
POLLUTION EXPOSURE FIELDS

Exposure fields were developed for periods before the 
COVID-19 pandemic (2016 and 2019) to analyze the effects 
of chronic air pollution and for a period during the pandemic 
(2020) to analyze the effects of shorter-term (subchronic, 
30-day) changes in air pollution concentrations. The sub-
chronic exposure fields accounted for both modified behavior 
patterns (traffic, air travel, restaurant dining) during the 
pandemic and the exceptionally severe wildfire season in 
2020. Our original intention was to test whether any of the air 
quality changes were associated with COVID-19 incidence, 
severity, and mortality. The majority of cases of COVID-19, 
however, occurred late in the year, when air pollution pat-
terns had largely returned to their historical norms. The low 
case count during periods of altered air pollution reduced the 
statistical power and caused other artifacts in the statistical 
analysis. Therefore, we had no testable hypotheses related to 
Aim 1, although the exposure fields associated with this aim 
are used in the subsequent aims.

AIM 2: HIGH-RESOLUTION SPATIAL ANALYSIS

The strength of the association between air pollution 
and COVID-19 outcomes can be artificially weakened by 
incomplete exposure estimates and inconsistent reporting of 
health outcomes across different jurisdictions nationwide. 
County-level estimates, for example, may reflect substantial 
errors regarding exposure, as air pollution can vary consider-
ably within counties. Analyses that are specific to a smaller 

geographical area with a large population, consistent health 
reporting practices, and accurate pollution exposure estimates 
are more likely to detect an association between air pollution 
and COVID-19 incidence or mortality with greater precision 
than analyses specific to larger spatial units. Earlier studies 
in Los Angeles reported positive associations but lacked 
individual health data as well as data on particle species and 
sources. In this project, we quantified associations between 
air pollution and COVID-19 incidence and mortality by 
using high-resolution (e.g., 30-m to 1-km) spatial modeling of 
exposures to analyze data for 308 out of 584 ZIP codes in Los 
Angeles County that represented approximately 10 million 
residents, 773,374 cases of COVID-19, and 14,311 deaths due 
to COVID-19. This aim had one associated hypothesis: 

•	 Hypothesis 1: Studies using high-quality data to assess air 
pollution and COVID-19 within small neighborhoods will 
detect associations more accurately than will national or 
statewide analyses, which would be subject to substantial 
case-ascertainment bias and exposure misclassification. 

AIM 3: MORTALITY AND MULTISTATE HEALTH 
EFFECTS OF CHRONIC AIR POLLUTION EXPOSURE

We studied questions about mortality and progression to 
either more severe illness states or recovery in a cohort of 
patients with confirmed COVID-19 who were members of the 
KPSC health system. The EHRs for KPSC patients contain 
detailed demographic and health information for each patient. 
Multiple exposure models were used to cover a broad range of 
potentially relevant pollutants. This aim was associated with 
two hypotheses:

•	 Hypothesis 2A: Patients living in areas with higher chronic 
and subchronic air pollution exposures who are hospi-
talized with COVID-19 will be more likely to progress to 
serious illness requiring admission to the intensive care 
unit (ICU) or death than those living in lower pollution 
areas. 

•	 Hypothesis 2B: Patients living in areas with higher chronic 
and subchronic air pollution exposures who were hospi-
talized with COVID-19 will be less likely to transition 
toward recovery and more likely to die than those living in 
lower pollution areas.

AIM 4: LONG COVID

Preliminary findings suggest that patients who recover 
from the acute effects of COVID-19 may experience PASC 
conditions known as long COVID. We studied the relationship 
between air pollution exposure and increased incidence of 
PASC conditions at 3 months and 12 months after discharge 
from the hospital. PASC conditions were defined as a set of 
45 diagnoses described in detail by Tartof and colleagues.43 
We collaborated with a KPSC hospitalist to create clinically 
meaningful categories that group these 45 diagnostic codes by 
organ system. This aim had one associated hypothesis:
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•	 Hypothesis 3: Exposure to air pollution will increase 
the risk of developing long COVID, or PASC conditions, 
in patients who have recovered from the acute effects of 
COVID-19.

Many of the aims and research hypotheses evolved as new 
information became available during the study. Most notably, 
because of very low case counts, we were unable to fully test 
hypotheses related to modified air pollution exposure during 
lockdown periods in the initial stages of the pandemic. By 
contrast, we were able to greatly expand the sophistication 
of the long COVID analysis by incorporating the outcomes of 
work performed at KPSC to define PASC conditions. Overall, 
the research summarized in this report was adapted to the 
dynamic environment of the COVID-19 pandemic to answer 
the most important research questions within the confines of 
the time and resources available for the project.

 

Research Roadmapa 

Research Aim Description of Methods

Aim 1: Generate exposure fields

	● Generate land use regression exposure fields Chapter 3: Development of Chronic and Subchronic Exposure 
Fields / Methods / Land Use Regression Model

	● Generate chemical transport model exposure fields Chapter 3: Development of Chronic and Subchronic Exposure 
Fields / Methods / Chemical Transport Model

Appendix A. Supplemental Information for Chapter 3: Develop-
ment of Chronic and Subchronic Exposure Fields

Appendix E. Supplemental Information for Chapter 7: Associ-
ation Between Air Pollution and Post-Acute Sequelae of SARS-
CoV-2

Aim 2: High-resolution spatial analysis Chapter 4: Risks of Species-Specific Air Pollution for COVID-19 Inci-
dence and Mortality in Los Angeles / Study Design and Methods

Aim 3: Multistate health effects of chronic and sub-
chronic air pollution

Chapter 5: Air Pollution and Meteorology as Risk Factors for COVID-
19 Mortality in Southern California / Materials and Methods

Chapter 6: Air Pollution and Sequelae of COVID-19: A Multistate 
Analysis / Methods

Aim 4: Long  COVID-19 Chapter 7: Association Between Air Pollution and Post-Acute 
Sequelae of SARS-CoV-2 (PASC)

aThe term “synergy” refers to a joint effect that exceeds the additive effect expected from the individual items.44 We use “synergism” to explain the cumu-
lative risk index findings in Chapter 4. When the cumulative risk index is greater than the sum of the individual relative risks for single pollutants, we call 
this “synergism between pollutants.” We use the term “interaction” to describe the influence of other meteorological variables on the slope of the concen-
tration–response function for given air pollutants. The term “effect modification” is reserved for subgroup analyses in which the air pollution concentra-
tion-response function differs across certain subgroups, such as patients with obesity and patients with normal body weight. The terms “long COVID” and 
“PASC” are used interchangeably in the literature. In Chapter 7, after a general introduction that clarifies this interchangeability, we have largely used the 
term “PASC” as the predominant term in this report. 
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CHAPTER 3: DEVELOPMENT OF 
CHRONIC AND SUBCHRONIC 

EXPOSURE FIELDS

INTRODUCTION

Air pollution exposure fields can be estimated using 
ground-based monitoring data,45 land use regression (LUR) 
models,46 satellite observations,47 chemical transport models 
(CTMs),48 or data fusion techniques that combine these 
methods of estimation.49 Each technique has strengths and 
weaknesses, depending on the nature of the target pollutant. 
Some pollutants have sharp spatial gradients and/or random 
time variability, whereas other pollutants are more uniformly 
distributed in space and time. Some pollutants are routinely 
measured at numerous locations, and others are measured 
only in the context of special studies. This complex exposure 
landscape involving various pollutants requires a combina-
tion of methods to span the full range of exposure variables 
that may be of interest in studying associations between air 
pollution and COVID-19.

In the present study, we generated air pollution exposure 
fields by using both LUR models to achieve high spatial res-
olution for traditional pollutants and CTMs to span a broad 
range of chemical species, particle size fractions, and source 
tracers. Each exposure field was produced with the maximum 
possible spatial resolution for that model for the entire KPSC 
service area and with daily time resolution for the years 
2016, 2019, and 2020. The basic methods used to generate 
the exposure fields are summarized in the following sections. 
Additionally, this chapter presents the time-averaged results 
from the LUR model and CTM and compares overlapping 
pollutant-specific exposures predicted by both the LUR and 
CTM modeling approaches.

METHODS 

LAND USE REGRESSION MODEL

In the land use regression (LUR) model, exposure fields for 
daily concentrations of NO2 and fine particulate matter (PM) 
≤2.5 μm in aerodynamic diameter (PM2.5mass) were devel-
oped using the deletion/substitution/addition algorithm.46,50 

This algorithm is an aggressive model search algorithm that 
iteratively generates polynomial generalized linear models 
based on the existing terms in the current “best” model and 
the following three steps: (1) a deletion step that removes a 
term from the model, (2) a substitution step replacing one 
term with another, and (3) an addition step that adds a term 
to the model. The search for the “best” estimator starts with 
the base model specified by “formula,” which is typically the 
intercept model, unless the user requires a number of terms 

to be forced into the final model. Before searching through the 
statistical model space of polynomial functions, the datasets 
for a specific year and specific type (e.g., saturation or govern-
ment continuous monitoring) are randomly assigned into v 
folds (or groups) of roughly equal numbers of observations in 
each fold. Data in one fold are used for validation, and data in 
the remaining folds are used for prediction or model training. 
This process is repeated v times, until all folds are used for 
validation. The polynomial within the search space that min-
imizes the cross-validated risk is selected as the prediction 
algorithm. The use of v-fold randomization out-of-sample 
cross-validation helped avoid model overfitting. We limited 
the predictors to linear terms (i.e., the maximum sum of pow-
ers in each variable was 1) and disallowed any interaction. 
Further, we modeled the repeated measures in our annual 
models to account for the fact that measurements for a given 
site could be taken multiple times during the training period.

CHEMICAL TRANSPORT MODEL

Chemical transport models (CTMs) predict pollutant 
concentration fields using fundamental equations based on 
conservation of mass, fluid mechanics, chemical kinetics, and 
thermodynamic equilibrium. The University of California, 
Davis/California Institute of Technology (UCD/CIT) airshed 
model used in this project was a reactive three-dimensional 
CTM predicting the evolution of gas- and particle-phase 
pollutants in the atmosphere in the presence of emissions, 
transport, deposition, chemical reaction, and phase change, 
as represented by Equation 1.

	

(Equation 1)

where Ci is the concentration of gas- or particle-phase species 
i at a particular location as a function of time t; u is the wind 
vector; K is the turbulent eddy diffusivity; Ei is the emissions 
rate; Si is the loss rate; Ri

gas is the change in concentration due 
to gas-phase reactions; Ri

part is the change in concentration 
due to particle-phase reactions; and Ri

phase is the change in 
concentration due to phase change.51 Loss rates include both 
dry and wet deposition. Phase change for inorganic species 
occurs using a kinetic treatment for gas-particle conversion52 
driven toward the point of thermodynamic equilibrium.53 
Phase change for organic species is treated as a kinetic pro-
cess, with vapor pressures of semivolatile organics calculated 
using the two-product model.54

The basic capabilities of the UCD/CIT model are similar to 
those of the Community Multiscale Air Quality model main-
tained by the US Environmental Protection Agency (EPA); 
however, the UCD/CIT model has several source apportion-
ment features and higher particle size resolution, making 
it attractive for this project. The UCD/CIT model explicitly 
tracks the mass and number concentrations of particles in 15 
discrete size bins, ranging from 10-nm to 10-µm, with tracer 
species used to quantify source contributions to the primary 
particle mass in each bin.
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Further details of the UCD/CIT model, including the mete-
orological fields and emissions inventories used to drive the 
model, are provided in Appendix A. Note: Appendices are 
available on the HEI website. 

Statistical Bias Correction	     The accuracy of CTM exposure 
fields is typically determined by the accuracy of the input data 
used to drive the CTM calculations and/or the completeness 
of the model formulation. Random errors and systematic 
errors that change with time and location are often present in 
concentration fields predicted by CTMs. Measurements can be 
combined with CTM predictions to improve the accuracy of the 
pollutant concentration fields while retaining the rich informa-
tion describing multiple pollutants and source apportionment 
information that is inherent in CTM predictions. This fusion 
of measurements and model predictions can be especially 
valuable in the setting of wildfire events, which often produce 
extremely high exposure concentrations over limited periods 
of time. The statistical bias correction performed for the years 
2016, 2019, and 2020 is described further below:

•	 Year 2016: For the exposure fields developed for 2016, the 
bias in CTM predictions at each monitoring location was 
combined with the CTM predictions for concentrations 
of both primary particles emitted from nine different 
source categories and secondary nitrate and sulfate PM 
to form a time series that was analyzed using multiple 
linear regression (MLR) based on Equation 2. An intercept 
was not considered in the regression equation, given the 
assumption that any constant bias introduced by abnor-
mally high boundary conditions or underpredicted wind 
speeds would manifest as overpredictions in the indicated 
particle metrics. An intercept (i.e., constant bias) could 
potentially introduce overlap or “double counting” in the 
regression model formulation.

	
	

			    		        (Equation 2)

	 Here ai represents regression coefficients; nitrate, sulfate, 
and ammonium are the concentrations of these chemical 
components in fine particles; and Tracer1 represents the 
concentrations of primary fine particles emitted from (1) 
on-road gasoline vehicles, (2) off-road gasoline vehicles, 
(3) on-road diesel vehicles, (4) off-road diesel vehicles, 
(5) biomass combustion, (6) food cooking, (7) aircraft, (8) 
natural gas combustion, and (9) all other sources. 

	 The time series from all 40 sites included in the study 
were combined into a single dataset with 452 data points 
to support the 12 independent variables in the regression 
analysis. Multiple MLR models were explored, with non-
zero coefficients eventually selected for the source tracers 
for off-road gasoline vehicles,  on-road diesel vehicles,  
biomass combustion,  food cooking, and all other sources, 
as well as inorganic ions. A single set of regression coeffi-
cients was able to explain the bias, with an R2 = 0.82 and a 
regression slope of 0.92. 

	 The MLR bias equation (Equation 3) was applied to each 
CTM grid cell to predict the bias in CTM concentrations. 
The baseline CTM concentrations were then adjusted 
using the equation

       	
			         (Equation 3)

	 where Cbiascorr is the bias predicted by the MLR Equation 
2, and Cbaseline  is the original CTM prediction. 

	 The corrected PM2.5 mass concentrations had a mean 
fractional bias of 0.181, significantly improving the accu-
racy of the exposure fields in 2016. Further details of the 
improvements to CTM exposure fields for the year 2016 
are presented in Appendix A. 

•	 Years 2019 and 2020: In recent years, techniques such 
as data fusion and machine learning have been used to 
improve predictions of air quality. In this study, a random 
forest regression (RFR) technique was used to reduce 
bias in the PM2.5 concentration predicted by the UCD/CIT 
source-oriented CTM for the years 2019 and 2020. RFR is 
a powerful statistical machine learning approach that has 
advantages over traditional methods, such as bias correc-
tion and MLR.55–58 

	 Four major support elements were used in the current RFR 
approach: surface monitoring data from the US EPA and 
Purple Air, Moderate Resolution Imaging Spectroradiome-
ter (MODIS) aerosol optical depth retrievals, meteorology 
data from the Weather Research and Forecasting model, 
and CTM results from the UCD/CIT model. The fractional 
bias values between UCD/CIT PM2.5 variables and EPA 
daily average observations were calculated as training 
targets in the RFR approach. (Fractional bias is defined in 
Appendix Table E1.) Models for each month of the year 
were trained independently. The correction factor (CF) 
that can be applied to the PM2.5mass predicted by the UCD/
CIT model is calculated in Equation 4 as

      
2.5 2.5 2.5

(   – )) / (
mass mass massPM PM PMCF 2 FB 2 FB= +  		

                   
(Equation 4)

	 where FB is the fractional bias.

	 This training process used for PM2.5 mass was also applied 
to five additional predicted concentrations, including PM2.5 
organic compounds (OC), PM2.5 elemental carbon (EC), 
PM2.5 ammonium, PM2.5 nitrate, and PM2.5 sulfate. Some of 
these species also appear as training support variables in 
Appendix Table E2. In these cases, the RFR training proce-
dure was modified to remove the target variable from the 
list of training support variables. The final step of the RFR 
method involved calculating the mean correction factor 
based on the weighted fraction average of the correction 
factor values derived from the six sets of RFR training. 
This approach optimized improvements across all PM 

https://www.healtheffects.org/publication/ambient-air-pollution-and-covid-19-california


 13

M. Kleeman et al.

variables. Further details of the improvements to CTM 
exposure fields for the years 2019 and 2020 are presented 
in Appendix E.

RESULTS 

Both LUR and CTM exposure fields were produced with 
daily time resolution for the years 2016, 2019, and 2020. All 
exposure fields are available for download, as described in the 
Data Availability Statement. The following sections summa-
rize some of the major spatial and temporal trends inherent in 
each exposure field. These fields were subsequently used for 
the epidemiological analyses conducted in this project. 

LAND USE REGRESSION MODELS

Figures 1 and 2 show The seasonal average variation in 
LUR model predictions for exposure fields regarding NO2 and 
PM2.5 mass in Southern California, with 100-m spatial reso-
lution in 2020. Predicted NO2 concentrations were highest 
along transportation corridors, reflecting the predominance 
of emissions from mobile sources. By contrast, LUR model 
predictions for PM2.5 mass concentrations were more uniform, 
peaking outside Los Angeles. Supporting information regard-
ing the LUR model is provided in Appendix A.

CHEMICAL TRANSPORT MODELS

Figure 3 displays the annual average concentrations pre-
dicted by the CTM calculations for the year 2020, with 1-km 
spatial resolution. PM2.5 mass concentrations peaked in the 
urban areas of Southern California and in the San Joaquin 
Valley surrounding Bakersfield to the north. Ultrafine PM 
≤0.1 μm in aerodynamic diameter (PM0.1) concentrations had 
sharper spatial gradients around major sources of emissions. 
Notably, predicted PM0.1 mass concentrations peaked around 
military bases using aviation fuel with a higher sulfur content 
than that of commercial aviation fuel. The accuracy of these 
PM0.1 concentration peaks has not been verified with ground-
based measurements. As the population size in the affected 
zones is small relative to that of the major cities, however, the 
uncertainty regarding exposure in these zones is not expected 
to significantly influence the results of the epidemiological 
analysis. PM2.5 EC is a primary pollutant that is mainly 
associated with diesel engines, and concentrations of this 
pollutant were predicted to be highest in urban centers with 
major transportation corridors. Spatial gradients for PM2.5 EC 
were relatively sharp. PM2.5 nitrate is a secondary pollutant 
with smoother spatial gradients. Predicted PM2.5 nitrate con-
centrations were highest in the San Joaquin Valley north of 
Southern California, reflecting the high concentrations of pre-
cursor ammonia and oxides of nitrogen (NOx). Predicted NO2 
concentrations were highest in urban centers and agricultural 
regions, where fertilized soils can emit NOx. Ozone (O3) con-
centrations predicted by the CTM were highest downwind of 
major urban centers, where diluted concentrations of NOx and 

volatile organic compounds (VOCs) mix with biogenic VOCs, 
resulting in a VOC/NOx ratio with maximum efficiency for 
forming O3.

DISCUSSION AND CONCLUSION

PM2.5 mass and NO2 exposure fields were predicted 
using both LUR models and the CTM. The two independent 
approaches understandably produced different estimates. 
Both models predicted significant NO2 concentrations over 
the city of Los Angeles, but the LUR model predicted higher 
concentrations than did the CTM. Given that statistical bias 
corrections were not applied to gas-phase species in the CTM 
calculations and that the monitoring network for NO2 is quite 
dense in urban locations, the fine-grained details of NO2 con-
centrations in urban Los Angeles are likely better represented 
by the LUR model. Regionally, the CTM predicted enhanced 
NO2 concentrations in areas with significant agricultural 
activities. Fertilized soils release NOx into the atmosphere, 
which can significantly increase concentrations of NO2.

59 The 
CTM calculations included soil NOx emissions, enhancing 
the predicted NO2 concentrations in the San Joaquin Valley 
and the Imperial Valley. Fertilized soils were not a predictor 
of NO2 concentrations in the LUR models.

PM2.5 mass concentrations predicted by the LUR model 
peaked in the arid regions in the eastern portion of California, 
presumably reflecting the prevalence of windblown dust. 
By contrast, PM2.5 mass concentrations predicted by the 
CTM peaked most strongly over Los Angeles and in the San 
Joaquin Valley north of Los Angeles. Predicted PM2.5 concen-
trations from the CTM also showed hotspots corresponding 
to wildfire locations during the simulation period. The LUR 
model indirectly accounted for wildfires by incorporating 
satellite-observed aerosol optical depth as a predictor. The 
CTM used estimates of wildfire emissions from the Global 
Fire Emissions Database, which contains data based on 
satellite observations of burned areas. The degree to which 
plumes of wildfire emissions mix vertically varied in each 
model, leading to different estimates of the effect of wildfires 
on ground-level concentrations.

Overall, the level of agreement between exposure fields 
generated by the LUR model and the CTM model provides 
a quality control/quality assurance check on the results 
of epidemiological analyses conducted using those fields. 
Epidemiological results that are consistent across different 
exposure estimates are considered extremely robust, whereas 
epidemiological results that change depending on the method 
used to generate the exposure fields should be evaluated with 
additional sensitivity analyses to build confidence in the 
findings.
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A										                  B

Figure 1. Seasonal average variation in NO2 exposure fields predicted using the LUR model for 
Southern California, 2020. Exposure fields are presented for the spring (A), summer (B), fall (C), 
and winter (D). ppb = parts per billion.

Figure 2. Seasonal average variation in PM2.5 mass exposure fields predicted using the LUR 
model for Southern California, 2020. Exposure fields are presented for the spring (A), summer 
(B), fall (C), and winter (D).
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Figure 3. Annual average pollutant concentrations predicted by the CTM for Southern California, 2020. Concentrations are presented 
for PM2.5 mass (A), PM0.1 mass (B), 1-hour maximum O3 (C), NO2 (D), PM2.5 elemental carbon (E), and PM2.5 nitrate (F). All particulate 
matter species have units of µg/m3, and all gas species have units of ppb. ppb = parts per billion.
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CHAPTER 4: SPECIES-SPECIFIC AIR 
POLLUTION AS A RISK FACTOR FOR 

COVID-19 INCIDENCE AND MORTALITY 
IN LOS ANGELES

INTRODUCTION

COVID-19 caused over 6.9 million deaths worldwide 
during the period from the initial detection of the etiologic 
virus, SARS-CoV-2, in December 2019 to mid-2023.60 These 
deaths associated with the COVID-19 pandemic occurred 
against a background of other disease-related burdens, 
including air pollution, which causes approximately 7 
million excess deaths each year and was the fifth leading 
cause of global mortality in 2015.47 Possible synergistic 
relationships between air pollutants and viral infection 
have been demonstrated in both ex vivo and in vitro stud-
ies, supporting the biological plausibility of interactions 
between air pollution and host defenses against viral 
infections.61 For example, PM2.5 penetrates deep into the 
respiratory system, where it can irritate the lung alveoli.62 
These injury pathways align with extensive evidence 
from epidemiological studies demonstrating associations 
between air pollution and risk of respiratory conditions, 
including asthma, pneumonia, chronic obstructive pul-
monary disease (COPD), nasopharyngeal cancer, and lung 
cancer.63–65 Additionally, a review of multiple cohort stud-
ies indicated that the excess risks of all-cause mortality per 
additional 10-μg/m3 increment in long-term exposure to 
PM2.5 and NO2 were 6% and 5%, respectively.66 

Ecological studies suggest that chronic exposure to 
air pollution exacerbates risks of COVID-19 incidence, 
severity, and mortality. Previous work has found that 
residential exposure to NO2 was significantly associated 
with COVID-19 incidence, mortality, and fatality in Los 
Angeles.67 In Italy, researchers identified significant 
correlations between COVID-19 case counts and 3-year 
(2017–2019) average levels of PM2.5, PM ≤10 μm in aero-
dynamic diameter (PM10), and NO2 as well as the number 
of days exceeding the regulatory limits for O3.

68 At the 
county level in the United States, COVID-19 mortality in 
2020 increased by 8% per 1-μg/m3 increase in PM2.5.

69 Two 
studies involving hospitalized KPSC patients reaffirmed 
significant associations between both COVID-19 prognosis 
and mortality and long-term exposure to air pollutants, 
such as PM0.1, PM2.5 mass, and PM2.5 on-road gasoline and 
diesel.70

Quantifying associations between air pollution expo-
sures and COVID-19 outcomes is a complex task. Statisti-
cal models must adjust for confounding factors, including 
demographics, meteorological conditions, and socioeco-

nomic status. Higher maximum daily temperature and rel-
ative humidity have been reported to modify associations 
between PM concentrations and death due to COVID-19.70 
Confounding effects of race, ethnicity, and income status 
on the relationship between air pollutants and COVID-19 
outcomes also have been reported. A meta-analysis of 68 
studies indicated that racial/ethnic minority populations 
with lower socioeconomic status had higher incidence 
rates and severity of COVID-19.71 People of color and 
low-income communities are disproportionately exposed 
to PM2.5 and NO2 emissions from transportation and 
industrial sources.63,72,73 Additionally, successive variants 
of SARS-CoV-2 have demonstrated different rates of trans-
missibility and mortality. For example, the Delta variant 
was approximately 60% more transmissible than the 
Alpha variant, which was considered highly infectious. In 
Scotland, the rise of the Delta variant of SARS-CoV-2 in 
late 2020 contributed to a higher risk of hospitalization for 
COVID-19, compared to the corresponding risk associated 
with the Alpha variant from April to May 2021.74

Although the relationship between criteria air pollut-
ants (e.g., PM, NO2, O3) and COVID-19 outcomes has been 
widely discussed, there has been little study of associa-
tions between COVID-19 and specific air pollutant species 
at a fine spatial resolution (e.g., at the census tract or ZIP 
code level). In this study, we assessed the spatial and 
temporal associations between PM0.1, PM2.5 mass, PM2.5 
EC, PM2.5 on-road gasoline and diesel vehicles, NO2, and 
O3 at the ZIP code level and the outcomes of COVID-19 
incidence and mortality among the general population in 
Los Angeles County.

 STUDY DESIGN AND METHODS

COVID-19 OUTCOME DATA

Daily numbers of COVID-19 cases and deaths in 
Los Angeles County were obtained from the California 
Department of Public Health (CDPH). To ensure consis-
tency across SARS-CoV-2 variants, we targeted the period 
when the Delta variant was dominant. From June 19 to 
December 19, 2020, the Delta variant accounted for more 
than 50% of the COVID-19 cases in California.70 Given the 
assumptions of a typical incubation period of COVID-19 
and the majority of COVID-19–related deaths occurring 2 
weeks after infection, we added a 2-week buffer after the 
period dominated by the Delta variant. Thus, the study 
period spanned from June 19, 2020, to January 3, 2021. 
Before its release by the CDPH, the COVID-19 dataset was 
initially aggregated by ZIP code and stratified by sex, age 
categorized by 10-year age groups, and race and ethnicity 
(including non-Latino White, non-Latino Black, non-
Latino Asian, Latino/Hispanic, and other racial/ethnic 
groups). In accordance with the CDPH data use agreement 
safeguarding confidentiality, data for any ZIP code with 
a cumulative count less than 10 were suppressed. The 
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final dataset used for analysis included a total of 773,374 
COVID-19 cases and 14,311 deaths that occurred during 
the study period in Los Angeles County.

EXPOSURE ASSESSMENT USING ANNUAL EXPOSURE 
FIELDS FOR 2019

Exposure fields for air pollutant concentrations across 
Southern California were simulated using the UCD/CIT 
CTM UCD/CIT, which predicts gaseous and particulate 
pollutant concentrations in the atmosphere on the basis of 
emissions, transport, deposition, chemical reactions, and 
phase changes.75,76 The model calculations incorporate the 
emissions from nine major source categories to provide 
source apportionment estimates in the exposure fields. 
The CTM exposure fields of air pollutant concentrations 
for 2019 were estimated using a 1-km scale. The model 
calculates concentrations of all photochemical pollutants 
and incorporates explicit tracers for major pollutant 
sources, such as traffic. The daily exposure data, including 
1-hour maximums for O3 and daily averages for all other 
pollutants, were aggregated to an annual scale in the pres-
ent study.

We used the 2019 annual mean pollutant concentrations 
as indicators to examine the relationship between chronic 
exposure to air pollution and COVID-19 cases and deaths 
that occurred during the ensuing study period. Pollutants 
analyzed in the study included PM0.1, PM2.5 mass, PM2.5 
nitrate, PM2.5 EC, PM2.5  on-road gasoline vehicles, NO2, 
and 1-hour maximum O3. PM2.5 on-road gasoline vehicles, 
which is used to track contributions from gasoline-pow-
ered mobile sources, was assigned to emissions from the 
California Air Resources Board inventory that uses the 
on-road gasoline vehicle PM profile. PM concentrations 
were estimated in micrograms per cubic meter (µg/m3), 
and gaseous pollutants were estimated in parts per million 
by volume (ppm).

To specify the difference in associations attributed to 
exposure modeling methodologies, we also generated expo-
sure fields of air pollutant concentrations using an LUR 
for the 2019 annual mean concentrations of PM2.5 (µg/m3)  
and NO2 (ppm). The LUR model applied the deletion/sub-
stitution/addition machine learning algorithm to account 
for approximately 600 covariates, such as traffic, land 
cover, and distance to roadways at different Euclidean buf-
fers around pollution monitors to predict annual NO2 con-
centrations in California at a spatial resolution of 100 m.77  
For comparison with results from the CTM, the LUR data 
were initially aggregated to a spatial resolution of 1 km. In 
the following sections, the two estimates of PM2.5/NO2 gen-
erated by different modeling methodologies are denoted as 
PM2.5/NO2 (CTM) and PM2.5/NO2 (LUR).

Individual panels in Figure 4 show unique geospatial 
layers for residential areas, ZIP code boundaries, and 
raw PM2.5 mass concentrations, which were combined to 

estimate pollution levels for residential areas by ZIP code 
in Los Angeles. All exposure fields were cut to the resi-
dential areas to estimate the annual mean exposure to air 
pollutants during 2019. Data on residential land use in Los 
Angeles were obtained from the California statewide par-
cel boundary dataset.78 Mean residential exposure data for 
each ZIP code within the county were then extracted using 
the ZIP code boundary polygon obtained from the City of 
Los Angeles GeoHub open data portal.79 The city of Avalon 
(ZIP code 90704) was excluded from the analysis, given its 
location on Santa Catalina Island, which is situated off the 
coast of Southern California. Thus, a total of 308 ZIP codes 
were analyzed in this study.

STATISTICAL ANALYSIS

A negative binomial regression was performed for each 
air pollutant to evaluate associations with COVID-19. 
Poisson models were also used to evaluate the outcomes 
of COVID-19 cases and deaths, and dispersion tests were 
conducted using the AER package in R.80 The null hypoth-
esis for the AER dispersion test assumes equidispersion 
in a Poisson model, whereas the alternative hypothesis 
assumes either overdispersion or underdispersion. Addi-
tionally, as no zeros were observed in the cumulative 
outcomes throughout the study period, we concluded 
that there were no issues involving zero-inflation in the 
models. After testing for overdispersion and zero-inflation 
in the Poisson models for COVID-19 cases and deaths, we 
determined that negative binomial models would be more 
appropriate than Poisson models.

To account for potential confounding factors, all mod-
els were adjusted for covariates, including demographic 
variables (e.g., sex, non-White race, advanced age), socio-
economic factors (e.g., median income, mean homeowner 
occupancy rate), and factors pertaining to chronic health 
conditions (e.g., mean prevalence of current smoking 
status and obesity). The older adult population in this 
study was defined as individuals who were 70 years of age 
or older, as the raw data were categorized by 10-year age 
groups. ZIP code-level data on total population, median 
income, and homeowner occupancy rate were obtained 
from the US Census Bureau’s American Community Sur-
vey 1-year estimates for 2020.81 Data on mean prevalence 
of current smoking status and obesity were downloaded 
from the 2020 release of ZIP Code Tabulation Area–level 
estimates provided by the Centers for Disease Control and 
Prevention.82 Total population in each ZIP code was used 
as an offset in the NB models to calculate the incidence 
rate ratios (IRRs) and 95% confidence intervals (CIs) for 
COVID-19 incidence and mortality associated with pollut-
ant concentrations standardized by the interquartile range 
(IQR). 

Two-pollutant NB models were also used to differenti-
ate between the effects of PM2.5, NO2, and O3. An additive 
effect of two or more items is considered the baseline for 



 18

Ambient Air Pollution and COVID-19 in California

Figure 4. Geospatial data for Los Angeles County, California, 2019. The panels present residential areas (A), boundaries for 308 ZIP 
codes in Los Angeles County (B), the exposure field for the 2019 annual mean PM2.5 mass concentrations (μg/m3) predicted using the 
CTM (C), and the final geospatial data representing residential exposure to 2019 annual mean PM2.5 mass concentrations (μg/m3) by ZIP 
code (D).

Residential ZIP code

A										                  	      B

C										                  	      D
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the detection of synergy.44 The joint effects of two pol-
lutants were assessed by comparing the individual IRRs 
derived from one-pollutant models for each pollutant to 
the multiplied product of the IRRs from the two-pollutant 
model.

Additionally, we utilized the Global Moran’s I test 
to determine the spatial pattern in the distribution of 
COVID-19 cases and deaths. This test provides a statistical 
measure for assessing spatial autocorrelation, which refers 
to the degree of similarity or clustering in spatial data. 
Both COVID-19 cases and deaths showed a clustered dis-
tribution, as the Global Moran’s I statistics (P < 2.2e-16 for 
both distributions) exceeded the range of random spatial 
autocorrelation. Hence, using the CARBayes package in 
R,83 we utilized a spatial generalized linear mixed model 
with a binomial distribution to adjust for potential resid-
ual spatial autocorrelation among COVID-19 cases and 
deaths. The CARBayes package applies random effects 
with a conditional autoregressive (CAR) prior distribution 
to model the spatial autocorrelation.83 Additionally, a 
Spearman rank correlation matrix was applied to the 
non-normally distributed pollutant concentrations, using 
the stats package in R.84 All analyses and figure generation 
were implemented in R Studio version 4.2.2.

DESCRIPTIVE SUMMARY

Descriptive statistics for COVID-19 incidence and 
mortality, as well as the 2019 annual mean pollutant 
concentrations for ZIP codes in Los Angeles, are presented 
in Table 1. During the study period, the median total num-
ber of COVID-19 cases and deaths across ZIP codes was 
1,753 and 40, respectively. Among the 308 ZIP codes in 
Los Angeles County, 17 were excluded from the analysis 
of COVID-19 incidence, and 40 were excluded from the 
analysis of COVID-19 mortality, per the CDPH protocol for 
data suppression. 

The spatial distributions of the 2019 annual mean res-
idential exposure to PM2.5 (CTM/LUR), NO2 (CTM/LUR), 
and O3 are illustrated in Figure 5. Although the estimated 
statistical distributions of pollutants across different 
modeling methodologies were similar, the spatial patterns 
differed notably. Figure 6 shows a stable trend in COVID-
19 incidence and mortality over time, with relatively low 
numbers of COVID-19 cases and deaths occurring from 
June 19, 2020, to the middle of November 2020. COVID-19 
cases and deaths escalated sharply from mid-November 
2020 until peaking in late January 2021.

A correlation matrix for pollutants is presented in Table 2.  
Most particle-phase species were moderately to highly 
correlated with each other and with NO2. By contrast, O3 

was negatively correlated with all other pollutants. The 
correlation coefficients between CTM and LUR model 
predictions for PM2.5 and NO2 were r = 0.78 and r = 0.81, 
respectively (data not shown), indicating strong agreement 
despite notable variation between the two methodologies.

ONE-POLLUTANT NEGATIVE BINOMIAL MODEL

The risk plots in Figure 7 display the IRRs for COVID-
19 incidence and mortality per additional IQR increment 
based on the single-pollutant models. Certain pollutants 
were found to be associated with higher risks for both 
COVID-19 incidence and mortality, including PM0.1 

(incidence IRR, 1.156; mortality IRR, 1.145), PM2.5 (LUR) 
(incidence IRR, 1.111; mortality IRR, 1.173), PM2.5 EC 
(incidence IRR, 1.08; mortality IRR, 1.137), PM2.5 tracer 1 
(incidence IRR, 1.085; mortality IRR, 1.144), and O3 (inci-
dence IRR, 1.121; mortality IRR, 1.268). Other pollutants 
were significantly associated with only one outcome in the 
single-pollutant models. For example, NO2 (LUR) was only 
positively associated with COVID-19 incidence, whereas 
PM2.5 nitrate was only positively associated with COVID-
19 mortality. Furthermore, the statistical significance of 
risks regarding COVID-19 varied by exposure modeling 
methodology in the single-pollutant models. Although the 
CTM estimates for PM2.5 mass demonstrated no significant 
risks associated with COVID-19, the LUR model estimate 
for this pollutant showed significant risks for both COVID-
19 incidence and mortality. Similarly, the significance of 
COVID-19 risks associated with NO2 differed across mod-
eling methods and outcomes. All IRRs and corresponding 
95% CIs derived from the single-pollutant models are 
available in Appendix B.

TWO-POLLUTANT NEGATIVE BINOMIAL MODEL

The two-pollutant models focused on combinations 
between O3 and CTM/LUR modeling of PM2.5 and NO2 (Fig-
ure 8). Significantly elevated risks of COVID-19 incidence 
and mortality were found per additional IQR increment 
in both NO2 (CTM/LUR) and PM2.5 (CTM/LUR), after 
controlling for O3. Likewise, risks of COVID-19 incidence 
and mortality were slightly increased per additional IQR 
increment in O3, after controlling for either PM2.5 (CTM/
LUR) or NO2 (CTM/LUR). These results were consistent 
with the negative correlations between O3 and other pol-
lutants (Table 2). The IRRs of PM2.5 generally declined with 
controlling for NO2, suggesting that the effects of PM2.5 on 
COVID-19 outcomes were cancelled out by NO2, regardless 
of the modeling methodology. 

The joint effect of two pollutants on risks of COVID-19 
outcomes refers to the product of each IRR in the two- 
pollutant model. For example, the joint effect of NO2  

(CTM) and PM2.5 (CTM) on COVID-19 incidence was 1.13 
× 0.947 = 1.07 (Appendix B), which was greater than the 
individual effect of either pollutant (NO2 IRR, 1.053; PM2.5 

IRR, 1.022). This suggests that NO2 (CTM) and PM2.5 (CTM) 
have a synergistic effect on COVID-19 incidence. This 
process was repeated for each two-pollutant model. Syn-
ergistic effects of two pollutants on COVID-19 incidence 
and mortality were found for most combinations of O3 and 
CTM/LUR modeling of PM2.5 or NO2. No synergistic effects 
were found for combinations of  NO2 (LUR) and PM2.5 
(LUR).
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Table 1. Descriptive Statistics for (a) COVID-19 Incidence and Mortality and (b) 2019 Annual Mean Pollutant 
Concentrations for Particulate Matter (μg/m3) and Gaseous Pollutants (ppb) by ZIP Code in Los Angeles County

(a) COVID-19 Incidence and Mortality by ZIP Code

Min Mean (SD) Median (IQR) Max NA

Cases Total count a 1 2,658 (2,655) 1,753 (852–3,574) 14,965 17

Male (%) b 46.3 (7.5) 45.6 (44.1–47.3) 17

Older adults (%) c 92.3 (4.3) 93.2 (90.3–95.2) 17

Non-White (%) d 59.5 (20) 64.6 (42.9–75) 17

Deaths Total count a 3 53 (44) 40 (19–74) 235 40

Male (%) b 54.6 (17.8) 58.8 (49.8–64.7) 40

Older adults (%) c 42.8 (23.4) 39.5 (27.6–52.1) 40

Non-White (%) d 67.8 (30.3) 73.7 (45.7–100) 40

(b) 2019 Annual Mean Pollutant Concentrations by ZIP Code

Pollutant Min Mean (SD) Median (IQR) Max NA

(CTM) PM0.1 (μg/m3) 0.51 0.91 (0.14) 0.91 (0.84–1.02) 1.20 0

PM2.5 nitrate (μg/m3) 0.32 1.5 (0.35) 1.6 (1.37–1.74) 2.17 0

PM2.5 mass (μg/m3) 4.24 11.12 (2.18) 11.77 (10.52–12.65) 15.02 0

PM2.5 EC (μg/m3) 0.06 0.51 (0.2) 0.54 (0.4–0.65) 1.01 0

PM2.5 on-road gasoline(μg/m3) 0.02 0.23 (0.1) 0.24 (0.17–0.3) 0.45 0

O3 (ppb) 39.35 54.62 (6.66) 54.52 (49.67–59.42) 69.92 0

NO2 (ppb) 0.90 14.68 (6.38) 15.87 (10.34–18.81) 29.49 0

(LUR) PM2.5 mass (μg/m3) 3.87 8.76 (1.77) 9.0 (7.67–9.89) 14.47 6

NO2 (ppb) 4.50 14.78 (4.04) 15.3 (12.98–17.35) 26.02 6

NO2 (ppb) 4.50 14.78 (4.04) 15.3 (12.98–17.35) 26.02 6

Max = maximum; Min = minimum; NA = not available.
Total numbers of COVID-19 cases and deaths were 773,374 and 14,311, respectively.
The numbers of males among the COVID-19 cases and deaths were 351,409 and 8,292, respectively.
The numbers of older adults (aged ≥70 yr) among the COVID-19 cases and deaths were 724,628 and 5,913, respectively. 
The numbers of individuals of non-White race/ethnicity among the COVID-19 cases and deaths were 540,196 and 11,245, respectively.

SPATIAL CONDITIONAL AUTOREGRESSIVE MODEL

The spatial conditional autoregressive (CAR) model 
demonstrated a divergent relationship between COVID-19 
outcomes and PM2.5 estimated by different exposure mod-
eling methodologies. Elevated risks of COVID-19 incidence 
and mortality were observed for most pollutants, except 
for PM2.5 nitrate, ozone,  and NO2 (LUR) as shown in Table 
3. PM2.5 (CTM) showed a significant positive association 
with COVID-19 incidence and mortality. The narrow CIs 
for several pollutants resulted from employing the Markov 
Chain Monte Carlo (MCMC) simulation; specifically, we 
configured the model to generate 10,000 MCMC samples 
in each chain.

DISCUSSION

This study used negative binomial and spatial CAR 
models to explore associations between species or 
source-specific PM, gaseous pollutants, and COVID-19 
outcomes. The NB models were used to estimate the effect 
of predictors on COVID-19 outcomes (counts of cases 
and deaths), whereas the spatial CAR models specifically 
addressed spatial dependencies by including a spatial 
random effect. In both models, we found elevated risks 
of COVID-19 incidence and mortality with higher levels 
of PM0.1, O3, and markers of combustion sources, includ-
ing NO2 and PM2.5 EC. Generally, the effect estimates for 
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Figure 5. Spatial distribution of 2019 
annual mean residential pollutant 
exposures in Los Angeles County, 
California. Pollutant exposure data are 
presented for PM2.5 predicted using the 
CTM (A), PM2.5 predicted using the LUR 
model (B), NO2 predicted using the CTM 
(C), NO2 predicted using the LUR model 
(D), and O3 (E).

A				            					            B

C										          D

E

  03 (CTM)
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Figure 7. Plot of incident rate ratios for COVID-19 incidence (A) and mortality (B) per 
additional IQR increment in air pollutant exposures in Los Angeles County, California 
from June 19, 2020, to January 3, 2021. Data are based on the results of single-pollutant 
models.

Figure 6. Time series of COVID-19 cases (A) and deaths (B) in Los Angeles County, 
California from June 19, 2020, to January 3, 2021.

COVID-19 incidence from the 
CAR model were slightly lower 
than those from the negative bino-
mial model, suggesting that spatial 
dependence influenced the health 
effects of air pollutants in the 
negative binomial models.70,85–88 
The negative association between 
PM2.5 nitrate and the incidence of 
COVID-19 in the CAR model may 
be attributed to the role of this pol-
lutant as a subset of PM2.5 mass as 
well as the availability of both NOx 

and ammonia. Furthermore, both 
O3 and PM2.5 nitrate are products 
of a common atmospheric photo-
chemical reaction system. We ran 
a two-pollutant CAR model and 
confirmed that the association 
between PM2.5 nitrate and COVID-
19 incidence changed from 
negative (IRR, 0.986) to positive 
(IRR, 1.055) after incorporating 
O3 into the CAR model. Isolating 
the effect of PM2.5 nitrate is more 
complex, and the CAR model did 
not account for confounding from 
other pollutants. Except the neg-
ative association between PM2.5 
nitrate and COVID-19 incidence, 
our findings are consistent with 
several previous studies that 
also found positive associations 
between air pollutants and 
COVID-19 incidence and mor-
tality, specifically for PM2.5, NO2, 
and O3.

70,85–88 Additionally, the 
large sample size used in the CAR 
model may increase the statistical 
power to detect effects, leading to 
smaller CIs for some pollutants.

The CTM and LUR modeling 
approaches used in this study 
yielded somewhat different results 
due to differences in data source, 
methods, and spatial resolution. 
These differences also reflect the 
assumptions underlying each 
approach. The CTM calculated 
pollutant concentrations based on 
fundamental equations conserving 
mass and energy, combined with 
rate equations predicting chemical 
transformations. By contrast, the 
LUR model used statistical meth-
ods to estimate the relationship 
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Figure 8. Plot of incident rate 
ratios for COVID-19 incidence 
(A) and mortality (B) per 
additional IQR increment in 
PM2.5, NO2, and O3 exposures in 
Los Angeles County, California 
from June 19, 2020, to January 
3, 2021. Data are based on the 
results of two-pollutant models 
controlling for sex, age, race, 
income, homeowner occupancy 
rate, and prevalences of current 
smoking and obesity.
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Table 2. Pearson Correlations Between Air Pollutants

CTM LUR

Pollutant PM0.1

PM2.5 
nitrate

   PM2.5     
mass

      PM2.5  
       EC

PM2.5 
On-Road 
Gasoline NO2 O3

 PM2.5 
mass NO2

CTM PM0.1
1 0.18 0.70 0.77 0.71 0.71 –0.04

PM2.5 nitrate 1 0.56 0.49 0.49 0.49 –0.22

PM2.5 mass 1 0.94 0.90 0.90 –0.51

PM2.5 EC 1 0.98 0.79 –0.36

PM2.5 on-road 
gasoline 

1 0.98 –0.30

NO2
1 –0.42

O3
1

LUR PM2.5 mass 1 0.83

1NO2

Table 3. Spatial Conditional Autoregressive Model for Each Air Pollutant

COVID-19 Outcome IRR 95% CI Pollutant

Incidence 1.211 (1.2–1.22) PM0.1 

0.968 (0.968–0.968) PM2.5 nitrate

1.003 (1.003–1.003) PM2.5 (CTM)

1.224 (1.201–1.253) PM2.5 (LUR)

1.076 (1.071–1.079) PM2.5 EC

1.043 (1.043–1.043) PM2.5 on-road gasoline

1.271 (1.271–1.271) O3

1.034 (1.034–1.034) NO2 (CTM)

1.107 (1.107–1.107) NO2 (LUR)

Mortality 1.172 (1.055–1.305) PM0.1 

1.108 (0.985–1.305) PM2.5 nitrate

1.194 (1.052–1.373) PM2.5 (CTM)

1.128 (1.006–1.261) PM2.5 (LUR)

1.226 (1.076–1.392) PM2.5 EC

1.239 (1.09–1.403) PM2.5 on-road gasoline

1.132 (0.83–1.411) O3

1.21 (1.044–1.372) NO2 (CTM)

1.095 (0.969–1.213) NO2 (LUR)
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between pollutant concentrations and land use, physical 
geography, and transportation factors. The LUR method 
captures less of the regional pattern but is more influenced 
at the neighborhood level by traffic and land use data. 
Additionally, the CTM involves estimates of NO2 and PM2.5 

exposure that rely extensively on field monitoring data for 
cross-validation or bias correction.

Synergy refers to a joint effect that exceeds the additive 
effects expected from the individual items.44 We found 
synergistic effects on COVID-19 incidence and mortality 
with most of the two-pollutant combinations among O3, 
PM2.5 (CTM/LUR), and NO2 (CTM/LUR). These findings 
align with the results of a study that investigated the 
synergistic effects of PM2.5 and O3 on the risk of preterm 
birth, which found that interactions between high levels 
of PM2.5 and O3 increased the risk of preterm birth by 
230% compared to the expected outcome based on the 
sum of the effects of each pollutant; similarly, the authors 
reported that the joint effect of high levels of NO2 and O3 

contributed to a 181% excess risk of preterm birth.89 The 
influence of confounding due to other pollutants, however, 
cannot be distinguished from the combined effect. Source- 
specific types of PM were excluded from the two-pollutant 
models, as the total mass, by definition, includes some 
of the source- or species-specific components. Pollutants 
with exposure estimates derived from different methods 
also were not combined in the same two-pollutant model 
to avoid introducing uncertainty about whether observed 
differences resulted from actual effects or differences in 
the specifications of the exposure models. 

To minimize the potential for bias due to changes in 
transmissibility and disease severity associated with 
different variants of SARS-CoV-2, our study focused on 
the period in which the Delta variant accounted for more 
than 50% of confirmed COVID-19 cases, as indicated by a 
previous study of patients hospitalized for COVID-19 in 
Southern California.70 Vaccination status was not consid-
ered in the data analysis, as the study period was focused 
on the latter half of 2020, when vaccines were not readily 
available. A study in Israel that used multivariate linear 
regression with controlling for demographic characteristics 
and vaccination rates proposed the presence of positive 
associations between the Delta variant–dominated wave of 
COVID-19 that occurred in the summer of 2021 and long-
term exposure to PM10, PM2.5, NO2, carbon monoxide, and 
sulfur dioxide.90

A strength of our study was the estimation of exposure 
in residential areas to pollutants. Rather than computing 
the overall mean concentrations of pollutants for each ZIP 
code, we more realistically considered residential expo-
sure by extracting exposure fields from only the residential 
areas within each unit. Though individual-level data were 
not attainable in this study, we were able to adjust for 
demographic factors by using COVID-19 data from the 
CDPH, which provided proportions by sex, race/ethnicity, 

and age categories, aggregated by ZIP code. Additionally, 
the use of source and species-specific PM helped identify 
the independent effects of these pollutants as contributors 
to elevated risks of COVID-19 outcomes.

This study offers several improvements compared to 
a previous analysis of the association between air pollu-
tion and COVID-19 outcomes in Los Angeles.67 A prior 
study utilizing individual-level data found no significant 
interactions among variables representing various sociode-
mographic, lifestyle, and health-related factors.85 Firstly, 
the present study used ZIP code–level data on COVID-19 
incidence and mortality, with the numbers of cases and 
deaths stratified by sex, race/ethnicity, and age category, 
whereas the previous study used neighborhood-level data 
for the numbers of COVID-19 cases and deaths. Secondly, 
this study assessed exposures on the basis of 2019 data 
for LUR modeling of NO2 and PM2.5 as well as 2019 data 
for CTM-based estimates of species-specific PM2.5, NO2, 
and O3; by contrast, the prior study used 2016 data for 
LUR modeling of NO2. Furthermore, our analysis specif-
ically focused on the period in which the Delta variant 
of SARS-CoV-2 was predominant. These methodological 
advancements reduced uncertainty and provided a better 
understanding of the relationship between air pollution 
and COVID-19 outcomes.

This study also has a few limitations that warrant 
consideration. First, several ZIP codes were suppressed 
because of concerns about confidentiality. Second, annual 
mean pollutant concentrations were used as a proxy for 
chronic exposure, but the acute effects of air pollution 
were not considered. Third, data on COVID-19 outcomes 
were aggregated at the ZIP code level, as individual-level 
data with residential information were inaccessible. 
Lastly, occupation, which can alter the risks of both expo-
sure to and incidence of COVID-19, was not accounted for 
in the study. In addition, although our model incorporated 
several covariates, including age, sex, race/ethnicity, and 
socioeconomic status, environmental factors other than 
air pollution were not taken into consideration. Some 
environmental factors may influence both air pollution 
levels and COVID-19 outcomes. For example, meteoro-
logical factors affect the dispersion and concentration of 
air pollutants, yet lower temperatures and lower levels of 
humidity have been demonstrated to be favorable for the 
transmission of COVID-19 in China.91 The risk of COVID-
19 mortality was found to be 47% lower in areas of India 
with the highest versus the lowest district-level scores 
on the normalized difference vegetation index (NDVI), a 
measure of greenness.92 Although meteorological variables 
were not directly incorporated in the statistical analysis 
in the present study, the CTM uses meteorological con-
ditions, including temperature, relative humidity, wind 
speed, wind direction, total solar radiation, and ultraviolet 
solar radiation, as inputs in simulating the transport, trans-
formation, deposition, and formation of air pollutants.93
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CONCLUSION

This study adds to the growing body of evidence 
suggesting that air pollution affects the risks of COVID-
19 incidence and mortality. The findings presented here 
also provide critical insights into the spatial associations 
between source and species-specific air pollutants and 
COVID-19 incidence and mortality, adjusted for demo-
graphic characteristics, socioeconomic status, and some 
chronic conditions (such as smoking and obesity). Future 
studies can benefit from integrating short-term exposure 
data and daily individual-level data on COVID-19 out-
comes to clarify the relationship between air pollution and 
COVID-19, particularly among both racial/ethnic minority 
populations and people with pre-existing conditions. 
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CHAPTER 5: AIR POLLUTION AND 
METEOROLOGY AS RISK FACTORS FOR 
COVID-19 MORTALITY IN SOUTHERN 

CALIFORNIA

INTRODUCTION

The COVID-19 pandemic represents one of the largest 
threats to population health in more than a century. As of 
December 2023, more than 690 million people worldwide 
have been diagnosed with COVID-19, resulting in more 
than 6.9 million deaths.7 Although researchers have exten-
sively investigated the etiology of COVID-19, there remain 
considerable uncertainties about how potential risk factors 
may influence the incidence and severity of the disease 
as well as resulting mortality. Recent evidence from North 
America, Asia, and Europe implicates air pollution as a 
risk factor that affects the incidence, prognosis, and mor-
tality rate of COVID-19.10–23

Biologically plausible mechanisms suggest that expo-
sure to air pollution may render people more susceptible 
to contracting COVID-19, and that once infection occurs, 
greater exposure to air pollution may worsen the prog-
nosis of the disease.24–28 For example, NO2, a marker for 
traffic-related air pollution,29,30 likely increases the risk 
of lung infections by impairing the function of alveolar 
macrophages and epithelial cells in the lung.31 Findings 
from epidemiological and toxicological studies align with 
a large body of research linking air pollution to risk of viral 
and bacterial respiratory infections,17,32 chronic respiratory 
morbidities (e.g., asthma, chronic obstructive pulmonary 
disease, lung cancer),33–35 hospitalizations,31 and mortal-
ity.36–38 

Our review of the growing literature on air pollution 
exposure and COVID-19 outcomes identified only five 
other mortality studies that have used individual-level 
data and controlled for potential confounders.21,38–41 These 
studies were focused on the early phases of the pandemic, 
possibly resulting in lower statistical power due to a 
relatively small number of deaths. Some of these studies 
used high-quality exposure estimates, but none assessed 
particle source contributions or ultrafine particle concen-
trations. Also, none of these studies examined interactions 
between air pollution and meteorological variables such as 
temperature and humidity. 

In the present study, we expanded the evidence base 
by using a large sample of individual-level data, a longer 
study period, exposure models capable of assessing parti-
cle species and sources, and meteorological variables. In 
this context, we addressed two research objectives. Firstly, 
we assessed whether greater air pollution exposures led 

to increased risk of death among patients with confirmed 
COVID-19 who were members of the KPSC healthcare 
system. Secondly, we investigated whether meteorological 
variables influenced the risk of death due to COVID-19 or 
modified associations between air pollution and COVID-
19 mortality.

 MATERIALS AND METHODS

KPSC COHORT AND HEALTH DATA

KPSC is a large integrated healthcare system with 
a racially, ethnically, and socioeconomically diverse mem-
bership of 4.7 million people residing across nine South-
ern California counties. The KPSC membership, described 
elsewhere in further detail,94  approximately represents 
the overall population of the second-largest urban region 
in the United States. KPSC maintains an integrated Elec-
tronic Health Record (EHR) data system that captures all 
aspects of patient care, including diagnoses, inpatient and 
outpatient visits, pharmacy encounters,  and  laboratory 
tests.

Clinical care changed rapidly during the first months of 
the COVID-19 pandemic. Thus, the observation period for 
this study began on June 1, 2020, by which time new stan-
dards of care for COVID-19, such as placing patients in the 
prone position, had become more common. We identified 
KPSC patients with a positive COVID-19 molecular diag-
nostic test and/or diagnosis (ICD-10 codes B34.2, B97.29, 
J12.89, J20.8, J22, J80, or U07.1) that occurred from June 
1, 2020, to January 30, 2021. We included both COVID-19 
diagnoses and tests because patients could have received 
a COVID-19 test outside of the KPSC health system and 
subsequently been diagnosed with COVID-19 at a KPSC 
facility, without being retested. The selected ICD-10 codes 
were those that have been used to identify COVID-19 in 
other research. We also worked with KPSC hospitalists to 
identify appropriate ICD-10 codes for this study. 

The study cohort comprised patients who were 18 
years of age or older at the time of their positive COVID-
19 test or diagnosis. To reliably assess comorbidities, the 
population sample was limited to patients who had been 
KPSC members for at least 1 year before being diagnosed 
with or testing positive for COVID-19. We defined COVID-
19–related hospitalizations as those occurring within 21 
days of the patient’s COVID-19 diagnosis or positive test (N 
= 316,224).95 Less severe (i.e., nonhospitalized) cases were 
excluded, which limits the generalizability of our results 
to more severely ill (i.e., hospitalized) cases. We limited 
the study population to hospitalized patients rather than 
all patients with a positive COVID-19 test, as testing could 
have occurred after contact with an individual with SARS-
CoV-2 or upon hospital admission after the onset of severe 
illness. Such timing would lead to uncertainty about the 
window of time within which testing could have occurred 
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in different patients, thereby introducing substantial errors 
in the study follow-up times and thus leading to biased 
results in the statistical models. Restricting the study 
population to hospitalized patients removed any uncer-
tainty about the timing of hospitalization and thus also 
eliminated the related potential errors and bias. Patients 
who died up to 90 days after their initial hospitalization 
were included in the study cohort. (Further details on the 
ascertainment of death data are provided in Appendix 
C.) Patients whose KPSC membership ended during the 
90-day observation window and patients hospitalized for 
childbirth were excluded from the study. After application 
of the eligibility and exclusion criteria, the cohort used for 
data analysis consisted of 21,415 patients. This study was 
approved by the Kaiser Permanente Institutional Review 
Board. 

The KPSC EHR includes information on patient age 
and sex. Member race/ethnicity categories have been 
created using a validated algorithm that uses multiple data 
sources.95 

Five broad comorbidity categories used in prior COVID-
19 research were created to identify comorbidities that 
may increase an individual’s risk of severe COVID-19 out-
comes.95,97 We used Elixhauser disease categories to define 
specific disease categories that are relevant to COVID-19 
(Appendix C). 

We collected data on four individual-level confounders 
that were considered in the analysis: body mass index 
(BMI), smoking status, Exercise Vital Sign (EVS) value, 
and MediCalstatus (low income). BMI is an important 
risk factor for COVID-19 mortality.96 The most recent BMI 
value available in the patient EHR was used to represent 
this potential confounder.96 BMI data were cleaned using 
validated algorithms to delete biologically implausible 
values. In the KPSC health system, smoking status and EVS 
data (coded as min/wk of moderate to vigorous exercise) 
are collected during each in-person outpatient healthcare 
encounter. Smoking status (ever-smoker vs. never-smoker) 
was coded based on information provided during the 
patient’s last encounter before their COVID-19 test or 
diagnosis, dating back up to 4 years. All EVS data for the 
past 4 years were identified for every patient. The median 
number of minutes of exercise per week was calculated 
for use in the analysis.98 We used enrollment at KPSC via 
MediCal to identify patients with very low income. 

We queried vaccination status and found that only 
33 patients in the study cohort were vaccinated against 
COVID-19 prior to hospitalization. Thus, approximately 
99.85% of the cohort was unvaccinated during the study 
period.

In accordance with common practices in analyzing 
EHR data, we added predictors of community-level socio-
economic status (SES) to serve as a proxy for individual 
SES and to adjust for community-level effects of social 

determinants of health.99–101 Community-level predictors 
at the census block group level were obtained from the 
2018 American Community Survey, including a validated 
Neighborhood Deprivation Index (NDI), a measure of 
crowding (the proportion of households with more than 
one occupant per home), and the proportion of workers 
aged 16 years or older who commute to work via public 
transportation.102

GridMET meteorological data are high–spatial reso-
lution (approximately 4-km) surface meteorological data 
covering the contiguous United States. We acquired Grid-
MET daily maximum temperature and relative humidity 
data for the entire study period by using Google Earth 
Engine.103 The GridMET data for the home address of each 
study participant were aggregated to monthly means for 
the period up to the month of hospitalization for COVID-
19. 

EXPOSURE ASSESSMENT: CHEMICAL 
TRANSPORT MODEL

Exposure simulations were carried out across California 
using the UCD/CIT source-oriented, three-dimensional, 
reactive chemical transport model (CTM).104 The UCD/CIT 
model predicts the evolution of gas- and particle-phase 
pollutants in the atmosphere in the presence of emissions, 
transport, deposition, chemical reaction, and phase 
change. The pressing timeline for conducting this study 
during an ongoing public health crisis necessitated lever-
aging past efforts that had prepared and validated CTM 
inputs. We previously reported CTM exposure fields with 
4-km resolution over California for the years 2000–2016.105 
The most recent year in this time range (i.e., 2016) was 
selected as the starting point for characterizing chronic 
exposure in the present study. Meteorology and emissions 
inputs for the year 2016 were downscaled to improve spa-
tial resolution to 1 km. Bias in the raw CTM output fields 
was removed using a constrained regression model based 
on source apportionment tags and the difference between 
predicted and measured concentrations. Appendix 
Figure A13 illustrates the stability of the exposure fields 
for O3 and PM2.5 across the years 2016, 2019, and 2020. 
Although factors such as wildfires, behavioral changes 
associated with COVID-19, and weather patterns driven 
by El Niño-Southern Oscillation cause some year-to-year 
variation, the major spatial patterns for these and other 
exposures are stable over time (Appendix A).

CTM predictions include a wide range of pollutants. 
For our study area, we estimated PM2.5 mass, PM2.5 nitrate, 
PM2.5 OC, PM2.5 EC, PM0.1 , NO2, and O3. We also extracted 
PM source tracers for on-road diesel, on-road gasoline, 
and biomass combustion. These exposure fields were 
assigned to the geocoded home addresses of the patients 
in the study cohort. Although the exposure fields were 
restricted to 2016, we accounted for population mobility 
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by assigning exposures to each address for any patient in 
the cohort who had moved within the past 5 years. We 
then performed time-weighted averaging of the exposures 
to account for mobility effects for those who had moved 
during the preceding 5 years. 

STATISTICAL ANALYSIS

We used Cox proportional hazards models with adjust-
ment for potential individual- and neighborhood-level 
confounders. All models were stratified at baseline by age, 
sex, and race/ethnicity. Age was categorized by 5-year 
age groups. We controlled for potential nonindependence 
at the census tract level by using a sandwich estimator, 
which allowed for robust variance estimation. All statis-
tical analyses were performed using the R version 4.0.4.84

The Cox model estimates the instantaneous hazard of 
dying during follow-up as 

	
(Equation 5)

2.5 2.5 2.5
  ))  /(  –(

mass mass massPM PM PMCF 2 FB 2 FB= +

where hij (t) is the hazard function for the ith subject in the 
j th census tract neighborhood; h0s(t) is the baseline hazard 
function for stratum s (i.e., age, race, and sex); Pij is the air 
pollution exposure metric of interest (e.g., PM2.5) standard-
ized to the IQR for individual i in census tract j; Xij represents 
individual-level risk factors (i.e., smoking status, exercise, 
BMI, poverty) for individual i in census tract j; Zij represents 
neighborhood-level risk factors (i.e., deprivation index, 
proportion of workers aged 16 or older taking public transit, 
crowding) for individual i in census tract j; Witj represents 
weather conditions (i.e., maximum temperature and humid-
ity) for individual i at the t th month of admission in census 
tract j; and β,δ,ζ, f : are regression coefficients.

Equation 5 above represents the general form of the 
model. Confounders were selected for each pollutant, 
according to the following procedure: We ran unadjusted 
models stratified by age, race/ethnicity, and sex for each 
pollutant exposure. We tested every possible confounder 
(BMI, smoking status, etc.) one at a time with each pollu-
tion estimate. We included any confounder that changed 
the unadjusted pollution coefficient by at least 10%. We 
subsequently ran the adjusted models for all pollution 
exposures that included variables meeting the 10% 
criterion. Exposures were standardized for comparison 
across pollutants by dividing each by their respective 
IQR. For pollutants with statistically significant effects at 
conventional levels (P < 0.05) after adjustment, we then 
conducted stratified analyses on variables that could mod-
ify the association between air pollution and COVID-19 
mortality, including race/ethnicity, sex, age, and number 
of chronic disease categories. 

We also tested for interaction by running models with a 
multiplicative term involving one pollutant and one mete-
orological variable. When statistically significant interac-
tions were present based on the P value of the interaction 
term, we stratified the HR estimates for the pollutant by 
tertile of the meteorological variable.

We examined two-pollutant models (i.e., O3 and NO2, 
NO2 and PM2.5 mass, and O3 and PM2.5 mass). We also 
explored the concentration–response functions for each 
pollutant that had a significant individual effect in a fully 
adjusted model. The concentration–response functions 
were estimated using the pspline function in the gam 
package in R. 

We also investigated the potential influence of different 
SARS-CoV-2 variants by performing sensitivity analyses 
restricted to periods in which the Delta variant was dom-
inant. The CDPH has performed retrospective genomic 
analyses on specimens from all stages of the COVID-19 
pandemic (https://data.chhs.ca.gov/dataset/covid-19-vari-
ant-data). Early in the present study, five different variants 
of SARS-CoV-2 were circulating. The Delta variant was 
dominant throughout much of the study period, although 
the Omicron variant became dominant approximately 
during the last 1 month of the study. It is likely, however, 
that many of the hospitalizations that occurred over the 
last weeks to months of the study were due to infections 
with the Delta variant, given the latency period of the 
infection and the time required for a person to become ill 
enough to require hospitalization. 

Sensitivity analyses focused on the period from June 
19, 2020, to January 3, 2021. The start date of this period 
corresponds to the initial date on which the Delta variant 
accounted for more than 50% of the COVID-19 cases. The 
Delta variant lost dominance (i.e., accounting for less 
than 50% of COVID-19 cases) as of December 19, 2020. 
We added a 2-week buffer to the end date of the period of 
Delta-dominant cases, given the assumption that it would 
have taken at least 2 weeks after the onset of infection 
for many of the Delta-related hospitalizations and deaths 
to occur. Thus, we conservatively used January 3, 2021, 
as the end date of the period included in the sensitivity 
analysis. We also reran the analyses for PM2.5 using this 
restricted time period to enable comparison of the results 
with those from the main analysis.

RESULTS

DESCRIPTIVE STATISTICS

Table 4 displays the demographic and clinical charac-
teristics of the cohort of 21,415 KPSC patients hospitalized 
with COVID-19, of whom 4,815 died within 90 days after 
hospitalization. The median age of patients was 64 years 
(IQR, 52–75), and 58% were male. Among patients in the 
cohort, 56% were of Hispanic origin, 23% were White, 

https://data.chhs.ca.gov/dataset/covid-19-variant-data
https://data.chhs.ca.gov/dataset/covid-19-variant-data
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Table 4. Demographic and Clinical Characteristics of Hospitalized Patients with COVID-19, by Outcome

Outcome Within 90 Days

Characteristic

Total
(N = 21,415)

n (%)

Alive 
(N = 16,600)

n (%)

Deceased 
(N = 4,815)

n (%)

Age at diagnosis (yr)a 64 (52–75) 61 (50–72) 74 (64–83)

Race/ethnicity

White 4,861 (23%) 3,550 (21%) 1,311 (27%)

Asian/Pacific Islander 2,281 (11%) 1,801 (11%) 480 (10.0%)

Black 1,851 (8.6%) 1,444 (8.7%) 407 (8.5%)

Hispanic 12,077 (56%) 9,541 (57%) 2,536 (53%)

Other/multiple/unknown 345 (1.6%) 264 (1.6%) 81 (1.7%)

Sex

Female 9,067 (42%) 7,284 (44%) 1,783 (37%)

Male 12,348 (58%) 9,316 (56%) 3,032 (63%)

Smoking status

Never-smoker 13,392 (63%) 10,825 (65%) 2,567 (53%)

Ever-smoker 7,738 (36%) 5,542 (33%) 2,196 (46%)

Unknown 285 (1%) 233 (1%) 52 (1%)

BMIa 31 (27–36) 31 (27–36) 29 (25–35)

Unknown 608 (3%) 502 (3%) 106 (2%)

Medicaid

No 18,722 (87%) 14,596 (88%) 4,126 (86%)

Yes 2,693 (13%) 2,004 (12%) 689 (14%)

Exercise Vital Signa 0 (0–90) 0 (0–100) 0 (0–65)

Unknown 748 (4%) 625 (4%) 123 (3%)

Percentage of housing units with >1 occupant/rooma 0.09 (0.03–0.18) 0.09 (0.03–0.18) 0.08 (0.03–0.18)

Unknown 598 (3%) 466 (3%) 132 (3%)

NDIa 0.42 (−0.28 to 1.25) 0.43 (−0.27 to 1.25) 0.40 (−0.30 to 1.26)

Unknown 6 (0%) 5 (0%) 1 (0%)

Percentage of workers aged ≥16 yr commuting by 
public transportationa

0.02 (0.00–0.05) 0.02 (0.00–0.05) 0.02 (0.00–0.05)

Unknown 599 (3%) 465 (3%) 134 (3%)

BMI category

Normal weight 2,777 (13%) 1,876 (11%) 901 (19%)

Overweight 5,933 (28%) 4,468 (27%) 1,465 (30%)

Obesity, class 1 5,669 (26%) 4,543 (27%) 1,126 (23%)

Obesity, class 2/3 6,193 (29%) 5,075 (31%) 1,118 (23%)

Underweight 235 (1.1%) 136 (0.8%) 99 (2.1%)

Unknown 608 (3%) 502 (3%) 106 (2%)

Frailty (Lancet index)a 5 (2–12) 5 (2–10) 9 (4–18)

Unknown 4,608 (22%) 4,008 (24%) 600 (12%)

Continues next page
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11% were Asian/Pacific Islanders, 8.6% were Black, and 
1.6% were of other or unknown race/ethnicity. Approxi-
mately 37% of patients had ever been smokers, and 13% of 
patients had health insurance through MediCal, a govern-
ment health program for low-income persons.

The distribution of hospital admission dates for all 
patients in the study cohort is presented in Figure 9, which 
shows a large surge in admissions from November 2020 
to the end of the study period. Most hospitalized patients 
were overweight or obese, with 29% meeting the criteria 
for overweight, 27% having class 1 obesity, and 30% 
having class 2 or higher obesity. Comorbidities identified 
in the patients’ medical histories included cardiovascular 
disease (41%), hypertension (59%), COPD (22%), diabetes 
(45%), and other chronic conditions (65%), as summarized 
in Table 4.

Patients who died within 90 days after their first hospi-
talization were older (median age, 74 years vs. 61 years), 
more likely to be male (63% vs. 56%), and more likely 
to have ever been smokers (46% vs. 34%), compared to 
those who remained alive during this period. Addition-
ally, patients who died had more comorbidities (median 
Elixhauser Comorbidity Index, 5.0 vs. 2.0) and a greater 
prevalence of chronic diseases, including cardiovascular 
disease (63% vs. 35%), hypertension (76% vs. 54%), dia-
betes (55% vs. 42%), and COPD (26% vs. 20%).

Descriptive statistics for pollutant exposures among the 
patients in the study cohort are shown in Table 5. Many of 
the pollutants were moderately to highly correlated with 
one another (Table 6). For example, PM2.5 mass and PM2.5 
nitrate were strongly correlated (r = 0.9). O3 was the least 
correlated with the other pollutants and, as expected, had 

Outcome Within 90 Days

Characteristic

Total
(N = 21,415)

n (%)

Alive 
(N = 16,600)

n (%)

Deceased 
(N = 4,815)

n (%)

Elixhauser Comorbidity Indexa 3.0 (1.0–5.0) 2.0 (1.0–5.0) 5.0 (2.0–7.0)

Cardiovascular disease 8,637 (40%) 5,625 (34%) 3,012 (63%)

Unknown 410 (2%) 349 (2%) 61 (1%)

Hypertension 12,369 (58%) 8,738 (53%) 3,631 (75%)

Unknown 410 (2%) 349 (2%) 61 (1%)

COPD 4,519 (21%) 3,276 (20%) 1,243 (26%)

Unknown 410 (2%) 349 (2%) 61 (1%)

Diabetes 9,524 (44%) 6,887 (41%) 2,637 (55%)

Unknown 410 (2%) 349 (2%) 61 (1%)

Other Elixhauser diagnosis 13,627 (64%) 9,878 (60%) 3,749 (78%)

Unknown 410 (2%) 349 (2%) 61 (1%)

Skilled nursing facility flag 293 (1.4%) 136 (0.8%) 157 (3.3%)

County of residence

Kern 543 (2.5%) 435 (2.6%) 108 (2.2%)

Los Angeles 10,580 (49%) 8,226 (50%) 2,354 (49%)

Orange 2,142 (10%) 1,744 (11%) 398 (8.3%)

Riverside 2,372 (11%) 1,755 (11%) 617 (13%)

San Bernardino 2,890 (13%) 2,131 (13%) 759 (16%)

San Diego 1,874 (8.8%) 1,512 (9.1%) 362 (7.5%)

Ventura 423 (2.0%) 338 (2.0%) 85 (1.8%)

Unknown 591 (3%) 459 (3%) 132 (3%)

COVID-19 surge–related case (first hospital  
admission after Nov 16, 2020)

15,090 (70%) 11,378 (69%) 3,712 (77%)

Days of follow-upa 7 (4–16) 6 (4–11) 17 (10–27)

aMedian (IQR).

Table 4. (continued)
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Figure 9. Hospital admission dates in 2020–2021 among the study cohort of patients hospitalized with COVID-19 in Southern 
California. 

 Hospital Admission Date

C
as

es

Table 5. Descriptive Statistics for Pollutant Exposures Among Hospitalized Patients with COVID-19, by Outcome

 Outcome Within 90 Days

Characteristic
Total

(N = 21,415)
Alive

(N = 16,600)
Deceased

(N = 4,815)

NO2 (ppb)

Median (IQR) 21 (13, 25) 21 (13, 25) 20 (14, 25)

Mean (SD) 19 (7) 19 (7) 19 (7)

Range 1, 39 1, 39 2, 36

O3 maximum (ppb)

Median (IQR) 66 (60, 72) 66 (60, 72) 67 (60, 73)

Mean (SD) 66 (8) 66 (8) 66 (8)

Range 40, 84 40, 84 43, 83

PM2.5 mass (μg/m3)

Median (IQR) 12.30 (10.50, 14.00) 12.30 (10.50, 14.00) 12.40 (10.60, 14.00)

Mean (SD) 12.34 (2.40) 12.33 (2.39) 12.39 (2.44)

Range 5.77, 27.70 5.77, 27.70 6.05, 23.80

PM2.5 nitrate (μg/m3)

Median (IQR) 3.81 (2.88, 4.54) 3.80 (2.86, 4.53) 3.84 (2.93, 4.56)

Mean (SD) 3.64 (1.18) 3.63 (1.17) 3.67 (1.20)

Range 0.19, 7.16 0.19, 7.16 0.26, 7.02

2,500

2,000

1,500

1,000

Continues next page
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PM2.5 organic compounds (μg/m3)

Median (IQR) 2.07 (1.56, 2.60) 2.08 (1.56, 2.60) 2.05 (1.57, 2.56)

Mean (SD) 2.08 (0.69) 2.08 (0.69) 2.07 (0.68)

Range 0.31, 8.24 0.31, 8.24 0.32, 7.59

PM0.1  (μg/m3)

Median (IQR) 0.90 (0.72, 1.07) 0.90 (0.72, 1.07) 0.91 (0.74, 1.06)

Mean (SD) 0.89 (0.29) 0.89 (0.29) 0.90 (0.29)

Range 0.22, 6.63 0.26, 6.63 0.22, 4.20

PM2.5 elemental carbon (μg/m3)

Median (IQR) 0.47 (0.33, 0.59) 0.47 (0.33, 0.60) 0.46 (0.34, 0.58)

Mean (SD) 0.47 (0.19) 0.47 (0.19) 0.47 (0.19)

Range 0.05, 1.53 0.06, 1.52 0.05, 1.53

On-road diesel PM2.5 (μg/m3)

Median (IQR) 0.30 (0.19, 0.41) 0.30 (0.19, 0.41) 0.29 (0.20, 0.40)

Mean (SD) 0.32 (0.18) 0.32 (0.18) 0.32 (0.18)

Range 0.01, 1.78 0.01, 1.76 0.02, 1.78

On-road gasoline PM2.5 (μg/m3)

Median (IQR) 0.071 (0.052, 0.093) 0.072 (0.052, 0.094) 0.071 (0.052, 0.091)

Mean (SD) 0.073 (0.029) 0.073 (0.030) 0.072 (0.029)

Range 0.003, 0.213 0.003, 0.213 0.003, 0.194

Biomass combustion PM2.5 (μg/m3)

Median (IQR) 1.01 (0.73, 1.26) 1.01 (0.73, 1.27) 0.99 (0.72, 1.25)

Mean (SD) 1.02 (0.46) 1.02 (0.45) 1.02 (0.49)

Range 0.01, 9.93 0.01, 9.93 0.01, 9.03

Relative humidity (%)

Median (IQR) 70 (58, 82) 71 (59, 82) 67 (57, 79)

Mean (SD) 70 (14) 70 (14) 68 (14)

Range 25, 99 25, 99 31, 98

Unknown 6 6 0

Temperature (°C)

Median (IQR) 21.1 (20.0, 25.0) 21.1 (20.0, 25.9) 20.8 (19.9, 22.5)

Mean (SD) 22.9 (5.2) 23.1 (5.2) 22.3 (4.9)

Range 5.9, 44.6 5.9, 44.5 7.2, 44.6

Unknown 6 6 0

Table 5. (continued)

 Outcome Within 90 Days

Characteristic
Total

(N = 21,415)
Alive

(N = 16,600)
Deceased

(N = 4,815)
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Table 6. Correlations Between Pollutants and Meteorological Variables

NO2 

O3  
Maxi-
mum

PM2.5 
Mass

PM2.5 
Nitrate

PM2.5 
Organic 

Compounds PM0.1

PM2.5 
Elemental 

Carbon

On-Road 
Diesel 
PM2.5

On-Road 
Gasoline 

PM2.5

Biomass 
Comb-
ustion 
PM2.5

Relative 
Humidity

Temp-
erature

NO2 1.000 –0.255 0.715 0.615 0.843 0.691 0.849 0.731 0.842 0.522 0.232 0.077

O3 maximum –0.255 1.000 0.263 0.304 –0.286 0.090 –0.066 0.090 –0.175 –0.291 –0.584 0.093

PM2.5 mass 0.715 0.263 1.000 0.898 0.683 0.839 0.885 0.893 0.804 0.253 –0.021 0.114

PM2.5 nitrate 0.615 0.304 0.898 1.000 0.519 0.659 0.728 0.705 0.693 0.095 –0.002 0.125

PM2.5 organic  
compounds

0.843 –0.286 0.683 0.519 1.000 0.797 0.857 0.742 0.847 0.793 0.248 0.047

PM0.1 0.691 0.090 0.839 0.659 0.797 1.000 0.817 0.751 0.716 0.464 –0.032 0.062

PM2.5 elemental car-
bon

0.849 –0.066 0.885 0.728 0.857 0.817 1.000 0.929 0.933 0.414 0.154 0.089

On-road diesel PM2.5 0.731 0.090 0.893 0.705 0.742 0.751 0.929 1.000 0.866 0.352 0.046 0.081

On-road gasoline 
PM2.5

0.842 –0.175 0.804 0.693 0.847 0.716 0.933 0.866 1.000 0.449 0.270 0.076

Biomass  
combustion PM2.5

0.522 –.291 0.253 0.095 0.793 0.464 0.414 0.352 0.449 1.000 0.193 -0.006

Relative humidity 0.232 –0.584 –0.021 –0.002 0.248 –0.032 0.154 0.046 0.270 0.193 1.000 0.237

Temperature 0.077 0.093 0.114 0.125 0.047 0.062 0.089 0.081 0.076 -0.006 0.237 1.000

negative associations with NO2 (r = 0.26) and some of the 
particle species or source tracers. 

Figure 10 displays the spatial distributions of several 
pollutants across Southern California in 2016, including 
PM2.5 mass, PM2.5 nitrate, PM2.5 EC, and PM0.1, as well as 
PM2.5 on-road gasoline and diesel. The spatial patterns dif-
fered substantially among several pollutants. For example, 
PM2.5 on-road gasoline displayed variation consistent with 
highways that carry large volumes of traffic, whereas PM2.5 
mass and PM2.5 nitrate had relatively consistent exposures 
across the region, likely because secondary formation 
of these particles in the atmosphere contributed a large 
portion of the mass. All pollutants had relatively higher 
concentrations in the inland areas of San Bernardino and 
Riverside.

RESULTS FROM ADJUSTED MODELS

The confounders selected for each pollutant in the 
adjusted models are shown in Appendix Table C1. The 
main results regarding associations between air pollution 
and COVID-19–related death are presented in Figure 11 
and Appendix Table C3. After adjustment for confound-
ing, several air pollutants were significantly associated 

with dying among hospitalized patients with COVID-19, 
including PM2.5 mass (hazard ratio [HR], 1.12; 95% CI, 
1.06–1.17), PM2.5 nitrate (HR, 1.12; 95% CI, 1.07–1.17), 
PM2.5 EC (HR, 1.07; 95% CI, 1.03–1.13), PM0.1 (HR, 1.06; 
95% CI, 1.02–1.10), PM2.5 on-road diesel (HR, 1.06; 95% 
CI, 1.03–1.10), and PM2.5 on-road gasoline (HR, 1.07; 95% 
CI, 1.02–1.13). The effects of PM2.5 mass were partly con-
founded by NO2 in the two-pollutant models but remained 
significantly associated with an increased risk of death 
(Figure 11). During the period in which the Delta variant 
of SARS-CoV-2 was dominant, the findings on associations 
between PM2.5 mass and COVID-19–related death were 
similar to results from the main model (HR, 1.13; 95% CI, 
1.07–1.20).

The effects of gaseous species were sensitive to adjust-
ment for co-pollutants. In particular, NO2 was significantly 
associated with the risk of death (HR, 1.10; 95% CI, 
1.04–1.16), whereas exposure to O3 had a positive but 
nonsignificant effect on mortality risk (HR, 1.02; 95% CI, 
0.96–1.08). Because inverse spatial patterns can lead to 
positive confounding,22 we also ran co-pollutant models 
that included O3 and NO2. In those models, NO2 exposure 
remained significantly associated with an elevated risk of 
death, but O3 exposure showed no significant effects. When 
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Figure 10. Spatial distributions of the predicted exposure fields for specific particulate matter air pollutants in Southern California, 
2016. Data are presented for PM2.5 mass (A), PM0.1 (B), PM2.5 elemental carbon (C), PM2.5 nitrate (D), PM2.5 on-road diesel (E), and PM2.5 
on-road gasoline (F). All units are µg/m3.

(a) PM2.5 mass (b) PM0.1 mass

(c) PM2.5 ec (d) PM2.5 nitrate

(e) PM2.5 Diesel tailpipe (f) PM2.5 Gasoline tailpipe

A				            					            					     B

C														              D

E														              F
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both PM2.5 and NO2 were included in the same model, 
adjustment for the confounding effect of PM2.5 reduced the 
effect of NO2 to the null (Figure 11).

Higher temperatures (HR, 0.92; 95% CI, 0.89–0.95) and 
higher humidity (HR, 0.82; 95% CI, 0.78–0.86) during the 
month in which a patient was diagnosed with COVID-19 
were significantly associated with a lower risk of death. 

STRATIFICATION ANALYSES

All variables included in the subgroup analyses demon-
strated no significant impact on the relationship between 
air pollution concentrations and death among hospitalized 
patients with COVID-19, with statistical significance based 
on the Q statistic for each analysis (Appendix Tables C4 
and C6). 

INTERACTION MODELS WITH METEOROLOGICAL 
VARIABLES

After determining that temperature and humidity 
significantly modified the effects of air pollution on risk 
of death among hospitalized patients with COVID-19, we 
ran analyses that stratified by tertile for these variables to 
visualize the effect modification of the association between 
PM2.5 and risk of death (Figure 12). Effect modification by 

strata of temperature and humidity in the analyses for 
other pollutants is displayed in Appendix Figure C1. For 
most of the pollutants, an elevated risk of death was seen 
only in the two lower tertiles of temperature. Effect modifi-
cation was particularly pronounced for humidity, with the 
effects of most pollutants showing a graded decline with 
increased humidity. Overall, most effects of exposure to 
pollutants were present only in the two lower tertiles of 
humidity.

CONCENTRATION–RESPONSE ANALYSIS

Concentration–response curves are shown in Figure 13.  
For most of the pollutants, we observed fairly linear 
curves if sufficient data were available to support the 
spline derivation. Some pollutants, such as PM2.5 EC and 
PM2.5 on-road diesel, displayed a supralinear response, 
with a steeper response curve at low levels of exposure to 
the pollutant. This type of supralinear function has been 
observed in many studies of air pollution and mortality.106 
Humidity displayed a clear linear negative association 
with the risk of death in hospitalized patients with COVID-
19. Temperature demonstrated a U-shaped curve, with 
risk of death appearing to be higher at lower temperatures, 
although there were insufficient data to support the spline 
derivation; the inverse curve appeared linear.

Figure 11. Risk plots showing hazard ratios for COVID-19 mortality per additional IQR increment in air pollutant exposures among 
patients hospitalized with COVID-19 in Southern California. Data are based on results from adjusted models controlling for 
confounders.

P
M

2.
5 (

m
as

s)

P
M

2.
5 (

m
as

s)
 c

on
tr

ol
le

d 
fo

r 
O

3

O
3 c

on
tr

ol
le

d 
fo

r 
P

M
2.

5 (
m

as
s)

P
M

2.
5 (

m
as

s)
 c

on
tr

ol
le

d 
fo

r 
N

O
2

N
O

2 
co

nt
ro

lle
d 

fo
r 

P
M

2.
5 (

m
as

s)

P
M

2.
5 (

ni
tr

at
es

)

P
M

2.
5 (

O
C

)

P
M

2.
5 (

E
C

)

O
n-

ro
ad

 d
ie

se
l P

M
2.

5

O
n-

ro
ad

 g
as

ol
in

e 
P

M
2.

5

B
io

m
as

s 
co

m
bu

st
io

n 
P

M
2.

5

P
M

0.
1 (

m
as

s)

N
O

2

O
3 M

ax

N
O

2 c
on

tr
ol

le
d 

fo
r 

O
3

O
3 c

on
tr

ol
le

d 
fo

r 
N

O
2

R
el

at
iv

e 
hu

m
id

ity

Te
m

pe
ra

tu
re



 37

M. Kleeman et al.

DISCUSSION AND CONCLUSION

In this study, we evaluated whether chronic exposure 
to air pollution and meteorological factors at the time 
of diagnosis affected the risk of death in patients hospi-
talized with COVID-19. We found that the risk of death 
after COVID-19–related hospitalization was significantly 
associated with exposure to PM2.5 mass, PM0.1, and sev-
eral of the particle species or source tracers. The effects 
associated with PM2.5 mass were reduced, but remained 
significantly elevated, in a model that included NO2; 

however, the effect of NO2 was reduced to a nonsignificant 
level in the two-pollutant model. Some species, such as 
PM2.5  OC, demonstrated elevated yet statistically nonsig-
nificant relative risks; the association between the PM2.5 

biomass combustion and risk of death was not statistically 
significant. During late summer and early fall, wildfires 
are the predominant source of biomass combustion, which 
produces significant organic carbon (Chapter 7). Most of 
the recent wildfires, however, occurred months before the 
large surge in COVID-19 cases and deaths that occurred 
from late October 2020 to early January 2021.

Figure 13. Concentration-response functions for pollutants and meteorological variables. Units of measurement are µg/m3 for all 
pollutant concentrations, degrees Celsius for temperature, and percentage for relative humidity.
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Figure 12. Risk plots of hazard ratios for COVID-19 mortality per additional IQR increment in PM2.5 mass exposure, stratified by 
tertile of maximum temperature (A) and relative humidity (B) during the month of diagnosis, among patients hospitalized with 
COVID-19 in Southern California. Stratified risk plots for other pollutants are presented in Appendix C.
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Meteorology is associated with the transmission of 
COVID-19,107 and recent studies have shown that meteoro-
logical conditions likely affected COVID-19 mortality rates 
in Europe.27 These researchers proposed that humidity 
may interfere with both the viral defenses of the nasal 
mucosa and the sputum deeper in the airway, resulting in 
more severe infection and subsequently contributing to a 
poor prognosis after the virus becomes established in the 
respiratory tract, particularly in the nose.27,108 Temperature 
and humidity can also affect the size of viral droplets and 
persistence of the virus in ambient air, although the extent 
to which these effects could affect disease severity is 
unknown.109 Our study demonstrated significant negative 
associations between both temperature and humidity and 
the risk of death in hospitalized patients with COVID-19. 
We also found significant effect modification of the asso-
ciations between air pollution and mortality, with lower 
temperature and humidity generally associated with larger 
air pollution effects. If viral defenses are indeed influenced 
by meteorology, this lends biological plausibility to both 
the direct effects of humidity and temperature and their 
effect modification of the association between air pollution 
and COVID-19 mortality.

Comparing the results of our study to the findings of 
other mortality studies provides several relevant insights. 
Chen and colleagues21 investigated the effect of air pollu-
tion on COVID-19 severity and mortality, using data on 
KPSC members and a California Line Source Dispersion 
Model (CALINE) that estimated traffic exposures (freeway 
and nonfreeway) using NOx concentrations. For each stan-
dard deviation increase in the level of nonfreeway NOx, 
the odds of ICU admission were 1.11 (95% CI, 1.04–1.19), 
and the odds of death were 1.10 (95% CI, 1.03–1.18). 
Exposure to several other freeway pollutants, however, 
had protective effects.21 Including regional PM2.5 and NO2 
as confounders attenuated the effects by 19% to 26%; after 
this adjustment for confounding, exposure to freeway NOx 
demonstrated a significantly protective effect on mortality 
(ORR, 0.94; 95% CI, 0.88–1.01). Exposure measurement 
error may have been present in this study, given the inabil-
ity of the CALINE dispersion model to handle complex 
traffic, terrain, and meteorological conditions, all of which 
exist in Southern California.110,111 The present study had 
a longer follow-up period (with about 4.5 times as many 
deaths) than did the study by Chen and colleagues, which 
also may have contributed to differences in the findings.

Additionally, a follow-up to this study, which used the 
same health data but relied on inverse-distance averaging 
to interpolate data from government monitors, identified 
significant chronic effects associated with PM2.5 expo-
sure and subchronic effects of exposure to NO2.

41  This 
follow-up study, however, also had a high probability of 
exposure measurement error, given the spatial variation in 
these pollutants and the sparse data support available from 
the relatively few government monitors, each covering 
thousands of square kilometers.41 

Another study from the United Kingdom relied on UK 
Biobank data and used an agnostic exposomic approach 
to evaluate many risk factors for COVID-19 incidence 
and mortality.39 Although mild associations with PM2.5 
exposure were present in univariate models, these associ-
ations were eliminated in multivariate models, leading the 
authors to conclude there was little evidence of an inde-
pendent association between air pollution and COVID-19 
mortality. This study, however, involved relatively few 
deaths and may have lacked power to detect subtle effects 
of air pollution. 

A study using data from hospitalized patients in New 
York City reported an association between each 1-μg/
m3 increase in PM2.5 exposure and risk of mortality (risk 
ratio, 1.11; 95% CI, 1.02–1.21).38 Given the reported IQR 
of 0.7 μg/m3, the rate ratio would be approximately 1.08. 
Neither black carbon nor NO2 exposure was significantly 
associated with COVID-19 mortality. Notably, this study 
also found that Hispanic ethnicity significantly modified 
the association between air pollution and risk of COVID-
19–related death; these results differ from our finding of no 
significant effect modification by racial/ethnic subgroups. 
This study lacked individual data on certain potential 
risk factors for COVID-19 mortality, including obesity 
and smoking; consequently, residual confounding in the 
results cannot be ruled out. 

A study involving a large administrative cohort from 
Rome, Italy, identified significant associations between 
both NO2 and PM2.5 exposure and COVID-19 mortality.40 
The associations in that study were somewhat smaller 
than those found in our study, although there is overlap 
between the CIs for both studies.40 The range of PM2.5 expo-
sures in the Italian cohort was much smaller than what we 
observed in Southern California, which may partly explain 
the smaller effects observed in Rome.

The present study has several limitations. For instance, 
although we controlled for several individual confound-
ers (e.g., smoking status and obesity), the data from the 
KPSC health system did not include potentially important  
confounding variables, such as occupational status. 
Nascent research suggests that some occupational groups 
in California have an increased risk of mortality from 
COVID-19, particularly in the farming, material moving, 
transportation, and construction sectors, all of which may 
involve elevated occupational exposure to air pollution.112 
It is possible that the lack of data on occupational status 
could have biased our results, although it is important to 
consider that there are numerous complexities involved 
in analyzing and interpreting data on COVID-19 mortality 
risk in different occupational groups.112,113 

An additional limitation of the present study involves 
the temporal mismatch between the exposure fields from 
2016, which predated the study by roughly 3 years, and 
other more current sources of data. Overall spatial pat-
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terns of exposure are unlikely to have changed over this 
intervening period. Some portions of our study period, 
however, overlapped with the COVID-19–related lock-
down period, during which traffic emissions were lower.114 
Therefore, patients in the study cohort may have experi-
enced lower exposures to air pollution than they would 
have under normal conditions; we did not account for this 
factor in our exposure or statistical models. The impact 
of this limitation would have resulted in overestimating 
the near-source traffic exposures of patients, which may 
have biased some results toward the null hypothesis. In 
our study, the risks of COVID-19 mortality associated with 
exposure to near-road pollutants, such as PM2.5 EC, PM0.1, 
PM2.5 on-road diesel, and PM2.5 on-road gasoline, were 
lower than the risks associated with PM2.5 mass and PM2.5 
nitrate exposures; these findings may reflect the lack of 
capacity in our exposure model to account for potential 
effects of the COVID-19 lockdown. Despite this limitation, 
our study still demonstrated significant associations 
between several near-source pollutants and COVID-19 
mortality. We were also unable to account for the acute 
effects of air pollution that may have contributed to the 
risks of COVID-19 mortality. Currently, we are extending 
the CTM to derive contemporaneous estimates of acute 
and chronic exposure to pollutants. 

Another concern with observational studies of COVID-
19 and resulting mortality pertains to the different 
SARS-CoV-2 variants that emerged and gained dominance 
during the course of the pandemic. If certain variants were 
more virulent than others, as appears likely,115 and these 
virulent variants coincidentally emerged during periods 
with high levels of air pollution, the associations between 
air pollution exposure and COVID-19 mortality could be 
confounded by the virulence of the SARS-CoV-2 variants. 
In this study, the Delta variant was dominant during the 
majority of the study period. We performed sensitivity tests 
on the PM2.5 model by restricting the analysis to periods 
when Delta was the dominant variant; the results from the 
restricted analysis were virtually the same as those from 
the full analysis. Given the similarity in these findings, we 
concluded that our results were not likely confounded by 
differing levels of virulence among SARS-CoV-2 variants. 

We used data on time-to-event after hospitalization to 
avoid bias in our follow-up periods, which could have 
varied considerably if we had used the date of COVID-19 
diagnosis as the starting point for each patient in the study. 
A more general concern about collider bias has been raised 
regarding studies of COVID-19 and hospitalization. If the 
tracking of COVID-19 begins at the point of infection, hos-
pitalization can be a collider variable, as both COVID-19 
and air pollution exposure could increase the risk of hos-
pitalization. As a follow-up, our study began at the point 
of hospitalization; however, the hospitalization event is 
not a collider variable. Nevertheless, restricting the study 
population to hospitalized patients likely reduced the 
generalizability of our results to hospitalized individuals 
rather than the general population. 

Other environmental variables, including wind speed 
and ultraviolet radiation, have also been implicated in the 
spread and severity of COVID-19. Both of these variables 
were purposefully included in our CTM for exposures. 
Wind speed, in particular, has a major impact on ambient 
concentrations of several pollutants, and we were con-
cerned that including wind speed as a distinct variable 
would induce collinearity into the model. In reviewing 
the literature on wind speed, we also found that most of 
the influence of this meteorological parameter affects the 
transmission of COVID-19 but not the severity of symp-
toms or risk of death.108,109 Ultraviolet B (UVB) radiation 
potentially influences COVID-19 outcomes via its relation-
ship to vitamin D deficiency, which has been identified 
as a risk factor for more severe COVID-19 outcomes.116 We 
visually explored the 1-km UVB fields used as inputs in 
the CTM used in this study. UVB levels were higher inland 
and lower near the Pacific coastline, likely due to fog and 
cloud cover. Recent UVB exposure modeling, however, 
estimates that personal behavior and occupation are much 
more important predictors of UVB exposure than ambient 
levels alone, which often account for little of the explained 
variation in objectively measured UVB.117,118 Therefore, 
ambient levels of UVB are unlikely to be reasonable prox-
ies for UVB exposure and subsequent deficiency. 

Additionally, we queried our database to identify 
patients with vitamin D deficiency and performed strati-
fied analyses to assess whether air pollution contributed 
to worse outcomes in these patients. Of the patients in 
the study cohort, 4,142 (19.34%) had a laboratory vitamin 
D test within 1 year before their COVID test date; among 
those who had a vitamin D test, 1,524 (7.13% of the total 
cohort) were deficient in vitamin D (i.e., 25-hydroxyvita-
min D laboratory result <30 ng/mL) based on their most 
recent vitamin D laboratory result before hospitalization. 
As this subgroup of patients with vitamin D deficiency 
is a relatively small proportion of the entire cohort (and 
likely represents an underestimate of the actual size of the 
subgroup), we were unable to stratify the analysis.

Virucidal activity also decreases in the presence of 
higher levels of UVB radiation,108,109 although this effect 
would be more likely to influence viral transmission and 
not disease severity. Furthermore, most of the COVID-19 
cases likely occurred as a result of exposure to SARS-CoV-2 
in an indoor environment, where ambient UVB radiation 
would likely have minimal impact on virucidal activity.108 
Future research is nevertheless needed to determine 
whether vitamin D deficiency modifies the effects of air 
pollution exposure on COVID-19 severity.

Saturation of ICU capacity, another possible factor 
affecting survival in COVID-19 patients, may have acted as 
a confounder in this study. Internal data and consultations 
with attending physicians revealed, however, that despite 
the described surge in COVID-19 cases (Figure 9), the KPSC 
ICUs were never saturated beyond capacity during this 
period. The health system did not run out of ventilators 
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or physical space for admitting seriously ill patients with 
COVID-19. An overflow facility that could have accepted 
KPSC patients was never used. Thus, saturation of the ICU 
is unlikely to have confounded our results. 

The observational nature of this study precludes causal 
interpretation of the results. Our findings nevertheless 
enable us to conclude that chronic exposure to air pollu-
tion in Southern California is associated with increased 
risk of death from COVID-19. Better knowledge about envi-
ronmental factors, such as air pollution and meteorology, 
could be used by communities and local governments to 
target neighborhoods with higher risks of COVID-19 mor-
tality. Such information could also be used by healthcare 
systems to assist clinicians in better estimating the likely 
severity of disease in patients residing in areas with high 
levels of air pollution. Minimizing transmission and reduc-
ing the severity of COVID-19 through nonpharmaceutical 
interventions, such as masking and economic shutdowns, 
remains problematic over the longer term,119 given the 
social and environmental costs of such approaches. Fur-
thermore, modeling suggests that nonpharmaceutical mea-
sures have the potential to increase the severity of other 
respiratory viral outbreaks in the future.120 Pharmaceutical 
measures like vaccines continue to have mixed results, 
partly because of vaccine hesitancy in some locations 
and population groups.121 By contrast, air pollution is 
a modifiable environmental risk factor that could affect 
disease severity across the entire population. Reducing air 
pollution may thus provide a more sustainable means of 
reducing COVID-19 severity, thereby yielding substantial 
population benefits. Mitigating air pollution may also 
lessen the risks of catastrophic outcomes due to future 
pandemics fueled by novel viruses, while also beneficially 
affecting a wide array of other health endpoints.
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CHAPTER 6: AIR POLLUTION AND 
PROGRESSION OF COVID-19: A 

MULTISTATE ANALYSIS

INTRODUCTION

Although vaccines are critically important in reducing 
the severity of COVID-19 infections, vaccination against 
COVID-19 has demonstrated mixed results as a strategy 
for disease control, partly because of vaccine hesitancy 
in some population groups and geographic locales.121 The 
limitations of such pharmaceutical interventions have 
prompted interest in the modification of environmental 
risk as a potential approach to reducing the severity of 
COVID-19 after infection occurs. 

Air pollution is a pervasive yet modifiable environ-
mental exposure. Studies using individual-level data have 
revealed that air pollution can lead to increased risk of 
hospitalization, ICU admission, and death.21,38–41,122–124 To 
date, no studies have investigated how air pollution affects 
patients’ progression from hospital admission for COVID-
19 to outcomes such as admission to the ICU, death, or 
recovery. Increasing the body of knowledge about how 
air pollution may influence the progression of COVID-19 
through possible states of severity or recovery or both can 
help strengthen understanding of how this ubiquitous 
environmental exposure affects prognosis in COVID-19. 
Such information would provide another strategy for 
mitigating the severity of COVID-19 while circumventing 
debates about vaccine efficacy and safety. 

In this study, we used a unified multistate survival 
model to investigate how air pollution affects transitions 
between different states of health that can occur after 
hospitalization with COVID-19. We hypothesized that 1) 
patients living in areas with higher chronic exposure to air 
pollution who are hospitalized with COVID-19 are more 
likely to progress toward serious illness requiring ICU 
admission or death than are patients with less exposure 
to air pollution, and 2) patients living in areas with higher 
chronic exposure to air pollution who are hospitalized 
with COVID-19 will be less likely than those living in 
areas with less chronic air pollution exposure to transition 
toward sustained recovery. 

METHODS

 KPSC COHORT AND HEALTH DATA

The KPSC  membership of 4.7 million people broadly 
represents the overall population  of Southern Califor-
nia.94 KPSC maintains an EHR in an integrated system that 

captures all aspects of patient care, including diagnoses, 
inpatient and outpatient encounters, pharmacy encoun-
ters, and laboratory tests.

We identified KPSC patients with a positive COVID-19 
molecular diagnostic test and/or diagnosis of COVID-19 
based on prior testing (ICD-10 codes B34.2, B97.29, J12.89, 
J20.8, J22, J80, or U07.1) that occurred from June 1, 2020, 
to January 30, 2021. Given that rapid changes in clinical 
care occurred over the first months of the pandemic, we 
chose to begin the observation period for this study on 
June 1, 2020, by which time new standards of care for 
COVID were more widely implemented.

The study cohort included patients aged 18 years or 
older at the time of their COVID-19 diagnosis or positive 
COVID-19 test. To reliably assess comorbidities, we 
restricted eligibility to those who had been KPSC mem-
bers for at least 1 year before their COVID-19 diagnosis or 
positive test or both. COVID-19–related hospitalizations 
were defined as those that occurred within 21 days 
of a patient’s COVID-19 diagnosis or positive test (N = 
316,224).95 The study cohort comprised only hospitalized 
patients rather than all those who tested positive for 
COVID-19, as testing may have occurred after contact 
with an infected person or upon hospital admission 
after the onset of severe illness. Such timing could lead 
to uncertainty about the window of time within which 
testing could have occurred in different patients, thereby 
introducing substantial errors in the study follow-up 
times and thus leading to biased results in the statistical 
models. Limiting the study to hospitalized patients elim-
inated these concerns, as there was no uncertainty about 
the date of hospitalization. Approximately one-quarter 
of patients included in the initial sample were ineligi-
ble because they received treatment outside the KPSC 
system, making it unfeasible to reliably ascertain their 
course of treatment. Patients whose KPSC membership 
ended during the 90-day observation window or who 
were hospitalized for childbirth were excluded from the 
study. Patients who died up to 90 days after either their 
initial hospitalization or a readmission after discharge 
were included in the study cohort. (Further details on the 
ascertainment of death data are provided in Appendix 
D.) The final cohort used for data analysis consisted of 
15,978 patients with complete medical records. A flow 
chart depicting the selection criteria for the study popu-
lation is presented in Figure 14. This study was approved 
by the Kaiser Permanente Institutional Review Board.

DEMOGRAPHICS AND COVARIATES

The EHR in the KPSC health system includes infor-
mation on patient age, sex, and race/ethnicity.95 The 
most recent BMI value available in the patient EHR 
was used to represent this potential confounder.96 BMI 
data were cleaned using validation algorithms to delete 
biologically implausible values. In the HPSC health 
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system, smoking status and EVS data (coded as min/wk 
of moderate to vigorous exercise) are collected during 
each in-person outpatient healthcare encounter,98 and 
we used data on these factors as potential confounders. 
Smoking status (ever-smoker or never-smoker) was coded 
based on the information provided during the patient’s 
last encounter before their COVID-19 test or diagnosis, 
dating back up to 4 years. Patients who were enrolled 
at KPSC via MediCal (i.e., state-sponsored medical care 
for patients in poverty) were classified as having a very 
low income. We did not include COVID-19 vaccination 
status in the analysis, as COVID-19 vaccines were not 
yet widely available by the end of the study period. 
(A total of 19 patients in the study cohort had been 
vaccinated against COVID-19 before hospitalization.) 
In summary, four individual-level confounders were 
considered in the analysis: smoking status (ever-smoker 
vs. never-smoker), BMI and BMI2, MediCal enrollment 
(as a proxy for poverty), and EVS data (as an estimation 
of the usual number of minutes per week of moderate to 
vigorous exercise). 

CONTEXTUAL VARIABLES

We added predictors of community-level SES to the 
proxy for individual SES and adjusted for community-level 
effects of social determinants of health.99–101 Communi-
ty-level predictors at the census block group level were 
obtained from the 2018 American Community Survey.102 
These predictors included the previously validated NDI, 
a measure of crowding (the percentage of households 
with more than one occupant per home) that was used 
as a proxy for poor housing quality, and the percentage 
of workers aged 16 years or older who commute to work 
via public transportation (which is associated with low 
income in Southern California).17

Because previous research has indicated that meteo-
rological conditions can affect the severity of COVID-19,8 
we obtained GridMET surface meteorological data (with 
approximately 4-km resolution) to estimate daily maximum 
temperature and relative humidity for the entire study period 
by using Google Earth Engine.103 GridMET data for the home 
address of every study participant were aggregated to monthly 
means for the month of hospitalization with COVID-19. 

Figure 14. Flow chart depicting selection of the study cohort used in the multistate survival model.
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Although the evidence is mixed, some research indi-
cates that tree canopy and green cover can have a bene-
ficial effect on respiratory health outcomes.125 Emerging 
evidence from county-level analyses in the United States 
also indicates that green space may be associated with 
COVID-19 mortality.126 We therefore included as a poten-
tial confounder a high-resolution metric of green space 
based on satellite retrievals compiled by the National 
Agriculture Imagery Program.127

EXPOSURE ASSESSMENT: CHEMICAL TRANSPORT 
MODEL

Exposure simulations were carried out across California, 
using the UCD/CIT source-oriented, three-dimensional, 
reactive chemical transport model (CTM).104 The UCD/CIT 
model predicts the evolution of gas- and particle-phase 
pollutants in the atmosphere in the presence of emissions, 
transport, deposition, chemical reaction, and phase 
change. The pressing timeline for conducting this study 
during an ongoing public health crisis necessitated lever-
aging past efforts that had prepared and validated CTM 
inputs. We previously reported CTM exposure fields with 
4-km resolution over California for the years 2000–2016.105 
We re-estimated exposures for 2016 at 1-km resolution. 
Meteorology and emission inputs for the year 2016 were 
downscaled to improve spatial resolution to 1 km. Bias in 
the raw CTM output fields was minimized using a con-
strained regression model based on source apportionment 
tags and the difference between predicted and measured 

concentrations. (Further details on methods used for the 
CTM are available in Appendix A.)

In this study, we estimated PM2.5 mass, NO2, and O3. 
Subchronic exposure fields were assigned to the geocoded 
home address of the cohort members. The exposure fields 
were intended to account for spatial patterns of chronic 
exposure, which are relatively stable over the 4–5 years 
that ensued between the exposure modeling and formation 
of the study cohort. We accounted for residential mobility 
of patients by using a weighted average of exposures based 
on time spent at each residential address. 

STATISTICAL ANALYSIS

We implemented a multistate survival model, using the 
mstate package in R.128 These models used a time-to-event 
process to evaluate the instantaneous hazard of transitioning 
from one health state to another (e.g., from the ICU to death). 
The six health event states used in the model, along with the 
number of patients for each state and transition event, are 
presented in Figure 15. The multistate models essentially 
represent an extension of the Cox proportional hazards model 
to more than two states (e.g., alive or dead), allowing for effi-
cient modeling of all predefined transition states. Compared 
to conventional Cox models for time-to-event processes, mul-
tistate models can simultaneously model dynamic transitions 
between multiple events, avoiding a loss of statistical power 
that can result from dividing the states into smaller samples, 
potentially leading to false-negative findings. Including mul-
tiple health states can also lead to novel insights about the 

Figure 15. Health states and transition events between states in a multistate survival model, with number of patients by state and 
transition event. In the study cohort, 270 patients with COVID-19 who entered the hospital experienced no transition events but 
remained hospitalized for the entire study period.
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relationship between intermediate endpoints and death (e.g., 
ICU to death).129 We assumed that time spent in any given 
state did not influence the time spent in any other state (i.e., 
Markov assumption); this assumption effectively resets the 
follow-up time to zero once a patient enters a given state.

For a sensitivity analysis, we also ran Cox proportional 
hazards models to examine how air pollution exposure influ-
ences time between health states, by constructing a dataset 
consisting of patients who entered one health state and then 
transitioned to another state. We applied the same rules as 
those used in the multistate model. (Technical details on 
definitions of the states depicted in Figure 15 are available 
in Appendix D.) Confounders were included in the model if 
they changed the pollution coefficient by 10% or more in the 
Cox models. Confounders were selected separately for each 
of the transition events. (Further information on the included 
confounders is presented in Appendix Tables D2–D4.) In con-
ducting a sensitivity analysis, we also included all possible 
individual confounders along with most of the contextual 
variables (i.e., temperature, humidity, green space, and neigh-
borhood deprivations) while excluding the proportion of 
housing units with more than one occupant per room and the 
proportion of workers aged 16 or older using public transit, as 
these factors were collinear with neighborhood deprivation. 
We included age and sex as stratification variables in the 
baseline hazard. Confounders were included as linear terms 
or categorical variables, as shown in Appendix Tables D2–D4. 

We also ran a series of two-pollutant models, including 
models for PM2.5 and NO2, PM2.5 and O3, and NO2 and O3. 

RESULTS

Demographic and clinical characteristics of patients in 
the study cohort, stratified by major health event states, are 
presented in Table 7. Patients who experienced deteriora-
tion events after hospitalization (defined as admission to 
the ICU or use of intensive oxygen therapy) were older than 
those who did not progress to more severe states of health. 
Among hospitalized patients, the rate of deterioration was 
higher among Hispanic patients than among patients in 
other racial/ethnic groups. White patients experienced a 
higher rate of death compared to patients of other races 
or ethnicities. Rates of hospitalization, deterioration, and 
death were much higher among men than among women, 
and men had a lower rate of recovery than did women. 
Patients who deteriorated or died had higher rates of 
chronic disease, compared to those who recovered. Patients 
who experienced deterioration or died had slightly higher 
PM2.5 and O3 exposures, on average, than did all patients 
who were hospitalized or those who recovered; whereas, 
NO2 exposures were generally similar across each of the 
health event transitions, with very slightly less exposure 
among patients who died. Similarly, patients who experi-
enced deterioration or died generally resided in areas with 
lower ambient temperatures and humidity levels during 

the month in which they were diagnosed, compared to all 
hospitalized patients or those who recovered. 

 The possible transition events between health states, as 
well as the numbers and proportions of patients who expe-
rienced each health state event, are presented in Appendix 
Tables D6 and D7 and depicted in Figure 15. Many of the 
hospitalized patients experienced deterioration, with most 
deaths occurring in patients who first deteriorated.

The multistate model results for PM2.5 exposure are 
shown in Table 8 and Figure 16. Most of the transitions 
between events had the expected sign on the coefficients. 
Comparing the lowest quartile to the highest quartile of 
PM2.5 exposure, the HR for experiencing the transition from 
hospitalization to a deterioration event was 1.16 (95% CI, 
1.12–1.20). Similarly, comparing these quartiles of PM2.5 
exposure, the HR for transitioning from deterioration to 
death was 1.11 (95% CI, 1.04–1.17). The level of PM2.5 
exposure was not significantly associated with the risk of 
experiencing other transition events except, notably, the 
transition from recovery to death, for which the HR was 
1.10 (95% CI, 0.97–1.25). 

Results for O3 were largely consistent with those for 
PM2.5 (Table 8 and Figure 16). Comparing the lowest 
quartile to the highest quartile of O3 exposure, the HR for 
transitioning from hospitalization to deterioration was 
1.21 (95% CI, 1.13–1.28). The HR for transitioning from 
hospitalization to recovery was 0.96 (95% CI, 0.91–1.00), 
suggesting that those living in areas with lower O3 expo-
sure were more likely to recover than those living in areas 
with higher levels of O3. The point estimate of the HR for 
transitioning from hospitalization to death was elevated, 
although this association with O3 exposure was not statisti-
cally significant. Comparing the lowest vs. highest quartile 
of O3 exposure, the HR for transitioning from deterioration 
to death was 1.08 (95% CI, 0.98–1.19), which was of bor-
derline significance. The strongest association with O3 was 
seen for the transition from recovery to death, with an HR 
of 1.24 (95% CI, 1.01–1.51), implying that those who lived 
in areas with greater O3 exposure were more likely to die 
after discharge from the hospital than those in areas with 
lower levels of O3. 

Effects of NO2 exposure (i.e., lowest vs. highest quartile) 
were somewhat weaker than those for O3 or PM2.5 (Table 
8 and Figure 16). The HR for transitioning from hospi-
talization to deterioration was 1.19 (95% CI, 1.13–1.24). 
Unexpectedly, based on a small group of 62 patients, the 
HR for transitioning directly from hospitalization to death 
was 0.60 (95% CI, 0.40–0.90). The HR for the transition 
from deterioration to death was elevated, but the associ-
ation was not statistically significant (HR, 1.07; 95% CI, 
0.99–1.16).

The sensitivity analysis that included all patients and 
most of the contextual confounders of the effects of pol-
lutant exposure largely supported all of the main results, 
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Characteristic
All Hospitalized

(N = 15,978)
Ever Deteriorated

(N = 6,390)

Ever Recovered/ 
Discharged
(N = 13,056)

Died
(N = 2,946)

Deterioration date indicator 0/1a 6,390 (40.0%) 6,390 (100.0%) 3,800 (29.1%) 2,572 (87.3%)

Died indicator 0/1a 2,946 (18.4%) 2,572 (40.3%) 470 (3.60%) 2,946 (100.0%)

Recovery indicator 0/1a 13,056 (81.7%) 3,800 (59.5%) 13,056 (100.0%) 470 (16.0%)

Age index

Median (IQR) 63 (51, 74) 65 (55, 75) 61 (50, 72) 73 (63, 82)

Mean (SD) 62 (16) 64 (15) 60 (16) 72 (13)

Range 18, 105 18, 102 18, 105 18, 105

Race/ethnicitya

Asian/Pacific Islander 1,810 (11.3%) 743 (11.6%) 1,492 (11.4%) 311 (10.6%)

Black 1,342 (8.40%) 477 (7.46%) 1,107 (8.48%) 241 (8.18%)

Hispanic 9,538 (59.7%) 4,037 (63.2%) 7,788 (59.7%) 1,702 (57.8%)

White 3,143 (19.7%) 1,082 (16.9%) 2,550 (19.5%) 666 (22.6%)

Other/multiple/unknown 145 (0.91%) 51 (0.80%) 119 (0.91%) 26 (0.88%)

Sexa

Female 6,700 (41.9%) 2,288 (35.8%) 5,715 (43.8%) 1,041 (35.3%)

Male 9,278 (58.1%) 4,102 (64.2%) 7,341 (56.2%) 1,905 (64.7%)

Medicaida

No 13,961 (87.4%) 5,545 (86.8%) 11,482 (87.9%) 2,515 (85.4%)

Yes 2,017 (12.6%) 845 (13.2%) 1,574 (12.1%) 431 (14.6%)

Exercise Vital Sign

Median (IQR) 0 (0, 95) 0 (0, 90) 0 (0, 100) 0 (0, 75)

Mean (SD) 62 (97) 57 (90) 65 (100) 47 (82)

Range 0, 1,050 0, 1,050 0, 1,050 0, 1,050

Unknown 529 (3.31%) 224 (3.51%) 452 (3.46%) 68 (2.31%)

Housing units with >1 occupant/room (%)

Median (IQR) 0.10 (0.03, 0.19) 0.10 (0.03, 0.20) 0.09 (0.03, 0.19) 0.10 (0.03, 0.19)

Mean (SD) 0.12 (0.12) 0.13 (0.12) 0.12 (0.12) 0.12 (0.11)

Range 0.00, 0.78 0.00, 0.71 0.00, 0.78 0.00, 0.71

Unknown 384 (2.40%) 153 (2.39%) 322 (2.47%) 67 (2.27%)

Neighborhood Deprivation Index

Median (IQR) 0.45 (−0.24 to 
1.28)

0.52 (−0.19 to 
1.36)

0.45 (−0.25 to 
1.28)

0.46 (−0.25 to 
1.33)

Mean (SD) 0.58 (1.03) 0.64 (1.03) 0.57 (1.03) 0.59 (1.04)

Range −1.56 to 5.28 −1.56 to 5.28 −1.51 to 5.28 −1.56 to 4.08

Unknown 4 (0.03%) 2 (0.03%) 3 (0.02%) 1 (0.03%)

Table 7. Demographic and Clinical Characteristics and PM2.5, NO2, and O3 Exposures of Patients Hospitalized with COVID-19, 
by Health Event

Continues next page
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Characteristic
All Hospitalized

(N = 15,978)
Ever Deteriorated

(N = 6,390)

Ever Recovered/ 
Discharged
(N = 13,056)

Died
(N = 2,946)

Workers aged ≥16 yr commuting by public transportation (%)

Median (IQR) 0.02 (0.00, 0.06) 0.02 (0.00, 0.06) 0.02 (0.00, 0.06) 0.02 (0.00, 0.05)

Mean (SD) 0.04 (0.06) 0.04 (0.06) 0.04 (0.06) 0.04 (0.06)

Range 0.00, 0.83 0.00, 0.58 0.00, 0.83 0.00, 0.58

Unknown 383 (2.40%) 153 (2.39%) 321 (2.46%) 67 (2.27%)

BMI (kg/m2)

Median (IQR) 31 (27, 36) 32 (28, 37) 31 (27, 36) 30 (26, 35)

Mean (SD) 32 (8) 33 (8) 32 (8) 31 (8)

Range 13, 88 14, 88 13, 87 13, 88

Unknown 429 (2.68%) 189 (2.96%) 362 (2.77%) 60 (2.04%)

Elixhauser comorbidities

Median (IQR) 2.00 (1.00, 5.00) 3.00 (1.00, 5.00) 2.00 (1.00, 4.00) 4.0 (2.0, 6.0)

Mean (SD) 3.08 (2.88) 3.26 (2.92) 2.82 (2.76) 4.4 (3.1)

Range 0.00, 18.00 0.00, 17.00 0.00, 18.00 0.0, 16.0

Elixhauser, combined CVDa 5,570 (34.9%) 2,375 (37.2%) 4,037 (30.9%) 1,630 (55.3%)

Unknown 391 (2.45%) 156 (2.44%) 332 (2.54%) 56 (1.90%)

Elixhauser, combined hypertensiona 8,651 (54.1%) 3,722 (58.2%) 6,595 (50.5%) 2,106 (71.5%)

Unknown 391 (2.45%) 156 (2.44%) 332 (2.54%) 56 (1.90%)

Elixhauser, combined pulmonary 
diseasea

3,013 (18.9%) 1,260 (19.7%) 2,346 (18.0%) 682 (23.2%)

Unknown 391 (2.45%) 156 (2.44%) 332 (2.54%) 56 (1.90%)

Elixhauser, combined diabetesa 6,882 (43.1%) 3,114 (48.7%) 5,265 (40.3%) 1,598 (54.2%)

Unknown 391 (2.45%) 156 (2.44%) 332 (2.54%) 56 (1.90%)

Elixhauser, combined othera 9,406 (58.9%) 3,817 (59.7%) 7,331 (56.2%) 2,142 (72.7%)

Unknown 391 (2.45%) 156 (2.44%) 332 (2.54%) 56 (1.90%)

Relative Humidity (%)

Median (IQR) 72 (59, 82) 70 (58, 80) 73 (60, 82) 68 (58, 79)

Mean (SD) 71 (14) 69 (14) 71 (14) 68 (13)

Range 33, 99 33, 99 33, 98 33, 98

Temperature (°C)

Median (IQR) 21.1 (20.1, 25.3) 21.0 (20.0, 23.5) 21.2 (20.2, 25.9) 20.9 (20.0, 22.7)

Mean (SD) 23.1 (4.8) 22.7 (4.6) 23.2 (4.8) 22.4 (4.4)

Range 5.9, 38.5 8.7, 38.5 5.9, 38.0 10.5, 38.5

Smoking statusa

Never-smoker 10,246 (64.1%) 3,890 (60.9%) 8,655 (66.3%) 1,598 (54.2%)

Ever-smoker 5,543 (34.7%) 2,421 (37.9%%) 4,241 (32.5%) 1,323 (44.9%)

Unknown 189 (1.18%) 79 (1.24%) 160 (1.23%) 25 (0.85%)

Table 7. (continued)

Continues next page
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Characteristic
All Hospitalized

(N = 15,978)
Ever Deteriorated

(N = 6,390)

Ever Recovered/ 
Discharged
(N = 13,056)

Died
(N = 2,946)

PM2.5 mass (μg/m3)

Median (IQR) 12.60 (11.00, 14.20) 12.80 (11.30, 14.40) 12.60 (10.90, 14.20) 12.80 (11.20, 14.40)

Mean (SD) 12.63 (2.36) 12.87 (2.33) 12.58 (2.34) 12.84 (2.44)

Range 6.12, 27.70 6.53, 26.30 6.12, 27.70 6.50, 23.80

NO2 (ppb)

Median (IQR) 22 (15, 25) 22 (16, 25) 22 (14, 25) 21 (15, 25)

Mean (SD) 20 (7) 20 (6) 20 (7) 20 (7)

Range 1, 34 1, 33 1, 34 2, 33

O3 maximum (ppb)

Median (IQR) 66 (60, 73) 67 (61, 74) 66 (60, 72) 67 (61, 74)

Mean (SD) 66 (8) 67 (8) 66 (8) 67 (8)

Range 40, 84 43, 84 42, 84 43, 83

CVD = cardiovascular disease.
aPresented data are n (%).

Table 7. (continued)

Table 8. Effects of Pollutant Exposure on Transitions Between COVID-19–Related Health Statesa: Results of Single- and 
Multipollutant Models 

Hospitalization  
to Deterioration

Hospitalization  
to Recovery

Hospitalization  
to Death

Deterioration  
to Recovery

Deterioration  
to Death Recovery to Death

Single Pollutant HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI

PM2.5 mass 1.16 1.12, 1.20 1.00 0.97, 1.03 0.74 0.51, 1.08 0.96 0.92, 1.01 1.11 1.04, 1.17 1.1 0.97, 1.25

O3 maximumb 1.21 1.13, 1.28 0.96 0.91, 1.00 1.46 0.87, 2.46 0.98 0.91, 1.05 1.08 0.98, 1.19 1.24 1.01, 1.51

NO2 1.19 1.13, 1.24 1.01 0.97, 1.04 0.60 0.40, 0.90 1.03 0.97, 1.09 1.07 0.99, 1.16 1.03 0.86, 1.23

Two Pollutants

PM2.5 mass 1.13 1.09, 1.17 1.01 0.98, 1.03 0.67 0.45, 1.00 0.96 0.91, 1.01 1.10 1.04, 1.17 1.07 0.93, 1.23

O3 maximum 1.13 1.06, 1.21 0.96 0.91, 1.01 1.68 0.98, 2.90 1.00 0.92, 1.08 1.03 0.94, 1.14 1.19 0.95, 1.48

O3 maximum 1.24 1.17, 1.32 0.96 0.92, 1.01 1.39 0.85, 2.28 0.98 0.91, 1.05 1.11 0.99, 1.23 1.27 0.99, 1.61

NO2 1.21 1.15, 1.26 1.00 0.97, 1.04 0.59 0.38, 0.92 1.03 0.96, 1.10 1.08 1.00, 1.17 1.03 0.86, 1.23

PM2.5 mass 1.11 1.05, 1.17 0.98 0.94, 1.03 1.00 0.58, 1.73 0.90 0.84, 0.96 1.14 1.04, 1.25 1.21 0.99, 1.49

NO2 1.07 1.00, 1.14 1.02 0.97, 1.08 0.62 0.32, 1.23 1.13 1.04, 1.24 0.94 0.83, 1.06 0.85 0.64, 1.13

aTransitions between COVID-19–related states of health are depicted by arrows in Figure 15.
bDaily maximum 1-hr average O3 concentration.
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Figure 16. Effect estimates for select pollutants in a multistate survival model. Hazard ratios (95% CIs) are presented for exposure 
effects of PM2.5 mass (A), O3 (B), and NO2 (C). Results are adjusted for temperature and relative humidity as confounders, stratified by 
age group (5-year), sex, and race/ethnicity. aP ≤ 0.05. bP ≤ 0.01 (99% CIs).
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except for a slightly lower effect of O3 exposure on the risk 
of transitioning from hospitalization to ICU admission 
(Appendix Table D9).

We also ran two-pollutant models for all possible 
combinations (Table 8). The effect of PM2.5 exposure on the 
risk of transitioning from hospitalization to deterioration 
remained significantly elevated but was attenuated when 
NO2 was included in the model. For the transition from 
deterioration to recovery, the effects of PM2.5 exposure 
became larger and statistically significant when NO2 was 
included in the model, indicating that patients living in 
less polluted areas were more likely to recover than those 
living in more polluted places. Effects of PM2.5 exposure on 
both the transitions from deterioration to death and from 
recovery to death became stronger in the model including 
PM2.5 and NO2, with the association for the latter transition 
approaching statistical significance in the two-pollutant 
model. 

Most of the effects of NO2 were attenuated and not 
statistically significant in the two-pollutant models with 
PM2.5, although the risk of transitioning from hospitaliza-
tion to deterioration remained elevated and nearly signif-
icant. In the two-pollutant models with NO2 and PM2.5, 
some of the effects of NO2 changed direction, with NO2 
exposure becoming negatively associated (although not 
significantly) with both transitioning from deterioration to 
death and from recovery to death. In the model with PM2.5, 
the association between NO2 exposure and the transition 
from deterioration to recovery became statistically signifi-
cant, meaning that patients living in areas with higher NO2 
exposure were more likely to recover after a deterioration 
event — an unlikely result that probably reflects instability 
in the estimation that is due to collinearity between the 
two pollutants.

When NO2 was included in the two-pollutant models, 
the effect of O3 exposure on the risk of transitioning from 
hospitalization to deterioration remained of similar size 
and remained statistically significant, and the effect on the 
transition from hospitalization to recovery was attenuated 
and of borderline significance. Other results continued to 
display similar patterns but were mildly attenuated in size 
and significance. 

With PM2.5 in the two-pollutant model, the effects of O3 

exposure were mixed, and only the association with tran-
sitioning from hospitalization to deterioration remained 
statistically significant. When PM2.5 was included in the 
model, the HR for the effect of O3 exposure on the transition 
from hospitalization to death became higher and borderline 
significant. The two-pollutant model revealed that PM2.5 
confounded the effect of O3 exposure on the transition from 
deterioration to death, with the adjusted effects being two-
thirds smaller than in the single-pollutant model. 

Results for the Cox model are also shown in Appen-
dix Table D8. The directions of the associations between 

pollutant exposure and the transitions between health 
event states were mostly as expected, and the results were 
remarkably similar to those from the multistate model.

DISCUSSION AND CONCLUSION

We hypothesized that greater exposure to air pollution 
would relate to increased risk of deterioration events and 
death among patients hospitalized with COVID-19. We 
also hypothesized that air pollution would affect the path-
ways to recovery, with those living in areas with higher 
levels of air pollution being less likely to recover from 
COVID-19. The results of this study generally confirmed 
both hypotheses. 

All studied pollutants significantly affected the tran-
sition from hospitalization to deterioration. Although 
PM2.5 was the only pollutant that significantly affected the 
transition from deterioration to death, there was evidence 
that exposure to O3 and, to a lesser extent, NO2 elevated 
the risk of this transition. Exposure to O3 significantly 
influenced the transition to recovery, with those living 
in areas with higher levels of O3 having a lower chance of 
recovery. Exposure to O3 increased the risks of death after 
recovery and discharge from the hospital. This outcome 
may have occurred if patients living in more polluted areas 
were more likely to experience cardiopulmonary effects of 
long COVID, making them more susceptible to the effects 
of air pollution.

Unexpectedly, there was a negative association between 
PM2.5 and NO2 exposures and the risk of transitioning 
from hospitalization to death; however, O3 exposure was 
positively associated with a large increased risk of this 
outcome. Only a small number of patients (n = 62) in 
the analysis cohort transitioned from hospitalization to 
death, potentially leading to instabilities in the statistical 
inferences, making these results potentially unreliable and 
difficult to interpret. The unexpected finding regarding 
NO2 and PM2.5, therefore, could have occurred because of 
unstable statistical inference resulting from insufficient 
sample size. Moreover, we conducted detailed investi-
gations, including chart reviews, for these 62 patients. 
(Data on patient characteristics for the group of those who 
experienced this transition, compared to other transition 
groups, as well as additional discussion, are presented in 
Appendix Table D10.) This additional analysis suggested 
that the unexpected findings may have been due to mis-
classification of COVID-19 deaths in older adult patients 
with other strong risk factors for death who, by chance, 
lived in areas with lower exposure to PM2.5 and NO2.

The consistency in the results from the multistate 
and Cox models further supports the conclusion that air 
pollution exposure contributes to the progression from 
hospitalization to deterioration and from deterioration to 
death in patients with COVID-19. Additionally, exposure 



 50

Ambient Air Pollution and COVID-19 in California

to air pollution reduces the chances of sustained recovery, 
with positive associations between recovery being defined 
as discharge from the hospital for 90 days and death. Our 
analyses were based on the Markov assumption that time 
spent in a previous health state did not influence subse-
quent transition states. Thus, we would expect similar 
results from the Cox model and the multistate survival 
model, provided that the statistical power was not substan-
tially lowered in the Cox model. When this phase of the 
study was being conducted, COVID-19 remained a novel 
virus, and we lacked sufficient prior knowledge to deter-
mine how time spent in one COVID-19–related health state 
may influence future transitions to other states of health. 
It is plausible that patients who spent a much longer time 
in the ICU had a higher probability of dying; however, it is 
also possible that the opposite is true if patients who were 
severely ill were admitted to the ICU and died very soon 
thereafter. At the time of the study, we were unable to pre-
dict how the amount of time a patient spent in one health 
state would influence their subsequent transitions to other 
states of health; thus, we made the simplifying Markov 
assumption, which was prudent under the circumstances. 
Given the novelty of both COVID-19 and our analysis, we 
are unable to conjecture how changing this assumption 
to account for patients’ time spent in previous states may 
have influenced our results. 

A weakness in our analysis is the fact that we did not 
allow for a state representing readmission to the hospital 
after discharge. In examining the data, we realized that 
several patients were readmitted multiple times after 
discharge, with 22.6% of the 2,830 readmitted patients 
having multiple readmissions. The heterogeneity in this 
group led us to conclude that classifying all readmitted 
patients in the same group would have potentially resulted 
in ascertainment bias for this health state. We did, how-
ever, allow for the readmitted patients to follow all six 
transition states after readmission to the hospital, where 
about 22% of the readmitted patients eventually died.

Other limitations of the study stemmed from the use of 
EHRs. Specifically, we defined deaths as all-cause mortal-
ity. Data from EHRs do not include information on deaths 
that occur outside of a healthcare facility (e.g., hospital). 
Mortality data are available from state death records. The 
cause of death-specific details in death records, however, 
are only published with multiyear delays, and the coding 
of cause of death is complex and subject to significant 
ascertainment bias. In the setting of infectious diseases, 
such as COVID-19, diverse pathways may lead directly 
to death or exacerbate existing diseases, resulting in 
premature death. Thus, COVID-19–related mortality has 
routinely been identified via EHRs by identifying patients 
with COVID-19–related diagnoses and then identifying 
those patients whose death can be ascertained via all-cause 
death records within a predetermined time frame after the 
diagnosis.130–134 We did not exclude suicides and accidents, 
as both could have been affected by neurological and 

physical effects of COVID-19.5 Nonetheless, some deaths 
may have occurred without the patient having COVID-19. 
For example, among the 62 patients who transitioned 
directly from hospital admission to death, detailed chart 
reviews of approximately 14% of these patients revealed 
that several of them had serious chronic diseases, such as 
stage IV breast cancer or recent coronary events. As we 
were unable to ascertain whether COVID-19 played an 
aggravating role in these deaths, we included all deaths 
in the analysis and did not evaluate the risk of infection 
related to disease or progression. Any discussion of the 
links between infection to subsequent severity would only 
be speculative on our part, precluding our ability to offer 
further discussion. 

 Overloading of the ICU, with resulting degradation of 
care, was a potential concern. To address this, we consulted 
with both hospital administrators and clinicians attending 
to patients with COVID-19. We also queried an internal 
KPSC system that tracked ICU utilization. We determined 
that KPSC did not run out of ventilators or physical space 
for admitting seriously ill patients with COVID-19. An 
overflow facility that could have accepted KPSC patients 
was never used. For some patients, however, inten-
sive-level care was provided outside of the physical ICU.

In accordance with the study design, we excluded 
patients who received care outside the KPSC health 
system; these patients composed about 25% of the total 
number of patients admitted to the hospital (Appendix 
Table D5). Compared with patients who received care at 
a KPSC facility, patients treated outside the KPSC system 
were older, were more likely to be White and less likely 
to be Hispanic, included a higher proportion of smokers, 
and had slightly lower air pollution exposures. We are 
unable to conjecture about how these differences may 
have affected our results, although the composition of 
the study population may limit the generalizability of the 
findings to patients treated within the KPSC health system. 
Nonetheless, the internal validity of the findings would be 
maintained.

Another potential weakness of this study is the use 
of exposure fields for 2016 in relation to outcomes that 
occurred in 2020–2021. The overall pattern of air pollutant 
exposures in Southern California, however, is generally 
consistent over time, given the major meteorological, topo-
graphical, and transportation influences throughout the 
region. Inland areas around San Bernardino and Riverside 
have consistently higher levels of pollution than do areas 
in the west of the region, because of the prevailing west-
erly winds from the Pacific Ocean, temperature inversions 
that form inland and keep the pollution close to ground 
level, and physical blocking from the mountain ranges that 
are present in the north, east, and south of the region.135 
Earlier studies demonstrated that the spatial pattern for 
PM2.5 exposure has been maintained over 10 years.136 Thus, 
in the context of our assessment of chronic exposure to 
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air pollution, it is unlikely that the spatial patterns would 
have changed dramatically over the 4–5 years between the 
estimation of exposures and the assessment of COVID-19 
severity. 

An exception to the likelihood of relatively sustained 
spatial patterns of air pollutants may be the COVID-19 
lockdown period in 2020, when traffic levels were substan-
tially reduced. Recent studies have shown that near-source 
NO2 declined by approximately 20% to 25% during this 
period.114 Near-source traffic pollution estimated during 
normal conditions in 2016 may have overestimated expo-
sures during the lockdown. Although such overestimation 
could possibly affect the accuracy of exposure estimations, 
this relatively short-term event is unlikely to affect the lon-
ger-term chronic exposures that we hypothesized would 
lead to more severe adverse outcomes of COVID-19. The 
1-km scale of our model outputs may have imparted rel-
atively more error in the estimated NO2 exposures, which 
often vary sharply near emission sources, such as major 
roads and highways, potentially attenuating the reported 
effects of NO2. 

Because of the waves of COVID-19 that occurred in the 
region, including one major wave occurring from November 
2020 to January 2021 and a smaller wave in June and July 
2020, we were unable to evaluate the relative contribution 
of acute exposures to air pollution, as these periods had 
fairly similar short-term exposures. Therefore, we cannot 
rule out the possibility that short-term pollutant exposures 
during the lockdown period may also have influenced 
the sequelae of COVID-19. The strong consistency of the 
spatial patterns over time, combined with the short period 
of the lockdown, however, likely mitigated this potential 
source of error in the estimation of exposures.

Despite these limitations, our findings strengthen the 
body of evidence that air pollution contributes to most 
aspects of the sequelae experienced by patients with 
COVID-19. The reported results have several possible 
implications for medical practice, public health policies, 
and individual behavior. First, physicians treating patients 
with COVID-19 could benefit from knowing the likely air 
pollution exposures of these patients, as this information 
may help clinicians specifically target the most efficacious 
treatments to patients at high risk for severe outcomes. 
Second, public health decision-makers would benefit from 
having this information to inform their decisions about 
future controls on air pollution. Third, many areas that 
have experienced or are experiencing severe COVID-19 
outbreaks and the associated demands on the healthcare 
system and increased mortality (e.g., Southern California, 
Northern Italy, India, China) continue to experience air 
pollution levels that exceed both World Health Organiza-
tion guidelines and local air quality regulations. Fourth, if 
the information is properly communicated, people living 
in high-exposure environments could be less hesitant to 
receive the COVID-19 vaccination if they are aware that 

they have an elevated risk of severe COVID-19 outcomes 
because of their exposure to air pollution. In summary, 
reducing air pollution could provide an important means 
of reducing the severity of both COVID-19 and possibly 
other novel viruses that may emerge in the future. Such 
reductions may thus protect vast populations from the 
most severe outcomes of various viruses. 
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CHAPTER 7: ASSOCIATION BETWEEN 
AIR POLLUTION AND POST-ACUTE 

SEQUELAE OF SARS-COV-2 

INTRODUCTION 

Post-acute sequelae of SARS-CoV-2 (PASC, also known 
as long COVID) can be a debilitating illness that occurs 
after SARS-CoV-2 infection.5 It is estimated that PASC has 
affected more than 7.3% of the US population, nearly 18.8 
million people, in the first 3 years after the pandemic.1,2 
Recent studies show that approximately 17.8 million 
people in the United States continue to experience PASC 
symptoms, with higher rates of PASC among women than 
men.1 In the United States, the economic costs of PASC, 
resulting from reduced quality of life, lost earnings, and 
increased medical expenses,  likely exceed $3 trillion in 
the United States.137 

PASC represents a multisystem syndrome that leads 
to an array of outcomes. Although approximately 60% to 
70% of the specific etiologies are still being investigated, 
biologically plausible mechanisms have been identified.138 
Studies using individual-level data have demonstrated 
a relationship between air pollution and both COVID-19 
incidence and severity.139 Many of the same mechanisms 
that influence disease severity in COVID-19 could con-
tribute to PASC, including oxidative stress in the lung, 
inflammation, and suppression of the immune system. 

Three recent studies have reported an association 
between air pollution and risk of PASC.140–142 One such 
study focused on a cohort of young adults in Stockholm, 
Sweden.140 Of the 753 individuals surveyed, 116 (15%) 
displayed symptoms of PASC, which persisted for at least 
2 months after infection. Air pollution exposures were 
estimated with a dispersion model and appeared to be very 
low overall, with a PM2.5 annual mean of 6.39 mg/m3. For 
each incremental increase in PM2.5 concentration that was 
equivalent to the IQR, the authors reported adjusted odds 
ratios (ORs) of 1.28 (95% CI, 1.02–1.60) for long COVID, 
1.65 (95% CI, 1.09–2.50) for dyspnea, and 1.29 (95% CI, 
0.97–1.70) for altered smell or taste. Other modeled pollut-
ant exposures were also associated with elevated risks of 
outcomes related to PASC 

The second study enrolled 500 adults in the Makkah 
region of Saudi Arabia, with a final sample of 410 indi-
viduals included in the analysis.141 Exposures to PM10 and 
PM2.5 were assessed with ground-based monitoring stations 
assigned to subregions of the study area. Levels of air pol-
lutants were very high, with PM2.5 seasonal means ranging 
from 67.0 mg/m3 to 233.5 mg/m3. Of the 410 individuals 
in the study cohort, 140 (34%) reported having at least 
one symptom of long COVID. For each increase in PM2.5 

exposure equivalent to the IQR, the authors reported a 
rate ratio of 1.28 (95% CI, 1.06–1.54), which is remarkably 
similar to the comparable result reported in the Swedish 
study. Exposure to PM10 was also associated with elevated 
risks of a similar magnitude. All study participants had 
received two doses of vaccine, indicating that elevated 
risks of PASC associated with air pollution exposure exist 
even after vaccination. 

A third study utilized an exploratory exposomic 
approach and EHR data from Florida and New York City 
to evaluate nearly 200 risk factors for long COVID.142 The 
study used several publicly available exposure estimates 
assigned to the ZIP code of residence for each patient. 
Investigators reported positive associations between long 
COVID-19 and exposure to air pollutants, including several 
air toxics and speciated particles (e.g., ammonium). The 
relatively coarse resolution of the exposure assignments at 
the ZIP code level, however, could have introduced mea-
surement error that may have biased some results toward 
the null hypothesis. 

These three studies collectively suggest that exposure 
to common air pollutants may increase the risk of PASC 
symptoms; however, two of the studies had relatively 
small sample sizes, and the other study used low-resolu-
tion exposure assignments. Moreover, the Swedish study 
reported remarkably low levels of air pollution, whereas 
the Saudi Arabian study involved extremely high levels 
of pollution. Given the substantial consequences of PASC 
and the apparent inability of vaccines to completely 
prevent PASC symptoms after infection,143 a need exists 
to investigate whether air pollution increases the risk of 
PASC in larger study populations, with well-characterized 
exposures assigned at high resolution to the home address 
of participants. 

In this study, we hypothesized that exposure to air 
pollutants would be associated with elevated risk of PASC 
in a cohort of patients hospitalized with COVID-19 in 
Southern California. Our previous research indicated that 
air pollution exposure increased the risk of death after 
hospitalization in this cohort and that air pollution was 
associated with progression to more severe states of ill-
ness, such as admission to the ICU.139,144 The present study 
extended the analysis of this cohort to investigate the risk 
of developing PASC in relation to air pollution exposure.

KPSC COHORT AND HEALTH DATA

We identified 12,634 patients who were 18 years of 
age or older at the time of their COVID-19 diagnosis or 
positive COVID-19 test; hospitalized with COVID-19 from 
June 1, 2020, to January 31, 2021; and alive at the time of 
discharge. The Delta variant of SARS-CoV-2 was dominant 
during most of this period, and nearly all enrolled patients 
were unvaccinated.144 A COVID-19–related hospitalization 
was defined as a hospitalization occurring within 21 days 
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of a positive COVID-19 test. To 
enable assessment of comor-
bidities, only patients who 
were members of the KPSC 
health system for 12 months 
before and after being diag-
nosed with or testing positive 
for COVID-19 were included 
in the study. A flowchart sum-
marizing the construction of 
the cohort used for analysis is 
presented in Figure 17.

DEFINITION OF PASC

PASC conditions were de-
fined as a set of 45 diagno-
ses described in detail else-
where.43 We collaborated with 
a KPSC hospitalist to create 
clinically meaningful cate-
gories grouping these 45 di-
agnostic codes by organ sys-
tem; these categories included 
pulmonary, cardiac, derma-
tologic, cardiometabolic, en-
docrine, gastroenterological, 
hematological, renal, neuro-
logical, constitutional (e.g., 
fatigue, malaise), and psychi-
atric diseases. We then se-
lected a subgroup of these 
categories, which represent-
ed specific biological sys-
tems that we expected would 
be most affected by air pol-
lution; this subgroup includ-
ed cardiac, cardiometabolic, 
pulmonary, and neurologi-
cal conditions.145–149 We used 
a conservative definition of 
PASC, such that those patients 
presenting with a new disease 
or condition (e.g., atrial fibril-
lation) during their hospital 
stay would not be counted 
as having a PASC condition 
if they were subsequently 
diagnosed with the same 
condition after discharge. 
To avoid identification bias involving pre-existing conditions, patients diagnosed with any of the PASC condi-
tions during the 12 months prior to hospitalization or during hospitalization were excluded from being a candi-
date for that PASC condition in the context of this study. Patients were considered to have a PASC condition in 
the cardiac, cardiometabolic, pulmonary, or neurological categories if they had at least one diagnosis in that cat-
egory during a healthcare encounter within 3 months or 12 months after discharge from their first COVID-19– 
related hospitalization.

Figure 17. Flow chart depicting selection of the study cohort for an analysis of air pollutant 
exposures and risk of long COVID in Southern California.

Cohort:
Positive COVID cases with 1 year continuous KPSC enrollment before index

N = 316,224

COVID Cases
Hospitalized within 21 days of positive test

N = 21,997

Survived through Hospital Discharge

N = 14,154

KPSC Membership discontinued
during 1-year follow-up

N = 688

Final Cohort

N = 12,634

Data from claims

N = 5,520

Died during hospitalization

N = 2,323

KPSC Membership continued 
1 year after Hospital 

Discharge

N = 13,466

Missing AQ exposure/
geocoding data

N = 378
Missing BMI

N = 176
Missing Smoking

N = 21
Missing NDI

N = 1
Missing EVS

N = 256
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For a sensitivity analysis, we further separated the sub-
group of pulmonary diseases into PASC diagnoses related 
to (Group 1) bronchitis, cough, or cold-related symptoms; 
(Group 2) oxygen- and breathing-related illnesses (e.g., 
dyspnea, hypoxemia); or (Group 3) serious respiratory or 
cardiorespiratory disease (e.g., pulmonary edema, intersti-
tial lung disease). Of the 12,634 patients in the analysis 
cohort of this study, 7,753 (61.4%) developed one or more 
PASC conditions within 12 months of hospital discharge.

EXPOSURE MODEL

Exposures to NO2, O3, PM2.5 mass, PM0.1, PM2.5 EC, PM2.5 
nitrate, and  PM2.5 biomass combustion were specified 
using a CTM as described in Appendix E.139,144 The CTM 
predictions were combined with available ground-based 
and satellite measurements, using an RFR model to 
remove bias in predictions. All exposures were assigned 
on the basis of the home address of each study participant 
as 30-day and 365-day averages before their COVID-19–
related hospital admission.

STATISTICAL ANALYSIS

We used conditional logistic regression to evaluate the 
association between air pollution exposure and a PASC 
diagnosis. All models were stratified to control for age, sex, 
and race/ethnicity. We included several confounding vari-
ables a priori, including smoking status, exercise, BMI, and 
poverty as indicated by enrollment in MediCal (a govern-
ment assistance program for persons in poverty). Neighbor-
hood-level confounding variables included a deprivation 
index, proportion of workers aged 16 or older taking public 
transit (another marker of deprivation), temperature, and 
humidity in the month of the initial COVID-19 diagnosis, 
and the NDVI (a measure of green cover locally, extracted 
from the Terra MODIS Vegetation Indices [MOD13Q1.006] 
16-day global dataset with a resolution of 250 m). 

For those pollutants found to be significantly associated 
with PASC outcomes in single-pollutant models, we ran 
deviation from the mean models; these models included 
the annual mean, calculated as the average exposure 1 
year before hospital admission, and the deviation from 
the annual mean for the 30-day exposure used in the main 
analysis. Including both the 365-day average and the devi-
ation terms in the same model allowed us to investigate 
whether associations were likely driven by relatively acute 
exposures 30 days before hospitalization, longer-term 
annual average exposures before admission, or both. We 
also ran the 365-day exposure as a separate model to 
further investigate which exposure window appeared to 
influence the observed associations. 

We conducted sensitivity analyses, including two- and 
three-pollutant models for PM2.5, PM0.1, O3, and NO2. We 

also performed separate analyses for wildfires, but found 
that the majority of COVID-19 hospitalizations in the study 
occurred nearly 90 days after the wildfire activity in 2020. 
The temporal misalignment between the timing of wild-
fire-related exposures and the dates of hospital admission 
likely biased findings toward the null hypothesis or even 
negative associations (Appendix Figure E2). Therefore, 
we conducted sensitivity analyses with the wildfire tracer 
removed from the PM2.5 mass variable to assess whether 
the temporal misalignment had biased the PM2.5 results 
toward either the null hypothesis or negative relationships.

RESULTS

A descriptive summary of the study cohort is presented 
in Table 9. Women were more likely than men to expe-
rience the PASC condition. Patients with higher rates of 
exercise were less likely to experience PASC, compared 
to patients who exercised less. Patients with lower BMIs 
were less likely than those with higher BMIs to experience 
PASC. Otherwise, there were no notable differences in the 
incidence of PASC by demographic characteristics.

The number of patients diagnosed with each PASC 
diagnosis group is displayed in Table 10. For all diagnosis 
groups, the ascertainment of PASC within the 12-month 
follow-up identified a larger proportion of patients than 
did ascertainment within the 3-month follow-up. Pulmo-
nary diagnoses were the most commonly identified PASC 
diagnosis group within both the 3-month and 12-month 
follow-ups, with neurological diagnoses being the next 
most prevalent at both ascertainment points. 

Average pollutant exposures in the 30-day and 365-day 
exposure windows before hospitalization are summarized 
in Table 11. Additionally, the correlations between pollut-
ant exposures of the study participants over the 30 days 
before their hospitalization with COVID-19 are presented 
in Table 12. Exposures to PM2.5 mass and PM2.5 from wild-
fires (PM2.5 biomass combustion) were moderately highly 
correlated, reflecting the substantial influence of very high 
wildfire-related pollutant concentrations on a limited 
number of study participants. The correlation between 
PM2.5 mass and PM2.5 mass not associated with wildfires 
(PM2.5 mass without PM2.5 biomass combustion) better 
represented the exposures experienced by the majority of 
study participants. All other correlations between air pol-
lutant exposures, summarized in Table 12, had r values of 
less than 0.6. Correlations between NO2 and O3 exposures 
were negative, likely reflecting the titration of O3 in zones 
with fresh NOx emissions. 

Appendix Figure E2 shows the time history of wild-
fire-related exposures during the study period. Exposure 
concentrations were highest during the wildfire season, 
beginning in late August 2020 and lasting through early 
November 2020. By coincidence, the surge in COVID-19 
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Table 9. Descriptive Characteristics of the Study Cohort Used to Investigate Associations Between Air Pollution 
Exposures and PASC Outcomes

    PASCs at 12 Months

 
No PASCs PASCs Total

P value(N = 4,881) (N = 7,753) (N = 12,634)

Age at index, mean (SD) 60.9 (17.18) 62.5 (15.58) 61.9 (16.23) <0.000a

Race/ethnicity, n (%) 0.48012

Asian/Pacific Islander 587 (12.0%) 857 (11.1%) 1,444 (11.4%)

Black 439 (9.0%) 678 (8.7%) 1,117 (8.8%)

Hispanic 2,813 (57.6%) 4,561 (58.8%) 7,374 (58.4%)

Other/multiple/unknown 42 (0.9%) 70 (0.9%) 112 (0.9%)

White 1,000 (20.5%) 1,587 (20.5%) 2,587 (20.5%)

Sex, n (%) <0.000b

Female 1,938 (39.7%) 3,654 (47.1%) 5,592 (44.3%)

Male 2,943 (60.3%) 4,099 (52.9%) 7,042 (55.7%)

Smoking, n (%) 0.04282

Ever-smoker 1,616 (33.1%) 2,703 (34.9%) 4,319 (34.2%)

Never-smoker 3,265 (66.9%) 5,050 (65.1%) 8,315 (65.8%)

BMI (kg/m2), mean (SD) 31.8 (7.91) 32.6 (7.74) 32.3 (7.81) <0.0001a

Medicaid, n (%) 0.00132

No 4,309 (88.3%) 6,692 (86.3%) 11,001 (87.1%)

Yes 572 (11.7%) 1,061 (13.7%) 1,633 (12.9%)

Exercise Vital Sign_ Mean (SD) 68.1 (103.97) 61.2 (95.11) 63.9 (98.68) 0.00741

NDI, Mean (SD) 0.6 (1.04) 0.5 (1.01) 0.6 (1.02) 0.44381

aKruskal-Wallis P value.
bChi-square P value.

hospitalizations occurred in midsummer and early winter, 
temporally opposite the peak of the wildfire cycle. 

SINGLE-POLLUTANT MODELS AND SENSITIVITY 
ANALYSES

All significant associations between 30-day single- 
pollutant exposures and the PASC outcomes ascertained 
within 3 months and 12 months are summarized in Table 
13. For each exposure increment equivalent to the IQR, 
exposure to PM0.1 was significantly associated with several 
PASC outcomes at 3 months, including cardiac outcomes 
(OR, 1.115; 95% CI, 1.006–1.235), cardiometabolic out-
comes (OR, 1.130; 95% CI, 1.038–1.230), and pulmonary 
outcomes (OR, 1.062; 95% CI, 1.009–1.118). O3 exposure 
was associated with pulmonary outcomes at 3 months (OR, 
1.097; 95% CI, 1.019–1.180), and PM2.5 nitrate exposure 
was associated with cardiometabolic outcomes at 3 months 
(OR, 1.181; 95% CI, 1.013–1.377). Exposures to NO2 and 

PM2.5 EC were not significantly associated with any PASC 
outcome, although several risk estimates for each pollutant 
were elevated. Exposure to  PM2.5 mass (OR, 0.935; 95% CI, 
0.876–0.998) was negatively associated with pulmonary 
outcomes at 3 months. Similarly, exposure to PM2.5 OC, 
a major component of wildfire smoke, had a borderline 
significant negative association with pulmonary outcomes 
(OR, 0.959; 95% CI, 0.914–1.006) at 3 months, with a nearly 
identical result for the corresponding 12-month outcome. 

We found fewer significant associations with the 
12-month PASC outcomes compared to the PASC outcomes 
at 3 months. In many cases, the directions of the effects 
at 3 months and  12 months were consistent (Table 13 
and Figure 18). For PM0.1 exposure, the associations with 
PASC outcomes that were significant at 3 months were not 
statistically significant and of much smaller magnitude at 
12 months, with point estimates being at least 50% less 
than those at 3 months. By contrast, associations between 
O3 exposure and pulmonary outcomes and associations 
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Table 10. PASC Diagnosis Groups

Diagnosis Group  Diagnoses 
Incidence at 

3 Months
Incidence at 
12 Months

Cardiac  Arrhythmias, myocarditis/pericarditis, stress cardiomyop-
athy 

524 (4.3%) 778 (6.5%)

Cardiometabolic Diabetes, renal disease, arrhythmias 757 (6.4%) 1,203 (10.4%)

Pulmonary  Bronchitis, chest/throat, cough, dyspnea, hypoxemia, ILD, 
PE/DVT, pulmonary edema 

2,859 (23.1%) 4,130 (34.0%)

Neurologic Ataxia/trouble walking, autonomic dysfunction, delirium 
or encephalopathy, dementia, encephalitis, headache, myo-
neural disorders, ophthalmologic conditions following 
stroke, Parkinsonism and other extrapyramidal syndromes, 
peripheral nerve disorders, seizures, stroke, stroke (intra-
cranial hemorrhage), stroke (ischemic), vertigo

1,550 (12.6%) 2,817 (23.2%)

Pulmonary (group 
1 only)

Bronchitis, chest/throat, cough 1,213 (10.3%) 2,197 (19.1%)

Pulmonary (group 
2 only)

Dyspnea, hypoxemia 1,821 (15.3%) 2,497 (21.5%)

Pulmonary (group 
3 only)

ILD, PE/DVT, pulmonary edema 406 (3.4%) 626 (5.4%)

DVT = deep vein thrombosis; ILD = interstitial lung disease; PE = pulmonary embolism.

Table 11. Average Pollutant Exposures 30 Days and 365 Days Prior to COVID-19–Related Hospitalization

30 Days 365 Days

Characteristic Median (IQR) Mean (SD) Range Median (IQR) Mean (SD) Range

Temperature (°C) 15.1 (13.84,16.23) 15.22 (1.52) 12.84, 20.14 NA

Relative humidity (%) 12.36 (11.53, 14.59) 13.00 (1.85) 9.74, 19.97

NDVI 164 (149, 178) 163 (24) 73, 212

NO2 (ppb) 14 (9, 21) 15 (7) 1, 41 13.4 (9.4, 16.9) 13.2 (5.0) 1.0, 31.2

O3 (ppb) 48 (43, 56) 52 (12) 33, 108 57 (52, 63) 58 (7) 36, 85

PM0.1(μg/m3) 0.83 (0.66, 1.01) 0.87 (0.34) 0.14, 4.30 0.99 (0.85, 1.08) 0.96 (0.17) 0.18, 4.00

PM2.5 elemental carbon 
(μg/m3)

0.59 (0.40, 0.82) 0.62 (0.28) 0.02, 3.87 0.58 (0.43, 0.68) 0.56 (0.18) 0.06, 1.35

PM2.5 mass (μg/m3) 12.9 (10.2, 15.6) 13.1 (4.6) 2.0, 94.0 13.14 (11.56, 14.35) 12.85 (2.17) 4.14, 28.58

PM2.5 nitrate (μg/m3) 1.91 (0.89, 3.10) 2.07 (1.31) 0.00, 9.42 1.63 (1.26, 1.89) 1.57 (0.44) 0.14, 5.15

PM2.5 organic compounds 
(μg/m3)

2.13 (1.39, 2.89) 2.37 (1.60) 0.08, 37.25 2.53 (1.99, 2.91) 2.48 (0.70) 0.23, 8.86

PM2.5 biomass combustion 
(μg/m3)

0.39 (0.12, 0.83) 1.07 (2.58) 0.01, 81.21 1.71 (1.14, 1.91) 1.60 (0.84) 0.05, 15.85

LUR NO2 (ppb) 17.0 (12.6, 21.7) 17.2 (6.1) 0.0, 42.4 14.6 (10.9, 17.2) 14.3 (4.1) 0.0, 37.5

LUR PM2.5 (μg/m3) 10.28 (8.90, 11.74) 10.53 (2.74) 0.00, 25.45 10.08 (9.01, 11.11) 10.02 (1.82) 0.00, 17.87

PM2.5 without biomass 
combustion (μg/m3)

12.2 (9.6, 14.6) 12.0 (3.6) 1.9, 25.7 11.68 (10.29, 12.64) 11.25 (1.83) 3.27, 19.81

NA = not available.
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Table 12. Pearson Correlations Between Pollutant Exposures for Study Participants 30 Days Before COVID-19–Related 
Hospitalization.

NO2 O3

Pm2.5
Mass

Pm2.5 
Biomass 

Combustion

PM2.5 
(without 
biomass 

combustion) PM0.1

NO2 
(LUR)

NO2 1.00 −0.53 0.33 −0.07 0.47 0.06 0.79

O3 −0.53 1.00 0.13 0.29 −0.05 0.49 −0.62

PM2.5 mass 0.33 0.13 1.00 0.62 0.83 0.42 0.27

PM2.5 biomass combustion −0.07 0.29 0.62 1.00 0.08 0.03 −0.05

PM2.5 (without biomass combustion) 0.47 −0.05 0.83 0.08 1.00 0.52 0.38

PM0.1 0.06 0.49 0.42 0.03 0.52 1.00 −0.16

NO2 (LUR) 0.79 −0.62 0.27 −0.05 0.38 −0.16 1.00

Table 13. Significant Associations Between Air Pollutant Exposures and PASC Diagnosis Groups at 3 Months and 12 
Months After Hospital Discharge: Results of Single-Pollutant Models 

PASC Group Pollutant Outcome Time (Months) Estimate (95% CI)

Cardiac PM0.1 3 1.115a (1.006, 1.235)

Cardiac PM2.5 nitrate 12 1.204 a (1.032, 1.405)

Cardiac PM2.5 biomass combustion 3 0.956 a (0.915, 0.999)

Cardiometabolic/ diabetes PM2.5 nitrate 3 1.181a (1.013, 1.377)

Cardiometabolic/ diabetes PM0.1 3 1.130b (1.038, 1.230)

Cardiometabolic/ diabetes PM2.5 nitrate 12 1.160 a (1.023, 1.314)

Pulmonary PM0.1 3 1.062a (1.009, 1.118)

Pulmonary O3 3 1.097a (1.019, 1.180)

Pulmonary PM2.5 3 0.935a (0.876, 0.998)

Pulmonary O3 12 1.082a (1.012, 1.156)

Pulmonary PM2.5 (without biomass combustion) 12 0.926a (0.871, 0.985)

Pulmonary PM2.5 mass 12 0.924b (0.872, 0.980)

aP ≤ 0.05.
bP ≤ 0.01.

between PM2.5 nitrate exposure and cardiometabolic out-
comes were similarly elevated at 3 months and 12 months. 
Exposure to PM2.5 mass was negatively associated with 
pulmonary outcomes in both analysis windows. Negative 
effects of wildfire-related exposures on cardiac outcomes 
became nonsignificant in the 12-month models, possibly 
reflecting even more severe temporal misalignment 
between COVID-19 incidence and the wildfires. Several 
other outcomes at 12 months were significantly associated 
with pollutant exposures, including the relationship 
between PM2.5 nitrate exposure and cardiac outcomes (OR, 
1.204; 95% CI, 1.032–1.405).

We further investigated the negative effect of PM2.5 mass 
exposure on pulmonary outcomes in sensitivity analyses. 
Specifically, we removed the wildfire component of PM2.5 
mass and controlled for co-pollutants (Table 14). In all 
instances, the negative effects of PM2.5 mass exposure 
became nonsignificant in the 3-month analysis. Removing 
the temporally misaligned wildfire component of PM2.5 
mass did not eliminate the negative associations, but the 
results were no longer statistically significant. Controlling 
for O3 further reduced the effect sizes of PM2.5 mass and 
rendered them nonsignificant. 
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We investigated different exposure models for findings 
that were statistically significant in single-pollutant mod-
els. Specifically, we investigated whether the 30-day expo-
sure, the 365-day exposure, or the deviation of the 30-day 
mean from the 365-day mean was driving the observed 
associations (Table 15). All ORs resulting from these alter-
native exposure models were positive, suggesting that both 
the 30-day and 365-day exposures may have influenced 
the development of PASC symptoms. 

We also ran analyses using the 365-day mean in sin-
gle-pollutant models. These models using the 365-day 
means generally demonstrated pollutant exposure effects, 
some of which were significantly elevated. Most of the 
effects, however, were smaller than those seen in the 
models using the 30-day mean, except for the effect of O3 

exposure on pulmonary outcomes at 12 months, which 
was slightly larger.

We extracted the Akaike information criterion (AIC) 
for all models (Appendix Table E6). In six out of eight 
models, the 30-day exposure window had the lowest AIC. 

In two models, the AIC was lower for the 365-day expo-
sure window (i.e., the effect of PM2.5 nitrate exposure on 
cardiometabolic outcomes at 3 months and the effect of O3 

exposure on pulmonary outcomes at 12 months). We used 
the log likelihood ratio test to separately compare the devi-
ation models with two terms to the 356-day mean models, 
which demonstrated that there was no improvement in the 
model fit. Thus, the deviation models yielded inconclu-
sive results, as including both terms simultaneously did 
not show improvement over the use of the single 365-day 
exposure window.

We replicated all results in Appendix Table E4 with 
a sandwich estimator, which provided a robust variance 
to account for the nonindependence of patients within 
the same census tracts. The results of this analysis are 
presented in Appendix Table E7. Most ORs were either 
unchanged or slightly elevated. The overall conclusions 
remained constant, with the same pollutant exposures 
demonstrating statistically significant effects quantified by 
elevated ORs of similar magnitude.

Figure 18. Odds ratios for pollutant exposures significantly associated with specific groups of PASC outcomes at 3 months and 12 
months among patients hospitalized for COVID-19 in Southern California. Data are based on results from single-pollutant models.
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Table 14. PM2.5 Sensitivity Analyses for Pulmonary PASC Outcomes at 3 Months and 12 Months After Hospital Discharge

Estimate (95% CI)

Pollutant 3-Month PASC Outcome 12-Month PASC Outcome

PM2.5 (CTM) 0.935a  (0.876–0.998) 0.924b  (0.872–0.980) 

PM2.5 minus wildfire (CTM) 0.951 (0.888–1.018) 0.926a  (0.871–0.985)

PM2.5 (CTM), controlled for O3 0.958  (0.894–1.026) 0.940  (0.883–1.001)

PM2.5 minus wildfire (CTM), controlled for O3 0.982  (0.911–1.059) 0.946  (0.884–1.012)

aP ≤ 0.05.
bP ≤ 0.01.

Table 15. Results Comparing Various Exposure Time Windows with Different Model Specifications

PASC Group Pollutant

Outcome 
Time 

(Months)

Estimate (95% 
CI) 

30-Day
Estimate (95%CI) 

365-Day

Estimate  
(95% CI) 

30-Day Deviation 
from 365-Day

Estimate 
(95% CI)

365-Day from 
Deviation Model

Cardiac PM0.1 3 1.115a (1.006, 
1.235)

1.078 (0.954, 
1.218)

1.110 (0.985, 
1.252)

1.095 (0.971, 
1.236)

Cardiac PM2.5 nitrate 12 1.204a  (1.032, 
1.405)

1.115 (0.997, 
1.246)

1.114 (0.959, 
1.293)

1.078 (0.955, 
1.216)

Cardiometabolic/ diabetes PM2.5 nitrate 3 1.181a (1.013, 
1.377)

1.147b (1.026, 
1.283)

1.046 (0.903, 
1.213)

1.131a (1.001, 
1.277)

Cardiometabolic/ diabetes PM0.1 3 1.130b (1.038, 
1.230)

1.046 (0.944, 
1.158)

1.146b (1.038, 
1.266)

1.069 (0.966, 
1.183)

Cardiometabolic/ diabetes PM2.5 nitrate 12 1.160a (1.023, 
1.314)

1.103a (1.008, 
1.207)

1.073 (0.952, 
1.210)

1.079 (0.979, 
1.190)

Pulmonary PM0.1 3 1.062a (1.009, 
1.118)

1.040 (0.980, 
1.104)

1.061a (1.000, 
1.125)

1.052 (0.990, 
1.117)

Pulmonary O3 3 1.097a (1.019, 
1.180)

1.082a (1.012, 
1.156)

1.101 (0.958, 
1.264)

1.106b (1.022, 
1.196)

Pulmonary O3 12 1.082a (1.012, 
1.156)

1.111a (1.040, 
1.186)

1.026 (0.905, 
1.164)

1.113b (1.037, 
1.195)

aP ≤ 0.05.
bP ≤ 0.01.

MULTIPOLLUTANT MODELS

We ran multipollutant models for PM0.1, PM2.5, O3, and 
NO2 (30-day exposures) for any outcome that demonstrated 
a significant association in the single-pollutant models. 
The multipollutant models were constructed as either 
two- or three-pollutant models, with the three-pollutant 
models including either PM2.5 mass or PM0.1. The results of 
the multipollutant models are depicted in Figures 19 and 
20. In the multipollutant models, all effects of exposures 
to PM2.5 and PM2.5 minus wildfire smoke on cardiac PASC 
outcomes became nonsignificant. We observed positive 
associations between NO2 and cardiac outcomes in two- 

and three-pollutant models; the ORs from three-pollutant 
models were similar for the 12-month outcome (OR, 1.179; 
95% CI, 0.987–1.407) and the 3-month outcome. 

For the pulmonary PASC outcomes, several pollutant 
exposures continued to display significant ORs, especially 
in the three-pollutant models for both the 3-month and 
12-month follow-up periods. In both models (i.e., 3 and 
12 months), NO2 and O3 exposures had positive and sta-
tistically significant or borderline effects, whereas PM2.5 
exposure continued to be negatively associated with the 
pulmonary outcomes, although in two-pollutant models 
with O3, the effects were confounded.
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Figure 19. Odds ratios for 30-day exposure effects on cardiac (A), cardiometabolic (B), and pulmonary (C) PASC outcomes at 3 
months among patients hospitalized for COVID-19 in Southern California. Data are based on results from multipollutant models.
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In multipollutant models that included PM0.1 rather than 
PM2.5 as a potential confounding predictor of pulmonary 
outcomes, the effect of O3 exposure remained significantly 
elevated in every model, with effect sizes generally similar 
to those in single-pollutant models. In three-pollutant 
models, the effects of NO2 and PM0.1 exposures were dimin-
ished by confounding; whereas, in two-pollutant models, 
the effect of NO2 exposure was affected by confounding, 
but the effect of PM0.1 exposure remained elevated and, in 
some instances, significantly so. 

Multipollutant models of the effect of PM0.1 exposure 
on cardiac outcomes at 3 months were largely unaffected 
by confounding due to NO2 alone, O3 alone, or NO2 and 
O3 together. The smaller associations identified in the 
single-pollutant models for 12-month outcomes persisted 
in the multipollutant models.

For the cardiometabolic outcomes, the effects of NO2 
exposure were slightly amplified when other pollutants 
were included in the model. Specifically, the effects of 
NO2 on the 12-month outcome became slightly larger 

in models including either PM2.5 alone or PM2.5 and O3 
together; the point estimates for the 3-month outcome were 
similar. None of the effects of PM2.5 exposure approached 
statistical significance for either the 3-month or 12-month 
cardiometabolic outcomes. The effects of PM0.1 exposure 
on the 3-month cardiometabolic outcomes remained 
significant when either NO2, O3, or both were included in 
the model. As with the single-pollutant models, the effects 
of PM0.1 exposure were smaller in size and generally non-
significant for the 12-month cardiometabolic outcomes. 
The effect of O3 exposure on cardiometabolic outcomes 
was not statistically significant in single-pollutant models 
and remained nonsignificant when other pollutants were 
included in the model. 

DISCUSSION AND CONCLUSION

Our findings from the single- and multipollutant 
models examining associations between air pollution 
exposures and PASC are summarized in Figures 18–20. 

Figure 20. Odds ratios for 30-day exposure effects on cardiac (A), cardiometabolic (B), and pulmonary (C) PASC outcomes at 12 
months among patients hospitalized for COVID-19 in Southern California. Data are based on results from multipollutant models.
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Many of the potential risks associated with pollutant 
exposures appeared elevated but did not reach statistical 
significance, likely indicating a lack of statistical power to 
detect effects on several of the outcomes. We also observed 
some negative associations between PASC and exposures 
to PM2.5 wildfire tracer, PM2.5 mass, and, in some models, 
PM2.5 OC and PM2.5 EC, both of which are associated with 
wildfire events. As described above, when we further 
controlled for co-pollutants, removed the wildfire tracer 
from PM2.5 mass, or did some combination of both, all 
negative associations became statistically nonsignificant. 
(A summary of the sensitivity analyses of the effects of 
PM2.5 biomass combustion is presented in Table 14.) Given 
the results of these analyses, we concluded that these 
unexpected protective effects resulted from the temporal 
misalignment of wildfire smoke exposures and the surge 
in COVID-19 cases that occurred in late 2020.

The strongest negative associations with PM2.5 expo-
sures were observed for the groups of PASC pulmonary 
outcomes that included the most serious conditions and 
diseases (Group 3; data not shown). This finding suggests 
a survival effect, whereby patients with severe pulmonary 
disease were more likely to die before they could be ascer-
tained in the study as having a PASC outcome. Patients 
who died before PASC ascertainment were excluded from 
the analysis, which may have biased the effect estimates 
downward for the more serious pulmonary outcomes. In 
our earlier studies, PM2.5 exposure was the strongest pre-
dictor of mortality.70,123 This finding suggests that deaths 
that occurred before PASC ascertainment may likely have 
been due to conditions included in the pulmonary group 
of PASC outcomes, which would have spuriously contrib-
uted to the negative findings. 

Among the positive findings, O3 exposure was strongly 
and robustly associated with pulmonary outcomes, sug-
gesting that patients living in areas with higher levels of 
O3 either 30 days or 365 days before their hospitalization 
were more likely to experience PASC, compared to those 
living in areas with less exposure to O3. These associations 
were present at both the 3-month and 12-month analysis 
windows after hospital discharge. Including co-pollutants 
in the models revealed minimal effects of confounding 
in the association between O3 exposure and pulmonary 
outcomes. 

Exposure to PM2.5 nitrate was strongly associated with 
cardiac and cardiometabolic PASC outcomes. These asso-
ciations were significant at either the 3-month or 12-month 
follow-up times for different outcomes; the magnitudes of 
effects were similar for both follow-up times, suggesting 
stable results that may have reached statistical significance 
with a larger sample size. For cardiometabolic outcomes at 
3 months and 12 months, the 365-day exposure window 
for PM2.5 nitrate also displayed significant effects, suggest-
ing that both the acute and longer-term exposures may 
have contributed to this association. 

At the 3-month follow-up, PM0.1 exposure was sig-
nificantly associated with cardiac, cardiometabolic, 
and pulmonary outcomes; however, these effects, while 
remaining positive, became considerably smaller and 
did not reach statistical significance at the 12-month fol-
low-up. It is unclear why these effects became smaller and 
nonsignificant in the ensuing 9 months after completion 
of the 3-month follow-up. It is possible, however, that 
the relatively short exposure window of 30 days before 
hospitalization could have failed to capture important 
aspects of exposure that occurred after discharge from 
the hospital; with the longer follow-up, this deficiency 
in fully assessing exposure could have been exacerbated. 
Generally, we would expect that the closer temporality 
between the 30-day exposure window and the 3-month 
follow-up would result in more accurate exposure esti-
mates, compared to the 12-month follow-up, at which 
time the exposures could have occurred up to 1 year 
before the ascertainment of PASC conditions. This could 
have heightened exposure measurement error, which may 
have biased the 12-month follow-up analyses toward the 
null hypothesis. Future research could usefully investigate 
other exposure windows.

Taken together, our results suggest that exposure to air 
pollution — particularly O3, PM2.5 nitrate, and PM0.1 — 
could increase patients’ risk of experiencing PASC. These 
results broadly concur with the findings of prior studies 
conducted in Sweden, Saudi Arabia, and the United 
States,142 which reported positive associations between 
exposure to air pollutants and the development of PASC 
outcomes.140,141 The present study, however, strengthens 
the evidence base, given the larger cohort size sampled 
from a region with pollutant exposures that are somewhat 
higher than the US average but probably more representa-
tive of general population exposures than those in either 
the Swedish study, with very low exposure levels, or 
the Saudi Arabian study, with extremely high levels of 
exposure. Additionally, our study used high-resolution 
exposure modeling combined with the home address of 
patients, improving the exposure assessments compared 
to those in the prior US study that used ZIP codes for 
residential addresses. 

Approximately 17.8 million people in the United States 
continue to experience long COVID. Thus, the findings 
presented here suggest that mitigating air pollution could 
be a means of reducing the incidence of PASC. Although 
vaccines and other preventive measures, such as social 
distancing, remain the primary line of defense against 
SARS-CoV-2, variable uptake of COVID-19 vaccines and 
difficulty in maintaining the social measures over long 
periods underscore the importance of preventive measures 
that target ubiquitous and modifiable exposures, such as 
air pollution, and require no individual decision-making 
or actions. Moreover, PASC can occur in vaccinated 
patients,141 which further highlights the importance of 
pursuing all available risk-reduction strategies. 
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CHAPTER 8: SYNTHESIS, 
INTERPRETATION, AND IMPLICATIONS 

OF FINDINGS

In this study, we investigated relationships between 
ambient air pollution and aspects of COVID-19 incidence, 
severity, and mortality, as well as conditions consis-
tent with long COVID (also known as PASC). We used 
advanced CTMs and LUR models to estimate pollutant 
exposures. Our ability to assess exposure to numerous air 
pollutants, particle species, and other pollutant sources, 
such as wildfire smoke, represents a primary strength of 
the study. We used administrative public health surveil-
lance data on COVID-19 and several distinct cohorts of 
hospitalized patients with COVID-19, each drawn from 
the patient membership of the KPSC health system, to 
evaluate different hypotheses. Broadly, we demonstrated 
that exposures to several common air pollutants are associ-
ated with COVID-19 incidence and mortality, progression 
from hospitalization to more severe health states, and long 
COVID conditions, or PASC. Although the public health 
emergency surrounding COVID-19 has passed, the disease 
continues to pose substantial risks to individual and pop-
ulation health. As of December 2023, COVID-19 continued 
to result in nearly 35,000 persons being hospitalized and 
900–1,400 deaths per week in the United States.150

Approximately 10% to 30% of individuals with COVID-
19 will experience some form of long COVID, which can 
have lifelong and debilitating effects. Thus, the importance 
of addressing modifiable environmental risk factors, such 
as air pollution, cannot be underestimated. As noted in a 
recent Lancet editorial, the societal investment in gaining 
an understanding of both the pathogenesis of long COVID 
and potential measures to prevent its development has 
lagged well behind the actual levels needed to effectively 
treat and mitigate the clinical features and effects of this 
complex disease.6

The results of our study broadly support the hypotheses 
that air pollution increases an individual’s risk of COVID-
19, although our study investigating this outcome relied 
solely on administrative data from the state of California. 
Nonetheless, that study suggested that several air pollut-
ants contributed to increased incidence of COVID-19, a 
finding that is consistent with earlier ecological studies 
from Los Angeles42 and the broader literature. Our study, 
however, could not control for many potentially important 
determinants of COVID-19 transmission, such as occupa-
tional exposure or residential crowding; this limitation 
must be taken into account in considering our results 
regarding associations with COVID-19 incidence. 

We investigated COVID-19 mortality by using adminis-
trative data as well as individual patient data. Both analyses 

suggested that mortality due to COVID-19 is significantly 
associated with common air pollution exposures. Our anal-
yses based on individual patient data indicated that mete-
orological factors, specifically temperature and humidity, 
also influence COVID-19 mortality. These meteorological 
variables also modified the relationship between air pollu-
tion and mortality, with cooler and less humid conditions 
(typical of winter weather in the study area) accentuating 
the effects of air pollution on COVID-19 mortality.

We extended our patient-level analyses with the use of 
multistate models to investigate the progression of COVID-
19 in hospitalized patients. These results demonstrated 
that exposure to air pollution was significantly associated 
with progression toward more extreme states of illness, 
such as admission to the ICU and, ultimately, death. The 
multistate models also showed that O3 exposure was 
significantly related to death after recovery from COVID-
19. These results corroborate our previous findings on 
mortality but also highlight the concept that air pollution 
may also affect both the severity of COVID-19 and the 
likelihood of recovery among patients discharged after 
hospitalization for COVID-19. 

Finally, our in-depth investigation of air pollution and 
long COVID revealed significant associations between 
PASC conditions and several air pollutants, namely O3, 
PM0.1, and PM2.5 nitrate. We also identified unexpected 
protective effects associated with exposure to PM2.5 and 
various species related to wildfires. After conducting 
extensive sensitivity analyses, however, we concluded 
that these seemingly protective effects likely resulted 
from temporal misalignment between wildfire smoke and 
COVID-19 incidence as well as a lack of control for other 
co-pollutants, such as O3, which was also a significant 
positive predictor of pulmonary PASC outcomes. 

Our findings on long COVID are perhaps the most 
novel and important findings of our investigations, given 
that long COVID continues to affect nearly 18 million 
people in the United States, many who experience severe 
debilitation and loss of work,151 and can even occur in 
vaccinated individuals, although vaccination reduces 
the risk of developing PASC conditions.141 All of these 
factors point to the ongoing, sizeable impact of COVID-19 
on public health, which may not be completely mitigated 
with pharmaceutical and nonpharmaceutical control 
measures. Additionally, research suggests that symptoms 
of long COVID partly depend on the severity of the initial 
infection and the number of times a person is infected, 
both of which appear to be influenced by exposure to air 
pollutants.152 

STRENGTHS AND LIMITATIONS

We encountered several challenges in conducting the 
data analyses for this study. First, the various exclusions 



 66

Ambient Air Pollution and COVID-19 in California

required for the mortality, multistate, and long COVID 
analyses necessitated the use of different analysis cohorts 
for each substudy. Consequently, direct comparisons of 
results across substudies are somewhat problematic, as we 
cannot determine whether observed differences resulted 
from underlying differences in the composition of the 
cohorts. Nevertheless, we did note corroborative findings 
among the analyses overall. Second, the majority of the 
study cohort was composed of patients diagnosed with 
COVID-19 during a large surge in cases that occurred from 
November 2020 to January 2021. This characteristic of the 
study population limited our ability to thoroughly investi-
gate the influence of highly temporally variable exposures, 
such as wildfire smoke or pollution reductions resulting 
from prior COVID-19 lockdown periods. The temporal 
distribution of the study population likely also introduced 
a negative bias in some of our findings, given that only 
a small number of COVID-19 hospitalizations occurred 
during the period when exposure to wildfire smoke was 
high. Third, with regard to the transmission question, we 
did not use formal infectious disease models that rely on 
factors like social interaction data; instead, our findings 
based on administrative data for the study cohort were 
associative and subject to possible confounding.

Despite these challenges, the investigations described 
in this report had many strengths. First, we estimated 
exposures by using two advanced exposure models, and 
we investigated several different pollutant exposures that 
had high temporal and spatial resolution. Second, for 
most of the studies, we used well-characterized clinical 
cohorts from the membership of the KPSC health system, 
which is largely representative of the overall population 
of Southern California. As previously noted, however, the 
analytical requirements of each substudy necessitated the 
use of different subsets of the overall cohort. For the inves-
tigation regarding long COVID, we worked closely with 
clinicians and epidemiologists from the KPSC system to 
define outcomes likely indicative of long COVID, recogniz-
ing that the science underlying these definitions continues 
to evolve. The long COVID-19–related outcomes that we 
investigated have prior evidence of being associated with 
air pollution; given our reliance on prior evidence, how-
ever, we may have missed some relevant novel findings. 

On balance, our research demonstrates that exposure 
to air pollution likely contributes to heightened risks of 
developing COVID-19, experiencing more severe health 
states during hospitalization for COVID-19, dying from 
COVID-19, and experiencing long COVID. Recent studies 
have shown that the risk of long COVID increases each 
time an individual is infected with SARS-CoV-2, such 
that those who have had three SARS-CoV-2 infections 
are 2.6 times more likely to experience long COVID than 
those who have had only one such infection.9 Thus, if air 
pollution increases the risk of SARS-CoV-2 infection, as 
our findings suggest, this presents another pathway from 
air pollution exposure to long COVID conditions. Thus, 

both preventing SARS-CoV-2 infection and reducing the 
severity of COVID-19 disease could reduce risks for devel-
oping long COVID. Furthermore and more specifically, 
reduced air pollution might also lead to decreased risks of 
long COVID, via biological pathways such as reduced oxi-
dative stress, systemic inflammation, and immunological 
dysregulation. Future research is needed to examine these 
common biological mechanisms underlying the health 
effects of air pollution on long COVID, investigate these 
relationships in other populations with different pollutant 
exposure profiles, and examine wider exposure windows 
that would facilitate the assessment of longer-term and/or 
ongoing air pollution exposures. 

CONFOUNDING

In observational epidemiology, residual confounding 
due to missing or mis-specified variables that can simul-
taneously influence both the exposure and outcome is a 
chief concern regarding the validity of the results of sta-
tistical analyses. Our approach to addressing confounding 
evolved as parts of our work underwent independent peer 
review by academic journals and as knowledge about 
potential risk factors for COVID-19 emerged. During peer 
review of the multistate model (Chapter 6), one reviewer 
asked us to include all potential confounders in the model 
a priori. We adopted this suggestion and compared the 
results of the updated model to those of the models chosen 
by the 10% selection rule that we had used in Chapter 5 
and in the initial analyses of EHR data in Chapter 6. In 
the multistate analysis, the inclusion of additional con-
founders had minimal effect on the estimated associations 
between air pollutant exposures and the severity of health 
states experienced by hospitalized patients with COVID-
19. In the multistate analyses and all subsequent analyses 
of PASC outcomes, we then included all confounders a 
priori to avoid similar criticisms in future work. 

We used several strategies to address spatial con-
founding. First, for the models based on EHR data from 
the HPSC health system, we used well-specified individ-
ual-level data, which would presumably have reduced 
residual spatial confounding. In examining the various 
risks investigated in this study for positive or negative 
confounding, we were unable to draw firm conclusions. 
In some instances, a model including the confounders 
demonstrated larger effects than did a minimally adjusted 
model; in other instances, however, models including 
confounders revealed negative confounding that reduced 
the magnitude of effect of the pollution exposure. We 
were unable to draw generalized conclusions from this 
comparison of the fully versus minimally adjusted models, 
apart from noting that several confounders substantially 
affected the final associations reported as our main results; 
this observation suggests that the inclusion of confounders 
likely reduced residual spatial variation.
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Second, we included contextual neighborhood vari-
ables, intended to further reduce residual confounding. 
Several of these variables were selected using our initial 
10% criterion, demonstrating potential confounding that 
was controlled in the models. Based on emerging evidence 
of a potential protective effect of green space on COVID-19 
severity,126 we also included the NDVI as a confounder. 
Additionally, although we did not initially include the 
meteorological variables as confounders in the mortality 
analyses, we decided to test the sensitivity of the results 
by including the temperature and humidity variables 
as confounders, given the evolving knowledge base on 
COVID-19 severity and the potential role of meteorology, 
which can also influence air pollutant concentrations. 
Unlike many of the other confounders that minimally 
influenced the estimated pollution coefficients, inclusion 
of temperature and humidity substantially affected pollut-
ant coefficients, particularly for PM2.5 and O3, with PM2.5 
having larger effects and O3 having smaller effects with the 
meteorological variables in the model. Both meteorolog-
ical variables also demonstrated significant interactions 
with the pollutant effects, revealing potentially important 
multiplicative risks that had not been explored in other 
studies of COVID-19 mortality. In all of our studies using 
the KPSC cohorts, we also used a sandwich estimator to 
account for possible nonindependence in the census tracts 
where patients lived, thereby providing a robust variance 
estimate that accounts for clustering.

Along with the administrative data in Los Angeles County, 
which contained only minimal information on individual 
characteristics, we also included data on variables such as 
smoking and obesity (obtained from PLACES, a Centers for 
Disease Control and Prevention online tool that provides 
access to US health-related data) to compensate for missing 
individual confounders. In this analysis (Chapter 4), which 
involved large sample sizes due to the complete population 
coverage, we formally assessed residual autocorrelation using 
a Global Moran’s I test, which was significant. We then refit 
the models with a Bayesian CAR model that used the nearest 
neighbors for the spatial weight matrix. Results changed only 
slightly for most pollutants when we explicitly accounted 
for spatial autocorrelation in the model specification; for 
PM2.5 nitrate, however, the combination of a CAR model and 
controlling for O3 as a co-pollutant changed the demonstrated 
effect from a negative association to a positive association. 

For the Cox (Chapter 5), multistate (Chapter 6), and 
logistic regression (Chapter 7) analyses, we did not attempt to 
formally evaluate residual spatial variation, as the relatively 
limited sample size was likely too small to support estimation 
of stable spatial random effects that could be discerned from 
background variability. If such analyses had been possible, 
they may have revealed residual spatial confounding. Our 
decision in this setting was informed by prior modeling using 
even larger cohorts,153 with which we attempted to fit random 
effects that could be used to probe (and potentially adjust for) 
residual spatial confounding by including new contextual 

variables or spatially autoregressive error terms. The sample 
size and number of events, although larger than in most exist-
ing studies, limited our ability to formally evaluate residual 
spatial confounding in the same way that we addressed this 
concern in the larger cohort involving administrative data 
from Los Angeles County. We recommend that any future 
studies use larger samples, which would provide sufficient 
power for formal analyses of residual spatial confounding. 

GENERALIZABILITY

As mentioned in several chapters of this report, our results 
are not likely to be generalizable to the entire population of 
the study area. Given that all patients in these studies were 
hospitalized with COVID-19, generalizability is probably 
restricted to hospitalized patients, who would be among 
the more severely ill patients with this disease. In some 
instances, patients who rapidly died outside the hospital 
setting may have been more ill, but we lacked data to address 
this question. Earlier analyses cited in Chapter 5 have shown 
that the population of patients in the KPSC membership 
approximates the characteristics of the general population 
of Southern California. Consequently, the generalizability 
of our findings likely extends to other hospitalized patients 
in Southern California, but we cannot assert generalizability 
beyond this region. 

As this study occurred during a period when the popula-
tion was largely unvaccinated, it is difficult to predict how 
vaccination and natural immunity acquired through infection 
would influence the results or whether the results are gen-
eralizable to current populations. Existing evidence suggests 
that vaccinations reduce the severity of both COVID-19 and 
long COVID, or PASC conditions. To date, only one study 
has investigated whether vaccination minimizes the risk of 
COVID-19 severity.156 That study reported that air pollution 
continued to exacerbate the risks of COVID-19, although 
vaccination appeared to lower the elevated risks associated 
with PM2.5 exposure. Another study from Spain suggested 
that air pollution can affect antibody response to vaccination, 
potentially reducing the efficacy of vaccines.157 This topic 
merits further research, especially if vaccination partly blunts 
the adverse effects of air pollution exposure on COVID-19 
and, conversely, if air pollution reduces vaccine efficacy. 
Given this complex interplay, we cannot predict whether our 
findings would be generalizable to a vaccinated population. 

EFFECTS OF PARTICLE SPECIES AND TRACERS

One of the biggest strengths of this study is the use of the 
CTM, which allowed us to investigate specific chemical spe-
cies of PM2.5 and source tracers, such as wildfires and traffic- 
related air pollution. Some of the tracers and PM2.5 species 
contribute very little to mass concentrations; however, they 
were still highly predictive of all the COVID-19 outcomes that 
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we investigated. These effects may indicate that the specific 
constituents or the mixture of pollutants associated with 
them are more toxic. Alternatively, this finding could indicate 
that the potentially more toxic pollutants concentrate in areas 
with more susceptible populations, which would suggest that 
the observed associations could be the combined result of 
heightened toxicity and higher susceptibility, as observed in 
recent studies in Los Angeles.158 In the analyses using EHR 
data, we identified significant associations between COVID-
19 mortality and traffic-related pollution represented by 
either specific tracers for on-road diesel or gasoline exhaust 
or chemical species known to be associated with traffic, such 
as EC and PM0.1 

 Notably, PM2.5 nitrate, which represents a secondary pol-
lutant with more spatially smooth patterns, displayed larger 
effects in the mortality analysis than any of the traffic-related 
species or tracers. 

In the long COVID analysis, we also observed PM2.5 nitrate 
having some of the strongest associations with cardiac and 
cardiometabolic PASC outcomes. Exposure to PM0.1 also dis-
played significant associations with cardiac, cardiometabolic, 
and pulmonary PASC outcomes, although these effects were 
of smaller magnitude than those with PM2.5 nitrate. Thus, 
the results of the speciated analysis suggest that pollutants 
showing fine-scale variations as well as those with large-
area variations are associated with long COVID outcomes, 
although the regional-scale constituent is related to the larger 
effect sizes when evaluated across the IQR exposure incre-
ment. As previously stated, the PM mass attributable to these 
species or markers, particularly the traffic-related markers, is 
quite small. The results of our analyses do not clarify whether 
these effects are due to heightened toxicity per unit mass, the 
mixtures associated with these PM species or tracers, or ele-
vated susceptibility among populations in areas with higher 
concentrations of these species or tracers. Notably, however, 
research in other health outcomes has demonstrated similar 
associations with pollutants that account for small propor-
tions of the total mass, such as the relationship between 
barium exposure and birth outcomes, as recently reported 
from studies in Los Angeles.159 As the science of pollutant 
exposures advances toward more refined analyses of species 
and tracers, there is a need for further research into how 
and why exposures assessed as having relatively small mass 
concentrations appear to be associated with several quite 
different COVID-19–related health outcomes. 

METEOROLOGY VERSUS SEASONALITY

The observed confounding and effect modification 
due to temperature and humidity in the mortality study 
(Chapter 5) provided novel contributions to the literature 
on air pollution and COVID-19 severity. Although we 
highlighted the biological plausibility of this finding, 
given the impacts of cooler and drier conditions on muco-
ciliary dysfunction and respiratory barrier impairment, 

it is possible that seasonality more generally affected our 
results. Like other viral respiratory diseases, COVID-19 
has demonstrated increased incidence and mortality in 
the late fall and early winter period, when humidity and 
temperature tend to be lower. Although respiratory viruses 
are more frequently transmitted during the winter months, 
partly due to the heightened probability of transmission 
associated with increased human activity indoors, this pat-
tern does not necessarily result in more severe outcomes of 
infection, which would support the role of meteorological 
factors in exacerbating severity. We investigated whether 
the KPSC health system was overwhelmed by cases during 
the fall-winter surge that occurred during the period of our 
study and found that at no time was the ICU or ICU-level 
care unavailable to patients, which rules out this factor as 
a confounder of the results pertaining to the meteorologi-
cal variables. Another hypothesis is that individuals have 
worse immune responses during the winter as a result 
of depleted vitamin D levels, which are associated with 
lower sunlight exposure, as discussed in Chapter 6. We 
attempted to obtain vitamin D data on patients in the study 
cohort but found that the EHRs likely provided incomplete 
information on vitamin D deficiency. The lack of these data 
on vitamin D status tempers the meteorology findings, as 
lower vitamin D levels also could have coincided with the 
fall-winter period, leading to increased mortality among 
patients with COVID-19 who may have had reduced 
immune response to the virus in those seasons. 

IMPLICATIONS FOR FUTURE PANDEMICS

As previously discussed, the generalizability of our 
findings to current populations with some immunity due 
to natural infection or vaccination cannot be directly deter-
mined from our findings, because our results were based 
on an unvaccinated population. Nevertheless, future novel 
respiratory viruses with the potential to generate pandem-
ics could emerge, and our findings suggest that reducing 
ambient exposure to air pollution could lead to a lower 
incidence of infection, fewer severe outcomes, and, if 
applicable, reduced development of post-acute symptoms 
and conditions. Although some of the pollutants that were 
significantly associated with COVID-19–related outcomes 
in our studies, such as PM2.5 and O3, are already regulated, 
our findings also point to novel exposures, such as PM0.1 
and PM2.5 nitrate, neither of which is currently regulated. 
Given the wide range of health benefits that can accrue 
from reducing air pollution, such as preventing chronic 
diseases and lowering rates of hospital admissions and 
mortality, the additional possibility of reducing the risks 
of infection and severe outcomes associated with future 
novel viruses further incentivizes efforts to achieve contin-
ued reductions in ambient air pollution.
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DATA AVAILABILITY STATEMENT

The 2020 air pollution exposure fields generated in the 
current project can be accessed at https://doi.org/10.5281/
zenodo.12674134 in comma-separated value files or GIS 
raster files for easy interpretation by other researchers. 
Software is provided to calculate exposures for participant 
locations described by latitude and longitude. The source 
code for the CTM is available from the principal investiga-
tor upon request from qualified investigators; please con-
tact mjkleeman@ucdavis.edu to request this information.

The statistical analysis programs (written in R) used to 
process the data can be accessed at https://doi.org/10.5281/
zenodo.12674134. The patient data used in the analyses are 
subject to privacy restrictions and cannot be distributed 
to researchers outside the Kaiser Permanente Southern 
California health system. 

The CDPH data are available by request and only 
directly from the CDPH. A summary of the data is available 
at https://data.chhs.ca.gov/dataset/covid-19-time-series-met-
rics-by-county-and-state.
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these materials to the methods and findings described in the 
report. A subset of exposure data was provided to ERG; how-
ever, COVID-19 incidence and mortality data were not shared 
due to confidentiality restrictions. ERG was nonetheless able 
to review data-processing code to verify that key calculations 
were implemented as described.

The audit identified opportunities to improve clarity and 
accuracy in portions of the report text. Minor discrepancies 
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findings or conclusions. Because ERG did not have access 
to all the underlying data, auditors were unable to inde-
pendently reproduce all numerical results; however, exposure 
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consistent with the code. Audit findings were documented in 
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Overall, the audit did not identify issues that materially 
affected the study’s results, and the audit team concluded that 
the final report accurately represents the research conducted, 
with primary analyses clearly documented, and the study 
followed valid, documented procedures.
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Dr. Michael Kleeman’s 2-year study, “Ambient Air Pollution and COVID-19 
in California,” began in April 2021. Total expenditures were $495,122. The 
draft Investigators’ Report was received for review in January 2024. A re-
vised report, received in August 2024, was accepted for publication in Sep-
tember 2024. During the review process, the HEI Review Committee and 
the investigators had the opportunity to exchange comments and clarify 
issues in the Investigators’ Report and its Commentary.  Review Committee 
member Michael Jerrett did not partake in the review of the report due to 
a conflict of interest. 

This report has not been reviewed by public or private party institutions, 
including those that support the Health Effects Institute, and may not re-
flect the views of these parties; thus, no endorsements by them should be 
inferred.

HEI

INTRODUCTION 

The COVID-19 pandemic led to unprecedented conditions 
that lent themselves to timely and novel air pollution research 
exploring important policy-related questions. As described in 
the Preface to this report, HEI issued Request for Applications 
20-1B: Air Pollution, COVID-19, and Human Health to solicit 
proposals for research on new and important aspects of the 
intersection between air pollution exposures and COVID-19 
health outcomes. In particular, HEI was interested in studies 
exploring whether people exposed to higher levels of air 
pollution were at greater risk of death from COVID-19 than 
were populations with lower levels of air pollution exposures 
and whether potential associations between air pollution and 
COVID-19 outcomes differed by race, ethnicity, or measures 
of socioeconomic status. 

In response to the Request for Applications, Dr. Michael 
Kleeman of the University of California, Davis, submitted an 
application to HEI titled “Ambient Air Pollution and COVID-
19 in California.” Kleeman and colleagues proposed to 
develop high-resolution estimates of chronic and short-term 
exposures to ambient air pollution across Southern California 
and to evaluate the potential associations between air pollu-
tion exposures and COVID-19 disease progression, long-term 
COVID-19 complications, and mortality due to COVID-19 by 
using electronic health records from the Kaiser Permanente 
Southern California (KPSC) health system. Additionally, the 
investigators proposed to examine the association between air 
pollution exposures and COVID-19 incidence and mortality 
across neighborhoods in Los Angeles County. HEI’s Research 
Committee recommended funding Kleeman’s study because 
the investigators were proposing methods for answering novel 
questions, had access to a unique dataset (namely, detailed 
individual-level data from the KPSC database), and planned 
to examine various air pollutant exposures (i.e., nitrogen 

dioxide [NO2], ozone [O3], particulate matter [PM] mass con-
centrations, and major sources and chemical components of 
PM ≤2.5 µm in aerodynamic diameter [PM2.5]).

This Commentary, which provides the HEI Review Com-
mittee’s independent evaluation of the study, is intended 
to aid HEI sponsors and the public by highlighting both the 
strengths and limitations of the study and putting the results 
presented in the Investigators’ Report into a broader scientific 
and regulatory context.

SCIENTIFIC BACKGROUND 

Research from toxicological and population health studies 
has demonstrated an association between air pollution expo-
sure and the risk of acute lower respiratory infections (i.e., 
bronchitis, bronchiolitis, and pneumonia), influenza, and 
respiratory syncytial virus.1,2 Research on such respiratory 
infections is complicated, however, and has yielded mixed 
findings regarding the role of air pollution.3,4

Several early epidemiological studies suggested possible 
positive associations between air pollution and COVID-19.5–7 
However, the potential for bias in those results was high, 
partly because early in the pandemic, it was difficult to obtain 
reliable data identifying individuals who were infected 
with the SARS-CoV-2 virus or seriously ill with COVID-19, 
and because accuracy and availability of testing varied by 
location and over time. Additionally, estimating ambient air 
pollution exposures was complicated by the varying degrees 
of severity and duration of COVID-19 lockdown policies and 
the atypical levels of pollutant emissions and daily mobility 
patterns associated with these policies. Results from these 
early studies were difficult to compare and generalize, given 
different study designs, approaches to estimating exposure 
(i.e., short-term versus long-term exposures), and outcome 
definitions (e.g., disease incidence, prevalence, severity, or 
case fatality rates). 

Importantly, nearly all of the initial published studies in 
this field were based on cross-sectional analyses or ecological 
study designs.5–11 They evaluated associations between area-
based estimates of pollution (i.e., averaged across counties 
rather than estimated for each individual) and area-based 
rates of disease incidence or mortality, for which individu-
al-level risks could not be derived. Three early reviews high-
lighted the need for studies to use individual-level data and 
high spatial resolution measures of air pollution, to control 
for confounding, and to assess effect modification.12–14 These 
reviews all concluded that although early evidence indicated 
that both short- and long-term exposure to air pollution could 

* A list of abbreviations and other terms appears at the end of this volume.

https://www.healtheffects.org/system/files/rfa-20-1b-air-pollution-and-covid-051920.pdf
https://www.healtheffects.org/system/files/rfa-20-1b-air-pollution-and-covid-051920.pdf
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be associated with COVID-19 outcomes, those studies had 
moderate to high overall risks of bias that precluded drawing 
conclusions about potential causal relationships.

At the time Kleeman and colleagues began their study, 
the available literature included little high-quality evidence, 
partly due to weaknesses in study designs. Kleeman’s study 
aimed to address several limitations, notably by using a large 
database of individual-level health records and developing 
air pollution exposure estimates with high spatial resolution. 
Additionally, the investigators sought to evaluate questions 
that had not yet been addressed in the scientific literature on 
air pollution and COVID-19, such as multistate health effects 
(i.e., disease progression from one state of health to another, 
such as from hospitalization to death) and long-term compli-
cations of COVID-19 (i.e., long COVID-19).

SUMMARY OF APPROACH AND METHODS

STUDY OBJECTIVES 

Kleeman and colleagues aimed to investigate the relation-
ships between ambient air pollution exposures and COVID-
19 incidence, progression, and mortality, as well as long 
COVID-19 outcomes (which pertain to a variety of debilitating 
symptoms that can occur after serious COVID-19 disease).15 
The specific aims of the study were as follows:

•	 Aim 1: Generate high-resolution air pollution exposure 
estimates for PM2.5 mass and components, ultrafine PM 
≤0.1 μm in aerodynamic diameter (PM0.1) mass, NO2, and 
O3 at multiple spatial resolutions across Southern Califor-
nia.

•	 Aim 2: Conduct a spatial analysis by Los Angeles County 
ZIP codes to quantify associations between estimated air 
pollution concentrations and COVID-19 incidence and 
mortality across neighborhoods, using high spatial resolu-
tion exposure estimates that include PM2.5 components. 

•	 Aim 3: Examine COVID-19 mortality and multistate health 
effects in Southern California by assessing the association 
between air pollution exposures and both mortality and 
the progression from COVID-19 hospitalization to more 
severe disease states or recovery among a cohort of patients 
hospitalized with COVID-19 as documented in the KPSC 
healthcare database.

•	 Aim 4: Examine long COVID-19 in Southern California by 
assessing the relationship between ambient air pollutant 
exposures and diagnosis of conditions associated with 
long COVID-19 outcomes among the KPSC cohort.

Kleeman and colleagues obtained ZIP code–level counts of 
COVID-19 cases and deaths in Los Angeles County between 
June 19, 2020, and January 3, 2021, based on data from the 
California Department of Public Health (CDPH). For the KPSC 
cohort, the investigators used electronic health records from 
the KPSC healthcare system to create a cohort of more than 

20,000 adults across Southern California who had been diag-
nosed with COVID-19 between June 1, 2020, and January 30, 
2021, were hospitalized within 21 days of a positive COVID-
19 test, and had been KPSC members for at least 1 year. 

The investigators generated estimates of daily ambient 
PM2.5, PM2.5 components (species and sources), PM0.1, NO2, 
and O3 concentrations for 2016, 2019, and 2020 at multiple 
spatial resolutions using a chemical transport model (CTM) 
and a land use regression (LUR) model. Chronic (annual 
average) and short-term (30-day average) exposure estimates 
for the ambient air pollutants were assigned to the residential 
address of each patient in the KPSC cohort (or to each ZIP 
code in the CDPH data). 

Kleeman and colleagues used various regression modeling 
approaches to evaluate associations between both single and 
multipollutant air pollution exposures and COVID-19 out-
comes, as described in further detail in the Methods section. 
An analysis evaluating whether changes in air quality were 
associated with COVID-19 incidence, severity, and mortality 
was originally intended to be conducted alongside the gen-
eration of high-resolution ambient air pollution estimates 
specific to Aim 1. However, low numbers of COVID-19 cases 
during the lockdown period that affected air pollution pat-
terns in California (i.e., earlier in 2020) resulted in insufficient 
statistical power to conduct such an analysis.

METHODS AND STUDY DESIGN 

Study Population 

The CDPH data included counts of COVID-19 cases and 
COVID-19 deaths that occurred between June 19, 2020, and 
January 3, 2021, by ZIP code in Los Angeles County. These 
data included ZIP code–level demographic information on 
age, sex, and race/ethnicity. 

KPSC is a regional entity of Kaiser Permanente, a large 
integrated healthcare system and one of the oldest and largest 
not-for-profit health plans in the United States. KPSC has a 
racially, ethnically, and socioeconomically diverse member-
ship of 4.8 million members across nine counties in Southern 
California. The KPSC study cohort consisted of adults (aged 
18 years or older) in Southern California who had been hospi-
talized within 21 days of a clinical diagnosis of COVID-19 or 
a positive COVID-19 test that occurred between June 1, 2020, 
and January 30, 2021, and who had been KPSC members 
for at least 1 year. The KPSC data included individual-level 
information on demographic and health characteristics such 
as age, sex, race/ethnicity, body mass index (BMI), and level 
of exercise.

Patient deaths were included in the cohort data for patients 
who died 90 or fewer days after their initial hospitalization. 
Patients whose KPSC membership ended within 90 days 
after hospitalization were excluded from the cohort. In anal-
yses for Aim 3, patients who received treatment outside the 
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KPSC system were excluded. Additionally, the investigators 
defined deterioration due to COVID-19 as admission to the 
intensive care unit (ICU) or the need for ventilation. Analyses 
for Aim 4 also included patients who were discharged after 
hospitalization with COVID-19 and who were KPSC members 
for at least 1 year before and after their COVID-19 diagnosis. 

Long COVID-19 was defined using a set of clinically 
meaningful categories based on 45 diagnostic codes16 and 
grouped by organ system. Patients were considered to have 
long COVID-19 if they had received one or more cardiac, car-
diometabolic, pulmonary, or neurological diagnoses within 
3 to 12 months after discharge from their COVID-19–related 
hospitalization. 

The investigators linked both the KPSC and CDPH data 
with area-level characteristics, including data on the Neigh-
borhood Deprivation Index, income, crowding, temperature, 
relative humidity, and green space. Temperature and relative 
humidity were daily maximums (using Gridded Surface 
Meteorological data)17 and aggregated to monthly means for 
each patient’s residential address during the 1-month period 
before their COVID-19 hospitalization. An overview of the 
study populations and health outcomes of interest for each 
aim, by chapter of the Investigators’ Report, is presented in 
Commentary Table 1. 

Exposure Estimation

The investigators used a CTM to generate estimates of 
daily air pollutant exposure for PM0.1 (mass), PM2.5 (mass 
and components), NO2, and O3 in Southern California. They 
also used an LUR model to generate estimates of daily air 
pollutant exposures for PM2.5 (mass) and NO2. Daily estimates 
were averaged to reflect chronic (annual) and short-term 
(30-day) exposures, with data for specific pollutants, types of 
exposure, and years depending on the particular analysis for 
each aim (Commentary Table 1). Estimates were assigned to 
the residential address of each patient (in the KPSC cohort) or 
each ZIP code (in the CDPH data). 

Daily PM2.5 and NO2 concentrations were estimated at 
100-m resolution for the years 2019 and 2020 with an LUR 
model that used a deletion/substitution/addition algorithm.18 
Daily concentrations of a large number of pollutants (Com-
mentary Table 1) at 1-km resolution were produced for the 
years 2016, 2019, and 2020 by using the University of Cali-
fornia, Davis/California Institute of Technology (UCD/CIT) air 
quality model.19, 20 UCD/CIT is a three-dimensional CTM that 
simulates the evolution of gas and particle phase pollutants 
in the atmosphere based on emissions, transport, deposition, 
chemical reaction, and phase change. 

Main Epidemiological Analyses

To assess the associations between various air pollutant 
exposures (Commentary Table 1) and COVID-19 cases and 
COVID-19 deaths across Los Angeles County ZIP codes (Aim 
2), Kleeman and colleagues used negative binomial regression 

models. In the single-pollutant models, the investigators 
adjusted for several ZIP code–level covariates, including 
demographic variables (e.g., sex, race, age) and socioeconomic 
and health-related variables (e.g., income, smoking status, 
obesity). Associations were reported as incidence rate ratios 
(IRRs) and 95% confidence intervals (CIs), with pollutant 
exposures standardized by their interquartile range (IQR). 
The investigators also used two-pollutant models to assess 
confounding by PM2.5, NO2, and O3.

To assess the associations between various air pollutant 
exposures and both COVID-19 mortality and progression to 
more severe COVID-19 states or recovery (Aim 3), the inves-
tigators conducted two analyses. First, they used single- and 
two-pollutant Cox proportional hazards models to assess 
associations between various air pollutant exposures and 
patient deaths in the KPSC cohort. The study team adjusted 
their models for several individual and community-level 
covariates, such as BMI, level of exercise, Neighborhood 
Deprivation Index, temperature, and relative humidity, 
depending on the ambient air pollutant. Associations were 
analyzed per IQR increment in ambient air pollutant exposure 
and reported as hazard ratios (HRs) with 95% CIs.

Second, Kleeman and colleagues used a multistate survival 
model21, 22 to assess associations between PM2.5, NO2, and O3 
exposures and patient transitions to recovery or deteriora-
tion to more severe COVID-19 states or outcomes (i.e., ICU 
admission, ventilation, or death). The investigators examined 
six transition states: (1) hospitalization to deterioration (i.e., 
ICU admission or need for ventilation), (2) hospitalization 
to recovery, (3) hospitalization to death, (4) deterioration to 
recovery, (5) deterioration to death, and (6) recovery to death. 
It was assumed that the amount of time a patient existed in 
any given state did not influence their time spent in any other 
state (i.e., a Markovian assumption). The study team ran sin-
gle- and two-pollutant models adjusted for both individual- 
and community-level covariates, and they reported HRs with 
95% CIs standardized by the IQR for estimated concentrations 
of each ambient air pollutant. 

To evaluate long COVID-19 outcomes (Aim 4), the inves-
tigators used logistic regression to examine the associations 
between chronic and short-term exposures to various air 
pollutants before hospital admission and long COVID-19 
diagnoses within 3 months after hospital discharge, as well as 
within 12 months after hospital discharge. The investigators 
conducted analyses with single-, two-, and three-pollutant 
models adjusted for both individual- and community-level 
covariates. Associations were reported as odds ratios (ORs) 
with 95% CIs per IQR increment increase in exposure to 
ambient air pollutants. 

Additional Analyses

Kleeman and colleagues also evaluated associations 
between ambient air pollutant exposures and COVID-19 
deaths for potential effect modification by temperature 
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Commentary Table 1. Summary of COVID-19 Outcomes, Pollutant Exposures, and Methods by Study Aim and Chapter of 
the Investigators’ Report

Study Aim, 
Chapter

Study 
Population Health Outcomes Year Pollutant Exposures Methods

Aim 1, Chapter 3 N/A N/A 2016, 
2019, 
2020

Chronic (2016, 2019, 
2020 annual average) and 

short-term (30-day aver-
age) PM0.1, PM2.5, PM2.5 

organic compounds, PM2.5 

elemental carbon, PM2.5 

nitrate, PM2.5 source trac-
ers, NO2, O3

LUR model (PM2.5 and 
NO2 only) and CTM 

(PM0.1, PM2.5, PM2.5 com-
ponents [species and 

sources], NO2, O3)

Aim 2, Chapter 4 N = 773,374 
cases and  

N = 14,311 
deaths in Los 

Angeles County 
(CDPH)

COVID-19 cases 
and deaths

2019 Chronic (2019 annual 
average) PM0.1, PM2.5, 

PM2.5 organic compounds, 
PM2.5 elemental car-

bon, PM2.5 nitrate, PM2.5 

on-road gasoline tracer, 
NO2, O3

Negative binomial regres-
sion models with adjust-

ment for sex, race/ethnic-
ity, age >70 yr, median 

income, mean home-
owner occupancy rate, 

mean prevalence of cur-
rent smoking status, mean 

prevalence of obesity

Aim 3, Chapter 5 N = 21,415  
hospitalized 

KPSC patients

COVID-19 deaths 2016 Chronic (2016 annual 
average) PM0.1, PM2.5, 

PM2.5 organic com-
pounds, PM2.5 elemen-

tal carbon, PM2.5 nitrate, 
PM2.5 on-road gasoline 

tracer, PM2.5 on-road die-
sel tracer, PM2.5 biomass 
combustion tracer, NO2 

(CTM), O3

Cox proportional haz-
ard regression models 

with adjustment for vari-
ous demographic, socio-

economic, chronic health, 
and area-level charac-
teristics depending on 
the ambient air pollut-

ant (Investigators’ Report 
Appendix B Table B1)

Aim 3, Chapter 6 N = 15,978  
hospitalized 

KPSC patients

COVID-19 hospital-
ization, recovery, 
deterioration, and 

death

2016 Chronic (2016 annual 
average) PM2.5, NO2, O3

Multistate survival regres-
sion models with adjust-

ment for various demo-
graphic, socioeconomic, 

chronic health, and area-
level characteristics 

depending on the ambi-
ent air pollutant (Investi-
gators’ Report Appendix 

D Table D2)

Aim 4, Chapter 7 N = 12,634  
hospitalized 

KPSC patients

Cardiac, cardiomet-
abolic, pulmo-

nary, and neurolog-
ical long COVID-19 

outcomes within 
3 months to 12 

months after hospi-
tal discharge

2019, 
2020

Chronic (365-day aver-
age before hospitaliza-

tion) and short-term (30-
day average) PM0.1, PM2.5, 

PM2.5 organic compounds, 
PM2.5 elemental carbon, 
PM2.5 nitrate, PM2.5 bio-

mass combustion tracer, 
NO2, O3

Logistic regression mod-
els with adjustment for 

smoking, exercise, BMI, 
status of MediCal enroll-

ment, and area-level 
deprivation, proportion of 
people taking public tran-

sit, temperature, relative 
humidity, and greenspace

BMI = body mass index; CDPH = California Department of Public Health; CTM = chemical transport model; KPSC = Kaiser Permanente South-
ern California; LUR = land use regression; N/A = not applicable.
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and relative humidity in the KPSC cohort. The study team 
implemented Cox proportional hazard regression models 
with an interaction term between one ambient air pollutant 
and one meteorological variable. If the interaction term was 
significant (i.e., P value <0.05), stratified models were run by 
tertiles of temperature or relative humidity. Analyses of effect 
modification were conducted for both single- and two-pollut-
ant models, with associations reported as HRs with 95% CIs, 
standardized by IQR of the ambient air pollutant exposures.

SUMMARY OF KEY FINDINGS

STUDY POPULATION CHARACTERISTICS

The CDPH study population included 773,374 cases of 
COVID-19 and 14,311 COVID-19 deaths across 308 ZIP codes 
in Los Angeles County. In this study population, patients 
diagnosed with COVID-19 were on average predominantly 
female (54.6%), 70 years of age or older (93.7%), and non-
White (69.8%), whereas COVID-19 deaths occurred primarily 
in patients who were male (57.9%), less than 70 years of age 
(58.7%), and a race/ethnicity other than White (78.6%).

The KPSC cohort included 21,994 adults hospitalized 
within 21 days of a COVID-19 diagnosis or positive COVID-19 
test; however, the analysis population varied by study aim 
(Commentary Table 1). Generally, patients in this cohort 
were primarily older (median age: 64 years), male (57.7%), 
Hispanic/Latino (56.4%), and had comorbidities (mean Elix-
hauser index: 3.0). Those who deteriorated (i.e., admitted to 
the ICU or received ventilation) or died after hospitalization 
were predominantly 65 years of age or older, male, and His-
panic/Latino. Women were more likely than men to experi-

ence long COVID-19 outcomes. Patients diagnosed with long 
COVID-19 outcomes within 3 months and within 12 months 
after being discharged from the hospital had lower rates of 
exercise and higher BMIs compared to those who were not 
diagnosed with long COVID-19 over these follow-up periods; 
no other noteworthy differences were observed between these 
groups.

EXPOSURE ESTIMATION AND ASSESSMENT

The PM2.5 and NO2 exposure estimates generated using 
LUR and CTM approaches for Aim 1 produced different 
estimates, which was understandable given the differences 
in the underlying methods for each model (Investigators’ 
Report Figure 5). For example, both the LUR model and CTM 
estimated high annual average concentrations of NO2 around 
Los Angeles in 2020, but the LUR model estimates were 
higher than those produced by the CTM. Similarly, the CTM 
predicted high annual average concentrations of PM2.5 around 
Los Angeles and in the San Joaquin Valley region north of Los 
Angeles in 2020, whereas the LUR model predicted the high-
est PM2.5 concentrations in the eastern region of the state (i.e., 
San Bernardino, Riverside, and Imperial counties) in 2020. 

The median of estimated chronic exposures to various 
measures of PM mass and components, NO2, and O3 varied 
across the analyses for each aim (Commentary Table 2). The 
upper range of the median of estimated pollutant concentra-
tions across all study aims was around 13 µg/m3 for PM2.5, 22 
parts per billion (ppb) for NO2, and 66 ppb for O3. The median 
of short-term (30-day average) estimated exposures was fairly 
similar to the medians of estimated chronic exposures. Gen-
erally, many of the ambient air pollutants were moderately 
to highly correlated with one another (e.g., PM2.5 and PM0.1). 

Commentary Table 2. Ranges of the Median of Estimated Exposures to Ambient Air Pollutants Across Study Aimsa

 Ambient Air Pollutant
Range of the Median of Estimated 

Chronic Concentrations 
Range of the Median of Estimated 

Short-Term Concentrations

PM0.1 0.91–0.99 µg/m3 0.83 µg/m3 

PM2.5 9.0–13.1 µg/m3 10.3–12.9 µg/m3 

PM2.5 elemental carbon 0.47–0.58 µg/m3 0.59 µg/m3

PM2.5 organic compounds 2.07–2.53 µg/m3 2.10 µg/m3

PM2.5 nitrate 1.60–3.81 µg/m3 1.91 µg/m3

PM2.5 on-road gasoline tracer 0.24–0.30 µg/m3 N/A

PM2.5 on-road dieselb 0.07 µg/m3 N/A

PM2.5 biomass combustion 1.01–1.71 µg/m3 0.39 µg/m3

NO2 13.4–22.0 ppb 14.0–17.0 ppb 

O3 54.5–66.0 ppb 48.0 ppb 

N/A = not applicable; ppb = parts per billion.
aChronic exposures were based on annual average air pollutant concentrations across the study cohort. Short-term exposures were based on 30-day average air pol-

lutant concentrations across the study cohort.
bOnly used in one analysis (Aim 4).
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Ozone was the least correlated with the other ambient air 
pollutants and was inversely correlated with NO2. 

MAIN EPIDEMIOLOGICAL ANALYSES

Associations Between Chronic Exposures to Air 
Pollutants and COVID-19 Outcomes (Aim 2)

In the CDPH study population, single-pollutant models 
demonstrated higher risks of COVID-19 incidence and 
mortality per IQR increment increase in chronic exposure 
to several ambient air pollutants, including PM0.1, PM2.5 

(mass, elemental carbon, nitrate, and from on-road gasoline 
vehicles), and O3 (Commentary Figure 1). Generally, the mag-
nitude of the associations was slightly stronger for the risk of 
COVID-19 death compared to COVID-19 incidence. Estimates 
of PM2.5 produced by the LUR model demonstrated statisti-
cally significant associations with both COVID-19 incidence 
and mortality, whereas the estimates produced by the CTM 
demonstrated elevated associations with these outcomes but 
were not statistically significant. Risk estimates ranged in 
magnitude from 1.02 to 1.27. The strongest risk estimate was 
observed for COVID-19 death per IQR increase in estimated 
O3 concentration (IRR: 1.27; 95% CI: 1.17, 1.37). 

The two-pollutant models demonstrated elevated risks 
of COVID-19 incidence and mortality per IQR increase in 
estimated NO2 and PM2.5 concentrations, after controlling for 
O3, and elevated risks per IQR increase in estimated O3 con-
centration, after controlling for PM2.5 or NO2 (Investigators’ 
Report Figure 8). As seen in results from the single-pollutant 
models, the strongest IRRs were observed for associations 
between O3 concentrations and COVID-19 deaths (IRR [con-
trolling for NO2]: 1.42; 95% CI: 1.23, 1.56 and IRR [controlling 
for PM2.5 (CTM)]: 1.37; 95% CI: 1.26, 1.50). The associations 
between PM2.5 concentrations and both COVID-19 incidence 
and mortality were generally attenuated after controlling for 
NO2. Results were similar regardless of the exposure mod-
eling method (i.e., LUR or CTM) used to estimate PM2.5 and 
NO2 concentrations, although the associations observed using 
exposure estimates generated by the LUR model were often 
larger in magnitude compared to the associations based on 
CTM-generated exposure estimates. 

Associations Between Estimated Chronic Exposures to Air 
Pollutants and COVID-19 Progression or Death (Aim 3)

In the KPSC cohort, the investigators reported positive 
associations between COVID-19 deaths and IQR increases in 
exposures to each of the ambient air pollutants evaluated in 
single-pollutant models, except for PM2.5 organic compounds 
(although this association was nearly statistically significant), 
PM2.5 from biomass combustion, and O3 (a finding in contrast 
to the results observed in Aim 2) (Commentary Figure 2). 
Reported risk estimates were generally moderate in size, 
and the risk estimates that were strongest in magnitude were 
observed for PM2.5 (estimated by the CTM): HR: 1.12; 95% CI: 
1.06, 1.17, PM2.5 nitrate: HR: 1.12; 95% CI: 1.07, 1.17, and 

NO2: HR: 1.10; 95% CI: 1.04, 1.16. In two-pollutant models, 
the HRs generally remained elevated for associations between 
COVID-19 death and PM2.5 exposures, as did the association 
with NO2 when controlling for O3, with some fluctuations in 
magnitude (Investigators’ Report Figure 11). However,  the 
association with NO2 was attenuated in models controlling 
for PM2.5. 

In analyses of the progression to more severe COVID-19 
states, Kleeman and colleagues reported elevated HRs in sin-
gle-pollutant models of the associations between PM2.5, NO2, 
and O3 exposures (comparing the highest versus lowest quar-
tiles of exposure) and several COVID-19–related transitional 
states: the transition from hospitalization to deterioration, the 
transition from deterioration to death, and the transition from 
recovery to death (Commentary Table 3). For example, HRs 
for the associations between the highest (versus the lowest) 
quartile of exposure to each pollutant and the transition from 
COVID-19 hospitalization to deterioration were 1.16 (PM2.5), 
1.19 (NO2), and 1.21(O3). 

In two-pollutant models across multiple combinations 
of PM2.5, NO2, and O3 exposures, HRs for the transition from 
COVID-19 hospitalization to deterioration remained elevated, 
with small to modest changes in magnitude compared to the 
HRs from the single-pollutant models (Investigators’ Report 
Table 8). The results from analyses for other transition states 
demonstrated no clear pattern in the changes in direction or 
magnitude of the associations across combinations of PM2.5, 
NO2, and O3 exposures in the two-pollutant versus single- 
pollutant models.

Associations Between Estimated Air Pollutant Exposures 
and Long COVID-19 (Aim 4)

In analyses of the KPSC cohort, the investigators reported 
mixed results regarding associations between short-term 
exposures to different ambient air pollutants and specific 
types of long COVID-19 outcomes diagnosed within 3 months 
of hospital discharge (Commentary Figure 3). Elevated odds 
of several long COVID-19 outcomes were reported per IQR 
increment increase in short-term exposures to PM0.1, PM2.5 
nitrate, and O3. No statistically significant associations 
between NO2 exposure and any long COVID-19 outcome 
were observed (although the odds ratio for cardiometabolic 
long COVID-19 was elevated). Additionally, no significant 
associations between any short-term air pollutant exposures 
and neurological long COVID-19 were reported. Interestingly, 
the investigators observed a modest-sized inverse associa-
tion between estimated PM2.5 exposure and pulmonary long 
COVID-19, although this association was not robust in various 
sensitivity analyses adjusting for O3 and PM2.5 from biomass 
combustion (Investigators’ Report Table 14).

The observed associations between ambient air pollutant 
exposures and a diagnosis of long COVID-19 within 12 months 
after hospital discharge were often in the same direction (i.e., 
positive or inverse) as — but generally weaker in magnitude 
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Commentary Figure 1. Associations between estimated chronic pollutant concentrations and COVID-19 incidence and 
mortality in the California Department of Public Health cohort. Results shown are incidence rate ratios and 95% 
confidence intervals estimated per interquartile range increase in 2019 annual average pollutant concentrations. The 
results are from single-pollutant models that included adjustment for neighborhood characteristics (i.e., demographic, 
socioeconomic, and chronic health factors). CTM = chemical transport model; LUR = land use regression. Source: 
Adapted from Investigators’ Report Figure 7.

Commentary Figure 2. Associations between estimated chronic pollutant concentrations and COVID-19 deaths in the Kaiser 
Permanente Southern California cohort. Results shown are hazard ratios and 95% confidence intervals estimated per interquartile 
range increase in 2016 annual average exposures. The results are from single-pollutant models that included adjustment for individual 
(e.g., body mass index, exercise) and neighborhood (e.g., Neighborhood Deprivation Index) characteristics. Source: Investigators’ Report 
Appendix C Table C3.
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than — the reported associations with long COVID-19 diagno-
sis within 3 months after discharge.

In two- or three-pollutant models, positive associations 
were only observed between short-term PM0.1 exposures and 
cardiac, cardiometabolic, and pulmonary long COVID-19 
outcomes, as well as between short-term O3 exposures and 
pulmonary long COVID-19 outcomes, diagnosed within 3 
months after hospital discharge. The association between esti-
mated PM2.5 exposure and pulmonary long COVID-19 became 
attenuated when controlling for O3 exposure in two-pollutant 
models and when controlling for both O3 and NO2 exposure 
in three-pollutant models.

Additional Analyses

Kleeman and colleagues evaluated the effect modification 
by temperature and relative humidity on the association 

between ambient air pollutant exposures and COVID-19 
deaths. In models stratified by temperature tertile, elevated 
risks of death were generally observed in the lower two 
tertiles of temperature (i.e., among patients exposed to lower 
mean monthly temperatures over the month before COVID-
19 hospitalization), and no association was observed in the 
highest tertile of temperature (i.e., among patients exposed 
to the highest mean monthly temperatures over the month 
before COVID-19 hospitalization). For example, associations 
between estimated PM2.5 exposure and COVID-19 death across 
tertiles of temperature ranged from an HR > 1.02 for tertile 1 
(monthly mean temperatures of 5.90°C to 20.29°C) to an HR 
< 1.00 in tertile 3 (monthly mean temperatures of 22.20°C 
to 44.60 °C) (Investigators’ Report Figure 12). A similar yet 
often more pronounced pattern was observed for associations 
between ambient air pollutant exposures and COVID-19 
death across tertiles of relative humidity (Investigators’ 
Report Appendix C Figure C1). These findings collectively 

Commentary Table 3. Associations Between Estimated Ambient Air Pollutant Concentrations and COVID-19 Transition 
States, Based on Single-Pollutant and Two-Pollutant Modelsa

Transition 
State

Ambient Air Pollutant

PM2.5 NO2 O3

Single- 
Pollutant  

Model
Two-Pollutant  

Model

Single-
Pollutant 

Model
Two-Pollutant  

Model

Single-
Pollutant 

Model
Two-Pollutant 

Model

Hospitaliza-
tion to deterio-
ration

1.16 
(1.12, 1.20)

NO2:
1.11 (1.05, 1.17)

O3: 

1.13 (1.09, 1.17)

1.19 
(1.13, 1.24)

PM2.5:
1.07 (1.00, 1.14)

O3:
1.21 (1.15, 1.26)

1.21 
(1.13, 1.28)

PM2.5:
1.13 (1.06, 1.21)

NO2:
1.24 (1.17, 1.32)

Hospitalization 
to recovery

1.00 
(0.97, 1.03)

NO2:
0.98 (0.94, 1.03)

O3:
1.01 (0.98, 1.03)

1.01 
(0.97, 1.04)

PM2.5:
1.02 (0.97, 1.08)

O3:
1.00 (0.97, 1.04)

0.96 
(0.91, 1.00)

PM2.5:
0.96 (0.91, 1.01)

NO2:
0.96 (0.92, 1.01)

Hospitalization 
to death

0.74 
(0.51, 1.08)

NO2:
1.00 (0.58, 1.73)

O3:
0.67 (0.45, 1.00)

0.60 
(0.40, 0.90)

PM2.5:
0.62 (0.32, 1.23)

O3:
0.59 (0.38, 0.92)

1.46 
(0.87, 2.46)

PM2.5:
1.68 (0.98, 2.90)

NO2:
1.39 (0.85, 2.28)

Deterioration 
to recovery

0.96 
(0.92, 1.01)

NO2:
0.90 (0.84, 0.96)

O3:
0.96 (0.91, 1.01)

1.03 
(0.97, 1.09)

PM2.5:
1.13 (1.04, 1.24)

O3:
1.03 (0.96, 1.10)

0.98 
(0.91, 1.05)

PM2.5:
1.00 (0.92, 1.08)

NO2:
0.98 (0.91, 1.05)

Deterioration 
to death

1.11 
(1.04, 1.17)

NO2:
1.14 (1.04, 1.25)

O3:
1.10 (1.04, 1.17)

1.07 
(0.99, 1.16)

PM2.5:
0.94 (0.83, 1.06)

O3:
1.08 (1.00, 1.17)

1.08 
(0.98, 1.19)

PM2.5:
1.03 (0.94, 1.14)

NO2:
1.11 (0.99, 1.23)

Recovery to 
death

1.10 
(0.97, 1.24)

NO2:
1.21 (0.99, 1.49)

O3:
1.07 (0.93, 1.23)

1.03 
(0.86, 1.23)

PM2.5:
0.85 (0.64, 1.13)

O3:
1.03 (0.86, 1.23)

1.24 
(1.01, 1.51)

PM2.5:
1.19 (0.95,1.48)

NO2:
1.27 (0.99, 1.61)

aResults shown are hazard ratios and 95% confidence intervals. Source: Investigators’ Report Table 8.
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suggest that higher temperatures and higher relative humidity 
both weaken the association between ambient air pollutant 
exposures and COVID-19 death.

HEI REVIEW COMMITTEE’S EVALUATION

Overall, this study provided important contributions to 
understanding potential associations between chronic and 
short-term exposures to ambient air pollution and several 
COVID-19–related health outcomes. Kleeman and colleagues 
observed elevated risks of COVID-19 incidence and mortality, 
progression to more severe health states during COVID-19 
hospitalization, and long COVID-19 outcomes among patients 
with elevated estimated exposure to several air pollutants. 
The investigators also found that both temperature and rel-
ative humidity modified associations between air pollutant 
exposures and COVID-19 mortality, with stronger associa-
tions observed at lower temperature and relative humidity 
and weaker associations observed at higher temperature and 
relative humidity. Chronic exposures to PM2.5, NO2, and O3 
were all associated with progression to more severe states 
of COVID-19, whereas short-term exposures to PM0.1 were 

consistently associated with multiple types of long COVID-19 
outcomes diagnosed within 3 months after discharge from the 
hospital. 

In its independent evaluation of the Investigators’ Report, 
the HEI Review Committee noted that the comprehensive set 
of analyses supported by high-resolution exposure estimates 
and individual-level electronic health records from a large 
healthcare database was a particular strength of the study. The 
Committee also thought that the findings were interesting and 
relevant, especially those related to the progression to more 
severe states of COVID-19 and long COVID-19 outcomes, 
which are outcomes that are not susceptible to bias from 
selective testing and diagnosis, the same way that COVID-19 
incidence is. 

The Committee commented that the findings were not 
wholly generalizable, given the population of hospitalized 
individuals that composed the main study cohort and the 
widespread immunity to COVID-19 that is now prevalent in 
the overall population. The Committee also noted that the 
strength of the investigators’ conclusions, highlighting air 
pollution as a modifiable environmental risk factor that could 
be altered to improve the prognosis for patients with COVID-

Commentary Figure 3. Associations between estimated short-term pollutant concentrations and long COVID-19 outcomes diagnosed 
within 3 months after hospital discharge in the Kaiser Permanente Southern California cohort. Results shown are odds ratios and 
95% confidence intervals estimated per interquartile range increase in 30-day average pollutant exposures. The results are from single-
pollutant models that included adjustment for individual (e.g., body mass index, exercise) and neighborhood (e.g., Neighborhood 
Deprivation Index) characteristics. Source: Investigators’ Report Figure 18.
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19, might preferably be somewhat tempered in light of some 
of the limitations of this study. Overall, however, the study 
has provided valuable insights into the role of air pollution 
in exacerbating the severity of disease and adverse health 
outcomes, and these insights might be useful in the context of 
future infectious respiratory disease outbreaks.

The Committee noted several additional study strengths 
and limitations, which are highlighted below. 

EVALUATION OF STUDY DESIGN, DATASETS, AND 
ANALYTICAL APPROACHES

The HEI Review Committee acknowledged several 
strengths of the study design, such as the generation of 
high-resolution chronic and short-term exposure estimates 
for multiple ambient air pollutants and the detailed speciated 
exposure estimates for PM2.5 components, which had not been 
investigated in earlier studies on the effects of air pollution 
on COVID-19 outcomes. Another strength was assembling a 
main study cohort based on a large sample of individual-level 
electronic health records from a large integrated healthcare 
database that included data on all aspects of patient care, as 
well as many patient-specific demographic and clinical char-
acteristics. The Committee also appreciated the exploration 
of the multistate COVID-19 health outcomes, long COVID-19 
outcomes, and effect modification of observed associations by 
meteorology, all of which had not previously been rigorously 
explored in relation to air pollution and COVID-19 outcomes. 
In general, the Committee was impressed with the thorough 
examination of each aim, which was accomplished by con-
ducting a strategically designed series of analyses.

The Committee noted a few limitations related to exposure 
assignment and some analytical approaches. The Committee 
thought that the use of different exposure models (i.e., LUR 
modeling versus CTM approaches) to provide a quality check 
on the epidemiological results was sensible, although the 
influences of the differing exposure estimates on COVID-19 
outcomes were explored only in the analysis of CDPH data 
for Los Angeles County (Aim 2). It would have also been 
interesting to explore the impact of modeling differences in 
some of the analyses of the KPSC cohort. 

 The Committee also wondered whether the differences in 
temporality across analyses might have influenced the results; 
specifically, chronic exposures were defined using average 
annual exposure estimates for 2016 in some analyses but for 
2019 in other analyses. Similarly, Committee members won-
dered whether average exposures during the 30 days before 
hospitalization were the most appropriate length of time to 
define short-term exposures in the analyses of long COVID-19 
outcomes. Other studies evaluating other COVID-19 out-
comes, such as incidence, hospitalization, and death,22–24 also 
have used 30-day average estimates of ambient air pollutant 
concentrations to represent short-term exposures, although 
it is unclear whether this choice was based on biological 
mechanisms or some other reason. Future work in this area 

could benefit from including additional sensitivity analyses 
to explore the effects of such nuances in defining short-term 
exposures, as well as the choice of the year for the annual 
averages used to represent chronic or long-term exposures. 

Regarding some of the analytical methods used in this 
study, the Committee remained somewhat skeptical of the use 
of the Markovian assumption in the analysis of associations 
between air pollutant exposures and multistate health effects 
of COVID-19. This assumption presumes that the amount of 
time that a patient exists in any given state (e.g., hospitaliza-
tion, deterioration to more severe COVID-19 states) does not 
influence their time spent in any other state. However, the 
Committee noted that it might be more reasonable to assume 
that, for example, a patient’s progression from hospitalization 
to ICU admission and from ICU admission to death is, in fact, 
partially influenced by their time spent in prior states. They 
were curious about how the use of an alternative assumption 
or relaxation of the Markovian assumption (e.g., the use of 
a semi-Markov model in which the hazard depends on the 
time spent in the current state and thus affects the likelihood 
of transitioning to another state)25,26 might have changed 
the results of this analysis. Although the investigators 
acknowledged this point, they noted that they were unable 
to characterize how time spent in one state would influence 
subsequent transitions, thus choosing to make the simplifying 
Markovian assumption.

The Committee noted that the investigators’ choice of 
terminology at times created confusion in interpreting the 
study’s findings. For instance, the term “effect” was used in 
a way that could imply causality, despite being intended as a 
measure of association.27 Similarly, in analyzing associations 
between air pollutant exposures and COVID-19 incidence 
and deaths in Los Angeles County, the investigators used the 
word “synergy” to describe an independent effect rather than 
an interaction while also referring to synergy in the context of 
a statistical method for assessing multiplicative interactions 
on an additive scale.

EVALUATION OF FINDINGS AND INTERPRETATION

The Committee generally agreed with the presentation 
and interpretation of the findings in this study. Kleeman and 
colleagues reported positive associations between chronic air 
pollutant exposures and COVID-19 incidence, progression 
to more severe states of COVID-19 during hospitalization, 
and death. They also reported positive associations between 
chronic and short-term air pollutant exposures and several 
long COVID-19 outcomes (i.e., cardiac, cardiometabolic, 
and pulmonary conditions). The elevated risks of COVID-19 
incidence and mortality demonstrated by the investigators 
are largely consistent with the findings of other studies 
using the KPSC database.22,23 Other HEI-funded studies 
using individual-level data from Denmark28 and Spain29 also 
have demonstrated elevated risks of COVID-19 mortality 
associated with PM2.5 and NO2; however, those studies both 
reported inverse associations between COVID-19 mortality 
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and O3, whereas this study reported a positive association for 
this relationship in the CDPH cohort and no association in 
the KPSC cohort. The Committee noted that the inconsistency 
in the findings on the association between O3 exposure and 
COVID-19 mortality in the CDPH data versus the KPSC cohort 
was unexpected, especially given the strength of the reported 
associations between O3 exposure and other COVID-19 out-
comes examined in this study. This inconsistency might be 
due to differences in the spatial scale of the data (i.e., ZIP 
code–level data in the CDPH data versus individual-level 
data in the KPSC cohort). Interestingly, another study using 
the KPSC database also found no association between long-
term O3 exposure and COVID-19 mortality,23 and a different 
study that analyzed KPSC data reported a positive association 
between long-term O3 exposure and COVID-19 incidence.24 
However, differences in the specific air pollutants, exposure 
definitions, and COVID-19 outcomes examined across such 
studies limit the ability to directly compare their results. 

Looking beyond the COVID-19 pandemic, the investigators 
noted that their findings have broader implications for future 
infectious disease outbreaks. They indicated that their results 
suggest that reducing air pollution exposures could lead to 
decreased incidence of infections, less severe outcomes, and, 
potentially, a reduction in the development of post-acute 
conditions. The Committee agreed that the findings provide 
useful insights into the role of air pollution in adverse health 
outcomes; furthermore, the Committee concurred that their 
insights can be applied to future outbreaks involving novel 
infectious respiratory diseases and contribute useful informa-
tion regarding both the progression of such diseases to more 
severe states of illness and the development of post-acute 
conditions. The Committee noted that the results of this study 
are most relevant for severe COVID-19 outcomes, as many of 
the analyses were conducted using a cohort of hospitalized 
patients (i.e., those severely ill with COVID-19) — a limitation 
that was appropriately acknowledged by the investigators. 
Additionally, the Committee wondered how the findings 
might translate to the current general population that is either 
largely vaccinated against COVID-19 or has obtained natural 
immunity through prior disease. Kleeman and colleagues also 
discussed the generalizability of their findings to the current 
population, which has much lower rates of severe disease, as 
an area that merits further research. Nonetheless, the Commit-
tee generally thought that the results might be relevant and 
applicable in the setting of a new respiratory disease to which 
the population has no immunity.

The investigators also referred to vaccine hesitancy among 
certain populations and in some locations as a motivation 
for studying modifiable environmental risk factors (e.g., air 
pollution). Throughout the report, they noted the importance 
of preventive measures that target such modifiable exposures. 
The Committee agreed that studying the complex interplay 
between air pollution and COVID-19 is worthwhile. However, 
the role of air pollution and other environmental risk factors 
should be viewed as one component that can be targeted 
alongside multiple other public health and preventive 

measures pertinent to future infectious respiratory disease 
outbreaks, but likely not as a solution to address vaccine 
hesitancy. 

The Committee had additional thoughts on some other 
specific results of this study. The Committee appreciated the 
exploration of effect modification by temperature and relative 
humidity on the association between air pollutant exposures 
and COVID-19 mortality, which remains understudied in 
the context of air pollution and COVID-19. Kleeman and 
colleagues reported that both higher temperature and higher 
relative humidity weakened the associations between expo-
sures to most of the examined air pollutants and risk of death 
due to COVID-19. The investigators further posited that this 
finding might be biologically plausible if cooler and less 
humid conditions interfere with viral defenses in the human 
nose. The Committee noted that these results could partially 
reflect seasonality (i.e., the variations in infectious disease 
that coincide with seasonal patterns throughout the year), 
which the investigators acknowledged might have generally 
affected their findings in this analysis. Although focused on 
transmission and infection, some studies in China that have 
explored the relationship between meteorology, air pollution, 
and seasonal influenza have also shown effect modification 
by temperature and humidity, with higher temperature and 
higher humidity being associated with decreased risk of 
influenza transmission and infection.30,31 

In analyses of air pollutant exposures and multistate 
COVID-19 health effects, Kleeman and colleagues found that 
exposure to air pollution was positively associated with pro-
gression to more severe states or outcomes, such as admission 
to the ICU, death after deterioration to more severe states, and 
death after recovery and discharge from the hospital (only for 
chronic exposure to O3). The investigators noted that these 
results corroborate their earlier findings regarding COVID-19 
deaths and further underscore that the results imply that air 
pollution could affect both COVID-19 severity and a healthy 
recovery among patients discharged from the hospital. 
Although the Committee generally found these conclusions 
to be reasonable and commended the investigators on their 
exploration of multistate COVID-19 outcomes, the Committee 
wondered how greatly the use of a Markovian assumption (as 
previously described) influenced the direction and magnitude 
of the observed associations. 

The Committee found the analyses of associations between 
air pollutant exposures and long COVID-19 outcomes espe-
cially interesting. Kleeman and colleagues highlighted their 
results on long COVID-19 as potentially the most important 
findings of their study and noted that long COVID-19 con-
tinues to affect more than 6% of the US population, with 
implications for individuals and the public health system 
more broadly.32–34 Indeed, in a recent review, researchers 
described the difficulties in studying and managing long 
COVID-19, given the range and severity of health impacts 
and the ongoing questions related to biological mechanisms, 
treatment efficacy, and susceptibility.35 Other research has 
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demonstrated that long COVID-19 outcomes might be asso-
ciated with the severity of COVID-19 and the recurrence of 
infection.36 The current study provides additional evidence 
that both the incidence and severity of long COVID-19 might 
be positively associated with air pollution. 

The investigators reported elevated risks of cardiac, 
cardiometabolic, and pulmonary long COVID-19 outcomes 
associated with exposures to several air pollutants (PM0.1, 
PM2.5 nitrate, and O3). Other studies assessing the relationship 
between air pollution and long COVID-19 have also found 
positive associations between several air pollutants and long 
COVID-19.37-39 Whereas those other studies all reported posi-
tive associations between PM2.5 and long COVID-19, Kleeman 
and colleagues observed no or inverse (for pulmonary long 
COVID-19 outcomes) associations between estimated PM2.5 

exposure and long COVID-19; after sensitivity analyses, 
however, the observed inverse association between estimated 
PM2.5exposure and pulmonary long COVID-19 outcomes was 
found to be null. The investigators suggested several areas for 
future research in this context, including the exploration of 
common biological mechanisms between air pollution health 
effects and long COVID-19, examination of these relation-
ships in populations with different profiles of air pollution 
exposure, and evaluation of longer-term and ongoing air 
pollution exposures.

CONCLUSIONS

Overall, Kleeman and colleagues have provided evidence 
of associations between chronic and short-term exposures 
to air pollution and COVID-19 incidence and mortality, 
progression to more severe states of COVID-19, and long 
COVID-19 outcomes. The use of individual-level electronic 
health records from a large healthcare database and fine-scale 
exposure assessment were particular strengths of the study. 
Additionally, the investigators conducted novel analyses of 
associations between air pollutant exposures and multistate 
COVID-19 health effects and long COVID-19 outcomes and 
evaluated effect modification by temperature and relative 
humidity on associations between exposure to ambient air 
pollution and COVID-19 mortality. 

Kleeman and colleagues reported elevated risks of 
COVID-19 incidence and mortality associated with expo-
sures to PM0.1, PM2.5, some PM2.5 components, and O3 across 
neighborhoods in Los Angeles County based on data from the 
California Department of Public Health. Using a study cohort 
based on a large healthcare database, the investigators also 
reported elevated risks of COVID-19 mortality associated with 
all ambient air pollutants examined in the study, except for 
O3 and some PM components, across Southern California. 
Furthermore, PM2.5, NO2, and O3 exposures were all found 
to significantly affect the progression from hospitalization 
to more severe COVID-19 states (i.e., admission to the ICU 
or need for ventilation), whereas exposure to PM0.1 was most 
consistently associated with long COVID-19 outcomes. Cer-

tain methodological choices, such as the use of a Markovian 
assumption in the multistate health effects model, might have 
affected some of the reported findings.

Ultimately, this study presents findings from a comprehen-
sive set of analyses that contribute both new and corroborating 
evidence of associations between air pollution and COVID-19 
health outcomes. The study is the fifth and final in a series of 
HEI-funded studies investigating the association between air 
pollution and COVID-19. The designs of these studies differ 
with regard to the assessed exposures, the COVID-19 out-
comes investigated, and the analytical approaches. Nonethe-
less, the resulting body of work published thus far generally 
demonstrates elevated risks of COVID-19 mortality associated 
with several ambient air pollutants, including PM2.5 and NO2. 
Although the results of this study by Kleeman and colleagues 
might not be generalizable to the broader US population 
because the current general population has now gained some 
form of natural or vaccine-induced immunity to COVID-19, 
the findings provide valuable insights into the potential role 
of air pollution in the risk of adverse health outcomes that 
might be relevant to future infectious respiratory disease 
outbreaks. However, although air pollution is an important 
modifiable environmental risk factor, efforts to improve 
air quality as a strategy for reducing health risks should be 
viewed as one part of a compendium of public health and 
preventive measures targeting future outbreaks.
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ABBREVIATIONS AND OTHER TERMS

	 AIC		  Akaike information criterion

	 BMI		  body mass index

	 CALINE		  California Line Source Dispersion Model

	 CAR		  conditional autoregressive

	 CARB		  California Air Resources Board

	 CDPH		  California Department of Public Health

	 CI		  confidence interval

	 COPD		  chronic obstructive pulmonary disease

	 CTM		  chemical transport model

	 CVD		  cardiovascular disease

	 DVT		  deep vein thrombosis

	 EC		  elemental carbon

	 EHR		  electronic health record

	 EVS		  Exercise Vital Sign

	 HR		  hazard ratio

	 ICU		  intensive care unit

	 ILD		  interstitial lung disease

	 IQR		  interquartile range

	 IRR		  incidence rate ratio

	 KPSC		  Kaiser Permanente Southern California

	 LUR		  land use regression

	 Max		  maximum

	 MCMC		  Markov Chain Monte Carlo

	 Min		  minimum

	 MLR		  multiple linear regression

	 MODIS		  Moderate Resolution Imaging 		
	 Spectroradiometer

	 NA 		  not available

	 NDVI		  Normalized Difference Vegetation Index

	 NDI		  Neighborhood Deprivation Index

	 NOx		  nitrogen oxides

	 NO2		  nitrogen dioxide

	 O3 		  ozone

	 OC 		  organic compounds

	 OR		  odds ratio

	 PASC 		  post-acute sequelae of SARS-CoV-2

	 PE		  pulmonary embolism

	 PM		  particulate matter

	 PM0.1 		  particulate matter ≤0.1 μm in 		
	 aerodynamic diameter

	 PM2.5 		  particulate matter ≤2.5 μm in 		
	 aerodynamic diameter

	 PM10 		  particulate matter ≤10 μm in 		
	 aerodynamic diameter 

	 ppb 		  parts per billion

	 ppm		  parts per million

	 RFR		  random forest regression

	 SD		  standard deviation

	 SES		  socioeconomic status

	 Tracer 1		  primary particulate matter from on-road 	
	 gasoline vehicles

	 Tracer 2 		  primary particulate matter from off-road 	
	 gasoline vehicles

	 Tracer 3 		  primary particulate matter from on-road 	
	 diesel vehicles

	 Tracer 4 		  primary particulate matter from off-road 	
	 diesel vehicles

	 Tracer 5 		  primary particulate matter from biomass 	
	 combustion, including wood burning and 	
	 wildfires

	 Tracer 6 		  primary particulate matter from food 	
	 cooking

	 Tracer 7 		  primary particulate matter from aircraft

	 Tracer 8 		  primary particulate matter from natural 	
	 gas combustion

	 Tracer 9		  primary particulate matter from other 	
	 sources

	 UCD/CIT		  University of California, Davis/California 	
	 Institute of Technology

	 US EPA   		  United States Environmental Protection 	
	 Agency

	 UVB		  ultraviolet B

	 VOC		  volatile organic compound
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