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Dr. Michael Kleeman’s 2-year study, “Ambient Air Pollution and COVID-19 
in California,” began in April 2021. Total expenditures were $495,122. The 
draft Investigators’ Report was received for review in January 2024. A re-
vised report, received in August 2024, was accepted for publication in Sep-
tember 2024. During the review process, the HEI Review Committee and 
the investigators had the opportunity to exchange comments and clarify 
issues in the Investigators’ Report and its Commentary.  Review Committee 
member Michael Jerrett did not partake in the review of the report due to 
a conflict of interest. 

This report has not been reviewed by public or private party institutions, 
including those that support the Health Effects Institute, and may not re-
flect the views of these parties; thus, no endorsements by them should be 
inferred.
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INTRODUCTION 

The COVID-19 pandemic led to unprecedented conditions 
that lent themselves to timely and novel air pollution research 
exploring important policy-related questions. As described in 
the Preface to this report, HEI issued Request for Applications 
20-1B: Air Pollution, COVID-19, and Human Health to solicit
proposals for research on new and important aspects of the
intersection between air pollution exposures and COVID-19
health outcomes. In particular, HEI was interested in studies
exploring whether people exposed to higher levels of air
pollution were at greater risk of death from COVID-19 than
were populations with lower levels of air pollution exposures
and whether potential associations between air pollution and
COVID-19 outcomes differed by race, ethnicity, or measures
of socioeconomic status.

In response to the Request for Applications, Dr. Michael 
Kleeman of the University of California, Davis, submitted an 
application to HEI titled “Ambient Air Pollution and COVID-
19 in California.” Kleeman and colleagues proposed to 
develop high-resolution estimates of chronic and short-term 
exposures to ambient air pollution across Southern California 
and to evaluate the potential associations between air pollu-
tion exposures and COVID-19 disease progression, long-term 
COVID-19 complications, and mortality due to COVID-19 by 
using electronic health records from the Kaiser Permanente 
Southern California (KPSC) health system. Additionally, the 
investigators proposed to examine the association between air 
pollution exposures and COVID-19 incidence and mortality 
across neighborhoods in Los Angeles County. HEI’s Research 
Committee recommended funding Kleeman’s study because 
the investigators were proposing methods for answering novel 
questions, had access to a unique dataset (namely, detailed 
individual-level data from the KPSC database), and planned 
to examine various air pollutant exposures (i.e., nitrogen 

dioxide [NO2], ozone [O3], particulate matter [PM] mass con-
centrations, and major sources and chemical components of 
PM ≤2.5 µm in aerodynamic diameter [PM2.5]).

This Commentary, which provides the HEI Review Com-
mittee’s independent evaluation of the study, is intended 
to aid HEI sponsors and the public by highlighting both the 
strengths and limitations of the study and putting the results 
presented in the Investigators’ Report into a broader scientific 
and regulatory context.

SCIENTIFIC BACKGROUND 

Research from toxicological and population health studies 
has demonstrated an association between air pollution expo-
sure and the risk of acute lower respiratory infections (i.e., 
bronchitis, bronchiolitis, and pneumonia), influenza, and 
respiratory syncytial virus.1,2 Research on such respiratory 
infections is complicated, however, and has yielded mixed 
findings regarding the role of air pollution.3,4

Several early epidemiological studies suggested possible 
positive associations between air pollution and COVID-19.5–7 
However, the potential for bias in those results was high, 
partly because early in the pandemic, it was difficult to obtain 
reliable data identifying individuals who were infected 
with the SARS-CoV-2 virus or seriously ill with COVID-19, 
and because accuracy and availability of testing varied by 
location and over time. Additionally, estimating ambient air 
pollution exposures was complicated by the varying degrees 
of severity and duration of COVID-19 lockdown policies and 
the atypical levels of pollutant emissions and daily mobility 
patterns associated with these policies. Results from these 
early studies were difficult to compare and generalize, given 
different study designs, approaches to estimating exposure 
(i.e., short-term versus long-term exposures), and outcome 
definitions (e.g., disease incidence, prevalence, severity, or 
case fatality rates). 

Importantly, nearly all of the initial published studies in 
this field were based on cross-sectional analyses or ecological 
study designs.5–11 They evaluated associations between area-
based estimates of pollution (i.e., averaged across counties 
rather than estimated for each individual) and area-based 
rates of disease incidence or mortality, for which individu-
al-level risks could not be derived. Three early reviews high-
lighted the need for studies to use individual-level data and 
high spatial resolution measures of air pollution, to control 
for confounding, and to assess effect modification.12–14 These 
reviews all concluded that although early evidence indicated 
that both short- and long-term exposure to air pollution could 

* A list of abbreviations and other terms appears at the end of this volume.

https://www.healtheffects.org/system/files/rfa-20-1b-air-pollution-and-covid-051920.pdf
https://www.healtheffects.org/system/files/rfa-20-1b-air-pollution-and-covid-051920.pdf
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be associated with COVID-19 outcomes, those studies had 
moderate to high overall risks of bias that precluded drawing 
conclusions about potential causal relationships.

At the time Kleeman and colleagues began their study, 
the available literature included little high-quality evidence, 
partly due to weaknesses in study designs. Kleeman’s study 
aimed to address several limitations, notably by using a large 
database of individual-level health records and developing 
air pollution exposure estimates with high spatial resolution. 
Additionally, the investigators sought to evaluate questions 
that had not yet been addressed in the scientific literature on 
air pollution and COVID-19, such as multistate health effects 
(i.e., disease progression from one state of health to another, 
such as from hospitalization to death) and long-term compli-
cations of COVID-19 (i.e., long COVID-19).

SUMMARY OF APPROACH AND METHODS

STUDY OBJECTIVES 

Kleeman and colleagues aimed to investigate the relation-
ships between ambient air pollution exposures and COVID-
19 incidence, progression, and mortality, as well as long 
COVID-19 outcomes (which pertain to a variety of debilitating 
symptoms that can occur after serious COVID-19 disease).15 
The specific aims of the study were as follows:

• Aim 1: Generate high-resolution air pollution exposure
estimates for PM2.5 mass and components, ultrafine PM
≤0.1 μm in aerodynamic diameter (PM0.1) mass, NO2, and
O3 at multiple spatial resolutions across Southern Califor-
nia.

• Aim 2: Conduct a spatial analysis by Los Angeles County
ZIP codes to quantify associations between estimated air
pollution concentrations and COVID-19 incidence and
mortality across neighborhoods, using high spatial resolu-
tion exposure estimates that include PM2.5 components.

• Aim 3: Examine COVID-19 mortality and multistate health
effects in Southern California by assessing the association
between air pollution exposures and both mortality and
the progression from COVID-19 hospitalization to more
severe disease states or recovery among a cohort of patients 
hospitalized with COVID-19 as documented in the KPSC
healthcare database.

• Aim 4: Examine long COVID-19 in Southern California by
assessing the relationship between ambient air pollutant
exposures and diagnosis of conditions associated with
long COVID-19 outcomes among the KPSC cohort.

Kleeman and colleagues obtained ZIP code–level counts of 
COVID-19 cases and deaths in Los Angeles County between 
June 19, 2020, and January 3, 2021, based on data from the 
California Department of Public Health (CDPH). For the KPSC 
cohort, the investigators used electronic health records from 
the KPSC healthcare system to create a cohort of more than 

20,000 adults across Southern California who had been diag-
nosed with COVID-19 between June 1, 2020, and January 30, 
2021, were hospitalized within 21 days of a positive COVID-
19 test, and had been KPSC members for at least 1 year. 

The investigators generated estimates of daily ambient 
PM2.5, PM2.5 components (species and sources), PM0.1, NO2, 
and O3 concentrations for 2016, 2019, and 2020 at multiple 
spatial resolutions using a chemical transport model (CTM) 
and a land use regression (LUR) model. Chronic (annual 
average) and short-term (30-day average) exposure estimates 
for the ambient air pollutants were assigned to the residential 
address of each patient in the KPSC cohort (or to each ZIP 
code in the CDPH data). 

Kleeman and colleagues used various regression modeling 
approaches to evaluate associations between both single and 
multipollutant air pollution exposures and COVID-19 out-
comes, as described in further detail in the Methods section. 
An analysis evaluating whether changes in air quality were 
associated with COVID-19 incidence, severity, and mortality 
was originally intended to be conducted alongside the gen-
eration of high-resolution ambient air pollution estimates 
specific to Aim 1. However, low numbers of COVID-19 cases 
during the lockdown period that affected air pollution pat-
terns in California (i.e., earlier in 2020) resulted in insufficient 
statistical power to conduct such an analysis.

METHODS AND STUDY DESIGN 

Study Population 

The CDPH data included counts of COVID-19 cases and 
COVID-19 deaths that occurred between June 19, 2020, and 
January 3, 2021, by ZIP code in Los Angeles County. These 
data included ZIP code–level demographic information on 
age, sex, and race/ethnicity. 

KPSC is a regional entity of Kaiser Permanente, a large 
integrated healthcare system and one of the oldest and largest 
not-for-profit health plans in the United States. KPSC has a 
racially, ethnically, and socioeconomically diverse member-
ship of 4.8 million members across nine counties in Southern 
California. The KPSC study cohort consisted of adults (aged 
18 years or older) in Southern California who had been hospi-
talized within 21 days of a clinical diagnosis of COVID-19 or 
a positive COVID-19 test that occurred between June 1, 2020, 
and January 30, 2021, and who had been KPSC members 
for at least 1 year. The KPSC data included individual-level 
information on demographic and health characteristics such 
as age, sex, race/ethnicity, body mass index (BMI), and level 
of exercise.

Patient deaths were included in the cohort data for patients 
who died 90 or fewer days after their initial hospitalization. 
Patients whose KPSC membership ended within 90 days 
after hospitalization were excluded from the cohort. In anal-
yses for Aim 3, patients who received treatment outside the 
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KPSC system were excluded. Additionally, the investigators 
defined deterioration due to COVID-19 as admission to the 
intensive care unit (ICU) or the need for ventilation. Analyses 
for Aim 4 also included patients who were discharged after 
hospitalization with COVID-19 and who were KPSC members 
for at least 1 year before and after their COVID-19 diagnosis. 

Long COVID-19 was defined using a set of clinically 
meaningful categories based on 45 diagnostic codes16 and 
grouped by organ system. Patients were considered to have 
long COVID-19 if they had received one or more cardiac, car-
diometabolic, pulmonary, or neurological diagnoses within 
3 to 12 months after discharge from their COVID-19–related 
hospitalization. 

The investigators linked both the KPSC and CDPH data 
with area-level characteristics, including data on the Neigh-
borhood Deprivation Index, income, crowding, temperature, 
relative humidity, and green space. Temperature and relative 
humidity were daily maximums (using Gridded Surface 
Meteorological data)17 and aggregated to monthly means for 
each patient’s residential address during the 1-month period 
before their COVID-19 hospitalization. An overview of the 
study populations and health outcomes of interest for each 
aim, by chapter of the Investigators’ Report, is presented in 
Commentary Table 1. 

Exposure Estimation

The investigators used a CTM to generate estimates of 
daily air pollutant exposure for PM0.1 (mass), PM2.5 (mass 
and components), NO2, and O3 in Southern California. They 
also used an LUR model to generate estimates of daily air 
pollutant exposures for PM2.5 (mass) and NO2. Daily estimates 
were averaged to reflect chronic (annual) and short-term 
(30-day) exposures, with data for specific pollutants, types of 
exposure, and years depending on the particular analysis for 
each aim (Commentary Table 1). Estimates were assigned to 
the residential address of each patient (in the KPSC cohort) or 
each ZIP code (in the CDPH data). 

Daily PM2.5 and NO2 concentrations were estimated at 
100-m resolution for the years 2019 and 2020 with an LUR
model that used a deletion/substitution/addition algorithm.18

Daily concentrations of a large number of pollutants (Com-
mentary Table 1) at 1-km resolution were produced for the
years 2016, 2019, and 2020 by using the University of Cali-
fornia, Davis/California Institute of Technology (UCD/CIT) air
quality model.19, 20 UCD/CIT is a three-dimensional CTM that
simulates the evolution of gas and particle phase pollutants
in the atmosphere based on emissions, transport, deposition,
chemical reaction, and phase change.

Main Epidemiological Analyses

To assess the associations between various air pollutant 
exposures (Commentary Table 1) and COVID-19 cases and 
COVID-19 deaths across Los Angeles County ZIP codes (Aim 
2), Kleeman and colleagues used negative binomial regression 

models. In the single-pollutant models, the investigators 
adjusted for several ZIP code–level covariates, including 
demographic variables (e.g., sex, race, age) and socioeconomic 
and health-related variables (e.g., income, smoking status, 
obesity). Associations were reported as incidence rate ratios 
(IRRs) and 95% confidence intervals (CIs), with pollutant 
exposures standardized by their interquartile range (IQR). 
The investigators also used two-pollutant models to assess 
confounding by PM2.5, NO2, and O3.

To assess the associations between various air pollutant 
exposures and both COVID-19 mortality and progression to 
more severe COVID-19 states or recovery (Aim 3), the inves-
tigators conducted two analyses. First, they used single- and 
two-pollutant Cox proportional hazards models to assess 
associations between various air pollutant exposures and 
patient deaths in the KPSC cohort. The study team adjusted 
their models for several individual and community-level 
covariates, such as BMI, level of exercise, Neighborhood 
Deprivation Index, temperature, and relative humidity, 
depending on the ambient air pollutant. Associations were 
analyzed per IQR increment in ambient air pollutant exposure 
and reported as hazard ratios (HRs) with 95% CIs.

Second, Kleeman and colleagues used a multistate survival 
model21, 22 to assess associations between PM2.5, NO2, and O3 
exposures and patient transitions to recovery or deteriora-
tion to more severe COVID-19 states or outcomes (i.e., ICU 
admission, ventilation, or death). The investigators examined 
six transition states: (1) hospitalization to deterioration (i.e., 
ICU admission or need for ventilation), (2) hospitalization 
to recovery, (3) hospitalization to death, (4) deterioration to 
recovery, (5) deterioration to death, and (6) recovery to death. 
It was assumed that the amount of time a patient existed in 
any given state did not influence their time spent in any other 
state (i.e., a Markovian assumption). The study team ran sin-
gle- and two-pollutant models adjusted for both individual- 
and community-level covariates, and they reported HRs with 
95% CIs standardized by the IQR for estimated concentrations 
of each ambient air pollutant. 

To evaluate long COVID-19 outcomes (Aim 4), the inves-
tigators used logistic regression to examine the associations 
between chronic and short-term exposures to various air 
pollutants before hospital admission and long COVID-19 
diagnoses within 3 months after hospital discharge, as well as 
within 12 months after hospital discharge. The investigators 
conducted analyses with single-, two-, and three-pollutant 
models adjusted for both individual- and community-level 
covariates. Associations were reported as odds ratios (ORs) 
with 95% CIs per IQR increment increase in exposure to 
ambient air pollutants. 

Additional Analyses

Kleeman and colleagues also evaluated associations 
between ambient air pollutant exposures and COVID-19 
deaths for potential effect modification by temperature 
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Commentary Table 1. Summary of COVID-19 Outcomes, Pollutant Exposures, and Methods by Study Aim and Chapter of 
the Investigators’ Report

Study Aim, 
Chapter

Study 
Population Health Outcomes Year Pollutant Exposures Methods

Aim 1, Chapter 3 N/A N/A 2016, 
2019, 
2020

Chronic (2016, 2019, 
2020 annual average) and 

short-term (30-day aver-
age) PM0.1, PM2.5, PM2.5 

organic compounds, PM2.5 

elemental carbon, PM2.5 

nitrate, PM2.5 source trac-
ers, NO2, O3

LUR model (PM2.5 and 
NO2 only) and CTM 

(PM0.1, PM2.5, PM2.5 com-
ponents [species and 

sources], NO2, O3)

Aim 2, Chapter 4 N = 773,374 
cases and  

N = 14,311 
deaths in Los 

Angeles County 
(CDPH)

COVID-19 cases 
and deaths

2019 Chronic (2019 annual 
average) PM0.1, PM2.5, 

PM2.5 organic compounds, 
PM2.5 elemental car-

bon, PM2.5 nitrate, PM2.5 

on-road gasoline tracer, 
NO2, O3

Negative binomial regres-
sion models with adjust-

ment for sex, race/ethnic-
ity, age >70 yr, median 

income, mean home-
owner occupancy rate, 

mean prevalence of cur-
rent smoking status, mean 

prevalence of obesity

Aim 3, Chapter 5 N = 21,415  
hospitalized 

KPSC patients

COVID-19 deaths 2016 Chronic (2016 annual 
average) PM0.1, PM2.5, 

PM2.5 organic com-
pounds, PM2.5 elemen-

tal carbon, PM2.5 nitrate, 
PM2.5 on-road gasoline 

tracer, PM2.5 on-road die-
sel tracer, PM2.5 biomass 
combustion tracer, NO2 

(CTM), O3

Cox proportional haz-
ard regression models 

with adjustment for vari-
ous demographic, socio-

economic, chronic health, 
and area-level charac-
teristics depending on 
the ambient air pollut-

ant (Investigators’ Report 
Appendix B Table B1)

Aim 3, Chapter 6 N = 15,978  
hospitalized 

KPSC patients

COVID-19 hospital-
ization, recovery, 
deterioration, and 

death

2016 Chronic (2016 annual 
average) PM2.5, NO2, O3

Multistate survival regres-
sion models with adjust-

ment for various demo-
graphic, socioeconomic, 

chronic health, and area-
level characteristics 

depending on the ambi-
ent air pollutant (Investi-
gators’ Report Appendix 

D Table D2)

Aim 4, Chapter 7 N = 12,634  
hospitalized 

KPSC patients

Cardiac, cardiomet-
abolic, pulmo-

nary, and neurolog-
ical long COVID-19 

outcomes within 
3 months to 12 

months after hospi-
tal discharge

2019, 
2020

Chronic (365-day aver-
age before hospitaliza-

tion) and short-term (30-
day average) PM0.1, PM2.5, 

PM2.5 organic compounds, 
PM2.5 elemental carbon, 
PM2.5 nitrate, PM2.5 bio-

mass combustion tracer, 
NO2, O3

Logistic regression mod-
els with adjustment for 

smoking, exercise, BMI, 
status of MediCal enroll-

ment, and area-level 
deprivation, proportion of 
people taking public tran-

sit, temperature, relative 
humidity, and greenspace

BMI = body mass index; CDPH = California Department of Public Health; CTM = chemical transport model; KPSC = Kaiser Permanente South-
ern California; LUR = land use regression; N/A = not applicable.
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and relative humidity in the KPSC cohort. The study team 
implemented Cox proportional hazard regression models 
with an interaction term between one ambient air pollutant 
and one meteorological variable. If the interaction term was 
significant (i.e., P value <0.05), stratified models were run by 
tertiles of temperature or relative humidity. Analyses of effect 
modification were conducted for both single- and two-pollut-
ant models, with associations reported as HRs with 95% CIs, 
standardized by IQR of the ambient air pollutant exposures.

SUMMARY OF KEY FINDINGS

STUDY POPULATION CHARACTERISTICS

The CDPH study population included 773,374 cases of 
COVID-19 and 14,311 COVID-19 deaths across 308 ZIP codes 
in Los Angeles County. In this study population, patients 
diagnosed with COVID-19 were on average predominantly 
female (54.6%), 70 years of age or older (93.7%), and non-
White (69.8%), whereas COVID-19 deaths occurred primarily 
in patients who were male (57.9%), less than 70 years of age 
(58.7%), and a race/ethnicity other than White (78.6%).

The KPSC cohort included 21,994 adults hospitalized 
within 21 days of a COVID-19 diagnosis or positive COVID-19 
test; however, the analysis population varied by study aim 
(Commentary Table 1). Generally, patients in this cohort 
were primarily older (median age: 64 years), male (57.7%), 
Hispanic/Latino (56.4%), and had comorbidities (mean Elix-
hauser index: 3.0). Those who deteriorated (i.e., admitted to 
the ICU or received ventilation) or died after hospitalization 
were predominantly 65 years of age or older, male, and His-
panic/Latino. Women were more likely than men to experi-

ence long COVID-19 outcomes. Patients diagnosed with long 
COVID-19 outcomes within 3 months and within 12 months 
after being discharged from the hospital had lower rates of 
exercise and higher BMIs compared to those who were not 
diagnosed with long COVID-19 over these follow-up periods; 
no other noteworthy differences were observed between these 
groups.

EXPOSURE ESTIMATION AND ASSESSMENT

The PM2.5 and NO2 exposure estimates generated using 
LUR and CTM approaches for Aim 1 produced different 
estimates, which was understandable given the differences 
in the underlying methods for each model (Investigators’ 
Report Figure 5). For example, both the LUR model and CTM 
estimated high annual average concentrations of NO2 around 
Los Angeles in 2020, but the LUR model estimates were 
higher than those produced by the CTM. Similarly, the CTM 
predicted high annual average concentrations of PM2.5 around 
Los Angeles and in the San Joaquin Valley region north of Los 
Angeles in 2020, whereas the LUR model predicted the high-
est PM2.5 concentrations in the eastern region of the state (i.e., 
San Bernardino, Riverside, and Imperial counties) in 2020. 

The median of estimated chronic exposures to various 
measures of PM mass and components, NO2, and O3 varied 
across the analyses for each aim (Commentary Table 2). The 
upper range of the median of estimated pollutant concentra-
tions across all study aims was around 13 µg/m3 for PM2.5, 22 
parts per billion (ppb) for NO2, and 66 ppb for O3. The median 
of short-term (30-day average) estimated exposures was fairly 
similar to the medians of estimated chronic exposures. Gen-
erally, many of the ambient air pollutants were moderately 
to highly correlated with one another (e.g., PM2.5 and PM0.1). 

Commentary Table 2. Ranges of the Median of Estimated Exposures to Ambient Air Pollutants Across Study Aimsa

 Ambient Air Pollutant
Range of the Median of Estimated 

Chronic Concentrations 
Range of the Median of Estimated 

Short-Term Concentrations

PM0.1 0.91–0.99 µg/m3 0.83 µg/m3 

PM2.5 9.0–13.1 µg/m3 10.3–12.9 µg/m3 

PM2.5 elemental carbon 0.47–0.58 µg/m3 0.59 µg/m3

PM2.5 organic compounds 2.07–2.53 µg/m3 2.10 µg/m3

PM2.5 nitrate 1.60–3.81 µg/m3 1.91 µg/m3

PM2.5 on-road gasoline tracer 0.24–0.30 µg/m3 N/A

PM2.5 on-road dieselb 0.07 µg/m3 N/A

PM2.5 biomass combustion 1.01–1.71 µg/m3 0.39 µg/m3

NO2 13.4–22.0 ppb 14.0–17.0 ppb 

O3 54.5–66.0 ppb 48.0 ppb 

N/A = not applicable; ppb = parts per billion.
aChronic exposures were based on annual average air pollutant concentrations across the study cohort. Short-term exposures were based on 30-day average air pol-

lutant concentrations across the study cohort.
bOnly used in one analysis (Aim 4).
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Ozone was the least correlated with the other ambient air 
pollutants and was inversely correlated with NO2. 

MAIN EPIDEMIOLOGICAL ANALYSES

Associations Between Chronic Exposures to Air 
Pollutants and COVID-19 Outcomes (Aim 2)

In the CDPH study population, single-pollutant models 
demonstrated higher risks of COVID-19 incidence and 
mortality per IQR increment increase in chronic exposure 
to several ambient air pollutants, including PM0.1, PM2.5 

(mass, elemental carbon, nitrate, and from on-road gasoline 
vehicles), and O3 (Commentary Figure 1). Generally, the mag-
nitude of the associations was slightly stronger for the risk of 
COVID-19 death compared to COVID-19 incidence. Estimates 
of PM2.5 produced by the LUR model demonstrated statisti-
cally significant associations with both COVID-19 incidence 
and mortality, whereas the estimates produced by the CTM 
demonstrated elevated associations with these outcomes but 
were not statistically significant. Risk estimates ranged in 
magnitude from 1.02 to 1.27. The strongest risk estimate was 
observed for COVID-19 death per IQR increase in estimated 
O3 concentration (IRR: 1.27; 95% CI: 1.17, 1.37). 

The two-pollutant models demonstrated elevated risks 
of COVID-19 incidence and mortality per IQR increase in 
estimated NO2 and PM2.5 concentrations, after controlling for 
O3, and elevated risks per IQR increase in estimated O3 con-
centration, after controlling for PM2.5 or NO2 (Investigators’ 
Report Figure 8). As seen in results from the single-pollutant 
models, the strongest IRRs were observed for associations 
between O3 concentrations and COVID-19 deaths (IRR [con-
trolling for NO2]: 1.42; 95% CI: 1.23, 1.56 and IRR [controlling 
for PM2.5 (CTM)]: 1.37; 95% CI: 1.26, 1.50). The associations 
between PM2.5 concentrations and both COVID-19 incidence 
and mortality were generally attenuated after controlling for 
NO2. Results were similar regardless of the exposure mod-
eling method (i.e., LUR or CTM) used to estimate PM2.5 and 
NO2 concentrations, although the associations observed using 
exposure estimates generated by the LUR model were often 
larger in magnitude compared to the associations based on 
CTM-generated exposure estimates. 

Associations Between Estimated Chronic Exposures to Air 
Pollutants and COVID-19 Progression or Death (Aim 3)

In the KPSC cohort, the investigators reported positive 
associations between COVID-19 deaths and IQR increases in 
exposures to each of the ambient air pollutants evaluated in 
single-pollutant models, except for PM2.5 organic compounds 
(although this association was nearly statistically significant), 
PM2.5 from biomass combustion, and O3 (a finding in contrast 
to the results observed in Aim 2) (Commentary Figure 2). 
Reported risk estimates were generally moderate in size, 
and the risk estimates that were strongest in magnitude were 
observed for PM2.5 (estimated by the CTM): HR: 1.12; 95% CI: 
1.06, 1.17, PM2.5 nitrate: HR: 1.12; 95% CI: 1.07, 1.17, and 

NO2: HR: 1.10; 95% CI: 1.04, 1.16. In two-pollutant models, 
the HRs generally remained elevated for associations between 
COVID-19 death and PM2.5 exposures, as did the association 
with NO2 when controlling for O3, with some fluctuations in 
magnitude (Investigators’ Report Figure 11). However,  the 
association with NO2 was attenuated in models controlling 
for PM2.5. 

In analyses of the progression to more severe COVID-19 
states, Kleeman and colleagues reported elevated HRs in sin-
gle-pollutant models of the associations between PM2.5, NO2, 
and O3 exposures (comparing the highest versus lowest quar-
tiles of exposure) and several COVID-19–related transitional 
states: the transition from hospitalization to deterioration, the 
transition from deterioration to death, and the transition from 
recovery to death (Commentary Table 3). For example, HRs 
for the associations between the highest (versus the lowest) 
quartile of exposure to each pollutant and the transition from 
COVID-19 hospitalization to deterioration were 1.16 (PM2.5), 
1.19 (NO2), and 1.21(O3). 

In two-pollutant models across multiple combinations 
of PM2.5, NO2, and O3 exposures, HRs for the transition from 
COVID-19 hospitalization to deterioration remained elevated, 
with small to modest changes in magnitude compared to the 
HRs from the single-pollutant models (Investigators’ Report 
Table 8). The results from analyses for other transition states 
demonstrated no clear pattern in the changes in direction or 
magnitude of the associations across combinations of PM2.5, 
NO2, and O3 exposures in the two-pollutant versus single- 
pollutant models.

Associations Between Estimated Air Pollutant Exposures 
and Long COVID-19 (Aim 4)

In analyses of the KPSC cohort, the investigators reported 
mixed results regarding associations between short-term 
exposures to different ambient air pollutants and specific 
types of long COVID-19 outcomes diagnosed within 3 months 
of hospital discharge (Commentary Figure 3). Elevated odds 
of several long COVID-19 outcomes were reported per IQR 
increment increase in short-term exposures to PM0.1, PM2.5 
nitrate, and O3. No statistically significant associations 
between NO2 exposure and any long COVID-19 outcome 
were observed (although the odds ratio for cardiometabolic 
long COVID-19 was elevated). Additionally, no significant 
associations between any short-term air pollutant exposures 
and neurological long COVID-19 were reported. Interestingly, 
the investigators observed a modest-sized inverse associa-
tion between estimated PM2.5 exposure and pulmonary long 
COVID-19, although this association was not robust in various 
sensitivity analyses adjusting for O3 and PM2.5 from biomass 
combustion (Investigators’ Report Table 14).

The observed associations between ambient air pollutant 
exposures and a diagnosis of long COVID-19 within 12 months 
after hospital discharge were often in the same direction (i.e., 
positive or inverse) as — but generally weaker in magnitude 



     7

HEIReview Committee

Commentary Figure 1. Associations between estimated chronic pollutant concentrations and COVID-19 incidence and 
mortality in the California Department of Public Health cohort. Results shown are incidence rate ratios and 95% 
confidence intervals estimated per interquartile range increase in 2019 annual average pollutant concentrations. The 
results are from single-pollutant models that included adjustment for neighborhood characteristics (i.e., demographic, 
socioeconomic, and chronic health factors). CTM = chemical transport model; LUR = land use regression. Source: 
Adapted from Investigators’ Report Figure 7.

Commentary Figure 2. Associations between estimated chronic pollutant concentrations and COVID-19 deaths in the Kaiser 
Permanente Southern California cohort. Results shown are hazard ratios and 95% confidence intervals estimated per interquartile 
range increase in 2016 annual average exposures. The results are from single-pollutant models that included adjustment for individual 
(e.g., body mass index, exercise) and neighborhood (e.g., Neighborhood Deprivation Index) characteristics. Source: Investigators’ Report 
Appendix C Table C3.



  Commentary on Investigators’ Report by M. Kleeman et al.

 8

HEI

than — the reported associations with long COVID-19 diagno-
sis within 3 months after discharge.

In two- or three-pollutant models, positive associations 
were only observed between short-term PM0.1 exposures and 
cardiac, cardiometabolic, and pulmonary long COVID-19 
outcomes, as well as between short-term O3 exposures and 
pulmonary long COVID-19 outcomes, diagnosed within 3 
months after hospital discharge. The association between esti-
mated PM2.5 exposure and pulmonary long COVID-19 became 
attenuated when controlling for O3 exposure in two-pollutant 
models and when controlling for both O3 and NO2 exposure 
in three-pollutant models.

Additional Analyses

Kleeman and colleagues evaluated the effect modification 
by temperature and relative humidity on the association 

between ambient air pollutant exposures and COVID-19 
deaths. In models stratified by temperature tertile, elevated 
risks of death were generally observed in the lower two 
tertiles of temperature (i.e., among patients exposed to lower 
mean monthly temperatures over the month before COVID-
19 hospitalization), and no association was observed in the 
highest tertile of temperature (i.e., among patients exposed 
to the highest mean monthly temperatures over the month 
before COVID-19 hospitalization). For example, associations 
between estimated PM2.5 exposure and COVID-19 death across 
tertiles of temperature ranged from an HR > 1.02 for tertile 1 
(monthly mean temperatures of 5.90°C to 20.29°C) to an HR 
< 1.00 in tertile 3 (monthly mean temperatures of 22.20°C 
to 44.60 °C) (Investigators’ Report Figure 12). A similar yet 
often more pronounced pattern was observed for associations 
between ambient air pollutant exposures and COVID-19 
death across tertiles of relative humidity (Investigators’ 
Report Appendix C Figure C1). These findings collectively 

Commentary Table 3. Associations Between Estimated Ambient Air Pollutant Concentrations and COVID-19 Transition 
States, Based on Single-Pollutant and Two-Pollutant Modelsa

Transition 
State

Ambient Air Pollutant

PM2.5 NO2 O3

Single- 
Pollutant 

Model
Two-Pollutant 

Model

Single-
Pollutant 

Model
Two-Pollutant 

Model

Single-
Pollutant 

Model
Two-Pollutant 

Model

Hospitaliza-
tion to deterio-
ration

1.16 
(1.12, 1.20)

NO2:
1.11 (1.05, 1.17)

O3:
1.13 (1.09, 1.17)

1.19 
(1.13, 1.24)

PM2.5:
1.07 (1.00, 1.14)

O3:
1.21 (1.15, 1.26)

1.21 
(1.13, 1.28)

PM2.5:
1.13 (1.06, 1.21)

NO2:
1.24 (1.17, 1.32)

Hospitalization 
to recovery

1.00 
(0.97, 1.03)

NO2:
0.98 (0.94, 1.03)

O3:
1.01 (0.98, 1.03)

1.01 
(0.97, 1.04)

PM2.5:
1.02 (0.97, 1.08)

O3:
1.00 (0.97, 1.04)

0.96 
(0.91, 1.00)

PM2.5:
0.96 (0.91, 1.01)

NO2:
0.96 (0.92, 1.01)

Hospitalization 
to death

0.74 
(0.51, 1.08)

NO2:
1.00 (0.58, 1.73)

O3:
0.67 (0.45, 1.00)

0.60 
(0.40, 0.90)

PM2.5:
0.62 (0.32, 1.23)

O3:
0.59 (0.38, 0.92)

1.46 
(0.87, 2.46)

PM2.5:
1.68 (0.98, 2.90)

NO2:
1.39 (0.85, 2.28)

Deterioration 
to recovery

0.96 
(0.92, 1.01)

NO2:
0.90 (0.84, 0.96)

O3:
0.96 (0.91, 1.01)

1.03 
(0.97, 1.09)

PM2.5:
1.13 (1.04, 1.24)

O3:
1.03 (0.96, 1.10)

0.98 
(0.91, 1.05)

PM2.5:
1.00 (0.92, 1.08)

NO2:
0.98 (0.91, 1.05)

Deterioration 
to death

1.11 
(1.04, 1.17)

NO2:
1.14 (1.04, 1.25)

O3:
1.10 (1.04, 1.17)

1.07 
(0.99, 1.16)

PM2.5:
0.94 (0.83, 1.06)

O3:
1.08 (1.00, 1.17)

1.08 
(0.98, 1.19)

PM2.5:
1.03 (0.94, 1.14)

NO2:
1.11 (0.99, 1.23)

Recovery to 
death

1.10 
(0.97, 1.24)

NO2:
1.21 (0.99, 1.49)

O3:
1.07 (0.93, 1.23)

1.03 
(0.86, 1.23)

PM2.5:
0.85 (0.64, 1.13)

O3:
1.03 (0.86, 1.23)

1.24 
(1.01, 1.51)

PM2.5:
1.19 (0.95,1.48)

NO2:
1.27 (0.99, 1.61)

aResults shown are hazard ratios and 95% confidence intervals. Source: Investigators’ Report Table 8.
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suggest that higher temperatures and higher relative humidity 
both weaken the association between ambient air pollutant 
exposures and COVID-19 death.

HEI REVIEW COMMITTEE’S EVALUATION

Overall, this study provided important contributions to 
understanding potential associations between chronic and 
short-term exposures to ambient air pollution and several 
COVID-19–related health outcomes. Kleeman and colleagues 
observed elevated risks of COVID-19 incidence and mortality, 
progression to more severe health states during COVID-19 
hospitalization, and long COVID-19 outcomes among patients 
with elevated estimated exposure to several air pollutants. 
The investigators also found that both temperature and rel-
ative humidity modified associations between air pollutant 
exposures and COVID-19 mortality, with stronger associa-
tions observed at lower temperature and relative humidity 
and weaker associations observed at higher temperature and 
relative humidity. Chronic exposures to PM2.5, NO2, and O3 
were all associated with progression to more severe states 
of COVID-19, whereas short-term exposures to PM0.1 were 

consistently associated with multiple types of long COVID-19 
outcomes diagnosed within 3 months after discharge from the 
hospital. 

In its independent evaluation of the Investigators’ Report, 
the HEI Review Committee noted that the comprehensive set 
of analyses supported by high-resolution exposure estimates 
and individual-level electronic health records from a large 
healthcare database was a particular strength of the study. The 
Committee also thought that the findings were interesting and 
relevant, especially those related to the progression to more 
severe states of COVID-19 and long COVID-19 outcomes, 
which are outcomes that are not susceptible to bias from 
selective testing and diagnosis, the same way that COVID-19 
incidence is. 

The Committee commented that the findings were not 
wholly generalizable, given the population of hospitalized 
individuals that composed the main study cohort and the 
widespread immunity to COVID-19 that is now prevalent in 
the overall population. The Committee also noted that the 
strength of the investigators’ conclusions, highlighting air 
pollution as a modifiable environmental risk factor that could 
be altered to improve the prognosis for patients with COVID-

Commentary Figure 3. Associations between estimated short-term pollutant concentrations and long COVID-19 outcomes diagnosed 
within 3 months after hospital discharge in the Kaiser Permanente Southern California cohort. Results shown are odds ratios and 
95% confidence intervals estimated per interquartile range increase in 30-day average pollutant exposures. The results are from single-
pollutant models that included adjustment for individual (e.g., body mass index, exercise) and neighborhood (e.g., Neighborhood 
Deprivation Index) characteristics. Source: Investigators’ Report Figure 18.
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19, might preferably be somewhat tempered in light of some 
of the limitations of this study. Overall, however, the study 
has provided valuable insights into the role of air pollution 
in exacerbating the severity of disease and adverse health 
outcomes, and these insights might be useful in the context of 
future infectious respiratory disease outbreaks.

The Committee noted several additional study strengths 
and limitations, which are highlighted below. 

EVALUATION OF STUDY DESIGN, DATASETS, AND 
ANALYTICAL APPROACHES

The HEI Review Committee acknowledged several 
strengths of the study design, such as the generation of 
high-resolution chronic and short-term exposure estimates 
for multiple ambient air pollutants and the detailed speciated 
exposure estimates for PM2.5 components, which had not been 
investigated in earlier studies on the effects of air pollution 
on COVID-19 outcomes. Another strength was assembling a 
main study cohort based on a large sample of individual-level 
electronic health records from a large integrated healthcare 
database that included data on all aspects of patient care, as 
well as many patient-specific demographic and clinical char-
acteristics. The Committee also appreciated the exploration 
of the multistate COVID-19 health outcomes, long COVID-19 
outcomes, and effect modification of observed associations by 
meteorology, all of which had not previously been rigorously 
explored in relation to air pollution and COVID-19 outcomes. 
In general, the Committee was impressed with the thorough 
examination of each aim, which was accomplished by con-
ducting a strategically designed series of analyses.

The Committee noted a few limitations related to exposure 
assignment and some analytical approaches. The Committee 
thought that the use of different exposure models (i.e., LUR 
modeling versus CTM approaches) to provide a quality check 
on the epidemiological results was sensible, although the 
influences of the differing exposure estimates on COVID-19 
outcomes were explored only in the analysis of CDPH data 
for Los Angeles County (Aim 2). It would have also been 
interesting to explore the impact of modeling differences in 
some of the analyses of the KPSC cohort. 

 The Committee also wondered whether the differences in 
temporality across analyses might have influenced the results; 
specifically, chronic exposures were defined using average 
annual exposure estimates for 2016 in some analyses but for 
2019 in other analyses. Similarly, Committee members won-
dered whether average exposures during the 30 days before 
hospitalization were the most appropriate length of time to 
define short-term exposures in the analyses of long COVID-19 
outcomes. Other studies evaluating other COVID-19 out-
comes, such as incidence, hospitalization, and death,22–24 also 
have used 30-day average estimates of ambient air pollutant 
concentrations to represent short-term exposures, although 
it is unclear whether this choice was based on biological 
mechanisms or some other reason. Future work in this area 

could benefit from including additional sensitivity analyses 
to explore the effects of such nuances in defining short-term 
exposures, as well as the choice of the year for the annual 
averages used to represent chronic or long-term exposures. 

Regarding some of the analytical methods used in this 
study, the Committee remained somewhat skeptical of the use 
of the Markovian assumption in the analysis of associations 
between air pollutant exposures and multistate health effects 
of COVID-19. This assumption presumes that the amount of 
time that a patient exists in any given state (e.g., hospitaliza-
tion, deterioration to more severe COVID-19 states) does not 
influence their time spent in any other state. However, the 
Committee noted that it might be more reasonable to assume 
that, for example, a patient’s progression from hospitalization 
to ICU admission and from ICU admission to death is, in fact, 
partially influenced by their time spent in prior states. They 
were curious about how the use of an alternative assumption 
or relaxation of the Markovian assumption (e.g., the use of 
a semi-Markov model in which the hazard depends on the 
time spent in the current state and thus affects the likelihood 
of transitioning to another state)25,26 might have changed 
the results of this analysis. Although the investigators 
acknowledged this point, they noted that they were unable 
to characterize how time spent in one state would influence 
subsequent transitions, thus choosing to make the simplifying 
Markovian assumption.

The Committee noted that the investigators’ choice of 
terminology at times created confusion in interpreting the 
study’s findings. For instance, the term “effect” was used in 
a way that could imply causality, despite being intended as a 
measure of association.27 Similarly, in analyzing associations 
between air pollutant exposures and COVID-19 incidence 
and deaths in Los Angeles County, the investigators used the 
word “synergy” to describe an independent effect rather than 
an interaction while also referring to synergy in the context of 
a statistical method for assessing multiplicative interactions 
on an additive scale.

EVALUATION OF FINDINGS AND INTERPRETATION

The Committee generally agreed with the presentation 
and interpretation of the findings in this study. Kleeman and 
colleagues reported positive associations between chronic air 
pollutant exposures and COVID-19 incidence, progression 
to more severe states of COVID-19 during hospitalization, 
and death. They also reported positive associations between 
chronic and short-term air pollutant exposures and several 
long COVID-19 outcomes (i.e., cardiac, cardiometabolic, 
and pulmonary conditions). The elevated risks of COVID-19 
incidence and mortality demonstrated by the investigators 
are largely consistent with the findings of other studies 
using the KPSC database.22,23 Other HEI-funded studies 
using individual-level data from Denmark28 and Spain29 also 
have demonstrated elevated risks of COVID-19 mortality 
associated with PM2.5 and NO2; however, those studies both 
reported inverse associations between COVID-19 mortality 
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and O3, whereas this study reported a positive association for 
this relationship in the CDPH cohort and no association in 
the KPSC cohort. The Committee noted that the inconsistency 
in the findings on the association between O3 exposure and 
COVID-19 mortality in the CDPH data versus the KPSC cohort 
was unexpected, especially given the strength of the reported 
associations between O3 exposure and other COVID-19 out-
comes examined in this study. This inconsistency might be 
due to differences in the spatial scale of the data (i.e., ZIP 
code–level data in the CDPH data versus individual-level 
data in the KPSC cohort). Interestingly, another study using 
the KPSC database also found no association between long-
term O3 exposure and COVID-19 mortality,23 and a different 
study that analyzed KPSC data reported a positive association 
between long-term O3 exposure and COVID-19 incidence.24 
However, differences in the specific air pollutants, exposure 
definitions, and COVID-19 outcomes examined across such 
studies limit the ability to directly compare their results. 

Looking beyond the COVID-19 pandemic, the investigators 
noted that their findings have broader implications for future 
infectious disease outbreaks. They indicated that their results 
suggest that reducing air pollution exposures could lead to 
decreased incidence of infections, less severe outcomes, and, 
potentially, a reduction in the development of post-acute 
conditions. The Committee agreed that the findings provide 
useful insights into the role of air pollution in adverse health 
outcomes; furthermore, the Committee concurred that their 
insights can be applied to future outbreaks involving novel 
infectious respiratory diseases and contribute useful informa-
tion regarding both the progression of such diseases to more 
severe states of illness and the development of post-acute 
conditions. The Committee noted that the results of this study 
are most relevant for severe COVID-19 outcomes, as many of 
the analyses were conducted using a cohort of hospitalized 
patients (i.e., those severely ill with COVID-19) — a limitation 
that was appropriately acknowledged by the investigators. 
Additionally, the Committee wondered how the findings 
might translate to the current general population that is either 
largely vaccinated against COVID-19 or has obtained natural 
immunity through prior disease. Kleeman and colleagues also 
discussed the generalizability of their findings to the current 
population, which has much lower rates of severe disease, as 
an area that merits further research. Nonetheless, the Commit-
tee generally thought that the results might be relevant and 
applicable in the setting of a new respiratory disease to which 
the population has no immunity.

The investigators also referred to vaccine hesitancy among 
certain populations and in some locations as a motivation 
for studying modifiable environmental risk factors (e.g., air 
pollution). Throughout the report, they noted the importance 
of preventive measures that target such modifiable exposures. 
The Committee agreed that studying the complex interplay 
between air pollution and COVID-19 is worthwhile. However, 
the role of air pollution and other environmental risk factors 
should be viewed as one component that can be targeted 
alongside multiple other public health and preventive 

measures pertinent to future infectious respiratory disease 
outbreaks, but likely not as a solution to address vaccine 
hesitancy. 

The Committee had additional thoughts on some other 
specific results of this study. The Committee appreciated the 
exploration of effect modification by temperature and relative 
humidity on the association between air pollutant exposures 
and COVID-19 mortality, which remains understudied in 
the context of air pollution and COVID-19. Kleeman and 
colleagues reported that both higher temperature and higher 
relative humidity weakened the associations between expo-
sures to most of the examined air pollutants and risk of death 
due to COVID-19. The investigators further posited that this 
finding might be biologically plausible if cooler and less 
humid conditions interfere with viral defenses in the human 
nose. The Committee noted that these results could partially 
reflect seasonality (i.e., the variations in infectious disease 
that coincide with seasonal patterns throughout the year), 
which the investigators acknowledged might have generally 
affected their findings in this analysis. Although focused on 
transmission and infection, some studies in China that have 
explored the relationship between meteorology, air pollution, 
and seasonal influenza have also shown effect modification 
by temperature and humidity, with higher temperature and 
higher humidity being associated with decreased risk of 
influenza transmission and infection.30,31 

In analyses of air pollutant exposures and multistate 
COVID-19 health effects, Kleeman and colleagues found that 
exposure to air pollution was positively associated with pro-
gression to more severe states or outcomes, such as admission 
to the ICU, death after deterioration to more severe states, and 
death after recovery and discharge from the hospital (only for 
chronic exposure to O3). The investigators noted that these 
results corroborate their earlier findings regarding COVID-19 
deaths and further underscore that the results imply that air 
pollution could affect both COVID-19 severity and a healthy 
recovery among patients discharged from the hospital. 
Although the Committee generally found these conclusions 
to be reasonable and commended the investigators on their 
exploration of multistate COVID-19 outcomes, the Committee 
wondered how greatly the use of a Markovian assumption (as 
previously described) influenced the direction and magnitude 
of the observed associations. 

The Committee found the analyses of associations between 
air pollutant exposures and long COVID-19 outcomes espe-
cially interesting. Kleeman and colleagues highlighted their 
results on long COVID-19 as potentially the most important 
findings of their study and noted that long COVID-19 con-
tinues to affect more than 6% of the US population, with 
implications for individuals and the public health system 
more broadly.32–34 Indeed, in a recent review, researchers 
described the difficulties in studying and managing long 
COVID-19, given the range and severity of health impacts 
and the ongoing questions related to biological mechanisms, 
treatment efficacy, and susceptibility.35 Other research has 
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demonstrated that long COVID-19 outcomes might be asso-
ciated with the severity of COVID-19 and the recurrence of 
infection.36 The current study provides additional evidence 
that both the incidence and severity of long COVID-19 might 
be positively associated with air pollution. 

The investigators reported elevated risks of cardiac, 
cardiometabolic, and pulmonary long COVID-19 outcomes 
associated with exposures to several air pollutants (PM0.1, 
PM2.5 nitrate, and O3). Other studies assessing the relationship 
between air pollution and long COVID-19 have also found 
positive associations between several air pollutants and long 
COVID-19.37-39 Whereas those other studies all reported posi-
tive associations between PM2.5 and long COVID-19, Kleeman 
and colleagues observed no or inverse (for pulmonary long 
COVID-19 outcomes) associations between estimated PM2.5 

exposure and long COVID-19; after sensitivity analyses, 
however, the observed inverse association between estimated 
PM2.5exposure and pulmonary long COVID-19 outcomes was 
found to be null. The investigators suggested several areas for 
future research in this context, including the exploration of 
common biological mechanisms between air pollution health 
effects and long COVID-19, examination of these relation-
ships in populations with different profiles of air pollution 
exposure, and evaluation of longer-term and ongoing air 
pollution exposures.

CONCLUSIONS

Overall, Kleeman and colleagues have provided evidence 
of associations between chronic and short-term exposures 
to air pollution and COVID-19 incidence and mortality, 
progression to more severe states of COVID-19, and long 
COVID-19 outcomes. The use of individual-level electronic 
health records from a large healthcare database and fine-scale 
exposure assessment were particular strengths of the study. 
Additionally, the investigators conducted novel analyses of 
associations between air pollutant exposures and multistate 
COVID-19 health effects and long COVID-19 outcomes and 
evaluated effect modification by temperature and relative 
humidity on associations between exposure to ambient air 
pollution and COVID-19 mortality. 

Kleeman and colleagues reported elevated risks of 
COVID-19 incidence and mortality associated with expo-
sures to PM0.1, PM2.5, some PM2.5 components, and O3 across 
neighborhoods in Los Angeles County based on data from the 
California Department of Public Health. Using a study cohort 
based on a large healthcare database, the investigators also 
reported elevated risks of COVID-19 mortality associated with 
all ambient air pollutants examined in the study, except for 
O3 and some PM components, across Southern California. 
Furthermore, PM2.5, NO2, and O3 exposures were all found 
to significantly affect the progression from hospitalization 
to more severe COVID-19 states (i.e., admission to the ICU 
or need for ventilation), whereas exposure to PM0.1 was most 
consistently associated with long COVID-19 outcomes. Cer-

tain methodological choices, such as the use of a Markovian 
assumption in the multistate health effects model, might have 
affected some of the reported findings.

Ultimately, this study presents findings from a comprehen-
sive set of analyses that contribute both new and corroborating 
evidence of associations between air pollution and COVID-19 
health outcomes. The study is the fifth and final in a series of 
HEI-funded studies investigating the association between air 
pollution and COVID-19. The designs of these studies differ 
with regard to the assessed exposures, the COVID-19 out-
comes investigated, and the analytical approaches. Nonethe-
less, the resulting body of work published thus far generally 
demonstrates elevated risks of COVID-19 mortality associated 
with several ambient air pollutants, including PM2.5 and NO2. 
Although the results of this study by Kleeman and colleagues 
might not be generalizable to the broader US population 
because the current general population has now gained some 
form of natural or vaccine-induced immunity to COVID-19, 
the findings provide valuable insights into the potential role 
of air pollution in the risk of adverse health outcomes that 
might be relevant to future infectious respiratory disease 
outbreaks. However, although air pollution is an important 
modifiable environmental risk factor, efforts to improve 
air quality as a strategy for reducing health risks should be 
viewed as one part of a compendium of public health and 
preventive measures targeting future outbreaks.
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