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DAILY LAND USE REGRESSION MODELS DEVELOPMENT 

Land use regression (LUR) model development for the HEI grant is integrated with funding from the 
California Air Resources Board (CARB) for the entire state. The following steps describe the 
development of such models and surfaces for the state of California for the pollutants nitrogen dioxide 
(NO2) and fine particulate matter (PM2.5) over the study period 2016–2020. 

Develop comprehensive data sources through multiple platforms 

The data sources were acquired and processed on multiple platforms through two major scripting 
languages. They included statewide daily traffic data for California highways, daily remote sensing 
data, daily weather data, parcel-level land use, detailed land cover data, biweekly vegetation index, 
and data on impervious surfaces and tree canopy. 

R scripting on a workstation of 128 GBs of memory and 32 TBs of storage space: In California, traffic 
detectors covered 12.52% of highway segments. We used road type category criteria of the nearest 
neighbor to derive daily roadway traffic for the entire state of California, and those derived roadway 
traffic data were converted into daily traffic surfaces of 30-m resolution for the years 2016-2020. We 
also incorporated parcel-level land use data from 58 counties for the 40 million people in California in 
our modeling process for a spatial resolution of 30 m. The parcel-level land use data included 
agricultural, residential, commercial, industrial, governmental, and institutional uses as well as open 
land, parks, and recreational facilities. We also had daily remote-sensing data from the Ozone 
Monitoring Instrument for NO2 at 25-km spatial resolution. Other potential predictors of 30-m spatial 
resolution included elevation (digital elevation model), distance to coast, distance to ports, and 
distance to highway roadways. 

Google Earth Engine JavaScript scripting: We also included comprehensive land cover data (16 
classes of 30-m resolution data, such as forest, shrubland, and developed land) from the USGS (US 
Geological Survey) NLCD (national land cover database), biweekly NDVI (normalized difference 
vegetation index; 250-m resolution) data from the NASA ( National Aeronautics and Space 
Administration) MODIS (Moderate Resolution Imaging Spectroradiometer) instrument, tree canopy 
(30-m resolution) and impervious surface (30-m resolution) data from NLCD. TBs of daily Aerosol 
Optical Depth for PM2.5 at 1-km resolution were also acquired from the NASA MAIAC (multi-angle 
implementation of atmospheric correction) algorithm. Further, we processed TBs of daily 
meteorological conditions data of 4-km resolution (called gridMet) provided by the University of 
Idaho. The data included maximum and minimum temperature, precipitation accumulation, downward 
surface shortwave radiation, wind velocity, maximum and minimum relative humidity, and specific 
humidity. 

Generate buffered distance statistics on 30-m spatial resolution potential predictors 

A series of buffered distance statistics of 50-5000 m at an interval of 50 m was created for the 
potential spatial predictors with a spatial resolution of 30 m (except for the traffic, which had buffered 
distance statistics of 50-2000 m). They included R scripting for daily traffic and parcel-level land use 
data and Google Earth Engine scripting for land cover data, % impervious surfaces, and tree canopy 
data. For each predictor (e.g., industrial land use), a total of 100 buffered distance statistics (i.e., 
covariates) were generated (40 for traffic). For all the potential predictors, including buffered and non-
buffered predictors, we generated about 2200 covariates in predicting daily pollutant concentrations of 
a pollutant. This increases the chance of identifying the optimal distance impact of a predictor and 
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helps improve model performance. However, this also creates high-dimensional covariates that are 
highly correlated. To solve this issue, we applied a data reduction strategy to reduce the number of 
covariates used in predicting pollutant concentrations. 

Apply a data reduction strategy to reduce the potential number of predictors 

To reduce the number of covariates and avoid high collinearity between them for LUR modeling, we 
first created a correlation coefficient matrix between a pollutant (a response variable) and all the 
covariates (predictors). The covariate of the highest correlation with the pollutant was first selected 
and maintained as part of the reduced dataset. Then, the correlation coefficients between the first 
selected covariate and all the remaining covariates were calculated, and those covariates with an 
absolute correlation coefficient with the first selected covariate greater than or equal to 0.9 were 
removed. The covariate of the second-highest correlation with the pollutant from the remaining 
covariates was then selected and maintained as part of the reduced dataset. This process continued 
until no covariates could be further selected and maintained in the reduced dataset (i.e., all the chosen 
covariates for the reduced dataset had a correlation coefficient smaller than 0.9 between them). After 
applying the data reduction strategy, we maintained the number of covariates in an LUR model to be 
less than 150. 

Integrate three types of air pollution measurements into a single modeling framework 

In our modeling process, we incorporated data into a single modeling framework from multiple air 
pollution measurement instruments, including those from government continuous monitoring across 
California; our fixed sites saturation monitoring1 in Los Angeles, Alameda, and Sacramento counties; 
and Google Streetcar mobile monitoring across San Francisco Bay (counties of Alameda, San 
Francisco, and San Mateo), Los Angeles County, and Central Valley regions (see: 
https://www.google.com/earth/outreach/special-projects/air-quality/). Those government continuous 
monitors are inherently sparsely distributed and do not typically have significant spatial 
autocorrelation2 in our modeling process. The fixed sites saturation monitoring in our research was 
designed through a location-allocation algorithm, and it also does not have significant spatial 
autocorrelation. The Google Streetcar mobile measurements for each region are highly spatially 
autocorrelated because of the intense sampling of air pollutants on its road network. To reduce spatial 
autocorrelation of air pollutants measured from the Google Streetcar, we applied a location-allocation 
algorithm3 to select 150 road segments for each of the four regions: Alameda and Contra Costa, San 
Francisco and San Mateo, Los Angeles, and the Central Valley. Each region had (1) 50 road segments 
selected from locations within 500 m of highways allowing truck traffic or within 500 m of major 
California ports (i.e., goods movement corridors or GMCs), (2) 50 road segments selected from 
locations within 500 m of highways not allowing truck traffic or within 300 m of major roadways (i.e., 
non-goods movement corridors or NGMCs), and (3) locations not encompassed in the first and second 
parts (i.e., control areas or CTRLs). 

To integrate three types of air quality measurements into a single modeling framework, we divided 
each type (e.g., Google Streetcar mobile monitoring) or its sub-type (e.g., Google Streetcar mobile 
monitoring in Los Angeles) of air quality monitoring data equally into 10 folds and then merged 
corresponding folds of data into a large 10-fold dataset, with each fold having an equal presentation of 
the three types and corresponding sub-types of air quality monitoring data. The equal presentation of 
10-fold data was then used in a v-fold, out-of-sample, cross-validation technique for LUR modeling. 
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Develop daily LUR models through v-fold, out-of-sample, cross-validation machine learning 
techniques 

In developing daily LUR models for the three pollutants, we aimed to develop the models at their 
finest spatial resolution of 30 m. We also aimed to identify the optimal distance of impact for a 
potential predictor, and the models needed to be able to deal with multicollinearity among predictors 
and reduce model overfit. Further, we wanted to avoid excessive predictors in the final models and 
allowed a maximum of 20 predictors (in addition to four seasons) in an LUR model. Given those 
considerations, we applied the D/S/A machine learning algorithm in modeling daily pollutant 
concentrations.4 The D/S/A machine learning algorithm is an aggressive model search algorithm, 
which iteratively generates polynomial generalized linear models based on the existing terms in the 
current “best” model and the following three steps: (1) a deletion step, which removes a term from the 
model, (2) a substitution step, which replaces one term with another, and (3) an addition step, which 
adds a term to the model. The search for the “best” estimator starts with the base model specified with 
“formula”: typically, the intercept model, except when the user requires the number of terms to be 
forced in the final model. The original sample is randomly partitioned into V equal-sized subsamples 
before searching through the statistical model space of polynomial functions. Of the V subsamples, a 
subsample is retained as the validation data for testing the model, and the remaining V-1 subsamples 
are used as training data. The cross-validation process is then repeated V times, with each of the V 
subsamples used exactly once as the validation data. 

The advantage of this method over the leave-one-out cross-validation technique is that single outliers 
have less impact on the prediction errors and, compared to repeated random sub-sampling, all 
observations in the V-folds are used for both training and validation, and each observation is used for 
validation once. With each iteration, an independent validation dataset is used to assess the 
performance of a model built using a training dataset. This technique minimizes over-fitting to the data 
to maximize the probability that the models will predict well at locations that have not been sampled. 
In addition, the D/S/A algorithm can deal with both linear and non-linear associations. However, for 
simplicity of model development and the clear interpretation of the predictors selected for a model, we 
limited the predictors to only linear terms (requiring the maximum sum of powers in each variable to 
be 1) and disallowed any interaction. 

We developed daily LUR models for NO2 and PM2.5 across California at a spatial resolution of 30 m 
(about 3 GBs of storage space required for a daily raster). To save storage space, the daily surfaces 
were built for a spatial resolution of 100 m (about 400 MBs), which still maintains the ability to 
identify the small area variations of pollutant concentrations. 

Apply the global production chain technique for model development and surface construction 

One of the approaches of the global production networks and value chains (GVCs)5 uses specialization 
to parcel out parts production to developing countries where the raw materials are acquired and then 
import those made parts back to a developed country for final product assembly and sales. Because 
most predictors had TBs of storage space (e.g., daily meteorological data and daily remote sensing 
AOD data), we applied a process like GVCs to first estimate predictor statistics separately. Next, the 
data from Google Earth Engine was processed through Google Earth Engine, and the data stored on 
campus workstations were processed through respective hardware. The individual predictor statistics 
calculated from separate platforms were then merged into a single file on another workstation and used 
in the D/S/A machine learning algorithm to develop land use models for the three pollutants. The same 
technique was used to build the air pollutant surfaces. Each of the final selected predictors was 
converted into corresponding daily surfaces through its acquisition platform and by having its model 
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regression coefficient and/or the buffered statistics information included. All the individual surfaces 
were then transferred into another workstation, and a Python script was developed to derive daily air 
pollutant surfaces for the state. We used Python scripting in generating final surfaces, because it does 
not limit memory usage in a program. Instead, it allocates as much memory as a program needs until 
the computer is out of memory. With 128 GB of memory and 32 TBs of storage space, we designed a 
Python script that generated surfaces day by day. Once a daily pollutant surface was generated, it was 
outputted into a physical location and removed from memory. This process continued until all the 
daily surfaces were generated. 

 The final developed LUR models explain 80% of the variance in NO2 concentrations (see Table A1) 
and 65% of the variance in PM2.5 concentrations (see Table A2). 

  

Table A1. Daily NO2 Model for the State of California 

Coefficient Estimate Std. Error Statistic P-Value 

Season [Fall] 41.31525359 1.27380322 32.43456526 <0.001 

Season [Spring] 37.88236015 1.27857987 29.62846605 <0.001 

Season [Summer] 37.84886991 1.30048646 29.10362477 <0.001 

Season [Winter] 42.05274917 1.25767472 33.43690420 <0.001 

Vegetation index 
(NDVI) 

-0.00018156 0.00001679 -10.81666470 <0.001 

Week [Weekend] -2.32441019 0.03671236 -63.31410266 <0.001 

Distance to ports 
(m) 

-0.00000584 0.00000024 -23.88315011 <0.001 

NO2 from OMI 7.327461e-16 5.426231e-
18 

135.03776831 <0.001 
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VKT (350 m) 0.00006147 0.00000071 86.71347177 <0.001 

Developed high 
intensity (ha) 
(5000 m)† 

0.00017474 0.00000231 75.62641371 <0.001 

Minimum relative 
humidity (%) 

-0.12444801 0.00102569 -121.3315915 <0.001 

Wind velocity at 
10 m (m/s) 

-0.93918093 0.01122917 -83.63763975 <0.001 

Roadway area 
(ha) (50 m) 

6.29933371 0.10347870 60.87565365 <0.001 

Minimum 
temperature (K) 

-0.09471578 0.00443069 -21.37721199 <0.001 

Percent 
impervious (%) 
(50 m) 

0.01781697 0.00091568 19.45772955 <0.001 

Developed low-
intensity (ha) (400 
m) 

0.01218760 0.00020753 58.72813594 <0.001 

Shrubs (ha) (3250 
m) 

-0.00009070 0.00000304 -29.82997246 <0.001 

Water (ha) (50 m) -1.93161136 0.07029621 -27.47817093 <0.001 
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Developed open 
space (ha) (50 m) 

-0.19145437 0.01075227 -17.80594787 <0.001 

Residential (ha) 
(350 m) 

-0.07513870 0.00236946 -31.71130369 <0.001 

Precipitation 
amount (mm, 
daily total) 

0.04020234 0.00378600 10.61868762 <0.001 

Wetlands (ha) 
(550 m) 

-0.02732793 0.00117326 -23.29238367 <0.001 

Observations N = 162,570 

R2 / R2 adjusted 0.796 / 0.796 

NDVI = Normalized Difference Vegetation Index; OMI = Ozone Monitoring Instrument; 
VKT = Vehicle Km Traveled. 

†The content in the first pair of parentheses is the unit of analysis, and the content in the 
second pair of parentheses is the distance of the buffer. 
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Table A2. Daily PM2.5 Model for the State of California 

Coefficient Estimate Std. Error Statistic P-Value 

Season [Fall] 90.21122937 1.04163758 86.60519819 <0.001 

Season [Spring] 88.15829132 1.04862676 84.07022866 <0.001 

Season [Summer] 89.58297126 1.06433106 84.16833306 <0.001 

Season [Winter] 90.66738819 1.02822904 88.17820237 <0.001 

AOD 0.03232083 0.00014388 224.64103333 <0.001 

Wind velocity at 
10 m (m/s) 

-0.91353396 0.00935806 -97.62006415 <0.001 

Roadway area 
(ha) (5000 m)§ 

0.00057177 0.00002919 19.58814640 <0.001 

Minimum 
temperature (K) 

-0.27202880 0.00361147 -75.32355385 <0.001 

Minimum 
relative humidity 
(%) 

-0.10749589 0.00109883 -97.82789738 <0.001 

DEM (m) -0.00355748 0.00006678 -53.26864451 <0.001 

Industrial (ha) 
(1850 m) 

0.00997592 0.00032603 30.59788510 <0.001 
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Distance to ports 
(m) 

0.00001155 0.00000027 42.05332038 <0.001 

Residential (ha) 
(850 m) 

0.00904293 0.00040292 22.44333719 <0.001 

VKT (350 m) 0.00000772 0.00000073 10.62487610 <0.001 

NDVI -0.00035052 0.00001309 -26.76815385 <0.001 

Barren land (ha) 
(3000 m) 

-0.00073488 0.00002057 -35.73111153 <0.001 

Shrubs (ha) (200 
m) 

-0.01737372 0.00087123 -19.94171252 <0.001 

Location 
category‡ 

-0.39053840 0.02256090 -17.31041212 <0.001 

Developed open 
space (ha) (4950 
m) 

-0.00007838 0.00000264 -29.65769646 <0.001 

Unknown land 
use (ha) (450 m) 

-0.04719305 0.00195384 -24.15395733 <0.001 

Agricultural (ha) 
(50 m) 

-2.88221319 0.13664311 -21.09300113 <0.001 

Observations 310720 

R2 / R2 adjusted 0.653 / 0.653 
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VKT = Vehicle Km Traveled; NDVI = Normalized Difference Vegetation Index; DEM = 
Digital Elevation Model; AOD = Aerosol Optical Depth, and monthly median values were 
used. 

‡Location category: 1 = GMC; 2 = NGMC and 3=CTRL. 

§The content in the first paired parentheses is the unit of analysis; the content in the second pair 
of parentheses is the circular buffer distance. 

  

CHEMICAL TRANSPORT MODEL 

Simulations for the year 2016 were carried out across California, using the source-oriented 
University of California, Davis-California Institute of Technology (UCD-CIT) regional air quality model.  

A moving sectional bin approach is used1 so that particle number and mass can be explicitly 
conserved, with particle diameter acting as the dependent variable.  

The emissions of particle source tracers are empirically set to be 1% of the total mass of primary 
particles emitted from each source category, so they do not significantly change the particle radius and the 
dry deposition rates. For a given source, the simulated concentration of the artificial tracer directly 
correlates with the amount of PM mass emitted from that source in that size bin. The corresponding 
number concentration (num) attributed to source i can be calculated using Equation (1) 

 

𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖×100
𝜋𝜋
6𝐷𝐷𝐷𝐷

3𝜌𝜌
 ,         (Equation 1) 

 

where traceri represents the artificial tracer mass in size bin i, Dp is the core particle diameter, and ρ is the 
core particle density. Core particle properties are calculated by removing any condensed species to better 
represent the properties of the particles when they were emitted. More details describing the source 
apportionment technique in the UCD/CIT model are provided in previous studies.2–6 

A total of 50 particle-phase chemical species are included in each size bin. Gas-phase 
concentrations of oxides of nitrogen (NOx), volatile organic compounds (VOCs), oxidants, ozone, and 
semi-volatile reaction products were predicted using the SAPRC-11 chemical mechanism.7 Phase change 
for inorganic species occurs using a kinetic treatment for gas-particle conversion8 driven towards the 
point of thermodynamic equilibrium.9 Phase change for organic species is also treated as a kinetic 
process, with vapor pressures of semi-volatile organics calculated using the 2-product model.10 

UCD/CIT model calculations were carried out using three nested model domains with 24-km, 4-
km, and 1-km horizontal spatial resolution over the study domain. Sixteen telescoping levels were used in 
the vertical dimension, with a thickness of 30 m at ground level and 1000 m at the top height of 5 km. 
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Meteorological Model 

Hourly meteorology inputs to drive the regional chemical transport model at 24-km, 4-km, and 1-
km resolution in the year 2016 were simulated using the Weather Research and Forecasting (WRF) v3.4 
model (https://www.mmm.ucar.edu/models/wrf). WRF model vertical resolution was 31 vertical layers 
from the ground level to the top pressure of 100 hPa. Initial and boundary conditions for meteorological 
simulations were taken from the North American Regional Reanalysis, which has a spatial resolution of 
32 km and a temporal resolution of 3 h. The Yonsei University (YSU) boundary layer vertical diffusion 
scheme11 and Pleim-Xiu land surface scheme12 were adopted in this study. Four-dimensional data 
assimilation was applied to anchor the model predictions to observed meteorological patterns. 

 

Emission Inventories 

The year 2016 area source and point source emission inventories used in the current study were 
provided by the CARB, with several modifications. Fugitive dust emissions were replaced by an online 
dust model13 based on the wind speed and soil moisture predicted by the WRF model. This change 
corrects the positive bias in dust emissions and PM2.5 mass noted by Hu et al.14,15 A major point source of 
unpaved road dust at MAGTFTC/MCAGCC Twentynine Palms military facility in San Bernardino 
County was converted to an area source over a 9-km2 region around the base. Food cooking emissions in 
GAI 6069 (Victorville in San Bernardino County) were reduced by a factor of three so that the per capita 
emissions from food cooking activities were similar to those in Los Angeles County.  

Area source emissions inventories provided by CARB had a spatial resolution of 4 km. Area 
source emissions with a spatial resolution of 1 km were created for major sources using spatial surrogates 
processed with the Spatial Allocator software maintained by the U.S. EPA. This software summarizes the 
spatial surrogates listed in Table A3 to downscale 4-km CARB area emissions to 1 km, accounting for 
80% of the statewide area source emissions.  

 

Table A3. Spatial Surrogates Used to Downscale 4-km CARB Area Emissions to 1 km 

Surrogate Description Data Source 
302 Industrial-related/industrial employment 

See details in reference paper: DOI 
10.1016/j.atmosenv.2020.117665 

441 Total population 
587 Off-road construction equipment 
588 On-road construction equipment 
621 Service & Commercial employment 
651 Single-family housing 
720 Farm road VMT 

California Air Resources Board (CARB) provided 

190 Forestland 
530 Residential Gas Heating 
660 Unpaved road 
100 All airports 
140 Commercial airports 
382 Military airports 
610 Secondary paved road Tiger/Line shapefile, S1400 + S1630 + S1640 
480 Primary Road Tiger/Line shapefile, S1100 + S1200 
570 Residential heating – wood California Air Resources Board (CARB) shapefile 
560 Restaurants Food service market dataset from ESRI (NACIS 7225) 

https://www.mmm.ucar.edu/models/wrf


12 
 

Mobile Source Emissions 

Three spatial surrogates were created to downscale mobile emissions to 1-km resolution, 
including gasoline mobile, diesel mobile, and tire/brake wear. Explicit traffic counts collected by the U.S. 
Highway Performance Monitoring System were used to distribute the majority of the tailpipe emissions to 
highways and other principal arterial roads. MacDonald et al.16 showed that ~70% of gasoline, and ~80% 
of diesel vehicle fuel consumption in California occurs on roads with traffic count information. Emissions 
on these roads can be represented by VMT (i.e., traffic count × road length). The remaining ~30% of 
gasoline and ~20% of diesel vehicle activity can use road length as a spatial surrogate. This approximate 
treatment for the residual portion of the tailpipe emissions was done separately for urban and rural areas 
to ensure rural emissions were not overestimated.17 90% of the unmonitored gasoline and diesel activity 
occurs in urban areas, with the balance in rural areas. The final mobile gasoline and diesel surrogates 
were calculated using the equations: 

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 70% × (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 

30% × (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 80% × (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 

20% × (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

 

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 90% × 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ + 10% ×
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ. 

 

Tire and brake wear emissions were estimated as a fixed fraction of tailpipe emissions for all engine 
types. The 2016 CARB emissions inventories18 specify that gasoline/diesel emissions account for 86% to 
14% of total mobile emissions. Thus, the tire and brake wear spatial surrogate was calculated using the 
equation: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 & 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
= 86% × (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
+ 14% × (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

 

Data sources used for traffic surrogates are listed in Table A4.  

  



13 
 

Table A4. Data Sources Used for Traffic Surrogates 

Description Data Source 
Gasoline vehicle traffic count – Average Annual Daily 
Traffic (AADT) 

https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm, accessed 
August 2020 

Diesel vehicle traffic count – Truck AADT (with three 
or more axles) 

Caltrans 

Road shapefiles https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-
file.html, accessed August 2020 

Truck road network as defined in the Freight Analysis 
Framework 

https://ops.fhwa.dot.gov/freight/freight_analysis/faf/, accessed August 2020). 

 

Soil NOx 

Candidate soil NOx emissions were included in the calculations based on a biogeochemical 
model combined with fertilizer application rates.19 Soil NOx emissions varied by month of the year, based 
on the effects of temperature on the biogeochemical cycle. Sensitivity studies carried out across years 
between 2000 and 2015 indicate that the inclusion of soil NOx emissions improves the accuracy of model 
predictions for gas-phase ozone and particulate nitrate.20 

 

Biogenic Emissions 

Biogenic emissions were generated using the Model of Emissions of Gases and Aerosols from Nature 
(MEGANv2.1) based on the meteorological fields generated using the WRF model. The gridded geo-
referenced emission factors and land cover variables required for MEGAN calculations were created 
using the MEGAN v2.1 pre-processor tool and the ESRI_GRID leaf area index, as well as plant 
functional type files available at the Community Data Portal.21 

 

Wildfires 

Daily values of wildfire emissions were generated using the Global Fire Emissions Database 
(GFED).22 Wildfire emissions were assigned the same particle size and composition distribution as 
routine biomass combustion. Typical wildfire plumes rise to 6-10 km in the atmosphere, depending on the 
intensity of the fire and the local meteorological conditions.23 Wildfire plumes were injected at the top of 
the model domain at a height of approximately 5 km in the current simulations.  

Wildfire emissions were represented using the GFED, which uses satellite images of burned 
areas, combined with vegetation maps to estimate smoke released each day during wildfires.24 Spatial 
resolution of GFED emissions inventories is 0.25 degrees. Smoke from these fires impacted cities 
throughout central California, as plumes were trapped within the Central Valley. Wildfire emissions were 
assigned particle size and composition profiles based on measurements during biomass burning 
experiments.25 

 

https://www.fhwa.dot.gov/policyinformation/hpms/shapefiles.cfm
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://ops.fhwa.dot.gov/freight/freight_analysis/faf/
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BIAS CORRECTION 

Predicted monthly averaged PM2.5 concentrations were compared to measured PM2.5 
concentrations at all available monitoring sites across the study domains for the entire duration of the 
study year 2016. Summary statistics were calculated to characterize CTM performance, including the 
correlation coefficient (R), mean fractional error, mean fractional bias (MFB), mean error, mean bias 
(MB), and root mean square error. PM2.5 predictions were moderately correlated with measured 
concentrations (R > 0.5 at more than half of the monitoring sites), the predicted concentrations exceeded 
measured concentrations by a factor of approximately 50% (average MFB=0.549). This overprediction is 
likely caused by an under-prediction of vertical mixing and dilution associated with the combination of 
updates to the WRF model v3.4 and the incorporation of non-local transport terms into the aerosol 
advection/diffusion algorithms. 

Figure A1 illustrates the distribution of R and MFB values across the 40 monitoring sites in the study 
domain. 

 

  

Figure A1. Summary of performance statistics for PM2.5 mass after bias correction. Ideal values are 
R = 1 and MFB = 0.  

 

Bias corrections were only applied to primary PM species components emitted directly into the 
atmosphere in the particle phase. Concentrations of secondary PM components predicted by the CTM 
were not adjusted, because the measurements at the limited number of speciation sites suggested that 
secondary components were not over-predicted to the same extent as total mass. Bias corrections were 
also not applied to gas-phase species, such as O3 and NO2, because these species are formed from 
chemical reactions in the atmosphere that have a non-linear dependence on atmospheric mixing in which 
increasing concentrations of some species, such as NO, can decrease concentrations of other species, such 
as O3. The spatial pattern of the gas-phase concentrations should be approximately correct in the current 
analysis, but future studies should correct the mixing in the meteorological fields and repeat the CTM 
calculations to remove bias in all species. 
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CHEMICAL TRANSPORT MODEL RESULTS 

Figure A2 shows the location of PM2.5 monitoring locations in the core of the study domain. 
Figures A3-A6 show the time series of predicted PM2.5 mass concentrations and measured concentrations 
across the counties within the study domain. Model predictions have been bias corrected using the 
methods described in previous sections. Model predictions at most locations are generally in reasonable 
agreement with measured concentrations. Overall, PM2.5 predictions have a slight positive bias.  

Figure A5c shows that predicted PM2.5 concentrations are 2-4 times higher than measured values 
at the monitoring site near Victorville, California (population 121,902) in San Bernardino County. This 
overprediction results from overestimated emissions in this urban location. Food cooking emissions were 
scaled down to match per capita values in Los Angeles County, but emissions from other area sources 
were not rescaled. Given the small population in Victorville, this isolated overprediction in PM2.5 
concentrations should not have a large influence on study results. 

Seasonal patterns in both predicted and measured PM2.5 concentrations are modest. Most 
residences in the study region use natural gas or electricity for home heating during winter months, and so 
the much higher winter concentrations associated with residential wood combustion are generally absent 
at most sites except around Bakersfield (see, for example, Figure A6a–d). Modest increases in 
concentrations are observable in winter and summer months, due to more stagnant atmospheric conditions 
compared to spring and fall months.  

 

 

Figure A2. Locations of PM2.5 mass monitoring sites around the central portion of the study 
domain, which contains the majority of the study population. Full site codes shown in subsequent 
figures are preceded by the state identification number (California=06) and the county FIPS code 
(Ventura=061, Los Angeles=037, Orange=059, San Diego=073, San Bernardino=071, Riverside=065). 
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Figure A3. Time series of predicted (solid line) vs measured (dots) monthly average PM2.5 mass 
concentrations at measurement locations in Los Angeles County. All model concentrations have been 
bias corrected. Measurement site codes correspond to names designated by the U.S. EPA monitoring 
network.  
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Figure A4. Time series of predicted (solid line) vs measured (dots) monthly average PM2.5 mass 
concentrations at measurement locations in Orange County and San Diego County. All model 
concentrations have been bias corrected. Measurement site codes correspond to names designated by the 
US EPA monitoring network. 
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Figure A5. Time series of predicted (solid line) vs measured (dots) monthly average PM2.5 mass 
concentrations at measurement locations in Riverside County and San Bernardino County. All 
model concentrations have been bias corrected. Measurement site codes correspond to names designated 
by the US EPA monitoring network. 
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Figure A6. Time series of predicted (solid line) vs measured (dots) monthly average PM2.5 mass 
concentrations at measurement locations in Kern County and Ventura County. All model 
concentrations have been bias corrected. Measurement site codes correspond to names designated by the 
US EPA monitoring network. 
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Figure A7 displays the predicted ground-level daily maximum 1-hr average O3 concentration 
averaged during each season of the year 2016. The scale in each subpanel is adjusted based on seasonal 
trends, with the highest concentrations in the summer and the lowest concentrations during the winter. O3 
concentrations generally increase moving from west to east (downwind) in the air basin. Maximum 
summer concentrations occur in the mountains north of Los Angeles, where anthropogenic NOx 
emissions mix with biogenic VOC emissions, leading to enhanced O3 formation. As noted previously, 
gas-phase concentrations were not bias corrected in the current study, and so the displayed concentrations 
may reflect errors associated with under-predicted wind speeds. 

Figure A8 illustrates the predicted ground-level PM2.5 mass exposure fields over the study domain 
during each season of the year 2016. The scale has been adjusted to show concentrations over major 
population centers. The maximum predicted PM2.5 concentrations over military airports (circled) are off 
scale, but this does not significantly affect population-weighted exposures. Maximum PM2.5 mass 
concentrations occur east of central Los Angeles in San Bernardino County. Elevated concentrations of 
PM2.5 mass are also predicted to occur along major transportation corridors connecting the Port of Los 
Angeles and the Port of Long Beach with distribution centers in San Bernardino County. 

Figure A9 illustrates the predicted ground-level PM2.5 elemental carbon (EC) exposure fields over 
the study domain during each season of the year 2016. EC is a primary pollutant directly emitted from 
diesel engines and from gas direct injection gasoline engines. The pattern of EC concentrations, therefore, 
follows major transportation corridors, with a maximum value once again occurring over distribution 
centers in San Bernardino County. Increased stagnation in the atmosphere during winter and summer 
months leads to higher EC concentrations, compared to spring and fall months. 

Figure A10 illustrates the predicted ground-level PM2.5 nitrate concentrations over the study 
domain during each season of the year 2016. Nitrate is a secondary pollutant formed from atmospheric 
chemical reactions involving precursor NOx emissions. Regional nitrate patterns are generally more 
distributed than regional patterns of EC (compare Figure A9 to Figure A10. Maximum nitrate 
concentrations generally occur over a broad area east (downwind) of central Los Angeles. Concentrations 
are generally higher in the colder winter months because nitrate can evaporate in warmer months. 

Figure A11 illustrates the predicted ground-level PM2.5 concentrations associated with primary 
particulate matter emitted from on-road diesel engines. As expected, the spatial pattern generally follows 
major transportation corridors, with a noticeable maximum at distribution centers in San Bernardino 
County. The seasonal pattern of the primary on-road diesel particulate matter is similar to the seasonal 
pattern for EC (see Figure A9).   

Ultrafine particles with a diameter less than 0.1 µm can be emitted directly (primary pollutant) or 
formed in the atmosphere through either condensation or nucleation processes (secondary pollutant). The 
PM0.1 concentration fields illustrated in Figure A12 show evidence of both pathways. Fall and winter 
concentrations are highest over distribution centers in San Bernardino County as a result of primary 
emissions from activities related to the movement of goods. PM0.1 concentrations in the spring are highest 
over the Port of Los Angeles, given the +conversion of sulfur emissions to sulfuric acid that subsequently 
partitions to the particle phase. PM0.1 concentrations during summer are highest in the foothills of the 
mountains to the north of Los Angeles, where anthropogenic and biogenic emissions mix. Overall, the 
PM0.1 mass exposure fields have the greatest seasonal variability of all the considered pollutants. 

Figure A13 illustrates O3 and PM2.5 mass concentrations in the years 2016, 2019, and 2020 to 
verify the stability of the concentration patterns over time. O3 concentrations in all years increase from 
background concentrations along the California coast to close towards peak concentrations north and east 
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of central Los Angeles. O3 concentrations in the southern portion of the San Joaquin Valley are lower 
than concentrations in surrounding regions because of the influence of fresh NOx emissions in all years. 
PM2.5 mass concentrations in all years are elevated over the populated regions of the South Coast Air 
Basin surrounding Los Angeles, with higher concentrations generally observed east of central Los 
Angeles. Hotspots are predicted around military bases, which are generally located in less populated 
locations that will not have a strong influence on the epidemiological analysis. Year-to-year differences in 
the exposure fields are caused by El Niño-Southern Oscillation weather patterns, the location of wildfires, 
and behavior shifts associated with COVID-19. 

 

 

  

  

Figure A7. Predicted O3 maximum exposure fields during four seasons in the year 2016.  All units 
are ppb. DJF = December January February; JJA = June July August>; MAM = March April May; SON 
= September October November. 
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Figure A8. Predicted PM2.5 mass exposure fields during four seasons in the year 2016.  All units are 
µg m-3. DJF = December January February; JJA = June July August; MAM = March April May; SON = 
September October November. 
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Figure A9. Predicted PM2.5 elemental carbon exposure fields during four seasons in the year 2016. 
All units are µg m-3. DJF = December January February; JJA = June July August; MAM = March April 
May; SON = September October November. 

  



24 
 

  

  

Figure A10. Predicted PM2.5 nitrate exposure fields during four seasons in the year 2016. Note the 
different maximum values in different seasons. All units are µg m-3. DJF = December January February; 
JJA = June July August; MAM = March April May; SON = September October November. 
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Figure A11. Predicted diesel primary PM2.5 mass exposure fields during four seasons in the year 
2016.  Note the different maximum values in different seasons. All units are µg m-3. DJF = December 
January February; JJA = June July August; MAM = March April May; SON = September October 
November. 
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Figure A12. Predicted PM0.1 mass exposure fields during four seasons in the year 2016. Note the 
different maximum values in different seasons. All units are µg m-3. DJF = December January February; 
JJA = June July August; MAM = March April May; SON = September October November. 
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Figure A13. Comparison of exposure concentrations in 2016, 2019, and 2020. Left column: annual 
average of daily 1-hr maximum O3 concentrations (ppb). Right column: annual average of PM2.5 mass 
concentrations (µg/m3) from all sources except biomass combustion. Results for 2016 are displayed in the 
top row; results for 2019 are displayed in the center row, and results for 2020 are displayed in the bottom 
row. 
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