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DAILY LAND USE REGRESSION MODELS DEVELOPMENT

Land use regression (LUR) model development for the HEI grant is integrated with funding from the
California Air Resources Board (CARB) for the entire state. The following steps describe the
development of such models and surfaces for the state of California for the pollutants nitrogen dioxide
(NO2) and fine particulate matter (PM2.5) over the study period 2016-2020.

Develop comprehensive data sources through multiple platforms

The data sources were acquired and processed on multiple platforms through two major scripting
languages. They included statewide daily traffic data for California highways, daily remote sensing
data, daily weather data, parcel-level land use, detailed land cover data, biweekly vegetation index,
and data on impervious surfaces and tree canopy.

R scripting on a workstation of 128 GBs of memory and 32 TBs of storage space: In California, traffic
detectors covered 12.52% of highway segments. We used road type category criteria of the nearest
neighbor to derive daily roadway traffic for the entire state of California, and those derived roadway
traffic data were converted into daily traffic surfaces of 30-m resolution for the years 2016-2020. We
also incorporated parcel-level land use data from 58 counties for the 40 million people in California in
our modeling process for a spatial resolution of 30 m. The parcel-level land use data included
agricultural, residential, commercial, industrial, governmental, and institutional uses as well as open
land, parks, and recreational facilities. We also had daily remote-sensing data from the Ozone
Monitoring Instrument for NO; at 25-km spatial resolution. Other potential predictors of 30-m spatial
resolution included elevation (digital elevation model), distance to coast, distance to ports, and
distance to highway roadways.

Google Earth Engine JavaScript scripting: We also included comprehensive land cover data (16
classes of 30-m resolution data, such as forest, shrubland, and developed land) from the USGS (US
Geological Survey) NLCD (national land cover database), biweekly NDVI (normalized difference
vegetation index; 250-m resolution) data from the NASA ( National Aeronautics and Space
Administration) MODIS (Moderate Resolution Imaging Spectroradiometer) instrument, tree canopy
(30-m resolution) and impervious surface (30-m resolution) data from NLCD. TBs of daily Aerosol
Optical Depth for PM 5 at 1-km resolution were also acquired from the NASA MAIAC (multi-angle
implementation of atmospheric correction) algorithm. Further, we processed TBs of daily
meteorological conditions data of 4-km resolution (called gridMet) provided by the University of
Idaho. The data included maximum and minimum temperature, precipitation accumulation, downward
surface shortwave radiation, wind velocity, maximum and minimum relative humidity, and specific
humidity.

Generate buffered distance statistics on 30-m spatial resolution potential predictors

A series of buffered distance statistics of 50-5000 m at an interval of 50 m was created for the
potential spatial predictors with a spatial resolution of 30 m (except for the traffic, which had buffered
distance statistics of 50-2000 m). They included R scripting for daily traffic and parcel-level land use
data and Google Earth Engine scripting for land cover data, % impervious surfaces, and tree canopy
data. For each predictor (e.g., industrial land use), a total of 100 buffered distance statistics (i.e.,
covariates) were generated (40 for traffic). For all the potential predictors, including buffered and non-
buffered predictors, we generated about 2200 covariates in predicting daily pollutant concentrations of
a pollutant. This increases the chance of identifying the optimal distance impact of a predictor and



helps improve model performance. However, this also creates high-dimensional covariates that are
highly correlated. To solve this issue, we applied a data reduction strategy to reduce the number of
covariates used in predicting pollutant concentrations.

Apply a data reduction strategy to reduce the potential number of predictors

To reduce the number of covariates and avoid high collinearity between them for LUR modeling, we
first created a correlation coefficient matrix between a pollutant (a response variable) and all the
covariates (predictors). The covariate of the highest correlation with the pollutant was first selected
and maintained as part of the reduced dataset. Then, the correlation coefficients between the first
selected covariate and all the remaining covariates were calculated, and those covariates with an
absolute correlation coefficient with the first selected covariate greater than or equal to 0.9 were
removed. The covariate of the second-highest correlation with the pollutant from the remaining
covariates was then selected and maintained as part of the reduced dataset. This process continued
until no covariates could be further selected and maintained in the reduced dataset (i.e., all the chosen
covariates for the reduced dataset had a correlation coefficient smaller than 0.9 between them). After
applying the data reduction strategy, we maintained the number of covariates in an LUR model to be
less than 150.

Integrate three types of air pollution measurements into a single modeling framework

In our modeling process, we incorporated data into a single modeling framework from multiple air
pollution measurement instruments, including those from government continuous monitoring across
California; our fixed sites saturation monitoring' in Los Angeles, Alameda, and Sacramento counties;
and Google Streetcar mobile monitoring across San Francisco Bay (counties of Alameda, San
Francisco, and San Mateo), Los Angeles County, and Central Valley regions (see:
https://www.google.com/earth/outreach/special-projects/air-quality/). Those government continuous
monitors are inherently sparsely distributed and do not typically have significant spatial
autocorrelation’ in our modeling process. The fixed sites saturation monitoring in our research was
designed through a location-allocation algorithm, and it also does not have significant spatial
autocorrelation. The Google Streetcar mobile measurements for each region are highly spatially
autocorrelated because of the intense sampling of air pollutants on its road network. To reduce spatial
autocorrelation of air pollutants measured from the Google Streetcar, we applied a location-allocation
algorithm?® to select 150 road segments for each of the four regions: Alameda and Contra Costa, San
Francisco and San Mateo, Los Angeles, and the Central Valley. Each region had (1) 50 road segments
selected from locations within 500 m of highways allowing truck traffic or within 500 m of major
California ports (i.e., goods movement corridors or GMCs), (2) 50 road segments selected from
locations within 500 m of highways not allowing truck traffic or within 300 m of major roadways (i.e.,
non-goods movement corridors or NGMCs), and (3) locations not encompassed in the first and second
parts (i.e., control areas or CTRLs).

To integrate three types of air quality measurements into a single modeling framework, we divided
each type (e.g., Google Streetcar mobile monitoring) or its sub-type (e.g., Google Streetcar mobile
monitoring in Los Angeles) of air quality monitoring data equally into 10 folds and then merged
corresponding folds of data into a large 10-fold dataset, with each fold having an equal presentation of
the three types and corresponding sub-types of air quality monitoring data. The equal presentation of
10-fold data was then used in a v-fold, out-of-sample, cross-validation technique for LUR modeling.



Develop daily LUR models through v-fold, out-of-sample, cross-validation machine learning
techniques

In developing daily LUR models for the three pollutants, we aimed to develop the models at their
finest spatial resolution of 30 m. We also aimed to identify the optimal distance of impact for a
potential predictor, and the models needed to be able to deal with multicollinearity among predictors
and reduce model overfit. Further, we wanted to avoid excessive predictors in the final models and
allowed a maximum of 20 predictors (in addition to four seasons) in an LUR model. Given those
considerations, we applied the D/S/A machine learning algorithm in modeling daily pollutant
concentrations. The D/S/A machine learning algorithm is an aggressive model search algorithm,
which iteratively generates polynomial generalized linear models based on the existing terms in the
current “best” model and the following three steps: (1) a deletion step, which removes a term from the
model, (2) a substitution step, which replaces one term with another, and (3) an addition step, which
adds a term to the model. The search for the “best” estimator starts with the base model specified with
“formula”: typically, the intercept model, except when the user requires the number of terms to be
forced in the final model. The original sample is randomly partitioned into V equal-sized subsamples
before searching through the statistical model space of polynomial functions. Of the V subsamples, a
subsample is retained as the validation data for testing the model, and the remaining V-1 subsamples
are used as training data. The cross-validation process is then repeated V times, with each of the V
subsamples used exactly once as the validation data.

The advantage of this method over the leave-one-out cross-validation technique is that single outliers
have less impact on the prediction errors and, compared to repeated random sub-sampling, all
observations in the V-folds are used for both training and validation, and each observation is used for
validation once. With each iteration, an independent validation dataset is used to assess the
performance of a model built using a training dataset. This technique minimizes over-fitting to the data
to maximize the probability that the models will predict well at locations that have not been sampled.
In addition, the D/S/A algorithm can deal with both linear and non-linear associations. However, for
simplicity of model development and the clear interpretation of the predictors selected for a model, we
limited the predictors to only linear terms (requiring the maximum sum of powers in each variable to
be 1) and disallowed any interaction.

We developed daily LUR models for NO, and PM; 5 across California at a spatial resolution of 30 m
(about 3 GBs of storage space required for a daily raster). To save storage space, the daily surfaces
were built for a spatial resolution of 100 m (about 400 MBs), which still maintains the ability to
identify the small area variations of pollutant concentrations.

Apply the global production chain technique for model development and surface construction

One of the approaches of the global production networks and value chains (GVCs)® uses specialization
to parcel out parts production to developing countries where the raw materials are acquired and then
import those made parts back to a developed country for final product assembly and sales. Because
most predictors had TBs of storage space (e.g., daily meteorological data and daily remote sensing
AOD data), we applied a process like GVCs to first estimate predictor statistics separately. Next, the
data from Google Earth Engine was processed through Google Earth Engine, and the data stored on
campus workstations were processed through respective hardware. The individual predictor statistics
calculated from separate platforms were then merged into a single file on another workstation and used
in the D/S/A machine learning algorithm to develop land use models for the three pollutants. The same
technique was used to build the air pollutant surfaces. Each of the final selected predictors was
converted into corresponding daily surfaces through its acquisition platform and by having its model



regression coefficient and/or the buffered statistics information included. All the individual surfaces
were then transferred into another workstation, and a Python script was developed to derive daily air
pollutant surfaces for the state. We used Python scripting in generating final surfaces, because it does
not limit memory usage in a program. Instead, it allocates as much memory as a program needs until
the computer is out of memory. With 128 GB of memory and 32 TBs of storage space, we designed a
Python script that generated surfaces day by day. Once a daily pollutant surface was generated, it was
outputted into a physical location and removed from memory. This process continued until all the
daily surfaces were generated.

The final developed LUR models explain 80% of the variance in NO2 concentrations (see Table A1)
and 65% of the variance in PM2.5 concentrations (see Table A2).

Table Al. Daily NO2 Model for the State of California

Coefficient Estimate Std. Error Statistic P-Value
Season [Fall] 41.31525359 1.27380322 32.43456526 <0.001
Season [Spring] 37.88236015 1.27857987 29.62846605 <0.001
Season [Summer] 37.84886991 1.30048646 29.10362477 <0.001
Season [Winter] 42.05274917 1.25767472 33.43690420 <0.001
Vegetation index -0.00018156 0.00001679 -10.81666470 <0.001
(NDVI)

Week [Weekend] -2.32441019 0.03671236 -63.31410266 <0.001
Distance to ports -0.00000584 0.00000024 -23.88315011 <0.001
(m)

NO; from OMI 7.327461e-16 5.426231e- 135.03776831 <0.001
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VKT (350 m)

Developed high
intensity (ha)
(5000 m)*

Minimum relative
humidity (%)

Wind velocity at
10 m (m/s)

Roadway area
(ha) (50 m)

Minimum
temperature (K)

Percent
impervious (%)
(50 m)

Developed low-
intensity (ha) (400
m)

Shrubs (ha) (3250
m)

Water (ha) (50 m)

0.00006147

0.00017474

-0.12444801

-0.93918093

6.29933371

-0.09471578

0.01781697

0.01218760

-0.00009070

-1.93161136

0.00000071

0.00000231

0.00102569

0.01122917

0.10347870

0.00443069

0.00091568

0.00020753

0.00000304

0.07029621

86.71347177

75.62641371

-121.3315915

-83.63763975

60.87565365

-21.37721199

19.45772955

58.72813594

-29.82997246

-27.47817093

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001



Developed open -0.19145437 0.01075227 -17.80594787 <0.001
space (ha) (50 m)

Residential (ha) -0.07513870 0.00236946 -31.71130369 <0.001
(350 m)

Precipitation 0.04020234 0.00378600 10.61868762 <0.001
amount (mm,

daily total)

Wetlands (ha) -0.02732793 0.00117326 -23.29238367 <0.001
(550 m)

Observations N=162,570

R?/ R* adjusted 0.796 / 0.796

NDVI = Normalized Difference Vegetation Index; OMI = Ozone Monitoring Instrument;
VKT = Vehicle Km Traveled.

"The content in the first pair of parentheses is the unit of analysis, and the content in the
second pair of parentheses is the distance of the buffer.



Table A2. Daily PM2.5 Model for the State of California

Coefficient Estimate Std. Error Statistic P-Value
Season [Fall] 90.21122937 1.04163758 86.60519819 <0.001
Season [Spring] 88.15829132 1.04862676 84.07022866 <0.001
Season [Summer] 89.58297126 1.06433106 84.16833306 <0.001
Season [Winter] 90.66738819 1.02822904 88.17820237 <0.001
AOD 0.03232083 0.00014388 224.64103333 <0.001
Wind velocity at -0.91353396 0.00935806 -97.62006415 <0.001
10 m (m/s)

Roadway area 0.00057177 0.00002919 19.58814640 <0.001
(ha) (5000 m)?

Minimum -0.27202880 0.00361147 -75.32355385 <0.001
temperature (K)

Minimum -0.10749589 0.00109883 -97.82789738 <0.001
relative humidity

(%)

DEM (m) -0.00355748 0.00006678 -53.26864451 <0.001
Industrial (ha) 0.00997592 0.00032603 30.59788510 <0.001

(1850 m)



Distance to ports 0.00001155 0.00000027 42.05332038 <0.001
(m)

Residential (ha) 0.00904293 0.00040292 22.44333719 <0.001
(850 m)

VKT (350 m) 0.00000772 0.00000073 10.62487610 <0.001
NDVI -0.00035052 0.00001309 -26.76815385 <0.001
Barren land (ha) -0.00073488 0.00002057 -35.73111153 <0.001
(3000 m)

Shrubs (ha) (200 -0.01737372 0.00087123 -19.94171252 <0.001
m)

Location -0.39053840 0.02256090 -17.31041212 <0.001
category*

Developed open -0.00007838 0.00000264 -29.65769646 <0.001
space (ha) (4950

m)

Unknown land -0.04719305 0.00195384 -24.15395733 <0.001
use (ha) (450 m)

Agricultural (ha) -2.88221319 0.13664311 -21.09300113 <0.001
(50 m)

Observations 310720

R?/ R? adjusted 0.653 /0.653



VKT = Vehicle Km Traveled; NDVI = Normalized Difference Vegetation Index; DEM =
Digital Elevation Model; AOD = Aerosol Optical Depth, and monthly median values were
used.

Location category: 1 = GMC; 2 = NGMC and 3=CTRL.

The content in the first paired parentheses is the unit of analysis; the content in the second pair
of parentheses is the circular buffer distance.

CHEMICAL TRANSPORT MODEL

Simulations for the year 2016 were carried out across California, using the source-oriented
University of California, Davis-California Institute of Technology (UCD-CIT) regional air quality model.

A moving sectional bin approach is used’ so that particle number and mass can be explicitly
conserved, with particle diameter acting as the dependent variable.

The emissions of particle source tracers are empirically set to be 1% of the total mass of primary
particles emitted from each source category, so they do not significantly change the particle radius and the
dry deposition rates. For a given source, the simulated concentration of the artificial tracer directly
correlates with the amount of PM mass emitted from that source in that size bin. The corresponding
number concentration (num) attributed to source i can be calculated using Equation (1)

__ tracer;x100

num; = Tooip (Equation 1)
6

where tracer; represents the artificial tracer mass in size bin i, Dp is the core particle diameter, and p is the
core particle density. Core particle properties are calculated by removing any condensed species to better
represent the properties of the particles when they were emitted. More details describing the source
apportionment technique in the UCD/CIT model are provided in previous studies.”®

A total of 50 particle-phase chemical species are included in each size bin. Gas-phase
concentrations of oxides of nitrogen (NOx), volatile organic compounds (VOCs), oxidants, ozone, and
semi-volatile reaction products were predicted using the SAPRC-11 chemical mechanism.” Phase change
for inorganic species occurs using a kinetic treatment for gas-particle conversion® driven towards the
point of thermodynamic equilibrium.’ Phase change for organic species is also treated as a kinetic
process, with vapor pressures of semi-volatile organics calculated using the 2-product model."’

UCD/CIT model calculations were carried out using three nested model domains with 24-km, 4-

km, and 1-km horizontal spatial resolution over the study domain. Sixteen telescoping levels were used in
the vertical dimension, with a thickness of 30 m at ground level and 1000 m at the top height of 5 km.
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Meteorological Model

Hourly meteorology inputs to drive the regional chemical transport model at 24-km, 4-km, and 1-
km resolution in the year 2016 were simulated using the Weather Research and Forecasting (WRF) v3.4
model (https:/www.mmm.ucar.edu/models/wrf). WRF model vertical resolution was 31 vertical layers
from the ground level to the top pressure of 100 hPa. Initial and boundary conditions for meteorological
simulations were taken from the North American Regional Reanalysis, which has a spatial resolution of
32 km and a temporal resolution of 3 h. The Yonsei University (YSU) boundary layer vertical diffusion
scheme!! and Pleim-Xiu land surface scheme'” were adopted in this study. Four-dimensional data
assimilation was applied to anchor the model predictions to observed meteorological patterns.

Emission Inventories

The year 2016 area source and point source emission inventories used in the current study were
provided by the CARB, with several modifications. Fugitive dust emissions were replaced by an online
dust model" based on the wind speed and soil moisture predicted by the WRF model. This change
corrects the positive bias in dust emissions and PM, s mass noted by Hu et al."*'> A major point source of
unpaved road dust at MAGTFTC/MCAGCC Twentynine Palms military facility in San Bernardino
County was converted to an area source over a 9-km? region around the base. Food cooking emissions in
GAI 6069 (Victorville in San Bernardino County) were reduced by a factor of three so that the per capita
emissions from food cooking activities were similar to those in Los Angeles County.

Area source emissions inventories provided by CARB had a spatial resolution of 4 km. Area
source emissions with a spatial resolution of 1 km were created for major sources using spatial surrogates
processed with the Spatial Allocator software maintained by the U.S. EPA. This software summarizes the
spatial surrogates listed in Table A3 to downscale 4-km CARB area emissions to 1 km, accounting for
80% of the statewide area source emissions.

Table A3. Spatial Surrogates Used to Downscale 4-km CARB Area Emissions to 1 km

Surrogate Description Data Source

302 Industrial-related/industrial employment

441 Total population

587 Off-road construction equipment See details in reference paper: DOIL

588 On-road construction equipment 10.1016/j.atmosenv.2020.117665

621 Service & Commercial employment

651 Single-family housing

720 Farm road VMT

190 Forestland

530 Residential Gas Heating

660 Unpaved road California Air Resources Board (CARB) provided
100 All airports

140 Commercial airports

382 Military airports

610 Secondary paved road Tiger/Line shapefile, S1400 + S1630 + S1640
480 Primary Road Tiger/Line shapefile, S1100 + S1200

570 Residential heating — wood California Air Resources Board (CARB) shapefile
560 Restaurants Food service market dataset from ESRI (NACIS 7225)
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Mobile Source Emissions

Three spatial surrogates were created to downscale mobile emissions to 1-km resolution,
including gasoline mobile, diesel mobile, and tire/brake wear. Explicit traffic counts collected by the U.S.
Highway Performance Monitoring System were used to distribute the majority of the tailpipe emissions to
highways and other principal arterial roads. MacDonald et al.'® showed that ~70% of gasoline, and ~80%
of diesel vehicle fuel consumption in California occurs on roads with traffic count information. Emissions
on these roads can be represented by VMT (i.e., traffic count x road length). The remaining ~30% of
gasoline and ~20% of diesel vehicle activity can use road length as a spatial surrogate. This approximate
treatment for the residual portion of the tailpipe emissions was done separately for urban and rural areas
to ensure rural emissions were not overestimated.'” 90% of the unmonitored gasoline and diesel activity
occurs in urban areas, with the balance in rural areas. The final mobile gasoline and diesel surrogates
were calculated using the equations:

Gasoline mobile surrogate = 70% X (AADT X road length),ormatized +

30% X (road length without traf fic counts),ormatized

Diesel mobile surrogate = 80% X (Truck AADT X road length),ormatized +

20% X (truck road length without traf fic counts)normatized

(Truck) Road length without traf fic counts = 90% X urbanroad length + 10% X
rural road length.

Tire and brake wear emissions were estimated as a fixed fraction of tailpipe emissions for all engine
types. The 2016 CARB emissions inventories'® specify that gasoline/diesel emissions account for 86% to
14% of total mobile emissions. Thus, the tire and brake wear spatial surrogate was calculated using the
equation:

Tire & brake wear surrogate
= 86% X (Diesel mobile surrogate),ormalized
+ 14% X (Gasoline mobile surrogate),ormatized

Data sources used for traffic surrogates are listed in Table A4.
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Table A4. Data Sources Used for Traffic Surrogates

Description Data Source
Gasoline vehicle traffic count — Average Annual Daily https://www.thwa.dot.gov/policyinformation/hpms/shapefiles.cfim, accessed
Traffic (AADT) August 2020
Diesel vehicle traffic count — Truck AADT (with three Caltrans
or more axles)
Road shapefiles https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-
file.html, accessed August 2020
Truck road network as defined in the Freight Analysis https://ops.thwa.dot.gov/freight/freight analysis/faf/, accessed August 2020).
Framework
Soil NOx

Candidate soil NOx emissions were included in the calculations based on a biogeochemical
model combined with fertilizer application rates.” Soil NOx emissions varied by month of the year, based
on the effects of temperature on the biogeochemical cycle. Sensitivity studies carried out across years
between 2000 and 2015 indicate that the inclusion of soil NOx emissions improves the accuracy of model
predictions for gas-phase ozone and particulate nitrate.?

Biogenic Emissions

Biogenic emissions were generated using the Model of Emissions of Gases and Aerosols from Nature
(MEGANV2.1) based on the meteorological fields generated using the WRF model. The gridded geo-
referenced emission factors and land cover variables required for MEGAN calculations were created
using the MEGAN v2.1 pre-processor tool and the ESRI_GRID leaf area index, as well as plant
functional type files available at the Community Data Portal.*’

Wildfires

Daily values of wildfire emissions were generated using the Global Fire Emissions Database
(GFED).”> Wildfire emissions were assigned the same particle size and composition distribution as
routine biomass combustion. Typical wildfire plumes rise to 6-10 km in the atmosphere, depending on the
intensity of the fire and the local meteorological conditions.”® Wildfire plumes were injected at the top of
the model domain at a height of approximately 5 km in the current simulations.

Wildfire emissions were represented using the GFED, which uses satellite images of burned
areas, combined with vegetation maps to estimate smoke released each day during wildfires.?* Spatial
resolution of GFED emissions inventories is 0.25 degrees. Smoke from these fires impacted cities
throughout central California, as plumes were trapped within the Central Valley. Wildfire emissions were
assigned particle size and composition profiles based on measurements during biomass burning
experiments.”
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BIAS CORRECTION

Predicted monthly averaged PM, s concentrations were compared to measured PM, s
concentrations at all available monitoring sites across the study domains for the entire duration of the
study year 2016. Summary statistics were calculated to characterize CTM performance, including the
correlation coefficient (R), mean fractional error, mean fractional bias (MFB), mean error, mean bias
(MB), and root mean square error. PM» 5 predictions were moderately correlated with measured
concentrations (R > 0.5 at more than half of the monitoring sites), the predicted concentrations exceeded
measured concentrations by a factor of approximately 50% (average MFB=0.549). This overprediction is
likely caused by an under-prediction of vertical mixing and dilution associated with the combination of
updates to the WRF model v3.4 and the incorporation of non-local transport terms into the aerosol
advection/diffusion algorithms.

Figure A1l illustrates the distribution of R and MFB values across the 40 monitoring sites in the study
domain.
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Figure Al. Summary of performance statistics for PM2.5 mass after bias correction. Ideal values are
R=1and MFB =0.

Bias corrections were only applied to primary PM species components emitted directly into the
atmosphere in the particle phase. Concentrations of secondary PM components predicted by the CTM
were not adjusted, because the measurements at the limited number of speciation sites suggested that
secondary components were not over-predicted to the same extent as total mass. Bias corrections were
also not applied to gas-phase species, such as O3 and NO», because these species are formed from
chemical reactions in the atmosphere that have a non-linear dependence on atmospheric mixing in which
increasing concentrations of some species, such as NO, can decrease concentrations of other species, such
as O;. The spatial pattern of the gas-phase concentrations should be approximately correct in the current
analysis, but future studies should correct the mixing in the meteorological fields and repeat the CTM
calculations to remove bias in all species.
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CHEMICAL TRANSPORT MODEL RESULTS

Figure A2 shows the location of PM; s monitoring locations in the core of the study domain.
Figures A3-A6 show the time series of predicted PM» s mass concentrations and measured concentrations
across the counties within the study domain. Model predictions have been bias corrected using the
methods described in previous sections. Model predictions at most locations are generally in reasonable
agreement with measured concentrations. Overall, PM, s predictions have a slight positive bias.

Figure ASc shows that predicted PM> s concentrations are 2-4 times higher than measured values
at the monitoring site near Victorville, California (population 121,902) in San Bernardino County. This
overprediction results from overestimated emissions in this urban location. Food cooking emissions were
scaled down to match per capita values in Los Angeles County, but emissions from other area sources
were not rescaled. Given the small population in Victorville, this isolated overprediction in PM; 5
concentrations should not have a large influence on study results.

Seasonal patterns in both predicted and measured PM, s concentrations are modest. Most
residences in the study region use natural gas or electricity for home heating during winter months, and so
the much higher winter concentrations associated with residential wood combustion are generally absent
at most sites except around Bakersfield (see, for example, Figure A6a—d). Modest increases in
concentrations are observable in winter and summer months, due to more stagnant atmospheric conditions
compared to spring and fall months.
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Figure A2. Locations of PM,s mass monitoring sites around the central portion of the study
domain, which contains the majority of the study population. Full site codes shown in subsequent
figures are preceded by the state identification number (California=06) and the county FIPS code
(Ventura=061, Los Angeles=037, Orange=059, San Diego=073, San Bernardino=071, Riverside=065).
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Figure A3. Time series of predicted (solid line) vs measured (dots) monthly average PM, s mass
concentrations at measurement locations in Los Angeles County. All model concentrations have been
bias corrected. Measurement site codes correspond to names designated by the U.S. EPA monitoring
network.
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Figure A4. Time series of predicted (solid line) vs measured (dots) monthly average PM, s mass
concentrations at measurement locations in Orange County and San Diego County. All model
concentrations have been bias corrected. Measurement site codes correspond to names designated by the
US EPA monitoring network.
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Figure AS. Time series of predicted (solid line) vs measured (dots) monthly average PM, s mass
concentrations at measurement locations in Riverside County and San Bernardino County. All
model concentrations have been bias corrected. Measurement site codes correspond to names designated
by the US EPA monitoring network.
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Figure A6. Time series of predicted (solid line) vs measured (dots) monthly average PM, s mass
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Figure A7 displays the predicted ground-level daily maximum 1-hr average O3 concentration
averaged during each season of the year 2016. The scale in each subpanel is adjusted based on seasonal
trends, with the highest concentrations in the summer and the lowest concentrations during the winter. O3
concentrations generally increase moving from west to east (downwind) in the air basin. Maximum
summer concentrations occur in the mountains north of Los Angeles, where anthropogenic NOx
emissions mix with biogenic VOC emissions, leading to enhanced O3 formation. As noted previously,
gas-phase concentrations were not bias corrected in the current study, and so the displayed concentrations
may reflect errors associated with under-predicted wind speeds.

Figure A8 illustrates the predicted ground-level PM; s mass exposure fields over the study domain
during each season of the year 2016. The scale has been adjusted to show concentrations over major
population centers. The maximum predicted PM> s concentrations over military airports (circled) are off
scale, but this does not significantly affect population-weighted exposures. Maximum PM, s mass
concentrations occur east of central Los Angeles in San Bernardino County. Elevated concentrations of
PM: s mass are also predicted to occur along major transportation corridors connecting the Port of Los
Angeles and the Port of Long Beach with distribution centers in San Bernardino County.

Figure A9 illustrates the predicted ground-level PM; s elemental carbon (EC) exposure fields over
the study domain during each season of the year 2016. EC is a primary pollutant directly emitted from
diesel engines and from gas direct injection gasoline engines. The pattern of EC concentrations, therefore,
follows major transportation corridors, with a maximum value once again occurring over distribution
centers in San Bernardino County. Increased stagnation in the atmosphere during winter and summer
months leads to higher EC concentrations, compared to spring and fall months.

Figure A10 illustrates the predicted ground-level PM; s nitrate concentrations over the study
domain during each season of the year 2016. Nitrate is a secondary pollutant formed from atmospheric
chemical reactions involving precursor NOx emissions. Regional nitrate patterns are generally more
distributed than regional patterns of EC (compare Figure A9 to Figure A10. Maximum nitrate
concentrations generally occur over a broad area east (downwind) of central Los Angeles. Concentrations
are generally higher in the colder winter months because nitrate can evaporate in warmer months.

Figure A1l illustrates the predicted ground-level PM» 5 concentrations associated with primary
particulate matter emitted from on-road diesel engines. As expected, the spatial pattern generally follows
major transportation corridors, with a noticeable maximum at distribution centers in San Bernardino
County. The seasonal pattern of the primary on-road diesel particulate matter is similar to the seasonal
pattern for EC (see Figure A9).

Ultrafine particles with a diameter less than 0.1 um can be emitted directly (primary pollutant) or
formed in the atmosphere through either condensation or nucleation processes (secondary pollutant). The
PMy .1 concentration fields illustrated in Figure A12 show evidence of both pathways. Fall and winter
concentrations are highest over distribution centers in San Bernardino County as a result of primary
emissions from activities related to the movement of goods. PMy.; concentrations in the spring are highest
over the Port of Los Angeles, given the +conversion of sulfur emissions to sulfuric acid that subsequently
partitions to the particle phase. PMy.| concentrations during summer are highest in the foothills of the
mountains to the north of Los Angeles, where anthropogenic and biogenic emissions mix. Overall, the
PM,.; mass exposure fields have the greatest seasonal variability of all the considered pollutants.

Figure A13 illustrates O3 and PM; s mass concentrations in the years 2016, 2019, and 2020 to

verify the stability of the concentration patterns over time. O3 concentrations in all years increase from
background concentrations along the California coast to close towards peak concentrations north and east
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of central Los Angeles. O3 concentrations in the southern portion of the San Joaquin Valley are lower
than concentrations in surrounding regions because of the influence of fresh NOx emissions in all years.
PM, s mass concentrations in all years are elevated over the populated regions of the South Coast Air
Basin surrounding Los Angeles, with higher concentrations generally observed east of central Los
Angeles. Hotspots are predicted around military bases, which are generally located in less populated
locations that will not have a strong influence on the epidemiological analysis. Year-to-year differences in
the exposure fields are caused by El Nifio-Southern Oscillation weather patterns, the location of wildfires,
and behavior shifts associated with COVID-19.
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Figure A7. Predicted O3 maximum exposure fields during four seasons in the year 2016. All units
are ppb. DJF = December January February; JJA = June July August>; MAM = March April May; SON
= September October November.
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(a) PM2.5SMASS DJF (b) PM2.5MASS MAM

L

Figure A8. Predicted PM, s mass exposure fields during four seasons in the year 2016. All units are
pg m-3. DJF = December January February; JJA = June July August; MAM = March April May; SON =
September October November.

22



(a) PM2.5EC DJF (b) PM2.5EC MAM

Figure A9. Predicted PM.s elemental carbon exposure fields during four seasons in the year 2016.
All units are pg m-3. DJF = December January February; JJA = June July August; MAM = March April
May; SON = September October November.
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(a) PM2.5Nitrate DJF (b) PM2.5Nitrate MAM

Figure A10. Predicted PM; s nitrate exposure fields during four seasons in the year 2016. Note the
different maximum values in different seasons. All units are pg m-3. DJF = December January February;
JJA = June July August; MAM = March April May; SON = September October November.
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(a) PM2.5 Primary Diesel DJF (b) PM2.5 Primary Diesel MAM
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Figure A11. Predicted diesel primary PM:.s mass exposure fields during four seasons in the year
2016. Note the different maximum values in different seasons. All units are ug m-3. DJF = December
January February; JJA = June July August; MAM = March April May; SON = September October
November.
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(a) PM0.1MASS DJF (b) PM0O.1MASS MAM
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Figure A12. Predicted PM,; mass exposure fields during four seasons in the year 2016. Note the
different maximum values in different seasons. All units are pg m-3. DJF = December January February;
JJA = June July August; MAM = March April May; SON = September October November.

26



OUTHCA1KM_covid19_v3_t9adj_o3max_2016avg_bias_corr_O3max_02_agg Airshed_FracBias_ WFMean_SC_1KM_2016avg_PM2.5MASS-Tracer5_02_agg_a!
-125} % -125
.175§ -175
— -225f — -225
> 275} > 275
F b €
K 2
E E 325
5 i ki
-375f -375
4250 -425
-475: s -
0 100 200 300 400 500 0 100 200 300 400 500
Lambert X (km) Lambert X (km)
O3max_2019avg_001_001_1.ps PM2.5MASS-Tracer5_2019avg_001_001_1.ps
3 ‘l S 3 K <
125 k_‘( 1‘_.__,r ————mm T -125f_ L——, T
¥ g ] S,
-175f 175}
. -225F - _225i
E O E |
> .275 > 275fmme
O R
o F o [
E -325) E  -325)
- b - b
-375f -375} l g
-425f -425[ I
oo R T e ¥ I
-475 -475
0 100 200 300 400 500 0 100 200 300 400 500
Lambert X (km) Lambert X (km)
O3max_2020avg_001_001_1.ps PM2.56MASS-Tracer5_2020avg 001_001_1.ps
t .,
-125 t‘/ L—:-a-————ﬂ-——-—"" .
’
-175
. -225p .
£ g
> 275fmem . >
£ €
-325*.
5 5
arst e £ T
-425
Y| NI, - S
0 100 200 300 400 500 0 100 200 300 400 500
Lambert X (km) Lambert X (km)

Figure A13. Comparison of exposure concentrations in 2016, 2019, and 2020. Left column: annual
average of daily 1-hr maximum Oj3 concentrations (ppb). Right column: annual average of PM» s mass
concentrations (pg/m?) from all sources except biomass combustion. Results for 2016 are displayed in the
top row; results for 2019 are displayed in the center row, and results for 2020 are displayed in the bottom

Tow.
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