COMMENTARY BY THE HEI REVIEW COMMITTEE
SUMMARIZING AND EVALUATING THE INVESTIGATORS’ REPORT

Ambient Air Pollution and All-Cause and Cause-Specific Mortality in an Analysis of Asian Cohorts
Downward and Vermuelen

Health Effects Institute
Ambient Air Pollution and All-Cause and Cause-Specific Mortality in an Analysis of Asian Cohorts

George S. Downward and Roel Vermeulen

with a Commentary by HEI’s Review Committee

Research Report 213
Health Effects Institute
Boston, Massachusetts

Trusted Science · Cleaner Air · Better Health
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About HEI</td>
<td>iii</td>
</tr>
<tr>
<td>Contributors</td>
<td>iv</td>
</tr>
<tr>
<td>COMMENTARY by the Review Committee</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>SCIENTIFIC BACKGROUND</td>
<td>2</td>
</tr>
<tr>
<td>- Study Population</td>
<td>2</td>
</tr>
<tr>
<td>- Exposure Assessment</td>
<td>2</td>
</tr>
<tr>
<td>- Outcome Assessment</td>
<td>2</td>
</tr>
<tr>
<td>- Analyses</td>
<td>2</td>
</tr>
<tr>
<td>- Summary of Results Across Cohorts</td>
<td>4</td>
</tr>
<tr>
<td>- Summary of Results Within Cohorts</td>
<td>4</td>
</tr>
<tr>
<td>HEI REVIEW COMMITTEE’S EVALUATION</td>
<td>4</td>
</tr>
<tr>
<td>- Inadequate Adjustment for Characteristics That Likely Correlate with Air Pollution and Mortality</td>
<td>6</td>
</tr>
<tr>
<td>- Heterogeneity in Effect Estimates</td>
<td>7</td>
</tr>
<tr>
<td>- Substantial Temporal and Spatial Misalignment of the Exposure Data</td>
<td>7</td>
</tr>
<tr>
<td>- Household Air Pollution Was Not Examined</td>
<td>8</td>
</tr>
<tr>
<td>- Broader Context of Air Pollution and Health In Asia</td>
<td>8</td>
</tr>
<tr>
<td>- Summary and Conclusion</td>
<td>9</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>10</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>10</td>
</tr>
<tr>
<td>Abbreviations and Other Terms</td>
<td>13</td>
</tr>
<tr>
<td>HEI Board, Committees, and Staff</td>
<td>14</td>
</tr>
</tbody>
</table>
ABOUT HEI

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent research organization to provide high-quality, impartial, and relevant science on the effects of air pollution on health. To accomplish its mission, the Institute

• Identifies the highest-priority areas for health effects research
• Competitively funds and oversees research projects
• Provides intensive independent review of HEI-supported studies and related research
• Integrates HEI’s research results with those of other institutions into broader evaluations
• Communicates the results of HEI’s research and analyses to public and private decision makers.

HEI typically receives balanced funding from the U.S. Environmental Protection Agency and the worldwide motor vehicle industry. Frequently, other public and private organizations in the United States and around the world also support major projects or research programs. HEI has funded more than 340 research projects in North America, Europe, Asia, and Latin America, the results of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, diesel exhaust, ozone, particulate matter, and other pollutants. These results have appeared in more than 260 comprehensive reports published by HEI, as well as in more than 2,500 articles in the peer-reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are committed to fostering the public–private partnership that is central to the organization. The Research Committee solicits input from HEI sponsors and other stakeholders and works with scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and oversee their conduct. The Review Committee, which has no role in selecting or overseeing studies, works with staff to evaluate and interpret the results of funded studies and related research.

All project results and accompanying comments by the Review Committee are widely disseminated through HEI’s website (www.healtheffects.org), reports, newsletters and other publications, annual conferences, and presentations to legislative bodies and public agencies.
CONTRIBUTORS

RESEARCH COMMITTEE

David A. Savitz, Chair Professor of Epidemiology, School of Public Health, and Professor of Obstetrics and Gynecology, Alpert Medical School, Brown University

David C. Dorman Professor, Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University

Christina H. Fuller Associate Professor, School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia College of Engineering

Marianne Hatzopoulou Professor, Civil and Mineral Engineering, University of Toronto, Canada, Research Chair in Transport Decarbonization and Air Quality

Amy H. Herring Sara & Charles Ayres Professor of Statistical Science and Global Health, Duke University

Heather A. Holmes Associate Professor, Department of Chemical Engineering, University of Utah

Neil Pearce Professor of Epidemiology and Biostatistics, London School of Hygiene and Tropical Medicine, United Kingdom

Ana M. Rule Assistant Professor and Director, Environmental Exposure Assessment Laboratories, Department of Environmental Health and Engineering, Johns Hopkins School of Public Health

Evangelia (Evi) Samoli Associate Professor of Epidemiology and Medical Statistics, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece

Neeta Thakur Associate Professor of Medicine, University of California, San Francisco

Gregory Wellenius Professor, Department of Environmental Health, Boston University School of Public Health

REVIEW COMMITTEE

Melissa J. Perry, Chair Dean, College of Health and Human Services, George Mason University

Sara D. Adar Associate Professor and Associate Chair, Department of Epidemiology, University of Michigan School of Public Health

Kiros T. Berhane Professor and Chair, Department of Biostatistics, Mailman School of Public Health, Columbia University

Ulrike Gehring Associate Professor, Institute for Risk Assessment Sciences, Utrecht University

Michael Jerrett Professor and Chair, Department of Environmental Health Sciences, Fielding School of Public Health, University of California--Los Angeles

Frank Kelly Henry Battcock Chair of Environment and Health and Director of the Environmental Research Group, Imperial College London School of Public Health, United Kingdom

Jana B. Milford Professor Emerita, Department of Mechanical Engineering and Environmental Engineering Program, University of Colorado--Boulder

Jennifer L. Peel Professor of Epidemiology, Colorado School of Public Health and Department of Environmental and Radiological Health Sciences, Colorado State University

Eric J. Tchetgen Tchetgen Luddy Family President’s Distinguished Professor, Professor of Statistics and Data Science, The Wharton School, University of Pennsylvania

John Volckens Professor, Department of Mechanical Engineering, Walter Scott Jr. College of Engineering, Colorado State University

HEI PROJECT STAFF

Pallavi Pant Head of Global Health (Study Oversight)

Eleanne van Vliet Staff Scientist (Study Oversight)

Hanna Boogaard Consulting Principal Scientist (Report Review and Commentary)

Yi Lu Staff Scientist (Report Review)

Kristin Eckles Senior Editorial Manager

Hope Green Editorial Project Manager

Mary Brennan Consulting Editor
INTRODUCTION

Air pollution is a major global public health risk factor. There is now broad expert consensus that exposure to air pollution causes an array of adverse health effects based on evidence from a large body of scientific literature that has grown exponentially since the mid-1990s (IARC 2016; Thurston et al. 2017; U.S. EPA 2016, 2019; WHO 2021).

Based on that evidence, the Global Burden of Disease (GBD*) project estimated that in 2019 air pollution ranked as the leading environmental risk factor for global mortality, surpassed only by high blood pressure, tobacco use, and poor diet (HEI 2020). The air pollution burden varies widely around the globe, and is highest in countries in Asia and Africa, partly due to the typically high exposure levels in those regions.

Much of what is currently known about the adverse effects of ambient air pollution comes from studies conducted in high-income regions, especially North America and Europe, with relatively low air pollution levels. Studies of long-term exposure and morbidity and mortality in low- and middle-income countries have emerged more recently. Hence, an integrated exposure–response (IER) function was developed to estimate mortality relative risks across the global exposure range and has been used by the GBD collaboration and the World Health Organization (WHO) to estimate the burden of disease attributable to particulate matter ≤2.5 μm in aerodynamic diameter (PM$_{2.5}$). The IER function combines relative risk estimates from various PM$_{2.5}$ sources, including active and passive smoking, to fill in the knowledge gap of air pollution studies in high exposure settings (Burnett et al. 2014). In the most recent GBD estimates (GBD 2019 Risk Factors Collaborators 2020), active smoking studies were excluded from the IER function to characterize risks at high exposure, because the few new studies of high air pollution conditions in Asia provided enough information so that evidence from active smoking data is no longer necessary to use. The number of studies of long-term air pollution and health in Asia, however, remains limited to date, and there is a clear research gap with respect to the true size of the ambient air pollution and mortality associations in that region.

Dr. Vermeulen’s study was funded through a special invitation based on several scientific and strategic considerations. At Utrecht University, the Netherlands, Dr. Vermeulen proposed to evaluate the association between long-term exposure to ambient air pollution and all-cause and cause-specific mortality in a pooled analysis of 23 Asian cohorts from the Asia Cohort Consortium (Aim 1). Moreover, he proposed to explore the heterogeneity in mortality risks among cohorts in the context of cultural, social, economic, or infrastructural differences between countries (Aim 2). Although the application came outside of a specific Request for Applications, it was reviewed using the same two-stage process: external reviewers evaluated the technical quality of the proposed work, followed by a discussion of strengths and limitations by the Research Committee. The HEI Research Committee recommended Dr. Vermeulen’s application for funding because of the strong design features, the large number of participating cohorts, and the availability of individual-level covariate information. In addition, they appreciated that the cohorts were already harmonized, making it a cost-efficient and low-risk proposal. Dr. Vermeulen recruited Dr. George S. Downward as the analytical project lead.

During the course of the work, there were several unforeseen setbacks regarding cohort participation for various reasons, and only six of the original 23 cohorts that had expressed interest in participating were eventually included in the analyses. Therefore, the current report is focused solely on Aim 1. Aim 2 was not further pursued due to the small number of cohorts included in the final analyses.

This Commentary provides the HEI Review Committee’s evaluation of the study. It is intended to aid the sponsors of HEI and the public by highlighting both the strengths and limitations of the study and by placing the Investigators’ Report into a broader scientific perspective.

Dr. Roel Vermeulen’s (principal investigator) 2-year study, “Long-Term Outdoor Air Pollution and Cause-Specific Mortality in a Pooled Analysis of 23 Asian Cohorts,” began in July 2018. Total expenditures were $236,000. The draft Investigators’ Report from Downward (first author) and Vermeulen was received for review in September 2021. A revised report, received in August 2022, was accepted for publication in September 2022. During the review process, the HEI Review Committee and the investigators had the opportunity to exchange comments and to clarify issues in both the Investigators’ Report and the Review Committee’s Commentary.

This document has not been reviewed by public or private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views of these parties, and no endorsements by them should be inferred.

* A list of abbreviations and other terms appears at the end of this volume.
SCIENTIFIC BACKGROUND

The study by Downward and Vermeulen assessed the association between long-term exposure to ambient air pollution and all-cause and cause-specific mortality in an analysis of six Asian cohorts, with more than 340,000 participants (see Commentary Table 1 and Commentary Figure 1). The investigators estimated exposure to PM$_{2.5}$, nitrogen dioxide (NO$_2$) at the residence of the participants for the year of recruitment using global satellite-based models. They applied single-pollutant Cox proportional hazard models to assess the association between air pollution exposure and all-cause and cause-specific mortality adjusted for important confounders, as described in more detail below.

OUTCOME ASSESSMENT

The study included both all-cause mortality and cause-specific mortality outcomes: nonaccidental, all cancer, lung cancer, cardiovascular disease, and noncancer lung disease mortality. The outcome assessment was performed by each individual cohort, typically through active follow-up or linkage to death registries. The same International Classification of Diseases (ICD) 9 or 10 coding was used for the different outcome categories across the cohorts except for the Japanese JPHC cohort. The JPHC cohort used slightly different ICD codes, particularly for cardiovascular disease. The JPHC cohort also did not have information on nonaccidental deaths.

ANALYSES

The investigators applied single-pollutant Cox proportional hazard models to assess the association between air pollution exposure and all-cause and cause-specific mortality. Models were adjusted for age (time axis), sex, recruitment year, smoking status, pack-years, body mass index, and a measure of socioeconomic status (education or employment). In addition, models adjusted for alcohol intake or diet for all cohorts except the Indian MCS and Bangladeshi HEALS cohorts. Models from one cohort (Iranian Golestan) were also adjusted for domestic fuel use — an indicator of household air pollution. That indicator was missing for the other cohorts.

The investigators calculated hazard ratios for each cohort separately and then combined using random effects meta-analysis. Associations were reported per 5- and 10-ppb increment in PM$_{2.5}$ and NO$_2$, respectively. For each cohort, the investigators tested assumptions for the Cox proportional hazard models, ran two-pollutant models, and characterized the exposure–response function using splines and exposures by quartiles. Furthermore, they assessed the robustness of the associations by conducting several sensitivity and subgroup analyses. Notably, they conducted a sensitivity analysis in which associations were adjusted for urbanicity. Moreover, they reran analyses for the subcohorts of participants alive in 1998 when global model estimates became available. Note that no meta-analyses were conducted on any of the sensitivity analysis results.
<table>
<thead>
<tr>
<th>Study Name</th>
<th>Location</th>
<th>Recruitment Years</th>
<th>Average Years of Follow-up</th>
<th>Sample Size</th>
<th>Mean Age</th>
<th>Mean Exposure PM$_{2.5}$ (µg/m3)</th>
<th>Mean Exposure NO$_2$ (ppb)</th>
<th>Correlation PM$_{2.5}$ and NO$_2$</th>
<th>Exposure Assignment</th>
<th>Outcome Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCS Mumbai, India</td>
<td>1991–1997</td>
<td>5</td>
<td>141,238</td>
<td>51</td>
<td>34</td>
<td>23</td>
<td><0.01</td>
<td>Postal code</td>
<td>Active follow-up at regular intervals</td>
<td></td>
</tr>
<tr>
<td>JPHC 11 regions in Japan</td>
<td>1990–1995</td>
<td>20</td>
<td>87,653</td>
<td>52</td>
<td>11</td>
<td>9</td>
<td>0.50</td>
<td>Residential address</td>
<td>Death registries</td>
<td></td>
</tr>
<tr>
<td>Golestan Gonbad city and surrounding rural area in Iran</td>
<td>2004–2008</td>
<td>11</td>
<td>49,982</td>
<td>52</td>
<td>32</td>
<td>9</td>
<td>0.54</td>
<td>Community level</td>
<td>Active follow-up at 1-year intervals</td>
<td></td>
</tr>
<tr>
<td>CBCSCP 7 townships in Taiwan</td>
<td>1991–1992</td>
<td>23</td>
<td>23,759</td>
<td>47</td>
<td>8</td>
<td>9</td>
<td>0.14</td>
<td>Residential address</td>
<td>Health examinations, medical records, and cancer and death registries</td>
<td></td>
</tr>
<tr>
<td>HEALS Arsalbazar in Bangladesh</td>
<td>2000–2008</td>
<td>10</td>
<td>19,990</td>
<td>37</td>
<td>58</td>
<td>7</td>
<td>0.46</td>
<td>Residential address</td>
<td>Active follow-up at 1-year intervals</td>
<td></td>
</tr>
<tr>
<td>KMCC 4 areas in the Republic of Korea</td>
<td>1993–2005</td>
<td>13</td>
<td>18,529</td>
<td>55</td>
<td>23</td>
<td>11</td>
<td>0.57</td>
<td>Residential address</td>
<td>Health insurance, cancer, and death registries</td>
<td></td>
</tr>
<tr>
<td>TOTAL 6 countries</td>
<td>1991–2008</td>
<td>5–23</td>
<td>341,151</td>
<td>37–55</td>
<td>8–58</td>
<td>7–23</td>
<td><0.01–0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commentary Table 1. Key Characteristics of the Six Asian Cohorts at Recruitment (ordered by sample size)
SUMMARY OF RESULTS ACROSS COHORTS

- The meta-analytical summary effect estimates documented no association between long-term exposure to ambient PM$_{2.5}$ and all-cause mortality and cause-specific mortality, except for a positive association with cardiovascular mortality (Commentary Figure 2). The combined estimate for cardiovascular mortality was 1.05 per 5-µg/m3 increment and was borderline significant (95% confidence interval 0.99–1.12).

- For ambient NO$_2$, the combined estimates showed positive associations for all mortality outcomes, in particular the cancer outcomes. The combined estimate for all-cancer and lung cancer mortality were 1.18 and 1.13 per 10-ppb increment, respectively; both estimates were statistically significant. Combined estimates were heavily driven by positive associations from a single cohort (see below).

SUMMARY OF RESULTS WITHIN COHORTS

- The two largest cohorts — the Indian MCS and the Japanese JPHC — and the smaller Taiwanese CBCSCP cohort reported positive associations between ambient PM$_{2.5}$ and cardiovascular mortality (Commentary Table 2). Those associations were statistically significant and fairly robust to further adjustment for urbanicity. The other three cohorts did not find an association with cardiovascular mortality.

- For ambient NO$_2$, the combined estimates for cancer outcomes were heavily influenced by the positive association in the Japanese JPHC cohort. This cohort carried greater than 90% of the weight in meta-analyses. Most other cohorts documented no association with cancer outcomes.

- Large heterogeneity of the findings was reported across the cohorts, with null, negative, or positive findings, with sometimes no apparent pattern (Commentary Table 2). The Iranian Golestan and Korean KMCC cohorts consistently reported null findings. Findings from the Bangladeshi HEALS cohort were uninformative, due partly to the large confidence intervals and minimal exposure contrast. Hence, this cohort carried the lowest weight in the meta-analyses (often below 1%).

HEI REVIEW COMMITTEE’S EVALUATION

In its independent review of the study, the HEI Review Committee thought the research was well motivated and addressed a clear research gap. There are few long-term air pollution and health studies in Asia, and additional studies are urgently needed. This report adds to the overall knowledge base on health outcomes associated with air pollution in Asia. Although the number of cohorts participating was lower than anticipated when the study was funded, the inclusion of six harmonized cohorts ensured a large sample size.

In summary, the study documented large heterogeneity of the findings across the individual cohorts, with no association between long-term exposure to ambient PM$_{2.5}$ and all-cause mortality and cause-specific mortality in meta-analyses of all cohorts combined, except for a borderline significant positive association with cardiovascular mortality. Several individual cohorts (i.e., Indian MCS, Japanese JPHC, and Taiwanese...
CBCSCP), however, did display positive significant associations between ambient PM$_{2.5}$ and cardiovascular mortality. For ambient NO$_2$, the combined estimates showed positive associations for all mortality outcomes, in particular the cancer outcomes, although estimates were heavily driven by positive associations from the Japanese JPHC cohort.

The Committee noted several strengths of the research. First, it recognized the benefits of leveraging the Asia Cohort Consortium to study health effects of ambient air pollution. The study included data from six cohorts, representing more than 340,000 adult participants, which is a large sample size. The data were already harmonized and included both all-cause mortality and cause-specific mortality outcomes. There were also data available for several individual-level lifestyle factors, such as smoking status and intensity, body mass index, and diet, and the analyses were adjusted accordingly. As such, the study provides a useful model for future applications of harmonized cohort data to study the effects of air pollution on human health.

Second, the Committee appreciated the uniform assessment of long-term PM$_{2.5}$ and NO$_2$ using state-of-the-art exposure estimation methods. Exposures to PM$_{2.5}$ and NO$_2$ were estimated at a reasonably high spatial resolution — residential address level for most of the cohorts — and took advantage of global satellite-based models. The existing monitoring networks have limited spatial coverage with typically few stations in suburban and rural locations, particularly in low- and middle-income countries. According to the 2022 WHO Air Quality database, 40% of countries have no ground-level PM monitors. Ground-based monitor data are even sparser for NO$_2$, with 62% of countries with no monitors (WHO 2022). In addition, most existing monitoring networks have insufficient density to capture small-scale (within-city) variation of air pollution, which can be substantial for certain pollutants, such as NO$_2$.

Recent developments in satellite-based remote sensing and other exposure methods and models offer new ways to
provide air pollution estimates that cover large areas in a country, whole countries, or even multiple countries, with a sufficiently high degree of spatial resolution. The global satellite-based models applied in this study allowed exposure to be estimated for a large urban and rural population in six Asian countries. The Committee also thought the analyses were generally straightforward and clearly presented in the report. For example, the Committee appreciated the various sensitivity and subgroup analyses, including the additional adjustment for urbanicity in a sensitivity analysis.

Although the Review Committee broadly agreed with the investigators’ conclusions, it identified limitations detailed below that should be considered when interpreting the results.

INADEQUATE ADJUSTMENT LIKELY FOR CHARACTERISTICS THAT CORRELATE WITH AIR POLLUTION AND MORTALITY

The Committee was concerned that residual confounding was likely in the main analyses due to inadequate adjustment for characteristics that correlate with air pollution and mortality, most notably socioeconomic status and urbanicity. These characteristics are likely related to both exposure and health, and difficult to fully capture based on the available indicators. Findings sometimes differed for models that adjusted for urbanicity as compared to those that did not (see Commentary Table 2). The Committee thought the authors should have adjusted for urbanicity in their main models instead of adjusting for urbanicity in a sensitivity analysis, even if there was some modest collinearity between air pollution estimates and urbanicity in some cohorts, as documented by the investigators. The Committee does appreciate the tables in the main text that compare the results with and without the urbanicity variable, additions made in response to earlier Committee comments.

The need for adjustment for urbanicity was also shown in the recent Prospective Urban and Rural Epidemiology (PURE) study (Hystad et al. 2020). The primary analyses adjusted for an indicator variable (urban or rural location). Models that further adjusted for “unmeasured differences between urban and rural areas within centers, as well as differences across centres” resulted in notable different results, especially for mortality. For example, the negative association between PM$_{2.5}$ and all-cause mortality flipped to a positive association.

In the PURE study a notable negative association was also observed between markers of healthcare (hospital admissions or medication use) and deaths; this result suggests that poorer access to healthcare could be responsible, at least partly, for the higher mortality rates in low- and middle-income countries. Socioeconomic status and access to healthcare are closely related in many settings (Dagenais et al. 2020).

The current study adjusted for socioeconomic status in a fairly basic way with the use of an individual socioeconomic status indicator (i.e., education or employment) as a fixed covariate effect in the health model of the individual cohorts. The Committee thought that more effort to capture individual or area-level socioeconomic status in the study would have been beneficial.
HETEROGENEITY IN EFFECT ESTIMATES

The Committee noted that although the same exposure assessment and statistical methods were used, large heterogeneity of the findings was reported across the cohorts, with null, negative, or positive findings, with sometimes no apparent pattern. Some heterogeneity of the findings is expected, given the wide diversity of the six Asian cohorts. Heterogeneity is likely due, for example, to differences in populations, with different exposure levels, pollution sources and mixtures, time periods, age structure and follow-up times, socioeconomic status, urban–rural status, health status, access to healthcare, and outcome misclassification. Some specific differences across the cohorts were particularly striking, such as the low exposure contrast (Indian MCS and Bangladeshi HEALS), the low correlation between PM$_{2.5}$ and NO$_2$ (Indian MCS and Taiwan CBCSCP), the large percentage of illiterate population (Iranian Golestan), the short follow-up time (Indian MCS), the young study population (Bangladeshi HEALS), the rural location (Bangladeshi HEALS), particularly urban location (Indian MCS), and the low percentage of number of deaths, in particular for cancer (Indian MCS). Those and other differences could have contributed to the large heterogeneity of the findings observed in the current study.

In the systematic reviews underpinning the 2021 WHO Air Quality Guidelines for long-term exposure to PM$_{2.5}$ and NO$_2$, a high degree of heterogeneity of the findings was also observed; this result was expected given that studies were included from across the globe (Chen and Hoek 2020; Huangfu and Atkinson 2020). Most of the heterogeneity in those studies, however, was due to heterogeneity in the magnitude of the positive association, not in the direction of the association (negative or positive). In particular, the negative associations in the current study are puzzling and run counter to the evidence base that documents clear evidence that long-term exposure to ambient air pollution is associated with increased mortality.

In the current study, a thorough evaluation of heterogeneity in mortality risks between cohorts in the context of cultural, social, economic, or infrastructural differences between countries was originally planned but was not pursued due to the small number of cohorts included in the final analyses. Although that decision is understandable given the data available to the investigators, the Committee would have been interested in better understanding potential sources of heterogeneity in the findings and noted that many questions have been unresolved.

Although the analyses were straightforward and clearly presented in the report, the study could have benefitted from a more detailed discussion and interpretation of all results, including the various sensitivity and subgroup analyses. For example, the added exposure–response function analysis was not tied together with the predetermined categorical analysis. Also, the Cox proportional hazards assumptions were violated for PM$_{2.5}$ (Indian MCS) and NO$_2$ (Japanese JPHC) for some mortality outcomes; the implications of which were not thoroughly addressed by the investigators. Also, an evaluation of potential selection bias due to the loss of several key cohorts from their original plans would have been useful. These and other issues limit what can be inferred from this study.

SUBSTANTIAL TEMPORAL AND SPATIAL MISALIGNMENT OF THE EXPOSURE DATA

The Committee had concerns about the exposure assessment approach because of the substantial temporal and spatial misalignment of the data. The study relies on an historical exposure assessment at recruitment that can be temporally misaligned with the health data by 5 to 23 years, depending on the cohort. Several issues of concern with the exposure assessment were noted by the Committee. First, the back extrapolations used for the participants before 1998 when the global model estimates became available were generally consistent with the findings from the full cohorts, which was reassuring. Second, information on residential addresses after recruitment (i.e., moving history) was not available. Hence, residential mobility was not incorporated in the exposure assessment. Residential mobility can be substantial, especially in some low-and middle-income regions that are undergoing rapid urbanization in recent decades with population migration from rural to urban regions. Third, for a few cohorts (Indian MCS and Iranian Golestan) aggregated residential address data were used since individual address data were unavailable. That might be a particular issue for a pollutant such as NO$_2$, which is characterized by greater spatial variability than PM$_{2.5}$ and is influenced heavily by local emission sources. PM$_{2.5}$, in contrast, has long-range and secondary components and thus varies primarily at a regional level (Cyrys et al. 2012; Eeftens et al. 2012). More broadly, although the study applied state-of-the-art exposure estimation methods with validated models, model performance differed regionally, with poorer PM$_{2.5}$ performance in Asia compared to the global evaluation, as described by van Donkelaar and colleagues (2015, 2016). For NO$_2$, the model performance in Asia approximately matched the global evaluation estimate (Larkin et al. 2017). Nonetheless, in a later GBD application, NO$_2$ adjustments were made to correct the Larkin estimates for a “high bias in rural areas” (Anenberg et al. 2022). It should be noted that in model evaluations, estimates are compared to ground-based monitor data, but such evaluations are hampered by the paucity of ground-based monitors, with most of them located in urban areas of North America and Europe, as discussed in an earlier section. Although the Committee understands that Drs. Downward and Vermeulen made best use of the global exposure models available, the substantial temporal and spatial misalignment of the exposure data might have influenced the analysis of mortality outcomes in unpredictable ways.
HOUSEHOLD AIR POLLUTION WAS NOT EXAMINED

Like most other ambient air pollution and health studies, household air pollution was not examined in the current study. The Committee thought household air pollution might be a potential confounder or effect modifier. The investigators also alluded to that issue in the discussion of the findings. Household air pollution results from the burning of various fuels (coal, charcoal, wood, agricultural residue, animal dung, and kerosene, among others) for heating or for cooking using open fires or cookstoves with limited ventilation. Burning those fuels produces an array of pollutants that could harm human health, including PM$_{2.5}$, black carbon, and carbon monoxide. This practice is carried out by about half of the world’s population, primarily from low- and middle-income countries. According to the most recent estimates from the GBD project, household air pollution contributes to about one third of the overall deaths linked to air pollution in 2019 (HEI 2020).

Only one cohort (Iranian Golestan) adjusted for domestic fuel use — an indicator of household air pollution. That indicator was missing for the other cohorts, unfortunately. The investigators reported consistent null findings between ambient air pollution and mortality for the Golestan cohort but found positive associations between some polluting fuel use (i.e., wood, kerosene, or “other” organic fuel) and mortality, that remained after adjusting for ambient PM$_{2.5}$. Similarly, in the PURE study, associations with solid fuel use for cooking and all-cause and cardiovascular mortality and morbidity were much more pronounced than the ambient PM$_{2.5}$ associations (Hystad et al. 2019, 2020).

Investigating the complex interplay between household and ambient air pollution with health is difficult because household air pollution is typically not measured for large populations over long periods of time. Hence, most studies rely on use of fuel types as an indicator of household air pollution. The Committee welcomes the investigators’ future work on this topic using the Asian Cohort Consortium as described by Hosgood and colleagues (2019).

BROADER CONTEXT OF AIR POLLUTION AND HEALTH IN ASIA

The current study adds to a small evidence base in Asia, where the levels of air pollution are often high, and the types and sources of air pollution markedly differ from those in high-income settings. Although cross-sectional or short-term health studies are increasingly available in Asia, there are few studies focused on long-term exposure to ambient air pollution (Baumgartner et al. 2020). The evidence base documenting clear evidence that long-term exposure to ambient air pollution is associated with increased mortality from all causes, cardiovascular disease, respiratory disease, and lung cancer continues to be dominated by studies from North America and Europe. The recent systematic reviews underpinning the 2021 WHO Air Quality Guidelines for PM$_{2.5}$ and NO$_x$ identified only a few long-term studies in Asia, and no single study from Africa, Central America, or South America (Chen and Hoek 2020; Huangfu and Atkinson 2020). For example, only three studies from Asia entered the PM$_{2.5}$ meta-analysis for all-cause and cardiovascular mortality (Tseng et al. 2015; Yang et al. 2018; Yin et al. 2017). Some studies of long-term exposure and morbidity and mortality in Asia emerged more recently (Commentary Table 3). Most of the studies from Asia documented a positive association between long-term exposure to PM$_{2.5}$ and mortality outcomes, but there remains uncertainty about the true size of the PM$_{2.5}$ mortality relative risks. A recent study particularly relevant for the current study is the PURE study, which also used similar satellite-based global models (Hystad et al. 2020). The PURE study investigated the association between long-term exposure to PM$_{2.5}$ and all-cause and cardiovascular mortality and morbidity in a large, pooled cohort of adults from 21 countries, with most of the study population residing in low- and middle-income countries. The PURE study reported that long-term exposure to PM$_{2.5}$ was associated with increased risk for cardiovascular mortality and morbidity and adjusted for many important confounders, such as smoking, physical activity, socioeconomic status, urban or rural location and fuel use for cooking. No consistent association was observed for all-cause mortality and noncardiovascular mortality, and models were sensitive to adjustment for urbanicity, similar to the current study.

Given the paucity of studies in high air pollution settings, an IER function was developed for the GBD study to estimate mortality relative risks across the global exposure range for burden assessments. The function integrated four types of PM$_{2.5}$ exposures (outdoor PM$_{2.5}$, household air pollution, active smoking, and second-hand smoking) associated with cause-specific mortality (Burnett et al. 2014). In the most recent GBD estimates (GBD 2019 Risk Factors Collaborators 2020), active smoking studies were excluded from the IER function to characterize risks at high exposure, because the few new studies of high air pollution conditions in Asia provided enough information so that evidence from active smoking data is no longer necessary to use. This led to substantial increases in the relative risk curve for ischemic heart disease and stroke at the high end of the curve compared to the integrated curve that included active smoking studies. Notable increases in the relative risk curve were also reported in a PM$_{2.5}$ exposure–response function (global exposure mortality model [GEMM]), which was solely based on ambient PM$_{2.5}$ studies (Burnett et al. 2018). The use of GEMM resulted in burden estimates that were two to three times higher than those from the IER function. For the GEMM they included data from 41 cohorts in 16 different countries, including three studies from Asia (Tseng et al. 2015; Wong et al. 2015; Yin et al. 2017).

The differences in burden estimates reflect current uncertainty about key assumptions underlying the IER and GEMM models and therefore about the true size of the PM$_{2.5}$ mortality relative risks, particularly at the low- and high-end of the global exposure range (Burnett and Cohen 2020). The study by Downward and Vermeulen highlights the urgent need for future studies that could prove to be useful in reducing this
Review Committee

 Commentary Table 3. Summary of Selected Studies on Long-Term Exposure to PM$_{2.5}$ and Mortality in Asia (in order of publication year)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Name</th>
<th>Location</th>
<th>Study Period</th>
<th>Sample Size</th>
<th>Mean PM$_{2.5}$</th>
<th>Mortality Outcome</th>
<th>Hazard Ratio per 5 μg/m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tseng et al. 2015</td>
<td>Civil servants' cohort</td>
<td>Greater Taipei, Taiwan</td>
<td>1989–2008</td>
<td>43,227</td>
<td>~29</td>
<td>All-cause Cardiovascular</td>
<td>0.96 (0.85–1.08)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cardiovascular</td>
<td>0.89 (0.65–1.22)</td>
</tr>
<tr>
<td>Yin et al. 2017</td>
<td>Chinese men</td>
<td>45 districts in China</td>
<td>1990–2005</td>
<td>189,793</td>
<td>43.7</td>
<td>All-cause Cardiovascular</td>
<td>1.04 (1.04–1.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lung cancer</td>
<td>1.04 (1.04–1.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All-cause Cardiovascular</td>
<td>1.06 (1.04–1.08)</td>
</tr>
<tr>
<td>Yang et al. 2018</td>
<td>Hong Kong elderly</td>
<td>Hong Kong</td>
<td>1998–2011</td>
<td>66,820</td>
<td>42.2</td>
<td>All-cause Cardiovascular</td>
<td>1.03 (1.01–1.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Respiratory</td>
<td>1.05 (1.02–1.09)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.01 (0.97–1.06)</td>
</tr>
<tr>
<td>Li et al. 2018</td>
<td>CLHLS</td>
<td>China</td>
<td>2008–2014</td>
<td>13,344</td>
<td>50.7</td>
<td>All-cause</td>
<td>1.04 (1.03–1.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yorifuji et al. 2019</td>
<td>Okayama City</td>
<td>Okayama City, Japan</td>
<td>2006–2016</td>
<td>75,569</td>
<td>14.0</td>
<td>All-cause Cardiovascular</td>
<td>1.29 (1.18–1.41)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lung cancer</td>
<td>1.06 (0.90–1.26)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.63 (1.13–2.34)</td>
</tr>
<tr>
<td>Hystad et al. 2020</td>
<td>PURE</td>
<td>17 low- and middle-income countries</td>
<td>2003–2018</td>
<td>140,020</td>
<td>47.5 (all 21 countries)</td>
<td>All-cause Cardiovascular</td>
<td>0.99 (0.98–1.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Noncardiovascular mortality</td>
<td>1.02 (1.00–1.03)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cardiovascular event (fatal + nonfatal)</td>
<td>0.98 (0.96–0.99)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.03 (1.01–1.04)</td>
</tr>
<tr>
<td>Kim et al. 2020</td>
<td>NHIS-NSC</td>
<td>Republic of Korea</td>
<td>2002–2013</td>
<td>436,933</td>
<td>18.8</td>
<td>All-cause Cardiovascular</td>
<td>1.02 (1.01–1.02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.03 (1.02–1.03)</td>
</tr>
<tr>
<td>Brown et al. 2022</td>
<td>MDS</td>
<td>India</td>
<td>2004–2013</td>
<td>6.8 million</td>
<td>24.3</td>
<td>All-cause Ischemic heart disease</td>
<td>1.01 (1.01–1.02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stroke</td>
<td>1.00 (0.99–1.02)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Respiratory</td>
<td>1.04 (1.02–1.07)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.01 (0.98–1.03)</td>
</tr>
</tbody>
</table>

CLHLS = Chinese Longitudinal Healthy Longevity Survey; MDS = Million Death Study; NHIS-NSC = National Health Insurance Service-National Sample Cohort; PURE = Prospective Urban and Rural Epidemiology (PURE).

*Findings are converted to 5-μg/m3 increase in PM$_{2.5}$ to allow comparison with the current study.

uncertainty. At some point in the near future with sufficient studies, it might be possible to develop separate risk curves for outdoor air pollution, second-hand smoking, and household air pollution in the GBD study. Having those separate risk curves would remove an important source of uncertainty related to equitoxicity of particles (assuming no differences in health impact by PM source, size, and chemical composition) as well as uncertainties related to some other aspects of exposure to those distinct sources of PM.

SUMMARY AND CONCLUSION

Drs. Downward and Vermeulen have assessed the association between long-term exposure to ambient air pollution and all-cause and cause-specific mortality in an analysis of six Asian cohorts. The research was well motivated and addressed a clear research gap. The large sample size and leverage of harmonized data from the Asia Cohort Consortium were considered to be strengths of the study. Furthermore, data were available for several individual-level lifestyle factors, such as smoking status and intensity, body mass index, and diet, and the analyses were adjusted accordingly. Application of existing global satellite-based models allowed for a uniform estimation of exposure at a reasonably high spatial resolution for a large urban and rural population in six Asian countries. Such a study would otherwise not have been possible given the paucity of ground-based monitors, particularly in low- and middle-income countries.
The study documented no association between long-term exposure to ambient PM$_{2.5}$ and all-cause mortality and cause-specific mortality in meta-analyses, except for a borderline significant positive association with cardiovascular mortality. Several individual cohorts (i.e., Indian MCS, Japanese JPHC, and Taiwanese CBSCP), however, did display positive significant associations between ambient PM$_{2.5}$ and cardiovascular mortality. For ambient NO$_x$, the combined estimates showed positive associations for all mortality outcomes, in particular the cancer outcomes, although estimates were heavily driven by positive associations from the Japanese JPHC cohort. The cohorts were very diverse and large heterogeneity of the findings was reported across the individual cohorts, with null, negative, or positive findings, with sometimes no apparent pattern. Although the Review Committee broadly agreed with the investigators’ conclusions, it identified limitations that should be considered when interpreting the results.

Importantly, the Committee was concerned that residual confounding was likely in the main analyses due to inadequate adjustment for characteristics that correlate with air pollution and mortality, most notably socioeconomic status and urbanicity. Findings sometimes differed for models that adjusted for urbanicity as compared to those that did not. The Committee would have been interested in better understanding potential sources of heterogeneity in the findings. There were also concerns about the exposure assessment approach because of the substantial temporal and spatial misalignment of the data, which might have influenced the analysis of mortality outcomes in unpredictable ways.

Overall, there remains uncertainty about the true size of the ambient air pollution and mortality associations in Asia, where the levels of air pollution are often high, and the types and sources of air pollution, including household air pollution, markedly differ from those in high-income settings. The study by Downward and Vermeulen highlights the urgent need for future studies that could prove to be useful in reducing this uncertainty. At the same time, these populations are experiencing very high levels of air pollution, meriting attention and action to reduce ambient air pollution regardless of the uncertainties.

ACKNOWLEDGMENTS

The Review Committee thanks the ad hoc reviewers for their help in evaluating the scientific merit of the Investigators’ Report. The Committee is also grateful to Eleanne van Vliet and Pallavi Pant for oversight of the study; to Yi Lu for assistance with review of the draft report; to Hanna Boogaard for assistance with review of the report and in preparing its Commentary; to Mary Brennan for editing of this Report and its Commentary; and to Kristin Eckles and Hope Green for their roles in preparing this Research Report for publication.

REFERENCES

ABBREVIATIONS AND OTHER ITEMS

AERONET AErosol RObotic NETwork
ACC Asia Cohort Consortium
CBCSCP Community-based Cancer Screening Program
CI confidence interval
DALYs disability adjusted life years
ELAPSE Effects of Low-Level Air Pollution: A Study in Europe
ESCAPE European Study of Cohorts for Air Pollution Effects
GBD Global Burden of Disease
GEMM Global Exposure Mortality Model
HEALS Health Effects for Arsenic Longitudinal Study
HIC high-income country
HR hazard ratio
ICD International Classification of Diseases
IER integrated exposure–response
JPHC Japan Public Health Center-based Prospective Study
KMCC Korean Multi-center Cancer Cohort Study
LMIC low-and-middle-income countries
LUR land use regression
MCS Mumbai Cohort Study
NO\textsubscript{2} nitrogen dioxide
PM\textsubscript{2.5} particulate matter ≤2.5 μm in aerodynamic diameter
ppb parts per billion
PURE Prospective Urban and Rural Epidemiology
\(R^2\) coefficient of determination
RR relative risk
sd standard deviation
WHO World Health Organization
HEI BOARD, COMMITTEES, and STAFF

Board of Directors

Richard A. Meserve, Chair Senior of Counsel, Covington & Burling LLP; President Emeritus, Carnegie Institution for Science; former Chair, U.S. Nuclear Regulatory Commission
Jo Ivey Boufford Clinical Professor of Global Health and Pediatrics, New York University
Homer A. Boushey Emeritus Professor of Medicine, University of California–San Francisco
Jared L. Cohon President Emeritus and Professor, Civil and Environmental Engineering and Engineering and Public Policy, Carnegie Mellon University
Stephen Corman President, Corman Enterprises
Martha J. Crawford Operating Partner, Macquarie Asset Management
Ana V. Diez Roux Dana and David Dornsife Dean and Distinguished University Professor of Epidemiology, Dornsife School of Public Health, Drexel University; Director, Drexel Urban Health Collaborative
Michael J. Klag Dean Emeritus and Second Century Distinguished Professor, Johns Hopkins Bloomberg School of Public Health
Alan I. Leshner CEO Emeritus, American Association for the Advancement of Science
Catherine L. Ross Regents’ Professor and Harry West Professor of City and Regional Planning and Civil and Environmental Engineering, and Director of the Center for Quality Growth and Regional Development, Georgia Institute of Technology
Martha E. Rudolph Environmental Attorney, Former Director of Environmental Programs, Colorado Department of Public Health and Environment
Karen C. Seto Frederick Hixon Professor of Geography and Urbanization Science, Yale School of the Environment

Research Committee

David A. Savitz, Chair Professor of Epidemiology, School of Public Health, and Professor of Obstetrics and Gynecology, Alpert Medical School, Brown University
David C. Dorman Professor, Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University
Christina H. Fuller Associate Professor, School of Environmental, Civil, Agricultural and Mechanical Engineering, University of Georgia College of Engineering
Marianne Hatzopoulou Professor, Civil and Mineral Engineering, University of Toronto, Canada Research Chair in Transport Decarbonization and Air Quality
Amy H. Herring Sara & Charles Ayres Professor of Statistical Science and Global Health, Duke University
Heather A. Holmes Associate Professor, Department of Chemical Engineering, University of Utah
Neil Pearce Professor of Epidemiology and Biostatistics, London School of Hygiene and Tropical Medicine, United Kingdom
Ana M. Rule Assistant Professor and Director, Environmental Exposure Assessment Laboratories, Department of Environmental Health and Engineering, Johns Hopkins School of Public Health
Evangelia (Evi) Samoli Associate Professor of Epidemiology and Medical Statistics, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece
Neeta Thakur Associate Professor of Medicine, University of California, San Francisco
Gregory Wellenius Professor, Department of Environmental Health, Boston University School of Public Health

Continues next page
HEI BOARD, COMMITTEES, and STAFF

Review Committee

Melissa J. Perry, Chair Dean, College of Health and Human Services, George Mason University
Sara D. Adar Associate Professor and Associate Chair, Department of Epidemiology, University of Michigan School of Public Health
Kiros T. Berhane Professor and Chair, Department of Biostatistics, Mailman School of Public Health, Columbia University
Ulrike Gehring Associate Professor, Institute for Risk Assessment Sciences, Utrecht University
Michael Jerrett Professor and Chair, Department of Environmental Health Sciences, Fielding School of Public Health, University of California–Los Angeles
Frank Kelly Henry Battcock Chair of Environment and Health and Director of the Environmental Research Group, Imperial College London School of Public Health, United Kingdom
Jana B. Milford Professor Emerita, Department of Mechanical Engineering and Environmental Engineering Program, University of Colorado–Boulder
Jennifer L. Peel Professor of Epidemiology, Colorado School of Public Health and Department of Environmental and Radiological Health Sciences, Colorado State University
Eric J. Tchetgen Tchetgen Luddy Family President’s Distinguished Professor, Professor of Statistics and Data Science, The Wharton School, University of Pennsylvania
John Volckens Professor, Department of Mechanical Engineering, Walter Scott Jr. College of Engineering, Colorado State University

Officers and Staff

Daniel S. Greenbaum President
Robert M. O’Keefe Vice President
Ellen K. Mantus Director of Science
Donna J. Vorhees HEI Energy CEO and Vice President
Annemoon M. van Erp Deputy Director of Science
Thomas J. Champoux Director of Science Communications
Jacqueline C. Rutledge Director of Finance and Administration
Jason Desmond Deputy Director of Finance and Administration
Emily Alden Corporate Secretary

Amy Andreini Science Communications Specialist
Ayusha Ariana Research Assistant
Palak Balyan Consulting Staff Scientist
Hanna Boogaard Consulting Principal Scientist
Aaron J. Cohen Consulting Principal Scientist
Dan Crouse Senior Scientist
Robert M. Davidson Staff Accountant
Philip J. DeMarco Compliance Manager

Continues next page
HEI BOARD, COMMITTEES, and STAFF

Kristin C. Eckles Senior Editorial Manager
Elise G. Elliott Staff Scientist
Hope Green Editorial Project Manager
Lissa McBurney Senior Science Administrator
Janet I. McGovern Executive Assistant
Victor Nthusi Consulting Research Fellow
Pallavi Pant Head of Global Health
Allison P. Patton Senior Scientist
Quoc Pham Science Administrative Assistant
Anna S. Rosofsky Senior Scientist
Robert A. Shavers Operations Manager
Eva Tanner Staff Scientist
Alexis Vaskas Digital Communications Manager
Ada Wright Research Assistant
Publishing history: This document was posted at www.healtheffects.org in May 2023.

Citation for document:
