HE

APPENDIX AVAILABLE ON THE HEI WEBSITE

Research Report 213

Ambient Air Pollution and All-Cause and Cause-Specific Mortality in an Analysis of Asian Cohorts

G. S. Downward and R. Vermeulen

Appendix: Supplementary Tables and Figures

This Appendix was reviewed solely for spelling, grammar, and cross-references to the main text. It has not been formatted or fully edited by HEI. This document was part of the HEI Review Committee's review process.

Correspondence may be addressed to Dr. George S. Downward, Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD Utrecht, the Netherlands; e-mail: G.S.Downward@uu.nl.

Although this document was produced with partial funding by the United States Environmental Protection Agency under Assistance Award CR-83467701 to the Health Effects Institute, it has not been subjected to the Agency's peer and administrative review and therefore may not necessarily reflect the views of the Agency, and no official endorsement by it should be inferred. The contents of this document also have not been reviewed by private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views or policies of these parties, and no endorsement by them should be inferred.
© 2023 Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110

Appendix: Supplementary Tables and Figures

Ambient Air Pollution and All-Cause and Cause-Specific Mortality in an Analysis of Asian Cohorts
George S. Downward ${ }^{1,2}$ \& Roel Vermeulen ${ }^{1,2}$, on behalf of the Asia Cohort Consortium Executive Board.

1: Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands

2: Institute for Risk Assessment Sciences, Utrecht University, the Netherlands

Contents

Supplementary Tables and Figures: Community-based Cancer Screening Program (CBCSCP) 3
Supplementary Tables and Figures: Golestan Cohort Study 14
Supplementary Tables and Figures: Health Effects for Arsenic Longitudinal Study (HEALS) 25
Supplementary Tables and Figures: Japan Public Health Center-based Prospective Study (JPHC) 32
Supplementary Tables and Figures: Korean Multi-center Cancer Cohort Study (KMCC) 47
Supplementary Tables and Figures: Mumbai Cohort Study (MCS) 59

Table A1. Demographic features of the Community-based Cancer Screening Program (CBCSCP)		
Variable	Mean (sd) or n (\%)	n. missing values
Number participants	23,759	
Age at recruitment	47 (10)	
Sex		
Male	11,939 (50\%)	
Female	11,820 (50\%)	
Recruitment year		
1991	12,037 (51\%)	
1992	11,722 (49\%)	
Follow-up (years)	23 (6)	
Smoking		40
Ever	6,861 (29\%)	
Never	16,858 (71\%)	
Pack-years (ever smokers only)	24 (20)	330
BMI	24 (3.4)	56
<20	2,423 (10\%)	
20-25	12,761 (54\%)	
25-30	7,374 (31\%)	
>30	1,145 (5\%)	
Education		
Illiterate	5,081 (21\%)	
Elementary	9,884 (42\%)	
Junior high school	3,267 (14\%)	
Senior high school	3,546 (15\%)	
Junior college	1,310 (6\%)	
University	617 (3\%)	
Graduate school or higher	44 (<1\%)	
No answer	10 (<1\%)	
Alcohol history		56
Ever drinker	2,518 (11\%)	
Never drinker	21,185 (89\%)	
Mortality		
All-cause	6,295	
Nonaccidental	5,281	
All cancer	2,189	
Lung cancer	466	
Cardiovascular disease	1,089	
Nonmalignant lung disease	587	

Table A2. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to $5-\mu \mathrm{g} / \mathrm{m}^{\mathbf{3}}$ increase in PM ${ }_{2.5}$ in the Community-based Cancer Screening Program (CBCSCP)

Model 1
Model 2
Model 3

	$\begin{gathered} \text { n. events } \\ \text { (total }=23,390 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=23,390 \text {) } \\ \hline \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=22,952 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	6,185	$\begin{gathered} 0.96 \\ (0.94,0.98) \end{gathered}$	6,185	$\begin{gathered} \hline 0.98 \\ (0.96,1.00) \end{gathered}$	6,016	$\begin{gathered} 1.00 \\ (0.98,1.02) \end{gathered}$
Nonaccidental	5,720	$\begin{gathered} 0.97 \\ (0.95,0.99) \end{gathered}$	5,720	$\begin{gathered} 0.98 \\ (0.96,1.00) \end{gathered}$	5,564	$\begin{gathered} 1.00 \\ (0.98,1.02) \end{gathered}$
All cancer	2,144	$\begin{gathered} 0.97 \\ (0.94,1.01) \end{gathered}$	2,144	$\begin{gathered} 0.99 \\ (0.95,1.02) \end{gathered}$	2,089	$\begin{gathered} 1.00 \\ (0.97,1.04) \end{gathered}$
Lung cancer	460	$\begin{gathered} 0.96 \\ (0.89,1.04) \end{gathered}$	460	$\begin{gathered} 0.98 \\ (0.91,1.06) \end{gathered}$	449	$\begin{gathered} 1.01 \\ (0.93,1.09) \end{gathered}$
Cardiovascular disease	1,071	$\begin{gathered} 1.02 \\ (0.98,1.07) \end{gathered}$	1,071	$\begin{gathered} 1.03 \\ (0.99,1.09) \end{gathered}$	1,049	$\begin{gathered} 1.05 \\ (1.00,1.10) \end{gathered}$
Nonmalignant lung disease	579	$\begin{gathered} 0.94 \\ (0.87,1.01) \\ \hline \end{gathered}$	579	$\begin{gathered} 0.95 \\ (0.89,1.03) \\ \hline \end{gathered}$	551	$\begin{gathered} 0.98 \\ (0.91,1.05) \\ \hline \end{gathered}$

Model 1: Unadjusted.
Model 2: Adjusted for recruitment year and sex.
Model 3: Adjusted for recruitment year, sex, smoking status and intensity, BMI, education, and alcohol intake.

Table A3. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to a 10-ppb increase in NO_{2} in the in the Community-based Cancer Screening Program (CBCSCP)

Model 1
Model 2
Model 3

	$\begin{gathered} \text { n. events } \\ \text { (total }=13,035 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=13,035 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=12,844 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	3,396	$\begin{gathered} 0.66 \\ (0.56,0.78) \end{gathered}$	3,396	$\begin{gathered} 0.67 \\ (0.57,0.79) \end{gathered}$	3,321	$\begin{gathered} 0.76 \\ (0.65,0.90) \end{gathered}$
Nonaccidental	3,111	$\begin{gathered} 0.65 \\ (0.55,0.77) \end{gathered}$	3,111	$\begin{gathered} 0.66 \\ (0.55,0.78) \end{gathered}$	3,041	$\begin{gathered} 0.74 \\ (0.62,0.88) \end{gathered}$
All cancer	1,058	$\begin{gathered} 1.02 \\ (0.78,1.33) \end{gathered}$	1,058	$\begin{gathered} 1.03 \\ (0.78,1.35) \end{gathered}$	1,035	$\begin{gathered} 1.15 \\ (0.87,1.51) \end{gathered}$
Lung cancer	226	$\begin{gathered} 1.15 \\ (0.64,2.06) \end{gathered}$	226	$\begin{gathered} 1.18 \\ (0.66,2.10) \end{gathered}$	218	$\begin{gathered} 1.44 \\ (0.79,2.60) \end{gathered}$
Cardiovascular disease	593	$\begin{gathered} 0.64 \\ (0.43,0.95) \end{gathered}$	593	$\begin{gathered} 0.63 \\ (0.43,0.94) \end{gathered}$	581	$\begin{gathered} 0.74 \\ (0.49,1.10) \end{gathered}$
Nonmalignant lung disease	372	$\begin{gathered} 0.45 \\ (0.27,0.76) \\ \hline \end{gathered}$	372	$\begin{gathered} 0.45 \\ (0.27,0.76) \\ \hline \end{gathered}$	360	$\begin{gathered} 0.58 \\ (0.34,1.00) \\ \hline \end{gathered}$

Model 1: Unadjusted.
Model 2: Adjusted for recruitment year and sex.
Model 3: Adjusted for recruitment year, sex, smoking status and intensity, BMI, education, and alcohol intake.

Table A4. Hazard ratios (and 95\% confidence intervals) for specific causes of death for a two-pollutant model in the Community-based Cancer Screening Program (CBCSCP) (Model 3)

	n. events (total $=12,843$)	$\begin{gathered} \mathrm{PM}_{2.5} \\ \mathrm{HR}(95 \% \mathrm{Cl}) \end{gathered}$	$\begin{gathered} \mathrm{NO}_{2} \\ \mathrm{HR}(95 \% \mathrm{CI}) \end{gathered}$
All-cause	3,321	$\begin{gathered} 1.01 \\ (0.98,1.03) \end{gathered}$	$\begin{gathered} 0.76 \\ (0.65,0.90) \end{gathered}$
Nonaccidental	3,041	$\begin{gathered} 1.01 \\ (0.98,1.03) \end{gathered}$	$\begin{gathered} 0.74 \\ (0.62,0.88) \end{gathered}$
All cancer	1,035	$\begin{gathered} 1.00 \\ (0.96,1.04) \end{gathered}$	$\begin{gathered} 1.14 \\ (0.87,1.51) \end{gathered}$
Lung cancer	218	$\begin{gathered} 1.01 \\ (0.92,1.10) \end{gathered}$	$\begin{gathered} 1.43 \\ (0.79,2.60) \end{gathered}$
Cardiovascular disease	581	$\begin{gathered} 1.05 \\ (1.00,1.11) \end{gathered}$	$\begin{gathered} 0.71 \\ (0.48,1.07) \end{gathered}$
Nonmalignant lung disease	360	$\begin{gathered} 1.03 \\ (0.96,1.10) \\ \hline \end{gathered}$	$\begin{gathered} 0.58 \\ (0.34,0.99) \\ \hline \end{gathered}$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2}.
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, education, and alcohol intake.

Table A5. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ in the Community-based Cancer Screening Program (CBCSCP), stratified by smoking status (Model 3)

Ever-smokers Never-smokers

	n. events $\text { (total }=6,414 \text {) }$	HR (95\% CI)	n. events (total = 16,538)	HR (95\% CI)
All-cause	2,472	$\begin{gathered} 1.01 \\ (0.97,1.04) \end{gathered}$	3,544	$\begin{gathered} 0.99 \\ (0.96,1.02) \end{gathered}$
Nonaccidental	2,285	$\begin{gathered} 1.01 \\ (0.97,1.04) \end{gathered}$	3,279	$\begin{gathered} 1.00 \\ (0.97,1.03) \end{gathered}$
All cancer	885	$\begin{gathered} 1.01 \\ (0.96,1.07) \end{gathered}$	1,204	$\begin{gathered} 1.00 \\ (0.95,1.04) \end{gathered}$
Lung cancer	219	$\begin{gathered} 1.05 \\ (0.93,1.17) \end{gathered}$	230	$\begin{gathered} 0.98 \\ (0.87,1.09) \end{gathered}$
Cardiovascular disease	442	$\begin{gathered} 1.05 \\ (0.97,1.14) \end{gathered}$	607	$\begin{gathered} 1.06 \\ (0.99,1.13) \end{gathered}$
Nonmalignant lung disease	259	$\begin{gathered} 0.92 \\ (0.81,1.03) \\ \hline \end{gathered}$	292	$\begin{gathered} 1.03 \\ (0.94,1.14) \end{gathered}$

Models adjusted for recruitment year, sex, smoking intensity (ever smokers only), BMI, education, and alcohol intake.

Table A6. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to 10-ppb increase in NO_{2} in the Community-based Cancer Screening Program (CBCSCP), stratified by smoking status (Model 3)

Ever-smokers Never-smokers

	$\begin{gathered} \text { n. events } \\ \text { (total }=3,698 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=9,146 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	1,357	$\begin{gathered} 0.86 \\ (0.66,1.11) \end{gathered}$	1,964	$\begin{gathered} 0.71 \\ (0.57,0.88) \end{gathered}$
Nonaccidental	1,240	$\begin{gathered} 0.84 \\ (0.64,1.10) \end{gathered}$	1,801	$\begin{gathered} 0.68 \\ (0.54,0.86) \end{gathered}$
All cancer	446	$\begin{gathered} 1.52 \\ (1.01,2.28) \end{gathered}$	589	$\begin{gathered} 0.91 \\ (0.62,1.33) \end{gathered}$
Lung cancer	115	$\begin{gathered} 1.57 \\ (0.70,3.52) \end{gathered}$	103	$\begin{gathered} 1.31 \\ (0.54,3.16) \end{gathered}$
Cardiovascular disease	248	$\begin{gathered} 0.65 \\ (0.35,1.21) \end{gathered}$	333	$\begin{gathered} 0.81 \\ (0.48,1.38) \end{gathered}$
Nonmalignant lung disease	168	$\begin{gathered} 0.53 \\ (0.23,1.20) \\ \hline \end{gathered}$	192	$\begin{gathered} 0.62 \\ (0.30,1.28) \\ \hline \end{gathered}$

Models adjusted for recruitment year, sex, smoking intensity (ever smokers only), BMI, education, and alcohol intake.

Table A7. Hazard ratios (and 95\% confidence intervals) for specific causes of death among nonsmoking women within the Community-based Cancer Screening Program (CBCSCP) (Model 3)
$\mathrm{PM}_{2.5} \quad \mathrm{NO}_{2}$

	n. events (total $=11,452)$	$\mathrm{HR}(95 \% \mathrm{Cl})$	n. events (total $=6,358)$	$\mathrm{HR}(95 \% \mathrm{Cl})$
All-cause	2,229	0.99	1,221	0.69
Nonaccidental		$(0.96,1.03)$		$(0.52,0.91)$
All cancer	2,076	1.00	$(0.96,1.03)$	1,132

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2} (each are single pollutant models).
Models adjusted for recruitment year, BMI, education, and alcohol intake.

Table A8. Hazard ratios (and 95\% confidence intervals) for specific causes of death among those of the Community-based Cancer Screening Program (CBCSCP) who were alive in 1998 (Model 3)

$$
\mathrm{PM}_{2.5}
$$

NO_{2}

	$\begin{gathered} \text { n. events } \\ \text { (total }=22,286 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=12,499 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	5,350	$\begin{gathered} 0.99 \\ (0.97,1.01) \end{gathered}$	2,976	$\begin{gathered} 0.73 \\ (0.61,0.87) \end{gathered}$
Nonaccidental	5,007	$\begin{gathered} 0.99 \\ (0.97,1.01) \end{gathered}$	2,761	$\begin{gathered} 0.71 \\ (0.59,0.86) \end{gathered}$
All cancer	1,853	$\begin{gathered} 0.99 \\ (0.95,1.03) \end{gathered}$	929	$\begin{gathered} 1.09 \\ (0.82,1.47) \end{gathered}$
Lung cancer	412	$\begin{gathered} 1.00 \\ (0.92,1.09) \end{gathered}$	197	$\begin{gathered} 1.44 \\ (0.78,2.68) \end{gathered}$
Cardiovascular disease	924	$\begin{gathered} 1.05 \\ (0.99,1.11) \end{gathered}$	513	$\begin{gathered} 0.64 \\ (0.42,0.99) \end{gathered}$
Nonmalignant lung disease	520	$\begin{gathered} 0.98 \\ (0.90,1.06) \end{gathered}$	342	$\begin{gathered} 0.49 \\ (0.28,0.86) \\ \hline \end{gathered}$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a $10-\mathrm{ppb}$ increase in NO_{2} (each are single pollutant models).
Models adjusted for recruitment year, sex, smoking intensity (ever smokers only), BMI, education status, and alcohol intake.

Table A9. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in PM $_{2.5}$ after additional adjustment for specific urban scenarios within the Community-based Cancer Screening Program (CBCSCP) (Model 3)

	Within Urban Center (Y/N)*		Degree of Urbanicity ${ }^{+}$in 2000		Degree of Urbanicity in 2010	
	n. events (total = 22,952)	HR (95\% $\mathrm{Cl})$	n. events (total = 22,612)	HR (95\% $\mathrm{Cl})$	n. events (total $=$ 22,612)	HR (95\% $\mathrm{Cl})$
All-cause	6,016	$\begin{gathered} \hline 0.99 \\ (0.95 \\ 1.02) \end{gathered}$	5,909	$\begin{gathered} 1.02 \\ (0.99, \\ 1.05) \end{gathered}$	5,909	$\begin{gathered} 1.02 \\ (0.99 \\ 1.04) \end{gathered}$
Nonaccidental	5,564	$\begin{gathered} 0.99 \\ (0.96 \\ 1.02) \end{gathered}$	5,458	$\begin{gathered} 1.03 \\ (1.00 \\ 1.06) \end{gathered}$	5,458	$\begin{aligned} & 1.02 \\ & (0.99, \\ & 1.05) \end{aligned}$
All cancer	2,089	$\begin{gathered} 1.09 \\ (1.03 \\ 1.15) \end{gathered}$	2,049	$\begin{gathered} 1.05 \\ (1.01 \\ 1.10) \end{gathered}$	2,049	$\begin{gathered} 1.05 \\ (1.00 \\ 1.10) \end{gathered}$
Lung cancer	449	$\begin{gathered} 1.16 \\ (1.03 \\ 1.31) \end{gathered}$	445	$\begin{array}{r} 1.05 \\ (0.95 \\ 1.16) \end{array}$	445	$\begin{gathered} 1.05 \\ (0.95 \\ 1.15) \end{gathered}$
Cardiovascular disease	1,049	$\begin{gathered} 1.01 \\ (0.93 \\ 1.08) \end{gathered}$	1,034	$\begin{gathered} 1.07 \\ (1.00 \\ 1.14) \end{gathered}$	1,034	$\begin{aligned} & 1.06 \\ & (1.00 \\ & 1.13) \end{aligned}$
Nonmalignant lung disease	551	$\begin{gathered} 0.86 \\ (0.77 \\ 0.96) \end{gathered}$	542	$\begin{gathered} 0.99 \\ (0.90 \\ 1.09) \end{gathered}$	542	$\begin{gathered} 0.98 \\ (0.90 \\ 1.07) \end{gathered}$

*: Refers to a participant being within an urban center as defined by the Global Human Settlement Layer.
\dagger : Refers to gradient values for urbanicity as described by Gao \& O’Neill (2020).
Models additionally adjusted for recruitment year, sex, smoking status and intensity, BMI, education, and alcohol intake.

Table A10. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to a 10-ppb increase in NO_{2} after additional adjustment for specific urban scenarios within the Community-based Cancer Screening Program (CBCSCP) (Model 3)

	$\begin{aligned} & \text { Within Urban Center (Y/N)* } \\ & \begin{array}{c} \mathrm{n} . \text { events } \\ \text { (total }=12,844) \end{array} \quad \mathrm{HR}(95 \% \mathrm{CI}) \end{aligned}$		$\begin{aligned} & \text { Degree of Urbanicity }+ \text { in } 2000 \\ & \begin{array}{l} \text { n. events } \\ \text { (total }=12,844) \end{array} \quad H R(95 \% \mathrm{Cl}) \\ & \hline \end{aligned}$		$\begin{aligned} & \begin{array}{c} \text { Degree of Urbanicity in } 2010 \\ \begin{array}{c} n . \text { events } \\ \text { (total }=12,844) \end{array} \end{array} \quad \mathrm{HR}(95 \% \mathrm{Cl}) \end{aligned}$	
All-cause	3,321	$\begin{gathered} 0.76 \\ (0.65,0.90) \end{gathered}$	3,321	$\begin{gathered} 0.78 \\ (0.65,0.93) \end{gathered}$	3,321	$\begin{gathered} 0.78 \\ (0.65,0.94) \end{gathered}$
Nonaccidental	3,041	$\begin{gathered} 0.74 \\ (0.62,0.88) \end{gathered}$	3,041	$\begin{gathered} 0.76 \\ (0.63,0.91) \end{gathered}$	3,041	$\begin{gathered} 0.76 \\ (0.63,0.92) \end{gathered}$
All cancer	1,035	$\begin{gathered} 1.15 \\ (0.87,1.52) \end{gathered}$	1,035	$\begin{gathered} 1.23 \\ (0.91,1.67) \end{gathered}$	1,035	$\begin{gathered} 1.22 \\ (0.9,1.65) \end{gathered}$
Lung cancer	218	$\begin{gathered} 1.46 \\ (0.80,2.66) \end{gathered}$	218	$\begin{gathered} 1.51 \\ (0.78,2.90) \end{gathered}$	218	$\begin{gathered} 1.52 \\ (0.79,2.92) \end{gathered}$
Cardiovascular disease	581	$\begin{gathered} 0.72 \\ (0.48,1.08) \end{gathered}$	581	$\begin{gathered} 0.66 \\ (0.43,1.01) \end{gathered}$	581	$\begin{gathered} 0.65 \\ (0.42,1.01) \end{gathered}$
Nonmalignant lung disease	360	$\begin{gathered} 0.58 \\ (0.34,1.00) \\ \hline \end{gathered}$	360	$\begin{gathered} 0.61 \\ (0.34,1.10) \end{gathered}$	360	$\begin{gathered} 0.63 \\ (0.35,1.13) \end{gathered}$

*: Refers to a participant being within an urban center as defined by the Global Human Settlement Layer
\dagger : Refers to gradient values for urbanicity as described by Gao \& O’Neill (2020),
Models additionally adjusted for recruitment year, sex, smoking status and intensity, BMI, education, and alcohol intake.

Figure A1: Penalized spline analysis (with 4 degrees of freedom) examining relationship between PM $\mathbf{2 . 5}^{\mathbf{5}}$ exposure and all-cause and cause-specific mortality within the Community-based Cancer Screening Program (CBCSCP) (Model 3).

Figure A2: Penalized spline analysis (with 4 degrees of freedom) examining relationship between NO_{2} exposure and all-cause and cause-specific mortality within the Community-based Cancer Screening Program (CBCSCP) (Model 3).

Table A11. Hazard ratios (and 95\% confidence intervals) for specific causes of death among the Community-based Cancer Screening Program (CBCSCP) by quartile of PM $\mathbf{2 . 5}^{\mathbf{5}}$ (Model 3)

	$\begin{gathered} \text { n. events } \\ \text { (total }=22,952 \text {) } \end{gathered}$	$\begin{gathered} \mathrm{Q} 1 \\ (<2.5 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Q} 2 \\ (2.5-7.0 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Q3 } \\ (7.0-8.8 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Q} 4 \\ (>8.8 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$
All-cause	6,016	1.00 (ref)	$\begin{gathered} 0.97 \\ (0.91,1.03) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.86,0.99) \end{gathered}$	$\begin{gathered} \hline 1.01 \\ (0.93,1.09) \end{gathered}$
Nonaccidental	5,564	1.00 (ref)	$\begin{gathered} 0.98 \\ (0.92,1.05) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.87,1.01) \end{gathered}$	$\begin{gathered} 1.01 \\ (0.93,1.09) \end{gathered}$
All cancer	2,089	1.00 (ref)	$\begin{gathered} 1.34 \\ (1.19,1.50) \end{gathered}$	$\begin{gathered} 1.13 \\ (1.00,1.28) \end{gathered}$	$\begin{gathered} 1.01 \\ (0.88,1.16) \end{gathered}$
Lung cancer	449	1.00 (ref)	$\begin{gathered} 1.23 \\ (0.97,1.57) \end{gathered}$	$\begin{gathered} 1.05 \\ (0.81,1.37) \end{gathered}$	$\begin{gathered} 1.06 \\ (0.79,1.43) \end{gathered}$
Cardiovascular disease	1,049	1.00 (ref)	$\begin{gathered} 0.99 \\ (0.84,1.16) \end{gathered}$	$\begin{gathered} 1.03 \\ (0.87,1.21) \end{gathered}$	$\begin{gathered} 1.28 \\ (1.07,1.54) \end{gathered}$
Nonmalignant lung disease	551	1.00 (ref)	$\begin{gathered} 0.66 \\ (0.53,0.82) \end{gathered}$	$\begin{gathered} 0.66 \\ (0.52,0.83) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.71,1.17) \end{gathered}$

Models adjusted for recruitment year, sex, smoking intensity (ever smokers only), BMI, education, and alcohol intake.

Table A12. Hazard ratios (and 95\% confidence intervals) for specific causes of death among the Community-based Cancer Screening Program (CBCSCP) by quartile of NO_{2} (Model 3)

	$\begin{gathered} \text { n. events } \\ \text { (total }=12,844 \text {) } \end{gathered}$	$\begin{gathered} \mathrm{Q} 1 \\ (<8 \mathrm{ppb}) \end{gathered}$	$\begin{gathered} \mathrm{Q} 2 \\ (8-9 \mathrm{ppb}) \end{gathered}$	$\begin{gathered} \text { Q3 } \\ (9-10 \mathrm{ppb}) \end{gathered}$	$\begin{gathered} \mathrm{Q} 4 \\ (>10 \mathrm{ppb}) \end{gathered}$
All-cause	3,321	1.00 (ref)	$\begin{gathered} 0.95 \\ (0.87,1.04) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.82,0.99) \end{gathered}$	$\begin{gathered} 0.87 \\ (0.79,0.96) \end{gathered}$
Nonaccidental	3,041	1.00 (ref)	$\begin{gathered} 0.94 \\ (0.85,1.03) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.82,1.01) \end{gathered}$	$\begin{gathered} 0.87 \\ (0.79,0.96) \end{gathered}$
All cancer	1,035	1.00 (ref)	$\begin{gathered} 1.01 \\ (0.86,1.2) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.86,1.22) \end{gathered}$	$\begin{gathered} 1.12 \\ (0.95,1.31) \end{gathered}$
Lung cancer	218	1.00 (ref)	$\begin{gathered} 0.90 \\ (0.61,1.31) \end{gathered}$	$\begin{gathered} 1.13 \\ (0.78,1.64) \end{gathered}$	$\begin{gathered} 1.25 \\ (0.88,1.78) \end{gathered}$
Cardiovascular disease	581	1.00 (ref)	$\begin{gathered} 1.06 \\ (0.85,1.31) \end{gathered}$	$\begin{gathered} 0.84 \\ (0.67,1.07) \end{gathered}$	$\begin{gathered} 0.84 \\ (0.67,1.05) \end{gathered}$
Nonmalignant lung disease	360	1.00 (ref)	$\begin{gathered} 0.93 \\ (0.71,1.22) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.67,1.21) \end{gathered}$	$\begin{gathered} 0.76 \\ (0.56,1.02) \end{gathered}$

Models adjusted for recruitment year, sex, smoking intensity (ever smokers only), BMI, education, and alcohol intake.

Table A13. Hazard ratios (and 95\% confidence intervals) for specific causes of death within the Community-based Cancer Screening Program (CBCSCP) after adapting variables that potentially violated the proportional hazards assumption

	PM 2.5		NO_{2}	
	$\begin{gathered} \text { n. events } \\ \text { (total }=22,952 \text {) } \end{gathered}$	$\begin{gathered} \text { HR } \\ (95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} \text { n. events } \\ \text { (total }=12,844 \text {) } \end{gathered}$	$\begin{gathered} \text { HR } \\ (95 \% \mathrm{Cl}) \end{gathered}$
All-cause	6,016	$\begin{gathered} 1.00 \\ (0.97,1.03) \end{gathered}$	3,321	$\begin{gathered} 0.78 \\ (0.66,0.92) \end{gathered}$
Nonaccidental	5,564	$\begin{gathered} 1.00 \\ (0.97,1.04) \end{gathered}$	3,041	$\begin{gathered} 0.76 \\ (0.64,0.9) \end{gathered}$
All cancer	2,089	$\begin{gathered} 1.00 \\ (0.95,1.05) \end{gathered}$	1,035	$\begin{gathered} 1.15 \\ (0.87,1.51) \end{gathered}$
Lung cancer	449	$\begin{gathered} 1.00 \\ (0.9,1.11) \end{gathered}$	218	$\begin{gathered} 1.51 \\ (0.84,2.7) \end{gathered}$
Cardiovascular disease	1,049	$\begin{gathered} 1.08 \\ (1.01,1.15) \end{gathered}$	581	$\begin{gathered} 0.74 \\ (0.49,1.11) \end{gathered}$
Nonmalignant lung disease	551	$\begin{gathered} 0.98 \\ (0.89,1.09) \end{gathered}$	360	$\begin{gathered} 0.57 \\ (0.34,0.98) \end{gathered}$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a $10-\mathrm{ppb}$ increase in NO_{2} (each are single pollutant models).
Potential assumption violators were pack-years (removed from analysis), sex, smoking status, and alcohol intake (stratified).

Supplementary Tables and Figures: Golestan Cohort Study

Table A14. Demographic features of the Golestan cohort		
Mean (sd) or n (\%)		

Table A15. Domestic fuel usage in the Golestan cohort
Fuel type n (\%)

Firewood	$971(2 \%)$
Organic fuel	$100(<1 \%)$
Kerosene	$31,548(63 \%)$

Represents population reporting "yes" to using one of the three fuel types.

Table A16. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathbf{P M}_{2.5}$ in the Golestan cohort

Model 1
Model 2
Model 3

	n. events (total $=49,982$)	HR (95\% CI)	n. events (total $=49,982$)	HR (95\% CI)	n. events (total $=49,106$)	HR (95\% CI)
All-cause	7,060	$\begin{gathered} 0.88 \\ (0.86,0.91) \end{gathered}$	7,060	$\begin{gathered} 0.91 \\ (0.87,0.94) \end{gathered}$	6,878	$\begin{gathered} 0.98 \\ (0.94,1.03) \end{gathered}$
Nonaccidental	5,966	$\begin{gathered} 0.89 \\ (0.86,0.92) \end{gathered}$	5,966	$\begin{gathered} 0.92 \\ (0.88,0.96) \end{gathered}$	5,807	$\begin{gathered} 1.00 \\ (0.95,1.05) \end{gathered}$
All cancer	1,401	$\begin{gathered} 0.84 \\ (0.78,0.90) \end{gathered}$	1,401	$\begin{gathered} 0.86 \\ (0.79,0.93) \end{gathered}$	1,366	$\begin{gathered} 1.02 \\ (0.92,1.13) \end{gathered}$
Lung cancer	94	$\begin{gathered} 0.91 \\ (0.69,1.20) \end{gathered}$	94	$\begin{gathered} 0.86 \\ (0.62,1.18) \end{gathered}$	93	$\begin{gathered} 0.84 \\ (0.57,1.25) \end{gathered}$
Cardiovascular disease	3,022	$\begin{gathered} 0.90 \\ (0.86,0.95) \end{gathered}$	3,022	$\begin{gathered} 0.95 \\ (0.90,1.00) \end{gathered}$	2,941	$\begin{gathered} 0.98 \\ (0.91,1.05) \end{gathered}$
Nonmalignant lung disease	403	$\begin{gathered} 0.92 \\ (0.80,1.05) \end{gathered}$	403	$\begin{gathered} 0.96 \\ (0.82,1.12) \end{gathered}$	394	$\begin{gathered} 1.10 \\ (0.91,1.34) \end{gathered}$

Model 1: Unadjusted.
Model 2: Adjusted for recruitment year and sex.
Model 3: Adjusted for recruitment year, sex, smoking status and intensity, BMI, education, diet, alcohol intake, and domestic fuel use.

Table A17. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to 10-ppb increase in NO_{2} in the Golestan cohort

	Model 1		Model 2		Model 3	
	$\begin{gathered} \text { n. events } \\ \text { (total }=49,982 \text {) } \end{gathered}$	HR (95\% CI)	n. events (total = 49,982)	HR (95\% CI)	n. events (total = 49,106)	HR (95\% CI)
All-cause	7,060	$\begin{gathered} 0.69 \\ (0.58,0.81) \end{gathered}$	7,060	$\begin{gathered} 0.66 \\ (0.54,0.79) \end{gathered}$	6,878	$\begin{gathered} \hline 1.05 \\ (0.83,1.33) \end{gathered}$
Nonaccidental	5,966	$\begin{gathered} 0.75 \\ (0.62,0.9) \end{gathered}$	5,966	$\begin{gathered} 0.67 \\ (0.55,0.83) \end{gathered}$	5,807	$\begin{gathered} 1.05 \\ (0.81,1.35) \end{gathered}$
All cancer	1,401	$\begin{gathered} 0.48 \\ (0.32,0.71) \end{gathered}$	1,401	$\begin{gathered} 0.50 \\ (0.32,0.77) \end{gathered}$	1,366	$\begin{gathered} 1.19 \\ (0.70,2.03) \end{gathered}$
Lung cancer	94	$\begin{gathered} 0.38 \\ (0.08,1.80) \end{gathered}$	94	$\begin{gathered} 0.59 \\ (0.11,3.29) \end{gathered}$	93	$\begin{gathered} 0.71 \\ (0.10,5.33) \end{gathered}$
Cardiovascular disease	3,022	$\begin{gathered} 0.88 \\ (0.68,1.14) \end{gathered}$	3,022	$\begin{gathered} 0.79 \\ (0.59,1.04) \end{gathered}$	2,941	$\begin{gathered} 0.93 \\ (0.65,1.33) \end{gathered}$
Nonmalignant lung disease	403	$\begin{gathered} 0.56 \\ (0.27,1.15) \end{gathered}$	403	$\begin{gathered} 0.65 \\ (0.29,1.43) \end{gathered}$	394	$\begin{gathered} 1.22 \\ (0.46,3.21) \end{gathered}$

Model 1: Unadjusted.
Model 2: Adjusted for recruitment year and sex.
Model 3: Adjusted for recruitment year, sex, smoking status and intensity, BMI, education, diet, alcohol intake, and domestic fuel use.

Table A18. Hazard ratios (and 95\% confidence intervals) for specific causes of death for a two-pollutant model in the Golestan cohort

	n. events (total $=49,106)$	$\mathrm{PM}_{2.5}$ $\mathrm{HR}(95 \% \mathrm{Cl})$	NO_{2} $\mathrm{HR}(95 \% \mathrm{Cl})$
All-cause	6,878	0.96	1.17
Nonaccidental		$(0.91,1.02)$	$(0.88,1.56)$
	5,807	0.99	1.08
All cancer		$(0.93,1.05)$	$(0.80,1.48)$
Lung cancer	1,366	1.00	1.20
		$(0.88,1.13)$	$(0.63,2.27)$
Cardiovascular disease	93	0.81	1.37
		$(0.49,1.33)$	$(0.11,16.66)$
Nonmalignant lung disease	2,941	0.98	1.00
		$(0.90,1.06)$	$(0.65,1.54)$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2}.
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, education, diet, alcohol intake, and domestic fuel use.

Table A19. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to fuel use in the Golestan cohort

	$\begin{gathered} \text { n. events } \\ \text { (total }=49,106 \text {) } \end{gathered}$	Solid fuel $\begin{gathered} (\mathrm{n}=995) \\ \operatorname{HR}(95 \% \mathrm{Cl}) \\ \hline \end{gathered}$	Kerosene $\begin{aligned} & (\mathrm{n}=31,548) \\ & \text { HR }(95 \% \mathrm{Cl}) \\ & \hline \end{aligned}$
All-cause	6,878	$\begin{gathered} 1.25 \\ (1.09,1.44) \end{gathered}$	$\begin{gathered} \hline 1.14 \\ (1.08,1.20) \end{gathered}$
Nonaccidental	5,807	$\begin{gathered} 1.19 \\ (1.02,1.39) \end{gathered}$	$\begin{gathered} 1.11 \\ (1.05,1.18) \end{gathered}$
All cancer	1,366	$\begin{gathered} 1.08 \\ (0.78,1.50) \end{gathered}$	$\begin{gathered} 1.26 \\ (1.12,1.43) \end{gathered}$
Lung cancer	93	$\begin{gathered} 0.86 \\ (0.21,3.55) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.58,1.43) \end{gathered}$
Cardiovascular disease	2,941	$\begin{gathered} 1.18 \\ (0.94,1.47) \end{gathered}$	$\begin{gathered} 1.06 \\ (0.97,1.15) \end{gathered}$
Lung disease	394	$\begin{gathered} 1.71 \\ (1.03,2.85) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.74,1.14) \end{gathered}$
Metabolic disease	59	$\begin{gathered} 1.55 \\ (0.37,6.47) \\ \hline \end{gathered}$	$\begin{gathered} 0.75 \\ (0.43,1.30) \end{gathered}$

Solid fuel: either firewood or other organic material.
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, education, diet, and alcohol intake.

Table A20. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in PM $\mathbf{P R}^{\mathbf{. 5}}$ in the Golestan cohort, stratified by smoking status (Model 3)

	Never smokers		Former smokers		Current smokers	
	n. events $\text { (total }=40,591 \text {) }$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=3,932 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=4,583 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	5,055	$\begin{gathered} 0.98 \\ (0.93,1.03) \end{gathered}$	919	$\begin{gathered} 1.01 \\ (0.88,1.15) \end{gathered}$	904	$\begin{gathered} 0.94 \\ (0.82,1.07) \end{gathered}$
Nonaccidental	4,271	$\begin{gathered} 0.99 \\ (0.94,1.05) \end{gathered}$	785	$\begin{gathered} 1.04 \\ (0.90,1.20) \end{gathered}$	751	$\begin{gathered} 0.96 \\ (0.83,1.11) \end{gathered}$
All cancer	998	$\begin{gathered} 1.09 \\ (0.96,1.22) \end{gathered}$	171	$\begin{gathered} 0.80 \\ (0.59,1.08) \end{gathered}$	197	$\begin{gathered} 0.89 \\ (0.67,1.17) \end{gathered}$
Lung cancer	36	$\begin{gathered} 0.94 \\ (0.49,1.79) \end{gathered}$	19	$\begin{gathered} 0.56 \\ (0.22,1.45) \end{gathered}$	38	$\begin{gathered} 0.91 \\ (0.50,1.67) \end{gathered}$
Cardiovascular disease	2,197	$\begin{gathered} 0.95 \\ (0.88,1.03) \end{gathered}$	393	$\begin{gathered} 1.14 \\ (0.93,1.39) \end{gathered}$	351	$\begin{gathered} 0.97 \\ (0.78,1.20) \end{gathered}$
Nonmalignant lung disease	245	$\begin{gathered} 1.02 \\ (0.80,1.30) \\ \hline \end{gathered}$	82	$\begin{gathered} 1.06 \\ (0.69,1.64) \\ \hline \end{gathered}$	67	$\begin{gathered} 1.41 \\ (0.89,2.23) \end{gathered}$

Models adjusted for recruitment year, sex, smoking intensity (current/former smokers only), BMI, education, diet, alcohol intake, and domestic fuel use.

Table A21. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to 10-ppb increase in $\mathbf{N O}_{2}$ in the Golestan cohort, stratified by smoking status (Model 3)

	Never smokers		Former smokers		Current smokers	
	n. events (total $=40,591$)	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=3,932 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=4,583 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	5,055	$\begin{gathered} 1.06 \\ (0.81,1.40) \end{gathered}$	919	$\begin{gathered} 0.89 \\ (0.46,1.72) \end{gathered}$	904	$\begin{gathered} \hline 1.10 \\ (0.58,2.08) \end{gathered}$
Nonaccidental	4,271	$\begin{gathered} 1.07 \\ (0.79,1.44) \end{gathered}$	785	$\begin{gathered} 0.81 \\ (0.40,1.65) \end{gathered}$	751	$\begin{gathered} 1.10 \\ (0.55,2.21) \end{gathered}$
All cancer	998	$\begin{gathered} 1.58 \\ (0.84,2.96) \end{gathered}$	171	$\begin{gathered} 0.35 \\ (0.08,1.62) \end{gathered}$	197	$\begin{gathered} 0.86 \\ (0.22,3.42) \end{gathered}$
Lung cancer	36	$\begin{gathered} 0.34 \\ (0.01,10.93) \end{gathered}$	19	$\begin{gathered} 0.28 \\ (<0.01,30.67) \end{gathered}$	38	$\begin{gathered} 1.85 \\ (0.10,33.48) \end{gathered}$
Cardiovascular disease	2,197	$\begin{gathered} 0.84 \\ (0.56,1.27) \end{gathered}$	393	$\begin{gathered} 1.37 \\ (0.50,3.74) \end{gathered}$	351	$\begin{gathered} 1.14 \\ (0.42,3.13) \end{gathered}$
Nonmalignant lung disease	245	$\begin{gathered} 1.53 \\ (0.44,5.34) \\ \hline \end{gathered}$	82	$\begin{gathered} 0.44 \\ (0.05,3.75) \\ \hline \end{gathered}$	67	$\begin{gathered} 1.27 \\ (0.13,12.07) \\ \hline \end{gathered}$

Models adjusted for recruitment year, sex, smoking intensity (current/former smokers only), BMI, education, diet, alcohol intake, and domestic fuel use.

Table A22. Hazard ratios (and 95\% confidence intervals) for specific causes of death among nonsmoking women within the for specific causes of death among nonsmoking women within the Golestan cohort (Model 3)

	n. events (total $=28,716)$	$\mathrm{PM}_{2.5}$ $\mathrm{HR}(95 \% \mathrm{Cl})$	NO_{2} $\mathrm{HR}(95 \% \mathrm{Cl})$
All-cause	2,953	0.98	0.98
		$(0.91,1.05)$	$(0.69,1.41)$
Nonaccidental	2,510	1.00	1.06
		$(0.93,1.08)$	$(0.72,1.57)$
All cancer	567	1.22	2.13
		$(1.04,1.43)$	$(0.93,4.89)$
Lung cancer	17	1.06	1.34
		$(0.42,2.64$	$(0.01,219.95)$
Cardiovascular disease	1,287	0.89	0.67
		$(0.80,0.99)$	$(0.39,1.15)$
Nonmalignant lung disease	148	0.87	0.46
		$(0.63,1.19)$	$(0.09,2.34)$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2} (each are single pollutant models).
Models adjusted for recruitment year, BMI, education, diet, alcohol intake, and domestic fuel use.

Table A23. Hazard ratios (and 95\% confidence intervals) for specific causes of death among those of the Golestan cohort with no prevalent disease at recruitment (Model 3)

	n. events (total $=32,469)$	$\mathrm{PM}_{2.5}$ $\mathrm{HR}(95 \% \mathrm{Cl})$	NO_{2} $\mathrm{HR}(95 \% \mathrm{Cl})$
All-cause	3,276	0.95	0.92
		$(0.89,1.02)$	$(0.65,1.30)$
Nonaccidental	2,679	0.98	0.94
		$(0.91,1.05)$	$(0.64,1.37)$
All cancer	851	0.96	1.20
		$(0.84,1.09)$	$(0.61,2.37)$
Lung cancer	52	0.72	0.75
		$(0.41,1.24)$	$(0.05,10.68)$
Cardiovascular disease	1,158	0.95	0.60
		$(0.85,1.06)$	$(0.34,1.05)$
Nonmalignant lung disease	171	1.13	2.05
		$(0.85,1.51)$	$(0.49,8.54)$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2} (each are single pollutant models).
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, education, diet, alcohol intake, and domestic fuel use.

Table A24. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathbf{P M}_{2.5}$ after additional adjustment for specific urban scenarios within the Golestan Cohort (Model 3)

	$\begin{aligned} & \begin{array}{l} \text { Within Urban Center (Y/N)* } \\ \begin{array}{c} \text { n. events } \\ \text { (total }=49,106) \end{array} \\ \hline \end{array} \quad \mathrm{HR}(95 \% \mathrm{Cl}) \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Degree of Urbanicity }{ }^{\dagger} \text { in } 2000 \\ & \text { n. events } \\ & \text { (total }=49,106) \\ & \hline \end{aligned}$		$\begin{aligned} & \begin{array}{l} \text { Degree of Urbanicity in } 2010 \\ \begin{array}{c} n . ~ e v e n t s ~ \end{array} \\ \text { (total }=49,106) \end{array} \\ & \hline \end{aligned}$	
All-cause	6,878	$\begin{gathered} 0.99 \\ (0.93,1.04) \end{gathered}$	6,878	$\begin{gathered} 1.00 \\ (0.95,1.05) \end{gathered}$	6,878	$\begin{gathered} 1.00 \\ (0.95,1.05) \end{gathered}$
Nonaccidental	5,807	$\begin{gathered} 1.00 \\ (0.95,1.07) \end{gathered}$	5,807	$\begin{gathered} 1.01 \\ (0.96,1.07) \end{gathered}$	5,807	$\begin{gathered} 1.01 \\ (0.96,1.07) \end{gathered}$
All cancer	1,366	$\begin{gathered} 1.05 \\ (0.93,1.19) \end{gathered}$	1,366	$\begin{gathered} 0.99 \\ (0.89,1.12) \end{gathered}$	1,366	$\begin{gathered} 0.99 \\ (0.88,1.12) \end{gathered}$
Lung cancer	93	$\begin{gathered} 0.82 \\ (0.49,1.38) \end{gathered}$	93	$\begin{gathered} 0.66 \\ (0.40,1.09) \end{gathered}$	93	$\begin{gathered} 0.65 \\ (0.40,1.08) \end{gathered}$
Cardiovascular disease	2,941	$\begin{gathered} 0.95 \\ (0.87,1.04) \end{gathered}$	2,941	$\begin{gathered} 1.00 \\ (0.92,1.08) \end{gathered}$	2,941	$\begin{gathered} 1.00 \\ (0.93,1.08) \end{gathered}$
Nonmalignant lung disease	394	$\begin{gathered} 1.16 \\ (0.91,1.47) \end{gathered}$	394	$\begin{gathered} 1.20 \\ (0.97,1.49) \end{gathered}$	394	$\begin{gathered} 1.21 \\ (0.97,1.50) \end{gathered}$

*: Refers to a participant being within an urban center as defined by the Global Human Settlement Layer.
\dagger : Refers to gradient values for urbanicity as described by Gao \& O'Neill (2020).
Models additionally adjusted for recruitment year, sex, smoking status and intensity, BMI, education, domestic fuel use, and alcohol intake.

Table A25. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to a 10-ppb increase in NO_{2} after additional adjustment for specific urban scenarios within the Golestan Cohort (Model 3)

	$\begin{aligned} & \begin{array}{l} \text { Within Urban Center (Y/N)* } \\ \begin{array}{c} \mathrm{n} . \text { events } \\ \text { (total }=49,106) \end{array} \\ \hline \end{array} \mathrm{HR}(95 \% \mathrm{Cl}) \end{aligned}$		$\begin{aligned} & \text { Degree of Urbanicity }{ }^{\dagger} \text { in } 2000 \\ & \text { n. events } \\ & \text { (total = 49,106) } \quad \text { HR }(95 \% \mathrm{CI}) \end{aligned}$		$\begin{aligned} & \begin{array}{l} \text { Degree of Urbanicity in } 2010 \\ \begin{array}{c} \mathrm{n} . \text { events } \\ \text { (total }=49,106) \end{array} \end{array} \quad \mathrm{HR}(95 \% \mathrm{Cl}) \end{aligned}$	
All-cause	6,878	$\begin{gathered} 1.15 \\ (0.87,1.52) \end{gathered}$	6,878	$\begin{gathered} 1.26 \\ (0.94,1.67) \end{gathered}$	6,878	$\begin{gathered} 1.27 \\ (0.95,1.69) \end{gathered}$
Nonaccidental	5,807	$\begin{gathered} 1.11 \\ (0.82,1.51) \end{gathered}$	5,807	$\begin{gathered} 1.20 \\ (0.88,1.63) \end{gathered}$	5,807	$\begin{gathered} 1.20 \\ (0.88,1.64) \end{gathered}$
All cancer	1,366	$\begin{gathered} 1.45 \\ (0.77,2.71) \end{gathered}$	1,366	$\begin{gathered} 1.06 \\ (0.55,2.01) \end{gathered}$	1,366	$\begin{gathered} 1.05 \\ (0.55,2.01) \end{gathered}$
Lung cancer	93	$\begin{gathered} 0.91 \\ (0.07,11.41) \end{gathered}$	93	$\begin{gathered} 0.20 \\ (0.01,2.97) \end{gathered}$	93	$\begin{gathered} 0.18 \\ (0.01,2.82) \end{gathered}$
Cardiovascular disease	2,941	$\begin{gathered} 0.85 \\ (0.55,1.29) \end{gathered}$	2,941	$\begin{gathered} 1.13 \\ (0.73,1.74) \end{gathered}$	2,941	$\begin{gathered} 1.14 \\ (0.74,1.76) \end{gathered}$
Nonmalignant lung disease	394	$\begin{gathered} 1.30 \\ (0.39,4.27) \\ \hline \end{gathered}$	394	$\begin{gathered} 1.97 \\ (0.60,6.55) \\ \hline \end{gathered}$	394	$\begin{gathered} 2.00 \\ (0.60,6.66) \\ \hline \end{gathered}$

*: Refers to a participant being within an urban center as defined by the Global Human Settlement Layer.
\dagger : Refers to gradient values for urbanicity as described by Gao \& O’Neill (2020).
Models additionally adjusted for recruitment year, sex, smoking status and intensity, BMI, education, domestic fuel use, and alcohol intake.

Figure A3: Penalized spline analysis (with 4 degrees of freedom) examining relationship between PM $\mathbf{2 . 5}^{\mathbf{5}}$ exposure and all-cause and cause-specific mortality within the Golestan cohort (Model 3).

Figure A4: Penalized spline analysis (with 4 degrees of freedom) examining relationship between NO_{2} exposure and all-cause and cause-specific mortality within the Golestan cohort (Model 3).

Table A26. Hazard ratios (and 95\% confidence intervals) for specific causes of death among the Golestan cohort by quartile of $\mathrm{PM}_{2.5}$ (Model 3)

	n. events (total $=49,106$)	$\begin{gathered} \mathrm{Q} 1 \\ (<29.3 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q} 2 \\ (29.3-31.4 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Q3 } \\ (31.4-35.6 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Q} 4 \\ (>35.6 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$
All-cause	6,878	1.00 (ref)	$\begin{gathered} 0.97 \\ (0.91,1.04) \end{gathered}$	$\begin{gathered} \hline 1.00 \\ (0.93,1.07) \end{gathered}$	$\begin{gathered} 0.95 \\ (0.87,1.05) \end{gathered}$
Nonaccidental	5,807	1.00 (ref)	$\begin{gathered} 0.98 \\ (0.91,1.05) \end{gathered}$	$\begin{gathered} 1.00 \\ (0.92,1.08) \end{gathered}$	$\begin{gathered} 0.99 \\ (0.89,1.10) \end{gathered}$
All cancer	1,366	1.00 (ref)	$\begin{gathered} 0.95 \\ (0.81,1.10) \end{gathered}$	$\begin{gathered} 1.03 \\ (0.88,1.21) \end{gathered}$	$\begin{gathered} 0.99 \\ (0.80,1.24) \end{gathered}$
Lung cancer	93	1.00 (ref)	$\begin{gathered} 0.77 \\ (0.43,1.38) \end{gathered}$	$\begin{gathered} 0.66 \\ (0.34,1.27) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.43,2.05) \end{gathered}$
Cardiovascular disease	2,941	1.00 (ref)	$\begin{gathered} 1.02 \\ (0.92,1.13) \end{gathered}$	$\begin{gathered} 0.96 \\ (0.86,1.07) \end{gathered}$	$\begin{gathered} 1.00 \\ (0.86,1.15) \end{gathered}$
Nonmalignant lung disease	394	1.00 (ref)	$\begin{gathered} 1.29 \\ (0.98,1.71) \\ \hline \end{gathered}$	$\begin{gathered} 1.19 \\ (0.87,1.63) \\ \hline \end{gathered}$	$\begin{gathered} 1.31 \\ (0.88,1.96) \\ \hline \end{gathered}$

Models adjusted for recruitment year, sex, smoking status and intensity, BMI, education, diet, alcohol intake, and domestic fuel use.

Table A27. Hazard ratios (and 95\% confidence intervals) for specific causes of death among the Golestan cohort by tertile* of NO_{2} (Model 3)

	$\begin{gathered} \text { n. events } \\ \text { (total }=49,106 \text {) } \end{gathered}$	$\begin{gathered} \mathrm{T} 1 \\ (<8 \mathrm{ppb}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} 2 \\ (8-9 \mathrm{ppb}) \end{gathered}$	$\begin{gathered} \text { T3 } \\ (>9 \mathrm{ppb}) \end{gathered}$
All-cause	6,878	1.00 (ref)	$\begin{gathered} 1.01 \\ (0.95,1.08) \end{gathered}$	$\begin{gathered} 1.04 \\ (0.97,1.13) \end{gathered}$
Nonaccidental	5,807	1.00 (ref)	$\begin{gathered} 1.01 \\ (0.94,1.08) \end{gathered}$	$\begin{gathered} 1.05 \\ (0.96,1.14) \end{gathered}$
All cancer	1,366	1.00 (ref)	$\begin{gathered} 0.99 \\ (0.86,1.14) \end{gathered}$	$\begin{gathered} 1.11 \\ (0.94,1.32) \end{gathered}$
Lung cancer	93	1.00 (ref)	$\begin{gathered} 0.69 \\ (0.36,1.29) \end{gathered}$	$\begin{gathered} 0.77 \\ (0.40,1.47) \end{gathered}$
Cardiovascular disease	2,941	1.00 (ref)	$\begin{gathered} 0.99 \\ (0.89,1.09) \end{gathered}$	$\begin{gathered} 1.03 \\ (0.92,1.15) \end{gathered}$
Nonmalignant lung disease	394	1.00 (ref)	$\begin{gathered} 1.11 \\ (0.85,1.45) \end{gathered}$	$\begin{gathered} 1.14 \\ (0.83,1.56) \end{gathered}$

*: Owing to limited contrast, only tertiles of NO_{2} were available for analysis.
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, education, diet, alcohol intake, and domestic fuel use.

Table A28. Hazard ratios (and 95\% confidence intervals) for specific causes of death within the Golestan cohort after adapting variables which potentially violated the proportional hazards assumption
NO_{2}

	$\begin{gathered} \text { n. events } \\ \text { (total }=49,106 \text {) } \end{gathered}$	$\begin{gathered} \text { HR } \\ (95 \% \mathrm{CI}) \end{gathered}$	$\begin{gathered} \text { n. events } \\ \text { (total }=49,106 \text {) } \end{gathered}$	$\begin{gathered} \text { HR } \\ (95 \% \mathrm{Cl}) \end{gathered}$
All-cause	6,878	$\begin{gathered} 0.98 \\ (0.94,1.03) \end{gathered}$	6,878	$\begin{gathered} 1.07 \\ (0.84,1.35) \end{gathered}$
Nonaccidental	5,807	$\begin{gathered} 1.00 \\ (0.95,1.05) \end{gathered}$	5,807	$\begin{gathered} 1.06 \\ (0.82,1.37) \end{gathered}$
All cancer	1,366	$\begin{gathered} 1.02 \\ (0.92,1.13) \end{gathered}$	1,366	$\begin{gathered} 1.19 \\ (0.70,2.04) \end{gathered}$
Lung cancer	93	$\begin{gathered} 0.84 \\ (0.57,1.25) \end{gathered}$	93	$\begin{gathered} 0.83 \\ (0.11,6.33) \end{gathered}$
Cardiovascular disease	2,941	$\begin{gathered} 0.98 \\ (0.91,1.05) \end{gathered}$	2,941	$\begin{gathered} 0.95 \\ (0.66,1.36) \end{gathered}$
Nonmalignant lung disease	394	$\begin{gathered} 1.10 \\ (0.91,1.34) \end{gathered}$	394	$\begin{gathered} 1.12 \\ (0.42,2.94) \end{gathered}$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2} (each are single pollutant models).
Potential assumption violators were pack-years (removed from analysis), sex, smoking status, and alcohol intake (stratified).

Supplementary Tables and Figures: Health Effects for Arsenic Longitudinal Study (HEALS)

Table A29. Demographic features of the Health Effects for Arsenic Longitudinal Study (HEALS)

	Mean (sd) or n (\%)	n. missing values
Number of participants	19,990	
Age at recruitment	37 (10)	
Sex		
Male	8,144 (41\%)	
Female	11,846 (59\%)	
Recruitment year		
2000	748 (4\%)	
2001	8,879 (44\%)	
2002	2,091 (10\%)	
2006	1,086 (5\%)	
2007	5,027 (25\%)	
2008	2,159 (11\%)	
Follow-up (years)	10(3)	
Smoking status		8
Never	13,486 (67\%)	
Former	1,249 (6\%)	
Current	5,250 (26\%)	
Pack-years (current or former smokers)	15 (15)	1,934
BMI	20 (3)	280
<20	11,870 (60\%)	
20-25	6,442 (33\%)	
25-30	1,266 (6\%)	
>30	132 (1\%)	
Education		11
None	8,703 (44\%)	
Primary	6,101 (31\%)	
Secondary	4,411 (22\%)	
Trade/Technical	764 (5\%)	
Mortality		
All-cause	1,532	
Nonaccidental	1,467	
All cancer	268	
Lung cancer	63	
Cardiovascular disease	513	
Nonmalignant lung disease	219	

Table A30. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in PM ${ }_{2.5}$ in the Health Effects for Arsenic Longitudinal Study (HEALS)

Model 1
Model 2
Model 3

	n. events (total = 19,990)	HR (95\% CI)	n. events (total = 19,990)	HR (95\% CI)	n. events (total $=17,361$)	HR (95\% CI)
All-cause	1,532	$\begin{gathered} 0.91 \\ (0.80,1.03) \end{gathered}$	1,532	$\begin{gathered} 0.57 \\ (0.27,1.23) \end{gathered}$	1,300	$\begin{gathered} 0.79 \\ (0.35,1.80) \end{gathered}$
Nonaccidental	1,467	$\begin{gathered} 0.90 \\ (0.79,1.03) \end{gathered}$	1,467	$\begin{gathered} 0.62 \\ (0.28,1.34) \end{gathered}$	1,249	$\begin{gathered} 0.84 \\ (0.36,1.94) \end{gathered}$
All cancer	268	$\begin{gathered} 0.77 \\ (0.57,1.05) \end{gathered}$	268	$\begin{gathered} 0.28 \\ (0.05,1.64) \end{gathered}$	228	$\begin{gathered} 0.38 \\ (0.05,2.63) \end{gathered}$
Lung cancer	63	$\begin{gathered} 0.31 \\ (0.14,0.70) \end{gathered}$	63	$\begin{gathered} 0.18 \\ (0.01,5.54) \end{gathered}$	51	$\begin{gathered} 0.14 \\ (<0.01,6.57) \end{gathered}$
Cardiovascular disease	513	$\begin{gathered} 0.85 \\ (0.68,1.06) \end{gathered}$	513	$\begin{gathered} 0.59 \\ (0.16,2.21) \end{gathered}$	440	$\begin{gathered} 0.60 \\ (0.15,2.43) \end{gathered}$
Nonmalignant lung disease	219	$\begin{gathered} 1.23 \\ (0.88,1.72) \\ \hline \end{gathered}$	219	$\begin{gathered} 0.30 \\ (0.04,2.16) \end{gathered}$	180	$\begin{gathered} 0.80 \\ (0.09,7.37) \\ \hline \end{gathered}$

Model 1: Unadjusted.
Model 2: Adjusted for recruitment year and sex.
Model 3: Adjusted for recruitment year, sex, smoking status and intensity, BMI, and education.

Table A31. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to 10-ppb increase in NO_{2} in the Health Effects for Arsenic Longitudinal Study (HEALS)

Model 1
Model 2
Model 3

	n. events (total $=19,983$)	HR (95\% CI)	n. events (total = 19,983)	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=17,355 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	1,530	$\begin{gathered} 1.91 \\ (0.97,3.78) \end{gathered}$	1,530	$\begin{gathered} 2.49 \\ (1.17,5.31) \end{gathered}$	1,298	$\begin{gathered} 2.80 \\ (1.25,6.26) \end{gathered}$
Nonaccidental	1,465	$\begin{gathered} 1.71 \\ (0.85,3.44) \end{gathered}$	1,465	$\begin{gathered} 2.22 \\ (1.02,4.85) \end{gathered}$	1,1247	$\begin{gathered} 2.70 \\ (1.18,6.16) \end{gathered}$
All cancer	268	$\begin{gathered} 0.50 \\ (0.09,2.87) \end{gathered}$	268	$\begin{gathered} 0.67 \\ (0.09,4.85) \end{gathered}$	228	$\begin{gathered} 0.93 \\ (0.12,7.40) \end{gathered}$
Lung cancer	63	$\begin{gathered} 1.19 \\ (0.04,37.3) \end{gathered}$	63	$\begin{gathered} 3.89 \\ (0.11,>100) \end{gathered}$	51	$\begin{gathered} 7.34 \\ (0.19,>100) \end{gathered}$
Cardiovascular disease	512	$\begin{gathered} 2.89 \\ (0.91,9.19) \end{gathered}$	512	$\begin{gathered} 5.67 \\ (1.65,19.5) \end{gathered}$	439	$\begin{gathered} 9.47 \\ (2.63,34.1) \end{gathered}$
Nonmalignant lung disease	219	$\begin{gathered} 3.42 \\ (0.58,20.0) \\ \hline \end{gathered}$	219	$\begin{gathered} 2.55 \\ (0.33,19.5) \\ \hline \end{gathered}$	180	$\begin{gathered} 2.16 \\ (0.23,20.0) \\ \hline \end{gathered}$

Model 1: Unadjusted.
Model 2: Adjusted for recruitment year and sex.
Model 3: Adjusted for recruitment year, sex, smoking status and intensity, BMI, and education.

Table A32. Hazard ratios (and 95\% confidence intervals) for specific causes of death for a two-pollutant model in the Health Effects for Arsenic Longitudinal Study (HEALS) (Model 3)

	$\begin{gathered} \text { n. events } \\ \text { (total }=17,355 \text {) } \end{gathered}$	$\begin{gathered} \mathrm{PM}_{2.5} \\ \mathrm{HR}(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NO}_{2} \\ \mathrm{HR}(95 \% \mathrm{Cl}) \end{gathered}$
All-cause	1,298	$\begin{gathered} 0.87 \\ (0.38,1.98) \end{gathered}$	$\begin{gathered} \hline 2.76 \\ (1.23,6.20) \end{gathered}$
Nonaccidental	1,247	$\begin{gathered} 0.92 \\ (0.40,2.14) \end{gathered}$	$\begin{gathered} 2.68 \\ (1.17,6.14) \end{gathered}$
All cancer	228	$\begin{gathered} 0.37 \\ (0.05,2.61) \end{gathered}$	$\begin{gathered} 0.84 \\ (0.10,6.81) \end{gathered}$
Lung cancer	51	$\begin{gathered} 0.17 \\ (<0.01,7.99) \end{gathered}$	$\begin{gathered} 6.21 \\ (0.15,>100) \end{gathered}$
Cardiovascular disease	439	$\begin{gathered} 0.73 \\ (0.18,2.99) \end{gathered}$	$\begin{gathered} 9.24 \\ (2.55,33.5) \end{gathered}$
Nonmalignant lung disease	180	$\begin{gathered} 0.88 \\ (0.09,8.17) \end{gathered}$	$\begin{gathered} 2.13 \\ (0.23,20.1) \end{gathered}$

[^0]Table A33. Hazard ratios (and 95\% confidence intervals) for all-cause and nonaccidental mortality in relation to 5$\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ in the Health Effects for Arsenic Longitudinal Study (HEALS), stratified by smoking status (Model 3)

	Never smokers		Former smokers		Current smokers	
	$\begin{array}{c}\text { n. events } \\ \text { (total }=13,022)\end{array}$	$\mathrm{HR}(95 \% \mathrm{Cl})$	$\begin{array}{c}\text { n. events } \\ \text { (total }=1,144)\end{array}$	$\mathrm{HR}(95 \% \mathrm{Cl})$	$\begin{array}{c}\text { n. events } \\ \text { (total }=3,195)\end{array}$	$\mathrm{HR}(95 \% \mathrm{Cl})$
All-cause	479	1.32	229	2.76	592	0.37
Nonaccidental	461	$(0.32,5.41)$	1.39	220	$(0.33,22.8)$	3.28

Models adjusted for recruitment year, sex, smoking intensity (current/former smokers only), BMI, and education.

Table A34. Hazard ratios (and 95\% confidence intervals) for all-cause and nonaccidental mortality in relation to 10ppb increase in NO_{2} in the Health Effects for Arsenic Longitudinal Study (HEALS), stratified by smoking status (Model 3)

	Never smokers		Former smokers		Current smokers	
	n. events $\text { (total }=13,018 \text {) }$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=1,144 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=3,193 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	478	$\begin{gathered} 4.83 \\ (1.29,18.10) \end{gathered}$	229	$\begin{gathered} 1.09 \\ (0.13,8.98) \end{gathered}$	591	$\begin{gathered} 2.15 \\ (0.66,6.99) \end{gathered}$
Nonaccidental	460	$\begin{gathered} 4.80 \\ (1.24,18.50) \\ \hline \end{gathered}$	220	$\begin{gathered} 0.78 \\ (0.09,6.82) \\ \hline \end{gathered}$	567	$\begin{gathered} 2.16 \\ (0.65,7.23) \\ \hline \end{gathered}$

Models adjusted for recruitment year, sex, smoking intensity (current/former smokers only), BMI, and education.

Table A35. Hazard ratios (and 95\% confidence intervals) for all-cause and nonaccidental mortality among nonsmoking women within the Health Effects for Arsenic Longitudinal Study (HEALS) (Model 3)

PM ${ }_{2.5} \quad \mathrm{NO}_{2}$

	n. events (total $=10,768)$	HR (95\% CI)	n. events (total = 10,764)	HR (95\% CI)
All-cause	364	0.55	363	6.96
Nonaccidental	351	$(0.11,2.80)$	350	$(1.55,31.3)$
	0.59	3.24		

Models adjusted for recruitment year, sex, BMI, and education.

Table A36. Hazard ratios for specific causes of death in relation to a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ after additional adjustment for specific urban scenarios within the Health Effects for Arsenic Longitudinal Study (HEALS)

	Degree of Urb n. events (total $=17,361$)	ty* in 2000 HR (95\% CI)	$\begin{gathered} \text { Degree of Url } \\ \text { n. events } \\ \text { (total }=17,361 \text {) } \end{gathered}$	ity in 2010 $H R(95 \% \mathrm{CI})$
All-cause	1,300	$\begin{gathered} 0.84 \\ (0.33,2.12) \end{gathered}$	1,300	$\begin{gathered} 0.81 \\ (0.33,2.00) \end{gathered}$
Nonaccidental	1,249	$\begin{gathered} 0.92 \\ (0.36,2.37) \end{gathered}$	1,249	$\begin{gathered} 0.89 \\ (0.36,2.23) \end{gathered}$
All cancer	228	$\begin{gathered} 0.36 \\ (0.04,3.33) \end{gathered}$	228	$\begin{gathered} 0.33 \\ (0.04,2.80) \end{gathered}$
Lung cancer	51	$\begin{gathered} 0.15 \\ (<0.01,14.0) \end{gathered}$	51	$\begin{gathered} 0.13 \\ (<0.01,9.61) \end{gathered}$
Cardiovascular disease	440	$\begin{gathered} 0.70 \\ (0.14,3.37) \end{gathered}$	440	$\begin{gathered} 0.68 \\ (0.15,3.16) \end{gathered}$
Nonmalignant lung disease	180	$\begin{gathered} 1.30 \\ (0.11,15.5) \\ \hline \end{gathered}$	180	$\begin{gathered} 1.33 \\ (0.12,14.6) \\ \hline \end{gathered}$

Refers to gradient values for urbanicity as described by Gao \& O'Neill (2020).
Models additionally adjusted for recruitment year, sex, smoking status and intensity, BMI, and education.

Table A37. Hazard ratios for specific causes of death in relation to a 10-ppb increase in NO_{2} after additional adjustment for specific urban scenarios within the Health Effects for Arsenic Longitudinal Study (HEALS)

	$\begin{aligned} & \begin{array}{l} \text { Degree of Urbanicity* in } 2000 \\ \begin{array}{c} n . \text { events } \\ \text { (total }=17,355) \end{array} \\ \hline \end{array} \text { HR (95\% CI) } \\ & \hline \end{aligned}$			
All-cause	1,298	$\begin{gathered} 2.91 \\ (1.29,6.54) \end{gathered}$	1,298	$\begin{gathered} 2.92 \\ (1.29,6.59) \end{gathered}$
Nonaccidental	1,247	$\begin{gathered} 2.82 \\ (1.23,6.46) \end{gathered}$	1,247	$\begin{gathered} 2.84 \\ (1.23,6.52) \end{gathered}$
All cancer	228	$\begin{gathered} 0.97 \\ (0.12,7.82) \end{gathered}$	228	$\begin{gathered} 0.95 \\ (0.12,7.66) \end{gathered}$
Lung cancer	51	$\begin{gathered} 8.39 \\ (0.21,340) \end{gathered}$	51	$\begin{gathered} 8.40 \\ (0.20,346) \end{gathered}$
Cardiovascular disease	439	$\begin{gathered} 10.4 \\ (2.86,37.9) \end{gathered}$	439	$\begin{gathered} 10.7 \\ (2.93,39.3) \end{gathered}$
Nonmalignant lung disease	180	$\begin{gathered} 2.40 \\ (0.26,22.5) \end{gathered}$	180	$\begin{gathered} 2.56 \\ (0.27,24.2) \end{gathered}$

Refers to gradient values for urbanicity as described by Gao \& O'Neill (2020).
Models additionally adjusted for recruitment year, sex, smoking status and intensity, BMI, and education.

Figure A5: Penalized spline analysis (with 4 degrees of freedom) examining relationship between PM $\mathbf{2 . 5}^{\text {e }}$ exposure and all-cause and cause-specific mortality within the Health Effects for Arsenic Longitudinal Study (HEALS) (Model 3).

Table A38. Hazard ratios (and 95\% confidence intervals) for specific causes of death among the Health Effects for Arsenic Longitudinal Study (HEALS) by quartile of $\mathrm{PM}_{\mathbf{2 . 5}}$ (Model 3)

	n. events (total = 49,106)	$\begin{gathered} \text { Q1 } \\ (<55.9 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q} 2 \\ (55.9-56.7 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \text { Q3 } \\ (56.7-60.7 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q} 4 \\ (>60.7 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$
All-cause	6,878	Ref	$\begin{gathered} 0.97 \\ (0.83,1.13) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.68,1.24) \end{gathered}$	$\begin{gathered} 0.88 \\ (0.53,1.48) \end{gathered}$
Nonaccidental	5,807	Ref	$\begin{gathered} 0.97 \\ (0.83,1.13) \end{gathered}$	$\begin{gathered} 0.96 \\ (0.71,1.29) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.55,1.54) \end{gathered}$
All cancer	1,366	Ref	$\begin{gathered} 0.92 \\ (0.63,1.33) \end{gathered}$	$\begin{gathered} 0.84 \\ (0.41,1.75) \end{gathered}$	$\begin{gathered} 0.88 \\ (0.25,3.10) \end{gathered}$
Lung cancer*	93	Ref	NA	NA	NA
Cardiovascular disease	2,941	Ref	$\begin{gathered} 0.89 \\ (0.69,1.16) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.57,1.50) \end{gathered}$	$\begin{gathered} 0.84 \\ (0.35,2.01) \end{gathered}$
Nonmalignant lung disease	394	Ref	$\begin{gathered} 0.86 \\ (0.58,1.28) \end{gathered}$	$\begin{gathered} 1.23 \\ (0.62,2.44) \end{gathered}$	$\begin{gathered} 1.20 \\ (0.28,5.21) \end{gathered}$

*: Analysis unable to be completed secondary to insufficient sample size.
Models adjusted recruitment year, sex, smoking status and intensity, BMI, and education.

Table A39. Hazard ratios (and 95\% confidence intervals) for specific causes of death within the Health Effects for Arsenic Longitudinal Study (HEALS) after adapting variables which potentially violated the proportional hazards assumption

	PM 2.5		NO_{2}	
	$\begin{gathered} \text { n. events } \\ \text { (total }=17,361 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=17,355 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	1,300	$\begin{gathered} 0.65 \\ (0.29,1.44) \end{gathered}$	1,298	$\begin{gathered} 2.33 \\ (1.07,5.07) \end{gathered}$
Nonaccidental	1,249	$\begin{gathered} 1.69 \\ (0.30,0.155) \end{gathered}$	1,1247	$\begin{gathered} 2.13 \\ (0.96,4.74) \end{gathered}$
All cancer	228	$\begin{gathered} 0.34 \\ (0.05,2.22) \end{gathered}$	228	$\begin{gathered} 0.90 \\ (0.12,6.65) \end{gathered}$
Lung cancer	51	$\begin{gathered} 0.11 \\ (<0.01,4.32) \end{gathered}$	51	$\begin{gathered} 5.35 \\ (0.15,>100) \end{gathered}$
Cardiovascular disease	440	$\begin{gathered} 0.52 \\ (0.13,2.04) \end{gathered}$	439	$\begin{gathered} 5.98 \\ (1.69,21.13) \end{gathered}$
Nonmalignant lung disease	180	$\begin{gathered} 0.39 \\ (0.05,3.14) \end{gathered}$	180	$\begin{gathered} 1.89 \\ (0.23,15.30) \end{gathered}$

[^1]Supplementary Tables and Figures: Japan Public Health Center-based Prospective Study (JPHC) Table A40. Demographic features of the Japan Public Health Center-based Prospective Study (JPHC)

		Mean (sd) or n (\%)	n. missing
values			

Table A41. Hazard ratios (and 95% confidence intervals) for specific causes of death in relation to $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in PM $_{2.5}$ in the Japan Public Health Center-based Prospective Study (JPHC)

Model 1 Model 2
Model 3

	n. events (total = 87,600)	HR (95\% CI)	n. events (total $=87,600$)	HR (95\% CI)	n. events (total $=78,142$)	HR (95\% CI)
All-cause	17,916	$\begin{gathered} \hline 1.09 \\ (1.07,1.12) \end{gathered}$	17,916	$\begin{gathered} \hline 1.11 \\ (1.08,1.14) \end{gathered}$	15,700	$\begin{gathered} \hline 1.06 \\ (1.03,1.09) \end{gathered}$
All cancer	7,319	$\begin{gathered} 1.16 \\ (1.12,1.2) \end{gathered}$	7,319	$\begin{gathered} 1.16 \\ (1.12,1.21) \end{gathered}$	6,417	$\begin{gathered} 1.10 \\ (1.06,1.16) \end{gathered}$
Lung cancer	1,458	$\begin{gathered} 1.15 \\ (1.06,1.24) \end{gathered}$	1,458	$\begin{gathered} 1.16 \\ (1.06,1.27) \end{gathered}$	1,246	$\begin{gathered} 1.02 \\ (0.92,1.13) \end{gathered}$
Cardiac disease	2,348	$\begin{gathered} 1.04 \\ (0.98,1.11) \end{gathered}$	2,348	$\begin{gathered} 1.04 \\ (0.97,1.12) \end{gathered}$	2,045	$\begin{gathered} 1.02 \\ (0.95,1.10) \end{gathered}$
Cerebrovascular disease	1,819	$\begin{gathered} 1.09 \\ (1.01,1.17) \end{gathered}$	1,819	$\begin{gathered} 1.17 \\ (1.07,1.26) \end{gathered}$	1,599	$\begin{gathered} 1.13 \\ (1.03,1.24) \end{gathered}$
Combined cardiovascular	4,167	$\begin{gathered} 1.06 \\ (1.01,1.11) \end{gathered}$	4,167	$\begin{gathered} 1.09 \\ (1.04,1.15) \end{gathered}$	3,644	$\begin{gathered} 1.07 \\ (1.01,1.13) \end{gathered}$
Nonmalignant lung disease	1,195	$\begin{gathered} 0.98 \\ (0.9,1.07) \end{gathered}$	1,195	$\begin{gathered} 0.94 \\ (0.86,1.03) \end{gathered}$	1,030	$\begin{gathered} 0.85 \\ (0.76,0.94) \end{gathered}$
"Other" deaths	5,235	$\begin{gathered} 1.05 \\ (1.01,1.10) \end{gathered}$	5,235	$\begin{gathered} 1.10 \\ (1.05,1.15) \end{gathered}$	4,609	$\begin{gathered} 1.05 \\ (1.00,1.10) \end{gathered}$

Model 1: Unadjusted.
Model 2: Adjusted for recruitment year and sex.
Model 3: Adjusted for recruitment year, sex, smoking status and intensity, BMI, occupation, diet, and alcohol intake.

Table A42. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to 10-ppb increase in NO_{2} in the Japan Public Health Center-based Prospective Study (JPHC)

Model 1 Model 2 Model3

	n. events (total $=85,177$)	HR (95\% CI)	n. events (total = 85,177)	HR (95\% CI)	n. events (total = 76,075)	HR (95\% CI)
All-cause	15,455	$\begin{gathered} 1.16 \\ (1.13,1.18) \end{gathered}$	15,455	$\begin{gathered} 1.19 \\ (1.16,1.23) \end{gathered}$	13,597	$\begin{gathered} 1.16 \\ (1.12,1.19) \end{gathered}$
All cancer	6,416	$\begin{gathered} 1.18 \\ (1.14,1.23) \end{gathered}$	6,416	$\begin{gathered} 1.23 \\ (1.18,1.28) \end{gathered}$	5,664	$\begin{gathered} 1.18 \\ (1.13,1.23) \end{gathered}$
Lung cancer	1,236	$\begin{gathered} 1.19 \\ (1.10,1.3) \end{gathered}$	1,236	$\begin{gathered} 1.22 \\ (1.11,1.34) \end{gathered}$	1,059	$\begin{gathered} 1.13 \\ (1.01,1.27) \end{gathered}$
Cardiac disease	1,977	$\begin{gathered} 1.11 \\ (1.04,1.19) \end{gathered}$	1,977	$\begin{gathered} 1.13 \\ (1.05,1.23) \end{gathered}$	1,727	$\begin{gathered} 1.12 \\ (1.03,1.23) \end{gathered}$
Cerebrovascular disease	1,607	$\begin{gathered} 1.03 \\ (0.96,1.11) \end{gathered}$	1,607	$\begin{gathered} 1.05 \\ (0.96,1.14) \end{gathered}$	1,411	$\begin{gathered} 1.03 \\ (0.93,1.14) \end{gathered}$
Combined cardiovascular	3,584	$\begin{gathered} 1.08 \\ (1.02,1.13) \end{gathered}$	3,584	$\begin{gathered} 1.10 \\ (1.03,1.16) \end{gathered}$	3,138	$\begin{gathered} 1.08 \\ (1.01,1.16) \end{gathered}$
Nonmalignant lung disease	949	$\begin{gathered} 1.03 \\ (0.96,1.11) \end{gathered}$	949	$\begin{gathered} 1.26 \\ (1.12,1.41) \end{gathered}$	822	$\begin{gathered} 1.11 \\ (0.97,1.26) \end{gathered}$
"Other" deaths	4,506	$\begin{gathered} 1.16 \\ (1.12,1.21) \\ \hline \end{gathered}$	4,506	$\begin{gathered} 1.21 \\ (1.15,1.27) \\ \hline \end{gathered}$	3,973	$\begin{gathered} 1.19 \\ (1.13,1.26) \end{gathered}$

Model 1: Unadjusted.
Model 2: Adjusted for recruitment year and sex.
Model 3: Adjusted for recruitment year, sex, smoking status and intensity, BMI, occupation, diet, and alcohol intake.

Table A42. Hazard ratios (and 95\% confidence intervals) for specific causes of death for a twopollutant model in the Japan Public Health Center-based Prospective Study (JPHC) (Model 3)

	n. events (total $=76,029)$	$\mathrm{PM}_{2.5}$ $\mathrm{HR}(95 \% \mathrm{Cl})$	$\mathrm{NO}(95 \% \mathrm{Cl})$
All-cause	13,587	1.23	1.06
		$(1.19,1.28)$	$(1.02,1.10)$
All cancer	5,656	1.27	1.07
Lung cancer		$(1.20,1.35)$	$(1.01,1.12)$
Cardiac	1,056	1.15	1.07
disease	1,727	$(1.00,1.32)$	$(0.94,1.21)$
Cerebrovascular		1.28	1.01
disease	1,411	$(1.16,1.42)$	$(0.92,1.11)$
Combined cardiovascular	3,138	1.28	0.93
Nonmalignant lung	821	$(1.14,1.43)$	$(0.84,1.04)$
disease		1.28	0.98
"Other" deaths	3,972	$1.19,1.38)$	$(0.91,1.05)$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2}.
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, occupation, diet, and alcohol intake.

Table A43. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathbf{P M}_{2.5}$ in the Japan Public Health Center-based Prospective Study (JPHC), stratified by smoking status (Model 3)

	Neve n. events (total = 47,969)	okers HR (95\% CI)	Former n. events (total =9,637)	okers HR (95\% CI)	Current n. events (total = 21,580)	kers HR (95\% CI)
All-cause	7,047	$\begin{gathered} 1.09 \\ (1.05,1.13) \end{gathered}$	2,591	$\begin{gathered} 1.04 \\ (0.97,1.11) \end{gathered}$	6,394	$\begin{gathered} 1.04 \\ (0.99,1.09) \end{gathered}$
All cancer	2,794	$\begin{gathered} 1.11 \\ (1.04,1.18) \end{gathered}$	1,064	$\begin{gathered} 1.09 \\ (0.98,1.21) \end{gathered}$	2,695	$\begin{gathered} 1.15 \\ (1.07,1.24 \end{gathered}$
Lung cancer	295	$\begin{gathered} 1.01 \\ (0.84,1.22) \end{gathered}$	178	$\begin{gathered} 0.91 \\ (0.72,1.16) \end{gathered}$	803	$\begin{gathered} 1.12 \\ (0.97,1.29) \end{gathered}$
Cardiac disease	942	$\begin{gathered} 1.07 \\ (0.96,1.19) \end{gathered}$	321	$\begin{gathered} 1.06 \\ (0.88,1.28) \end{gathered}$	832	$\begin{gathered} 0.94 \\ (0.82,1.07) \end{gathered}$
Cerebrovascular disease	794	$\begin{gathered} 1.16 \\ (1.02,1.31) \end{gathered}$	256	$\begin{gathered} 1.10 \\ (0.88,1.37) \end{gathered}$	587	$\begin{gathered} 1.10 \\ (0.94,1.30) \end{gathered}$
Combined cardiovascular	1,736	$\begin{gathered} 1.10 \\ (1.02,1.20) \end{gathered}$	577	$\begin{gathered} 1.07 \\ (0.93,1.24) \end{gathered}$	1,419	$\begin{gathered} 1.00 \\ (0.90,1.11) \end{gathered}$
Nonmalignant lung disease	390	$\begin{gathered} 0.90 \\ (0.76,1.06) \end{gathered}$	238	$\begin{gathered} 0.77 \\ (0.63,0.95) \end{gathered}$	428	$\begin{gathered} 0.82 \\ (0.69,0.97) \end{gathered}$
"Other" deaths	2,127	$\begin{gathered} 1.09 \\ (1.02,1.18) \\ \hline \end{gathered}$	712	$\begin{gathered} 1.06 \\ (0.93,1.20) \\ \hline \end{gathered}$	1,852	$\begin{gathered} 0.98 \\ (0.90,1.07) \\ \hline \end{gathered}$

Models adjusted for recruitment year, sex, smoking intensity (current/former smokers only), BMI, occupation, diet, and alcohol intake.

Table A44. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to 10-ppb increase in NO_{2} in the Japan Public Health Center-based Prospective Study (JPHC), stratified by smoking status (Model 3)

	Never smokers		Former smokers		Current smokers	
	n. events $\text { (total }=46,856 \text {) }$	HR (95\% CI)	n. events (total = 9,304)	HR (95\% CI)	n. events (total = 20,909)	HR (95\% CI)
All-cause	5,906	$\begin{gathered} 1.26 \\ (1.20,1.32) \end{gathered}$	2,555	$\begin{gathered} 1.14 \\ (1.06,1.22) \end{gathered}$	5,718	$\begin{gathered} \hline 1.06 \\ (1.01,1.11) \end{gathered}$
All cancer	2,418	$\begin{gathered} 1.29 \\ (1.21,1.39) \end{gathered}$	937	$\begin{gathered} 1.05 \\ (0.94,1.18) \end{gathered}$	2,432	$\begin{gathered} 1.13 \\ (1.05,1.21) \end{gathered}$
Lung cancer	238	$\begin{gathered} 1.18 \\ (0.94,1.48) \end{gathered}$	147	$\begin{gathered} 1.21 \\ (0.92,1.59) \end{gathered}$	701	$\begin{gathered} 1.13 \\ (0.98,1.31) \end{gathered}$
Cardiac disease	747	$\begin{gathered} 1.16 \\ (1.01,1.33) \end{gathered}$	285	$\begin{gathered} 1.19 \\ (0.98,1.45) \end{gathered}$	736	$\begin{gathered} 1.01 \\ (0.88,1.16) \end{gathered}$
Cerebrovascular disease	673	$\begin{gathered} 1.15 \\ (0.99,1.33) \end{gathered}$	230	$\begin{gathered} 1.11 \\ (0.88,1.42) \end{gathered}$	543	$\begin{gathered} 0.86 \\ (0.72,1.02) \end{gathered}$
Combined cardiovascular	1,420	$\begin{gathered} 1.15 \\ (1.04,1.28) \end{gathered}$	515	$\begin{gathered} 1.16 \\ (1.00,1.35) \end{gathered}$	1,279	$\begin{gathered} 0.95 \\ (0.85,1.05) \end{gathered}$
Nonmalignant lung disease	299	$\begin{gathered} 1.18 \\ (0.95,1.48) \end{gathered}$	195	$\begin{gathered} 1.11 \\ (0.87,1.41) \end{gathered}$	347	$\begin{gathered} 1.01 \\ (0.82,1.25) \end{gathered}$
"Other" deaths	1,769	$\begin{gathered} 1.30 \\ (1.19,1.41) \end{gathered}$	608	$\begin{gathered} 1.26 \\ (1.10,1.44) \end{gathered}$	1,660	$\begin{gathered} 1.06 \\ (0.97,1.16) \end{gathered}$

Models adjusted for recruitment year, sex, smoking intensity (current/former smokers only), BMI, occupation, diet, and alcohol intake.

Table A45. Hazard ratios (and 95\% confidence intervals) for specific causes of death among nonsmoking women within the Japan Public Health Center-based Prospective Study (JPHC) (Model 3) $\mathrm{PM}_{2.5} \quad \mathrm{NO}_{2}$

	$\begin{gathered} \text { n. events } \\ \text { (total }=39,510 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=38,712 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	5,303	$\begin{gathered} 1.08 \\ (1.03,1.14) \end{gathered}$	4,482	$\begin{gathered} 1.27 \\ (1.2,1.33) \end{gathered}$
All cancer	2,158	$\begin{gathered} 1.13 \\ (1.05,1.22) \end{gathered}$	1,891	$\begin{gathered} 1.27 \\ (1.17,1.37) \end{gathered}$
Lung cancer	230	$\begin{gathered} 1.07 \\ (0.86,1.33) \end{gathered}$	184	$\begin{gathered} 1.25 \\ (0.97,1.63) \end{gathered}$
Cardiac disease	697	$\begin{gathered} 1.01 \\ (0.89,1.14) \end{gathered}$	551	$\begin{gathered} 1.14 \\ (0.97,1.34) \end{gathered}$
Cerebrovascular disease	588	$\begin{gathered} 1.13 \\ (0.98,1.31) \end{gathered}$	502	$\begin{gathered} 1.16 \\ (0.98,1.37) \end{gathered}$
Combined cardiovascular	1,285	$\begin{gathered} 1.06 \\ (0.97,1.17) \end{gathered}$	1,053	$\begin{gathered} 1.15 \\ (1.02,1.29) \end{gathered}$
Nonmalignant lung disease	270	$\begin{gathered} 0.96 \\ (0.79,1.17) \end{gathered}$	208	$\begin{gathered} 1.45 \\ (1.13,1.86) \end{gathered}$
"Other" deaths	1,590	$\begin{gathered} 1.08 \\ (0.99,1.17) \end{gathered}$	1,330	$\begin{gathered} 1.34 \\ (1.21,1.48) \end{gathered}$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2} (each are single pollutant models).
Models adjusted for recruitment year, BMI, occupation, diet, and alcohol intake.

Table A46. Hazard ratios (and 95\% confidence intervals) for specific causes of death among participants of the Japan Public Health Center-based Prospective Study (JPHC) with no prevalent disease at recruitment (Model 3)

	PM ${ }_{2.5}$		NO_{2}	
	$\begin{gathered} \text { n. events } \\ \text { (total }=37,352 \text {) } \\ \hline \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=37,014 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	6,198	$\begin{gathered} \hline 1.07 \\ (1.01,1.13) \end{gathered}$	5,844	$\begin{gathered} 0.94 \\ (0.89,0.99) \end{gathered}$
All cancer	2,818	$\begin{gathered} 1.15 \\ (1.05,1.24) \end{gathered}$	2,668	$\begin{gathered} 1.00 \\ (0.92,1.07) \end{gathered}$
Lung cancer	559	$\begin{gathered} 1.01 \\ (0.83,1.22) \end{gathered}$	529	$\begin{gathered} 0.98 \\ (0.81,1.18) \end{gathered}$
Cardiac disease	655	$\begin{gathered} 1.11 \\ (0.93,1.32) \end{gathered}$	620	$\begin{gathered} 0.77 \\ (0.64,0.94) \end{gathered}$
Cerebrovascular disease	533	$\begin{gathered} 1.02 \\ (0.84,1.24) \end{gathered}$	504	$\begin{gathered} 0.75 \\ (0.6,0.93) \end{gathered}$
Combined cardiovascular	1,188	$\begin{gathered} 1.07 \\ (0.94,1.22) \end{gathered}$	1,124	$\begin{gathered} 0.76 \\ (0.66,0.88) \end{gathered}$
Nonmalignant lung disease	367	$\begin{gathered} 0.89 \\ (0.72,1.10) \end{gathered}$	336	$\begin{gathered} 0.85 \\ (0.67,1.07) \end{gathered}$
"Other" deaths	1,825	$\begin{gathered} 1.00 \\ (0.90,1.10) \\ \hline \end{gathered}$	1,716	$\begin{gathered} 0.95 \\ (0.86,1.05) \\ \hline \end{gathered}$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2} (each are single pollutant models).
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, occupation, diet, and alcohol intake.

Table A47. Hazard ratios (and 95\% confidence intervals) for specific causes of death among participants of the Japan Public Health Center-based Prospective Study (JPHC) who were alive in 1998 (Model 3)

$$
\mathrm{PM}_{2.5} \quad \mathrm{NO}_{2}
$$

	n. events (total = 75,855)	HR (95\% CI)	n. events (total = 73,789)	HR (95\% CI)
All-cause	13,426	$\begin{gathered} 1.04 \\ (1.02,1.07) \end{gathered}$	11,324	$\begin{gathered} 1.01 \\ (0.97,1.05) \end{gathered}$
All cancer	5,419	$\begin{gathered} 1.10 \\ (1.05,1.15) \end{gathered}$	4,666	$\begin{gathered} 1.05 \\ (0.99,1.11) \end{gathered}$
Lung cancer	1,080	$\begin{gathered} 1.03 \\ (0.93,1.14) \end{gathered}$	893	$\begin{gathered} 1.07 \\ (0.93,1.22) \end{gathered}$
Cardiac disease	1,772	$\begin{gathered} 1.02 \\ (0.95,1.10) \end{gathered}$	1,454	$\begin{gathered} 0.98 \\ (0.87,1.09) \end{gathered}$
Cerebrovascular disease	1,345	$\begin{gathered} 1.08 \\ (1.00,1.18) \end{gathered}$	1,157	$\begin{gathered} 0.85 \\ (0.74,0.96) \end{gathered}$
Combined cardiovascular	3,117	$\begin{gathered} 1.05 \\ (0.99,1.11) \end{gathered}$	2,611	$\begin{gathered} 0.92 \\ (0.84,1.00) \end{gathered}$
Nonmalignant lung disease	930	$\begin{gathered} 0.89 \\ (0.80,0.99) \end{gathered}$	722	$\begin{gathered} 0.92 \\ (0.78,1.09) \end{gathered}$
"Other" deaths	3,960	$\begin{gathered} 1.01 \\ (0.96,1.06) \\ \hline \end{gathered}$	3,325	$\begin{gathered} 1.03 \\ (0.96,1.11) \\ \hline \end{gathered}$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2} (each are single pollutant models).
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, occupation, diet, and alcohol intake.

Table A48. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathbf{P M}_{2.5}$ after additional adjustment for specific urban scenarios within the Japan Public Health Centerbased Prospective Study (JPHC)

	Within Urban Center (Y / N)* n. events (total $=78,142$) HR (95\% CI)		Degree of Urbanicity ${ }^{+}$in 2000 n. events (total $=78,112$) HR (95\% CI)		Degree of Urbanicity in 2010 n. events (total $=78,112$) HR (95\% CI)	
All-cause	15,700	$\begin{gathered} \hline 1.06 \\ (1.03,1.09) \end{gathered}$	15,689	$\begin{gathered} 1.07 \\ (1.04,1.10) \end{gathered}$	15,689	$\begin{gathered} 1.07 \\ (1.04,1.10) \end{gathered}$
All cancer	6,417	$\begin{gathered} 1.10 \\ (1.05,1.15) \end{gathered}$	6,412	$\begin{gathered} 1.11 \\ (1.06,1.16) \end{gathered}$	6,412	$\begin{gathered} 1.12 \\ (1.06,1.17) \end{gathered}$
Lung cancer	1,246	$\begin{gathered} 1.01 \\ (0.90,1.12) \end{gathered}$	1,246	$\begin{gathered} 1.02 \\ (0.92,1.14) \end{gathered}$	1,246	$\begin{gathered} 1.03 \\ (0.93,1.15) \end{gathered}$
Cardiac disease	2,045	$\begin{gathered} 1.04 \\ (0.96,1.12) \end{gathered}$	2,044	$\begin{gathered} 1.04 \\ (0.96,1.13) \end{gathered}$	2,044	$\begin{gathered} 1.04 \\ (0.96,1.13) \end{gathered}$
Cerebrovascular disease	1,599	$\begin{gathered} 1.19 \\ (1.08,1.31) \end{gathered}$	1,599	$\begin{gathered} 1.19 \\ (1.08,1.31) \end{gathered}$	1,599	$\begin{gathered} 1.19 \\ (1.08,1.30) \end{gathered}$
Combined cardiovascular	3,644	$\begin{gathered} 1.10 \\ (1.04,1.17) \end{gathered}$	3,643	$\begin{gathered} 1.10 \\ (1.04,1.17) \end{gathered}$	3,643	$\begin{gathered} 1.10 \\ (1.04,1.17) \end{gathered}$
Nonmalignant lung disease	1,030	$\begin{gathered} 0.84 \\ (0.76,0.94) \end{gathered}$	1,028	$\begin{gathered} 0.84 \\ (0.76,0.94) \end{gathered}$	1,028	$\begin{gathered} 0.85 \\ (0.76,0.94) \end{gathered}$
"Other" deaths	4,609	$\begin{gathered} 1.03 \\ (0.98,1.09) \\ \hline \end{gathered}$	4,606	$\begin{gathered} 1.05 \\ (0.99,1.10) \\ \hline \end{gathered}$	4,606	$\begin{gathered} 1.05 \\ (0.99,1.11) \\ \hline \end{gathered}$

[^2]Table A49. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to a 10-ppb increase in NO_{2} after additional adjustment for specific urban scenarios within the Japan Public Health Centerbased Prospective Study (JPHC)

	$\begin{aligned} & \text { Within Urban Center (Y/N)* } \\ & \begin{array}{c} \text { n. events } \\ \text { (total }=76,075) \end{array} \\ & \hline \end{aligned}$		Degree of Urbanicity \dagger in 2000 n. events (total $=76,045$) HR (95\% CI)		$\begin{aligned} & \begin{array}{l} \text { Degree of Urbanicity in } 2010 \\ \begin{array}{c} \mathrm{n} . \text { events } \\ \text { (total }=76,045) \end{array} \\ \hline \end{array} \\ & \hline \end{aligned}$	
All-cause	13,597	$\begin{gathered} 1.17 \\ (1.12,1.21) \end{gathered}$	13,586	$\begin{gathered} 1.21 \\ (1.17,1.26) \end{gathered}$	13,586	$\begin{gathered} \hline 1.21 \\ (1.17,1.25) \end{gathered}$
All cancer	5,664	$\begin{gathered} 1.18 \\ (1.12,1.25) \end{gathered}$	5,659	$\begin{gathered} 1.22 \\ (1.15,1.29) \end{gathered}$	5,659	$\begin{gathered} 1.22 \\ (1.16,1.29) \end{gathered}$
Lung cancer	1,059	$\begin{gathered} 1.07 \\ (0.94,1.23) \end{gathered}$	1,059	$\begin{gathered} 1.15 \\ (1.01,1.31) \end{gathered}$	1,059	$\begin{gathered} 1.16 \\ (1.02,1.32) \end{gathered}$
Cardiac disease	1,727	$\begin{gathered} 1.17 \\ (1.06,1.31) \end{gathered}$	1,726	$\begin{gathered} 1.19 \\ (1.07,1.32) \end{gathered}$	1,726	$\begin{gathered} 1.19 \\ (1.07,1.31) \end{gathered}$
Cerebrovascular disease	1,411	$\begin{gathered} 1.18 \\ (1.04,1.34) \end{gathered}$	1,411	$\begin{gathered} 1.17 \\ (1.04,1.32) \end{gathered}$	1,411	$\begin{gathered} 1.15 \\ (1.02,1.3) \end{gathered}$
Combined cardiovascular	3,138	$\begin{gathered} 1.18 \\ (1.09,1.28) \end{gathered}$	3,137	$\begin{gathered} 1.18 \\ (1.10,1.28) \end{gathered}$	3,137	$\begin{gathered} 1.17 \\ (1.09,1.27) \end{gathered}$
Nonmalignant lung disease	822	$\begin{gathered} 1.10 \\ (0.94,1.29) \end{gathered}$	820	$\begin{gathered} 1.18 \\ (1.01,1.37) \end{gathered}$	820	$\begin{gathered} 1.16 \\ (1.00,1.35) \end{gathered}$
"Other" deaths	3,973	$\begin{gathered} 1.14 \\ (1.06,1.22) \\ \hline \end{gathered}$	3,970	$\begin{gathered} 1.23 \\ (1.15,1.31) \end{gathered}$	3,970	$\begin{gathered} 1.22 \\ (1.15,1.31) \end{gathered}$

[^3]

Figure A6: Penalized spline analysis (with 4 degrees of freedom) examining relationship between PM $\mathbf{2 . 5}^{5}$ exposure and all-cause and cause-specific mortality within the Japan Public Health Centerbased Prospective Study (JPHC) (Model 3).

Figure A7: Penalized spline analysis (with 4 degrees of freedom) examining relationship between NO_{2} exposure and all-cause and cause-specific mortality within the Japan Public Health Centerbased Prospective Study (JPHC) (Model 3).

Table A50. Hazard ratios (and 95\% confidence intervals) for specific causes of death among the Japan Public Health Center-based Prospective Study (JPHC) by quartile of PM $\mathbf{2 . 5}^{\text {(Model 3) }}$

	$\begin{gathered} \text { n. events } \\ \text { (total }=78,142 \text {) } \end{gathered}$	$\begin{gathered} \mathrm{Q} 1 \\ \left(<7.7 \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q} 2 \\ (7.7-10.6 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Q3 } \\ (10.6-12.3 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q} 4 \\ (12.3-17.1 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$
All-cause	15,700	1.00 (ref)	$\begin{gathered} 1.07 \\ (1.02,1.12) \end{gathered}$	$\begin{gathered} 1.11 \\ (1.05,1.18) \end{gathered}$	$\begin{gathered} \hline 1.14 \\ (1.07,1.20) \end{gathered}$
All cancer	6,417	1.00 (ref)	$\begin{gathered} 1.06 \\ (0.99,1.14) \end{gathered}$	$\begin{gathered} 1.08 \\ (0.98,1.18) \end{gathered}$	$\begin{gathered} 1.25 \\ (1.14,1.36) \end{gathered}$
Lung cancer	1,246	1.00 (ref)	$\begin{gathered} 0.88 \\ (0.75,1.03) \end{gathered}$	$\begin{gathered} 0.79 \\ (0.64,0.97) \end{gathered}$	$\begin{gathered} 1.06 \\ (0.87,1.29) \end{gathered}$
Cardiac disease	2,045	1.00 (ref)	$\begin{gathered} 1.17 \\ (1.03,1.33) \end{gathered}$	$\begin{gathered} 1.13 \\ (0.97,1.32) \end{gathered}$	$\begin{gathered} 1.05 \\ (0.9,1.22) \end{gathered}$
Cerebrovascular disease	1,599	1.00 (ref)	$\begin{gathered} 1.38 \\ (1.19,1.59) \end{gathered}$	$\begin{gathered} 1.66 \\ (1.39,1.99) \end{gathered}$	$\begin{gathered} 1.26 \\ (1.04,1.52) \end{gathered}$
Combined cardiovascular	3,644	1.00 (ref)	$\begin{gathered} 1.26 \\ (1.14,1.38) \end{gathered}$	$\begin{gathered} 1.33 \\ (1.19,1.49) \end{gathered}$	$\begin{gathered} 1.13 \\ (1.00,1.27) \end{gathered}$
Nonmalignant lung disease	1,030	1.00 (ref)	$\begin{gathered} 0.81 \\ (0.67,0.98) \end{gathered}$	$\begin{gathered} 0.93 \\ (0.76,1.13) \end{gathered}$	$\begin{gathered} 0.71 \\ (0.58,0.88) \end{gathered}$
"Other" deaths	4,609	1.00 (ref)	$\begin{gathered} 1.02 \\ (0.94,1.11) \\ \hline \end{gathered}$	$\begin{gathered} 1.06 \\ (0.96,1.18) \\ \hline \end{gathered}$	$\begin{gathered} 1.11 \\ (1.00,1.23) \\ \hline \end{gathered}$

Models adjusted for recruitment year, sex, smoking status and intensity, BMI, occupation, diet, and alcohol intake.

Table A51. Hazard ratios (and 95\% confidence intervals) for specific causes of death among the Japan Public Health Center-based Prospective Study (JPHC) by quartile of NO_{2} (Model 3)

	n. events (total $=76,075$)	$\begin{gathered} \text { Q1 } \\ (<5 \mathrm{ppb}) \end{gathered}$	$\begin{gathered} \mathrm{Q} 2 \\ (5-8 \mathrm{ppb}) \end{gathered}$	$\begin{gathered} \text { Q3 } \\ (8-11 \\ \text { ppb }) \end{gathered}$	$\begin{gathered} \mathrm{Q} 4 \\ (11-42 \\ \mathrm{ppb}) \\ \hline \end{gathered}$
All-cause	13,597	1.00 (ref)	$\begin{gathered} 1.16 \\ (1.10,1.22) \end{gathered}$	$\begin{gathered} 1.16 \\ (1.10,1.21) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.08,1.21) \end{gathered}$
All cancer	5,664	1.00 (ref)	$\begin{gathered} 1.09 \\ (1.01,1.18) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.06,1.23) \end{gathered}$	$\begin{gathered} 1.18 \\ (1.08,1.28) \end{gathered}$
Lung cancer	1,059	1.00 (ref)	$\begin{gathered} 1.11 \\ (0.92,1.32) \end{gathered}$	$\begin{gathered} 0.99 \\ (0.83,1.19) \end{gathered}$	$\begin{gathered} 1.12 \\ (0.92,1.38) \end{gathered}$
Cardiac disease	1,727	1.00 (ref)	$\begin{gathered} 1.06 \\ (0.92,1.21) \end{gathered}$	$\begin{gathered} 1.09 \\ (0.95,1.25) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.87,1.2) \end{gathered}$
Cerebrovascular disease	1,411	1.00 (ref)	$\begin{gathered} 1.09 \\ (0.93,1.27) \end{gathered}$	$\begin{gathered} 1.17 \\ (1.01,1.37) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.76,1.11) \end{gathered}$
Combined cardiovascular	3,138	1.00 (ref)	$\begin{gathered} 1.07 \\ (0.96,1.19) \end{gathered}$	$\begin{gathered} 1.13 \\ (1.02,1.25) \end{gathered}$	$\begin{gathered} 0.98 \\ (0.86,1.1) \end{gathered}$
Nonmalignant lung disease	822	1.00 (ref)	$\begin{gathered} 1.32 \\ (1.08,1.62) \end{gathered}$	$\begin{gathered} 1.10 \\ (0.89,1.35) \end{gathered}$	$\begin{gathered} 1.17 \\ (0.93,1.48) \end{gathered}$
"Other" deaths	3,973	1.00 (ref)	$\begin{gathered} 1.29 \\ (1.17,1.42) \end{gathered}$	$\begin{gathered} 1.20 \\ 1(1.10,1.33) \end{gathered}$	$\begin{gathered} 1.21 \\ (1.09,1.35) \end{gathered}$

Models adjusted for recruitment year, sex, smoking status and intensity, BMI, occupation, diet, and alcohol intake.

Table A52. Hazard ratios (and 95\% confidence intervals) for a $5-\mu \mathrm{g} / \mathrm{m}^{\mathbf{3}}$ increase in $\mathrm{PM}_{2.5}$ and specific causes of death within the Japan Public Health Center-based Prospective Study (JPHC) after adapting variables which potentially violated the proportional hazards assumption

	n. events (total = 78,142)	$\mathrm{HR}(95 \% \mathrm{Cl})$
All-cause	15,700	1.07
All cancer	6,417	$(1.04,1.10)$
Lung cancer	1,246	1.12
Cardiac disease		$(1.07,1.18)$
Cerebrovascular disease	2,045	$(0.94,1.16)$
Combined cardiovascular disease	1,599	1.02
Nonmalignant lung disease	3,644	1.13
"Other" deaths	1,030	$(1.03,1.24)$

Potential assumption violators were vegetable/fruit intake (removed from analysis) and sex, recruitment year, BMI, and occupation (stratified).

Table A53. Beta coefficient and time interaction for NO_{2} exposure and specific causes of death within the Japan Public Health Center-based Prospective Study (JPHC)

	n. events (total $=76,075)$	Effect for NO_{2} Beta Coefficient	Time interaction
All-cause	13,597	0.37	-0.026
All cancer	5,664	0.37	-0.027
Lung cancer	1,059	0.35	-0.026
Cardiac disease	1,727	0.37	-0.026
Cerebrovascular disease	1,411	0.38	-0.028
Combined cardiovascular	3,138	0.37	-0.027
Nonmalignant lung disease	822	0.37	-0.024
"Other" deaths	3,973	0.36	-0.025

Time interaction based upon follow-up time.

	Mean (sd) or n (\%)	n. missing values
Number of participants	18,529	
Age at recruitment	55 (14)	
Sex		
Male	7,459 (40\%)	
Female	11,070 (60\%)	
Recruitment year		
1993	1,333 (7\%)	
1994	1 (<1\%)	
1995	938 (5\%)	
1996	1,653 (9\%)	
1997	2,485 (13\%)	
1998	1,677 (9\%)	
1999	1,318 (7\%)	
2000	1,338 (7\%)	
2001	1,569 (8\%)	
2002	1,017 (5\%)	
2003	2,018 (11\%)	
2004	2,011 (11\%)	
2005	1,171 (6\%)	
Follow-up time (years)	13 (4.5)	
Smoking status		209
Never	11,456 (63\%)	
Former	1,971 (11\%)	
Current	4,893 (27\%)	
Pack-years (current or former smokers)	27 (23)	1,496
BMI	23.6 (3.3)	1,342
<20	2,197 (13\%)	
20-25	9,557 (56\%)	
25-30	4,830 (28\%)	
>30	603 (4\%)	
Education		157
None	3,852 (21\%)	
Primary	9,359(51\%)	
Secondary	4,541(25\%)	
Trade/Technical	0 (0)	
University	577 (3\%)	
Post-university	43 (<1\%)	
Occupation		2,560
Unemployed	1,152 (7\%)	
Employed	12,071 (76\%)	
Student	412 (3\%)	
Housewife	1,920 (12\%)	
Other	414 (3\%)	
Alcohol (g/week)	3.5 (21)	
Mortality		
All-cause Nonaccidental	$\begin{aligned} & 3,411 \\ & 2,983 \end{aligned}$	

All cancer	1,072
Lung cancer	282
Cardiovascular disease	666
Nonmalignant lung disease	285

Table A55. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathbf{P M}_{2.5}$ in the Korean Multi-center Cancer Cohort Study (KMCC)

Model 1
Model 2
Model 3

	$\begin{gathered} \text { n. events } \\ \text { (total }=18,529 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=18,529 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=12,988 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	3,411	$\begin{gathered} 0.77 \\ (0.72,0.82) \end{gathered}$	3,411	$\begin{gathered} 0.80 \\ (0.72,0.90) \end{gathered}$	1,857	$\begin{gathered} 0.80 \\ (0.69,0.93) \end{gathered}$
Nonaccidental	2,983	$\begin{gathered} 0.76 \\ (0.71,0.81) \end{gathered}$	2,983	$\begin{gathered} 0.81 \\ (0.72,0.92) \end{gathered}$	1,596	$\begin{gathered} 0.82 \\ (0.69,0.96) \end{gathered}$
All cancer	1,072	$\begin{gathered} 0.77 \\ (0.69,0.87) \end{gathered}$	1,072	$\begin{gathered} 0.73 \\ (0.60,0.90) \end{gathered}$	608	$\begin{gathered} 0.80 \\ (0.61,1.04) \end{gathered}$
Lung cancer	282	$\begin{gathered} 0.70 \\ (0.55,0.89) \end{gathered}$	282	$\begin{gathered} 0.56 \\ (0.37,0.85) \end{gathered}$	149	$\begin{gathered} 0.66 \\ (0.39,1.15) \end{gathered}$
Cardiovascular disease	666	$\begin{gathered} 0.71 \\ (0.61,0.83) \end{gathered}$	666	$\begin{gathered} 0.84 \\ (0.65,1.09) \end{gathered}$	367	$\begin{gathered} 0.93 \\ (0.67,1.31) \end{gathered}$
Nonmalignant lung disease	285	$\begin{gathered} 0.78 \\ (0.62,0.99) \\ \hline \end{gathered}$	285	$\begin{gathered} 0.94 \\ (0.64,1.39) \\ \hline \end{gathered}$	138	$\begin{gathered} 0.83 \\ (0.49,1.41) \\ \hline \end{gathered}$

Model 1: Unadjusted.
Model 2: Adjusted for recruitment year and sex.
Model 3: Adjusted for recruitment year, sex, smoking status and intensity, BMI, education, occupation, and alcohol intake.

Table A56. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to 10-ppb increase in NO_{2} in the Korean Multi-center Cancer Cohort Study (KMCC)

Model 1
Model 2
Model 3

	n. events (total = 18,517)	HR (95\% CI)	n. events (total = 18,517)	HR (95\% CI)	n. events (total = 12,981)	HR (95\% CI)
All-cause	3,411	$\begin{gathered} 0.79 \\ (0.68,0.90) \end{gathered}$	3,411	$\begin{gathered} 0.79 \\ (0.68,0.92) \end{gathered}$	1,857	$\begin{gathered} 0.84 \\ (0.68,1.03) \end{gathered}$
Nonaccidental	2,983	$\begin{gathered} 0.77 \\ (0.66,0.89) \end{gathered}$	2,983	$\begin{gathered} 0.79 \\ (0.67,0.93) \end{gathered}$	1,596	$\begin{gathered} 0.85 \\ (0.68,1.07) \end{gathered}$
All cancer	1,072	$\begin{gathered} 0.88 \\ (0.69,1.12) \end{gathered}$	1,072	$\begin{gathered} 0.85 \\ (0.65,1.11) \end{gathered}$	608	$\begin{gathered} 0.88 \\ (0.61,1.26) \end{gathered}$
Lung cancer	282	$\begin{gathered} 0.86 \\ (0.53,1.39) \end{gathered}$	282	$\begin{gathered} 0.68 \\ (0.40,1.15) \end{gathered}$	149	$\begin{gathered} 0.67 \\ (0.32,1.38) \end{gathered}$
Cardiovascular disease	666	$\begin{gathered} 0.73 \\ (0.53,1.00) \end{gathered}$	666	$\begin{gathered} 0.84 \\ (0.59,1.19) \end{gathered}$	367	$\begin{gathered} 1.17 \\ (0.74,1.87) \end{gathered}$
Nonmalignant lung disease	285	$\begin{gathered} 1.05 \\ (0.66,1.68) \end{gathered}$	285	$\begin{gathered} 1.05 \\ (0.62,1.78) \end{gathered}$	138	$\begin{gathered} 0.96 \\ (0.45,2.06) \end{gathered}$

Model 1: Unadjusted.
Model 2: Adjusted for recruitment year and sex.
Model 3: Adjusted for recruitment year, sex, smoking status and intensity, BMI, education, occupation, and alcohol intake.

Table A57: Hazard ratios (and 95\% confidence intervals) for specific causes of death for a two-pollutant model in the Korean Multi-center Cancer Cohort Study (KMCC) (Model 3)

	$\begin{gathered} \text { n. events } \\ \text { (total }=12,981 \text {) } \end{gathered}$	$\begin{gathered} \mathrm{PM}_{2.5} \\ \mathrm{HR}(95 \% \mathrm{Cl}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{NO}_{2} \\ \mathrm{HR}(95 \% \mathrm{CI}) \\ \hline \end{gathered}$
All-cause	1,857	0.80	1.00
		(0.67, 0.95)	(0.78, 1.29)
Nonaccidental	1,596	0.82	1.00
		(0.67, 0.99)	(0.77, 1.31)
All cancer	608	0.78	1.05
		(0.57, 1.08)	(0.68, 1.62)
Lung cancer	149	0.71	0.85
		$(0.38,1.33)$	(0.37, 1.98)
Cardiovascular disease	367	0.82	1.37
		(0.55, 1.23)	(0.78, 2.39)
Nonmalignant lung disease	138	0.78	1.18
		$(0.41,1.47)$	$(0.48,2.94)$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a $10-\mathrm{ppb}$ increase in NO_{2}.
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, education, occupation, and alcohol intake.

Table A58. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathbf{P M}_{2.5}$ in the Korean Multi-center Cancer Cohort Study (KMCC), stratified by smoking status (Model 3)

Never smokers
Former smokers
Current smokers

	n. events $\text { (total }=8,865 \text {) }$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=1,126 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=2,997 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	948	$\begin{gathered} 0.78 \\ (0.63,0.96) \end{gathered}$	234	$\begin{gathered} 0.86 \\ (0.61,1.23) \end{gathered}$	675	$\begin{gathered} 0.72 \\ (0.54,0.96) \end{gathered}$
Nonaccidental	817	$\begin{gathered} 0.79 \\ (0.63,0.99) \end{gathered}$	203	$\begin{gathered} 0.87 \\ (0.60,1.27) \end{gathered}$	576	$\begin{gathered} 0.74 \\ (0.54,1.01) \end{gathered}$
All cancer	266	$\begin{gathered} 0.70 \\ (0.48,1.04) \end{gathered}$	78	$\begin{gathered} 1.24 \\ (0.67,2.31) \end{gathered}$	264	$\begin{gathered} 0.69 \\ (0.43,1.11) \end{gathered}$
Lung cancer	37	$\begin{gathered} 0.56 \\ (0.19,1.63) \end{gathered}$	16	$\begin{gathered} 1.01 \\ (0.20,5.02) \end{gathered}$	96	$\begin{gathered} 0.61 \\ (0.30,1.25) \end{gathered}$
Cardiovascular disease	222	$\begin{gathered} 0.93 \\ (0.60,1.43) \end{gathered}$	40	$\begin{gathered} 0.73 \\ (0.31,1.77) \end{gathered}$	105	$\begin{gathered} 0.78 \\ (0.38,1.61) \end{gathered}$
Nonmalignant lung disease	57	$\begin{gathered} 0.74 \\ (0.31,1.69) \\ \hline \end{gathered}$	31	$\begin{gathered} 0.61 \\ (0.25,1.51) \\ \hline \end{gathered}$	50	$\begin{gathered} 1.24 \\ (0.41,3.70) \\ \hline \end{gathered}$

Models adjusted for recruitment year, sex, smoking intensity (current/former smokers only), BMI, education, occupation, and alcohol intake.

Table A59. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to 10-ppb increase in NO_{2} in the Korean Multi-center Cancer Cohort Study (KMCC), stratified by smoking status (Model 3)

Never smokers
Former smokers
Current smokers

	n. events (total $=8,859$)	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=1,126 \text {) } \\ \hline \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=2,996 \text {) } \\ \hline \end{gathered}$	HR (95\% CI)
All-cause	948	$\begin{gathered} 0.99 \\ (0.74,1.33) \end{gathered}$	234	$\begin{gathered} 0.59 \\ (0.33,1.06) \end{gathered}$	675	$\begin{gathered} 0.66 \\ (0.46,0.95) \end{gathered}$
Nonaccidental	817	$\begin{gathered} 1.04 \\ (0.76,1.43) \end{gathered}$	203	$\begin{gathered} 0.53 \\ (0.28,1.00) \end{gathered}$	576	$\begin{gathered} 0.67 \\ (0.46,0.99) \end{gathered}$
All cancer	266	$\begin{gathered} 1.09 \\ (0.63,1.89) \end{gathered}$	78	$\begin{gathered} 0.77 \\ (0.27,2.19) \end{gathered}$	264	$\begin{gathered} 0.67 \\ (0.38,1.19) \end{gathered}$
Lung cancer	37	$\begin{gathered} 0.89 \\ (0.21,3.81) \end{gathered}$	16	$\begin{gathered} 0.83 \\ (0.06,10.7) \end{gathered}$	96	$\begin{gathered} 0.52 \\ (0.20,1.31) \end{gathered}$
Cardiovascular disease	222	$\begin{gathered} 1.31 \\ (0.72,2.39) \end{gathered}$	40	$\begin{gathered} 0.56 \\ (0.13,2.33) \end{gathered}$	105	$\begin{gathered} 0.80 \\ (0.32,2.02) \end{gathered}$
Nonmalignant lung disease	57	$\begin{gathered} 0.47 \\ (0.14,1.62) \\ \hline \end{gathered}$	31	$\begin{gathered} 0.61 \\ (0.11,3.31) \\ \hline \end{gathered}$	50	$\begin{gathered} 2.33 \\ (0.68,8.01) \\ \hline \end{gathered}$

Models adjusted for recruitment year, sex, smoking intensity (current/former smokers only), BMI, education, occupation, and alcohol intake.

Table A60. Hazard ratios (and 95\% confidence intervals) for specific causes of death among nonsmoking women within the Korean Multi-center Cancer Cohort Study (KMCC)

| | $\mathrm{PM}_{2.5}$ | | n. events
 n. events
 (total $=7,774)$ | $\mathrm{HR}(95 \% \mathrm{Cl})$ |
| :--- | :---: | :---: | :---: | :---: | $\mathrm{NO}_{2} \mathrm{HR}(95 \% \mathrm{Cl})$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2} (each are single pollutant models).
Models adjusted for recruitment year, BMI, education, occupation, and alcohol intake.

Table A61. Hazard ratios (and 95\% confidence intervals) for specific causes of death among members of the Korean Multi-center Cancer Cohort Study (KMCC) who had no prevalent disease at recruitment (Model 3)

PM ${ }_{2.5}$
NO_{2}

	$\begin{gathered} \text { n. events } \\ \text { (total }=9,676 \text {) } \end{gathered}$	HR (95\% CI)	n. events (total $=9,672$)	HR (95\% CI)
All-cause	1,219	$\begin{gathered} 0.81 \\ (0.66,0.99) \end{gathered}$	1,219	$\begin{gathered} 0.93 \\ (0.72,1.20) \end{gathered}$
Nonaccidental	1,032	$\begin{gathered} 0.83 \\ (0.66,1.04) \end{gathered}$	1,032	$\begin{gathered} 0.95 \\ (0.72,1.26) \end{gathered}$
All cancer	437	$\begin{gathered} 0.68 \\ (0.48,0.97) \end{gathered}$	437	$\begin{gathered} 0.89 \\ (0.58,1.37) \end{gathered}$
Lung cancer	108	$\begin{gathered} 0.51 \\ (0.24,1.12) \end{gathered}$	108	$\begin{gathered} 0.63 \\ (0.26,1.53) \end{gathered}$
Cardiovascular disease	210	$\begin{gathered} 1.15 \\ (0.70,1.89) \end{gathered}$	210	$\begin{gathered} 1.53 \\ (0.82,2.85) \end{gathered}$
Nonmalignant lung disease	98	$\begin{gathered} 0.89 \\ (0.45,1.76) \\ \hline \end{gathered}$	98	$\begin{gathered} 1.24 \\ (0.51,3.04) \\ \hline \end{gathered}$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2} (each are single pollutant models).
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, education, occupation, and alcohol intake.

Table A62. Hazard ratios (and 95\% confidence intervals) for specific causes of death among members of the Korean Multi-center Cancer Cohort Study (KMCC) who were alive in 1998 (Model 3)

PM ${ }_{2.5}$
NO_{2}

	$\begin{gathered} \text { n. events } \\ \text { (total }=12,949 \text {) } \end{gathered}$	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total }=12,942 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	1,820	$\begin{gathered} 0.80 \\ (0.69,0.93) \end{gathered}$	1,820	$\begin{gathered} 0.84 \\ (0.68,1.04) \end{gathered}$
Nonaccidental	1,564	$\begin{gathered} 0.82 \\ (0.70,0.96) \end{gathered}$	1,564	$\begin{gathered} 0.86 \\ (0.68,1.08) \end{gathered}$
All cancer	597	$\begin{gathered} 0.80 \\ (0.61,1.04) \end{gathered}$	597	$\begin{gathered} 0.88 \\ (0.61,1.27) \end{gathered}$
Lung cancer	147	$\begin{gathered} 0.66 \\ (0.38,1.14) \end{gathered}$	147	$\begin{gathered} 0.64 \\ (0.31,1.33) \end{gathered}$
Cardiovascular disease	358	$\begin{gathered} 0.93 \\ (0.67,1.31) \end{gathered}$	358	$\begin{gathered} 1.18 \\ (0.74,1.89) \end{gathered}$
Nonmalignant lung disease	138	$\begin{gathered} 0.83 \\ (0.49,1.41) \end{gathered}$	138	$\begin{gathered} 0.96 \\ (0.45,2.05) \\ \hline \end{gathered}$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2} (each are single pollutant models).
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, education, occupation, and alcohol intake.

Table A63. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathbf{P M}_{2.5}$ after additional adjustment for specific urban scenarios within the Korean Multi-center Cancer Cohort Study (KMCC)

	Within Urban Center Y/N*		Degree of Urbanicity ${ }^{+}$in 2000		Degree of Urbanicity in 2010	
	n. events (total = 12,988)	HR (95\% CI)	n. events (total $=12,988$)	HR (95\% CI)	n. events (total = 12,988)	HR (95\% CI)
All-cause	1,857	$\begin{gathered} 0.83 \\ (0.65,1.05) \end{gathered}$	1,857	$\begin{gathered} 0.81 \\ (0.65,1.01) \end{gathered}$	1,857	$\begin{gathered} 0.81 \\ (0.65,1.00) \end{gathered}$
Nonaccidental	1,596	$\begin{gathered} 0.90 \\ (0.69,1.16) \end{gathered}$	1,596	$\begin{gathered} 0.82 \\ (0.64,1.04) \end{gathered}$	1,596	$\begin{gathered} 0.82 \\ (0.64,1.03) \end{gathered}$
All cancer	608	$\begin{gathered} 0.94 \\ (0.62,1.42) \end{gathered}$	608	$\begin{gathered} 0.83 \\ (0.56,1.23) \end{gathered}$	608	$\begin{gathered} 0.83 \\ (0.56,1.22) \end{gathered}$
Lung cancer	149	$\begin{gathered} 0.79 \\ (0.34,1.84) \end{gathered}$	149	$\begin{gathered} 0.72 \\ (0.33,1.60) \end{gathered}$	149	$\begin{gathered} 0.72 \\ (0.33,1.58) \end{gathered}$
Cardiovascular disease	367	$\begin{gathered} 1.00 \\ (0.59,1.70) \end{gathered}$	367	$\begin{gathered} 0.90 \\ (0.55,1.48) \end{gathered}$	367	$\begin{gathered} 0.90 \\ (0.55,1.47) \end{gathered}$
Nonmalignant lung disease	138	$\begin{gathered} 0.82 \\ (0.33,2.04) \\ \hline \end{gathered}$	138	$\begin{gathered} 0.63 \\ (0.27,1.47) \\ \hline \end{gathered}$	138	$\begin{gathered} 0.64 \\ (0.28,1.46) \\ \hline \end{gathered}$

*: Refers to a participant being within an urban center as defined by the Global Human Settlement Layer.
\dagger : Refers to gradient values for urbanicity as described by Gao \& O’Neill (2020).
Models additionally adjusted for recruitment year, sex, smoking status and intensity, BMI, education, occupation, and alcohol intake.

Table A64. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to 10-ppb increase in NO_{2} after additional adjustment for specific urban scenarios within the Korean Multi-center Cancer Cohort Study (KMCC)

	Within Urban Center $\mathrm{Y} / \mathrm{N}^{*}$		Degree of Urbanicity ${ }^{\text {+ }}$ in 2000		Degree of Urbanicity in 2010	
	n. events (total = 12,981)	HR (95\% CI)	n. events (total $=12,981$)	HR (95\% CI)	n. events (total = 12,981)	HR (95\% CI)
All-cause	1,857	$\begin{gathered} 0.97 \\ (0.86,1.09) \end{gathered}$	1,857	$\begin{gathered} 0.97 \\ (0.86,1.10) \end{gathered}$	1,857	$\begin{gathered} 0.97 \\ (0.86,1.09) \end{gathered}$
Nonaccidental	1,596	$\begin{gathered} 0.99 \\ (0.87,1.12) \end{gathered}$	1,596	$\begin{gathered} 0.97 \\ (0.85,1.10) \end{gathered}$	1,596	$\begin{gathered} 0.97 \\ (0.85,1.10) \end{gathered}$
All cancer	608	$\begin{gathered} 1.02 \\ (0.83,1.25) \end{gathered}$	608	$\begin{gathered} 1.00 \\ (0.81,1.24) \end{gathered}$	608	$\begin{gathered} 1.00 \\ (0.81,1.23) \end{gathered}$
Lung cancer	149	$\begin{gathered} 0.91 \\ (0.61,1.36) \end{gathered}$	149	$\begin{gathered} 0.90 \\ (0.59,1.37) \end{gathered}$	149	$\begin{gathered} 0.90 \\ (0.59,1.36) \end{gathered}$
Cardiovascular disease	367	$\begin{gathered} 1.15 \\ (0.89,1.49) \end{gathered}$	367	$\begin{gathered} 1.13 \\ (0.86,1.48) \end{gathered}$	367	$\begin{gathered} 1.13 \\ (0.86,1.48) \end{gathered}$
Nonmalignant lung disease	138	$\begin{gathered} 1.05 \\ (0.68,1.62) \\ \hline \end{gathered}$	138	$\begin{gathered} 0.98 \\ (0.62,1.53) \\ \hline \end{gathered}$	138	$\begin{gathered} 0.97 \\ (0.62,1.53) \\ \hline \end{gathered}$

*: Refers to a participant being within an urban center as defined by the Global Human Settlement Layer.
\dagger : Refers to gradient values for urbanicity as described by Gao \& O’Neill (2020).
Models additionally adjusted for recruitment year, sex, smoking status and intensity, BMI, education, occupation, and alcohol intake.

Figure A8: Penalized spline analysis (with 4 degrees of freedom) examining relationship between $\mathbf{P M}_{2.5}$ exposure and all-cause and cause-specific mortality within the Korean Multi-center Cancer Cohort Study (KMCC) (Model 3).

Figure A9: Penalized spline analysis (with 4 degrees of freedom) examining relationship between NO_{2} exposure and all-cause and cause-specific mortality within the Korean Multi-center Cancer Cohort Study (KMCC) (Model 3).

Table A65. Hazard ratios (and 95\% confidence intervals) for specific causes of death among the Korean Multi-center Cancer Cohort Study (KMCC) by quartile of PM $\mathbf{2 . 5}^{\mathbf{(}}$ (Model 3)

	$\begin{gathered} \text { n. events } \\ \text { (total }=12,988 \text {) } \end{gathered}$	$\begin{gathered} \mathrm{Q} 1 \\ (<20.2 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q} 2 \\ (20.2-21.6 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Q3 } \\ (21.6-24.8 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Q} 4 \\ (>24.8 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$
All-cause	1,857	1.00	$\begin{gathered} 1.02 \\ (0.90,1.16) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.72,1.11) \end{gathered}$	$\begin{gathered} 0.77 \\ (0.60,0.99) \end{gathered}$
Nonaccidental	1,596	1.00	$\begin{gathered} 1.04 \\ (0.91,1.19) \end{gathered}$	$\begin{gathered} 0.96 \\ (0.76,1.21) \end{gathered}$	$\begin{gathered} 0.83 \\ (0.63,1.09) \end{gathered}$
All cancer	608	1.00	$\begin{gathered} 1.09 \\ (0.87,1.36) \end{gathered}$	$\begin{gathered} 0.88 \\ (0.59,1.31) \end{gathered}$	$\begin{gathered} 0.85 \\ (0.53,1.34) \end{gathered}$
Lung cancer	149	1.00	$\begin{gathered} 1.32 \\ (0.83,2.09) \end{gathered}$	$\begin{gathered} 0.70 \\ (0.27,1.81) \end{gathered}$	$\begin{gathered} 0.87 \\ (0.31,2.43) \end{gathered}$
Cardiovascular disease	367	1.00	$\begin{gathered} 1.13 \\ (0.84,1.51) \end{gathered}$	$\begin{gathered} 1.08 \\ (0.68,1.72) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.52,1.61) \end{gathered}$
Nonmalignant lung disease	138	1.00	$\begin{gathered} 0.91 \\ (0.57,1.46) \\ \hline \end{gathered}$	$\begin{gathered} 0.54 \\ (0.22,1.31) \\ \hline \end{gathered}$	$\begin{gathered} 0.45 \\ (0.17,1.23) \\ \hline \end{gathered}$

Models adjusted for recruitment year, sex, smoking status and intensity, BMI, education, occupation, and alcohol intake.

Table A66. Hazard ratios (and 95\% confidence intervals) for specific causes of death among the Korean Multi-center Cancer Cohort Study (KMCC) by quartile of NO_{2} (Model 3)

	$\begin{gathered} \text { n. events } \\ \text { (total }=12,981 \text {) } \end{gathered}$	$\begin{gathered} \text { Q1 } \\ (<9 p p b) \end{gathered}$	$\begin{gathered} \mathrm{Q} 2 \\ (9-11 \mathrm{ppb}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Q3 } \\ (11-13 p p b) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Q} 4 \\ (>13 \mathrm{ppb}) \end{gathered}$
All-cause	1,857	1.00	$\begin{gathered} 1.09 \\ (0.97,1.23) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.79,1.06) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.76,1.06) \end{gathered}$
Nonaccidental	1,596	1.00	$\begin{gathered} 1.07 \\ (0.95,1.22) \end{gathered}$	$\begin{gathered} 0.91 \\ (0.77,1.06) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.77,1.10) \end{gathered}$
All cancer	608	1.00	$\begin{gathered} 1.15 \\ (0.94,1.41) \end{gathered}$	$\begin{gathered} 0.98 \\ (0.76,1.26) \end{gathered}$	$\begin{gathered} 0.90 \\ (0.67,1.20) \end{gathered}$
Lung cancer	149	1.00	$\begin{gathered} 1.33 \\ (0.89,2.00) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.57,1.56) \end{gathered}$	$\begin{gathered} 0.82 \\ (0.45,1.50) \end{gathered}$
Cardiovascular disease	367	1.00	$\begin{gathered} 1.06 \\ (0.81,1.38) \end{gathered}$	$\begin{gathered} 0.97 \\ (0.69,1.35) \end{gathered}$	$\begin{gathered} 1.11 \\ (0.78,1.60) \end{gathered}$
Nonmalignant lung disease	138	1.00	$\begin{gathered} 0.92 \\ (0.59,1.43) \end{gathered}$	$\begin{gathered} 0.93 \\ (0.55,1.59) \end{gathered}$	$\begin{gathered} 0.87 \\ (0.48,1.58) \end{gathered}$

Models adjusted for recruitment year, sex, smoking status and intensity, BMI, education, occupation, and alcohol intake.

Table A67. Hazard ratios (and 95\% confidence intervals) for specific causes of death within the Korean Multi-center Cancer Cohort Study (KMCC) after adapting variables which potentially violated the proportional hazards assumption

	PM ${ }_{2.5}$		NO_{2}	
	n. events (total $=12,988$)	HR (95\% CI)	$\begin{gathered} \text { n. events } \\ \text { (total = } 12,981 \text {) } \end{gathered}$	HR (95\% CI)
All-cause	1,857	$\begin{gathered} 0.76 \\ (0.66,0.88) \end{gathered}$	1,857	$\begin{gathered} 0.75 \\ (0.62,0.92) \end{gathered}$
Nonaccidental	1,596	$\begin{gathered} 0.77 \\ (0.66,0.90) \end{gathered}$	1,596	$\begin{gathered} 0.75 \\ (0.60,0.93) \end{gathered}$
All cancer	608	$\begin{gathered} 0.75 \\ (0.58,0.97) \end{gathered}$	608	$\begin{gathered} 0.80 \\ (0.57,1.13) \end{gathered}$
Lung cancer	149	$\begin{gathered} 0.61 \\ (0.36,1.04) \end{gathered}$	149	$\begin{gathered} 0.70 \\ (0.36,1.36) \end{gathered}$
Cardiovascular disease	367	$\begin{gathered} 0.86 \\ (0.62,1.20) \end{gathered}$	367	$\begin{gathered} 1.02 \\ (0.65,1.60) \end{gathered}$
Nonmalignant lung disease	138	$\begin{gathered} 0.92 \\ (0.55,1.52) \end{gathered}$	138	$\begin{gathered} 0.87 \\ (0.44,1.73) \end{gathered}$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a $10-\mathrm{ppb}$ increase in NO_{2} (each are single pollutant models).
Potential assumption violators were pack-years (removed from analysis), smoking status, occupation, and sex (stratified).

Supplementary Tables and Figures: Mumbai Cohort Study (MCS)	
Table A68. Demographic features of the Mumbai Cohort Study (MCS)	
	Mean (sd) or n (\%)
Number of participants	141,238
Age at recruitment	51 (11)
Sex	
Male	82,054 (58\%)
Female	59,184 (42\%)
Recruitment year	
1991	18,892 (13\%)
1992	35,851 (25\%)
1993	36,593 (26\%)
1994	15,583 (11\%)
1995	12,082(9\%)
1996	13,042 (9\%)
1997	9,195 (7\%)
Follow-up time (years)	5 (1.5)
Smoking status	
Never	115,340 (82\%)
Former	5,126 (4\%)
Current	20,772 (15\%)
Pack-years (current or former smokers)	7 (16)
BMI	22 (4.2)
<20	43,020 (30\%)
20-25	63,746 (45\%)
25-30	28,14 (20\%)
>30	6,328 (4\%)
Education	
Primary	40,116 (28\%)
Secondary	52,147 (37\%)
Trade/Technical	32,473 (23\%)
University	10,090 (7\%)
Post-University	6,412 (5\%)
Mortality	
All-cause	12,934
Nonaccidental	8,689
All cancer	793
Lung cancer	78
Cardiovascular disease	3,306
Nonmalignant lung disease	1,255
Cause not coded	4,245

There was no missing information on covariates.

Table A69. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in PM 2.5 in the Mumbai Cohort Study (MCS)

Model 1
Model 2
Model 3

	n. events (total = 126,377)	HR (95\% CI)	n. events (total = 126,377)	HR (95\% CI)	n. events (total = 126,377)	HR (95\% CI)
All-cause	11,777	$\begin{gathered} 1.30 \\ (1.22,1.39) \end{gathered}$	11,777	$\begin{gathered} 1.18 \\ (1.10,1.27) \end{gathered}$	11,777	$\begin{gathered} 1.15 \\ (1.07,1.24) \end{gathered}$
Nonaccidental	7,881	$\begin{gathered} 1.31 \\ (1.20,1.42) \end{gathered}$	7,881	$\begin{gathered} 1.16 \\ (1.07,1.27) \end{gathered}$	7,881	$\begin{gathered} 1.15 \\ (1.05,1.25) \end{gathered}$
All cancer	721	$\begin{gathered} 1.06 \\ (0.80,1.40) \end{gathered}$	721	$\begin{gathered} 0.95 \\ (0.70,1.28) \end{gathered}$	721	$\begin{gathered} 0.95 \\ (0.70,1.28) \end{gathered}$
Lung cancer	75	$\begin{gathered} 1.50 \\ (0.68,3.29) \end{gathered}$	75	$\begin{gathered} 1.79 \\ (0.74,4.30) \end{gathered}$	75	$\begin{gathered} 1.74 \\ (0.72,4.21) \end{gathered}$
Cardiovascular disease	2,976	$\begin{gathered} 1.19 \\ (1.04,1.37) \end{gathered}$	2,976	$\begin{gathered} 1.26 \\ (1.08,1.46) \end{gathered}$	2,976	$\begin{gathered} 1.25 \\ (1.08,1.46) \end{gathered}$
Nonmalignant lung disease	1,168	$\begin{gathered} 1.61 \\ (1.32,1.97) \\ \hline \end{gathered}$	1,168	$\begin{gathered} 1.17 \\ (0.94,1.46) \\ \hline \end{gathered}$	1,168	$\begin{gathered} 1.11 \\ (0.89,1.38) \\ \hline \end{gathered}$

Model 1: Unadjusted.
Model 2: Adjusted for recruitment year and sex.
Model 3: Adjusted for recruitment year, sex, smoking status and intensity, BMI, and education.

Table A70. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to 10-ppb increase in NO_{2} in the Mumbai Cohort Study (MCS)

	Model 1		Model 2		Model 3	
	n. events (total $=126,401$)	HR (95\% CI)	n. events (total $=126,401$)	HR (95\% CI)	n. events (total = 126,401)	HR (95\% CI)
All-cause	11,779	$\begin{gathered} \hline 1.17 \\ (1.07,1.27) \end{gathered}$	11,779	$\begin{gathered} 1.11 \\ (1.02,1.20) \end{gathered}$	11,779	$\begin{gathered} \hline 1.27 \\ (1.17,1.38) \end{gathered}$
Nonaccidental	7,883	$\begin{gathered} 1.23 \\ (1.11,1.37) \end{gathered}$	7,883	$\begin{gathered} 1.23 \\ (1.11,1.36) \end{gathered}$	7,883	$\begin{gathered} 1.36 \\ (1.23,1.51) \end{gathered}$
All cancer	721	$\begin{gathered} 1.37 \\ (0.98,1.93) \end{gathered}$	721	$\begin{gathered} 1.37 \\ (0.97,1.92) \end{gathered}$	721	$\begin{gathered} 1.51 \\ (1.07,2.14) \end{gathered}$
Lung cancer	75	$\begin{gathered} 0.98 \\ (0.35,2.75) \end{gathered}$	75	$\begin{gathered} 1.06 \\ (0.36,3.13) \end{gathered}$	75	$\begin{gathered} 1.39 \\ (0.47,4.14) \end{gathered}$
Cardiovascular disease	2,977	$\begin{gathered} 1.29 \\ (1.09,1.53) \end{gathered}$	2,977	$\begin{gathered} 1.38 \\ (1.16,1.65) \end{gathered}$	2,977	$\begin{gathered} 1.38 \\ (1.16,1.65) \end{gathered}$
Nonmalignant lung disease	1,168	$\begin{gathered} 1.09 \\ (0.83,1.42) \end{gathered}$	1,168	$\begin{gathered} 0.99 \\ (0.77,1.27) \end{gathered}$	1,168	$\begin{gathered} 1.22 \\ (0.95,1.58) \end{gathered}$

Model 1: Unadjusted.
Model 2: Adjusted for recruitment year and sex.
Model 3: Adjusted for recruitment year, sex, smoking status and intensity, BMI, and education.

Table A71. Hazard ratios (and 95\% confidence intervals) for specific causes of death for a two-pollutant model in the Mumbai Cohort Study (MCS) (Model 3)

	n. events (total $=126,377)$	$\mathrm{PM}_{2.5}$ $\mathrm{HR}(95 \% \mathrm{Cl})$	NO_{2} $\mathrm{HR}(95 \% \mathrm{Cl})$
All-cause	11,777	1.19	1.30
Nonaccidental		$(1.11,1.28)$	$(1.20,1.41)$
All cancer	7,881	1.20	1.39
Lung cancer		$(1.09,1.31)$	$(1.25,1.54)$
		0.99	1.51
Cardiovascular disease	75	$(0.72,1.35)$	$(1.07,2.13)$
		1.79	1.45
Nonmalignant lung disease	2,976	$(0.73,4.39)$	$(0.50,4.17)$
		1.29	1.41

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2}.
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, and education.

Table A72. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in PM $_{2.5}$ in the Mumbai Cohort Study (MCS), stratified by smoking status (Model 3)

Never smokers
Former smokers
Current smokers

	n. events $\text { (total }=102,264)$	HR (95\% CI)	n. events (total $=4,917$)	HR (95\% CI)	n. events (total = 19,196)	HR (95\% CI)
All-cause	8,302	$\begin{gathered} 1.08 \\ (0.99,1.18) \end{gathered}$	1,118	$\begin{gathered} 1.39 \\ (0.99,1.94) \end{gathered}$	2,357	$\begin{gathered} 1.34 \\ (1.16,1.55) \end{gathered}$
Nonaccidental	5,582	$\begin{gathered} 1.08 \\ (0.97,1.19) \end{gathered}$	816	$\begin{gathered} 1.43 \\ (0.97,2.10) \end{gathered}$	1,483	$\begin{gathered} 1.387 \\ (1.14,1.66) \end{gathered}$
All cancer	455	$\begin{gathered} 1.00 \\ (0.70,1.43) \end{gathered}$	89	$\begin{gathered} 1.07 \\ (0.29,3.96) \end{gathered}$	177	$\begin{gathered} 0.82 \\ (0.42,1.60) \end{gathered}$
Lung cancer	33	$\begin{gathered} 1.78 \\ (0.53,6.01) \end{gathered}$	12	$\begin{gathered} 13.28 \\ (1.02,172) \end{gathered}$	30	$\begin{gathered} 0.96 \\ 0.19,4.88) \end{gathered}$
Cardiovascular disease	2,136	$\begin{gathered} 1.18 \\ (0.99,1.41) \end{gathered}$	316	$\begin{gathered} 1.36 \\ (0.70,2.64) \end{gathered}$	524	$\begin{gathered} 1.45 \\ (1.05,2.01) \end{gathered}$
Nonmalignant lung disease	802	$\begin{gathered} 1.01 \\ (0.77,1.30) \end{gathered}$	147	$\begin{gathered} 1.36 \\ (0.55,3.41) \end{gathered}$	219	$\begin{gathered} 1.65 \\ (1.03,2.63) \end{gathered}$

Models adjusted for recruitment year, sex, smoking intensity (current/former smokers only), BMI, and education.

Table A73. Hazard ratios (and 95\% confidence intervals) for specific causes of death in relation to 10-ppb increase in NO_{2} in the Mumbai Cohort Study (MCS), stratified by smoking status (Model 3)

	Never smokers		Former smokers		Current smokers n. events (total $=102,284)$	
	8,304	1.22	$(1.10,1.34)$	1,118	$(1.09,2.09)$	2,357

Models adjusted for recruitment year, sex, smoking intensity (current/former smokers only), BMI, and education.

Table A74. Hazard ratios (and 95\% confidence intervals) for specific causes of death among nonsmoking women within the Mumbai Cohort Study (MCS)

$$
\begin{array}{ll}
\mathrm{PM}_{2.5} & \mathrm{NO}_{2}
\end{array}
$$

	n. events (total $=50,777$)	HR (95\% CI)	n. events (total = 50,779)	HR (95\% CI)
All-cause	2,970	$\begin{gathered} 1.10 \\ (0.97,1.24) \end{gathered}$	2,972	$\begin{gathered} 1.17 \\ (1.00,1.36) \end{gathered}$
Nonaccidental	2,052	$\begin{gathered} 1.03 \\ (0.89,1.20) \end{gathered}$	2,054	$\begin{gathered} 1.31 \\ (1.09,1.58) \end{gathered}$
All cancer	212	$\begin{gathered} 1.05 \\ (0.66,1.68) \end{gathered}$	212	$\begin{gathered} 1.26 \\ (0.71,2.26) \end{gathered}$
Lung cancer	16	$\begin{gathered} 1.89 \\ (0.41,8.72) \end{gathered}$	16	$\begin{gathered} 1.23 \\ (0.16,9.66) \end{gathered}$
Cardiovascular disease	648	$\begin{gathered} 1.39 \\ (1.08,1.81) \end{gathered}$	649	$\begin{gathered} 1.06 \\ (0.76,1.48) \end{gathered}$
Nonmalignant lung disease	364	$\begin{gathered} 0.74 \\ (0.51,1.07) \\ \hline \end{gathered}$	364	$\begin{gathered} 1.39 \\ (0.90,2.13) \end{gathered}$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a $10-\mathrm{ppb}$ increase in NO_{2} (each are single pollutant models).
Models adjusted for recruitment year, BMI, and education.

Table A75. Hazard ratios (and 95\% confidence intervals) for specific causes of death among members of the Mumbai Cohort Study (MCS) who were alive in 1998 (Model 3)

	PM 2.5		NO_{2}	
	n. events (total = 96,490)	HR (95\% CI)	n. events (total = 96,509)	HR (95\% CI)
All-cause	4,737	$\begin{gathered} 1.34 \\ (1.10,1.63) \end{gathered}$	4,737	$\begin{gathered} 1.32 \\ (1.14,1.53) \end{gathered}$
Nonaccidental	2,917	$\begin{gathered} 1.53 \\ (1.18,1.98) \end{gathered}$	2,917	$\begin{gathered} 1.50 \\ (1.24,1.82) \end{gathered}$
All cancer	253	$\begin{gathered} 1.85 \\ (0.80,4.27) \end{gathered}$	253	$\begin{gathered} 2.37 \\ (1.23,4.56) \end{gathered}$
Lung cancer	31	0.91, 61)	31	$\begin{gathered} 0.64 \\ (0.09,4.84) \end{gathered}$
Cardiovascular disease	1,239	$\begin{gathered} 1.64 \\ (1.07,2.50) \end{gathered}$	1,239	$\begin{gathered} 2.19 \\ (1.61,2.98) \end{gathered}$
Nonmalignant lung disease	401	$\begin{gathered} 1.63 \\ (0.83,3.18) \\ \hline \end{gathered}$	401	$\begin{gathered} 0.92 \\ (0.55,1.55) \\ \hline \end{gathered}$

Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2} (each are single pollutant models).
Models adjusted for recruitment year, sex, smoking status and intensity, BMI, and education.

Figure A10: Penalized spline analysis (with 4 degrees of freedom) examining relationship between $\mathrm{PM}_{2.5}$ exposure and all-cause and cause-specific mortality within the Mumbai Cohort Study (MCS) (Model 3).

Figure A11: Penalized spline analysis (with 4 degrees of freedom) examining relationship between NO_{2} exposure and all-cause and cause-specific mortality within the Mumbai Cohort Study (MCS) (Model 3).

Table A76. Hazard ratios (and 95\% confidence intervals) for specific causes of death among the Mumbai Cohort Study (MCS) by quartile of PM 2.5 (Model 3)

	n. events (total = $126,377)$	$\begin{gathered} \mathrm{Q} 1 \\ (<33.25 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q} 2 \\ (33.26-33.67 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \text { Q3 } \\ (33.67-34.03 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Q} 4 \\ (>34.03 \\ \left.\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$
All-cause	11,777	1.00	$\begin{gathered} 1.18 \\ (1.12,1.25) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.12,1.21) \end{gathered}$	$\begin{gathered} 1.11 \\ (1.05,1.18) \end{gathered}$
Nonaccidental	7,881	1.00	$\begin{gathered} 1.32 \\ (1.23,1.41) \end{gathered}$	$\begin{gathered} 1.20 \\ (1.23,1.29) \end{gathered}$	$\begin{gathered} 1.21 \\ (1.12,1.30) \end{gathered}$
All cancer	721	1.00	$\begin{gathered} 1.26 \\ (1.01,1.58) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.01,1.45) \end{gathered}$	$\begin{gathered} 1.17 \\ (0.92,1.48) \end{gathered}$
Lung cancer	75	1.00	$\begin{gathered} 1.12 \\ (0.56,2.25) \end{gathered}$	$\begin{gathered} 0.96 \\ (0.56,2.07) \end{gathered}$	$\begin{gathered} 1.52 \\ (0.77,3.03) \end{gathered}$
Cardiovascular disease	2,976	1.00	$\begin{gathered} 1.46 \\ (1.30,1.654) \end{gathered}$	$\begin{gathered} 1.44 \\ (1.30,1.62) \end{gathered}$	$\begin{gathered} 1.35 \\ (1.19,1.53) \end{gathered}$
Nonmalignant lung disease	1,168	1.00	$\begin{gathered} 1.02 \\ (0.85,1.21) \end{gathered}$	$\begin{gathered} 0.88 \\ (0.85,1.06) \\ \hline \end{gathered}$	$\begin{gathered} 0.96 \\ (0.80,1.15) \end{gathered}$

Models adjusted for recruitment year, sex, smoking status and intensity, BMI, and education.

Table A77. Hazard ratios (and 95\% confidence intervals) for specific causes of death among the Mumbai Cohort Study (MCS) by quartile of NO_{2} (Model 3)

	n. events (total = 126,401)	$\begin{aligned} & \begin{array}{c} \text { Q1 } \\ (<21.4 \\ \mathrm{ppb}) \end{array} \end{aligned}$	$\begin{gathered} \mathrm{Q} 2 \\ (21.4-22.9 \\ \mathrm{ppb}) \end{gathered}$	$\begin{gathered} \text { Q3 } \\ (22.9-24.8 \\ \mathrm{ppb}) \end{gathered}$	$\begin{gathered} \mathrm{Q} 4 \\ (>24.8 \\ \mathrm{ppb}) \end{gathered}$
All-cause	11,779	1.00	$\begin{gathered} 1.13 \\ (1.07,1.20) \end{gathered}$	$\begin{gathered} 1.27 \\ (1.07,1.34) \end{gathered}$	$\begin{gathered} 1.18 \\ (1.12,1.25) \end{gathered}$
Nonaccidental	7,883	1.00	$\begin{gathered} 1.26 \\ (1.18,1.35) \end{gathered}$	$\begin{gathered} 1.35 \\ (1.18,1.44) \end{gathered}$	$\begin{gathered} 1.26 \\ (1.18,1.35) \end{gathered}$
All cancer	721	1.00	$\begin{gathered} 1.28 \\ (1.02,1.61) \end{gathered}$	$\begin{gathered} 1.35 \\ (1.02,1.67) \end{gathered}$	$\begin{gathered} 1.33 \\ (1.07,1.65) \end{gathered}$
Lung cancer	75	1.00	$\begin{gathered} 0.66 \\ (0.31,1.41) \end{gathered}$	$\begin{gathered} 1.33 \\ (0.31,2.41) \end{gathered}$	$\begin{gathered} 0.84 \\ (0.43,1.66) \end{gathered}$
Cardiovascular disease	2,977	1.00	$\begin{gathered} 1.21 \\ (1.08,1.36) \end{gathered}$	$\begin{gathered} 1.34 \\ (1.08,1.48) \end{gathered}$	$\begin{gathered} 1.31 \\ (1.18,1.46) \end{gathered}$
Nonmalignant lung disease	1,168	1.00	$\begin{gathered} 1.41 \\ (1.17,1.68) \end{gathered}$	$\begin{gathered} 1.42 \\ (1.17,1.68) \\ \hline \end{gathered}$	$\begin{gathered} 1.17 \\ (0.99,1.40) \\ \hline \end{gathered}$

Models adjusted for recruitment year, sex, smoking status and intensity, BMI, and education.

Table A78. Beta coefficient and time interaction for $\mathrm{PM}_{2.5}$ exposure and specific causes of death within the Mumbai Cohort Study (MCS)

	n. events (total $=126,377)$	Effect for PM 2.5 Beta Coefficient	Time interaction
All-cause	11,777	0.15	-0.026
Nonaccidental	7,881	0.15	-0.027
All cancer	721	0.11	-0.028
Lung cancer	75	0.22	-0.027
Cardiovascular disease	2,976	0.16	-0.027
Nonmalignant lung disease	1,168	0.15	-0.026

Time interaction based upon follow-up time.

Table A79. Hazard ratios (and 95\% confidence intervals) for NO_{2} and specific causes of death within the Mumbai Cohort Study (MCS) after adapting variables which potentially violated the proportional hazards assumption

	n. events (total = 126,401)	HR (95\% CI)
All-cause	11,779	1.26
Nonaccidental	7,883	$(1.16,1.37)$
All cancer	721	1.35
Lung cancer	75	$(1.22,1.50)$
		1.50
Cardiovascular disease	2,977	1.43
Nonmalignant lung disease	1,168	$(1.15,1.64)$

[^4]Potential assumption violators were sex and smoking status (stratified).

[^0]: Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a 10-ppb increase in NO_{2}.
 Models adjusted for recruitment year, sex, smoking status and intensity, BMI, and education.

[^1]: Hazard ratios provided for a $5-\mu \mathrm{g} / \mathrm{m}^{3}$ increase in $\mathrm{PM}_{2.5}$ and a $10-\mathrm{ppb}$ increase in NO_{2} (each are single pollutant models).
 Potential assumption violator was pack-years (removed from analysis).

[^2]: *: Refers to a participant being within an urban center as defined by the Global Human Settlement Layer.
 \dagger : Refers to gradient values for urbanicity as described by Gao \& O’Neill (2020).
 Models additionally adjusted for recruitment year, sex, smoking status and intensity, BMI, occupation, diet, and alcohol intake.

[^3]: *: Refers to a participant being within an urban center as defined by the Global Human Settlement Layer.
 \dagger : Refers to gradient values for urbanicity as described by Gao \& O’Neill (2020)
 Models additionally adjusted for recruitment year, sex, smoking status and intensity, BMI , occupation, diet, and alcohol intake.

[^4]: Hazard ratios provided a 10-ppb increase in NO_{2}.

