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BACKGROUND
Studies have shown that long-term exposure to air pollution increases mortality. 
However, evidence is limited for air-pollution levels below the most recent Na-
tional Ambient Air Quality Standards. Previous studies involved predominantly 
urban populations and did not have the statistical power to estimate the health 
effects in underrepresented groups.

METHODS
We constructed an open cohort of all Medicare beneficiaries (60,925,443 persons) 
in the continental United States from the years 2000 through 2012, with 
460,310,521 person-years of follow-up. Annual averages of fine particulate matter 
(particles with a mass median aerodynamic diameter of less than 2.5 μm [PM2.5]) 
and ozone were estimated according to the ZIP Code of residence for each en-
rollee with the use of previously validated prediction models. We estimated the risk 
of death associated with exposure to increases of 10 μg per cubic meter for PM2.5 
and 10 parts per billion (ppb) for ozone using a two-pollutant Cox proportional-
hazards model that controlled for demographic characteristics, Medicaid eligibil-
ity, and area-level covariates.

RESULTS
Increases of 10 μg per cubic meter in PM2.5 and of 10 ppb in ozone were associ-
ated with increases in all-cause mortality of 7.3% (95% confidence interval [CI], 
7.1 to 7.5) and 1.1% (95% CI, 1.0 to 1.2), respectively. When the analysis was re-
stricted to person-years with exposure to PM2.5 of less than 12 μg per cubic meter 
and ozone of less than 50 ppb, the same increases in PM2.5 and ozone were as-
sociated with increases in the risk of death of 13.6% (95% CI, 13.1 to 14.1) and 
1.0% (95% CI, 0.9 to 1.1), respectively. For PM2.5, the risk of death among men, 
blacks, and people with Medicaid eligibility was higher than that in the rest of the 
population.

CONCLUSIONS
In the entire Medicare population, there was significant evidence of adverse effects 
related to exposure to PM2.5 and ozone at concentrations below current national 
standards. This effect was most pronounced among self-identified racial minori-
ties and people with low income. (Supported by the Health Effects Institute and 
others.)
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The adverse health effects associ-
ated with long-term exposure to air pollu-
tion are well documented.1,2 Studies sug-

gest that fine particles (particles with a mass 
median aerodynamic diameter of less than 2.5 μm 
[PM2.5]) are a public health concern,3 with expo-
sure linked to decreased life expectancy.4-6 Long-
term exposure to ozone has also been associated 
with reduced survival in several recent studies, 
although evidence is sparse.4,7-9

Studies with large cohorts have investigated 
the relationship between long-term exposures to 
PM2.5 and ozone and mortality4,9-13; others have 
estimated the health effects of fine particles at 
low concentrations (e.g., below 12 μg per cubic 
meter for PM2.5).

14-18 However, most of these 
studies have included populations whose socio-
economic status is higher than the national aver-
age and who reside in well-monitored urban areas. 
Consequently, these studies provide limited infor-
mation on the health effects of long-term expo-
sure to low levels of air pollution in smaller 
cities and rural areas or among minorities or 
persons with low socioeconomic status.

To address these gaps in knowledge, we con-
ducted a nationwide cohort study involving all 
Medicare beneficiaries from 2000 through 2012, 
a population of 61 million, with 460 million 
person-years of follow-up. We used a survival 
analysis to estimate the risk of death from any 
cause associated with long-term exposure (yearly 
average) to PM2.5 concentrations lower than the 
current annual National Ambient Air Quality 
Standard (NAAQS) of 12 μg per cubic meter and 
to ozone concentrations below 50 parts per billion 
(ppb). Subgroup analyses were conducted to iden-
tify populations with a higher or lower level of 
pollution-associated risk of death from any cause.

Me thods

Mortality Data

We obtained the Medicare beneficiary denomi-
nator file from the Centers for Medicare and 
Medicaid Services, which contains information 
on all persons in the United States covered by 
Medicare and more than 96% of the population 
65 years of age or older. We constructed an open 
cohort consisting of all beneficiaries in this age 
group in the continental United States from 
2000 through 2012, with all-cause mortality as 
the outcome. For each beneficiary, we extracted 

the date of death (up to December 31, 2012), age 
at year of Medicare entry, year of entry, sex, race, 
ZIP Code of residence, and Medicaid eligibility 
(a proxy for low socioeconomic status). Persons 
who were alive on January 1 of the year follow-
ing their enrollment in Medicare were entered 
into the open cohort for the survival analysis. 
Follow-up periods were defined according to 
calendar years.

Assessment of Exposure to Air Pollution

Ambient levels of ozone and PM2.5 were estimated 
and validated on the basis of previously pub-
lished prediction models.19,20 Briefly, we used an 
artificial neural network that incorporated satel-
lite-based measurements, simulation outputs from 
a chemical transport model, land-use terms, 
meteorologic data, and other data to predict 
daily concentrations of PM2.5 and ozone at un-
monitored locations. We fit the neural network 
with monitoring data from the Environmental 
Protection Agency (EPA) Air Quality System 
(AQS) (in which there are 1928 monitoring sta-
tions for PM2.5 and 1877 monitoring stations for 
ozone). We then predicted daily PM2.5 and ozone 
concentrations for nationwide grids that were 
1  km by 1 km. Cross-validation indicated that 
predictions were good across the entire study 
area. The coefficients of determination (R2) for 
PM2.5 and ozone were 0.83 and 0.80, respectively; 
the mean square errors between the target and 
forecasting values for PM2.5 and ozone were 1.29 μg 
per cubic meter and 2.91 ppb, respectively. Data 
on daily air temperature and relative humidity 
were retrieved from North American Regional 
Reanalysis with grids that were approximately 
32 km by 32 km; data were averaged annually.21

For each calendar year during which a person 
was at risk of death, we assigned to that person 
a value for the annual average PM2.5 concentration, 
a value for average ozone level during the warm 
season (April 1 through September 30), and values 
for annual average temperature and humidity ac-
cording to the ZIP Code of the person’s residence. 
The warm-season ozone concentration was used 
to compare our results with those of previous 
studies.10 In this study, “ozone concentration” 
refers to the average concentration during the 
warm season, unless specified otherwise.

As part of a sensitivity analysis, we also ob-
tained data on PM2.5 and ozone concentrations 
from the EPA AQS and matched that data with 

A Quick Take 
is available at 

NEJM.org
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each person in our study on the basis of the near-
est monitoring site within a distance of 50 km. 
(Details are provided in Section 1 in the Supple-
mentary Appendix, available with the full text of 
this article at NEJM.org.)

Statistical Analysis

We fit a two-pollutant Cox proportional-hazards 
model with a generalized estimating equation to 
account for the correlation between ZIP Codes.22 
In this way, the risk of death from any cause 
associated with long-term exposure to PM2.5 was 
always adjusted for long-term exposure to ozone, 
and the risk of death from any cause associated 
with long-term exposure to ozone was always 
adjusted for long-term exposure to PM2.5, unless 
noted otherwise. We also conducted single-
pollutant analyses for comparability. We allowed 
baseline mortality rates to differ according to 
sex, race, Medicaid eligibility, and 5-year catego-
ries of age at study entry. To adjust for potential 
confounding, we also obtained 15 ZIP-Code or 
county-level variables from various sources and 
a regional dummy variable to account for com-
positional differences in PM2.5 across the United 
States (Table 1, and Section 1 in the Supplemen-
tary Appendix). We conducted this same statisti-
cal analysis but restricted it to person-years with 
PM2.5 exposures lower than 12 μg per cubic 
meter and ozone exposures lower than 50 ppb 
(low-exposure analysis) (Table 1, and Section 1 in 
the Supplementary Appendix).

To identify populations at a higher or lower 
pollution-associated risk of death from any cause, 
we refit the same two-pollutant Cox model for 
some subgroups (e.g., male vs. female, white vs. 
black, and Medicaid eligible vs. Medicaid ineli-
gible). To estimate the concentration-response 
function of air pollution and mortality, we fit a 
log-linear model with a thin-plate spline of both 
PM2.5 and ozone and controlled for all the indi-
vidual and ecologic variables used in our main 
analysis model (Section 7 in the Supplementary 
Appendix). To examine the robustness of our 
results, we conducted sensitivity analyses and 
compared the extent to which estimates of risk 
changed with respect to differences in confound-
ing adjustment and estimation approaches 
(Sections S2 through S4 in the Supplementary 
Appendix).

Data on some important individual-level co-
variates were not available for the Medicare co-

hort, including data on smoking status, body-
mass index (BMI), and income. We obtained data 
from the Medicare Current Beneficiary Survey 
(MCBS), a representative subsample of Medicare 
enrollees (133,964 records and 57,154 enrollees 
for the period 2000 through 2012), with individual-
level data on smoking, BMI, income, and many 
other variables collected by means of telephone 
survey. Using MCBS data, we investigated how 
the lack of adjustment for these risk factors 
could have affected our calculated risk estimates 
in the Medicare cohort (Section 5 in the Supple-
mentary Appendix). The computations in this 
article were run on the Odyssey cluster, which is 
supported by the FAS Division of Science, Re-
search Computing Group, and on the Research 
Computing Environment, which is supported by 
the Institute for Quantitative Social Science in the 
Faculty of Arts and Sciences, both at Harvard 
University. We used R software, version 3.3.2 
(R Project for Statistical Computing), and SAS 
software, version 9.4 (SAS Institute).

R esult s

Cohort Analyses

The full cohort included 60,925,443 persons living 
in 39,716 different ZIP Codes with 460,310,521 
person-years of follow-up. The median follow-up 
was 7 years. The total number of deaths was 
22,567,924. There were 11,908,888 deaths and 
247,682,367 person-years of follow-up when the 
PM2.5 concentration was below 12 μg per cubic 
meter and 17,470,128 deaths and 353,831,836 
person-years of follow-up when the ozone con-
centration was below 50 ppb. These data provided 
excellent power to estimate the risk of death at 
air-pollution levels below the current annual 
NAAQS for PM2.5 and at low concentrations for 
ozone (Table 1).

Annual average PM2.5 concentrations across the 
continental United States during the study period 
ranged from 6.21 to 15.64 μg per cubic meter 
(5th and 95th percentiles, respectively), and the 
warm-season average ozone concentrations ranged 
from 36.27 to 55.86 ppb (5th and 95th percen-
tiles, respectively). The highest PM2.5 concentra-
tions were in California and the eastern and 
southeastern United States. The Mountain region 
and California had the highest ozone concentra-
tions; the eastern states had lower ozone con-
centrations (Fig. 1).
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Characteristic or Variable Entire Cohort Ozone Concentration PM2.5 Concentration

≥50 ppb* <50 ppb ≥12 μg/m3 <12 μg/m3

Population

Persons (no.) 60,925,443 14,405,094 46,520,349 28,145,493 32,779,950

Deaths (no.) 22,567,924 5,097,796 17,470,128 10,659,036 11,908,888

Total person-yr† 460,310,521 106,478,685 353,831,836 212,628,154 247,682,367

Median yr of follow-up 7 7 7 7 7

Average air-pollutant concentrations‡

Ozone (ppb) 46.3 52.8 44.4 48.0 45.3

PM2.5 (μg/m3) 11.0 10.9 11.0 13.3 9.6

Individual covariates‡

Male sex (%) 44.0 44.3 43.8 43.1 44.7

Race or ethnic group (%)§

White 85.4 86.6 85.1 82.0 88.4

Black 8.7 7.2 9.2 12.0 5.9

Asian 1.8 1.8 1.8 2.1 1.6

Hispanic 1.9 2.0 1.9 1.9 1.9

Native American 0.3 0.6 0.3 0.1 0.6

Eligible for Medicaid (%) 16.5 15.3 16.8 17.8 15.3

Average age at study entry (yr) 70.1 69.7 70.2 70.1 70.0

Ecologic variables‡

BMI 28.2 27.9 28.4 28.0 28.4

Ever smoked (%) 46.0 44.9 46.2 45.8 46.0

Population including all people 65 yr of age 
or older (%)

Hispanic 9.5 13.4 8.4 8.4 10.0

Black 8.8 7.2 9.3 13.3 6.3

Median household income (1000s of $) 47.4 51.0 46.4 47.3 47.4

Median value of housing (1000s of $) 160.5 175.8 156.3 161.7 159.8

Below poverty level (%) 12.2 11.4 12.4 12.5 12.0

Did not complete high school (%) 32.3 30.7 32.7 35.3 30.6

Owner-occupied housing (%) 71.5 71.3 71.6 68.6 73.2

Population density (persons/km2) 3.2 0.7 3.8 4.8 2.2

Low-density lipoprotein level measured (%) 92.2 92.0 92.2 92.2 92.2

Glycated hemoglobin level measured (%) 94.8 94.6 94.8 94.8 94.8

≥1 Ambulatory visits (%)¶ 91.7 92.2 91.6 91.7 91.7

Meteorologic variables‡

Average temperature (°C) 14.0 14.9 13.8 14.5 13.7

Relative humidity (%) 71.1 60.8 73.9 73.7 69.6

*	�Summary statistics were calculated separately for persons residing in ZIP Codes where average ozone levels were below or above 50 ppb 
and where PM2.5 levels were below or above 12 μg per cubic meter. The value 12 μg per cubic meter was chosen as the current annual 
National Ambient Air Quality Standard (NAAQS) (e.g., the “safe” level) for PM2.5. BMI denotes body-mass index (the weight in kilograms 
divided by the square of the height in meters) and ppb parts per billion.

†	�The number for total person-years of follow-up indicates the sum of individual units of time that the persons in the study population were at 
risk of death from 2000 through 2012.

‡	�The average values for air pollution levels and for ecologic and meteorologic variables were computed by averaging values over all ZIP 
Codes from 2000 through 2012.

§	� Data on race and ethnic group were obtained from Medicare beneficiary files.
¶	�The variable for ambulatory visits refers to the average annual percentage of Medicare enrollees who had at least one ambulatory visit to a 

primary care physician.

Table 1. Cohort Characteristics and Ecologic and Meteorologic Variables.
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In a two-pollutant analysis, each increase of 
10 μg per cubic meter in annual exposure to 
PM2.5 (estimated independently of ozone) and 
each increase of 10 ppb in warm-season expo-
sure to ozone (estimated independently of PM2.5) 
was associated with an increase in all-cause 
mortality of 7.3% (95% confidence interval [CI], 
7.1 to 7.5) and 1.1% (95% CI, 1.0 to 1.2), respec-

tively. Estimates of risk based on predictive, ZIP-
Code–specific assessments of exposure were 
slightly higher than those provided by the near-
est data-monitoring site (Table 2). When we re-
stricted the PM2.5 and ozone analyses to location-
years with low concentrations, we continued to 
see significant associations between exposure 
and mortality (Table 2). Analysis of the MCBS 

Figure 1. Average PM2.5 and Ozone Concentrations in the Continental United States, 2000 through 2012.

Panel A shows the average concentrations of fine particulate matter (particles with a mass median aerodynamic 
 diameter of less than 2.5 μm [PM2.5]) in micrograms per cubic meter, as estimated on the basis of all daily predic-
tions during the study period. Panel B shows the concentration of ozone levels in parts per billion as averaged from 
April 1 through September 30 throughout the study period.
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subsample provided strong evidence that smok-
ing and income are not likely to be confounders 
because they do not have a significant association 
with PM2.5 or ozone (Section 5 in the Supplemen-
tary Appendix).

Subgroup Analyses

Subgroup analyses revealed that men; black, 
Asian, and Hispanic persons; and persons who 
were eligible for Medicaid (i.e., those who had 
low socioeconomic status) had a higher estimated 
risk of death from any cause in association with 
PM2.5 exposure than the general population. The 
risk of death associated with ozone exposure 
was higher among white, Medicaid-eligible per-
sons and was significantly below 1 in some ra-
cial subgroups (Fig. 2). Among black persons, 
the effect estimate for PM2.5 was three times as 
high as that for the overall population (Table S3 
in the Supplementary Appendix). Overall, the risk 
of death associated with ozone exposure was 
smaller and somewhat less robust than that as-
sociated with PM2.5 exposure. We also detected a 
small but significant interaction between ozone 
exposure and PM2.5 exposure (Table S8 in the 
Supplementary Appendix). Our thin-plate–spline 
fit indicated a relationship between PM2.5, ozone, 
and all-cause mortality that was almost linear, 
with no signal of threshold down to 5 μg per 

cubic meter and 30 ppb, respectively (Fig. 3, and 
Fig. S8 in the Supplementary Appendix).

Discussion

This study involving an open cohort of all per-
sons receiving Medicare, including those from 
small cities and rural areas, showed that long-
term exposures to PM2.5 and ozone were associ-
ated with an increased risk of death, even at levels 
below the current annual NAAQS for PM2.5. Fur-
thermore, the study showed that black men and 
persons eligible to receive Medicaid had a much 
higher risk of death associated with exposure to 
air pollution than other subgroups. These find-
ings suggest that lowering the annual NAAQS 
may produce important public health benefits 
overall, especially among self-identified racial 
minorities and people with low income.

The strengths of this study include the as-
sessment of exposure with high spatial and 
temporal resolution, the use of a cohort of al-
most 61 million Medicare beneficiaries across 
the entire continental United States followed for 
up to 13 consecutive years, and the ability to per-
form subgroup analyses of the health effects of 
air pollution on groups of disadvantaged persons. 
However, Medicare claims do not include exten-
sive individual-level data on behavioral risk fac-

Model PM2.5 Ozone

hazard ratio (95% CI)

Two-pollutant analysis

Main analysis 1.073 (1.071–1.075) 1.011 (1.010–1.012)

Low-exposure analysis 1.136 (1.131–1.141) 1.010 (1.009–1.011)

Analysis based on data from nearest  
monitoring site (nearest-monitor analysis)†

1.061 (1.059–1.063) 1.001 (1.000–1.002)

Single-pollutant analysis‡ 1.084 (1.081–1.086) 1.023 (1.022–1.024)

*	�Hazard ratios and 95% confidence intervals were calculated on the basis of an increase of 10 μg per cubic meter in ex-
posure to PM2.5 and an increase of 10 ppb in exposure to ozone.

†	�Daily average monitoring data on PM2.5 and ozone were obtained from the Environmental Protection Agency Air Quality 
System. Daily ozone concentrations were averaged from April 1 through September 30 for the computation of warm-
season averages. Data on PM2.5 and ozone levels were obtained from the nearest monitoring site within 50 km. If there 
was more than one monitoring site within 50 km, the nearest site was chosen. Persons who lived more than 50 km 
from a monitoring site were excluded.

‡	�For the single-pollutant analysis, model specifications were the same as those used in the main analysis, except that 
ozone was not included in the model when the main effect of PM2.5 was estimated and PM2.5 was not included in the 
model when the main effect of ozone was estimated.

Table 2. Risk of Death Associated with an Increase of 10 μg per Cubic Meter in PM2.5 or an Increase of 10 ppb in Ozone 
Concentration.*
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tors, such as smoking and income, which could 
be important confounders. Still, our analysis of 
the MCBS subsample (Table S6 in the Supplemen-
tary Appendix) increased our level of confidence 
that the inability to adjust for these individual-
level risk factors in the Medicare cohort did not 
lead to biased results (Section 5 in the Supplemen-
tary Appendix). In another study, we analyzed a 

similar Medicare subsample with detailed indi-
vidual-level data on smoking, BMI, and many 
other potential confounders linked to Medicare 
claims.23 In that analysis, we found that for mor-
tality and hospitalization, the risks of exposure 
to PM2.5 were not sensitive to the additional 
control of individual-level variables that were not 
available in the whole Medicare population.

Figure 2. Risk of Death Associated with an Increase of 10 μg per Cubic Meter in PM2.5 Concentrations and an Increase 
of 10 ppb in Ozone Exposure, According to Study Subgroups.

Hazard ratios and 95% confidence intervals are shown for an increase of 10 μg per cubic meter in PM2.5 and an in-
crease of 10 parts per billion (ppb) in ozone. Subgroup analyses were conducted by first restricting the population 
(e.g., considering only male enrollees). The same two-pollutant analysis (the main analysis) was then applied to each 
subgroup. Numeric results are presented in Tables S3 and S4 in the Supplementary Appendix. Dashed lines indicate 
the estimated hazard ratio for the overall population.
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We also found that our results were robust 
when we excluded individual and ecologic co-
variates from the main analysis (Fig. S2 and 
Table S2 in the Supplementary Appendix), when 
we stratified age at entry into 3-year and 4-year 
categories rather than the 5 years used in the 
main analysis (Fig. S3 in the Supplementary Ap-
pendix), when we varied the estimation proce-
dure (by means of a generalized estimating 

equation as opposed to mixed effects) (Tables S3 
and S4 in the Supplementary Appendix), and 
when we used different types of statistical soft-
ware (R, version 3.3.2, vs. SAS, version 9.4). Fi-
nally, we found that our results were consistent 
with others published in the literature (Section 6 
in the Supplementary Appendix).5,17,24-28

There was a significant association between 
PM2.5 exposure and mortality when the analysis 
was restricted to concentrations below 12 μg per 
cubic meter, with a steeper slope below that 
level. This association indicated that the health-
benefit-per-unit decrease in the concentration of 
PM2.5 is larger for PM2.5 concentrations that are 
below the current annual NAAQS than the health 
benefit of decreases in PM2.5 concentrations that 
are above that level. Similar, steeper concentra-
tion-response curves at low concentrations have 
been observed in previous studies.29 Moreover, 
we found no evidence of a threshold value — the 
concentration at which PM2.5 exposure does not 
affect mortality — at concentrations as low as 
approximately 5 μg per cubic meter (Fig. 3); this 
finding is similar to those of other studies.18,30

The current ozone standard for daily expo-
sure is 70 ppb; there is no annual or seasonal 
standard. Our results strengthen the argument 
for establishing seasonal or annual standards. 
Moreover, whereas time-series studies have shown 
the short-term effects of ozone exposure, our 
results indicate that there are larger effect sizes 
for longer-term ozone exposure, including in loca-
tions where ozone concentrations never exceed 
70 ppb. Unlike the American Cancer Society 
Cancer Prevention Study II,9,10 our study reported 
a linear connection between ozone concentration 
and mortality. This finding is probably the result 
of the interaction between PM2.5 and ozone (Sec-
tion 7 in the Supplementary Appendix). The sig-
nificant, linear relationship between seasonal 
ozone levels and all-cause mortality indicates 
that current risk assessments,31-33 which incorpo-
rate only the acute effects of ozone exposure on 
deaths each day from respiratory mortality, may 
be substantially underestimating the contribution 
of ozone exposure to the total burden of disease.

The enormous sample size in this study, which 
includes the entire Medicare cohort, allowed for 
unprecedented accuracy in the estimation of risks 
among racial minorities and disadvantaged sub-
groups. The estimate of effect size for PM2.5 expo-

Figure 3. Concentration–Response Function of the Joint Effects of Exposure 
to PM2.5 and Ozone on All-Cause Mortality.

A log-linear model with a thin-plate spline was fit for both PM2.5 and ozone, 
and the shape of the concentration-response surface was estimated (Fig. S8 
in the Supplementary Appendix). The concentration–response curve in 
Panel A was plotted for an ozone concentration equal to 45 ppb. The con-
centration–response curve in Panel B was plotted for a PM2.5 concentra-
tion equal to 10 μg per cubic meter. These estimated curves were plotted 
at the 5th and 95th percentiles of the concentrations of PM2.5 and ozone, 
respectively. The complete concentration–response three-dimensional sur-
face is plotted in Fig. S8 in the Supplementary Appendix.
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sure was greatest among male, black, and Med-
icaid-eligible persons. We also estimated risks in 
subgroups of persons who were eligible for Med-
icaid and in whites and blacks alone to ascertain 
whether the effect modifications according to 
race and Medicaid status were independent. We 
found that black persons who were not eligible 
for Medicaid (e.g., because of higher income) 
continued to have an increased risk of death 
from exposure to PM2.5 (Fig. S4 in the Supple-
mentary Appendix). In addition, we found that 
there was a difference in the health effects of 
PM2.5 exposure between urban and rural popula-
tions, a finding that may be due to composi-
tional differences in the particulates (Table S3 
Supplementary Appendix).

Although the Medicare cohort includes only 
the population of persons 65 years of age or older, 
two thirds of all deaths in the United States occur 
in people in that age group. Although our expo-
sure models had excellent out-of-sample predic-
tive power on held-out monitors, they do have 
limitations. Error in exposure assessment remains 
an issue in this type of analysis and could attenu-
ate effect estimates for air pollution.34

The overall association between air pollution 
and human health has been well documented 

since the publication of the landmark Harvard 
Six Cities Study in 1993.25 With air pollution 
declining, it is critical to estimate the health ef-
fects of low levels of air pollution — below the 
current NAAQS — to determine whether these 
levels are adequate to minimize the risk of death. 
Since the Clean Air Act requires the EPA to set 
air-quality standards that protect sensitive popu-
lations, it is also important to focus more effort 
on estimating effect sizes in potentially sensitive 
populations in order to inform regulatory policy 
going forward.
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1. Details Regarding Confounding Adjustment by Individual-level and Area-level 

Covariates 

In our main analysis, we adjusted for 20 covariates. These includes four individual level 

covariates; two county-level variables from the Behavioral Risk Factor Surveillance System 

(BRFSS); eight ZIP code-level variables from U.S. Census; three hospital service area-level 

variables from Dartmouth Atlas of Health Care; two meteorological variables; and one dummy 

variable indicating geographical regions. Except for the individual covariates, 16 area-level 

covariates included in our main analysis were denoted as ecological variables. Details regarding 

the definition of each of these variables, and how they were linked to the mortality data are 

described below. 

Individual-level variables: We considered a 5-year category of age at entry (65 to 69, 70 to 74, 

75 to 79, 80 to 84, 85 to 89, 90 to 94, 95 to 99, and above 100), race (White, Black, Asian, 

Hispanic, Native American, and other), sex (male or female) and a dummy variable for eligibility 

for Medicaid. Our sensitivity analyses of the Medicare Current Beneficiary Survey (MCBS) 

provided strong evidence that Medicaid eligibility is an excellent proxy for individual-level 

income in our population (see Section 4 for details). 

ZIP code-level variables: We acquired data at the ZIP Code Tabulation Areas (ZCTA)-level 

from the 2000 U.S. Census, the 2010 U.S. Census, and from the American Community Survey 

(ACS) for each year from 2005 to 2012. Not all variables were available for all years, and we 

linearly interpolated them between two available years. We matched data from ZCTA to ZIP 

code and manually resolved some minor differences between ZCTA and ZIP codes. ZIP code-

level variables from the Census included: percentage Hispanic, percentage Black, median 

household income, median value of owner-occupied housing, percentage above age 65 living 

below the poverty level, percentage above age of 65 with less than high school education, 

percentage of owner-occupied housing units, and population density.  
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County-level variables: We acquired county-level body mass index (BMI) and percentage of 

ever smokers from BRFSS, for each year from 2000 to 2012.1 We assigned the same values of 

these county-level variables to all ZIP codes that fell within the county boundary. 

Hospital service area-level variables: We acquired hospital service area-level variables from the 

Dartmouth Atlas of Health Care, for all available years.2 We considered the following variables: 

percentage of Medicare enrollees having: 1) a blood lipid (LDL-C) test, 2) a hemoglobin A1c test, 

and 3) at least one ambulatory visit to a primary care clinician. We used existing crosswalk files 

provided by the Dartmouth Atlas of Health Care to match data from hospital service area to ZIP 

code.  

Gridded weather and air pollution variables: We acquired daily 32 km × 32 km gridded 

temperature and humidity data from the North American Regional Reanalysis data.3 We also 

acquired daily 1 km × 1 km gridded air pollution levels (PM2.5 and ozone) from previously 

developed and validated air pollution prediction models.4,5 We obtained ZIP code-level variables 

by taking inverse-distance averages of the four nearest grid cells to the ZIP code’s centroid and 

then computed the annual averages for temperature, humidity, and PM2.5, and the warm-season 

(from April 1 to September 30) average for ozone.  

Monitor level air pollution variables: We acquired air pollution monitoring data from the U.S. 

EPA Air Quality System (1,928 monitors for PM2.5 and 1,877 monitors for ozone).6 We first 

obtained PM2.5 annual average and daily 8-hour maximal ozone. We computed warm-season 

ozone for each monitoring site by averaging the daily ozone measurements from April 1 to 

September 30. To join monitoring data to each residential ZIP code, we identified the nearest 

monitoring site within 50 km of the ZIP code (based on centroid point) and assigned air pollutant 

measurements to that ZIP code. If there was more than one monitoring site, we chose the nearest 
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one; if there were no monitoring site within 50 km, we treated the monitored exposure level as 

missing and excluded that ZIP code from the analysis.  

Regional dummy variable: To categorize ZIP codes into regions, we first simulated 

concentrations of five major chemical components of PM2.5: sulfate, nitrate, organic carbon, 

elemental carbon, and ammonium, using GEOS-Chem, a 3D global chemical transport model.7 

Long-term averaged concentrations of the five PM2.5 components were linearly interpolated to 

each ZIP code. Then we calculated the percentage of each PM2.5 component with respect to the 

total PM2.5 mass. We used k-mean clustering to classify all ZIP codes into 10 geographical 

regions based on the percentage of these five PM2.5 components. ZIP codes that share a similar 

chemical profile of PM2.5 were assigned to the same geographical region (Figure S1). 

Table S1 summarizes the Pearson correlation coefficients between each pollutant and ecological 

covariate. 
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Figure S1. Regional Dummy Variable 

ZIP codes with the same color belong to the same region and share the same value of the regional 

dummy variable. 
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Table S1. Pearson Correlation between Air Pollution, Ecological Variables, and 

Meteorological Variables* 

Variable PM2.5 Ozone 

Air Pollutants 

PM2.5 (µg/m3) 1.000 0.239 

Ozone (ppb) 0.239 1.000 

County-level variables --- from BRFSS 

BMI (kg/m2) -0.149 0.022 

Ever Smoker (%) -0.055 -0.096 

ZIP code-level variables --- from US Census 

Hispanic Population (%) -0.018 0.050 

Black Population (%) 0.207 -0.042 

Median household income (US dollars) -0.049 -0.029 

Median value of housing (US dollars) -0.042 -0.099 

% below poverty level 0.020 -0.010 

% below high school education 0.219 0.089 

% of owner occupied housing -0.143 0.076 

Population density (person/ km2)  0.007 -0.020 

Hospital service area level variables --- from Dartmouth Atlas of 

Health Care 

% with LDL-C test -0.085 -0.033 

% with hemoglobin A1c test -0.070 -0.045 

% with ≥1 ambulatory visit 0.055 

 

0.031 

Meteorological variables 
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Temperature (°C) 0.131 0.110 

Relative humidity (%) 0.286 -0.508 

* Pearson correlation was computed for every pair of variables for each year (from 2000 to 2012) 

across the 40,177 ZIP codes. 

  



9 

 

2. Sensitivity Analysis with Respect to Variables Included in Confounding Adjustment 

We conducted a sensitivity analysis to assess the robustness of our results to different sets of 

variables included in the Cox proportional hazards model for the confounding adjustment. 

Starting from the main analysis that included 20 variables, we considered several alternative 

models; each of these models exclude a different set of variables (e.g., excluding individual 

covariates or excluding meteorological variables, etc.). We compared models fit at various levels 

of adjustment and the estimated hazard ratios. Various levels of adjustment allowed us to evaluate 

the impact of ecological and individual covariates and judge the direction of potential biases of 

omitting individual covariates.  

Table S2 displays the AIC and -2*log likelihood values corresponding to Cox models that 

exclude different subsets of covariates. Both AIC values and likelihood ratio tests indicate that 

the main analysis provides better fit to the data than all sensitivity analyses that exclude some of 

these variables. 

Figure S2 shows the estimated HR and 95% confidence intervals under the different model 

specifications for confounding adjustment. Results are presented for both PM2.5 (also adjusted by 

ozone) and ozone (also adjusted by PM2.5). The vertical line is placed at the estimated HR from 

the main analysis (which includes all 20 variables). Risk estimates change moderately after 

excluding regional dummy variables or U.S. Census ZIP code-level variables, but are very robust 

to the omission of other sets of variables. This is expected as regional dummy variables explain a 

large amount of spatial variation in the air pollution exposure and mortality rates.  
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Table S2. -2* log Likelihood and AIC Values at Different Levels of Adjustment for 

Confounding 

Name† AIC 
-2*log 

likelihood 
df p‡ 

Main analysis 615404575 615404523 26  

Main analysis excluding sex 645833387 645833335 26 N/A 

Main analysis excluding Medicaid eligibility  639509036 639508984 26 N/A 

Main analysis excluding race 637761029 637760977 26 N/A 

Main analysis excluding regional dummy 615413233 615413199 17 <0.001 

Main analysis excluding meteorological variables 615405208 615405160 24 <0.001 

Main analysis excluding BRFSS 615409354 615409306 24 <0.001 

Main analysis excluding Dartmouth 615406339 615406293 23 <0.001 

Main analysis excluding U.S. Census 615480804 615480768 18 <0.001 
† For different levels of adjustment, we started from our main analysis and omitted sex, Medicaid 

eligibility, race, regional dummy variables, meteorological variables, BRFSS county-level 

variables, ecological variables from Dartmouth Atlas of Health Care, or ZIP code-level variables 

from the U.S. Census.  

‡ p-values were based on likelihood ratio test.   
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Figure S2. Estimated Risk of Death Associated with PM2.5 and Ozone Exposure at Different 

Levels of Adjustment.  

Vertical lines are placed at the estimated HR obtained from the main analysis.  
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3. Sensitivity Analysis with Respect to the Categorization of Age at Entry 

In our main analysis, we considered age at entry in the Medicare cohort categorized into 5-year 

intervals: 65 to 69, 70 to 74, 75 to 79, 80 to 84, 85 to 89, 90 to 94, 95 to 99, and above 100. We 

conducted a sensitivity analysis where we re-fit our models using 4-year and 3-year intervals. For 

PM2.5, when we consider finer age groups at entry the mortality risk estimates were lower (1.07 

to 1.05) but still significant. For ozone, this finer stratification had little impact on the risk 

estimate (Figure S3).   
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Figure S3. Risk of Death Associated with PM2.5 and Ozone Exposure at Different Age 

Groups at Entry 

The main analysis stratified by 5-year category of age at entry. As a sensitivity analysis 

examining the impact of categorization of entry age, we modified the main analysis by stratifying 

by 3-year and 4-year categories of entry age. Two figures visualize risk estimates associated with 

each 10 µg/m3 increase in PM2.5 and 10 ppb increase in ozone. Running Cox model with 

exceeding numbers of strata (e.g., stratifying by 1-year category of entry age) on the whole data 

set was computationally infeasible.   
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4. Sensitivity Analysis with Respect to the Estimation Approach and Statistical Software 

We joined data and ran our main analysis using a Cox proportional hazard model with 

Generalized Estimating Equation (GEE) to account for correlated measures. We fit this model in 

SAS 9.4 to the whole data set (460.3 million records and 60.9 million subjects) as well to 

population subgroups (Figure S4). To assess the robustness of our risk estimates to both the 

estimation approach and statistical software, we repeated the main analysis by fitting a Cox 

proportional hazards model with the same model specification as our main analysis (20 

covariates), but with a random intercept at the ZIP code level instead of accounting for correlation 

using GEE. We joined data in R version 3.3.2 and implemented a mixed-effect Cox model with 

the coxme package version 2.2-5.8 We compared the risk estimates from the mixed-effect Cox 

model with those from GEE. 

Running a mixed-effect Cox proportional hazards model on the whole study population was 

computationally infeasible. Instead, we randomly divided all subjects into 50 groups with equal 

probability. We conducted our analysis in each group separately and used meta-analysis to obtain 

summary results. We pooled the point estimates (i.e., beta coefficients from Cox models) and 

corresponding standard errors from the 50 groups using a fixed-effect meta-analysis.  

Table S3 and Table S4 summarize risk estimates obtained under the two statistical approaches. 

We found that the two sets of estimates are almost identical, thus increasing our level of 

confidence regarding reproducibility of results with respect to the assumptions of correlations, 

statistical estimation, and software. All of our computer programs are hosted on the GitHub social 

coding platform and are accessible upon request. 
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Figure S4. Risk of Death Associated with PM2.5 and Ozone Exposure in Subgroups  

Hazard ratios (HRs) are presented for each 10 µg/m3 increase in PM2.5 and 10 ppb increase in 

ozone. Subgroup analyses were conducted by first restricting the population (e.g., considering 

only male enrollees) and then the same model specification as the main analysis was applied to 

each subgroup. Numeric results are presented in Table S3 and Table S4. Dashed line indicates the 

HR for the overall population.  
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Table S3. Risk of Death Associated with 10 µg/m3 Increase in PM2.5 

Analysis PM2.5 (GEE) PM2.5 (coxme) Effect Modification§ 

  Main Analysis 1.073 (1.071, 1.075) 1.081 (1.078, 1.083)  

  Low-Exposure Analysis* 1.136 (1.131, 1.141) 1.134 (1.129, 1.139)  

  Single-Pollutant Analysis† 1.084 (1.081, 1.086) 1.089 (1.087, 1.091)  

  Nearest-Monitor Analysis‡ 1.061 (1.059, 1.063) 1.072 (1.069, 1.074)  

By Sex    

  Male 1.087 (1.083, 1.090) 1.089 (1.086, 1.093) Ref 

  Female 1.060 (1.057, 1.063) 1.062 (1.058, 1.065) <0.001 

By Medicaid Eligibility    

  Non-eligible  1.075 (1.073, 1.078) 1.079 (1.076, 1.082) Ref 

  Eligible 1.080 (1.075, 1.085) 1.089 (1.084, 1.094) 0.092 

By Race    

  White 1.063 (1.060, 1.065) 1.068 (1.065, 1.070) Ref 

  Black 1.208 (1.199, 1.217) 1.216 (1.206, 1.225) <0.001 

  Asian 1.096 (1.075, 1.117) 1.140 (1.116, 1.164) 0.002 

  Hispanic 1.116 (1.100, 1.133) 1.127 (1.109, 1.144) <0.001 

  Native Americans 1.100 (1.060, 1.140) 1.145 (1.090, 1.203) 0.067 

By Age Groups    

  <75 1.147 (1.142, 1.152) 1.187 (1.183, 1.192) Ref 

  75 to 84 1.029 (1.025, 1.032) 1.071 (1.067, 1.074) <0.001 

  ≥85 0.998 (0.994, 1.002) 1.024 (1.020, 1.027) <0.001 

By Population Density    

  Population Density (low) 1.067 (1.063, 1.072) 1.065 (1.061, 1.069) Ref 

  Population Density (medium-

low) 

1.105 (1.100, 1.111) 1.131 (1.126, 1.136) <0.001 

  Population Density (medium-

high) 

1.098 (1.093, 1.104) 1.117 (1.112, 1.123) <0.001 

  Population Density (high) 1.080 (1.074, 1.085) 1.144 (1.139, 1.150) <0.001 

    

Among White    

By Sex    

  White Male 1.075 (1.072, 1.079) 1.077 (1.073, 1.080) Ref 

  White Female 1.051 (1.047, 1.054) 1.051 (1.047, 1.054) <0.001 

By Medicaid Eligibility    

  Non-eligible White 1.067 (1.065, 1.070) 1.070 (1.067, 1.073) Ref 

  Eligible White 1.060 (1.055, 1.065) 1.063 (1.057, 1.068) 0.015 

    

Among Black    

By Sex    

  Black Male 1.246 (1.232, 1.261) 1.249 (1.234, 1.264) Ref 

  Black Female 1.173 (1.161, 1.185) 1.178 (1.165, 1.190) <0.001 

By Medicaid Eligibility    

  Non-eligible Black 1.221 (1.208, 1.234) 1.226 (1.212, 1.239) Ref 
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  Eligible Black 1.176 (1.162, 1.189) 1.182 (1.168, 1.196) <0.001 

    

Among Male    

By Medicaid Eligibility    

  Non-eligible Male 1.097 (1.093, 1.101) 1.096 (1.092, 1.100) Ref 

  Eligible Male 1.076 (1.068, 1.084) 1.080 (1.071, 1.088) <0.001 

    

Among Female    

By Medicaid Eligibility    

  Non-eligible Female 1.052 (1.049, 1.056) 1.054 (1.050, 1.057) Ref 

  Eligible Female 1.083 (1.077, 1.088) 1.081 (1.075, 1.087) <0.001 

 * Low-exposure analysis used the same model specifications as the main analysis, with PM2.5 

concentrations constrained to below 12 µg/m3.  

† For the single-pollutant analysis, model specifications were the same as in the main analysis, 

except that ozone was not included when assessing the main effect of PM2.5. 

‡ Daily PM2.5 monitoring data were retrieved from the U.S. EPA Air Quality System (AQS) and 

averaged for the whole year. Subjects were assigned to the PM2.5 levels from the nearest 

monitoring site within 50 kilometers. If there was more than one monitoring site, the nearest one 

was chosen. Subjects who lived more than 50 kilometers away from any monitoring site were 

excluded.  

§ To determine the risk estimates of PM2.5, for example in male vs. females, are statistically 

different (𝐻0: 𝛽𝑚𝑎𝑙𝑒 = 𝛽𝑓𝑒𝑚𝑎𝑙𝑒), we have: 𝑍 =  
𝛽𝑚𝑎𝑙𝑒−𝛽𝑓𝑒𝑚𝑎𝑙𝑒

√𝑠𝑒(𝛽𝑚𝑎𝑙𝑒)2+𝑠𝑒(𝛽𝑓𝑒𝑚𝑎𝑙𝑒)
2
 

  



19 

 

Table S4. Risk of Death Associated with 10 ppb Increase in Ozone 

Analysis Ozone (GEE) Ozone (coxme) Effect Modification§ 

  Main Analysis 1.011 (1.010, 1.012) 1.009 (1.008, 1.010)  

  Low-Exposure Analysis* 1.010 (1.009, 1.011) 1.008 (1.006, 1.009)  

  Single-Pollutant Analysis† 1.023 (1.022, 1.024) 1.022 (1.021, 1.023)  

  Nearest-Monitor Analysis‡ 1.001 (1.000, 1.002) 1.000 (0.999, 1.001)  

By Sex 

  

 

  Male 1.010 (1.009, 1.012) 1.008 (1.007, 1.010) Ref 

  Female 1.011 (1.010, 1.013) 1.010 (1.008, 1.011) 0.181 

By Medicaid Eligibility 

  

 

  Non-eligible White 1.005 (1.004, 1.006) 1.004 (1.003, 1.005) Ref 

  Eligible White 1.022 (1.020, 1.024) 1.019 (1.017, 1.021) <0.001 

By Race 

  

 

  White 1.013 (1.012, 1.014) 1.011 (1.010, 1.012) Ref 

  Black 1.009 (1.005, 1.012) 1.006 (1.003, 1.009) 0.026 

  Asian 0.980 (0.972, 0.988) 0.967 (0.958, 0.976) <0.001 

  Hispanic 0.975 (0.968, 0.981) 0.971 (0.964, 0.977) <0.001 

  Native Americans 0.961 (0.944, 0.978) 0.951 (0.928, 0.975) <0.001 

By Age Groups 

  

 

  <75 1.012 (1.010, 1.014) 1.007 (1.005, 1.009) Ref 

  75 to 84 1.004 (1.002, 1.005) 1.017 (1.016, 1.019) <0.001 

  ≥85 1.015 (1.013, 1.016) 1.024 (1.023, 1.026) 0.061 

By population Density 

  

 

  Population Density (low) 1.029 (1.027, 1.031) 1.038 (1.036, 1.040) Ref 

  Population Density 

(medium-low) 1.006 (1.004, 1.008) 1.007 (1.004, 1.009) <0.001 

  Population Density 

(medium-high) 0.997 (0.995, 0.999) 1.001 (0.999, 1.003) <0.001 

  Population Density (high) 0.983 (0.981, 0.985) 0.986 (0.984, 0.988) <0.001 

 

  

 

Among White 

  

 

By Sex 

  

 

  White Male 1.012 (1.011, 1.014) 1.011 (1.009, 1.013) Ref 

  White Female 1.013 (1.011, 1.014) 1.011 (1.010, 1.013) 0.795 

By Medicaid Eligibility 

  

 

  Non-eligible White 1.007 (1.006, 1.008) 1.006 (1.005, 1.007) Ref 

  Eligible White 1.029 (1.026, 1.031) 1.026 (1.024, 1.029) <0.001 

 

  

 

Among Black 

  

 

By Sex 

  

 

  Black Male 1.010 (1.005, 1.015) 1.007 (1.002, 1.012) Ref 

  Black Female 1.008 (1.003, 1.012) 1.006 (1.002, 1.011) 0.443 

By Medicaid Eligibility 
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  Non-eligible Black 0.978 (0.974, 0.982) 0.977 (0.973, 0.981) Ref 

  Eligible Black 1.053 (1.048, 1.059) 1.049 (1.044, 1.054) <0.001 

 

  

 

Among Male 

  

 

By Medicaid Eligibility 

  

 

  Non-eligible Male 1.006 (1.004, 1.007) 1.005 (1.003, 1.006) Ref 

  Eligible Male 1.018 (1.015, 1.021) 1.016 (1.012, 1.019) <0.001 

 

  

 

Among Female 

  

 

By Medicaid Eligibility 

  

 

  Non-eligible Female 1.004 (1.002, 1.005) 1.003 (1.002, 1.005) Ref 

  Eligible Female 1.024 (1.021, 1.026) 1.021 (1.018, 1.023) <0.001 
* Low-exposure analysis used the same model specifications as the main analysis, with ozone 

concentrations constrained to below 50 ppb. 

† For the single-pollutant analysis, model specifications were the same as the main analysis, 

except that PM2.5 was not included when assessing the main effect of ozone. 

‡ Daily ozone monitoring data were retrieved from the U.S. EPA Air Quality System (AQS). 

Daily ozone concentrations were averaged from April 1 to September 30 to compute the warm-

season average. Subjects were assigned to ozone levels from the nearest monitoring site within 50 

kilometers. If there was more than one monitoring site, the nearest one was chosen. Subjects who 

lived more than 50 kilometers away from any monitoring site were excluded. 

§ The method to assess effect modification is the same as Table S3. 
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5. Sensitivity Analysis with Respect to Lack of Adjustment for Individual-Level 

Behavioral Risk Factors  

Individual-level behavioral risk factors such as Body Mass Index (BMI), smoking, and income 

level could confound the association between long-term exposure to air pollution and mortality. A 

potential limitation of our study is that claims from the Medicare cohort do not provide this 

information. To assess whether our results could be affected by confounding bias due to the 

omission of these variables from the main analysis, we gathered and analyzed an additional data 

source called the Medicare Current Beneficiary Survey (MCBS). MCBS is a phone survey of a 

nationally representative sample of Medicare beneficiaries for the whole continental U.S. MCBS 

data provides very extensive information on behavioral risk factors (e.g., smoking, BMI, and 

income) and more than 150 individual confounders. The number of annual surveyed MCBS 

enrollees ranges from 9,224 to 11,227 (mean annual enrollees: 10305, with a total of 133,964 

records and 57,154 enrollees) for the period 2000 to 2012. Among 57,154 enrollees, 10,346 were 

surveyed for two consecutive years and 33,232 were surveyed for three consecutive years. Table 

S5 summarizes descriptive statistics of the key individual-level behavioral risk factors for the 

MCBS population (N=57,154 MCBS enrollees who live in 6,690 ZIP codes). Figure S5 displays 

the geographic distribution of the ZIP codes of residence of the MCBS enrollees.  

We have demonstrated, repeatedly and in peer reviewed publications, that in order for an 

individual-level variable Z (e.g., smoking) to confound the relationship between X (e.g., air 

pollution) and Y (e.g., mortality), the variable Z must be a strong predictor of X conditional to all 

the other covariates that are included in the survival model.9-11 Therefore, we fit a mixed-effect 

model to the MCBS data, with the dependent variable the exposure to air pollution (PM2.5 or 

ozone, averaged across time and assessed at the residential ZIP code for each individual) and with 

the independent variables: individual-level smoking, individual-level BMI, and individual-level 

income plus all 20 individual- and area-level variables included in the main analysis. We used 
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sampling weight provided by the MCBS. We included random intercept by person and by ZIP 

code to account for between-person variation and geographic difference.  
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Table S6 displays the results of this analysis. Except for BMI, all the other individual-level risk 

factors were not strong predictors of air pollution exposure conditionally to the other variables 

included in the main analysis. For BMI, we detected a significant association (p values = 0.002 

and 0.026 for PM2.5 and ozone, respectively). However, the beta coefficients were very small, 

indicating that BMI and the other variables have negligible effects on air pollution. For example, 

for an interquartile change in BMI (from 23.39 to 29.99), the expected PM2.5 exposure decreased 

negligibly, by only (29.99-23.39)*2.43E-03 = 0.016 µg/m3.  

In a second analysis, we acquired another data set, called MCBS-Medicare. In this data set, the 

health interviews from MCBS were linked at the individual level to claims data from Medicare. 

In previous work under review at Epidemiology,12 we constructed a new cohort of 32,119 

Medicare beneficiaries residing in 5,138 ZIP codes that were interviewed as part of the MCBS 

between 2002 and 2010 with the same air pollution exposure as considered here. We considered 

four outcomes: death, all-cause hospitalizations, hospitalizations for circulatory diseases, and 

hospitalizations for respiratory diseases. We fit survival models with 123 potential confounders 

(from Medicare claims, MCBS, census) and assessed the sensitivity of the estimated air pollution 

health effects to the exclusion of 73 individual level risk factors (including smoking, BMI, and 

income). We found that our results were robust to the lack of adjustment for these variables.  

Note that in our main analysis, we included in the model an individual-level variable called 

“eligibility to Medicaid”. We found that this variable is an excellent surrogate for individual-level 

income. Using MCBS, which has information on both individual-level Medicaid eligibility and 

individual-level income, we found that the area under the ROC curve was 0.91. Results were 

adjusted by age, sex, and race. Therefore, we feel confident that our main analysis allows an 

adequate adjustment by individual level income via Medicaid eligibility. 
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Table S5. Descriptive Information of MCBS Subjects (N=57,154 MCBS enrollees who live 

in 6,690 ZIP codes)  

  25% 

percentile 

Mean 75% 

percentile 

Age (years) 68.0 72.3 82.0 

Ozone (ppb)* 41.9 46.0 50.4 

PM2.5 (µg/m3)* 9.5 11.5 13.4 

Temperature (°C) 11.0 15.2 18.5 

Relative Humidity (%) 70.05 71.7 78.6 

Income (U.S. dollars) 12000 30874 36000 

BMI (kg/m2)  23.39  27.03 29.99 

  Percentage    

% with Smoking History 58.91%   

% Current Smokers 13.67%   

* PM2.5 and ozone concentrations were estimated from the prediction model. PM2.5 values were 

averaged across the whole year. Ozone values were averaged from April 1 to September 30. 
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Figure S5. Geographic Distribution of MCBS Enrollees 

The map shows the residential ZIP codes of MCBS enrollees. The diameter of each circle is 

proportional to the number of MCBS enrollees that have a place of residence in that ZIP code. 

The 57,154 MCBS enrollees live in 6,690 ZIP codes. Each ZIP code has from 1 to 374 MCBS 

enrollees (median: 2; mean: 9) and from 1 to 860 MCBS records (median: 4; mean: 20).  
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Table S6. Sensitivity Analysis: Association Between Individual-Level Behavioral Risk 

Factors in MCBS and Exposure to Air Pollution
*
 

  PM2.5 (µg/m3) Ozone (ppb) 

Individual covariates Beta  p-value Beta p-value 

BMI (kg/m2) -2.43E-03 0.002 3.32E-03 0.026 

Indicator for being current smoker 1.25E-02 0.384 -3.89E-02 0.162 

Indicator for history of smoking 6.23E-03 0.522 -1.89E-02 0.298 

Income (dollars) -9.56E-08 0.119 -1.39E-07 0.276 

* We fit mixed-effect models with annual PM2.5 (or ozone) as dependent variables. The 

independent variables were BMI (or indicator for being current smoker, indicator for history of 

smoking, or income) plus all 20 covariates included in the main analysis. For models with PM2.5 

as the response variable, we controlled for ozone, and vice versa. This model had random 

intercepts by person and by ZIP code.  
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6. Comparison of Our Results with Others in the Literature   

To systematically compare our results with others in the existing literature, we gathered risk 

estimates of PM2.5 and standard errors from recent studies. We pooled the existing results across 

studies using random-effect models for meta-analysis. The risk estimate of PM2.5 from our main 

analysis (HR = 1.073 (1.071, 1.075)) is very close to the pooled estimate (HR = 1.11 (1.08, 1.15), 

random-effect model) (Figure S6). 
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Figure S6. Forest Plot of Recent Studies on PM2.5 

The dotted line is placed at the summary HR from the random-effect model. I-square indicates 

that risk estimates from previous studies demonstrates a high degree of heterogeneity.   
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7. Concentration-Response Function   

Previous studies found an almost linear concentration-response relationship between PM2.5 and 

mortality,13 and a unconfirmed threshold effect for ozone.14,15 We examined the potential 

nonlinear effects of both ozone and PM2.5 on mortality by fitting a Cox proportional hazards 

model with separate penalized splines for PM2.5 and ozone. We adjusted for the same variables as 

in the main analysis.  

Due to computational issues, running a Cox model with two separate penalized splines on the 

whole data set was not possible. Alternatively, we randomly divided all subjects into 50 groups 

with equal probability and obtained concentration-response functions separately for each of the 

50 groups. To combine concentration-response curves across groups, we applied the meta-

smoothing approach that has been used and modified in previous studies.16-18 In each group, the 

estimated HR and its point-wise standard error were computed for each 1 µg/m3 increment in 

PM2.5 or 1 ppb increment in ozone. These group-level effect estimates (𝛽̂𝑖𝑗=log HR) in each 

group i and for exposure level j, and corresponding standard error 𝑠𝑒(𝛽̂𝑖𝑗) were combined by 

regressing the 𝛽̂𝑖𝑗 against indicator variables for each exposure level, with inverse variance 

weights. We assumed: 

 𝛽̂𝑖𝑗~𝑁(𝛽1𝑑1 + 𝛽2𝑑2 + ⋯ + 𝛽𝑗𝑑𝑗, 𝑉𝑖𝑗) 

where 𝑑𝑗 is indicator variable for exposure level j and 𝑉𝑖𝑗 is the estimated variance in group i at 

exposure level j. 

Figure S7 shows the estimated concentration-response relationships. The narrow confidence 

interval in most of the range reflects the large sample size in this study. The concentration-

response curve for PM2.5 is roughly linear. The concentration-response curve for ozone seems to 

indicate a threshold around 40 ppb, which is consistent with previous studies.14 
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Threshold Analysis 

To assess as whether there is evidence of a threshold for the concentration response for ozone, we 

conducted a threshold analysis. The threshold model is the same as that of our main analysis 

except that it sets the ozone concentration to zero below the threshold value and the concentration 

minus the threshold value otherwise.  

For ozone, we found a threshold estimate of 40 ppb based on minimizing the AIC values (Table 

S7). This result is consistent with visual interpretation of the concentration-response curves 

(Figure S7). The beta coefficient for the linear component of the threshold model is larger than 

the beta coefficient from the linear model.  

Concentration-Response Three-Dimensional Surface 

We found significant evidence for an interaction between PM2.5 and ozone (Table S8). To further 

investigate the potential non-linear effect and interaction between PM2.5 and ozone, we fit a log-

linear model with a thin plate spline on both PM2.5 and ozone and controlling for the same 20 

covariates as we did in the main analysis. We incorporated a dummy variable for follow-up year 

to allow the baseline hazard rate to change for each follow-up year. Running a log-linear model 

on the whole data set also raised computational issues. Similar to obtaining concentration-

response curves, we randomly divided the data into 50 splits, plotted concentration-response 

surfaces separately, and combined them together (Figure S8, Figure 3).  

Unlike the ozone concentration-response curve, the concentration-response surface displays no 

threshold effect (Figure S8, Figure 3). Higher ozone is linearly associated with increased 

mortality at all PM2.5 concentrations. This distinction may be due to interaction between PM2.5 

and ozone, which may change how ozone affects mortality below 40 ppb. The interaction 

between PM2.5 and ozone deserves more attention and further investigation. 
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Figure S7. Concentration-Response Curves of PM2.5 and Ozone on Mortality 

We fit a Cox proportional hazards model with two penalized splines on PM2.5 and ozone 

respectively, and adjusted for individual covariates (sex, race, Medicaid eligibility, age group at 

entry); meteorological variables (temperature and humidity), a dummy variable for region, and 

ecological variables (BMI, percentage of ever smoker, percentage of Hispanic population, 

percentage of Black population, median household income, median value of housing, percentage 

above age 65 living below the poverty level, percentage above age of 65 with less than high 

school education, percentage of owner-occupied housing units, population density, percentage of 

Medicare enrollees having a blood lipid (LDL-C) test, a hemoglobin A1c test, and at least one 

ambulatory visit to a primary care clinician).  

  



32 

 

 

Figure S8. Concentration-Response Surface of PM2.5 and Ozone on Mortality 

We fit a log-linear model with a thin plate spline on both PM2.5 and ozone, and adjusted 

for individual covariates (sex, race, Medicaid eligibility, and age group at entry); 

meteorological variables (temperature and humidity); a dummy variable for region; and 

ecological variables (BMI, percentage of ever smoker, percentage of Hispanic population, 

percentage of Black population, median household income, median value of housing, 

percentage above age 65 living below the poverty level, percentage above age of 65 with 

less than high school education, percentage of owner-occupied housing units, population 

density, percentage of Medicare enrollees having a blood lipid (LDL-C) test, percentage 

of Medicare enrollees having a hemoglobin A1c test, and percentage of Medicare 
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enrollees having at least one ambulatory visit to a primary care clinician). Then, we 

exported the dose-response surface.  
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Table S7. Threshold Analysis on Ozone  

Threshold value 

(ppb) 

-2*log likelihood AIC beta se 

0 615404523 615404575 0.001071 0.000048 

30 615404562 615404614 0.001047 0.000049 

35 615404577 615404629 0.001075 0.000051 

36 615404563 615404615 0.001107 0.000052 

37 615404542 615404594 0.001151 0.000053 

38 615404515 615404567 0.001206 0.000054 

39 615404490 615404542 0.001265 0.000055 

40
†
 615404475 615404527 0.001318 0.000057 

41 615404481 615404533 0.001354 0.000059 

42 615404501 615404553 0.001378 0.000061 

43 615404532 615404584 0.001394 0.000063 

44 615404579 615404631 0.001390 0.000067 

45 615404637 615404689 0.001367 0.000070 

50 615404932 615404984 0.000924 0.000101 

†
Threshold analysis with threshold value at 40 ppb yields lower AIC values than threshold 

analyses with other threshold values. 

 

 

  



35 

 

Table S8. Interaction between PM2.5 and Ozone 

Variable Beta se p 

PM2.5 (µg/m3) 2.263E-02 4.770E-04 <0.0001 

Ozone (ppb) 5.033E-03 1.262E-04 <0.0001 

PM2.5*ozone -3.233E-04 9.640E-06 <0.0001 

Starting from the two-pollutant main analysis, we added the interaction term with PM2.5 and 

ozone to it and fit the model on the whole data set. Beta coefficient for PM2.5 stands for its 

hypothetical risk estimate when ozone level is 0 ppb; beta coefficient for ozone stands for its 

hypothetical risk estimate when PM2.5 level is 0 µg/m3.  
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