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A B O U T  H E I

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the Institute

•	 identifies the highest-priority areas for health effects research

•	 competitively funds and oversees research projects

•	 provides an intensive independent review of HEI-supported studies and related research

•	 integrates HEI’s research results with those of other institutions into broader evaluations 

•	 communicates the results of HEI’s research and analyses to public and private decision-
makers.

HEI typically receives balanced funding from the US Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the United 
States and around the world also support major projects or research programs. HEI has funded 
more than 390 research projects in North America, Europe, Asia, and Latin America, the results 
of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, diesel 
exhaust, ozone, particulate matter, and other pollutants. These results have appeared in more 
than 275 comprehensive reports published by HEI, as well as in more than 2,500 articles in peer-
reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Research Committee solicits input from HEI sponsors and other stakeholders and works with 
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and oversee 
their conduct. The Review Committee or Panel, which has no role in selecting or overseeing 
studies, works with staff to evaluate and interpret the results of funded studies and related 
research.

All project results and accompanying comments by the Review Committee or Panel are widely 
disseminated through HEI’s website (www.healtheffects.org), reports, newsletters, annual conferences, 
and presentations to legislative bodies and public agencies.

https://www.healtheffects.org/
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A B O U T  T H I S  R E P O RT

Research Report 236, Traffic-Related Air Pollution and Birth Weight: The Roles of Noise, Placental 
Function, Green Space, Physical Activity, and Socioeconomic Status (FRONTIER), presents a research 
project funded by the Health Effects Institute and conducted by Dr. Payam Dadvand and Dr. Jordi 
Sunyer at the Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain, and colleagues. The 
report contains three main sections:

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the study 
and its findings; it also briefly describes the Review Committee’s comments on the study.

The Investigators’ Report, prepared by Dadvand, Sunyer, and colleagues, describes the 
scientific background, aims, methods, results, and conclusions of the study.

The Commentary, prepared by members of the Review Committee with the assistance 
of HEI staff, places the study in a broader scientific context, points out its strengths and 
limitations, and discusses remaining uncertainties and implications of the study’s findings for 
public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. Outside technical reviewers first examine this draft report. The report and the reviewers’ 
comments are then evaluated by members of the Review Committee, an independent panel of 
distinguished scientists who are not involved in selecting or overseeing HEI studies. During the 
review process, the investigators have an opportunity to exchange comments with the Review 
Committee and, as necessary, to revise their report. The Commentary reflects the information 
provided in the final version of the report. 

Although this report was produced with partial funding by the United States Environmental 
Protection Agency under Assistance Award CR–83998101 to the Health Effects Institute, it has 
not been subjected to the Agency’s peer and administrative review and may not necessarily reflect 
the views of the Agency; thus, no official endorsement by it should be inferred. The contents of 
this report have also not been reviewed by private party institutions, including those that support 
the Health Effects Institute, and may not reflect the views or policies of these parties; thus, no 
endorsement by them should be inferred. 
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HEI’s Research to Assess Health Effects of Traffic-Related 
Air Pollution and to Improve Exposure Assessment for 
Health Studies

INTRODUCTION

Traffic emissions are an important source of urban 
air pollution and have been linked to various adverse 
health outcomes (Atkinson et al. 2018; Health Canada 
2016; HEI 2010; HEI 2022a; Huangfu and Atkinson 2020; 
US Environmental Protection Agency [US EPA] 2016). 
Over the last several decades, air quality regulations and 
improvements in vehicular emission control technologies 
have steadily decreased emissions from motor vehicles. As 
a result, ambient concentrations of several major traffic-
related air pollutants have decreased in most high-income 
countries, even as vehicle miles traveled and economic 
activity have increased, and older or malfunctioning vehicles 
have remained on the roads (HEI 2022a; US EPA 2023).

Following HEI’s widely cited 2010 Report (HEI 2010), 
HEI published Special Report 23, a systematic review of 
more than 350 epidemiological studies on the health effects 
of long-term exposure to emissions of primary traffic-related 
air pollutants (HEI 2022a). The report found a high level of 
confidence that strong connections exist between traffic-
related air pollution and early death due to cardiovascular 
diseases. A  strong connection was also found between 
traffic-related air pollution and lung cancer mortality, asthma 
onset in children and adults, and acute lower respiratory 
infections in children (Preface Figure). The confidence 
in the evidence was considered moderate, low, or very low 
for the other selected outcomes, such as coronary events, 
diabetes, and adverse birth outcomes.

Although traffic-related emissions have decreased over 
the past decades, further research is warranted in several 
areas. Emerging evidence suggests that transportation can 
affect health through many intertwined pathways such as 
collisions, noise, climate change, temperature, stress, and 
the lack of physical activity and green space (Glazener et 
al. 2021). As tailpipe emissions from internal combustion 
engines decrease and electric vehicles increase market share, 
more studies are needed to quantify human exposures 
to nontailpipe particulate matter better and to assess the 
health effects associated with those exposures. Relatively 
few studies evaluate how influential factors such as green 
space, heat exposure, noise pollution, and physical activity 
interact with or modify air pollution health effects. Evaluation 

of those factors and exposures are critical because they 
reflect real-world conditions and might further advance our 
understanding of the implications of transportation activities 
on traffic-related air pollution and health (Khreis et al. 2020).

Moreover, better understanding is needed of the role 
of specific pollutants including nitrogen dioxide (NO2) and 
ultrafine particles (UFPs), the health effects of short-term 
exposures versus long-term exposures, the effects on a 
broader range of health outcomes (such as neurological 
and birth outcomes) that have not been extensively 
examined, and the ways in which marginalized communities 
are affected. However, a challenge for exposure assessment 
of traffic-related air pollution is that traffic emits a complex 
mixture of pollutants in particulate and gaseous forms, many 
of which are also emitted by other sources. In addition, 
traffic-related air pollution is characterized by high spatial 
and temporal variability, with the highest concentrations 
occurring at or near major roads. Therefore, it has been 
difficult to identify an appropriate exposure metric that 
uniquely indicates traffic-related air pollution and to model 
the distribution of exposure at a sufficiently high degree of 
spatial and temporal resolution.

Various air quality models — such as dispersion, land 
use regression, and hybrid models — have been developed 
to estimate long-term exposure to air pollution (HEI 2022a; 
Hoek 2017; Jerrett et al. 2005). Recent developments in 
measurement technologies and approaches to modeling 
long-term exposure to air pollution have increasingly been 
used to provide air pollution estimates at fine spatial scales 
for epidemiological studies of large populations. Advances 
include novel air pollution sensors, mobile monitoring, 
satellite data, hybrid models, and machine-learning 
approaches (Hoek 2017).

Moreover, many improvements in exposure models 
have occurred over time with the advance of geographic 
information system approaches and the application of 
more sophisticated statistical methods; see, for example, 
several studies previously funded by HEI: Apte et  al. 2024, 
Barratt et al. 2018, Batterman et al. 2020, Frey et al. 2022, 
and Sarnat et al. 2018. However, the usefulness of exposure 
estimates still depends on the model assumptions and input 
data quality, and there remain limitations and challenges 
when predicting air pollution exposure, particularly for such 

https://www.healtheffects.org/publication/systematic-review-and-meta-analysis-selected-health-effects-long-term-exposure-traffic
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2.	 Propose ways in these studies to disentangle the 
relationship between the adverse health effects of traffic-
related air pollution and traffic noise.

3.	 Develop, evaluate, and apply indicators of socioeconomic 
status at the individual and community levels in the 
proposed health studies; if such indicators are novel, 
compare with socioeconomic status indicators commonly 
used in the literature.

4.	 Explore the role of other factors that might confound or 
modify the health effects of traffic-related air pollution at 
the individual (e.g., age, smoking status, diet, physical activity, 
and health status) and community levels (e.g., presence of 
green space, other factors related to the built environment, 
and walkability).

5.	 Investigate — to the extent that the measurements and 
patterns of a range of different indicators of traffic-related 
air pollution allow it (e.g., NO2, UFPs, BC, and indicators of 
nontailpipe emissions) — whether one or more of them 
can be shown to have health effects independent of the 
other pollutants.

OBJECTIVES OF RFA 19-1

RFA 19-1, Applying Novel Approaches to Improve Long-
Term Exposure Assessment of Outdoor Air Pollution for Health 
Studies, solicited studies to assess exposures to air pollution 
using new and conventional exposure assessment approaches, 
to evaluate quantitatively exposure measurement error to 
determine the added value of the novel approaches, and to apply 
the exposure estimates in epidemiological analyses to evaluate 
the potential effect of exposure measurement error on chronic 
health estimates. The RFA had four major objectives:

Research Report 236

pollutants as UFPs, NO2, and black carbon (BC) that vary highly 
in space and time. Few studies have compared the performance 
of different models and evaluated exposure measurement error 
and possible bias in health estimations.

Thus, HEI issued complementary requests for applications  in 
2017 (RFA 17-1) and 2019 (RFA 19-1) to evaluate traffic-related 
health effects in the context of spatially correlated factors — 
specifically traffic noise, socioeconomic status, and green  
space — and to improve exposure assessment for health studies.

OBJECTIVES OF THE RFAs

OBJECTIVES OF RFA 17-1

RFA 17-1, Assessing Adverse Health Effects of Exposure 
to Traffic-Related Air Pollution, Noise, and Their Interactions 
with Socioeconomic Status, solicited studies that sought to 
assess adverse health effects from exposure to traffic-related air 
pollution and to disentangle the effects from spatially correlated 
confounding or modifying factors — most notably, traffic noise, 
socioeconomic status, and the built environment, including green 
space. The RFA had five major objectives:

1.	 In the proposed health studies, develop, validate, and 
apply improved exposure assessment methods and 
models suitable for estimating exposure to traffic-related 
air pollution that take into account other air pollution 
sources in urban areas (such as airports, [sea]ports, 
industries, and other local point sources) and that would 
be able to distinguish between tailpipe and nontailpipe 
traffic emissions.

Preface Figure. Overall confidence in the evidence for an association between long-term exposure to traffic-related 
air pollution and selected health outcomes. Health outcomes for which the overall confidence in the evidence was low to 
moderate, low, or very low are not in the figure. Reproduced from HEI 2022a.

https://www.healtheffects.org/research/funding/rfa/19-1-applying-novel-approaches-improve-long-term-exposure-assessment-outdoor-air-pollution
https://www.healtheffects.org/research/funding/rfa/17-1-traffic-and-health
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1.	 Conduct a new monitoring campaign designed to 
determine long-term exposure to outdoor air pollutants 
with high spatial and temporal variability by using sensors, 
mobile monitoring, location tracking, or other approaches.

2.	 Develop several exposure assessment approaches suitable 
to estimate long-term exposure to air pollution at relevant 
spatial and temporal scales for use in an ongoing or future 
health study.

3.	 Quantify exposure measurement error by evaluating 
and comparing the performance of models of long-term 
air pollution exposure developed under this RFA to the 
performance of previous models.

4.	 Apply the various exposure estimates in an ongoing 
health study to evaluate the potential impact of exposure 
measurement error in health estimates or explain how 
the exposure assessments would be directly applicable to 
future health studies.

DESCRIPTION OF THE RESEARCH PROGRAM

Three 4-year studies were funded under RFA 17-1, and five 
3-year studies were funded under RFA 19-1 to cover the various 
RFA objectives; they are summarized below (Preface Table). 
The study by Dadvand and Sunyer and colleagues described in 
this report (Research Report 236) is the sixth to be published.

STUDIES FUNDED UNDER RFA 17-1

HEI funded two studies in Europe and one study in the 
United States to evaluate various aspects of the association 
between long-term traffic-related air pollution and health by 
using existing cohorts (Denmark, USA) and a newly recruited 
cohort (Spain). Two studies focused on health outcomes 
during pregnancy (Dadvand) and childhood (Franklin), and 
one study focused on cardiometabolic outcomes in adults 
(Raaschou-Nielsen).

“Traffic-Related Air Pollution and Birth Weight: The Roles 
of Noise, Placental Function, Green Space, Physical Activity, 
and Socioeconomic Status (FRONTIER),” Payam Dadvand and 
Jordi Sunyer, Barcelona Institute for Global Health (ISGlobal), 
Spain  Dadvand, Sunyer, and colleagues established a new 
cohort, named Barcelona Life Study Cohort (BiSC) of 1,080 
healthy pregnant women in Barcelona, Spain, in 2018. They 
estimated exposure to various traffic-related pollutants by 
using hybrid models that included dispersion models, land use 
data, time-activity data, and personal and home-outdoor air 
pollution monitoring data. They linked the exposure to various 
birth outcomes including birth weight, small for gestational age, 
and fetal growth trajectories. They evaluated the role of traffic 
noise and green space and also took into account socioeconomic 
status and maternal stress (current report).

“Intersections as Hot Spots: Assessing the Contribution of 
Localized Non-Tailpipe Emissions and Noise on the Association 
between Traffic and Children’s Respiratory Health,” 
Meredith Franklin, University of Southern California, Los 
Angeles  Franklin and colleagues developed novel exposure 

models of tailpipe and nontailpipe air pollutants and noise and 
applied those models to children’s respiratory health in a large 
Southern California cohort that was also studied in a previous 
HEI-funded study led by Frank Gilliland; see HEI Research Report 
190. They made use of the most recent Children’s Health Study 
(CHS) cohort that was initiated in 2003 and included about 2,000 
children in eight communities. Longitudinal data on asthma and 
lung function were collected at various time points (2008–2012) 
at ages 11 through 16. Air pollution models were supported by 
particulate matter filters at more than 200 locations in the eight 
Southern California communities (in press).

“Cardiometabolic Health Effects of Air Pollution, Noise, Green 
Space and Socioeconomic Status: The HERMES Study,” Ole 
Raaschou-Nielsen, Danish Cancer Institute, Copenhagen, 
Denmark  Raaschou-Nielsen and colleagues evaluated effects 
of traffic-related air pollution, traffic noise, lack of green space, 
and other factors on myocardial infarction, stroke, diabetes, and 
related biomarkers in three cohorts, including an administrative 
cohort of about 2.6 million Danish adults in the period 2005–
2017. They assessed traffic-related air pollution using a chemical 
transport model for various pollutants, including UFPs and NO2. 
In addition, they assessed noise, individual- and neighborhood-
level socioeconomic status, and various residential green space 
exposure metrics (Research Report 222).

STUDIES FUNDED UNDER RFA 19-1

HEI funded five studies in North America and Europe 
to evaluate different aspects of improvements to exposure 
assessment and the application of different exposure assessment 
approaches to existing cohorts. Three studies are focused 
on combining novel methods for measuring air pollution and 
diverse exposure assessment approaches to improve exposure 
assignment, including machine learning and mobile monitoring 
(Weichenthal and Hoek) and mobility (de Hoogh). Two studies are 
testing the added value of incrementally more complex statistical 
modeling approaches to improving exposure assessment in 
London (Katsouyanni) and Seattle (Sheppard) and applying their 
findings to estimating health effects in epidemiological studies.

“Long-Term Exposure to Outdoor Ultrafine Particles and Black 
Carbon and Effects on Mortality in Montreal and Toronto, 
Canada,” Scott Weichenthal, McGill University, Montreal, 
Canada  Weichenthal and colleagues estimated associations 
between long-term exposures to UFPs, BC, and other pollutants 
and mortality in Toronto and Montreal, Canada, using several 
exposure modeling approaches. They conducted mobile 
monitoring campaigns in both cities and used those newly 
collected data to develop various high-resolution exposure 
models, including land use regression and machine learning. They 
then evaluated how the effect estimates for nonaccidental and 
cause-specific mortality in the Canadian Census Health and 
Environment Cohort (CanCHEC) are influenced by different 
exposure models (Research Report 217).

“Comparison of Long-Term Air Pollution Exposure Assessment 
Based on Mobile Monitoring, Low-Cost Sensors, Dispersion 
Modelling and Routine Monitoring-Based Exposure 
Models (CLAIRE),” Gerard Hoek, Utrecht University, The 

https://www.healtheffects.org/publication/effects-policy-driven-air-quality-improvements-childrens-respiratory-health
https://www.healtheffects.org/publication/effects-policy-driven-air-quality-improvements-childrens-respiratory-health
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Netherlands  Hoek and colleagues prepared maps of modeled 
annual average air pollution across the Netherlands, validated the 
maps using new measurements from 90 sites, and evaluated the 
performance of several exposure models. They conducted cross-
comparisons to evaluate how different exposure assessment 
methods compare in their ability to predict long-term pollutant 
concentrations, with a particular focus on spatial variability 
of pollutants. They applied the various models to three major 
cohorts in the Netherlands — an administrative cohort of 
about 10 million adults (DUELS), the European Prospective 
Investigation into Cancer and Nutrition Netherlands (EPIC-NL), 
and the Prevention and Incidence of Asthma and Mite Allergy 
(PIAMA) birth cohort — to evaluate how they influence health 
effect estimates in epidemiological studies (Research Report 226).

“Accounting for Mobility in Air Pollution Exposure Estimates 
in Studies on Long-Term Health Effects (MOBI-AIR),” Kees 
de Hoogh, Swiss Tropical and Public Health Institute, Basel, 
Switzerland  Kees de Hoogh and colleagues used location 
tracking using a mobile phone application and GPS units for about 
700 individuals in the Netherlands and Switzerland. They then 
compared exposure estimates accounting for individual mobility to 
those accounting only for home addresses in three major cohorts: 
the Study on Air Pollution and Lung Disease in Adults (SAPALDIA) 
in Switzerland, participants in the European Prospective 
Investigation into Cancer and Nutrition Netherlands (EPIC-NL), 
and the Swiss National Cohort (SNC) (Research Report 229).

“Investigating the Consequences of Measurement Error of 
Gradually More Sophisticated Long-Term Personal Exposure 
Models in Assessing Health Effects: The London Study 
(MELONS),” Klea Katsouyanni, Imperial College, United 
Kingdom  Katsouyanni and colleagues evaluated whether 
increasingly detailed estimates of long-term exposures to 
outdoor air pollution yielded different estimates of the 
health effects. They leveraged personal exposure data from 
four earlier studies in London. They compared predictions 
from various exposure models that accounted for exposure 
to indoor sources and mobility by using several types of air 
pollution models (dispersion, land use regression, machine 
learning, and hybrid models). Finally, exposures were applied 
to the London segment of the UK Biobank study with about 
62,000 participants to evaluate associations with mortality 
(Research Report 227).

“Optimizing Exposure Assessment for Inference about Air 
Pollution Effects with Application to the Aging Brain,” Lianne 
Sheppard, University of Washington, Seattle  Sheppard 
and colleagues compared and contrasted scientific and logistic 
benefits of different study designs to develop air pollution 
exposure estimates. They leveraged detailed air pollution data 
and cognitive function data from about 5,000 participants in 
the Adult Changes in Thought (ACT) Air Pollution study in 
Seattle. They developed several exposure models that used 
air pollution data from mobile monitoring of UFPs, NO2, 
and other pollutants, and low-cost sensors. In particular, they 
used statistical techniques to assess the bias and precision of 
health effect estimates and compared the time and costs spent 
on more sophisticated exposure assessment activities to guide 
future studies in efficient selection of exposure assessment 
methods (Research Report 228).

FURTHER RESEARCH UNDERWAY

Given the large number of people exposed to traffic-related 
air pollution — both in and beyond the near-road environment 
— exposures to traffic-related air pollution remain an important 
public health concern and deserve greater attention from the 
public and from policymakers. 

Although emissions from automobile exhaust systems have 
decreased in recent years, emissions from the use and wear 
of brakes, tires, and other nontailpipe sources now contribute 
a higher fraction of the particulate emissions. Therefore, HEI 
funded two ongoing studies funded under RFA 21-1, Quantifying 
Real-World Impacts of Non-Tailpipe Particulate Matter 
Emissions. The two studies involve measurements of mass 
and composition of ambient particles from nontailpipe motor 
vehicle sources to disentangle nontailpipe and tailpipe pollution 
and better understand how each effects human health. One 
study is measuring concentrations of nontailpipe particulate 
matter across Toronto, Canada, to determine how much 
nontailpipe pollution people might breathe in everyday life and 
how to improve measurement of these exposures in the future. 
The other study is a panel study in which asthmatic adults rode 
stationary bicycles on sidewalks in three different exposure 
environments in London, United Kingdom, to measure how 
exposure to traffic with different mixtures of nontailpipe and 
tailpipe emissions affects lung function. 

Building on its prior and ongoing research and the 
recommendations from its systematic traffic review, HEI issued 
RFA 23-1, Assessing Health Effects of Traffic-Related Air Pollution 
in a Changing Urban Transportation Landscape. Investigators 
funded under RFA 23-1 will conduct epidemiological and health 
impact assessment studies to assess current and potential 
future population-level health effects and health burdens 
associated with current and future transportation systems and 
traffic-related air pollution. The studies began in late spring 
2024. HEI also publishes reports on the State of Global Air to 
communicate the relationship between air quality and health 
around the world; see, for example, a recent report on cities 
and NO2 (HEI 2022b).

Looking ahead, HEI continues to support improvements in 
exposure assessment via the use of new technologies, such as 
satellite remote sensing data. HEI held a workshop to discuss 
applications of high-quality satellite remote sensing data, which 
have opportunities for increased use in large epidemiological 
studies, studying the health effects of wildfires, and addressing 
environmental justice concerns. Challenges include the 
complexities of data assimilation and accessibility, and current 
data and algorithmic limitations. HEI is developing an RFA to 
support research using or assessing the limitations of new 
approaches to incorporate satellite data products in health 
studies. 
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Traffic-Related Air Pollution Associated with Restricted 
Fetal Growth

What This Study Adds
● This study examined the effects of prenatal

exposure to traffic-related air pollution
on fetal growth and placental function in a
newly established cohort of 1,080 women
living in Barcelona, Spain.

● Exposure to nitrogen dioxide, black carbon,
fine particles, and components of fine
particles (copper, iron, and zinc) at home, at
work, and during the commute was assessed
using personal and home monitoring and
land use regression and other modeling
methods throughout pregnancy.

● The study found that increased exposure to
all pollutants, except zinc, was associated
with lower birth weight and increased odds
of the infant being considered small for its
gestation age. Changes in placental function
suggest that fine particle exposure might
affect fetal growth by increasing resistance
to blood flow between the fetus and pla-
centa.

● Results were similar after adjusting for
traffic-related noise, or when evaluating
personal home, workplace, and commute
exposures separately, or when using land
use regression models versus other expo-
sure models. Future studies set in similar
urban environments might consider simpli-
fying exposure assessment measures when
resources are limited.

● The most vulnerable periods of exposure
were during the late first to early second
trimesters and the late third trimester
of pregnancy. The results confirm other
research on birth outcomes and stress the
importance of reducing air pollution expo-
sures of pregnant women.

BACKGROUND 

Traffic-­related air pollution is a complex mixture 
of gases and particles emitted from the use of motor 
vehicles and includes a variety of pollutants such as 
nitrogen oxides, fine particulate matter, heavy met-
als, elemental carbon, and organic carbon. Sources 
include tailpipe emissions from vehicle exhaust 
and nontailpipe emissions such as tire and brake 
wear and resuspended road dust. Traffic-­related air 
pollution is associated with numerous health effects, 
including adverse birth outcomes and slower fetal 
growth. However, many earlier studies of prenatal 
exposure lacked information on important con-
founding factors, including maternal smoking, body 
mass index, and traffic noise.

To evaluate the effects of prenatal exposure to 
traffic-­related air pollution on fetal growth, HEI 
funded a study by Drs. Payam Dadvand and Jordi 
Sunyer of ISGlobal titled “Traffic-Related Air Pollu-
tion and Birth Weight: The Roles of Noise, Placental 
Function, Green Space, Physical Activity, and Socio-
economic Status (FRONTIER)” in response to HEI’s 
Request for Applications 17-1: Assessing Adverse 
Health Effects of Exposure to Traffic-Related Air 
Pollution, Noise, and Their Interactions with Socio-
economic Status. Drs. Dadvand and Sunyer proposed 
to examine the effects of exposure to traffic-­related 
air pollutants in pregnant women on fetal growth 
trajectories and birth weight in Barcelona, Spain, 
and to identify relevant windows of exposure during 
pregnancy. They planned to recruit a new cohort of 
800 mother–infant pairs and evaluate the influence 
of noise, greenspace, stress, physical activity, and 
socioeconomic status, as well as the potential role of 
placental function.

APPROACH

Between 2018 and 2021, Dadvand, Sunyer, and 
colleagues recruited 1,080 women with singleton 
pregnancies during their first prenatal visit at about 

https://www.healtheffects.org/system/files/RFA-17-1-Traffic-and-Health.pdf
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12 weeks of gestation in Barcelona, Spain. They col-
lected extensive information on participant health, 
lifestyle, and exposures from interviews, online 
surveys, and medical records. Fetal and newborn body 
size measurements were taken during two hospital 
visits at about 12 and 32 weeks of gestation and at two 
home visits shortly after the two hospital visits.

Dadvand and Sunyer conducted a comprehensive 
assessment to estimate exposure to traffic-­related air 
pollutants. They used multiple exposure modeling 
methods (including land use regression models, dis-
persion modeling, and hybrid models), incorporated 
personal and home monitoring, and estimated time–
activity patterns based on time spent at home, work, and 
commuting. For the entire pregnancy, they estimated 
exposure to nitrogen dioxide, black carbon, fine parti-
cles, and fine particle metal components, copper, iron, 
and zinc. They also estimated exposure to traffic-­related 
noise, which might confound the association between 
traffic-­related air pollution and fetal development.

They evaluated air pollution exposure in relation to 
birth weight measurements and whether the fetus was 
more susceptible to exposure during specific periods 
of gestation. They adjusted for numerous health and 
socioeconomic indicators, including body mass index 
and tobacco smoke exposure. Using mediation anal-

ysis, they also evaluated whether air pollution might 
affect fetal growth through changes in placental func-
tion, which was assessed by ultrasound measurements 
of blood flow.

KEY RESULTS

The final sample included 1,024 live births with 
complete data on exposure and outcomes. The median 
exposures during pregnancy for women who partici-
pated in the study were 37.2 µg/m3 for nitrogen oxides 
and 17.1 µg/m3 for fine particles. Their exposures to all 
pollutants were generally lowest at home and highest 
during commuting. The median traffic-­related noise 
levels at home and work were about 65 decibels, which 
is a moderate noise level.

Higher exposure during pregnancy to outdoor con-
centrations of all pollutants except the zinc component 
of fine particles was associated with lower birth weight 
and increased odds of the baby being classified as small 
for their gestational age (Statement Figure). For con-
text, the associations for nitrogen dioxide translate to a 
64-­g reduction in birth weight and 46% increased odds 
of being small for gestational age for every 15 µg/m3 
increase in exposure.

Statement Figure. Association between an interquartile range increase in traffic-related air pollutants and fetal 
growth based on the land use regression model exposure estimates. BC = black carbon; IQR = interquartile range.
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The late first trimester to early second trimester 
was the most vulnerable window of exposure for all 
pollutants except black carbon and zinc. For black 
carbon, the late third trimester was the most vulnerable 
window. Findings were similar when traffic-­related air 
pollutant exposure at home, at work, and during com-
muting were evaluated separately and when estimates 
from different exposure modeling methods were used, 
including estimates based only on residential address.

In models accounting for both traffic-­related air pol-
lution and noise exposure, similar associations were 
observed between the air pollutants and fetal growth 
outcomes. In those models, noise exposure itself was 
generally associated with lower birth weight, but the 
results were not statistically significant, suggesting that 
traffic noise was less important than traffic pollution.

Higher exposure to outdoor fine particle concen-
trations during pregnancy was associated with higher 
resistance to blood flow in the umbilical artery (which 
delivers blood between the fetus and placenta) during 
the third trimester of pregnancy. Dadvand and Sunyer 
estimated that this blood flow resistance explained 
9.1% and 3.5% of the association of PM2.5 with birth 
weight and being small for gestational age, respectively.

INTERPRETATION AND CONCLUSIONS

In its independent review of the study, the HEI 
Review Committee noted that the study implemented 
a high-­quality design, including the recruitment of a 
new cohort of pregnant women, the documentation 
of detailed health and lifestyle information, and the 
repeated follow-­up throughout pregnancy. Impor-
tantly, the investigators were able to adjust for smoking 
and body mass index, information that was lacking in 
many earlier studies and considered a major limitation 
in prior research. The results from this study will be 

useful in future systematic reviews and regulatory 
science assessments.

The Committee appreciated the comprehensive 
exposure assessment with information on noise, com-
muting patterns, and various modeling approaches. 
Findings were consistent, although not always 
statistically significant, across the various exposure 
assessment methods. The results suggested that expo-
sure measurements based on outdoor concentrations at 
residential locations, as used in many epidemiological 
studies (thus without capturing work and commuting 
patterns), might capture exposures adequately.

Results in this study largely confirmed prior 
research demonstrating that traffic-­related air pollut-
ants are related to decreased fetal growth. Their effects 
on birth weight were smaller than the effects of active 
maternal smoking but were similar to the effects of 
environmental tobacco smoke exposure during preg-
nancy. This study adds to the limited literature on fine 
particle metal components; the association between 
iron and copper with lower birth weight confirms the 
role of metals in general, but needs further study, given 
that these are essential trace elements.

In summary, Dadvand, Sunyer, and colleagues 
observed that nitrogen dioxide, black carbon, fine par-
ticles, and iron and copper components of fine particles 
were associated with slower fetal growth. This study 
adds to the existing body of literature demonstrating 
that traffic-­related air pollution during pregnancy 
can alter fetal development. The results stress the 
importance of reducing exposures to pregnant women. 
Future studies in similar urban environments might be 
able to simplify exposure assessments when resources 
are limited. Additional research is needed to clarify the 
effects of fine particle components.
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ABSTRACT

Introduction  FRONTIER aimed to provide a robust and 
comprehensive evaluation of the impact of maternal expo-
sure to traffic-­related air pollution (TRAP*) on fetal growth. 
Toward this aim it (1) disentangled the effects of noise 
as a co-­exposure; (2) identified the relevant window(s) of 
vulnerability for this impact; (3) evaluated its modification 
by household and neighborhood level socioeconomic status 
(SES), stress, physical activity, and the timing of conception 
and delivery in relation to the COVID-19 pandemic lockdown; 
(4) elucidated the role of placental function as an underlying 
mechanism; and (5) explored the potential of urban tree can-
opies and green spaces to mitigate it.

Methods  FRONTIER established a new pregnancy cohort of 
1,080 pregnant women in Barcelona, Spain — Barcelona Life 
Study Cohort (BiSC). Fetal growth was characterized by anthro-
pometric measures at birth, together with ultrasound-­based 
trajectories of fetal development. We developed an innovative 
exposure assessment framework integrating objective data on 
time–activity patterns with dispersion, land use regression, and 
hybrid models, with campaigns of personal and home-­outdoor 
air pollution monitoring to estimate maternal exposure levels 
as well as inhaled dose of black carbon (BC), nitrogen dioxide 

(NO2), fine particulate matter (PM2.5), and PM2.5 copper, iron, 
and zinc in the main microenvironments for pregnant women 
(home, workplace, and commuting routes). We also assessed 
maternal exposure to noise by integrating measurements at 
participants’ homes and outdoors using noise monitors with 
modeled microenvironmental noise levels, data on noise 
sensitivity, annoyance, and protections against noise. We 
developed single- and multipollutant models to evaluate the 
impact of TRAP exposure and inhaled dose on fetal growth 
while also correcting for the exposure measurement error. 
We further evaluated the modification of associations by SES, 
stress (cortisol levels and perceived stress), physical activity 
(objective and subjective measures), their mitigation by urban 
greenness and canopy volume, and their mediation by Doppler 
ultrasound measures of placental function.

Results  We found that higher pregnancy exposure to NO2, 
BC, PM2.5, and PM2.5 copper and iron contents, particularly at 
home and all microenvironments combined, were generally 
associated with lower birth weight, higher risk of small for 
gestational age (SGA), and a decelerated trajectory of fetal 
growth, although some of these associations were not statis-
tically significant. These associations appeared to be stronger 
for mothers with higher SES and those with higher objective 
measures of psychological stress. For the COVID-19 pandemic 
and physical activity, as effect modifiers, and urban greenness 
and canopy cover, as effect mitigators, we observed mixed 
patterns. In multipollutant models that include different mea-
sures of exposure to noise in addition to TRAP, the associations 
between TRAP and fetal growth generally remained consistent 
with those that we observed in our main analyses. We found 
two potential windows of vulnerability for the association of 
TRAP with fetal growth: one at the end of the first trimester 
and the beginning of the second trimester, and another at the 
end of the third trimester. Finally, we observed that a small 
proportion of the associations between PM2.5 and fetal growth 
could be mediated through the impact of these pollutants on 
placental function (i.e., umbilical artery pulsatility index).

Conclusions  Exposure to TRAP is associated with impaired 
fetal growth.
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INTRODUCTION

It is well established that the fetus and infant are espe-
cially vulnerable to the effects of socioenvironmental factors.1 
Exposures during pregnancy not only affect reproductive and 
childhood outcomes, but their effects also extend over the 
rest of the child’s life stages; a corpus of evidence embod-
ied by the DOHaD (Developmental Origins of Health and 
Diseases) concept.2,3 DOHaD suggests that exposures during 
prenatal and early postnatal periods may permanently 
change the structure, physiology, and metabolism of the 
body, and such changes can promote disease long after the 
environmental exposure has ceased. In this context, impaired 
fetal growth has been associated not only with poorer health 
and development in children but also with adverse health 
outcomes in later life. For example, low birth weight (LBW, 
birth weight <2,500 g) is, directly or indirectly, responsible 
for 60% to 80% of all neonatal deaths and is associated with 
higher risks of infections, growth and developmental delays, 
and mortality during infancy and childhood.4 At the same 
time, LBW has been linked to enhanced risk of noncommu-
nicable diseases, such as ischemic heart disease, chronic 
hypertension, insulin resistance and metabolic syndrome, 
and chronic kidney disease in adults.5,6 Overall, impaired 
fetal growth is estimated to result in about 1.9 million deaths 
and 178 million disability-­adjusted life years globally each 
year, and accordingly is the sixth highest contributor to the 
global burden of disease.7

Traffic-­related air pollution (TRAP) is one of the most 
studied environmental exposures during pregnancy. This 
exposure has been associated with several pregnancy com-
plications and adverse pregnancy outcomes, but it has been 
more consistently related to impaired fetal growth. Several 
systematic reviews and meta-­analyses of available literature 
have related maternal exposure to TRAP with different 
indicators of impaired fetal growth, such as LBW or small for 
gestational age (SGA).8,9 However, to date, a vast majority of 
epidemiological studies of the impacts of TRAP on pregnancy 
outcomes have assessed exposure mainly at the home, over-
looking the contribution of other microenvironments (e.g., 
workplace and commuting) to personal exposure. Moreover, 
they have not characterized and accounted for exposure 
misclassification, and have also relied on exposure levels 
(ambient concentrations of pollution to which the individual 
is exposed) instead of dose (amount of pollution inhaled by 
the individual). Furthermore, although traffic is the main 
source of both TRAP and noise in urban areas, air pollution 
studies on pregnancy have rarely accounted for the potential 
impact of noise to separate the impacts of these two impor
tant traffic-­related hazards on fetal growth. Additionally, 
socioeconomic status (SES) has been generally treated as a 
confounder in studies relating TRAP and fetal growth. A very 
limited body of evidence has also evaluated the modification 
of this impact by SES, suggesting more vulnerability among 

pregnant women from lower SES.10 It is still not clear which 
factors explain the SES-­related vulnerability to TRAP.

Psychological stress has been suggested to be involved in 
such vulnerability;11 however, there is no available epidemi-
ological study in humans on the role of stress in this vulnera-
bility among pregnant women. Such a role is supported by a 
study in mice showing that maternal stress during pregnancy 
enhances fetal vulnerability to the adverse effects of maternal 
exposure to TRAP.12 Similarly, the potential modification of 
the association of TRAP with fetal growth by physical activity 
is yet to be evaluated. Physical activity, on one hand, is asso-
ciated with a wide range of health benefits (including better 
pregnancy outcomes), but on the other hand, it enhances 
uptake and deposition of air pollutants, possibly augmenting 
their harmful effects.13,14 Green spaces are increasingly recog-
nized as a measure to mitigate the adverse impacts of TRAP in 
urban areas. The only available study on the impact of green 
space on personal exposure to TRAP15 showed that pregnant 
women living in greener areas were exposed to lower levels of 
particulate air pollution. Although this observation could be 
suggestive for the mitigation of the association of TRAP with 
fetal growth, there is no available evidence evaluating such a 
mitigation effect.

The placenta is the gate between the mother and the 
fetus. The impairment of placental function and reduced 
transplacental oxygen and nutrient transport have been 
suggested as a potential mechanism through which TRAP 
may affect fetal growth. For example, a study has shown 
that around 10% of the observed association between TRAP 
exposure and birth weight could be explained by a reduction 
in placental mitochondrial DNA content, which is an indica-
tor of placental stress.16 A few studies have also reported an 
adverse impact of TRAP on placental function;17–19 however, 
available evidence evaluating whether such an impact can 
mediate the association between TRAP and fetal growth 
remains very scarce.

SPECIFIC AIMS

FRONTIER aimed to provide a robust and comprehensive 
evaluation of the impact of maternal exposure to TRAP on 
fetal growth. Toward this aim it (1) disentangled the effects of 
noise as a co-­exposure; (2) identified the relevant window(s) 
of vulnerability for this impact; (3) evaluated its modification 
by household and neighborhood level socioeconomic status 
(SES), stress, physical activity, and the timing of conception 
and delivery in relation to the COVID-19 pandemic lockdown; 
(4) elucidated the role of placental function as an underlying 
mechanism; and (5) explored the potential of urban tree cano-
pies and green spaces to mitigate it. Accordingly, the specific 
aims of FRONTIER were as follows:

Aim 1: Establishing a new pregnancy cohort.
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Aim 2: Assessing maternal exposure to TRAP and noise and 
characterizing canopies and greenness surrounding par-
ticipants’ homes.

Aim 3: Objectively characterizing maternal stress, physical 
activity, and placental function.

Aim 4: Evaluating the association between maternal exposure 
to TRAP and fetal growth while separating the effect of 
noise, and identifying relevant window(s) of vulnerabil-
ity during pregnancy, as well as modifiers, mediators, 
and mitigators of this association.

STUDY DESIGN AND METHODS

We followed the research roadmap as described in Table 1.

STUDY DESIGN, SETTING, AND POPULATION

FRONTIER was a prospective cohort study conducted 
in Barcelona, Spain, and its metropolitan area. Barcelona, 
situated on the Northeastern Iberian Peninsula, has a Mediter-
ranean climate characterized by mild winters and hot and dry 
summers. The city faces a significant air pollution challenge, 
ranking among the worst in Spain and Western Europe. This 
issue can be attributed, in part, to the high traffic density and 
a large proportion of diesel-­powered vehicles, as well as high 
population density, relatively low precipitation, and an urban 
landscape characterized by tall buildings and narrow streets, 
which hampers the dispersion of pollutants.

To conduct FRONTIER, we set up a new birth cohort, 
named the Barcelona Life Study Cohort (BiSC). Pregnant 
women were recruited during their first routine hospital 
visit (weeks 11–14 of gestation) at three tertiary university 
hospitals in Barcelona, Spain: Hospital de la Santa Creu i 
Sant Pau, Hospital Sant Joan de Déu, and Hospital Clínic 
de Barcelona, along with their corresponding primary 
healthcare centers. The obstetrics departments of Hospital 
Sant Joan de Déu (located in the Esplugues de Llobregat, 
which is in the west of Barcelona) and Hospital Clínic de 

Barcelona (located in the southwestern part of Barcelona) 
are part of the BCNatal, a center of excellence in maternal–
fetal and neonatal medicine that collectively manages a total 
of 6,500 births annually. Hospital de la Santa Creu i Sant 
Pau is in the northeastern part of Barcelona, and manages 
around 2,000 deliveries per year. The detailed description 
of the recruitment process, data collection, and follow-­up 
visits of the BiSC has been reported elsewhere.20 Briefly, we 
distributed posters and flyers about the study in the afore-
mentioned centers to inform potential participants about 
the study. At the time of the first routine hospital visit, a 
trained nurse approached the pregnant women attending 
the visit, explained the study aims and objectives, the study 
procedures, the expected tasks from the participants, and 
their right to withdraw from the study at any point without 
any consequence. If the pregnant woman agreed to partici-
pate and met the inclusion criteria, she was enrolled in the 
cohort after signing informed consents. We included preg-
nant women between 18 and 45 years old with a singleton 
pregnancy from the general population who were living in 
the catchment area of the aforementioned three hospitals 
and were able to communicate in Spanish or Catalan. We 
excluded those women residing outside the catchment area, 
aged <18 years or >45 years, illiterate, with a multiparous 
pregnancy, or having a fetus with congenital anomalies. The 
enrolment of the BiSC participants started in October 2018 
and ended in March 2021, with a total of 1,080 pregnant 
women recruited. Of these recruited pregnant women at 
baseline, seven experienced abortion, two experienced 
stillbirth, and 1,032 remained in the cohort till the time of 
delivery with live birth, of whom we had valid data on birth 
weight for 1,024 of the original 1,080 (94.8%) participants 
that were included in the FRONTIER analyses.

Ethic approvals were obtained from the corresponding 
authorities in all the participating institutions and hospitals, 
including the Clinical Research Ethics Committee of the Parc 
de Salut Mar (2018/8050/I), the Medical Research Committee 
of the Fundació de Gestió Sanitària del Hospital de la Santa 
Creu i Sant Pau de Barcelona (EC/18/206/5272), and the Eth-
ics Committee of the Fundació Sant Joan de Déu (PIC-27-18).

FRONTIER DATA COLLECTION FOLLOW-UPS

During the pregnancy period, in addition to two hospital 
visits — ­one in the first (at the recruitment time, around week 
12 of gestation) and one in the third (around week 32 of gesta-
tion) trimester — ­we conducted one-­week personal and home 
environmental measurement campaigns that were carried out 
through home visits right after the hospital visits in the first 
and third trimesters. During the hospital visits, we conducted 
face-­to-­face interviews to collect sociodemographic, lifestyle, 
and clinical data, and we also conducted ultrasound exam-
inations of placental function and fetal anthropometry. (Note: 
We also obtained hospital records on routine ultrasound 
examination of fetal anthropometry during the second and 
third trimesters as described below.)

Table 1. FRONTIER’s Research Road Map

Aims and Research 
Conducted Methods Description

Aim 1 •	 Study Design, Setting, and  
Population

•	 FRONTIER Data Collection  
Follow-Ups

•	 Health Outcomes

Aim 2 •	Exposure Assessment

Aim 3 •	Covariate and Modifier Data
•	Mediators

Aim 4 •	Data Analysis
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In the home visits, the BiSC fieldworkers (1) implemented 
sensors to simultaneously measure TRAP (personal, home-­
indoor, and home-­outdoor levels) and noise (home-­outdoor 
level), (2) implemented personal physical activity and geolo-
cation sensors and applied an interactive Geographic Infor-
mation System (GIS) platform to characterize participants’ 
time–activity patterns and commuting mode, (3) generated a 
detailed record of the participant’s home characteristics, and 
(4) conducted face-­to-­face interviews to collect questionnaire 
data. In addition to these visits, we asked participants to fill 
out online questionnaires on sociodemographic and lifestyle 
factors in the first and third trimesters, coinciding with the 
hospital and home visits.

EXPOSURE ASSESSMENT

Air Pollution

We assessed participants’ exposure to particulate mat-
ter with an aerodynamic diameter ≤2.5 µm (PM2.5), black 
carbon (BC), and nitrogen dioxide (NO2). Furthermore, we 
assessed exposure to PM2.5 copper (Cu), iron (Fe), and zinc 
(Zn) contents as markers of nontailpipe emissions.21 On the 
other hand, in Barcelona, BC could be considered a marker of 
tailpipe traffic emissions.

Home and Personal NO2 Measurements  For NO2, we mea-
sured personal, home-­indoor, and home-­outdoor levels using 
passive samplers (NO2 diffusion tube, Gradko International 
Ltd., UK) for one week during the first and one week during 
the third trimesters (two weeks in total) (Figure  1). Indoor 
NO2 samplers were placed in the participant’s bedroom next 
to their bed. They were placed in the bedrooms (versus the 
living room or other spaces) because pregnant women were 
expected to spend a considerable amount of time there while 
resting, and also the NO2 levels there were likely to be less 
affected by the NO2 generated due to gas cooking at home, 
so our measured NO2 levels could be more representative of 

the traffic-­related sources. The samplers monitoring home-­
outdoor air were attached to a window or balcony on the most 
traffic-­exposed façade, or on its exterior wall. For personal 
measurements, the samplers were worn by the participants 
either in a necklace or attached to backpack straps close to 
the breathing zone.

For analyses of the associations between these exposures 
and fetal growth, we first deseasonalized the measured levels 
using the ratio method to remove short-­term (e.g., due to 
meteorological conditions such as precipitation, storms, and 
inversions) and long-­term (e.g., seasonal variations) temporal 
fluctuations in background levels from our measured levels 
and hence make them more comparable among participants 
whose measurements were conducted in different weeks. 
We then averaged the levels of two measurements made in 
the first and third trimesters. Following the method applied 
in our previous works,22,23 separately for each sample, we 
calculated the ratio between the average concentrations of 
NO2 in the urban background reference station of Palau Reial 
(PR) for the same period as the exposure of the passive sam-
pler tube in visit w (Cw,PR) and the pregnancy period of the 
participant i (Ci,PR(avg)). Finally, we divided the concentration 
measured by the sampler for participant i in visit w (Ci,w) by 
the previously computed ratio at the reference station. The 
following equation summarizes the procedure to obtain the 
deseasonalized concentration for each sample (Ci,w,des):Ci,w,des = 
Ci,w/(Cw,PR/Ci,PR(avg)).

24

BiSCAPE Air Pollution Monitoring Campaigns  To develop 
land use regression (LUR) models for estimating exposures to 
air pollutants for BiSC participants, we conducted campaigns 
of monitoring PM2.5 and its chemical inorganic components 
(37 mm Polytetrafluoroethylene-Teflon-­filters collected using 
a BGI-400 pump [working at 4 L/min] and a PCIS impactor), 
BC (MicroAeth AE51), and NO2 (Gradko NO2 diffusion tubes). 
To cover intra-­annual variability in the pollution surface, we 
carried out three monitoring campaigns in different seasons 

Figure 1. Examples of the installation of home-outdoor, home-indoor, and personal NO2 passive samplers.
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from June 2021 to February 2022 (first campaign: June 28 to 
July 28, 2021; second campaign: October 11 to November 12, 
2021; third campaign: January 12 to February 16, 2022). We 
also had an extra campaign from February 16 to March 29, 
2021, where we collected data on NO2 and BC. Following the 
European Study of Cohorts for Air Pollution Effects (ESCAPE) 
protocols,25–27 we selected 34 representative sites including 
urban traffic and background sites, as well as one reference 
urban background station, all of which represented the gradi-
ent of various land use, emission sources, and traffic charac-
teristics across the BiSC study area (i.e., cities of Barcelona, 
Cornellà de Llobregat, Esplugues de Llobregat, Hospitalet de 
Llobregat, and Sant Just Desvern) (Figure 2).

We monitored air pollutant levels in these sites for an 
average period of nine days in each campaign. Sites were 
located approximately at a first-­floor height. The following 
criteria were also fulfilled when placing the samplers: (1) 
not to be placed near exhaust flues, chimneys, air condi-
tioning devices, or drip line of trees; (2) location should be a 
smoking-­free area; (3) they should be placed at approximately 
0.5–1.5 m above the floor. Trained fieldworkers logged the 
GPS coordinates (exact location) and installation height rela-
tive to the ground. Moreover, the fieldworkers collected data 
on installation and collection times of the different samplers, 
and registered (and corrected if needed) PM2.5 pump flow at 
the beginning, middle, and end of each data collection period 
in each location. In addition, any incidents that may have 

affected the measurements were also recorded (e.g., the power 
supply was turned off during the data collection).

Gravimetry and Chemical Analysis of PM2.5 Filters  We 
performed a gravimetric determination of PM2.5 mass con-
centrations by weighing the filters before and after sampling. 
Filters were weighed using an MX5 Mettler Toledo micro-
balance together with a Mettler Toledo antistatic bar at the 
University of Lleida. Filters were conditioned (at least 24 
hours at a constant relative humidity between 30% to 40% 
and a constant temperature between 20°C to 23°C) both before 
and after sampling, before the weighing. PM2.5 concentrations 
were the result of the difference in weights (after sampling 
minus before sampling) divided by the total volume of air 
sampled.

A complete chemical characterization (>50 components) 
was carried out through a close research collaboration at the 
Environmental Geochemistry and Atmospheric Research 
Group (EGAR) of the Institute of Environmental Assessment 
and Water Research (IDAEA) from the Spanish National 
Research Council (CSIC), following the methodology 
described previously.28 Particles collected in the 37-­mm 
Teflon filters were washed from the filter and digested using 
an acidic solution of 2.5 mL 65% nitric acid (HNO3), 2.5 mL 
40% hydrofluoric acid (HF), and 1.25 mL of 60% perchloric 
acid (HClO4). The resulting solution was then analyzed with 
both inductively coupled plasma atomic emission spectrom-

Figure 2. Locations of the home-outdoor NO2 sampling at BiSC participants’ homes (A) and NO2, BC, and PM2.5 sampling sites for 
BiSCAPE campaigns (B). BC = black carbon; BiSC = Barcelona Life Study Cohort.
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etry and inductively coupled plasma mass spectrometry to 
obtain the elemental composition. The same procedure was 
carried out for blank filters (to subtract potential impurities 
or contamination of the batches) and for blank filters with 
the NBS-1633a reference material to ensure analysis quality 
for the same levels of the sample digestion concentrations. 
Relative analytical errors were between 3% and 10% for the 
elements studied.

Air Pollution Models  To estimate the exposure to different 
air pollutants for each week of the pregnancy, we obtained 
or developed three different types of models: LUR models, 
dispersion models, and hybrid LUR-­dispersion models.

Land Use Regression Models  Using the data collected 
in the BiSCAPE campaigns, we developed LUR models for 
NO2, BC, PM2.5, and PM2.5 Cu, Zn, and Fe content following 
the ESCAPE protocols.25–27 For NO2, in addition to data from 
BiSCAPE campaigns, we applied data on home-­outdoor 
measurements for those participants who had two repeated 
measurements in the first and third trimesters (n = 489). The 
detailed description of the development of the LUR models 
is presented as Additional Materials 1 on the HEI website. 
Briefly, for each sampling site, data on 101 potential predic-
tors of TRAP (e.g., street type, greenness coverage, distance to 
major road, high population density, traffic density, land use, 
building density and height, etc.) were obtained according to 
the ESCAPE guidelines. We then followed the ESCAPE super-
vised forward selection approach to develop multiple linear 

regression models separately for each pollutant using annual 
average concentrations obtained from the sampling campaign 
as outcomes. The description of the final models, including 
the predictor variables, the coefficients of determination (R2), 
and residual standard error, as well as their corresponding 
leave-­one-­out cross-­validated R2 values, is presented in 
Table 2.

Using ESCAPE’s ratio method, we then temporally 
adjusted the estimations to estimate hourly exposure levels 
of each pollutant for each participant’s entire pregnancy for 
(1) outdoor levels at home address, and (2) outdoor levels 
considering the time–activity pattern of the participant in dif-
ferent microenvironments, using the average of the outdoor 
concentrations at home, the workplace, and the commuting 
route between these two, weighted by the time the participant 
spent in each of these microenvironments to estimate total 
personal exposure.

Dispersion Models  We applied dispersion models to esti-
mate hourly outdoor levels of PM2.5, BC, and NO2 for each 
participant for her entire pregnancy period, separately for (1) 
the home, (2) the combined home, workplace, and commuting 
route exposure weighted by the time that they usually spent 
in each of these microenvironments. Moreover, we estimated 
hourly levels of these pollutants for 34 BiSCAPE monitoring 
sites during the monitoring campaign periods. The detailed 
description of the development of the dispersion models 
is presented in Additional Materials 2. Briefly, dispersion 

Table 2. Description for the BiSC LUR Models Pollutant in Terms of the Years of Data Collection (year), Number of 
Data Points Used to Develop the Model (N), the Adjusted Coefficient of Determination, Cross-Validation R2, Residual 
Standard Error, and Predictor Variables That Remained in the Final Model

Pollutant Year N Adj-R2 CV-R2 RSE Predictor Variablesa

NO2 2018–2021 489 0.62 0.62 4.03 trafload25 – sqralt + majorroadlength50 
+ roadlength25 + majorroadlength300

PM2.5 2021 34 0.47 0.45 1.47 hdres500 + trafnear + LEZ

BC 2021 30 0.85 0.83 0.18 hdres50 + linesnear + pop300 + traf-
load500 + roads500

PM2.5 Cu 2021 31 0.90 0.87 0.72 trafnear + roads1000 + ind1000 + pop25

PM2.5 Fe 2021 34 0.91 0.89 0.03 trafnear – lat + pop50 – LEZ

PM2.5 Zn 2021 31 0.89 0.85 6.99 LEZ + roads50 + ind1000 + build25

Adj-R2 = adjusted coefficient of determination; BC = black carbon; BiSC = Barcelona Life Study Cohort;
CV-R2 = cross-­validation R2; LUR = land use regression; RSE = residual standard error.
a Predictor variable definitions — ­roadlength25: total roads of indicated length (m) within 25-­m buffer, majorroadlength50: total major roads 
of indicated length (m) within 50-­m buffer, majorroadlength300: total major roads of indicated length (m) within 300-­m buffer, trafload25: 
total traffic intensity (vehicles/day) within 25-­m buffer, trafload500: total traffic intensity (vehicles/day) within 500-­m buffer, trafnear: traffic 
intensity at the nearest road (vehicles/day), linesnear: number of traffic lines on nearest street, LEZ: Low Emissions Zone (Yes/No, ref value 
= No), hdres50: high-­density residential areas of indicated size (m2) within 50m buffer, hdres500: high-­density residential areas of indicated 
size (m2) within 500-­m buffer, roads50: roads of indicated surface area (m2) within 50-­m buffer, roads500: roads of indicated surface area (m2) 
within 500-­m buffer, roads1000: roads of indicated surface area (m2) within 1000-­m buffer, ind1000: industry areas of indicated size (m2) 
within 1000-­m buffer, pop25: population density (inhabitants/km2) within 25-­m buffer, pop50: population density (inhabitants/km2) within 
50-­m buffer, pop300: population density (inhabitants/km2) within 300-­m buffer, build25: buildings of indicated floor area (m2) within 25-­m 
buffer, lat: latitude (m), sqralt: squared root altitude (m0.5).

https://www.healtheffects.org/publication/traffic-related-air-pollution-and-birth-weight-roles-noise-placental-function-green
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models were developed and validated using ADMS-Urban 
(Cambridge Environmental Research Consultants), which is 
based on a Gaussian dispersion model with integrated photo-
chemical reaction models, street canyon models, and a mete-
orological preprocessing model.29,30 ADMS-Urban employs 
various algorithms to assess the chemical transportation and 
dispersion of pollutants, factoring in ground-­level turbulence 
and turbulence induced by the surrounding topography.31 
A detailed emission inventory at street level for road traffic, 
industry, power plants, residential and commercial sources, 
the port of Barcelona, the airport, and other sources, together 
with topographic and meteorological data and regional air 
transport models, was applied as inputs to this model. The 
results of the external validation of the dispersion model esti-
mates for NO2 levels against measured NO2 levels at BiSCAPE 
sampling sites, as well as measured BiSC home-­outdoor and 
personal levels, are presented in Table 3.

Hybrid (LUR-Dispersion) Models  For the hybrid models, 
we sought to improve the predictive performance of the out-
door air pollution models by integrating comprehensive data 
from multiple sources of information and leveraging machine 
learning algorithms. We used a Random Forest algorithm to 
capture nonlinear relationships and potential interactions 
between predictor variables and the response variable.32 The 
detailed description of the development of the hybrid models 
is presented in Additional Materials 3. Briefly, the models 
combined data on all the potential predictors used in the 
LUR model development, the exposure estimates from the 
dispersion models, routine air pollution monitoring data, and 
meteorological variables to estimate weekly exposure levels of 
NO2, BC, PM2.5, and PM2.5 Cu, Fe, and Zn content both at home 
and the workplace, considering the time spent at home and 
work (i.e., the hybrid models did not estimate the exposure 
during commuting). We assessed the performance of each 
hybrid model by contrasting predictions with observations. 
Two distinct validation approaches were employed: 10-­fold 
cross-­validation and external validation with 20% of the data. 

While both methods differ in the sample size designed for 
testing, their fundamental distinction lies in the data-­splitting 
strategy. For the 10-­fold cross-­validation, the model was 
trained on 9 out of the 10 data partitions and then validated 
against the remaining 1. In contrast, during the external 
validation procedure, we reserved 20% of the initial dataset, 
which had not been used for training, to provide an unbiased 
evaluation of the final model fit. This approach allowed us to 
assess how well the model will perform when predicting new, 
unseen data. We employed a grid search for hyperparameter 
tuning to select the best configuration to obtain the optimal 
model based on the R2. The description of the final models, 
including the predictor variables as well as their performance 
metrics, is presented in Table 4.

Inhaled Dose  We integrated microenvironmental TRAP 
levels with physical activity data collected in the first and 
third trimesters using the personal physical activity monitor 
(ActiGraph wGT3X-BT, ActiGraph Ltd., USA) to estimate 
the inhaled dose for each study participant (for more details 
about the collection of time–activity data, please see the 
subsection on this topic below). For each participant and 
microenvironment, we computed the average Euclidean 
norm minus one (ENMO) metric33 and used the cut-­off points 
obtained by Hildebrand34,35 to classify the activities performed 
in each environment into sedentary, light, moderate, and vig-
orous. Afterward, we used the ventilation rates for each level 
of physical activity published by the US EPA (2009)36 (which 
considers sex, age, and body weight) to compute the inhaled 
dose as the multiplication of the concentration (µg/m3) and 
the participant-­specific minute ventilation (m3/min).

Exposure Estimates  We estimated exposure to as well as 
inhaled dose of NO2, BC, PM2.5, and PM2.5 Cu, Fe, and Zn con-
tent for each participant for each hour (LUR and dispersion 
models) and week (hybrid models) of her pregnancy, sepa-
rately for each microenvironment (i.e., home, workplace, and 
commuting route), and also all microenvironments combined 
(i.e., total exposure), given their time–activity pattern.

Table 3. External Validation of NO2 Level Estimates by the Dispersion Model

Validation Dataset
Number of Validation 

Observationsa Adjustment External Validation R2

BiSCAPE sampling sites 98 Unadjusted 0.65

Participants’ home-­outdoor measurements 1,554 Unadjusted 0.44

Participants’ personal measurements 1,660 Unadjusted 0.10

1,515 Adjusted for the 
indoor/outdoor ratioa

0.32

BiSCAPE = Barcelona Life Cohort Study Air Pollution Exposure.
a The number of datapoint-­weeks.
b For all times that the participant was at home, we multiplied the ambient NO2 level predicted by the dispersion model by the home-­indoor/
home-­outdoor ratio for that participant. (The NO2 levels at home-­indoor and home-­outdoor were collected during the same campaign of col-
lecting personal NO2 and time–activity data.)
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Table 4. Description for the BiSC Hybrid Models for Each Pollutant’s Contents in Terms of the Number of Data Points 
Used to Develop the Model (N), 10-Fold-Cross-Validation R2 (10-CV R2), and Root Mean Square Error (10-CV RMSE), and 
Predictor Variables

Performance Metrics

Pollutant Year N 10-CV R2 10-CV RMSE Predictor Variablesa

NO2 2018–2021 1,232 0.64 7.5 NO2_Dispersion + idw_no2_monitoring_station +
distinvmajor1 + majorroadlength100 +majorroadlength50 
+ trafload25 + trafnear + avg_traffic_stations + avg_solar_
radiation + sqralt + ldres1000 + ldres500 + hdres1000 + 
build1000 + roads100 + lat + lon

PM2.5 2021 161 0.66 3.45 PM25_Dispersion + idw_pm25monitoring_stations +
avg_traffic_stations + ldres1000 + build25 + pop1000 + 
roads25 + sqralt + majorroadlength25 + trafload300 +
build_height_25 + lat + lon

BC 2021 74 0.86 0.23 BC_Dispersion + idw_nox_monitoring_stations + avg_
atmospheric_pressure + avg_bc_palau_reial + pop100 + 
hdres300 + roads25 + avg_wind_speed + roadlength25 
+ hdres50 + distinvmajor1 + avg_traffic_stations + 
linesnear + pop300 + trafload500 + roads500

PM2.5-Fe 2021 161 0.54 0.08 PM25_road_nonexhaust + idw_pm25monitoring_stations 
+ roads300 + roads1000 + ldres500 + sqralt + LEZ +  
lat + lon

PM2.5-Cu 2021 154 0.70 2.15 PM25_road_nonexhaust + idw_pm25monitoring_stations 
+ linesnear + industry1000 + roads300 + ldres1000 + 
roads1000 + avg_traffic_stations + LEZ + lat + lon

PM2.5-Zn 2021 141 0.44 27.7 PM25_road_nonexhaust + PM25_background + idw_
pm25 + linesnear + industry1000 + roads50 + build25 + 
roads300 + ldres1000 + roads1000 + avg_traffic_ 
stations + trafmajor + trafmajorload1000 + trafload1000  
+ hdres25 + LEZ + lat + lon

Source: Reprinted from Domínguez et al. 2024 (Supplementary Table S14); Creative Commons license CC BY 4.0.
a Predictor variable definitions — NO2_Dispersion: dispersion estimates (μg/m3), PM25_Dispersion: dispersion estimates PM2.5 (μg/m

3), BC_
Dispersion: dispersion estimates BC (μg/m3), PM25_road_nonexhaust: dispersion estimates for nonexhaust PM2.5, PM25_background: dis-
persion estimates for background PM2.5, idw_no2_monitoring_station: weekly NO2 inverse distance weighting interpolation estimates from 
XVCPA (μg/m3), idw_pm25_monitoring_station: weekly PM2.5 inverse distance weighting interpolation estimates from XVCPA (μg/m

3), idw_
nox_monitoring_station: weekly NOx inverse distance weighting interpolation estimates from XVCPA (μg/m

3), avg_bc_palau_reial: weekly 
BC average concentration from Palau Reial monitoring station (μg/m3), avg_traffic_stations: weekly average count of vehicles in AMB (count), 
avg_solar_radiation: weekly average solar radiation from Raval station (MJ/m2), avg_wind_speed: weekly average wind speed from Raval sta-
tion (km/h), avg_atmospheric_pressure: atmospheric pressure from Raval station (hPA), distinvmajor1: inverse distance to the nearest major 
road (m–1), roadlength25: total road length (m) within 25 m, majorroadlength25: total major road length (m) within 25 m, majorroadlength50: 
total major road length (m) within 50 m, majorroadlength100: total major road length (m) within 100 m, trafload25: total traffic intensity 
(vehicles/day) within 25 m, trafload300: total traffic intensity (vehicles/day) within 300 m, trafload500: total traffic intensity (vehicles/day) 
within 500 m, trafload1000: total traffic intensity (vehicles/day) within 1,000 m, trafmajorload1000: total major road traffic intensity (vehi-
cles/day) within 1,000 m, trafnear: traffic intensity at the nearest road (vehicles/day), linesnear: number traffic lines on nearest street, LEZ: 
Low Emissions Zone (Yes/No, ref value=No), hdres25: high-­density residential area (m2) within 25 m, hdres50: high-­density residential area 
(m2) within 300 m, hdres300: high-­density residential area (m2) within 500 m, hdres1000: high-­density residential area (m2) within 1,000 m, 
roads25: road surface area (m2) within 25m, roads50: road surface area (m2) within 50 m, roads100: road surface area (m2) within 100 m, 
roads300: road surface area (m2) within 300 m, roads500: road surface area (m2) within 500 m, roads1000: road surface area (m2) within 
1,000 m, pop100: population density (inhabitants) within 100 m, pop300: population density (inhabitants) within 300 m, pop1000: popula-
tion density (inhabitants) within 1,000 m, build25: building area (m2) within 25 m, build1000: building area (m2) within 1,000 m, ldres500: 
low-density residential area (m2) within 500 m, ldres1000: low-density residential area (m2) within 1,000 m, industry1000: industrial area 
(m2) within 1,000 m, trafmajor: traffic intensity at the nearest major road (vehicles/day), build_height_25: averaged building height (meters) 
within 25 m, lat: latitude (m), lon: longitude (m), sqralt: squared root altitude (m0.5).

https://doi.org/10.1016/j.scitotenv.2024.176632
https://creativecommons.org/licenses/by/4.0/
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Noise

Home Measurement Campaigns  As part of our home visits, 
we measured home-­outdoor noise levels at the most traffic-­
exposed façade of each participant for one week during the 
first or third trimester of pregnancy (coinciding with the air 
pollution measurement campaign). This one-­week campaign 
was expected to provide representative long-­term equivalent 
sound pressure levels in dB(A) according to standard mea-
surement guidelines.37 We conducted these measurements 
using a high-­quality (Class I) long-­life noise level meter 
(Noise Sentry RT). Sound level meters were placed next to 
the NO2 samplers. The exact locations of the noise meters 
were recorded on GIS software (QGIS) by the fieldworkers. 
We also asked participants to fill out a diary regarding the 
noise-­generating incidents (e.g., construction work, public 
celebrations, neighbors’ home parties, etc.), which were then 
used to clean the measured noise level data. After cleaning 
the measured data, we derived the average noise levels in 
dB(A) for the daytime (Ld), evening-­time (Le), night-­time (Ln), 
and the day-­evening-­night combined (Lden; EU indicator for 
the 24h with 5 and 10 dB[A] weights for the evening and 
night, respectively, under Directive 2002/49/EC), as well 
as noise intermittency ratio. Noise intermittency ratio, as 
an indicator of noise events, was defined as the ratio (i.e., 
percentage) of the event-­based noise energy to the total noise 
energy.38

Noise Maps  To generate comparable exposure estimates 
with those of TRAP (estimated at home and the workplace), 
we supplemented the home-­outdoor measurements with lev-
els of road traffic noise (Ld, Le, Ln, Lden) at home and workplace 
address façades derived from the Strategic Noise Maps across 
BiSC areas that were developed under EU Directive 2002/49/
EC for the period of 2017–2022.39 The Strategic Noise Maps 
were generated by the urban agglomerations of more than 
100,000 inhabitants. These maps adhere to the best practices 
outlined by the European Commission and comply with 
regional regulations.39 The underlying noise levels either 
came from predictive models for acoustic simulation, for 
instance in Barcelona, or representative measurements (both 
short- and long-­term to ensure accuracy and comprehen-
siveness), in smaller municipalities such as Sant Adrià del 
Besòs. Estimated noise levels depict exposure levels at 4 m 
on building façades. As such, it was not possible to assign 
noise exposure levels during commuting (e.g., at the sidewalk 
or road) to the BiSC participants. These maps provide noise 
levels encompassing road traffic, other sources, and totals. 
For the FRONTIER analyses, we used the estimates of noise 
due to road traffic.

Noise Perception, Sensitivity, and Protection  We applied 
standardized questions to assess noise sensitivity40,41 and 
noise annoyance.42 To account for outdoor and indoor 
noise differences, as previously done by our team,43 we also 
obtained data on protections against noise used at home by 
participants, including using earplugs and closing window 
blinds or windows.

Exposure Estimates  For each participant, we assigned 
home exposure indicators, including Ld, Le, Ln, and Lden, as 
well as the noise intermittency ratio at home, based on the 
home-­outdoor measurements. Moreover, we assigned each 
participant indicators of noise exposure (Ld, Le, Ln, and Lden) at 
home and the workplace based on the noise maps.

Green Space

Greenness  We used the Normalized Difference Vegetation 
Index (NDVI),44 derived from 2020 aerial images by the Car-
tographic and Geological Institute of Catalonia (ICGC) at a  
1 m × 1 m resolution, as a two-­dimensional indicator of green-
ness. NDVI values range between −1 and 1, with higher num-
bers indicating more greenness (i.e., photosynthetic activity).

Canopy Volume  We applied a Light Detection and Ranging 
(LiDAR)-­based 3D indicator of the volume of green features 
such as shrubs and trees (Green volume [m3/m2]).45 We used 
LiDAR data acquired by the Catalan Institute of Cartography 
between April 2016 and October 2017 with a point density of 
>0.5/m2, coupled with auxiliary data (Barcelona topographic 
map and NDVI from Planet satellite), to derive a Canopy 
Height Model from which we obtained the Canopy Volume. 
Given that the building footprint layer — ­used as auxiliary 
data to calculate the canopy volume — only covered the 
city of Barcelona, the canopy volume was assigned only to 
a subset of 741 participants residing in the city of Barcelona.

Exposure Estimates  We abstracted surrounding greenness 
and canopy volume separately for each participant’s home 
(50-­m and 300-­m buffers).46 We also characterized the sur-
rounding greenness around the major roads (i.e., roads with 
annual average traffic over 5,000 vehicles per day) within 
200 m of each participant’s home, and retrieved greenspace 
indicators for a buffer area of 50 m surrounding these roads.47

We characterized maternal physical activity (1) objec-
tively using personal physical activity monitors (ActiGraph 
wGT3X-BT, ActiGraph Ltd., US) during the two-­week per-
sonal measurement campaigns (i.e., home visits) in the first 
and third trimesters, and (2) subjectively using a Pregnancy 
Physical Activity Questionnaire48 filled by the women in 
the first and third trimesters. We converted the raw tri-­axial 
acceleration data (ActiGraph) into ENMO,33 a measure that 
represents the vectorial magnitude of dynamic acceleration 
over the three axes, using the GGIR R-­package.49 From the 
questionnaire, we obtained information on the average daily 
total energy expenditure in Metabolic Equivalent for Task-­
hours per day.50

During the same measurement campaign weeks, we col-
lected data on the time–activity patterns of pregnant women 
using a smartphone with a validated geolocation application 
(ExpoApp, Ateknea Solutions, Spain).51 Moreover, during the 
home visits, the participants were asked to identify and mark 
the main commuting route to and from work on the map using 
an interactive GIS environment (QGIS Time–Activity Pattern 
platform).52 We also obtained data on modes of transportation 
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and used this data to either estimate the time spent in each 
commuting segment when we did not have ExpoApp data, 
or to determine a probable commuting route using home and 
work location data when neither ExpoApp nor QGIS data 
were available. These data together enabled us to characterize 
the time spent and the level of physical activity that the BiSC 
participants had in each microenvironment (home, work-
place, and commuting between these two).

HEALTH OUTCOMES

Main Health Outcomes

Birth weight and small for gestational age (SGA) were 
the main health outcomes of the FRONTIER study. Data on 
birth weight were extracted from the hospital records. SGA 
was defined as birth weight below the 10th percentile for the 
gestational age and sex according to reference tables for the 
Spanish population.53 The gestational age was determined 
objectively based on ultrasound measurement of the fetal 
crown–rump length during the first trimester (weeks 11–13).54

Secondary Health Outcomes

We considered trajectories of fetal growth as our sec-
ondary outcomes. We applied transabdominal ultrasound 
measurements of fetal head (biparietal diameter and head 
circumference), abdominal circumference, femur length, 
and estimated fetal weight (Hadlock formula)55 at weeks 20 
(range: weeks 19–26), 32 (range: weeks 28–36), and 37 (range: 
weeks 28–41) of gestation.56 All the ultrasound examinations 
were performed by well-­trained and experienced operators. 
To minimize the inter-­rater variability, we applied the Inter-
national Society of Ultrasound in Obstetrics and Gynecology 
(ISUOG) guideline.57

COVARIATE AND MODIFIER DATA

Socioeconomic and Demographic Data

We collected demographic data (e.g., age and ethnicity) 
through questionnaires and face-­to-­face interviews at the 
recruitment visit. We also collected data on maternal educa-
tion as an indicator of household socioeconomic status (SES), 
and annual average household income at the census tract 
level as an indicator of neighborhood SES. Data on maternal 
education were collected using the following categories: 
(1) no education or incomplete primary school, (2) primary 
school, (3) secondary school or professional education, (4) 
university undergraduate education, and (5) university post-
graduate education. Given the small number of participants 
in some of these categories, we reclassified these categories 
into two categories: having a university degree (yes/no). The 
data on annual average household income at the census tract 
level was obtained from the 2020 Standard of Living and 
Living Conditions survey conducted by the Spanish National 
Institute of Statistics (INE), which is based on fiscal data 
including wages, pensions, unemployment benefits, other 

benefits, and other income.58 This data was extracted in Euros 
and linked to participants based on the census tract in which 
their residential address was located. In instances of change 
in home address during pregnancy, values were proportion-
ally weighted according to the time spent at each census tract.

Maternal Lifestyle

Data on active and passive smoking as well as alcohol 
consumption during pregnancy were collected through ques-
tionnaires59 administered during the first and third trimesters. 
During these trimesters, we also collected data on maternal 
time–activity patterns as described before.

Maternal Stress

We characterized maternal stress during the third trimester 
objectively, using maternal hair cortisol levels, and subjec-
tively, using a self-­administered questionnaire. During the 
third-­trimester hospital visit, we collected maternal hair from 
the posterior vertex close to the scalp following the guidelines 
of the Society of Hair Testing.60 We then measured cortisol 
level in these hair samples using liquid chromatography with 
tandem mass spectrometry, carried out at the Hospital del 
Mar Research Institute as described elsewhere.61

We also applied the widely used 10-­item Perceived Stress 
Scale (PSS-10),62,63 filled by the women during the third 
trimester, to subjectively characterize their perceived stress.

Clinical Data

We collected clinical data on past and current pregnancies 
(e.g., parity, history of low birth weight, and use of artificial 
reproductive techniques) during the first and third trimesters 
of pregnancy through face-­to-­face interviews and hospital 
records.

MEDIATORS

Placental Function

Placental function was characterized at week 32 (range: 
weeks 28–36) of gestation, based on Doppler ultrasound indi-
cators for fetoplacental hemodynamics including (1) uterine 
artery pulsatility index (PI), (2) umbilical artery PI, (3) middle 
cerebral artery PI, and (4) cerebroplacental ratio as the ratio 
of the middle cerebral artery PI divided by the uterine artery 
PI.64 We followed the established guidelines65 to conduct the 
ultrasound examinations to minimize the inter-­rater vari-
ability. Briefly, for uterine artery assessment, the ultrasound 
probe was placed on the lower quadrant of the abdomen, 
angled medially, and color Doppler imaging was used to 
identify the uterine artery at the apparent crossover with the 
external iliac artery. Measurements were taken approximately 
1  cm distal to the crossover point. The umbilical artery PI 
was calculated from a free-­floating portion of the umbilical 
cord. To minimize variability, the middle cerebral artery PI 
was measured in a transverse view of the fetal head, at the 
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level of its origin from the circle of Willis. Doppler readings 
were recorded during the absence of fetal movements and 
voluntarily suspended maternal breathing. All pulsed Dop-
pler parameters were recorded automatically from at least 
three consecutive waveforms, with the angle of insonation as 
close to 0 as possible and always below 30°. We calculated 
z-­scores for each of the aforementioned indicators based on 
the gestational age at the time of the ultrasound examination, 
and used these z-­scores in our analyses.66–69

COVID-19 PANDEMIC IMPACT

On March 14, 2020, Catalonia, alongside the rest of Spain, 
started a strict lockdown due to the COVID-19 pandemic, 
essentially halting all nonessential work and severely limit-
ing the freedom of movement of its residents. As part of these 
measures, hospitals across Catalonia halted all the ongoing 
research activities apart from those that were dealing with 
COVID-19. These measures stayed in place until they were 
gradually phased out during three phases in June 2020. During 
this period, all the BiSC fieldworks, including recruitments, 
clinical visits at the hospitals, and environmental fieldwork 
at participants’ homes, were put on hold. After the lockdown, 
the recruitment and clinical and environmental fieldworks 
were restarted, using amended inclusion criteria and a short 
version of home visits to accommodate the situation imposed 
by the pandemic.

Inclusion Criteria

We restarted the recruitment of the participants through 
phone in early May 2020. Before the pandemic, we recruited 
pregnant women with a gestational age up to week 16 of 
pregnancy. Given the fact that, due to the pandemic, our 
nurses were not able to go to the primary healthcare centers 
where some of our pregnant women were approached to be 
recruited in the study, we extended the eligibility to women 
with gestational age up to week 24 of pregnancy. The reason 
was that in our study region, all pregnant women have to go 
to the hospital for their routine ultrasound measures around 
week 20 of their pregnancy, and these visits were not stopped 
during the pandemic, so we could therefore approach these 
women and recruit them.

Home Visits

We restarted the environmental fieldwork (i.e., home 
visits) on June 8, 2020. We opted for a short version of the 
home visits that included the personal, home-­indoor, and 
home-­outdoor NO2 passive samplers; the personal physical 
activity monitor; and the smartphone. Our environmental 
fieldworkers delivered the monitors and instructions to the 
doorstep of the participants. The instructions consisted of a 
dossier with step-­by-­step installation instructions, including 
images and a video detailing how to install and use the afore-
mentioned samplers and sensors. During the remission time 
of the epidemic, our fieldworkers were also offering the par-
ticipants the possibility of the installation of the monitors by 

the fieldworkers (which could take less than 15 minutes). For 
those participants who were willing to allow our fieldworkers 
in, our fieldworkers entered their homes and installed the 
monitors.

These shortened visits did not include using the QGIS 
platform to collect information about the main commuting 
route to and from the workplace. Moreover, due to the com-
plexity of installing noise meters, their installation was done 
only when the pandemic situation allowed fieldworkers to 
enter the homes. For those participants (n = 116) for whom 
we could not install the noise meters during their pregnancy, 
we installed the noise meter postnatally up to 6 months after 
their delivery. To validate that the noise measurements taken 
at 6 months were representative of those of the third trimester 
visit, we repeated measurements at 6 months in 38 partici-
pants who also had measurements at the third trimester. The 
Spearman’s correlation between these two measures was 0.91.

DATA ANALYSIS

The main steps to conduct statistical analyses of the 
FRONTIER project included the following:

1.	 Managing, curating, and cleaning the data

2.	 Dealing with missing data

3.	 Descriptive analyses of the different variables included 
in the project

4.	 Conducting analyses that evaluate the association 
between maternal exposure to TRAP and fetal growth 
while separating the effect of noise; evaluating modifiers, 
mediators, and mitigators of this association; and identi-
fying relevant window(s) of vulnerability

5.	 Conducting sensitivity analyses to explore the robust-
ness of the findings of the main analyses to a number of 
assumptions or under different scenarios

DATA PREPARATION

Quality Assurance/Quality Control Procedures

The procedures for quality assurance and quality control 
of the FRONTIER study are described in Appendix 1.

Dealing with Missing Data

To prevent a loss of information and the introduction of 
potential selection bias, missing values of smoking (5.9% 
missing), alcohol consumption (6.5% missing), maternal 
weight (6.7% missing), and height (0.9% missing) were 
imputed. No imputation was done for outcome and exposure 
variables because no gain in power is expected from such a 
procedure.70 To impute missing variables, we applied multi-
ple imputation by a chained equations procedure70 using the 
mice R package,71 which is a commonly used and accepted 
method to deal with missing data. A total of 100 imputed 
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datasets were created for each analysis. After imputation, all 
variables with missing values were inspected. In particular, 
the imputed and nonmissing observations were compared 
using density plots and strip plots as described by van Buuren 
and Groothuis-Oudshoorn,71 and no anomalies were observed 
in the distribution of new data.

ASSOCIATION OF TRAP WITH FETAL GROWTH

A summary description of the FRONTIER study’s statisti-
cal analyses is presented in Table 5.

SINGLE-POLLUTANT MODELS

We first checked the linearity of associations between the 
different exposures and outcomes, using generalized additive 
models by means of the mgcv R package,72 which did not show 
a notable deviation from linearity. We then estimated the 
association of each air pollutant (i.e., one exposure variable 
at a time) on both anthropometric measures at birth (primary 
outcomes) and the longitudinal trajectories of fetal growth 
(secondary outcomes). These analyses were conducted sep-
arately for exposure levels in each microenvironment (i.e., 
home, workplace, and commuting route between these two), 
as well as all microenvironments combined. Moreover, sepa-
rate analyses were conducted for exposure estimates based on 
LUR models, dispersion models, and hybrid models, as well 
as personal measurement (only for NO2) levels and inhaled 
dose of traffic-­related air pollutants. For estimating the 
associations between TRAP and birth outcomes using these 
analyses, we developed linear mixed effects models for birth 
weight and fetal growth trajectories (continuous outcome 

variables), and logistic mixed effects models for SGA (binary 
outcome variable). For the main outcomes (birth weight 
and SGA), we set the hospital as the random effect, while 
for the secondary outcome (trajectories of fetal growth), we 
considered both participant and hospital as random effects. 
In latter models, we included a multiplicative interaction 
term between TRAP and gestational age (i.e., time) to estimate 
the association of TRAP exposure (time-­varying variable) on 
trajectories of fetal growth.22 All these models were adjusted 
for a priori sets of covariates selected based on the available 
literature, which included maternal age (continuous, years), 
education level (categorical, university degree: yes/no), 
body mass index (BMI)73 at the first trimester (continuous, 
kg/m2), parity (categorical, nulliparous: yes/no), active 
smoking during pregnancy (categorical, yes/no), exposure to 
environmental tobacco smoke (categorical, yes/no), alcohol 
consumption during pregnancy (categorical, yes/no), gesta-
tional age at delivery (continuous, day), history of low birth 
weight in previous pregnancies (categorical, yes/no), and sex 
of the neonate (girl or boy). Several of these variables were not 
classical confounders for our analyses; however, given that 
they were strong determinants of fetal growth (i.e., our study 
outcome), adjusting our linear regression models for them 
could result in more precise association estimates.74 The anal-
yses of SGA were not controlled for gestational age at delivery 
and sex of the neonate because they had already been used to 
define SGA. For the aforementioned models, we explored the 
distribution of residuals using histograms and q-­q plots, as 
well as graphs of residuals versus predicted values to assess 
departures from model assumptions. No notable anomalies 
were observed. These mixed effects models were conducted 
using the R package lme4.75

Table 5. Overview of the FRONTIER Main Analyses

Statistical Analysis Applied Methodology R Package Imputation Method

Single pollutant models Generalized Additive Models mgcv Multiple Imputation by Chain 
Equations (MICE)

Linear and Logistic Mixed 
Effects Models

lme4 Multiple Imputation by Chain 
Equations (MICE)

Mediation analysis mediation Multiple Imputation by Chain 
Equations (MICE)

Multiple pollutant models Lasso and Ridge regression glmnet Multiple Imputation by Chain 
Equations (MICE)

Bayesian hierarchical models R2jags Multiple Imputation by Chain 
Equations (MICE)

Windows of vulnerability Distributed Lag Nonlinear 
Models

dlnm Multiple Imputation by Chain 
Equations (MICE)

Correction for exposure 
measurement error

Regression calibration mecor –

Sensitivity analyses Similar to the corresponding 
main analyses

Similar to the corre-
sponding main analyses

Similar to the corresponding 
main analyses
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Sensitivity Analyses

We conducted a wide range of sensitivity analyses to eval-
uate the robustness of our findings:

1. We conducted complete case analyses to evaluate any
issues related to missing data and compared the findings 
with those observed for the multiple imputation datasets.

2. We further adjusted our analyses for potentially relevant
covariates including neonate’s ethnicity (categorical,
European vs. other), type of cooking stove (categorical,
gas vs. electric), having kitchen hood (categorical, yes/
no), and using kitchen hood during cooking (categorical,
always vs. sometimes or never) that were not included in
the main analyses.

3. We repeated the analyses after removing gestational age
at delivery from our models. We adjusted our analyses for
gestational age at delivery, given that it is a very strong
predictor of birth weight, and also by doing so, we were
in line with the vast majority of previous studies on the
association of air pollution with birth weight that have
controlled their analyses for it. However, given the poten-
tial impact of air pollution on gestational age at delivery,
it might act as a mediator of the association between air
pollution and birth weight, and if this is the case, the anal-
yses of the association of air pollution and birth weight
should not be controlled for the gestational age at delivery.

4.	 In our main analyses, to account for the multilevel structure 
of our data (i.e., participants within hospitals), we applied
mixed effects models with hospital as a random effect. As 
a sensitivity analysis, we developed linear and logistic
regression models with hospital as an independent fixed 
effect categorical variable in the models to evaluate the
robustness of our results to the choice of our models, and
also provide comparable results for analyses of multipol-
lutant models and exposure measurement error models, 
for which we used hospital as an independent fixed effect 
categorical variable. Fixed effect models control for any 
potential differences between the hospitals in the study by 
providing within-­hospital estimates, while random effect 
models also control for differences between hospitals and
provide results that can be more generalizable.

5. We repeated our analyses after removing the outliers and
compared the results with those of the main analyses to
explore whether there are any influential observations in 
our association estimates. We defined outliers as those val-
ues that were more than 1.5 times the interquartile range
(IQR) above the upper quartile or below the lower quartile.

6. We developed z-scores for birth weight based on sex and 
gestational age at delivery, using birth weight standards
for the Spanish population developed based on the data
from one of the hospitals participating in BiSC.53 We
repeated the main analyses for birth weight using the
z-scores as the outcome variable and removing sex and 
gestational age at delivery from the models.

7. Given the relatively large number of comparisons, we
adjusted our P values for multiple comparisons using the 
method developed by Nyholt.76 Based on this method, 
we estimated the effective number of independent tests 
based­ on­ the­ correlation­ between­ exposure­ variables­
grouped­by­model­(LUR,­dispersion,­and­hybrid­models)­
and by microenvironment (all microenvironments com-
bined, home, workplace, and commuting). To run this 
analysis, we used the meff function from the R Package 
poolr.77

Note: For analyses of effect modification and mitigation, 
incorporation of exposure measurement errors, and mediation 
analyses that are described below, we applied the estimated 
TRAP levels from LUR models for all microenvironments and 
the entire pregnancy. For the analyses of the window(s) of 
vulnerability, we applied estimates from LUR models for all 
microenvironments and each week of pregnancy. The reasons 
for this selection were that the LUR models showed a superior 
performance compared to dispersion models, and we also had 
estimates for all microenvironments (i.e., home, workplace, 
and commuting route), which contrasts with the hybrid mod-
els that did not have estimates for the commuting route.

Modification by Maternal Socioeconomic Status, Stress, 
Physical Activity, and COVID-19 Pandemic

We assessed the modification of the association between 
TRAP exposure and fetal growth by maternal stress (both 
cortisol levels and maternal perceived stress), maternal edu-
cation (a household-­level indicator of SES), annual average 
household income at the census tract (a neighborhood-­level 
indicator of SES), physical activity (both objective and 
subjective measures), and the timing of conception and 
delivery in relation to the COVID-19 pandemic lockdown. 
The continuous effect modifiers were categorized into 
three categories based on their tertiles. For the COVID-19 
pandemic, we generated a categorical variable by allo-
cating participants into three groups: (1) those who had 
their entire pregnancy (conception and delivery) before 
the beginning of the state of emergency in Spain (March 
14, 2020) (n = 350), (2) those who had their conception 
before the state of emergency and their delivery afterward  
(n = 308), and (3) those who had their entire pregnancy after 
the state of emergency (n = 366). We first tested the statistical 
significance of the multiplicative interaction term between 
each air pollutant and each potential effect modifier (one 
exposure and one modifier at a time) using a likelihood ratio 
test comparing models with and without interaction terms. 
Afterward, we stratified the main effect analyses based on 
the strata of each modifier (one at a time) to explore the 
potential variation in our observed associations across the 
strata of these modifiers.

Mitigation by Urban Canopy or Greenness

We evaluated the mitigation of the impact of TRAP on 
fetal growth by urban greenness or canopy (one at a time). 
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We first evaluated the statistical significance of the multipli-
cative interaction term between each air pollutant and each 
canopy or greenness indicator (expressed as tertiles), using 
a likelihood ratio test. We then stratified analyses of TRAP 
and fetal growth based on tertiles of the canopy or greenness 
indicators to explore whether the associations vary across 
different amounts of canopy or greenness.

Incorporating Exposure Measurement Error

We treated our measured personal NO2 exposure levels 
(using passive samplers) as our gold standard and applied 
regression calibration to correct for the effect of measurement 
error on the estimates produced when using modeled expo-
sure.78 Accordingly, we followed these steps:

Step 1: We estimated the regression coefficients and variances 
using the modeled exposure (uncorrected models) and 
the covariates.

     
 estimated by regressing the personal exposure on the 

modeled exposure during the personal NO2 sampling 
period, adjusting for all other covariates included in the 
primary regression model.

Step 3: The estimates were adjusted for measurement error by 
the two sets (those of Steps 1 and 2) of estimates and their 
variance–covariances, using bootstrapping to estimate 
proper standard errors.79

For these analyses, instead of mixed effects models with 
hospital as the random effect, we applied linear regression 
models with hospital as a fixed effect categorical predictor. 
We used the mecor R package79 to conduct these analyses, 
and within the mecor() function, we used the MeasErrorExt 
object, which is applied for external validation studies.

Window(s) of Vulnerability

We applied distributed lag nonlinear models to assess the 
associations of exposure to TRAP, separately during each 
week of pregnancy, with fetal growth.80 To avoid variation in 
the length of gestation, we restricted these analyses to those 
births with a minimum gestation of 37 weeks (i.e., excluding 
preterm births).81 We then included in the model the weekly 
exposure estimated at weeks 1–36 of pregnancy using a cross-
basis function in the dlnm R package,82 which constrained the 
estimates for each week to vary smoothly across lags. Specif-
ically, the cross-­basis was defined using a linear function to 
model the exposure–response function at different lags.83 The 
lagged associations were constrained with natural splines, 
using equidistant knots in the lag space. We tried between 
two and six degrees of freedom for the spline, and selected 
the one that minimized the Akaike information criterion of 
the model. For these analyses, models were adjusted for the 
same covariates used in the main analysis. We also conducted 
a sensitivity analysis without adjustment for gestational age 
at delivery.

Mediation Analyses

We assessed the potential mediatory role of placental 
function in the association between TRAP and fetal growth 
(birth weight and SGA) using the mediation R package. The 
mediation analysis consisted of two steps: We first established 
the potential mediatory role of placental function for those 
air pollutants for which we found a statistically significant 
association with fetal growth in our main analyses. Then, 
if we could establish such a mediatory role, we quantified 
this role. We followed the steps set by Baron and Kenny84 to 
establish the mediation role of placental function (separately 
for each Doppler ultrasound indicator of placental function) 
in the association between TRAP exposure and fetal growth. 
More contemporary mediation analysis approaches, such as 
the four-­way decomposition approach proposed by Vander-
Weele,85 include both mediated effects and interactive effects; 
however, in our setting, we did not find it plausible to assume 
an interaction between air pollution and placental function 
in relation to fetal growth. We note that if the interaction is 
absent, the counterfactual approach to mediation is equiva-
lent to the Baron and Kenny approach.86 Briefly, these steps 
included establishing the association(s) between (1) TRAP and 
fetal growth (i.e., our main analyses); (2) TRAP and placental 
function using mixed effects models with hospital as the ran-
dom effect, the z-score of the Doppler indicators of placental 
function (based on gestational age at the time of ultrasound 
examination) as the outcome variable, TRAP (based on LUR 
model estimates for all microenvironments averaged between 
conception and the time of the Doppler ultrasound exam-
ination) as the main exposure variable, and the same set of 
covariates as the main analyses (all but gestational age) plus 
pregnancy-­induced hypertensive disorders in the current 
pregnancy; and (3 and 4) fetal growth and placental function 
adjusted for TRAP along with fetal growth and TRAP adjusted 
for placental function, essentially by adding mediators (one at 
a time) to our main analyses models without gestational age. 
For these latter models, the TRAP exposure was based on LUR 
model estimates for all microenvironments averaged between 
conception and the time of the Doppler ultrasound examina-
tion. We then calculated, for each mediator and association 
separately, the proportion mediated as the percentage of the 
total effect of the exposure on the outcome that is explained 
by the mediator (i.e., indirect effect). We used bootstrapping 
to obtain percentile-­based 95% confidence intervals (CIs) for 
the contribution of each mediator.

MULTIPOLLUTANT MODELS

We developed two types of multipollutant models: models 
simultaneously including NO2, BC, and PM2.5 to provide a 
comprehensive picture of the association between TRAP and 
fetal growth, and models that in addition to an air pollutant 
also included measures of noise exposure, including modeled 
traffic-­related noise exposure (Lden) in all microenvironments 
combined, measured noise levels (Lden) at home, measured 
noise intermittency ratio at home, and noise annoyance due 
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to traffic sources at home (one at a time). To limit the number 
of conducted analyses, we did not conduct bipollutant mod-
els for air pollutants (i.e., including two air pollutants instead 
of three air pollutants).

We first checked the multiple collinearity in our multi-
pollutant models by abstracting the variance inflation factor 
(VIF) for each exposure variable and comparing it to a cut-off 
value of 2.5. If we detected indications of multicollinearity, 
we turned to estimating the associations using Ridge and 
Lasso regression models,87 as well as Bayesian techniques 
that have been recommended for correlated exposure data.88 
These methods could produce association estimates for 
individual pollutants that were easy to interpret and could 
be compared with the results of single-­pollutant models 
applied in our main analyses. We did not apply analytical 
methods such as Bayesian Kernel Machine Regression or 
Weighted Quantile Sum regression models because these 
methods could provide estimates for a mixture of pollutants 
that were difficult to interpret or compare with findings of 
single-­pollutant models.

Ridge and Lasso regression models are regularization 
techniques used to reduce model complexity and prevent 
overfitting and collinearity.87 Their processes are based on 
introducing a regularization parameter l on the magnitude of 
the model coefficients. Ridge penalizes the sum of the coef-
ficients squared. This regularization, known as L2, propor-
tionally reduces the values of all coefficients without setting 
them to zero. Lasso uses L1 regularization, which penalizes 
the sum of the absolute values of coefficients, forcing the coef-
ficients to tend toward zero. We conducted all these analyses 
using glmnet R package.87 To find the optimal l parameter, 
we applied a cross-­validation that balances model complexity 
and predictive accuracy, using the function cv.glmnet.87 We 
applied bootstrapping to obtain percentile-­based 95% CIs for 
the coefficient of each air pollutant.

JAGS (Just Another Gibbs Sampler)89 is purpose-­built soft-
ware designed to implement Bayesian hierarchical models 
using Markov Chain Monte Carlo techniques.90 The strength 
of this methodology is that it guarantees convergence to the 
quantity (or quantities) of interest with minimal requirements 
on the targeted distribution behind such quantities.90 We used 
the R2jags R package91 to conduct these analyses.

For multipollutant analyses and for the joint air pollution 
and noise analyses that were based on the modeled traffic-­
related noise data for all microenvironments, we applied the 
estimated air pollution levels by LUR models for all microen-
vironments and the entire pregnancy. On the other hand, for 
the joint air pollution and noise analyses that used the home-­
outdoor measured noise data and noise annoyance, we used 
the estimated air pollution levels by LUR models for only the 
home and the entire pregnancy. For the two-­pollutant mod-
els, including TRAP, modeled and measured noise levels, and 
noise intermittency ratio, as a sensitivity analysis, we further 
adjust our analyses for noise sensitivity and noise protection 
(one at a time).

RESULTS

DESCRIPTION OF THE STUDY POPULATION

Socioeconomic, Demographic, and Lifestyle 
Characteristics

The description of sociodemographic, lifestyle, and home 
characteristics of study participants at recruitment (n = 1,080) 
and delivery (n = 1,024) time are presented in Table 6. The 
average age of the participants was 34 years, with the majority 
of them being European and having a university degree. There 
was no statistically significant difference between those 
participants included in FRONTIER and those who were 
lost to follow-­up in terms of sociodemographic and lifestyle 
characteristics.

Physical Examination and Clinical Data

Table  7 presents the description of the physical exam-
ination and clinical characteristics of the study participants 
included in the frontier analyses.

DESCRIPTION OF HEALTH OUTCOMES

The descriptive statistics of the delivery aspects and fetal 
growth are presented in Table 8. The median (IQR) of birth 
weight and gestational age at delivery were 3,310 (580) g and 
40 (1.7) weeks, respectively, and there were 136 (13.3% of 
babies) cases of SGA.

DESCRIPTION OF EXPOSURES

Air Pollution

Personal and Home Measurements  The description of 
measured personal, home-­indoor, and home-­outdoor NO2 lev-
els (using passive samplers), separately for the first trimester 
and third trimester campaigns, is presented in Figure 3.

Moreover, as presented in Figure 4, the personal NO2 levels 
in both trimesters had stronger correlations with home-­indoor 
levels than home-­outdoor levels. There were also moderate 
correlations between levels measured in the first and third 
trimesters.

Modeled Air Pollution Levels  The description of estimated 
exposure levels separately for each pollutant, model, and 
microenvironment is presented in Table  9 and depicted in 
Figure 5. The correlations between the air pollution exposure 
estimates are presented in Appendix 2.

Noise

The median (IQR) of the modeled traffic-­related noise expo-
sure (Lden) at home, workplace, and commuting combined, and 
measured home-­outdoor noise level (Lden) were 64.6 dB(A) (8.9) 
and 64.7 dB(A) (8.1), respectively. As presented in Appendix 
3, there were weak to moderate correlations between indica-
tors of noise and TRAP exposure.
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Table 6. Description of Socioeconomic, Demographic, and Lifestyle Characteristics of the Recruited BiSC Participants 
(n = 1,080), Those with Valid Data Included in the FRONTIER Analyses (n = 1,024), and Those Who Were Lost to 
Follow-Up

Maternal Characteristicsa
BiSC Participants  

(n = 1,080)
FRONTIER Participants  

(n = 1,024)
Loss to Follow-Up  

(n = 56)
P Value of 
Differenceb

Maternal age (years) 34.4 (5.8) 34.4 (5.8) 34.8 (5.3) 0.56

Ethnicity (%) 0.98

European 725 (67.1) 688 (67.2) 37 (66.1)

Non-European 355 (32.9) 336 (32.8) 19 (33.9)

Education level (%) 0.21

Primary/secondary school 333 (30.8) 311 (30.4) 22 (39.3)

University 747 (69.2) 713 (69.6) 34 (60.7)

Active smoking (%) 0.48

Yes 83 (8.2) 79 (8.0) 4 (13.3)

No 932 (91.8) 906 (92.0) 26 (86.7)

Missing 65 39 26

Passive smoking (%) 1.00

Yes 435 (43.0) 422 (43.0) 13 (43.3)

No 576 (57.0) 559 (57.0) 17 (56.7)

Missing 69 43 26

Alcohol consumption (%) 1.00

Yes 303 (30.1) 294 (30.2) 9 (30.0)

No 702 (69.9) 681 (69.8) 21 (70.0)

Missing 75 49 26

Maternal Metabolic Equivalent 
for Task (MET)-hours per day

152.2 (98) 152.3 (95.7) 125.1 (165.9) 0.19

Maternal Euclidean norm minus 
one (ENMO) (milligravity)

25 (7.3) 25 (7.3) 25.4 (6.4) 0.76

BiSC = Barcelona Life Study Cohort.
a  Continuous variables are described by median (interquartile range), and categorical variables are described by n (%).
b  Test for the difference between BiSC participants that were included (n = 1,024) and not included (n = 56) in FRONTIER analyses using the 
Mann-Whitney U test for the continuous variables and Chi-­squared test for the categorical variables.

Greenness and Canopy

Appendix 4 presents the descriptive statistics of greenness 
and canopy indicators.

ASSOCIATION OF TRAP WITH FETAL GROWTH

Main Outcomes

Higher exposure to NO2 and BC at all microenvironments 
was associated with lower birth weight across all exposure 
models, with statistically significant associations for the home 
and all microenvironments combined (Figure  6). For PM2.5, 
we observed a similar pattern with statistically significant 

associations for the LUR and dispersion model estimates at all 
microenvironments combined, and for LUR model estimates 
at home (Figure 6). For PM2.5 Cu content, we observed inverse 
associations with birth weight in all microenvironments, and 
the associations were statistically significant for exposure in 
all microenvironments combined, home, and workplace for 
the estimates made by the LUR model (Figure 6). For the PM2.5 
Fe content, we observed a similar pattern of associations, and 
these associations were statistically significant for the esti-
mates made by the LUR model at home and all microenviron-
ments combined (Figure 6). On the other hand, for the PM2.5 
Zn content, we observed a mixed pattern of associations with 
birth weight, with a statistically significant direct ­association 
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Table 7. Description of Maternal Physical Examination 
and Clinical Data (n = 1,024)

Variablea Description

Parity

Multiparous 450 (43.9%)

Nulliparous 574 (56.1%)

Body mass index (kg/m2) 23.5 (4.9)

Missing 63 (6.2%)

Previous low birth weight

No 987 (96.4%)

Yes 37 (3.6%)

Hair cortisol level (pg/mg) 3.8 (3.2)

Missing 208 (20.3%)

Perceived stressb 12 (8)

Missing 397 (38.8%)
a   Continuous variables are described by median (interquartile 

range), and categorical variables are described by n (%).
b Total score of 10-­item Perceived Stress Scale (PSS-10).62,63

Table 8. Description of Fetal Growth and Pregnancy 
Outcomes (n = 1,024)

Variablea
Delivery Data  

(n = 1,024)

Delivery type

Cesarean 255 (24.9%)

Vaginal 767 (74.9%)

Missing 2 (0.2%)

Gestational age at birth (weeks) 40 (1.7)

Birth weight (g) 3,310 (580)

Small for Gestational Age

No 888 (86.7%)

Yes 136 (13.3%)

Biparietal diameter (mm) 20 weeks 48 (4)

Missing 18 (1.8%)

Biparietal diameter (mm) 32 weeks 80 (6)

Missing 83 (8.1%)

Biparietal diameter (mm) 37 weeks 88 (5)

Missing 135 (13.2%)

Head circumference (mm) 20 weeks 179 (12)

Missing 19 (1.9%)

Head circumference (mm) 32 weeks 293 (17)

Missing 83 (8.1%)

Head circumference (mm) 37 weeks 320 (17)

Missing 135 (13.2%)

Estimated fetal weight (g) 20 weeks 369 (66)

Missing 86 (8.4%)

Estimated fetal weight (g) 32 weeks 1,894 (352)

Missing 83 (8.1%)

Estimated fetal weight (g) 37 weeks 2,741 (445.8)

Missing 118 (11.5%)

Abdominal circumference (mm) 20 weeks 158 (14)

Missing 21 (2.1%)

Abdominal circumference (mm) 32 weeks 282 (21)

Missing 84 (8.2%)

Abdominal circumference (mm) 37 weeks 320 (23)

Missing 136 (13.3%)

Femur length (mm) 20 weeks 33 (3)

Missing 20 (2%)

Femur length (mm) 32 weeks 60 (5)

Missing 83 (8.1%)

Femur length (mm) 37 weeks 68 (4)

Missing 136 (13.3%)
a   Continuous variables are described by median (interquartile 

range), and categorical variables are described by n (%).

for exposure at the workplace estimated by the hybrid model 
(Figure 6). For the directly measured NO2 levels (using pas-
sive samplers), we observed inverse associations between 
measured home-­indoor, home-­outdoor, and personal NO2 
levels and birth weight, which were statistically significant 
for personal and home-­outdoor exposures (Figure 6).

We found an increased risk of SGA associated with NO2 in 
all microenvironments, which was statistically significant for 
home and all microenvironments combined for all exposure 
models (Figure  7). There was also a statistically significant 
increase in the risk of SGA in association with NO2 exposure 
during commuting for NO2 levels estimated by dispersion 
models. Higher exposure to BC was generally associated with 
an increased risk of SGA, which was statistically significant for 
LUR and hybrid models at home and all microenvironments 
combined (Figure 7). Similarly, higher exposure to PM2.5 was 
related to increased risk of SGA in all microenvironments, 
with statistically significant associations for exposure esti-
mates by LUR and hybrid models in all microenvironments 
combined and by the LUR model at home (Figure 7). PM2.5 Cu 
and Fe contents were generally associated with a higher risk 
of SGA, with the association for the LUR model-­estimated 
exposure to PM2.5 Fe content in all microenvironments com-
bined being statistically significant (Figure 7). For the PM2.5 
Zn content, we observed a mixed pattern with no statistically 
significant associations (Figure 7). For the directly measured 
NO2 levels, we observed an increased risk of SGA in associ-
ation with home-­outdoor, home-­indoor, and personal levels, 
and the association was statistically significant for the home-­
outdoor exposure (Figure 7).
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Figure 3. Descriptive statistics of the measured personal, home-indoor, and home-outdoor NO2 levels in BiSC participants during the 
first trimester (A) and third trimester (B) of pregnancy. BiSC = Barcelona Life Study Cohort.
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Figure 4. Spearman’s correlation coefficients among measured personal, home-indoor, and home-outdoor NO2 levels in BiSC 
participants in the first (~week 12 of gestation) and third (~week 32 of gestation) trimesters.

For the inhaled dose, we observed a similar pattern of 
associations as the main analyses, with associations for birth 
weight being statistically significant for the inhaled dose of 
NO2 at home (–38.2 g [95% CI: –77.5 to –1.8]) and all micro-
environments combined (–42.8 g [–82.8 to –6.1]) as presented 
in Appendix 5. For SGA, we generally observed a direct 
association with exposure in all microenvironments but 
commuting, with statistically significant associations for NO2 
in all microenvironments combined (odds ratio: 1.38 [95% CI: 
1.01–1.89]), PM2.5 Cu content at workplace (odds ratio: 1.39 
[1.02–1.89]), and PM2.5 Fe content at workplace (odds ratio: 
1.33 [1.00–1.76]) (Appendix 6).

Secondary Outcomes

Higher exposure to NO2, BC, and PM2.5 was generally 
associated with decelerated fetal growth in terms of esti-

mated fetal weight, and the associations were statistically 
significant for the workplace (hybrid model) for NO2, and 
all microenvironments combined, home, and workplace 
(dispersion models) for PM2.5. For PM2.5 Fe, Cu, and Zn 
contents, the pattern of associations with the estimated fetal 
weight was mixed (Figure 8). Higher PM2.5 Zn exposure in 
all microenvironments combined (LUR and hybrid models), 
home (hybrid model), and workplace (hybrid model) was 
statistically significantly associated with accelerated fetal 
growth. The other associations did not attain statistical 
significance.

The associations between TRAP exposures and growth 
trajectories of head circumference, biparietal diameter, 
abdominal circumference, and femur length are presented in 
Appendices 7–10. These associations were generally in line 
with the findings for the estimated fetal weight.
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Table 9. Estimated Levels of NO2 (μg/m
3), BC (μg/m3),  

PM2.5 (μg/m
3), PM2.5 Cu Content (ng/m3), PM2.5 Fe Content 

(μg/m3), and PM2.5 Zn Content (ng/m3) at Home, Workplace, 
Commuting Route, and All Microenvironments Combined 
(Total) by Land Use Regression, Dispersion, and Hybrid 
Models

Variable Median (IQR)

Total NO2 (LUR) 37.2 (15.0)

Home NO2 (LUR) 36.2 (15.1)

Workplace NO2 (LUR) 46.6 (18.5)

Commuting NO2 (LUR) 56.0 (21.8)

Total NO2 (DM) 28.3 (9.9)

Home NO2 (DM) 27.8 (9.8)

Workplace NO2 (DM) 31.8 (12.8)

Commuting NO2 (DM) 49.1 (18.7)

Total NO2 (Hybrid) 37.1 (9.6)

Home NO2 (Hybrid) 36.9 (9.6)

Workplace NO2 (Hybrid) 39.4 (10.2)

Total BC (LUR) 1.4 (0.5)

Home BC (LUR) 1.4 (0.6)

Workplace BC (LUR) 1.6 (0.8)

Commuting BC (LUR) 2.1 (0.9)

Total BC (DM) 0.8 (0.4)

Home BC (DM) 0.8 (0.4)

Workplace BC (DM) 1.0 (0.5)

Commuting BC (DM) 2.3 (1.4)

Total BC (Hybrid) 1.2 (0.2)

Home BC (Hybrid) 1.2 (0.2)

Workplace BC (Hybrid) 1.1 (0.3)

Total PM2.5 (LUR) 17.1 (4.5)

Home PM2.5 (LUR) 16.8 (5.1)

Workplace PM2.5 (LUR) 18.1 (4.5)

Commuting PM2.5 (LUR) 18.9 (5.0)

Total PM2.5 (DM) 12.2 (3.6)

Home PM2.5 (DM) 12.0 (3.6)

Workplace PM2.5 (DM) 13.9 (3.9)

Commuting PM2.5 (DM) 18.4 (5.9)

Total PM2.5 (Hybrid) 12.5 (1.4)

Home PM2.5 (Hybrid) 12.5 (1.4)

Variable Median (IQR)

Workplace PM2.5 (Hybrid) 12.6 (1.5)

Total PM2.5 Cu (LUR) 6.0 (2.0)

Home PM2.5 Cu (LUR) 6.0 (2.0)

Workplace PM2.5 Cu (LUR) 5.9 (2.5)

Commuting PM2.5 Cu (LUR) 6.9 (2.4)

Total PM2.5 Cu (Hybrid) 6.7 (1.4)

Home PM2.5 Cu (Hybrid) 6.6 (1.5)

Workplace PM2.5 Cu (Hybrid) 6.8 (1.6)

Total PM2.5 Fe (LUR) 0.2 (0.1)

Home PM2.5 Fe (LUR) 0.2 (0.1)

Workplace PM2.5 Fe (LUR) 0.2 (0.1)

Commuting PM2.5 Fe (LUR) 0.3 (0.1)

Total PM2.5 Fe (Hybrid) 0.2 (0.1)

Home PM2.5 Fe (Hybrid) 0.2 (0.1)

Workplace PM2.5 Fe (Hybrid) 0.3 (0.1)

Total PM2.5 Zn (LUR) 34.9 (22.9)

Home PM2.5 Zn (LUR) 34.3 (25.1)

Workplace PM2.5 Zn (LUR) 36.4 (21.7)

Commuting PM2.5 Zn (LUR) 36.6 (18.9)

Total PM2.5 Zn (Hybrid) 39.8 (21.9)

Home PM2.5 Zn (Hybrid) 39.0 (22.8)

Workplace PM2.5 Zn (Hybrid) 38.5 (19.3)

DM = dispersion model; hybrid = LUR-DM; IQR = interquartile 
range; LUR = land use regression.

SENSITIVITY ANALYSES

The results of the complete case analyses were generally in 
line with the results of the main analyses that were based on 
the multiple imputation datasets in terms of the direction and 
strength of the associations (Appendices 11 and 12); however, 
fewer associations reached statistical significance.

After further adjustment of our analyses for ethnicity 
(Appendices 13 and 14), type of cooking stove (Appendices 
15 and 16), having kitchen hood (Appendices 17 and 18), 
and using kitchen hood during cooking (Appendices 19 and 
20), the pattern of associations stayed generally similar to the 
main analyses; however, there were some changes in the asso-
ciations that reached statistical significance. The sample size 
for some analyses was smaller based on available data (915, 
787, and 783 participants for the models adjusting for type 
of cooking stove, having a kitchen hood, and using a kitchen 
hood during cooking, respectively).Continues next column

Table 9. (continued)
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Figure 5. Map of estimated exposures. Color gradient shows (A) NO2, (B) PM2.5, (C) BC, and PM2.5, (D) Fe, (E) Cu, and (F) Zn content 
during the entire pregnancy for the BiSC participants (points in the map) using LUR models, dispersion models, and hybrid models. 
BC = black carbon; BiSC = Barcelona Life Study Cohort; hybrid = hybrid LUR-DM model; LUR = land use regression.
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Figure 5. (continued)
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Figure 6. Adjusted change in birth weight (g) associated with one IQR increase in exposure to (A) NO2 (µg/m3), (B) BC (µg/m3), (C) 
PM2.5 (µg/m3), (D) PM2.5 Cu content (ng/m3), (E) PM2.5 Fe content (µg/m3), and (F) PM2.5 Zn content (ng/m3). Change in birth weight is 
adjusted for maternal age (continuous, years), education level (categorical, university degree: yes/no), body mass index (BMI) at the first 
trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/no), active smoking during pregnancy (categorical, yes/no), exposure 
to environmental tobacco smoke (categorical, yes/no), alcohol consumption during pregnancy (categorical, yes/no), gestational age at 
delivery (continuous, days), history of low birth weight in previous pregnancies (categorical, yes/no), and sex of the neonate (girl vs. 
boy). BC = black carbon; CI = confidence interval; DM = dispersion model; hybrid = hybrid LUR-DM model; indoor = measured home-­
indoor NO2 level using passive samplers; IQR = interquartile range; LUR = land use regression; OR = odds ratio; outdoor = measured 
home-­outdoor NO2 level using passive samplers; personal = measured personal NO2 level using passive samplers.

(A) NO2

(B) BC
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Figure 6. (continued)

(C) PM2.5

(D) PM2.5 Cu content
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Figure 6. (continued)

(E) PM2.5 Fe content

(F) PM2.5 Zn content
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Figure 7. Adjusted odds ratio of SGA with a single IQR increase in exposure to (A) NO2 (µg/m3), (B) BC (µg/m3), (C) PM2.5 (µg/m3),  
(D) PM2.5 Cu content (ng/m3), (E) PM2.5 Fe content (µg/m3), and (F) PM2.5 Zn content (ng/m3). The OR of SGA is adjusted for maternal age 
(continuous, years), education level (categorical, university degree: yes/no), body mass index (BMI) at the first trimester (continuous, 
kg/m2), parity (categorical, nulliparous: yes/no), active smoking during pregnancy (categorical, yes/no), exposure to environmental 
tobacco smoke (categorical, yes/no), alcohol consumption during pregnancy (categorical, yes/no), and history of low birth weight in 
previous pregnancies (categorical, yes/no). BC = black carbon; CI = confidence interval; DM = dispersion model; hybrid = hybrid LUR-
DM model; indoor = measured home-­indoor NO2 level using passive samplers; IQR = interquartile range; LUR = land use regression; 
outdoor = measured home-­outdoor NO2 level using passive samplers; OR = odds ratio; personal = measured personal NO2 level using 
passive samplers; SGA = small for gestational age.

(A) NO2

(B) BC
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Figure 7. (continued)

(C) PM2.5

(D) PM2.5 Cu content
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Figure 7. (continued)

(E) PM2.5 Fe content

(F) PM2.5 Zn content
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Figure 8. Adjusted change in the trajectory of the estimated fetal weight (g) associated with one IQR increase in exposure to (A) NO2 
(µg/m3), (B) BC (µg/m3), (C) PM2.5 (µg/m3), (D) PM2.5 Cu content (ng/m3), (E) PM2.5 Fe content (µg/m3), and (F) PM2.5 Zn content (ng/m3). 
The trajectory of the estimated fetal weight is adjusted for maternal age (continuous, years), education level (categorical, university 
degree: yes/no), body mass index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/no), active 
smoking during pregnancy (categorical, yes/no), exposure to environmental tobacco smoke (categorical, yes/no), alcohol consumption 
during pregnancy (categorical, yes/no), gestational age at the time of ultrasound examination (continuous, day), history of low birth 
weight in previous pregnancies (categorical, yes/no), and sex of the neonate (girl vs. boy). AP × GA = air pollution levels multiplied 
by gestational age; BC = black carbon; CI = confidence interval; DM = dispersion model; hybrid = hybrid LUR-DM model; indoor 
= measured home-indoor NO2 level using passive samplers; IQR = interquartile range; LUR = land use regression; OR = odds ratio; 
outdoor = measured home-outdoor NO2 level using passive samplers; personal = measured personal NO2 level using passive samplers.

(A) NO2

(B) BC
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Figure 8. (continued)

(C) PM2.5

(D) PM2.5 Cu content
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Figure 8. (continued)

(E) PM2.5 Fe content

(F) PM2.5 Zn content
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Using the hospital as a categorical independent variable 
in the models instead of a random effect did not change our 
findings considerably (Appendices 21 and 22); however, 
fewer associations reached statistical significance.

Additionally, after removing the outliers in exposure or 
outcome, the associations were similar to the main analysis, 
but there were some changes in the associations that reached 
statistical significance (Appendices 23 and 24).

Our analyses with z-score of birth weight as the outcome 
(Appendix 25) and after removing gestational age at delivery 
as a covariate from birth weight models (Appendix 26), we 
observed a similar pattern of associations with the main 
analyses of birth weight (Appendix 25). However, there were 
some changes in the associations that reached statistical 
significance.

Finally, after adjustment of the P values of our analyses 
for multiple comparisons, 12 of the associations lost their 
statistical significance (Appendices 27 and 28).

MODIFICATION BY MATERNAL SOCIOECONOMIC 
STATUS, STRESS, PHYSICAL ACTIVITY, AND  
COVID-19 PANDEMIC

For the interaction between PM2.5 and PM2.5 Cu content 
and self-­reported physical activity (Metabolic Equivalent 
for Task) in relation with birth weight (Figure 13A), between 
PM2.5 and BC and neighborhood SES in association with SGA 
(Figure 10B), and between PM2.5 Zn content and hair cortisol 
level in association with SGA (Figure  12A), the P value of 
interaction term was less than 0.1, and for the rest of our 
evaluated interaction terms between effect modifiers and 
TRAP, the P values for the interaction term were more than 
0.1 (Figures 9–14).

After stratifying the analyses, we observed some suggestions 
for a potentially stronger association of TRAP (all but PM2.5 Zn 
content) with lower birth weight and SGA for women with a 
university degree (i.e., higher household SES). We found a sim-
ilar pattern for the neighborhood SES, with generally stronger 

Text continues on page 48

Figure 9. Adjusted change in birth weight (g) associated with one IQR increase in exposure to NO2 (µg/m3), BC (µg/m3), PM2.5 (µg/m3), 
PM2.5 Cu content (ng/m3), PM2.5 Fe content (µg/m3), and PM2.5 Zn content (ng/m3) stratified by (A) maternal education, and (B) tertiles 
of the annual average household income at census tract. Change in birth weight is adjusted for maternal age (continuous, years), 
education level (categorical, university degree: yes/no), body mass index (BMI) at the first trimester (continuous, kg/m2), parity 
(categorical, nulliparous: yes/no), active smoking during pregnancy (categorical, yes/no), exposure to environmental tobacco smoke 
(categorical, yes/no), alcohol consumption during pregnancy (categorical, yes/no), gestational age at delivery (continuous, days), 
history of low birth weight in previous pregnancies (categorical, yes/no), and sex of the neonate (girl vs. boy). BC = black carbon;  
CI = confidence interval; IQR = interquartile range; LR test = likelihood ratio test.

(A) Maternal education
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Figure 9. (continued)

(B) Annual average household income at census tract
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Figure 10. Adjusted OR of the SGA associated with one IQR increase exposure to NO2 (µg/m3), BC (µg/m3), PM2.5 (µg/m3), PM2.5 Cu 
content (ng/m3), PM2.5 Fe content (µg/m3), and PM2.5 Zn content (ng/m3) stratified by (A) maternal education, and (B) tertiles of 
the annual average household income at census tract. The OR of SGA is adjusted for maternal age (continuous, years), education 
level (categorical, university degree: yes/no), body mass index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, 
nulliparous: yes/no), active smoking during pregnancy (categorical, yes/no), exposure to environmental tobacco smoke (categorical, 
yes/no), alcohol consumption during pregnancy (categorical, yes/no), and history of low birth weight in previous pregnancies 
(categorical, yes/no). BC = black carbon; CI = confidence interval; IQR = interquartile range; LR test = likelihood ratio test; OR = odds 
ratio; SGA = small for gestational age.

(A) Maternal education
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Figure 10. (continued)

(B) Annual average household income at census tract
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Figure 11. Adjusted change in birth weight (g) associated with one IQR increase exposure to NO2 (µg/m3), BC (µg/m3), PM2.5 (µg/m3), 
PM2.5 Cu content (ng/m3), PM2.5 Fe content (µg/m3), and PM2.5 Zn content (ng/m3) stratified by (A) tertiles of maternal hair cortisol 
level, and (B) tertiles of perceived stress score. Change in birth weight is adjusted for maternal age (continuous, years), education 
level (categorical, university degree: yes/no), body mass index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, 
nulliparous: yes/no), active smoking during pregnancy (categorical, yes/no), exposure to environmental tobacco smoke (categorical, 
yes/no), alcohol consumption during pregnancy (categorical, yes/no), gestational age at delivery (continuous, days), history of low birth 
weight in previous pregnancies (categorical, yes/no), and sex of the neonate (girl vs. boy). BC = black carbon; CI = confidence interval; 
IQR = interquartile range; LR test = likelihood ratio test.

(A) Maternal hair cortisol level
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Figure 11. (continued)

(B) Maternal perceived stress
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Figure 12. Adjusted OR of SGA associated with one IQR increase in exposure to NO2 (µg/m3), BC (µg/m3), PM2.5 (µg/m3), PM2.5 Cu 
content (ng/m3), PM2.5 Fe content (µg/m3), and PM2.5 Zn content (ng/m3) stratified by (A) tertiles of maternal hair cortisol level, and 
(B) tertiles of perceived stress score. The OR of SGA is adjusted for maternal age (continuous, years), education level (categorical, 
university degree: yes/no), body mass index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/
no), active smoking during pregnancy (categorical, yes/no), exposure to environmental tobacco smoke (categorical, yes/no), alcohol 
consumption during pregnancy (categorical, yes/no), and history of low birth weight in previous pregnancies (categorical, yes/no). 
BC = black carbon; CI = confidence interval; IQR = interquartile range; LR test = likelihood ratio test; OR = odds ratio; SGA = small for 
gestational age.

(A) Maternal hair cortisol level
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Figure 12. (continued)

(B) Maternal perceived stress
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Figure 13. (A) Adjusted change in birth weight (g), and (B) adjusted OR of SGA associated with one IQR increase in exposure to  
NO2 (µg/m3), BC (µg/m3), PM2.5 (µg/m3), PM2.5 Cu content (ng/m3), PM2.5 Fe content (µg/m3), and PM2.5 Zn content (ng/m3), stratified 
by tertiles of questionnaire-based Metabolic Equivalent for Task hours per day and tertiles of sensor-based Euclidean norm minus 
one. Change in birth weight is adjusted for maternal age (continuous, years), education level (categorical, university degree: yes/
no), body mass index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/no), active smoking 
during pregnancy (categorical, yes/no), exposure to environmental tobacco smoke (categorical, yes/no), alcohol consumption during 
pregnancy (categorical, yes/no), gestational age at delivery (continuous, days), history of low birth weight in previous pregnancies 
(categorical, yes/no), and sex of the neonate (girl vs. boy). The OR for SGA is adjusted for maternal age (continuous, years), education 
level (categorical, university degree: yes/no), body mass index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, 
nulliparous: yes/no), active smoking during pregnancy (categorical, yes/no), exposure to environmental tobacco smoke (categorical, 
yes/no), alcohol consumption during pregnancy (categorical, yes/no), and history of low birth weight in previous pregnancies 
(categorical, yes/no). BC = black carbon; CI = confidence interval; ENMO = Euclidean norm minus one; IQR = interquartile range;  
LR test = likelihood ratio test; OR = odds ratio; MET = metabolic equivalent for task; SGA = small for gestational age.

(A) Birth weight
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Figure 13. (continued)

(B) SGA
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Figure 14. (A) Adjusted change in birth weight (g) and (B) the adjusted odds ratio of SGA associated with one IQR increase in 
exposure to NO2 (µg/m3), BC (µg/m3), PM2.5 (µg/m3), PM2.5 Cu content (ng/m3), PM2.5 Fe content (µg/m3), and PM2.5 Zn content (ng/m3), 
separately for pregnancies that were entirely before the start of the COVID-19 pandemic (group 1), those whose conception was 
before the start of the pandemic and their delivery was afterward (group 2), and those whose conception and delivery were after the 
start of the pandemic (group 3). Change in birth weight is adjusted for maternal age (continuous, years), education level (categorical, 
university degree: yes/no), body mass index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/
no), active smoking during pregnancy (categorical, yes/no), exposure to environmental tobacco smoke (categorical, yes/no), alcohol 
consumption during pregnancy (categorical, yes/no), gestational age at delivery (continuous, days), history of low birth weight 
in previous pregnancies (categorical, yes/no), and sex of the neonate (girl vs. boy). The OR of SGA is adjusted for maternal age 
(continuous, years), education level (categorical, university degree: yes/no), body mass index (BMI) at the first trimester (continuous, 
kg/m2), parity (categorical, nulliparous: yes/no), active smoking during pregnancy (categorical, yes/no), exposure to environmental 
tobacco smoke (categorical, yes/no), alcohol consumption during pregnancy (categorical, yes/no), and history of low birth weight in 
previous pregnancies (categorical, yes/no). BC = black carbon; CI = confidence interval; IQR = interquartile range; LR test = likelihood 
ratio test; OR = odds ratio; SGA = small for gestational age.

(A) Birth weight
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Figure 14. (continued)

(B) SGA



 48

Traffic-Related Air Pollution and Birth Weight

associations for the women residing in neighborhoods with 
higher annual average household income (Figures 9 and 10). 
We also observed some indications of stronger associations 
for women with higher hair cortisol levels (i.e., higher stress); 
however, for the associations involving SGA, this pattern was 
less clear. For the self-­reported perceived stress, we did not 
observe a clear pattern (Figures 11 and 12).

For the associations of birth weight and SGA with phys-
ical activity, the patterns tended to vary across different air 
pollutants and between the subjective and objective measures 
of physical activity. For birth weight, while we observed that 
exposure to NO2 and BC had indications of potentially stron-
ger associations for women with higher self-­reported physical 
activity level (i.e., questionnaire-­based Metabolic Equivalent 
for Task), we did not observe a clear pattern for the objec-
tively measured physical activity level (i.e., monitoring-­based 
ENMO). On the other hand, for the PM2.5 exposure, we found 
consistent patterns for objective and subjective measures of 
physical activity, with both indicating potentially stronger 
associations among more physically active women. For PM2.5 
Fe and Cu content, while the objectively measured physical 
activity had some suggestions for a potentially stronger asso-
ciation for less physically active women, for the subjective 
measure of physical activity, we observed an opposite pattern 
with stronger associations for those who were more physically 
active. For SGA, we observed indications of a potentially 
stronger association for NO2 and PM2.5 exposure among more 
physically active women based on the objective measure of 
physical activity. For the rest of the air pollutants, we did not 
observe any clear pattern (Figure 13).

With regards to the COVID-19 pandemic, while we 
observed a suggestion for a potentially stronger association 
of NO2 and PM2.5 exposure with birth weight and SGA for 
those pregnancies that were entirely before the start of the 
pandemic (i.e., Group 1), there was no clear pattern for other 
air pollutants (Figure 14).

MITIGATION BY URBAN GREENNESS AND CANOPY

For birth weight, we observed some suggestions for poten-
tially weaker associations with NO2, BC, and PM2.5 Fe and Cu 
contents for participants with higher greenness (i.e., NDVI) 
across a 300-­m buffer around their home; however, for the 
greenness across 50 m around their home, we observed such a 
pattern only for BC. Moreover, for the greenness surrounding 
the road, while we observed a similar pattern for BC, for NO2, 
PM2.5, and PM2.5 Fe contents, we found an opposite pattern 
with potentially stronger associations for participants with 
higher greenness (Figure 15). For SGA, there were indications 
of a potentially weaker association with NO2, BC, and PM2.5 
for pregnant women with higher greenness in a 300-­m buffer 
around their homes; we did not observe a similar pattern for 
greenness in a 50-­m buffer around their homes. Furthermore, 
there were suggestions for a potentially stronger association 
between PM2.5 and SGA for participants with higher greenness 
around major roads in the vicinity of their home (Figure 16). 

None of the interaction terms between TRAP and greenness 
indicators were statistically significant (P values >0.1).

With regards to the canopy cover, while we found that the 
association between birth weight and BC exposure suggested 
weaker associations for the women with higher canopy vol-
ume within a 50-­m buffer around their homes, we did not 
observe such a pattern for the canopy volume within a 300-­m 
buffer around the home. In contrast, for PM2.5 Fe content, 
while we observed a potentially stronger association for 
women with higher canopy volume within a 300-­m buffer 
around their home, we did not observe such a pattern for 
the canopy volume within a 50-­m buffer (Figure 15). For the 
association of SGA with NO2, BC, PM2.5, and PM2.5 Fe and Cu 
contents, there were indications of stronger associations for 
participants with higher canopy volume within a 50-­m buffer 
of their homes; however, for the canopy cover within a 300-­m 
buffer around the home, there was an opposite pattern for BC 
and no clear pattern for PM2.5. For the canopy volume around 
the major roads in the vicinity of women’s homes, there were 
suggestions for potentially stronger associations of exposure 
to NO2, PM2.5, and PM2.5 Fe and Zn content with birth weight, 
and PM2.5 with SGA for women with higher canopy volume. 
For the rest of the associations between TRAP and birth weight 
and SGA, we did not find any clear pattern across the strata of 
home- and road-­surrounding canopy cover (Figure 16). None 
of the interaction terms between TRAP and canopy volume 
indicators were statistically significant (Figures 15 and 16).

INCORPORATING EXPOSURE MEASUREMENT ERROR

Given the availability of the measured personal exposure 
to NO2, using passive samplers that could be used as the gold 
standard measure of personal exposure to NO2, we evaluated 
the impact of measurement error on the association of NO2 
with birth weight. These analyses were conducted using lin-
ear regression models with hospital as a categorical predictor 
(instead of mixed effects models with hospital as the random 
effect as used in the main analyses), and based on them, an 
IQR (i.e., 15.0 μg/m3) increase in the modeled NO2 exposure 
during the entire pregnancy (LUR model and for all micro-
environments combined) was associated with a decrease 
of –65.1  g (95% CI: –102.0 to –28.3) in birth weight. After 
controlling for the exposure measurement error, the estimated 
association became stronger with a wider confidence interval: 
–242.5 g (–384.5 to –113.7).

WINDOW(S) OF VULNERABILITY

There were generally two windows of vulnerability: one at 
the end of the first trimester and the beginning of the second 
trimester, and the other at the end of the third trimester. While 
we observed statistically significant associations with lower 
birth weight during the first vulnerability window period 
for exposures to NO2, PM2.5, and PM2.5 Cu and Fe contents, 
for BC exposure, we observed statistically significant asso-
ciations during the second vulnerability window period 
(Figure 17). After removing gestational age at delivery from 

Text continues on page 63
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Figure 15. Adjusted change in birth weight (g) associated with one IQR increase in exposure to NO2 (µg/m3), BC (µg/m3), PM2.5 (µg/m3), 
PM2.5 Cu content (ng/m3), PM2.5 Fe content (µg/m3), and PM2.5 Zn content (ng/m3) stratified by (A) tertiles of residential surrounding 
greenness, (B) tertiles of greenness surrounding major roads within 200 m from the residential address, (C) tertiles of residential 
surrounding canopy volume, and (D) tertiles of canopy volume surrounding major roads within 200 m from the residential address. 
Change in birth weight is adjusted for maternal age (continuous, years), education level (categorical, university degree: yes/no), body 
mass index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/no), active smoking during pregnancy 
(categorical, yes/no), exposure to environmental tobacco smoke (categorical, yes/no), alcohol consumption during pregnancy (categorical, 
yes/no), gestational age at delivery (continuous, days), history of low birth weight in previous pregnancies (categorical, yes/no), and sex 
of the neonate (girl vs. boy). BC = black carbon; CI = confidence interval; IQR = interquartile range; LR test = likelihood ratio test.

(A) Residential surrounding greenness (50-m and 300-m buffers)
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Figure 15. (continued)

(B) Greenness surrounding major roads in vicinity of residential address
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Figure 15. (continued)

(C) Residential surrounding canopy volume (50-m and 300-m buffers)
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Figure 15. (continued)

(D) Canopy volume surrounding major roads in vicinity of residential address
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Figure 16. The adjusted odds ratio of SGA associated with one IQR increase in exposure to NO2 (µg/m3), BC (µg/m3), PM2.5 (µg/m3), 
PM2.5 Cu content (ng/m3), PM2.5 Fe content (µg/m3), and PM2.5 Zn content (ng/m3) stratified by (A) tertiles of residential surrounding 
greenness, (B) tertiles of greenness surrounding major roads within 200 m from the residential address, (C) tertiles of residential 
surrounding canopy volume, and (D) tertiles of canopy volume surrounding major roads within 200 m from the residential address. 
The OR of SGA is adjusted for maternal age (continuous, years), education level (categorical, university degree: yes/no), body mass 
index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/no), active smoking during pregnancy 
(categorical, yes/no), exposure to environmental tobacco smoke (categorical, yes/no), alcohol consumption during pregnancy 
(categorical, yes/no), and history of low birth weight in previous pregnancies (categorical, yes/no). BC = black carbon; CI = confidence 
interval; IQR = interquartile range; LR test = likelihood ratio test; OR = odds ratio; SGA = small for gestational age.

(A) Residential surrounding greenness (50-m and 300-m buffers)
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Figure 16. (continued)

(B) Greenness surrounding major roads in vicinity of residential address (200-m buffer)
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Figure 16. (continued)

(C) Residential surrounding canopy volume (50-m and 300-m buffer)
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Figure 16. (continued)

(D) Canopy volume surrounding major roads in vicinity of residential address
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Figure 17. Adjusted change in birth weight (g) associated with one IQR increase in exposure to (A) NO2 (µg/m3), (B) BC (µg/m3),  
(C) PM2.5 (µg/m3), (D) PM2.5 Cu content (ng/m3), (E) PM2.5 Fe content (µg/m3), and (F) PM2.5 Zn content (ng/m3) during each week of 
pregnancy. Change in birth weight is adjusted for maternal age (continuous, years), education level (categorical, university degree: 
yes/no), body mass index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/no), active smoking 
during pregnancy (categorical, yes/no), exposure to environmental tobacco smoke (categorical, yes/no), alcohol consumption during 
pregnancy (categorical, yes/no), gestational age at delivery (continuous, days), history of low birth weight in previous pregnancies 
(categorical, yes/no), and sex of the neonate (girl vs. boy). BC = black carbon; IQR = interquartile range.

(A) NO2
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Figure 17. (continued)

(B) BC
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Figure 17. (continued)

(C) PM2.5
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Figure 17. (continued)

(D) PM2.5 Cu content
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Figure 17. (continued)

(E) PM2.5 Fe content
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Figure 17. (continued)

(F) PM2.5 Zn content



 63

P. Dadvand and J. Sunyer et al.

our distributed lag nonlinear models, these two windows of 
vulnerability were still evident; however, the associations for 
NO2 in the first window and BC in the second window lost 
their statistical significance. On the other hand, we observed 
statistically significant inverse associations for PM2.5 Zn con-
tent in the first window (Appendix 29). For SGA, we observed 
a similar pattern of associations to those for birth weight 
except for NO2, for which we did not observe any statistically 
significant associations (Appendix 30).

MEDIATION ANALYSES

In the first step, we evaluated the associations of TRAP 
exposure between conception and the time of the Doppler 
ultrasound examination in the third trimester (based on LUR 
models and all microenvironments combined) with Doppler 
measures of placental function. Among all these evaluated 
associations, we found a statistically significant detrimental 
association between PM2.5 and umbilical artery PI (Figure 18). 
In the next step, we evaluated the statistical significance of 
the interaction term between PM2.5 and umbilical artery PI 
using a likelihood ratio test, which showed no statistically 
significant interactions (interaction P values of 0.26 and 0.46 
for associations with birth weight and SGA, respectively). 
Finally, we evaluated the proportion of our observed associ-
ations of PM2.5 with birth weight and SGA that was mediated 
by the umbilical artery PI. We estimated that umbilical artery 
PI could explain 9.1% (95% CI: −0.5% to 35.4%) and 3.5% 
(−0.6% to 18.0%) of the associations of PM2.5 with birth 
weight and SGA, respectively.

MULTIPOLLUTANT MODELS

Three Air Pollutants

For birth weight as the outcome, when we included NO2, 
BC, and PM2.5 as predictors in the same mixed effects model, 
we observed VIF values of 3.74, 2.43, and 2.71 for these expo-
sures, respectively, which could indicate a potential multiple 
collinearity issue. We therefore applied alternative methods 
to assess their associations. As presented in Figure  19, all 
three methods indicated an association between NO2 and 
birth weight (although the association in the Bayesian JAGS 
analysis was not statistically significant), whereas the associ-
ations for BC and PM2.5 became inconclusive.

For SGA, we also observed indications of multiple collin-
earity, with VIF values of 3.97, 2.53, and 2.78 for NO2, BC, and 
PM2.5, respectively. When using the alternative methods, we 
generally observed some suggestions for a potentially slightly 
stronger association for PM2.5 (Figure 20).

Disentangling Effects of TRAP and Noise on Fetal 
Growth

In models with one air pollutant and one indicator of noise 
exposure, the VIF values were not indicative of a high likeli-
hood of multiple collinearity (Figures 21–24 and Appendices 

31–59). We therefore applied the mixed effect models that 
were used in our main analyses of TRAP and fetal growth 
association to develop our bipollutant models, including both 
TRAP and noise exposures.

Models including both modeled TRAP exposure (LUR 
models) in all microenvironments combined and modeled 
traffic-­related noise levels (Lden) at home and the workplace 
showed that after controlling for the noise exposure, the 
inverse associations of exposure to NO2, PM2.5, and PM2.5 Cu 
and Fe content with birth weight stayed statistically signifi-
cant. Noise exposure was also inversely associated with birth 
weight, but none of its associations attained statistical signif-
icance (Figure 21). For SGA, while higher exposures to NO2, 
BC, and PM2.5 were associated with a statistically significant 
increased risk of SGA, the associations for the noise exposure 
were not statistically significant (Appendix 31). After further 
adjustment of these models for the noise sensitivity (n = 886 
participants) or noise protection (i.e., using earplugs [n = 874 
participants], closing window blinds [n = 875 participants], 
or closing windows, n = 878 participants]), we generally 
observed similar patterns in terms of direction and strength 
of associations (Appendices 32–39); however, associations of 
exposure to BC and PM2.5 Fe content with birth weight and 
exposure to BC and NO2 with SGA lost their statistical signif-
icance after further adjustment of models for using earplugs 
and closing window blinds or windows. Additionally, the 
association of PM2.5 and SGA lost its statistical significance 
after further adjustment of the analysis for closing windows 
(Appendix 39). Moreover, in models further adjusted for 
noise sensitivity, the associations of exposure to PM2.5 Fe con-
tent with birth weight (compared to those in Figure 21) and 
exposure to NO2, BC, and PM2.5 with SGA lost their statistical 
significance. On the other hand, the inverse association of 
modeled noise exposure and birth weight attained statistical 
significance in the joint models with PM2.5 Zn content, after 
further adjustment for noise sensitivity, using earplugs, and 
closing window blinds or windows. Additionally, limiting 
the analyses to 999 participants who had modeled noise 
data for at least 75% of their pregnancy periods (Appendices 
40–41), the pattern of associations was similar to the models 
including all participants; however, the association of BC 
with SGA lost its statistical significance.

In models including modeled TRAP at home (LUR models) 
and measured noise levels (Lden) at home in the subset of par-
ticipants that had data on both exposures (n = 490), we gener-
ally observed inverse associations between birth weight and 
the exposure to TRAP and noise, with associations for PM2.5 
being statistically significant (Figure 22). For SGA, we found 
an increased risk of SGA associated with exposure to noise in 
models including PM2.5 Cu or Fe content (Appendix 42). The 
results of these analyses after further adjustment of models for 
noise sensitivity and noise protection (i.e., using earplugs and 
closing window blinds or windows) were generally in line of 
the findings of the main analyses; however, the associations of 
noise exposure with SGA in models including PM2.5 Cu or Fe 
content lost their statistical significance (Appendices 43–50).
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Figure 18. The adjusted change in pulsatility index associated with one IQR increase in exposure to NO2 (µg/m3), BC (µg/m3),  
PM2.5 (µg/m3), PM2.5 Cu content (ng/m3), PM2.5 Fe content (µg/m3), and PM2.5 Zn content (ng/m3) between conception and the time of 
Doppler ultrasound examination, separately for the (A) uterine artery, (B) umbilical artery, (C) middle cerebral artery, and  
(D) cerebroplacental ratio. The change in pulsatility index is adjusted for maternal age (continuous, years), education level (categorical, 
university degree: yes/no), body mass index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/
no), active smoking during pregnancy (categorical, yes/no), exposure to environmental tobacco smoke (categorical, yes/no), alcohol 
consumption during pregnancy (categorical, yes/no), history of low birth weight in previous pregnancies (categorical, yes/no), and sex 
of the neonate (girl vs. boy). BC = black carbon; CI = confidence interval; IQR = interquartile range.

(A) Uterine artery

(C) Middle cerebral artery

(B) Umbilical artery

(D) Cerebroplacental ratio
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Figure 19. Adjusted change in birth weight (g) associated with one IQR increase in exposure to NO2 (µg/m3), BC (µg/m3), and PM2.5 (µg/m3)  
in the three-pollutant models. Change in birth weight is adjusted for maternal age (continuous, years), education level (categorical, 
university degree: yes/no), body mass index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/
no), active smoking during pregnancy (categorical, yes/no), exposure to environmental tobacco smoke (categorical, yes/no), alcohol 
consumption during pregnancy (categorical, yes/no), gestational age at delivery (continuous, days), history of low birth weight in 
previous pregnancies (categorical, yes/no), and sex of the neonate (girl vs. boy). BC = black carbon; CI = confidence interval; IQR 
= interquartile range; mixed models = mixed effects models as used in the main analyses, but including all three air pollutants 
simultaneously for comparison; JAGS = Just Another Gibbs Sampler; ridge = Ridge regression model; Lasso = least absolute shrinkage 
and selection operator regression model. For NO2 using the Lasso method, the upper CI <0 at 3 decimals.

Models including modeled TRAP at home (LUR models) 
and measured noise intermittency ratio at home (in the sub-
set of participants that had data on both exposures [n = 507]) 
generally showed inverse associations for the exposure to air 
pollutants and noise with birth weight, where associations 
of NO2 and PM2.5 with birth weight were statistically signif-
icant (Figure  23). For SGA, none of the associations were 
statistically significant for the traffic-­related air pollutants; 
however, there was a statistically significant increased risk 
of SGA associated with the noise intermittency ratio in the 
model that included BC (Appendix 51). The inverse associ-
ation between PM2.5 exposure and birth weight retained sta-
tistical significance after we further adjusted the models for 
noise sensitivity and noise protection (i.e., using earplugs, 
closing window blinds or windows) (Appendices 52–55). 
The rest of the associations between TRAP and noise inter-
mittency ratio and birth weight were similar to those of the 
main analyses. The association of the noise intermittency 
ratio and SGA in models including BC lost its statistical 

significance after further adjustment of analyses for using 
earplugs or closing windows (Appendices 56–59). On the 
other hand, the association between the noise intermittency 
ratio and SGA gained statistical significance in the model 
including NO2 after further adjustment for the noise sensi-
tivity (Appendix 56).

Models including both modeled air pollutant exposure 
(LUR models) at home and noise annoyance due to traffic 
at home showed inverse associations for TRAP exposures 
and noise annoyance with birth weight, with statistically 
significant associations for exposure to all air pollutants 
besides PM2.5 Zn content. Noise annoyance was also inversely 
associated with birth weight, but none of these associations 
were statistically significant (Figure  24). For SGA, higher 
exposures to NO2, BC, and PM2.5 were associated with a 
statistically significant increased risk of SGA; however, the 
associations for noise annoyance were not statistically signif-
icant (Appendix 60).
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Figure 20. Adjusted OR of SGA associated with one IQR increase in exposure to NO2 (µg/m3), BC (µg/m3), and PM2.5 (µg/m3) in the 
three-pollutant models. The OR of SGA is adjusted for maternal age (continuous, years), education level (categorical, university degree: 
yes/no), body mass index (BMI) at the first trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/no), active smoking 
during pregnancy (categorical, yes/no), exposure to environmental tobacco smoke (categorical, yes/no), alcohol consumption during 
pregnancy (categorical, yes/no), and history of low birth weight in previous pregnancies (categorical, yes/no). BC = black carbon;  
CI = confidence interval; IQR = interquartile range; JAGS = Just Another Gibbs Sampler; mixed models = mixed effects models as used 
in the main analyses, but including all three air pollutants simultaneously for comparison; OR = odds ratio; ridge = Ridge regression 
model; Lasso = least absolute shrinkage and selection operator regression model; SGA = small for gestational age.

DISCUSSION AND CONCLUSIONS

SUMMARY OF MAIN FINDINGS

We established a cohort of pregnant women in Barce-
lona, Spain (2018–2021), and comprehensively evaluated 
the association of maternal exposure to TRAP with fetal 
growth, identified the relevant windows of exposure for this 
association, evaluated its modification by household- and 
neighborhood-­level SES, stress, physical activity, and the 
timing of conception and delivery in relation to the COVID-19 
pandemic lockdown, disentangled the association of noise as 
a co-­exposure, explored the role of placental function as an 
underlying mechanism, and evaluated the potential of urban 
green as a mitigating factor.

•	 We found that higher exposure to NO2, BC, PM2.5, and 
PM2.5 Cu and Fe contents were generally associated 
with reduced birth weight, with statistically significant 
associations mainly observed for exposure at home and 

all microenvironments combined. For NO2 and BC, we 
found statistically significant associations for exposure 
estimates by all models (dispersion, LUR, and hybrid 
models) in these two microenvironments. For PM2.5 and 
its Cu and Fe contents, we observed statistically signifi-
cant associations only for estimates made by LUR models.

•	 On the other hand, exposure to the PM2.5 Zn content at 
the workplace was associated with an increased birth 
weight only when this exposure was estimated based on 
the hybrid model.

•	 In addition to the modeled TRAP, we also observed 
reduced birth weight in association with objective mea-
surements of home-­outdoor, home-­indoor, and personal 
NO2 exposure levels.

•	 We observed a similar pattern of associations for an 
inhaled dose of these pollutants as well as for SGA and 
trajectories of fetal growth, but with a lower number of 
statistically significant associations.
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Figure 21. Adjusted change in birth weight (g) associated with one IQR increase in exposure to NO2 (µg/m3), BC (µg/m3), PM2.5 (µg/m3), 
PM2.5 Cu content (ng/m3), PM2.5 Fe content (µg/m3), PM2.5 Zn content (ng/m3), and noise (Lden) in the two-pollutant models, including 
modeled air pollutants and modeled traffic-related noise levels (both at all microenvironments combined). Change in birth weight is 
adjusted for maternal age (continuous, years), education level (categorical, university degree: yes/no), body mass index (BMI) at the first 
trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/no), active smoking during pregnancy (categorical, yes/no), exposure 
to environmental tobacco smoke (categorical, yes/no), alcohol consumption during pregnancy (categorical, yes/no), gestational age at 
delivery (continuous, days), history of low birth weight in previous pregnancies (categorical, yes/no), and sex of the neonate (girl vs. 
boy). BC = black carbon; CI = confidence interval; IQR = interquartile range; Lden = average noise levels for day+evening+night; VIF = 
variance inflation factor.

•	 All in all, in the single-­pollutant models, we observed a 
consistent pattern of associations for the NO2 exposures, 
which was in line with the findings of our multipollutant 
(i.e., NO2, BC, and PM2.5) models, which showed that NO2 
was the only air pollutant to remain statistically signifi-
cantly associated with birth weight. However, for SGA, 
in the multipollutant models, none of the air pollutants 
showed a statistically significant association.

•	 When including one air pollutant and one noise exposure 
metric at a time, our multipollutant models revealed that 
the detrimental association of air pollutants with birth 
weight was generally present after controlling for the 
noise exposure. The results of these models with SGA as 
the outcome were less conclusive.

•	 We found suggestions for a potentially stronger associa-
tion between TRAP and fetal growth for pregnant women 
with a university degree (i.e., higher household SES), 
those residing in neighborhoods with higher annual 

average household income, and those having higher hair 
cortisol levels (i.e., higher stress).

•	 We also observed a potentially stronger association 
between NO2 exposure and fetal growth for those 
pregnancies that were entirely before the start of the 
pandemic; however, for BC and PM2.5, we did not observe 
such a pattern.

•	 For physical activity as an effect modifier, and urban 
greenness and canopy cover as effect mitigators, we 
observed mixed patterns, depending on air pollutant, 
indicator of fetal growth, and the method or metrics 
used to characterize physical activity (i.e., objective vs. 
subjective methods) and urban green (i.e., greenness vs. 
canopy cover and surrounding home vs. surrounding 
nearby major roads).

•	 Similarly, we did not observe a clear variation in the 
associations by the timing of the pregnancy with regard 
to the COVID-19 pandemic; however, there were some 
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Figure 22. Adjusted change in birth weight (g) associated with one IQR increase in exposure to NO2 (µg/m3), BC (µg/m3), PM2.5 (µg/m3), 
PM2.5 Cu content (ng/m3), PM2.5 Fe content (µg/m3), PM2.5 Zn content (ng/m3), and noise (Lden) in the two-pollutant models, including 
modeled air pollution and measured noise levels (both at home and outdoor). Change in birth weight is adjusted for maternal age 
(continuous, years), education level (categorical, university degree: yes/no), body mass index (BMI) at the first trimester (continuous, 
kg/m2), parity (categorical, nulliparous: yes/no), active smoking during pregnancy (categorical, yes/no), exposure to environmental 
tobacco smoke (categorical, yes/no), alcohol consumption during pregnancy (categorical, yes/no), gestational age at delivery 
(continuous, days), history of low birth weight in previous pregnancies (categorical, yes/no), and sex of the neonate (girl vs. boy). BC 
= black carbon; CI = confidence interval; IQR = interquartile range; Lden = average noise levels for day+evening+night; VIF = variance 
inflation factor.

suggestions for potentially stronger associations of NO2 
and perhaps PM2.5 exposure with fetal growth for those 
pregnancies that were entirely before the start of the 
pandemic.

•	 With regards to the windows of vulnerability, we found 
two potential windows: one at the end of the first and 
beginning of the second trimester, and one at the end of 
the third trimester, which were consistent for associations 
of different pollutants with both birth weight and SGA.

•	 Our mediation analyses suggested that just a tiny 
proportion of the association between TRAP and fetal 
growth could be explained by changes in the placenta’s 
function.

OUR FINDINGS IN THE BROADER CONTEXT

Our measured home-­indoor and personal levels of NO2 
were generally lower compared to those of our previous study 

in Barcelona (2008–2009).92 That study included 65 pregnant 
women recruited from Hospital Clínic de Barcelona (one of 
the BiSC recruiting hospitals) in their second or third tri-
mester.92 We conducted campaigns of seven-­day sampling of 
home-­outdoor, home-­indoor, and personal NO2 levels (using 
passive NO2 samplers) between November 2008 and October 
2009. The average (SD) of the home-­outdoor, home-­indoor, 
and personal NO2 levels were 36.5 (11.1) μg/m

3, 38.8 (17.0) 
μg/m3, and 34.9 (12.3) μg/m3, respectively. In comparison, 
these levels for our third trimester campaign were 37.1 (12.2) 
μg/m3, 23.3 (8.9) μg/m3, and 27.2 (9.6) μg/m3, respectively. 
With respect to our modeled air pollution levels, we observed 
relatively higher estimated exposure levels by LUR models 
compared to dispersion models, with hybrid models’ esti-
mates being between these two levels. Given that hybrid 
models were essentially a combination of dispersion and 
LUR models, we could expect that their estimated levels fall 
within the range of levels estimated by dispersion and LUR 
models. Our observed higher estimated levels by LUR models 
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compared to dispersion models were also observed in previ-
ous studies, including two comparing ESCAPE LUR models 
with dispersion models93,94 and one comparing the ELAPSE 
(Effects of Low-­level Air Pollution: A Study in Europe) 
project’s hybrid LUR models with interpolation-­dispersion 
models.95 Differences in predicted exposure concentrations 
between LUR and dispersion models can be attributed to 
inherent distinctions in their methodologies.30,96,97

Our observed detrimental associations between exposure 
to TRAP and fetal growth are in line with the available evi-
dence. A systematic review and meta-­analysis by Boogaard 
and colleagues (2022) found a reduction in term birth weight 
associated with exposure to PM2.5, NO2, and elemental carbon; 
however, the combined estimate was statistically significant 
only for the PM2.5 exposure (combined estimate of –17.3  g 
[95% CI: –33.2 to –1.5] per 5-μg/m3 increase in PM2.5, –3.2 g 
[–11.0 to 4.6] per 10-μg/m3 increase in NO2, and –2.6 g [–6.1 
to 0.9] per 1-μg/m3 increase in elemental carbon).9 In compar-

ison, we found a reduction in birth weight of –57.1 g (–97.4 
to –18.5) per 5.1-μg/m3 increase in exposure to PM2.5, –60.0 g 
(–98.6 to –25.4) per 15.3-μg/m3 increase in exposure NO2, and 
–32.3 g (–63.0 to –3.0) per 0.6-μg/m3 increase in exposure to 
BC at home (based on LUR models). Similarly, their meta-­
analyses showed an increased risk of SGA (combined relative 
risk of 1.09 [1.04–1.14]) associated with exposure to PM2.5; 
however, the combined estimates for exposure to NO2 (1.00 
[0.98–1.02]) and elemental carbon (1.02 [0.92–1.14]) were not 
statistically significant. In comparison, we found odds ratios 
of 1.47 (1.09–1.99), 1.37 (1.05–1.79), and 1.28 (1.03–1.58) 
for home exposure to PM2.5, NO2, and BC, respectively. Our 
observed stronger associations could be due to contextual 
differences in the study setting between our study and the 
included studies in the meta-­analyses, or methodological dif-
ferences, such as a more refined exposure assessment in our 
study. We also found that higher exposures to NO2, BC, PM2.5, 
and PM2.5 Cu and Fe contents were generally associated with 
a decelerated trajectory of fetal growth; however, the strength 

Figure 23. Adjusted change in birth weight (g) associated with one IQR increase in exposure to NO2 (µg/m3), BC (µg/m3), PM2.5 (µg/m3), 
PM2.5 Cu content (ng/m3), PM2.5 Fe content (µg/m3), PM2.5 Zn content (ng/m3), and noise intermittency ratio in the two-pollutant models 
including modeled air pollution and measured noise intermittency ratio (both at home-outdoor). Change in birth weight is adjusted 
for maternal age (continuous, years), education level (categorical, university degree: yes/no), body mass index (BMI) at the first 
trimester (continuous, kg/m2), parity (categorical, nulliparous: yes/no), active smoking during pregnancy (categorical, yes/no), exposure 
to environmental tobacco smoke (categorical, yes/no), alcohol consumption during pregnancy (categorical, yes/no), gestational age at 
delivery (continuous, days), history of low birth weight in previous pregnancies (categorical, yes/no), and sex of the neonate (girl vs. 
boy). BC = black carbon; CI = confidence interval; IQR = interquartile range; VIF = variance inflation factor.
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and statistical significance of the associations varied for 
different indicators of fetal growth, air pollutants, exposure 
modeling methods, and microenvironments. In our previous 
study (2004–2006) with a sample of 562 pregnant women in 
Sabadell, a city close to Barcelona, we observed that a higher 
exposure to NO2 was associated with a decelerated growth 
of head circumference, abdominal circumference, biparietal 
diameter, and estimated fetal weight only among pregnant 
women who spent the majority of their time (>22 hours a 
day) at home.98 Other studies have also associated maternal 
exposure to NO2 and PM2.5 with slower fetal growth, although 
these results are heterogeneous.99–102

In addition to NO2 and BC, which could be considered as 
indicators of tailpipe emissions, we also evaluated the associ-
ation with fetal growth of PM2.5 Fe, Cu, and Zn contents, which 
could be considered as indicators of nontailpipe emissions. 

Our observed detrimental associations between PM2.5 Fe, and 
Cu contents were in line with three previous studies report-
ing that these exposures were associated with decreased birth 
weight and increased risk of LBW.103–105 Similarly, a large 
study including eight birth cohorts across Europe reported 
an inverse association between exposure to PM2.5 Fe and Cu 
contents and head circumference; however, they did not find 
any statistically significant associations between these two 
exposures and birth weight or term LBW.106 A large study in 
California reported an increased risk of term LBW in associ-
ation with PM2.5 reactive oxygen species based on measured 
PM2.5 Cu and Fe contents combined.107 In line with these find-
ings, another large study in Atlanta reported a reduction in 
birth weight in association with the third-­trimester exposure 
to PM2.5 “water-­soluble metal index,” including PM2.5 Cu, Fe, 
Cr, Mn, Ni, and V contents combined.108 For exposure to PM2.5 
Zn content, we generally observed beneficial associations 

Figure 24. Adjusted change in birth weight (g) associated with one IQR increase in exposure to NO2 (µg/m3), BC (µg/m3), PM2.5 (µg/m3), 
PM2.5 Cu content (ng/m3), PM2.5 Fe content (µg/m3), and PM2.5 Zn content (ng/m3) and traffic-related noise annoyance in the two-
pollutant models, including modeled air pollution and noise annoyance (both at home). Change in birth weight is adjusted for 
maternal age (continuous, years), education level (categorical, university degree: yes/no), body mass index (BMI) at the first trimester 
(continuous, kg/m2), parity (categorical, nulliparous: yes/no), active smoking during pregnancy (categorical, yes/no), exposure to 
environmental tobacco smoke (categorical, yes/no), alcohol consumption during pregnancy (categorical, yes/no), gestational age at 
delivery (continuous, days), history of low birth weight in previous pregnancies (categorical, yes/no), and sex of the neonate (girl vs. 
boy). BC = black carbon; CI = confidence interval; IQR = interquartile range; VIF = variance inflation factor.
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with fetal growth; however, the associations were statisti-
cally nonsignificant. While some of the previous studies have 
reported detrimental associations between this exposure and 
birth weight,103,109 head circumference,106 and higher risk of 
LBW,109,110 others did not find any statistically significant 
association for birth weight106 or term LBW.103,105–107 A part 
of this inconsistency in the reported associations could be 
explained by the heterogeneity in the available evidence 
on the effect of Zn on fetal growth, as reported by a recent 
systematic review and meta-­analysis of this evidence with 
regard to the association of Zn levels in biological samples 
of pregnant women and their fetuses with fetal growth.111 
Their meta-­analyses showed that while maternal as well as 
cord blood Zn levels were beneficially associated with birth 
weight, their associations with SGA were not statistically 
significant.111

Apart from a few exceptions, we mainly observed statis-
tically significant associations between TRAP exposure at 
home and all microenvironments combined. This observa-
tion could be, in part, explained by the fact that participants 
spent much of their time at home; therefore, they received 
a considerable part of their daily exposure at home. In this 
context, the findings for all microenvironments combined 
could also be influenced by the exposure at home, which 
contributed the most to this total exposure. For the exposure 
at the workplace and during commuting, we also observed 
mainly detrimental associations, which were not statistically 
significant. The lack of statistical significance for these asso-
ciations could be because of the potentially larger exposure 
misclassification in these two microenvironments due to, 
for example, occupational sources of air pollution and the 
shorter exposure periods in these environments, and also 
because of the smaller sample size and hence lower statistical 
power of these analyses. All in all, while assessing exposure 
in microenvironments other than home by combining time–
activity patterns with modeling approaches could potentially 
reduce exposure misclassification, our findings suggested that 
relying on exposure levels at only home could provide similar 
association estimates. This might indicate that future studies 
can apply home-­outdoor levels for assessing air pollution 
exposure when data on time–activity patterns or the location 
of other relevant microenvironments and commuting routes 
are not available. For NO2, we also observed that association 
estimates for home-­outdoor levels (measured during two 
weeks in the entire pregnancy) were comparable with those 
of modeled home-­outdoor and total exposure levels. These 
findings could suggest that, in the lack of enough resources or 
necessary infrastructure and data, where elaborate modeling 
approaches are not feasible, measuring home-­outdoor NO2 
levels for a few weeks distributed across the pregnancy (e.g., 
one week during each trimester) can be considered as an 
alternative way to assess prenatal exposure to air pollution.

We are not aware of any previous study reporting on the 
association of the inhaled dose of TRAP with fetal growth. It 
is, therefore, not possible to compare our findings with those 
of previous studies. With regard to personal exposure to NO2, 

a previous study included 288 Brazilian pregnant women 
who used passive samplers to measure personal NO2 levels 
for 7–18 days during each trimester found no association 
between NO2 exposure and birth weight.

18

Our findings suggested a potentially stronger association 
between TRAP and fetal growth for pregnant women from 
higher SES groups in terms of maternal education and neigh-
borhood average household income. In a systematic review 
of the available evidence on the potential modification of the 
impact of particulate air pollution on pregnancy outcomes, 
the authors found that while three studies had reported stron-
ger associations with LBW and SGA for women with lower 
education, one study had reported a stronger association with 
LBW for women with higher education, and seven studies 
had not reported a notable difference in the associations with 
LBW and SGA across strata of maternal education.112 For 
neighborhood SES, they found two studies reporting on the 
modification of the association between particulate air pollu-
tion and LBW, both of which suggested a stronger association 
for women residing in more deprived neighborhoods, in con-
trast with our findings.112 We do not have a clear explanation 
for our observed pattern; however, it is worth mentioning that 
in Barcelona, neighborhoods with higher income tend to be in 
the center of the city and have higher levels of air pollution, 
including NO2 and PM2.5.

113

To our knowledge, there is no available study on the 
modification of the TRAP and fetal growth association by 
physical activity, or by the COVID-19 pandemic. Our find-
ings, therefore, require further confirmation by future studies. 
The association of physical activity with fetal growth is 
complex. While moderate physical activity during pregnancy 
has been reported to be associated with higher birth weight, 
vigorous physical activity has been associated with lower 
birth weight.114 Another potential facet is that physical activ-
ity enhances uptake and deposition of air pollutants, possibly 
augmenting their harmful effects.13,14 This complexity might 
explain, at least in part, the heterogeneous results that we 
observed in our stratified analyses for the physical activity. 
Similarly, the COVID-19 pandemic and its resulting changes 
in TRAP levels and maternal lifestyle (e.g., time–activity 
patterns, diet, and stress) could theoretically influence the 
association between TRAP and fetal growth.

Regarding maternal stress, while we found some indica-
tions of a potentially stronger association between TRAP and 
birth weight for those women with higher hair cortisol levels, 
for perceived stress (measured by the PSS-10), we did not 
observe such a pattern. Psychological stress has been suggested 
to be involved in vulnerability to the adverse health effects of 
air pollution;11 however, there is no available epidemiological 
study on the modification of the association between TRAP 
and fetal growth by maternal cortisol levels. A recent study in 
the United States reported stronger associations of PM2.5 and 
NO2 exposure with reduced birth weight among women with 
higher perceived stress (measured by the PSS-10).115 They 
also found a longer window of vulnerability for women with 
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high perceived stress.115 Although the hair cortisol level has 
been shown to increase in response to stressors, the correla-
tion between hair cortisol and self-­reports of perceived stress 
could be low, especially in moderately stressed individuals 
like our study participants.116 Part of this low correlation 
could be explained by subjectivity issues due to differences 
among individuals and their perception of stress. On the other 
hand, the association between hair cortisol and stress is more 
evident when less subjective measures of stress, such as the 
number of stressful or negative life events, are used.116 How-
ever, the substantial body of evidence based on self-­reported 
validated questionnaires of perceived stress (e.g., PSS-10) 
supports the usefulness of such data. In this sense, mainly in 
studies of moderately stressed participants, perceived stress 
and hair cortisol levels may reveal complementary processes 
related to the pathology of stress.

For the potential mitigation of the association between 
TRAP and fetal growth by urban green, we observed a mixed 
pattern. In our previous study in Barcelona (2001–2005), we 
found some suggestions for a weaker association between 
residential proximity to major roads (i.e., living within 200 m 
of a major road) and term LBW when there was a higher 
number of trees around that road.47 A study across the Alpine 
region in Austria and Italy did not find a clear pattern of the 
modification of the association between NO2 exposure and 
birth weight by residential surrounding greenness measured 
as average NDVI.117 Similarly, two other studies in the Greater 
Taipei Area,118 Taiwan, and California119 did not find any 
interaction between air pollution and greenness in associa-
tion with fetal growth.

With respect to the window of vulnerability, a recent (2023) 
systematic review and meta-­analysis of the available evidence 
on the association of PM2.5 exposure with adverse pregnancy 
outcomes showed statistically significant combined asso-
ciations between birth weight and PM2.5 exposure during 
the entire pregnancy as well as the third trimester, and also 
between SGA and PM2.5 exposure during the entire pregnancy 
as well as the second trimester.120 These findings are in line 
with our findings indicating two windows of vulnerability: 
one at the end of the first and beginning of the second trimester, 
and another one at the end of the third trimester. Our identified 
first window corresponds to the latest stages of the formation 
of the placenta,121 while the second window corresponds to 
the time when the highest fetal weight gain occurs.122

We found that higher exposure to PM2.5 was associated with 
higher umbilical artery PI, which could indicate an increased 
fetoplacental vascular resistance.123 Normally, umbilical artery 
PI decreases as pregnancy advances,124 and a high umbilical 
artery PI in the second125 and third126 trimesters has been asso-
ciated with impaired fetal growth, including reduced birth 
weight and higher risk of SGA. In this context, our mediation 
analysis showed that only 9% of our observed associations 
between PM2.5 and birth weight could be explained by higher 
umbilical artery PI associated with these exposures. Our 
previous study (2017–2018), based on personal measurements 
of NO2 exposure (using passive samplers) in a sample of 85 

pregnant women in Barcelona, did not find a statistically 
significant association between NO2 and umbilical artery PI, 
while it detected an association between this exposure and 
uterine artery PI.19 A study in the Netherlands did not find any 
association between NO2 exposure and umbilical artery PI or 
uterine artery PI; however, it found an association between 
PM10 exposure and umbilical artery PI.

17 Similarly, a study in 
Brazilian women did not detect any association between NO2 
exposure and umbilical artery PI, but it found an association 
between ozone exposure and umbilical artery PI.18 On the other 
hand, a study127 in China has shown an increased umbilical 
artery PI in association with PM2.5 oxidative potential, which 
is in line with our observed direct association between PM2.5 
exposure and umbilical artery PI. They also found that 33% 
(95% CI: 9% to 87%) of their observed association between 
PM2.5 oxidative potential and estimated fetal weight could 
be explained by the association between this exposure with 
the umbilical artery PI.127 We are not aware of any previous 
studies on the association of BC or PM2.5 Cu, Fe, or Zn content 
with placental function, or on the mediation of the association 
between our evaluated air pollutants and fetal growth by 
placental function.

Our multipollutant models, including modeled TRAP 
and noise exposure (in all microenvironments combined), 
together showed that while air pollutants (all but PM2.5 Zn 
content) remained statistically significantly associated with 
birth weight, the associations for noise exposure were not 
statistically significant. In our previous study that included 
6,438 pregnant women in Barcelona (2001–2005), we 
developed multipollutant models including TRAP (PM2.5), 
noise (based on the strategic noise map of Barcelona), and 
heat (based on land surface temperature), and we found that 
while exposure to TRAP was associated with increased risk 
of term LBW, the associations for noise and heat were not 
statistically significant.47 Similarly, a study in France found 
that in their two-­pollutant models, while higher exposure to 
PM10 was associated with a higher risk of SGA, the associa-
tion for the noise exposure was not statistically significant.128 
Likewise, a large study conducted in London, UK, found 
an increased risk of SGA associated with exposure to NO2, 
PM2.5, traffic exhaust-PM2.5, and traffic nonexhaust-PM2.5.

129 
Further adjustment of their analyses for noise exposure did 
not result in a notable change in these findings. In line with 
these findings, a systematic review and meta-­analysis of 
the evidence on the impact of noise exposure on pregnancy 
outcomes showed that there was no statistically significant 
association between noise exposure and birth weight or SGA, 
particularly after combining the analyses that were adjusted 
for air pollution.130 These observations could indicate a more 
important impact of TRAP on fetal growth compared to noise; 
however, they could also be due to a potentially higher degree 
of exposure misclassification for the noise exposure, which 
is more challenging to characterize. In this context, after 
further adjustment of our analyses for noise sensitivity and 
noise protection (i.e., using earplugs, closing window blinds 
or windows), our results were generally in line with the main 
analyses.



 73

P. Dadvand and J. Sunyer et al.

LIMITATIONS

FRONTIER faced some limitations and challenges. BiSC 
participants had slightly higher educational attainment com-
pared to the general population. While 69% of BiSC partici-
pants had a university degree, 64% of the Barcelona general 
population of 20–44-­year-­old women in Barcelona had a 
university degree in 2019. This difference could have slightly 
influenced the external validity of our findings. Moreover, the 
small number of LBW cases (n = 52) in the BiSC prevented 
us from analyzing LBW as one of our outcomes. Similarly, 
our stratified analyses had limited statistical power due to the 
relatively modest sample size in each stratum. With regards 
to our exposure assessment, while our dispersion models for 
NO2 could predict 65% of the variation in monitored NO2 
levels during BiSCAPE campaigns, they could predict only 
44% and 10% of our measured home-­outdoor and personal 
NO2 levels. In comparison, LUR models had an R

2 of 56% 
when predicting our measured home-­outdoor NO2 levels. 
The relatively low R2 for dispersion models when predicting 
home-­outdoor and particularly personal NO2 levels could 
have resulted in exposure misclassification, which, in 
turn, could have influenced our association estimates. This 
misclassification could be an explanation for the relatively 
weaker associations that we observed for NO2 exposure 
predicted by dispersion models compared to those of LUR 
and hybrid models. Furthermore, to measure home-­indoor 
NO2 levels, we had placed NO2 passive samplers in the 
bedroom. However, the placement in the bedroom might 
not properly reflect actual personal exposure because NO2 
levels might be higher in the living room or cooking area 
in those homes that have gas cooking stoves. Moreover, for 
the exposure measurement error correction, we used the 
personal NO2 exposure measurements as the gold standard; 
however, these measures were limited in that they were only 
assessed for a relatively short period and might not have been 
representative of the entire pregnancy. In our bipollutant 
models, including one that modeled TRAP exposure and 
noise pollution in all microenvironments combined, while 
each microenvironment had estimates for TRAP, the modeled 
noise levels were only recorded for the home and workplace, 
and thus the models did not include noise exposure during 
commuting. This discrepancy could have affected these 
bipollutant analyses. However, we also conducted other 
bipollutant TRAP and noise analyses, including three other 
measures of noise, and the results of all these analyses were 
generally consistent. Moreover, our multipollutant analyses 
did not account for potential nonlinear associations or 
interactions, which could have been relevant in our analyses. 
Finally, the COVID-19 pandemic imposed challenges on all 
aspects of our participant recruitment and data collection. It 
also forced us to change some of the data collection protocols. 
Even though these changes and the pandemic itself could 
have influenced our findings, our stratified analyses based on 
the timing of pregnancy during the pandemic did not show 
a consistent pattern of differences for different air pollutants 
and outcomes.

CONCLUDING REMARKS

In a cohort of 1,024 pregnant women in Barcelona, Spain 
(2018–2021), we found that higher maternal exposure to NO2, 
BC, PM2.5, and PM2.5 Cu and Fe, particularly at home and all 
microenvironments (i.e., home, workplace, and commuting 
route) combined, was generally associated with lower birth 
weight, higher risk of SGA, and a decelerated trajectory of 
fetal growth, although some of these associations were not 
statistically significant. These associations appeared to be 
stronger for women with higher SES and those with higher 
objective measures of psychological stress. For the COVID-19 
pandemic and physical activity, as effect modifiers, and urban 
greenness and canopy cover, as effect mitigators, we observed 
mixed patterns. In multipollutant models that included 
different measures of exposure to noise in addition to TRAP, 
the associations between TRAP and fetal outcomes remained 
consistent with those we observed in our main analyses. 
We found two potential windows of vulnerability for the 
association of TRAP with fetal growth: one at the end of the 
first trimester and the beginning of the second trimester, and 
another at the end of the third trimester. Finally, we observed 
that a tiny proportion of the associations between TRAP and 
fetal growth could be mediated through the impact of these 
air pollutants on fetoplacental hemodynamics (i.e., umbilical 
artery PI) as an indicator of placental function.

IMPLICATIONS OF FINDINGS

A recent systematic review and meta-­analysis of the 
available evidence on the health effects of TRAP conducted 
by the HEI Panel on the Health Effects of Long-Term Exposure 
to Traffic-Related Air Pollution9,73 concluded that the overall 
level of confidence for the association of TRAP with term 
LBW and SGA was moderate, and the association of TRAP 
with term birth weight was low. For individual associations, 
they assigned a (1) high level of confidence for the association 
of PM2.5 with term birth weight, (2) moderate level of confi-
dence for the association of NO2 and SGA, (3) low level of 
confidence for the associations of NO2 and elemental carbon 
(highly correlated with BC as both terms refer to the same 
pollutant, although the measurement technique differs) with 
term birth weight, and PM2.5 with SGA, and (4) very low level 
of confidence for the association of elemental carbon and 
SGA. The panel identified a lack of adjustment for important 
covariates, including maternal BMI and smoking, as one of the 
main sources of the risk of bias in their evaluated studies.73 In 
this context, FRONTIER controlled its analyses for these two 
factors together with a large array of other potentially impor
tant covariates. The panel also identified a lack of accounting 
for residential mobility during pregnancy as a common source 
of the risk of bias in the exposure assessment.73 FRONTIER 
not only accounted for residential mobility in the assessment 
of exposure, but also improved exposure assessment on other 
aspects as well. To date, a vast majority of epidemiological 
studies of the impacts of TRAP on fetal growth have: (1) relied 
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on assessment of exposure in only one microenvironment 
(mainly the home), overlooking the contribution of other 
microenvironments (e.g., workplace and commuting) to 
personal exposure; (2) not characterized and accounted for 
exposure misclassification; and (3) have relied on exposure 
levels (level of pollution to which the individual is exposed) 
instead of dose (level of pollution inhaled by the individual). 
FRONTIER developed an innovative framework integrating 
an objective characterization of time–activity patterns with 
three modeling approaches and personal and home-­outdoor 
monitoring of TRAP, to personalize exposure to TRAP at main 
microenvironments (home, work, and commuting), and trans-
form exposure levels in each microenvironment to inhaled 
dose. It also used personal exposure measures to characterize 
exposure misclassification and account for it in the analyses. 
This approach provided a full-­chain perspective from trans-
port and emissions to exposure to inhaled dose, which has 
important regulatory implications by enabling policymakers 
to implement finely targeted interventions. In this context, 
the evaluation of the associations for tailpipe and nontailpipe 
emissions, separating the impact of these pollutants from that 
of noise, identifying the more susceptible pregnancies and 
windows of vulnerability, and potential mitigation factors by 
FRONTIER, could help further fine-­tune such interventions. 
Taken together, the vigorous evidence generated by FRON-
TIER could also support the inclusion of the impact of air 
pollution on fetal growth in the next estimations of the global 
burden of disease attributable to ambient air pollution.
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HEI QUALITY ASSURANCE STATEMENT

The conduct of this study was subjected to independent 
audits by RTI International staff members Dr. Linda Brown, 
Dr. David Wilson, and Mr. Ryan Chartier. These staff members 
are experienced in quality assurance (QA) oversight for air 
quality monitoring, modeling, and exposure assessment, 
epidemiological methods, and statistical modeling.

The QA oversight program consisted of a remote audit of 
the final report and the data processing steps. Key details of 
the dates of the audit and the reviews performed are listed 
below.

Audit: Final Remote Audit

Date: May 2025 – July 2025

Remarks: The final remote audit consisted of two parts: (1) 
review of the final project report, and (2) audit of data process-
ing steps. The review of the final report focused on ensuring 
that the methods are well documented and the report is easy 
to understand. The review also examined if the key study 
findings reported were supported by the data presented and 
if study limitations were discussed. The data audit included 
a review of the codes and a live virtual demonstration of data 
reduction, processing and analysis, and comparison of the 
generated data outputs with reported data. This portion of the 
audit was restricted to the key components of the study and 
associated findings. Selected codes for epidemiological model 
development of the impacts of TRAP on pregnancy outcomes 
were sent to RTI, but it was not possible for the audit team to 
review the underlying data due to data restrictions.

The codes were reviewed at RTI to verify, to the extent 
feasible, linkages between the various scripts, confirmation of 
model functionality, model documentation, and verification 
of reported model variables. Verification of key tables, figures, 
and data outputs was performed using data outputs generated 
by the study team during a virtual demonstration with the 
auditors. The codes and data outputs appear to be largely 
consistent with the models described in the report and follow 
the overall model development procedure described.

A few minor discrepancies between data outputs and the 
final report were noted, which were attributable to predictor 
variable naming consistency and did not impact study find-
ings. No major quality-­related issues were identified from the 
review of the codes, data outputs, and the final report. Recom-
mendations were made to address noted discrepancies and 
typographical errors, and included general edits for improved 
clarity. Those recommendations were addressed in the final 
report.

A written report was provided to HEI. The QA oversight 
audit demonstrated that the study was conducted according 
to the study protocol. The final report appears to be represen-
tative of the study conducted.

Linda Morris Brown, MPH, DrPH, Epidemiologist, Quality 
Assurance Auditor

David Wilson, PhD, Statistician, Quality Assurance Auditor

Ryan Chartier, MS, Air Quality and Exposure Scientist, Qual-
ity Assurance Auditor

Date: July 23, 2025

APPENDICES AND ADDITIONAL MATERIALS ON 
THE HEI WEBSITE

 Appendices­ 1–60­ and­ Additional­ Materials­ 1–3­ contain 
material not included in the main report. They are available 
on the HEI website.
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Dr.­Payam­Dadvand’s­and­Jordi­Sunyer’s­4.5-­year­study,­“Traffic-Related­
Air­Pollution and Birth Weight: The Roles of Noise, Placental Function, 
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INTRODUCTION

Traffic-­related air pollution is a complex mixture of gases 
and particles emitted from the use of motor vehicles and 
includes a variety of pollutants such as nitrogen oxides (NOx), 
fine particulate matter (PM2.5), heavy metals, elemental car-
bon, and organic carbon. Sources include tailpipe emissions 
from vehicle exhaust and nontailpipe emissions such as tire 
and brake wear and resuspended road dust. Traffic-­related air 
pollution is associated with numerous health effects, includ-
ing adverse birth outcomes and slower fetal growth.1

In a systematic review, the Health Effects Institute (HEI) 
reported that maternal exposure to traffic-­related air pol-
lution, particularly PM2.5, was associated with measures of 
fetal growth restriction, including low birth weight (LBW) 
at full term, and the newborn being small for its gestational 
age (SGA).1 Depending on which pollutant and birth outcome 
were considered, the strength of the evidence was rated as 
low to moderate, primarily due to the lack of adjustment for 
maternal smoking and body mass index (BMI). HEI’s system-
atic review also noted that few birth outcome studies have 
assessed interactions with spatially correlated factors, such 
as traffic noise.

HEI issued Request for Applications 17-1: Assessing 
Adverse Health Effects of Exposure to Traffic-Related Air 
Pollution, Noise, and Their Interactions with Socioeconomic 
Status in 2017 (see Preface). Its goal was to assess the health 
effects of exposure to traffic-­related air pollution, and how 
these effects might be influenced by spatially correlated fac-
tors such as noise, socioeconomic status, and the built envi-
ronment. Drs. Payam Dadvand and Jordi Sunyer proposed to 

examine the effects of exposure to traffic-­related air pollutants 
in pregnant women on fetal growth trajectories and birth 
weight in Barcelona, Spain. They planned to recruit a new 
cohort of 800 mother–infant pairs and evaluate the influence 
of noise, green space, stress, physical activity, and socioeco-
nomic status, and the potential role of placental function.

HEI’s Research Committee recommended funding the 
application by Drs. Dadvand and Sunyer because the study 
was well designed and would incorporate robust assessments 
of both exposure and health outcomes. The Committee 
liked the fact that the investigators proposed establishing a 
new cohort where detailed information could be collected 
that was not available in previous studies. The Committee 
appreciated the overall approach, with the use of hybrid air 
pollution models, personal monitoring, and time–activity 
information to develop a detailed assessment of traffic-­related 
air pollution exposure, and the assessment of fetal growth 
using prenatal and postnatal measures.

This Commentary provides the HEI Review Committee’s 
independent evaluation of the study. It is intended to aid 
the sponsors of HEI and the public by highlighting both the 
strengths and limitations of the study and by placing the 
results presented in the Investigators’ Report into a broader 
scientific and regulatory context.

SCIENTIFIC AND REGULATORY BACKGROUND

Birth weight is the most widely used indicator of fetal 
growth and infant health. LBW is defined as being born 
weighing 2,500 g (5 pounds, 8 ounces) or less. In Spain and 
the United States, 8% of babies are born with LBW, and 
worldwide the statistic reaches 15%.2,3 LBW can have long-­
term health ramifications, including increased risk of poor 
growth, lower lung function, and altered neurodevelopment 
in childhood and the increased risk of developing chronic 
respiratory and metabolic diseases in adulthood.3,4 Thus, 
preventing fetal growth restriction is of great public health 
concern.

Environmental influences in early life during critical devel-
opmental windows have the potential to alter development 
and health permanently.5 Among the most widely studied 
examples is the effect of maternal smoking during pregnancy, 
which can change lifetime lung function trajectories. Prenatal 
tobacco smoke exposure is associated with impaired lung 
development, decreased function, childhood asthma, and 
many adult respiratory diseases.6–8 Other well-­known causes 

https://www.healtheffects.org/system/files/RFA-17-1-Traffic-and-Health.pdf
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of poor fetal growth include malnutrition in both underweight 
and overweight mothers, disease, and environmental expo-
sures, including air pollution.3,9

Traffic-­related air pollution has also been associated 
with poor birth outcomes. It is estimated that a 10 µg/m3 
increase in traffic-­related air pollutants, such as PM2.5 and 
NO2, is equivalent to 5.5 and 2.5 passively smoked cigarettes 
per day, respectively.10 The mechanisms by which traffic-­
related air pollution leads to poor birth outcomes are not 
fully understood, but are likely multifactorial — involving 
effects on the mother’s health, placental function, or the fetus 
directly. Animal and human studies suggest that potential 
mechanisms include alterations in growth and development, 
increased inflammation and stress responses, and epigenetic 
modifications.11

To protect the public from the health effects of traffic-­
related air pollution, governments have implemented a 
variety of regulations primarily aimed at controlling vehicle 
emissions of specific pollutants, such as PM2.5 and NOx. They 
include emission standards for new cars and trucks, rules for 
adherence to emission limits for the useful life of the vehicle, 
and rules for fuels and fuel additives that reduce emissions. 
Additional regulations focus on setting fuel efficiency stan-
dards or managing transportation plans and infrastructure to 
support air quality more generally.1 Broadly, the regulations 
can facilitate regional compliance with limits set for specific 
pollutants, such as the US National Ambient Air Quality 
Standards or the World Health Organization Air Quality 
Guidelines.

The United States began implementing air quality regula-
tions in 1970 with the Clean Air Act. Although individual 
European countries started adopting such regulations around 
the same time, the European Union (EU) has been slower to 
adopt vehicle emissions controls and set its first directive in 
1990. Implementation and enforcement also vary across EU 
countries. Nevertheless, EU standards are adopted by many 
countries around the world.1

Air quality regulations are mostly based on effects on 
the respiratory and cardiovascular systems. However, new 
evidence on developmental outcomes is emerging and is 
being incorporated into regulatory decision-­making so that 
the most vulnerable members of society, including pregnant 
women and children, are protected. As an example, the US 
Environmental Protection Agency has determined that the 
associations of birth outcomes with PM2.5 and NOX are sugges-
tive of but not sufficient to infer causality.12,13

In addition to air pollution, other factors in the urban envi-
ronment, such as traffic noise and green space (e.g., live green 
plant life present in tree-­lined streets, gardens, and parks) can 
either confound or modify the health effects of traffic-­related 
air pollution. Prior research suggests that prenatal exposure 
to traffic noise is associated with lower birth weight and SGA, 
although there are only a few studies.14,15 In 2018, the WHO 
released environmental noise guidelines for Europe, which 

included recommendations for reducing road traffic noise.16 
In contrast, green space is associated with decreased risk of 
LBW.17 The mechanisms by which noise and green space 
influence health outcomes are likely, in part, mediated by 
biological stress responses.14,17 The study described in this 
report adds valuable information on the health effects of 
traffic-­related air pollutants and noise that can be considered 
in future scientific reviews used to inform air quality regula-
tions.

STUDY OBJECTIVES

The study aimed to accomplish the following:

1.	 Establish a new pregnancy cohort in Barcelona, Spain

2.	 Assess maternal exposure to traffic-­related air pollution 
and noise, and characterize tree canopies and greenness 
surrounding participants’ homes

3.	 Collect detailed information on maternal stress, physical 
activity, and placental function

4.	 Evaluate the association between maternal exposure to 
traffic-­related air pollution and fetal growth while sep-
arating the effect of noise, identify relevant windows of 
vulnerability during pregnancy, and identify modifiers, 
mediators, and mitigators of this association

Between 2018–2021, Dadvand and Sunyer and colleagues 
established a new cohort of 1,080 pregnant women in Bar-
celona, Spain. They conducted a comprehensive exposure 
assessment to estimate the inhaled dose of traffic-­related air 
pollutants by calculating breathing rates based on measures of 
physical activity and combining them with pollutant concen-
tration data from land use regression, dispersion, and hybrid 
air quality models; personal and home monitoring; and time–
activity patterns based on time spent at home, work, and com-
muting. Health and lifestyle data were obtained several times 
throughout the pregnancy via interviews, questionnaires, and 
medical records.

They evaluated air pollution exposure in relation to both 
fetal ultrasound measurements and birth weight and evalu-
ated whether the associations were influenced by numerous 
neighborhood factors (such as noise and green space) and 
individual factors (such as maternal stress and physical activ-
ity). They also evaluated whether air pollution might affect 
fetal growth through changes in placental function, which 
was assessed by ultrasound measurements of blood flow.

SUMMARY OF METHODS AND STUDY DESIGN

STUDY POPULATION

The study recruited 1,080 pregnant women during their 
first prenatal visit at about 12 weeks of gestation at three major 
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university hospitals and their affiliated primary care centers 
in the Barcelona metropolitan area between October 2018 
and March 2021. Additional external funds were leveraged 
to increase the sample size from the originally proposed 800, 
and the study timeline was extended to accommodate addi-
tional recruitment and delays due to the COVID-19 pandemic. 
Inclusion criteria restricted the study participants to pregnant 
women, 18–45 years old, with a singleton pregnancy, who 
were pregnant with a fetus without congenital abnormalities, 
were living in the hospital catchment area, and were literate 
in Spanish or Catalan.

Dadvand, Sunyer, and colleagues conducted interviews 
and collected participant information during two hospital 
visits at about 12 and 32 weeks of gestation and at two home 
visits shortly after the two hospital visits (Commentary 
Figure  1). They also used online surveys and collected 
information from medical records. The home visits included 
the implementation of personal, in-­home, and outside-­home 
air quality monitoring, the implementation of outside-­home 
noise monitoring, and documentation of the home character-
istics. They also implemented personal physical activity and 
geolocation sensors to quantify time–activity patterns. Details 
are provided below.

EXPOSURE ASSESSMENT

Traffic-Related Air Pollution

Maternal exposure to traffic-­related air pollutants included 
assessment of black carbon (BC), nitrogen dioxide (NO2), and 
fine particulate matter (PM2.5), and its metal components of 
copper (Cu), iron (Fe), and zinc (Zn). Dadvand and Sunyer 
considered BC and NO2 to be markers of tailpipe emissions 
and the PM2.5 metal components to be markers of nontailpipe 
emissions.

Between January 2021 and February 2022, Dadvand and 
Sunyer conducted four campaigns to measure BC and NO2 and 
three campaigns to measure PM2.5 and its metal components 
at 34 urban traffic and background sites across Barcelona. 
Monitors were placed at street level and away from exhaust 
outlets, air conditioners, tree lines, and designated outdoor 
smoking areas. Each campaign lasted an average of 9 days. 
PM2.5 mass was quantified using gravimetric analysis, and 
PM2.5 components were quantified using inductively coupled 
plasma atomic emission spectrometry and inductively cou-
pled plasma mass spectrometry.

Moreover, home and personal NO2 concentrations were 
measured using passive monitoring for one week in the first 
and third trimesters. In-­home monitors were placed in the 
bedroom, outside-­home monitors were placed at the most 
traffic-­exposed window or balcony, and personal monitors 
were worn around the neck or attached to a backpack with 
the air inlet near the face. Measurements were processed to 
remove the effects of short-­term meteorological and seasonal 
variations and averaged across the two monitored weeks.

Simultaneously, physical activity monitoring was used to 
classify participants’ activity level as sedentary, light, mod-
erate, or vigorous, and geolocation monitoring tracked time 
spent in three microenvironments of home, work, and com-
muting. Participants also self-­reported physical activity using 
a standardized questionnaire from which average daily total 
energy expenditure was calculated. They were also asked to 
document their main commuting route using an interactive 
map and report the modes of transportation used.

Dadvand and Sunyer applied the monitoring data to 
develop exposure estimates using three modeling methods: 
land use regression, dispersion, and hybrid models. For the 
land use regression models, they followed the European 
Study of Cohorts for Air Pollution Effects (ESCAPE) protocol. 

Commentary Figure 1. Approximate timing of study recruitment and data collection.
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They obtained data for 101 potential predictors of traffic-­
related air pollution at each monitoring location and used a 
supervised forward selection approach to develop multiple 
linear regression models for each pollutant using annual aver-
age concentrations obtained from the monitoring campaigns 
as the dependent variable. For NO2, the models also applied 
data from the outside-­home monitoring. Exposure estimates 
were then adjusted using the ratio method to estimate hourly 
exposure.

Dispersion models were developed using ADMS-Ur-
ban (Cambridge Environmental Research Consultants), 
which models the chemical transport and dispersion of 
pollutants. Hybrid models incorporated the same predictor 
variables as the land use regression model, the exposure 
estimates from the dispersion models, monitoring data, 
and meteorological variables. Random forest algorithms 
were then applied to capture nonlinearity and interactions 
between the predictor variables and the pollutants. Valida-
tion indicated good performance for all exposure modeling 
methods. However, dispersion model performance for NO2 
was lower when compared to outside-­home and personal 
measurements.

They estimated hourly exposure during pregnancy for the 
three microenvironments and then averaged the data over 
each week, each trimester, and the total pregnancy. They 
estimated total exposure by incorporating time–activity pat-
terns and calculated the inhaled dose by incorporating the 
monitored physical activity level and published ventilation 
rates.18

Noise

Dadvand and Sunyer estimated average day, evening, 
nighttime, and total noise levels using data from their mon-
itoring campaigns and data collected by the government. 
Noise monitors outside the home were placed next to NO2 
monitors for one week. Participants logged noise events (e.g., 
construction and parties) in a diary that was used to clean the 
monitoring data and ensure noise levels were mainly traffic-­
related. They also assessed home and work road traffic noise 
using government-­based 2017–2022 Strategic Noise Maps for 
Catalonia. They used standardized questionnaires to assess 
participant sensitivity and annoyance to noise and protection 
efforts (e.g., earplugs).

Green Space

Green space within 50-­m and 300-­m buffers from partici-
pant homes was estimated by using two measures. Investiga-
tors used the Normalized Difference Vegetation Index based 
on 2020 aerial photos to provide a two-­dimensional measure 
of live green vegetation at a 1-­meter resolution. They also 
assessed tree canopy volume, a three-­dimensional measure 
of vegetation, using 2016–2017 Light Detection and Ranging 
data.

FETAL GROWTH ASSESSMENT

Birth weight and SGA were the primary health outcomes 
and were determined by medical records. SGA was defined 
as birth weight under the 10th percentile for the gestational 
age and sex in Barcelona.19 They also calculated age- and sex-­
specific birth weight z-scores, which measure how much the 
baby’s weight deviates from population norms. Fetal growth 
trajectories were considered as a secondary outcome and were 
determined by transabdominal ultrasound measurements of 
fetal body dimensions at 20, 32, and 37 weeks of gestation. 
Placental function was assessed using Doppler ultrasound 
indicators for fetoplacental hemodynamics at 32 weeks of 
gestation. Specifically, they quantified the pulsatility index (a 
measure of resistance to blood flow) in the uterine, umbilical, 
and fetal cerebral arteries.

MATERNAL STRESS ASSESSMENT

Dadvand and Sunyer evaluated maternal stress in the 
third trimester of pregnancy using subjective and objective 
biomarker-­based methods. Subjective stress was assessed 
using the self-­administered 10-­item Perceived Stress Scale. 
Hair samples were collected during the third trimester using 
established guidelines and analyzed for cortisol levels using 
liquid chromatography with tandem mass spectrometry.

MAIN HEALTH ANALYSES

To assess the effect of traffic-­related air pollutants on 
fetal growth, Dadvand and Sunyer applied single-­pollutant 
mixed effects regression models that accounted for potential 
differences between hospitals (e.g., the hospital the mother 
attended was treated as a random effect in the model). 
Models for trajectories of fetal growth evaluated changes in 
fetal growth over time by evaluating the interaction between 
pollutants and gestational age, and allowed the trajectories to 
vary by participant (e.g., treated as random effects). The main 
analysis applied the land use regression–based exposure 
estimates.

To evaluate potential windows of elevated vulnerability, 
they used distributed lag nonlinear models to assess weekly 
traffic-­related air pollution exposure. To assess the effect of 
multiple exposures (including traffic-­related noise), they 
applied Lasso, Ridge regression, and Bayesian hierarchical 
models that are each suitable for accounting for collinearity 
and evaluated the impact of BC, NO2, and PM2.5 exposures, 
with and without noise exposure. They also used the mon-
itored NO2 concentrations to adjust for potential exposure 
measurement error in the modeled NO2 exposure estimates.

Dadvand and Sunyer adjusted models for a priori selected 
covariates that included maternal age, education, first tri-
mester BMI, number of prior births, smoking and alcohol use 
during pregnancy, environmental tobacco smoke exposure, 
history of LBW in previous pregnancies, gestational age at 
birth, and the child’s sex. Models for SGA were not adjusted 
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for gestational age or sex because these variables were used 
to define SGA. Models that included noise exposure were 
also adjusted for reported noise sensitivity and noise pro-
tection. Missing values were imputed for smoking, alcohol 
use, maternal weight, and height using multiple imputations 
with chained equations; all listed variables had less than 7% 
of data missing. Due to the large number of analyses, they 
adjusted for multiple statistical comparisons.

ADDITIONAL ANALYSES

Dadvand and Sunyer assessed modification of the associa-
tions between traffic-­related air pollutants and fetal growth by 
green space, maternal socioeconomic status, stress (cortisol 
levels and perceived stress), physical activity (monitored and 
self-­reported), and the pregnancy’s timing related to the onset 
of the COVID-19 pandemic (fully before, fully after, or split). 
They also used model-­based causal mediation analyses to 
assess whether traffic-­related air pollution affects fetal growth 
by altering placental function.

To evaluate the robustness of the results, Dadvand 
and Sunyer performed several sensitivity analyses. These 
included evaluating the complete case analyses without 
imputation, adjusting the main analyses by removing outliers, 
removing gestational age at delivery, evaluating hospital of 
admission as a fixed effect rather than a random effect, using 
birth weight z-scores, as the outcome variable, adjusting for 
additional covariates (e.g., child ethnicity, cook stove type, 
kitchen hood use), and applying exposure estimates derived 
from the dispersion and hybrid models.

SUMMARY OF KEY RESULTS

STUDY POPULATION

The final sample included 1,024 live births. Median 
maternal age was 34 years, and most mothers were of Euro-
pean ethnicity (67%) (Commentary Table  1). Few mothers 
reported smoking during pregnancy (8%), but 43% reported 
environmental tobacco smoke exposure, and 30% reported 
alcohol use. Most babies were born by vaginal delivery (75%). 
At birth, the median gestational age was 40 weeks, and the 
median weight was 3,310 g (7 lb 5 oz). Thirteen percent of 
children were classified as SGA. There were no statistically 
significant sociodemographic or lifestyle differences between 
participants included in the study sample compared to those 
who were lost to follow-­up.

TRAFFIC-RELATED AIR POLLUTION AND  
NOISE EXPOSURE

Traffic-­related air pollution and noise exposure estimates 
based on the land use regression models are presented in 
Commentary Table 2. Median total pregnancy exposure esti-
mates for BC, NO2, and PM2.5 were 1.4, 37.2, and 17.1 µg/m

3, 
respectively. Median total pregnancy exposure estimates for 

PM2.5 metal components were 6.0 ng/m3 for Cu, 0.2 µg/m3 for 
Fe, and 34.9 ng/m3 for Zn. Exposures to all pollutants were 
generally lowest at home and highest during commuting. 
Dispersion model-­based exposure estimates for BC, NO2, and 
PM2.5 were lower, and hybrid model-­based estimates for Fe 
and Zn were higher than land use regression–based estimates. 
Traffic-­related noise levels at home and work were about 65 
decibels, which is above the World Health Organization’s 
recommended 53 decibel limit for traffic noise.20

TRAFFIC-RELATED AIR POLLUTION RELATED TO 
RESTRICTED FETAL GROWTH

Higher exposure to outdoor NO2, BC, PM2.5, and the Cu and 
Fe fractions of PM2.5 during pregnancy was associated with 
lower birth weight and increased odds of SGA when consid-
ering the total exposure across all three microenvironments 
combined (Commentary Figure  2). An interquartile range 
increase in total exposure to NO2 (15 µg/m3) was associated 
with a birth weight reduction of 64 g and a 46% increased 
odds of SGA. Similarly, interquartile range increases in 
total exposure to BC (0.5 µg/m3) and PM2.5 (4.5 µg/m

3) were 
associated with birth weight reductions of 34  g and 51 g, 
respectively, and increased the odds of SGA by 36% and 
53%, respectively.

Commentary Table 1. Study Population Characteristics 
(N = 1,024 mother-child pairs)a

Median (IQR)

Maternal age (years) 34.4 (5.8)

Maternal body mass index (kg/m2) 23.5 (4.9)

Gestational age at birth (weeks) 40 (1.7)

Newborn birth weight (g) 3,310 (580)

N (%)

European ethnicity 688 (67.2%)

Maternal university degree 713 (69.6%)

Maternal active smoking 79 (8.0%)

Maternal environmental tobacco 
smoke

422 (43.0%)

Maternal alcohol use 294 (30.2%)

Previous births 450 (43.9%)

Previous LBW baby 37 (3.6%)

Vaginal delivery 767 (74.9%)

Newborn SGA 136 (13.3%)
aValues are expressed as median (interquartile range) for continu-
ous variables and N (%) for categorical variables.
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Commentary Table 2. Median (IQR) Traffic-Related Air Pollution and Noise Exposure Estimatesa

Microenvironment

Home Work Commute Total

BC (µg/m3) 1.4 (0.6) 1.6 (0.8) 2.1 (0.9) 1.4 (0.5)

NO2 (µg/m3) 36.2 (15.1) 46.6 (18.5) 56.0 (21.8) 37.2 (15.0)

PM2.5 (µg/m3) 16.8 (5.1) 18.1 (4.5) 18.9 (5.0) 17.1 (4.5)

Cu (ng/m3) 6.0 (2.0) 5.9 (2.5) 6.9 (2.4) 6.0 (2.0)

Fe (µg/m3) 0.2 (0.1) 0.2 (0.1) 0.3 (0.1) 0.2 (0.1)

Zn (ng/m3) 34.3 (25.1) 36.4 (21.7) 36.6 (18.9) 34.9 (22.9)

Noise (dB(A)) 64.6 (8.9) 64.7 (8.1) – –
aAir pollution estimates are based on land use regression. Values are expressed as the median (interquartile range) over the entire pregnancy.

Commentary Figure 2. Association between an interquartile range increase in traffic-related air pollution and fetal growth across all 
three microenvironments combined (home, commuting, and workplace) based on the land use regression model exposure estimates. 
BC = black carbon; IQR = interquartile ratio.

For the microenvironment-­specific analyses, higher expo-
sure to traffic-­related air pollutants at home was generally 
associated with statistically significantly lower birth weight 
and increased risk of SGA. Similar associations were observed 
for workplace and commuting exposures, although they were 
generally not statistically significant. This finding might 
suggest that duration of exposure was more important than 
intensity, but one should note that estimates for the different 

microenvironments are not directly comparable because they 
were reported for an interquartile range change in exposure, 
which differed across the microenvironments. In contrast, 
associations for the Zn component of PM2.5 were generally 
weak for total and home exposure. There was a trend for a 
potential protective effect of the Zn fraction of PM2.5 for work-
place and commuting exposures, but this effect did not reach 
significance.
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A similar pattern of associations was observed for expo-
sure based on estimated inhaled dose. Additionally, models 
of NO2 that were adjusted for exposure measurement error 
yielded associations that were larger in magnitude (e.g., larger 
decreases in birth weight) and had wider confidence intervals.

The windows of heightened vulnerability to traffic-­related 
air pollution included the late first to early second trimesters 
and the late third trimester. Exposure to NO2, PM2.5 (Com-
mentary Figure 3), and the Cu and Fe fractions of PM2.5 (not 
shown) during the late first to early second trimesters were 
associated with lower birth weight. BC exposure during the 
late third trimester was also associated with lower birth 
weight (Commentary Figure 3).

In evaluating fetal weight trajectories over time, higher 
maternal exposure to outdoor NO2 and BC was generally asso-
ciated with slower fetal growth, although the associations did 
not reach statistical significance. The Zn fraction of PM2.5 was 
associated with faster fetal growth. Results were consistent 
for multiple fetal anthropometric measurements.

In models of traffic-­related air pollution and noise expo-
sure combined, similar associations were observed between 
the air pollutants and fetal growth outcomes. In these models, 
noise exposure itself was generally associated with lower 
birth weight and increased risk of SGA, but those estimates 
were not statistically significant, suggesting that traffic noise 
was less important than traffic pollution. Adjustment for 
noise annoyance and protection efforts (such as earplugs) 
yielded similar results.

Multipollutant analyses that included NO2, PM2.5, and 
BC in the models suggested that NO2 was associated with 
decreased birth weight, whereas the associations for PM2.5 
and BC were inconclusive. In contrast, the models suggested 

that PM2.5 was associated with SGA, whereas NO2 and BC 
were not.

Role of Placental Function

Higher exposure to outdoor PM2.5 during pregnancy was 
associated with a higher pulsatility index (i.e., higher resis-
tance to blood flow) in the umbilical artery (which delivers 
blood between the fetus and placenta) during the third trimes-
ter of pregnancy. Thus, Dadvand and Sunyer evaluated this 
measure of placental function as a potential intermediate bio-
logical step between traffic-­related air pollution exposure and 
fetal growth using mediation analysis. They estimated that 
umbilical artery pulsatility explained 9.1% and 3.5% of the 
association of PM2.5 with birth weight and SGA, respectively.

ADDITIONAL ANALYSES

Stratified analyses suggested that the associations between 
traffic-­related air pollutants and both birth weight and SGA 
were larger in magnitude among families with higher socio-
economic status, as measured by maternal education level 
and neighborhood-­level household income. Associations 
were also generally larger in magnitude for mothers with 
higher levels of the stress hormone cortisol, but not for 
perceived stress. Associations with birth weight tended to 
be slightly attenuated for mothers living in areas with higher 
levels of green space within a 300-­m buffer of the home, but 
this trend was not observed for other measures of green space. 
There was no consistent trend demonstrating differences in 
associations by maternal physical activity level or timing of 
the pregnancy with respect to the COVID-19 pandemic. The 
sensitivity analyses generally yielded similar results to the 
main analysis.

Commentary Figure 3. Traffic-related air pollution exposure effects on LBW across pregnancy. The red line represents the effect 
estimate, and the shaded area represents the 95% confidence interval. Exposure estimates are derived from the land use regression 
model.
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HEI REVIEW COMMITTEE’S EVALUATION

This study recruited 1,080 pregnant women in Barcelona, 
Spain, to evaluate the effect of prenatal traffic-­related air 
pollution exposure on fetal growth. Dadvand and Sunyer 
and colleagues found that NO2, BC, PM2.5, and the Cu and Fe 
fractions of PM2.5 were associated with lower birth weight and 
increased odds of SGA. They found that the most vulnerable 
periods of exposure were during the late first to early second 
trimester and the late third trimester of pregnancy. NO2 and 
BC were also related to slower fetal growth throughout gesta-
tion. They also found that the associations between PM2.5 and 
decreased fetal growth might be partly mediated by higher 
resistance to blood flow in the umbilical artery. These results 
suggested that prenatal exposure to both tailpipe emissions, 
as indicated by NO2 and BC, and nontailpipe emissions, as 
indicated by PM2.5 and its Cu and Fe metal components, can 
negatively affect fetal growth.

In its independent review of the study, the HEI Review 
Committee concluded that this report presents a thorough 
investigation into associations between exposure to traffic-­
related air pollution and fetal growth. Details on the strengths 
and limitations of the study are discussed below.

STUDY DESIGN, DATASETS, AND ANALYTICAL 
APPROACHES

The Committee noted that the study implemented a high-­
quality design, including the recruitment of a new cohort of 
pregnant women, the documentation of detailed health and 
lifestyle information, and the repeated follow-­up throughout 
pregnancy. Multiple measures of fetal growth were used, 
including prenatal ultrasound measurements of the fetus and 
weight-­based measures at birth. The Committee appreciated 
the comprehensive exposure assessment, which implemented 
home and personal monitoring and three contrasting air 
pollution exposure modeling methods (land use regression, 
dispersion, and hybrid), included information on noise and 
green space, evaluated the potential for exposure measure-
ment error, and incorporated information on time–activity 
patterns in the home, workplace, and during commuting. 
Findings were similar, although not always statistically sig-
nificant, across the different exposure modeling methods and 
microenvironments.

The results suggest that exposure measurement bias in 
epidemiological studies based on outdoor concentrations at 
residential locations might be small and that accounting for 
different microenvironments (including commuting) might 
not be an important consideration in certain contexts. Similar 
findings have been documented by de Hoogh and colleagues 
in their HEI-­funded study.21 A recent review also reported 
similar findings in five of six identified health studies.22

The thorough statistical analysis included a detailed eval-
uation of windows of vulnerability, multipollutant modeling, 

and effect modification by a range of factors such as socioeco-
nomic status, physical activity, and green space. The detailed 
data collection allowed the investigators to adjust for maternal 
smoking and prepregnancy BMI, both of which were noted in 
the HEI review on traffic-­related pollution1 as lacking in many 
prior studies and a major reason for uncertainty in establishing 
a causal association. Additionally, few prior studies adjusted 
for traffic-­related noise in their assessments of traffic-­related 
air pollution and birth outcomes. Thus, this study helped fill 
important gaps in the scientific literature and will be useful in 
future systematic reviews and regulatory science assessments.

The Committee noted that a limitation of the analyses 
included that the multipollutant analysis did not account for 
potential nonlinearity or interactions among the pollutants. 
They also noted that the procedure to adjust for seasonality 
of exposures might remove important variability in the expo-
sure that might relate to known seasonal variability in birth 
outcomes.23–25

FINDINGS AND INTERPRETATION

The median (and interquartile range) estimated air pol-
lution exposures based on the land use regression models 
during the 40-­week pregnancy were 37.2 (15.0) µg/m3 for NO2 
and 17.1 (4.5) µg/m3 for PM2.5. For context, the EU one-­year 
limit values are 40 µg/m3 for NO2 and 20 µg/m3 for PM2.5.

26 
By 2030, the EU limit values will be lowered to 20 µg/m3 for 
NO2 and 10 µg/m3 for PM2.5, which align more closely with the 
2021 World Health Organization Air Quality Guidelines.27,28 
In the United States, the one-­year National Ambient Air Qual-
ity Standards are 53 ppb for NO2 (annual average) and 9 µg/m3 
for primary PM2.5 (averaged over three years).29,30

Results in this study were largely consistent with prior 
research demonstrating that traffic-­related air pollutants, 
including PM2.5 and NO2, are related to slower fetal growth.1 
Interquartile range increases in total exposure to NO2 and 
PM2.5 during pregnancy were associated with a birth weight 
reduction of 64 g and 51 g, respectively. As a reference, these 
reductions were smaller than reductions in birth weight 
reported for active maternal smoking during pregnancy, 
which ranged from 86 g to 755 g, depending on the frequency 
and duration of smoking.31,32 However, the results in this study 
were similar to some of the birth weight reductions reported 
for environmental tobacco smoke exposure during pregnancy, 
ranging from 18 g to 129 g.31,32

This study also evaluated the metal components of PM2.5; 
this evaluation is important because PM2.5 is a complex 
mixture, and different components might elicit different 
effects. Indeed, Dadvand and Sunyer reported that exposure 
to the Cu and Fe fractions of PM2.5 was generally related to 
decreased fetal growth, whereas Zn fractions suggested a pro-
tective association. Prior studies on PM2.5 and birth outcomes, 
including birth weight, have reported inconsistent results and 
were sensitive to the variables selected for adjustment and the 
statistical model formulation.33,34 However, a meta-­analysis 
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focused on trace metal levels (and not air pollution exposures 
specifically) reported that Cu levels measured in cord blood 
were associated with an increased risk of SGA, and that Zn 
levels measured in the maternal and cord blood were related 
to increased birth weight.35 Both Cu and Zn are essential trace 
minerals that are required for human health, but can be toxic 
in higher doses. Research also demonstrates that prenatal Zn 
deficiency can be catastrophic to normal development and 
that a healthy pregnancy requires higher nutritional Zn.35 
Future studies are needed to further clarify the effects of PM2.5 
components.

CONCLUSIONS

In summary, Dadvand and Sunyer and colleagues exam-
ined whether traffic-­related air pollution exposure during 
pregnancy was associated with fetal growth. They observed 
that NO2, BC, PM2.5, and certain PM components were associ-
ated with multiple measures of fetal growth, including slower 
fetal growth trajectories, lower birth weight, and increased 
risk of infants being born small for their gestational age. This 
study adds to the existing body of literature demonstrating 
that traffic-­related air pollution during pregnancy can alter 
fetal development.

This study found that results were similar when analyses 
used fairly simple versus complicated exposure estimates. 
This indicates that future studies in similar urban environ-
ments might reasonably simplify exposure assessments when 
resources are limited. Additional research is needed to clarify 
the effects of PM2.5 components, such as metals, and partic-
ularly those metals that can be beneficial in small doses and 
harmful in larger doses.
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ABBREVIATIONS AND OTHER TERMS

	  						                          

	 BC	 black carbon

	 BiSC	 Barcelona Life Study Cohort

	 BiSCAPE	 Barcelona Life Cohort Study Air Pollution 
Exposure

	 BMI	 body mass index

	 CI	 confidence interval

	 Cu	 copper

	 dB(A)	 A-weighted (human perceivable) decibels

	 DOHaD	 Developmental Origins of Health and 
Diseases

	 ENMO	 Euclidean norm minus one

	 ESCAPE	 European Study of Cohorts for Air Pollution 
Effects

	 Fe	 iron

	 GIS	 Geographic Information System 

	 HClO4	 perchloric acid

	 HF	 hydrofluoric acid

	 HNO3	 nitric acid 

	 IQR	 interquartile range

	 JAGS	 Just Another Gibbs Sampler

	 Lasso 	 least absolute shrinkage and selection 
operator regression model

	 LBW	 low birth weight

	 Lden	 average noise levels for day+evening+night

	 LR test	 likelihood ratio test

	 LUR	 land use regression

	 NDVI	 Normalized Difference Vegetation Index

	 NO2	 nitrogen dioxide

	 OR	 odds ratio

	 PI	 pulsatility index

	 PM2.5	 particulate matter with an aerodynamic 
diameter <2.5 µm

	 PR	 Palau Reial

	 PSS	 perceived stress scale

	 RMSE	 root mean square error

	 SES	 socioeconomic status

	 SGA	 small for gestational age

	 TRAP	 traffic-related air pollution

	 VIF	 variance inflation factor

	 Zn	 zinc
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