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FRONTIER	/	Developing	Land	Use	Regression	Models	

Sampling data 
We developed our land use regression (LUR) models using data from two main sources: 

1) BiSCAPE campaign at 34 representative locations across the Barcelona Metropolitan Area
(including the reference background station of Palau Reial).

2) Measurements of home-outdoor levels at participants’ homes.

BiSCAPE campaigns were conducted according to the ESCAPE guidelines to generate data for LUR 
models. It encompassed four campaigns (including 3 campaigns in winter, summer, and autumn of 
2021 and one campaign in winter 2022) of measuring NO2, PM2.5, and black carbon (BC) at 34 
locations across the Barcelona Metropolitan Area (Barcelona, Esplugues de Llobregat, and 
L’Hospitalet).  
The sites were selected following a strict site selection protocol, i.e sampling height < 4.5m, avoiding 
intersections, traffic lights and bus stops nearer than 25m, based on ESCAPE protocol (Beelen, et al. 
2013). Figure 1 describes the BiSCAPE dataset. 

Figure 1. BiSCAPE dataset characteristics. 
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Home-outdoor NO2 measurements were also conducted at residential addresses of the BISC 
participants, one week during the first trimester and one week during the third trimester of pregnancy 
(2018-2021). For developing LUR models, we only included the locations that had measured home-
outdoor NO2 level data for both sampling campaigns. (i.e., We did not use data from participants who 
had data available for only one campaign (either first or third trimester). Almost half of the sites were 
measured before the COVID-19 pandemic started and half of the sites during the pandemic period and 
its resulting restrictions. Figure 2 describes the dataset of home-outdoor measures used to develop our 
LUR models. 

Figure 2. Characteristics of home-outdoor measures dataset. 

 

Deseasonalizing pollutantion data 
 
For the development of Land-Use Regression (LUR) models data collected at different points of time 

need to be deseasonalized (process explained below) before being averaged to represent the average 

value of the baseline period.  

 

NO2 

For the NO2 data (BiSCAPE + BiSC) the difference method was used for deseasonalisation. 
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1. Define the baseline period, that is, the total period in which the air pollution measurements were 

done. For NO2 the baseline period is from 23rd October 2018 to 16th February 2022. 

2. Collect hourly air pollution data from a routine monitoring site covering the baseline period. We 

used data from Palau Reial monitoring site, as this is the reference site for the BiSCAPE campaigns 

and the BiSC cohort. NO2 data at Palau Reial was missing for only 5% of the period. Even though 

the missing rate is low, we imputed missing data by doing a linear regression with NO2 levels at 

the monitoring site of Sants (r=0.84). After recovering those data, the percentage of missing data 

at Palau Reial decreased to 0.68%. 

3. Calculate the average concentration of NO2 for the routine monitoring site covering the baseline 

measurement period: CPR(avg) 

4. Calculate the concentrations of the pollutant at the routine monitoring site for the exact same period 

(t) as the sample collected at the BiSC and BiSCAPE locations in the different periods: CPR(t) 

5. Calculate for the routine monitoring site for each sample the difference between the concentration 

(CPR(t)) and the average covering the baseline measurement  period: D_CPR(t) = CPR(t) - CPR(avg). 

6. Calculate for each sample at site i (Ci(t)) the adjusted concentration (Ci,adj(t)) by computing: Ci,adj(t) 

= Ci(t)/ D_CPR(t)     

 

 

PM2.5, PM2.5 components and BC 

For PM2.5, PM2.5 components and BC the data available was obtained during the BiSCAPE campaigns. 

The ratio method was used for deseasonalisation in these datasets. The method procedure is very similar 

to the difference method explained before. The rationale for using a different method for these pollutants 

is that we aim to create LUR models for some PM2.5 components. Since we do not have hourly data from 

the PM2.5 components for the baseline period (data is only available as a daily average every fourth day), 

the deseasonalisation of these components needs to be done with total PM2.5 concentrations. As the ratio 

method is based on substraction, this method cannot be applied to different pollutants than the reference.  

Also, samples collected within the BiSCAPE campaigns at Palau Reial showed lower concentrations 

than collocated online measurements at Palau Reial. Using the ratio method in PM2.5 concentrations may 

lead to over-substracting. 
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1. Define the baseline period, that is, the total period in which the air pollution measurements were 

done. For PM2.5 and its chemical components and BC the baseline period is from 01/01/2021 to 

16/02/2022.  

2. Collect hourly air pollution data from a routine monitoring site covering the baseline period. We 

used data from Palau Reial monitoring site, as this is the reference site for the BiSC cohort.  

a. PM2.5 data at Palau Reial was missing for 26.8% of the period due instrument 

maintenance. We imputed missing data by doing a linear regression with collocated BC 

concentrations (r=0.57) as no other station in Barcelona had hourly data for PM2.5 

during this period. After recovering those data, the percentage of missing data at Palau 

Reial decreased to 1.0%. 

b. BC data at Palau Reial was missing for only 2.3% of the period.  

3. Calculate the average concentration of the corresponding pollutant (j) for the routine monitoring 

site covering the baseline measurement period: Cj,PR(avg). For PM2.5 components, in this step  j 

corresponds to total PM2.5 mass concentrations.  

4. Calculate the concentrations of the pollutant j at the routine monitoring site for the exact same 

period (t) as the sample collected at BiSCAPE locations in the different periods: Cj,PR(t). For PM2.5 

components, in this step j corresponds to total PM2.5 mass concentrations.  

5. Calculate for the routine monitoring site for each sample the ratio between the concentration of 

pollutant j (Cj,PR(t)) and the average covering the baseline measurement  period: R_Cj,PR(t) = CPR(t)/ 

CPR(avg). For PM2.5 components, in this step j corresponds to total PM2.5 mass concentrations. 

6. Calculate for each sample at site i (Ci(t)) the adjusted concentration of pollutant j (Ci,adj(t)) by 

computing: Cj,i,adj(t) = Cj,i(t)/ R_Cj,PR(t). 
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Averages for LUR model development 

Once the measurements done at different timepoints (t) and sites (i) for the different pollutants (j) were 

deseasonalised, we proceeded to calculate the average of the adjusted concentrations for each site i. 

Therefore, the average value obtained for each site was considered to be the average for the baseline 

period at site i. These averages were the input values for the development of the LUR model. 

 
 

Creating predictor variables 
To develop a LUR model, we need to calculate those spatial variables that better represent the 
pollutant concentration distribution across the study area. Following the ESCAPE guidelines, we 
selected predictor variables from three broad categories: traffic, land use, and urban configuration (see 
Figure 3). We selected a wide variety of buffer sizes, i.e, 25m, 50m, 100m, 300m, 500m, and 1000m 
to capture the area-specific predictor variables at every single location. We applied a wide range of 
local and regional GIS datasets to calculate the predictor variables (see Table 1). A total of 101 
predictor variables have been finally created.  
 
Figure 3. Predictor variables categories created for LUR model development. 

 
  
 
Table 1. Data sources for predictor variables. 
 

 
* Abbreviations: LEZ: Low Emission Zone, OSM: Open Street Map. 
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LUR development 
Following the ESCAPE guidelines (Beelen, et al. 2013), we applied a supervised forward stepwise 
regression process. Using pollutant concentration as an independent variable we started from a null 
model and added, one at a time, the predictor variable which improved the model most, following pre-
defined conditions and until certain criteria were met. .  
 
Before starting the model development analysis we defined the direction of the coefficients we 
expected each predictor variable to have in the model. For example, traffic variables were 
hypothesized to have a positive coefficient if selected in the model because they increase the response, 
whereas green spaces were hypothesized to reduce the concentration, therefore we expected a negative 
coefficient if it came into the model. Firstly, univariate regression models were conducted for all 
predictor variables and the model with the highest adjusted explained variance (adjusted R2) was 
selected. We then repeated the process using the previous model and all the remaining predictor 
variables.  
 
A variable was selected into a model if it followed the next criteria:  
 

- It made increases the model performance (adjusted R2) by at least 1%.  
- The direction of the association (i.e., positive or negative variable coefficient) in the model 

was the same as what we had hypothesized.  
- The p-value of the association for that variable was less than 0.10. 
- Addition of that variable did not affect parameters from the previous variables (p-value and 

direction of the association) 
 
Once we selected the second variable, we repeated the process until no other variable could be 
included and considered as the intermediate model.  
 
Then, standard model diagnostics were applied including:  

- Influential observations: the influence of each observation on the estimates was measured 
using Cook’s Distance. It measures which observations have a large influence on the 
parameter estimates.  
If there were influential observations, they were removed from the model and the procedure 
was repeated until getting a new final model.  
 

- Normality of the residuals using tests and plots. 
 

- Heteroscedasticity of the residuals:  a plot was made with the monitored concentrations and 

the residuals to evaluate whether there was heteroscedasticity. 

 

- Spatial autocorrelation: Moran’s I test was conducted to assess spatial autocorrelation.  
 

Once the checks for the model diagnostics were accomplished, we considered the model as final.  
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Final LUR models 
Table 2 describes the final models obtained for black carbon, PM2.5, and its constituents (Fe, Zn, and 
Cu), including the number of sites finally used to develop the models, the predictor variables, the 
model adjusted R2 and the LOOCV R2. 
 
Table 2. Final LUR models for BC, PM2.5, Cu, Fe, and Zn. 

Pollutant Year N Adj-R2 CV - R2  RSE Predictor variables (1) 

PM2.5 2021 34 0.47 0.45 1.47 hdres500 + trafnear + LEZ 

BC 2021 30 0.85 0.83 0.18 hdres50 + linesnear + pop300 + trafload500 + 
roads500 

PM2.5 Cu 2021 31 0.90 0.87 0.72 trafnear + roads1000 + ind1000 + pop25 

PM2.5 Fe 2021 34 0.91 0.89 0.03 trafnear - lat + pop50 - LEZ 

PM2.5 Zn 2021 31 0.89 0.85 6.99 - LEZ + roads50 + ind1000 + build25 

(1) Predictor variables (roadlength:  total road length (m), majorroadlength: total major road length (m), trafload: total traffic 
intensity (veh/day), trafnear: traffic intensity at the nearest road (veh/day), linesnear: number traffic lines on nearest street, 
LEZ: Low Emissions Zone (Yes/No, ref value=No), hdres: high-density residential area (m2), roads: roads surface area (m2), 
ind: industry area (m2), pop: population density (inhabitants), build: building area (m2), lat: latitude (m), sqralt: squared root 
altitude (m1/2)). 

 

 
 
Table 3 describes the potential NO2 models that were explored. Models number 1 and 2 were 
developed using measurements done during the same year (i.e., We only included measured home-
outdoor level data from those participants who had both of their measurements (1st and 3rd trimesters) 
in the same calendar year and excluded participants whose two measurements were in two different 
calendar years or those who had only data on one measurement). For these models, the 
deseasonalization was done separately for each year (2019, 2020, and 2021). Models 3 and 4 were 
developed including data from all participants with two measurements regardless of the sampling date 
(i.e., We only excluded participants with one measurement available). For these models, the 
deseasonalization was done for the entire sampling period (2018-2021). 
 
Models 1 and 3 were built using all sites regardless of the sampling height whereas models 2 and 4 
restrict sites from the ground floor to the 4th floor (included). This was informed by the findings of a 
study in Barcelona showing that there was only a 10% reduction in levels of air pollutants within 3 and 
15 m of vertical elevation, which approximately correspond to a 4th-5th floor (Amato, F. et al, 2019). 
 
The final model selected was number 3 based on its better validation performance and because it was 
built using a wider range of the sample that could be more representative of the study population. The 
description of this model is presented in Figure 4.
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 Table 3. Scenarios for the potential NO2 LUR models. 
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Call: 
lm(formula = no2 ~ trafload25 + sqralt + majorroadlength50 +  
    roadlength25 + majorroadlength300, data = dat) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-11.3101  -2.7445  -0.1588   2.5849  11.4221  
 
Coefficients: 
                     Estimate Std. Error t value Pr(>|t|)     
(Intercept)         3.975e+01  7.812e-01  50.875  < 2e-16 *** 
trafload25          8.252e-06  1.008e-06   8.188 2.40e-15 *** 
sqralt             -1.259e+00  8.289e-02 -15.185  < 2e-16 *** 
majorroadlength50   3.162e-02  4.878e-03   6.482 2.24e-10 *** 
roadlength25        4.718e-02  6.689e-03   7.054 6.06e-12 *** 
majorroadlength300  1.095e-03  2.213e-04   4.948 1.04e-06 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 4.028 on 483 degrees of freedom 
Multiple R-squared:  0.6254, Adjusted R-squared:  0.6215  
F-statistic: 161.2 on 5 and 483 DF,  p-value: < 2.2e-16 

Figure 4. NO2 model selected.  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Validation process 
For our LUR models for black carbon, PM2.5, and its constituents (Cu, Fe, and Zn) we conducted 
internal validation using leave-one-out cross-validation (LOOCV) process. We iterated model 
construction over the dataset n times (where n is the total number of observations in the dataset) and 
each time we built the model using n-1 observations and recorded the resulting adjusted R2. 
Eventually, we averaged the metrics and provided a CV-adjusted R2. For these models, we were not 
able to conduct external validation, because of the lack of external data. 
 
For our LUR models for NO2 we carried out both internal and external validations. For internal 
validation, we applied K-fold cross-validation analysis. We selected 10-fold cross-validation, 
therefore the sample data was divided into ten sub-samples and the model was run over each of the 
samples. The model was trained using the k-1 of the folds as a training dataset and the resulting model 
was validated against the remaining fold. The errors and adjusted R2 were recorded and the process 
was repeated k times. The averaged measures were reported as the indicators of the model validity. 
 
For the external validation of NO2 models, we applied data on measured home-outdoor NO2 levels at 
participants’ homes for those participants who had data available for only one measurement campaign 
(either the first or the third trimester measurement) and therefore their data were not used for 
developing LUR models.  
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For each candidate model, we temporally adjusted spatial estimates to abstract the predicted levels for 
the same home-outdoor NO2 sampling period for each external validation point (i.e., participant’s 
home). The results of this external validation results are shown in table 3 for each candidate NO2 
model.  
 
Figures 6 show the distribution of the data from the different NO2 datasets used in modelling and 
validation:  
 

- Modelled data: NO2 used to build the final model in each scenario.  
- Measured data: all NO2 outdoor measurements at participants' homes.  
- Predicted data: NO2 predicted by the models for the external validation dataset. 

 
Figure 7 shows the association between the predicted and measured NO2 data on the external 
validation dataset. On the left-top side is shown the coefficient of determination.  
  
 
Figure 6. Distribution of NO2 data for the datasets used in modelling and validation. 
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Figure 7. External validation using model predictions over the real measured data for model 3. 
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