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FRONTIER / Developing Land Use Regression Models

Sampling data

We developed our land use regression (LUR) models using data from two main sources:

1) BiSCAPE campaign at 34 representative locations across the Barcelona Metropolitan Area
(including the reference background station of Palau Reial).
2) Measurements of home-outdoor levels at participants’ homes.

BiSCAPE campaigns were conducted according to the ESCAPE guidelines to generate data for LUR
models. It encompassed four campaigns (including 3 campaigns in winter, summer, and autumn of
2021 and one campaign in winter 2022) of measuring NO», PM, 5, and black carbon (BC) at 34
locations across the Barcelona Metropolitan Area (Barcelona, Esplugues de Llobregat, and
L’Hospitalet).

The sites were selected following a strict site selection protocol, i.e sampling height < 4.5m, avoiding
intersections, traffic lights and bus stops nearer than 25m, based on ESCAPE protocol (Beelen, et al.
2013). Figure 1 describes the BISCAPE dataset.

Figure 1. BiSCAPE dataset characteristics.
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Home-outdoor NO; measurements were also conducted at residential addresses of the BISC
participants, one week during the first trimester and one week during the third trimester of pregnancy
(2018-2021). For developing LUR models, we only included the locations that had measured home-
outdoor NO; level data for both sampling campaigns. (i.e., We did not use data from participants who
had data available for only one campaign (either first or third trimester). Almost half of the sites were
measured before the COVID-19 pandemic started and half of the sites during the pandemic period and
its resulting restrictions. Figure 2 describes the dataset of home-outdoor measures used to develop our
LUR models.

Figure 2. Characteristics of home-outdoor measures dataset.
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Deseasonalizing pollutantion data

For the development of Land-Use Regression (LUR) models data collected at different points of time
need to be deseasonalized (process explained below) before being averaged to represent the average

value of the baseline period.

NO;
For the NO; data (BiSCAPE + BiSC) the difference method was used for deseasonalisation.



1. Define the baseline period, that is, the total period in which the air pollution measurements were
done. For NO; the baseline period is from 23" October 2018 to 16™ February 2022.

2. Collect hourly air pollution data from a routine monitoring site covering the baseline period. We
used data from Palau Reial monitoring site, as this is the reference site for the BiSCAPE campaigns
and the BiSC cohort. NO, data at Palau Reial was missing for only 5% of the period. Even though
the missing rate is low, we imputed missing data by doing a linear regression with NO; levels at
the monitoring site of Sants (1=0.84). After recovering those data, the percentage of missing data
at Palau Reial decreased to 0.68%.

3. Calculate the average concentration of NO» for the routine monitoring site covering the baseline
measurement period: Cpr(avg)

4. Calculate the concentrations of the pollutant at the routine monitoring site for the exact same period
(t) as the sample collected at the BiSC and BiSCAPE locations in the different periods: Cpr(t)

5. Calculate for the routine monitoring site for each sample the difference between the concentration
(Cpr(t)) and the average covering the baseline measurement period: D _Copr(t) = Cpr(t) - Crr(avg).

6. Calculate for each sample at site i (Ci(t)) the adjusted concentration (Ciagj(t)) by computing: Ci j(t)
= Ci(t)/ D_Cpr(t)

PM,5, PM,.s components and BC

For PM, 5, PM» s components and BC the data available was obtained during the BiSCAPE campaigns.
The ratio method was used for deseasonalisation in these datasets. The method procedure is very similar
to the difference method explained before. The rationale for using a different method for these pollutants
is that we aim to create LUR models for some PM> s components. Since we do not have hourly data from
the PM» s components for the baseline period (data is only available as a daily average every fourth day),
the deseasonalisation of these components needs to be done with total PM» s concentrations. As the ratio
method is based on substraction, this method cannot be applied to different pollutants than the reference.
Also, samples collected within the BISCAPE campaigns at Palau Reial showed lower concentrations
than collocated online measurements at Palau Reial. Using the ratio method in PM, s concentrations may

lead to over-substracting.
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. Define the baseline period, that is, the total period in which the air pollution measurements were
done. For PM2.5 and its chemical components and BC the baseline period is from 01/01/2021 to
16/02/2022.

. Collect hourly air pollution data from a routine monitoring site covering the baseline period. We
used data from Palau Reial monitoring site, as this is the reference site for the BiSC cohort.

a. PM2.5 data at Palau Reial was missing for 26.8% of the period due instrument
maintenance. We imputed missing data by doing a linear regression with collocated BC
concentrations (r=0.57) as no other station in Barcelona had hourly data for PM, ;s
during this period. After recovering those data, the percentage of missing data at Palau
Reial decreased to 1.0%.

b. BC data at Palau Reial was missing for only 2.3% of the period.

. Calculate the average concentration of the corresponding pollutant (j) for the routine monitoring
site covering the baseline measurement period: Cpr(avg). For PM> s components, in this step j
corresponds to total PM» s mass concentrations.

. Calculate the concentrations of the pollutant j at the routine monitoring site for the exact same
period (t) as the sample collected at BiISCAPE locations in the different periods: C;pr(t). For PMa s
components, in this step j corresponds to total PM» s mass concentrations.

. Calculate for the routine monitoring site for each sample the ratio between the concentration of
pollutant j (C;pr(t)) and the average covering the baseline measurement period: R_C;jpr(t) = Cpr(t)/
Crr(avg). For PM» s components, in this step j corresponds to total PM» s mass concentrations.

. Calculate for each sample at site i (Ci(t)) the adjusted concentration of pollutant j (Ciag(t)) by
computing: Cj;aqgi(t) = C;i(t)/ R_Cjpr(t).



Averages for LUR model development

Once the measurements done at different timepoints (t) and sites (i) for the different pollutants (j) were
deseasonalised, we proceeded to calculate the average of the adjusted concentrations for each site i.
Therefore, the average value obtained for each site was considered to be the average for the baseline

period at site i. These averages were the input values for the development of the LUR model.

Creating predictor variables

To develop a LUR model, we need to calculate those spatial variables that better represent the
pollutant concentration distribution across the study area. Following the ESCAPE guidelines, we
selected predictor variables from three broad categories: traffic, land use, and urban configuration (see
Figure 3). We selected a wide variety of buffer sizes, i.e, 25m, 50m, 100m, 300m, 500m, and 1000m
to capture the area-specific predictor variables at every single location. We applied a wide range of
local and regional GIS datasets to calculate the predictor variables (see Table 1). A total of 101
predictor variables have been finally created.

Figure 3. Predictor variables categories created for LUR model development.
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Table 1. Data sources for predictor variables.

Predictor variable Year Source

Road network & traffic data 2014 Departament de mobilitat, Ajuntament de Barcelona

Land uses 2018 Urban atlas, Copernicus

Population 2016 Institut d'Estadistica de Catalunya.

Buildings height 2009 Modelo Digital de Superficies Edificacion - MDSn2,5 (MDSNE)
Imperviousness 2018 Copernicus

Slope 2012 Institut Cartografic de Catalunya

LEZ 2020 OSM

* Abbreviations: LEZ: Low Emission Zone, OSM: Open Street Map.



LUR development

Following the ESCAPE guidelines (Beelen, et al. 2013), we applied a supervised forward stepwise
regression process. Using pollutant concentration as an independent variable we started from a null
model and added, one at a time, the predictor variable which improved the model most, following pre-
defined conditions and until certain criteria were met. .

Before starting the model development analysis we defined the direction of the coefficients we
expected each predictor variable to have in the model. For example, traffic variables were
hypothesized to have a positive coefficient if selected in the model because they increase the response,
whereas green spaces were hypothesized to reduce the concentration, therefore we expected a negative
coefficient if it came into the model. Firstly, univariate regression models were conducted for all
predictor variables and the model with the highest adjusted explained variance (adjusted R?) was
selected. We then repeated the process using the previous model and all the remaining predictor
variables.

A variable was selected into a model if it followed the next criteria:

- It made increases the model performance (adjusted R?) by at least 1%.

- The direction of the association (i.e., positive or negative variable coefficient) in the model
was the same as what we had hypothesized.

- The p-value of the association for that variable was less than 0.10.

- Addition of that variable did not affect parameters from the previous variables (p-value and
direction of the association)

Once we selected the second variable, we repeated the process until no other variable could be
included and considered as the intermediate model.

Then, standard model diagnostics were applied including:
- Influential observations: the influence of each observation on the estimates was measured
using Cook’s Distance. It measures which observations have a large influence on the
parameter estimates.

If there were influential observations, they were removed from the model and the procedure
was repeated until getting a new final model.

- Normality of the residuals using tests and plots.

- Heteroscedasticity of the residuals: a plot was made with the monitored concentrations and

the residuals to evaluate whether there was heteroscedasticity.

- Spatial autocorrelation: Moran’s I test was conducted to assess spatial autocorrelation.

Once the checks for the model diagnostics were accomplished, we considered the model as final.



Final LUR models

Table 2 describes the final models obtained for black carbon, PM, s, and its constituents (Fe, Zn, and
Cu), including the number of sites finally used to develop the models, the predictor variables, the
model adjusted R? and the LOOCV R?.

Table 2. Final LUR models for BC, PM, s, Cu, Fe, and Zn.

Pollutant Year [\ Adj-R2 CV-R2 RSE Predictor variables (1)
PMys 2021 34 0.47 0.45 1.47 hdres500 + trafnear + LEZ
BC 2021 30 0.85 0.83 0.18 hdres50 + linesnear + pop300 + trafload500 +
roads500
PMa.5 Cu 2021 31 0.90 0.87 0.72 trafnear + roads1000 + ind1000 + pop25
PM; s Fe 2021 34 0.91 0.89 0.03 trafnear - lat + pop50 - LEZ
PM;5Zn 2021 31 0.89 085 6.99 - LEZ + roads50 + ind1000 + build25

(1) Predictor variables (roadlength: total road length (m), majorroadlength: total major road length (m), trafload: total traffic
intensity (veh/day), trafnear: traffic intensity at the nearest road (veh/day), linesnear: number traffic lines on nearest street,
LEZ: Low Emissions Zone (Yes/No, ref value=No), hdres: high-density residential area (m2), roads: roads surface area (m2),
ind: industry area (m2), pop: population density (inhabitants), build: building area (m2), lat: latitude (m), sqralt: squared root
altitude (m1/2)).

Table 3 describes the potential NO, models that were explored. Models number 1 and 2 were
developed using measurements done during the same year (i.e., We only included measured home-
outdoor level data from those participants who had both of their measurements (1* and 3™ trimesters)
in the same calendar year and excluded participants whose two measurements were in two different
calendar years or those who had only data on one measurement). For these models, the
deseasonalization was done separately for each year (2019, 2020, and 2021). Models 3 and 4 were
developed including data from all participants with two measurements regardless of the sampling date
(i.e., We only excluded participants with one measurement available). For these models, the
deseasonalization was done for the entire sampling period (2018-2021).

Models 1 and 3 were built using all sites regardless of the sampling height whereas models 2 and 4
restrict sites from the ground floor to the 4th floor (included). This was informed by the findings of a
study in Barcelona showing that there was only a 10% reduction in levels of air pollutants within 3 and
15 m of vertical elevation, which approximately correspond to a 4th-5th floor (Amato, F. et al, 2019).

The final model selected was number 3 based on its better validation performance and because it was
built using a wider range of the sample that could be more representative of the study population. The
description of this model is presented in Figure 4.



Table 3. Scenarios for the potential NO, LUR models.

MODEL DEVELOPMENT VALIDATION
# Model Dataset N Floors Year Nmodel AdjR2 k-fold CV Predictor variables N Adj R2
BISC- h
1 N omes total traffic intensity within 25m buffer + period + squared root altitude +
384 ALL 2019-2021 315 0.74 0.74 total major road length within 50m buffer + total road length within 25m 602 0.51
BISCAPE .. . L
buffer + total traffic intensity within 300m buffer
BISC- h
2 . omes total traffic intensity within 25m buffer + period + squared root altitude +
250 Oto 4th 2019-2021 205 0.70 0.70 total road length within 25m buffer + otal major road length within 200m 602 0.49
BISCAPE g . s
buffer + averaged buildings height within 25m buffer
BISC - homes
N total traffic intensity within 25m buffer + squared root altitude + total major
3 BISCAPE 579 ALL 2018-2021 489 0.62 0.62 road length within 50m buffer + total road length within 25m buffer + total 602 0.56
. major road length within 300m buffer
(all period)
BISC - homes
a + i DT ST 292 0.55 0.56 total traffic intensﬁtY within 25m buffer + squared root al.tithde + total major 602 0.56
BISCAPE road length within 100m buffer + total road length within 25m buffer

(all period)




Figure 4. NO> model selected.

Call:
Im(formula = no2 ~ trafload25 + sgralt + majorroadlength50 +
roadlength25 + majorroadlength300, data = dat)

Residuals:
Min 10 Median 30 Max
-11.3101 -2.7445 -0.1588 2.5849 11.4221

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.975e+01 7.812e-01 50.875 < 2e-16 ***
trafload25 8.252e-06 1.008e-06 8.188 2.40e-15 ***
sqralt -1.259%9e+00 8.289%e-02 -15.185 < 2e-16 ***
majorroadlength50 3.162e-02 4.878e-03 6.482 2.24e-10 ***
roadlength25 4.718e-02 6.689%e-03 7.054 6.06e-12 **x*

1.095e-03 2.213e-04 4.948 1.04e-06 ***

majorroadlength300
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*" 0.05 ‘. 0.1 " 1

Residual standard error: 4.028 on 483 degrees of freedom
Multiple R-squared: 0.6254, Adjusted R-squared: 0.6215
F-statistic: 161.2 on 5 and 483 DF, p-value: < 2.2e-16

Validation process

For our LUR models for black carbon, PM; 5, and its constituents (Cu, Fe, and Zn) we conducted
internal validation using leave-one-out cross-validation (LOOCYV) process. We iterated model
construction over the dataset n times (where n is the total number of observations in the dataset) and
each time we built the model using -/ observations and recorded the resulting adjusted R2.
Eventually, we averaged the metrics and provided a CV-adjusted R%. For these models, we were not
able to conduct external validation, because of the lack of external data.

For our LUR models for NO, we carried out both internal and external validations. For internal
validation, we applied K-fold cross-validation analysis. We selected 10-fold cross-validation,
therefore the sample data was divided into ten sub-samples and the model was run over each of the
samples. The model was trained using the k-1 of the folds as a training dataset and the resulting model
was validated against the remaining fold. The errors and adjusted R* were recorded and the process
was repeated k times. The averaged measures were reported as the indicators of the model validity.

For the external validation of NO; models, we applied data on measured home-outdoor NO; levels at
participants’ homes for those participants who had data available for only one measurement campaign
(either the first or the third trimester measurement) and therefore their data were not used for
developing LUR models.



For each candidate model, we temporally adjusted spatial estimates to abstract the predicted levels for
the same home-outdoor NO, sampling period for each external validation point (i.e., participant’s
home). The results of this external validation results are shown in table 3 for each candidate NO,
model.

Figures 6 show the distribution of the data from the different NO, datasets used in modelling and
validation:

- Modelled data: NO, used to build the final model in each scenario.
- Measured data: all NO, outdoor measurements at participants' homes.

- Predicted data: NO; predicted by the models for the external validation dataset.
Figure 7 shows the association between the predicted and measured NO2 data on the external
validation dataset. On the left-top side is shown the coefficient of determination.

Figure 6. Distribution of NO; data for the datasets used in modelling and validation.
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Figure 7. External validation using model predictions over the real measured data for model 3.
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