HE

APPENDICES AVAILABLE ON THE HEI WEBSITE

Special Report 23

Systematic Review and Meta-analysis of Selected Health Effects of Long-

Term Exposure to Traffic-Related Air Pollution

HEI Panel on the Health Effects of Long-Term Exposure to Traffic-Related Air Pollution

Chapter 9: Traffic-Related Air Pollution and Respiratory Outcomes

These Appendices were reviewed solely for spelling, grammar, and cross-references to the main text. They have not been formatted or fully edited by HEI. This document was part of the HEI Panel's review process.

Correspondence concerning the Special Report may be addressed to Dr. Hanna Boogaard at Health Effects Institute, 75 Federal Street, Suite 1400, Boston, Massachusetts, 02110; email: *jboogaard@healtheffects.org*.

Although this document was produced with partial funding by the United States Environmental Protection Agency under Assistance Award CR-83467701 to the Health Effects Institute, it has not been subjected to the Agency's peer and administrative review and therefore may not necessarily reflect the views of the Agency, and no official endorsement by it should be inferred. The contents of this document also have not been reviewed by private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views or policies of these parties, and no endorsement by them should be inferred.

@ 2022 Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110

HEI Special Report 23, HEI Panel, Appendices (Available on the HEI Website)

Chapter 9: Traffic-Related Air Pollution and Respiratory Outcomes Appendix A

Appendix 9A Wheeze Outcomes in Children and Adults

9A.1 Prevalence of wheeze ever and asthma-like symptoms in children

9A.1.1 Study selection and description

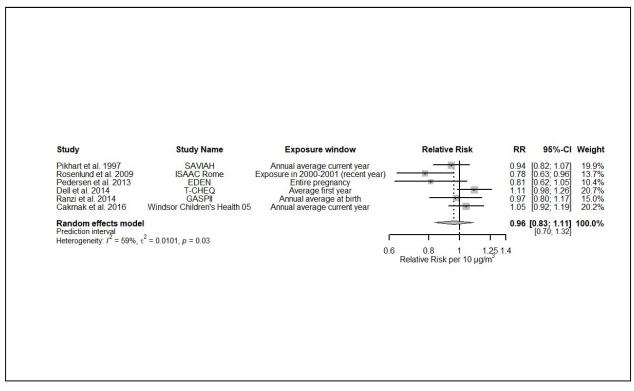
Eight studies explored associations between TRAP and prevalence of wheeze ever in children, and nine explored associations with indirect measures of traffic exposures (i.e., distance to roads or density of traffic on nearby roads). Combined, these studies presented 29 different effect estimates. Appendix Table 9A-1 presents details, including the effect estimates, for the eight studies that considered exposures to the pollutants. Four of these eight studies were based in Europe, two in Canada, and two in Asia. Although some of the studies analyzed cohorts, all measured outcomes as prevalence, and none were analyzed as longitudinal study designs. Most of the studies included a few hundred to a few thousand participants, but one study (Hasunuma et al. 2016) was notably larger than all others with nearly 58,000 participants. All but two studies (Pikhart et al. 1997; Zhang et al. 2002) were published after 2008 (the end of the search date for the review of the HEI 2010 Traffic report). Across these eight studies that considered exposures to pollutants, five reported effect estimates for exposures to NO₂, three for NO_x, and one for each of PM_{2.5} and EC.

Appendix Table 9A-1. Key Study Characteristics of Articles Included in the Systematic Review for Prevalence of Wheeze Ever in Children – Pollutants.

Reference	Study Name	Study Design	Location	Study period	Sample size ^a	Exposure Assessment	Pollutant	Mean or median exposure ^b	Exposure Window	Effect Estimate (95% CI) ^c	Increment
Cakmak 2016	Windsor Children's Health 05	Cross sectional	Windsor, Ontario, Canada	2005- 2005	1,570	LUR	NO ₂	11.6	Annual average current year	0.99 (0.90, 1.10) (income > \$80,000) ^d	2.27 ppb
										1.03 (0.95, 1.10) (income \$35,000-80,000) ^d	
										1.05 (0.90, 1.23) (income < \$35,000) ^d	
Dell 2014	T-CHEQ	Case- control	Toronto, Canada	2006- 2006	1,441	LUR	NO ₂	18.3-28.3	Average first year	1.12 (0.98, 1.28)	5.7 ppb
									Annual average current year	1.10 (0.96, 1.26)	5.3 ppb
									Cumulative average	1.01 (0.89, 1.14)	3.3 ppb
Hasunuma 2016	SORA	Cohort	Multiple cities, Japan	2006- 2010	57,682	Personal exposure	NOx	37.7	Cumulative average	1.00 (1.00, 1.01)	1 ppb
							EC	2.85		1.01 (1.00, 1.01)	0.1 μg/m ³
Nordling 2008	BAMSE	Cohort	Stockholm County, Sweden	1994- 2000	3,515	Dispersion / CTM	NOx	23.1	Average first year	0.82 (0.48, 1.40)	44 μg/m³
							traffic PM ₁₀	3.9		0.90 (0.45, 1.81)	6 μg/m³
Pedersen 2013	EDEN	Cohort	Nancy and Poitiers, France	2003- 2007	926	Dispersion / CTM	NO ₂	18.8	Entire pregnancy	0.81 (0.62, 1.05)	10 μg/m³
							PM ₁₀ mass	20.3		0.60 (0.29, 1.25)	10 μg/m³

Pikhart 1997	SAVIAH	Cross sectional	Prague, Czech Republic	1993- 1994	3,334	LUR	NO ₂	31.2	Annual average current year	0.94 (0.82, 1.07)	10 μg/m³
Ranzi 2014	GASPII	Cohort	Rome, Italy	2003- 2011	672	LUR	NO ₂	37.88	Annual average at birth	0.97 (0.80, 1.17)	10 μg/m ³
									Cumulative average	1.07 (0.90, 1.28)	
Rosenlund 2009	ISAAC Rome	Cross sectional	Rome, Italy	2000- 2001	1,760	LUR	NO ₂	45	Exposure in 2000- 2001 (recent year)	0.7 (0.5, 0.9)	14.16 μg/m³
Zhang 2002	Chinese 4- City School Survey	Cross sectional	Multiple cities, China	1993- 1996	7,392	Surface monitoring	NOx	90	At baseline	0.82 (0.53, 1.28)	64 μg/m³

^a All studies included male and female participants.

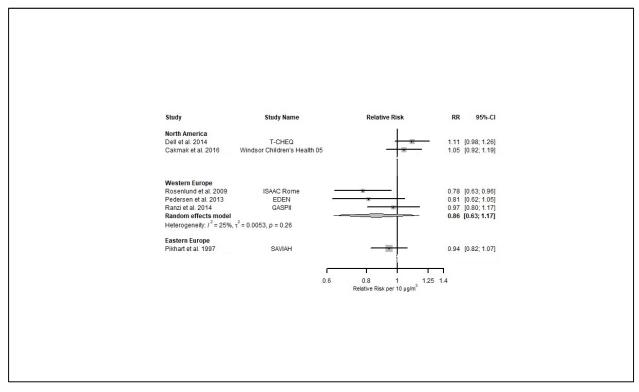

^b Units are in the increment column.

^c The effect estimate in all studies was odds ratio. **Bold** indicates the effect estimate was included in the meta-analysis.

^d Estimates were combined by a fixed effect meta-analysis before entering the random-effects model.

9A.1.2 Primary meta-analysis

Meta-analyses were not conducted for pollutants with fewer than three estimates of association or for distance or traffic density metrics. Additionally, studies were not included in meta-analyses when indoor pollutant levels or exposures related to time-activity patterns were modeled (i.e., Hasunuma et al. 2016). As such, meta-analysis was conducted only for six studies that considered NO₂ (Appendix Figure 9A-1). Here, three of these studies suggested inverse associations between exposure and odds of wheeze in the past 12 months, and two suggested small increased risks. Only one of these (i.e., Rosenlund et al. 2009) presented a statistically significant association (i.e., 0.78; 95% CI: 0.63–0.96). The random-effects summary estimate was 0.96 (95% CI: 0.83–1.11) per 10 μ g/m³. The six studies had approximately equal weighting on the summary estimate, and the heterogeneity of the associations was moderate ($l^2 = 59\%$).

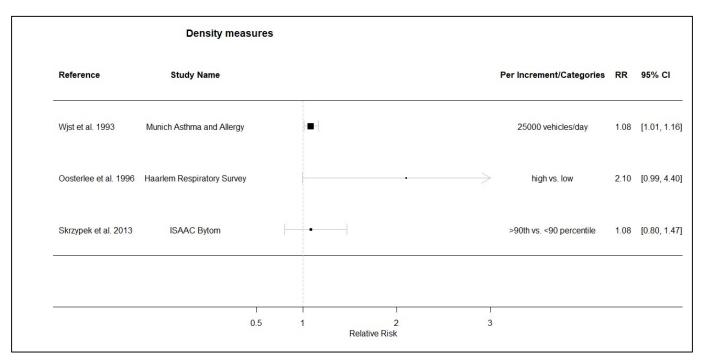

Appendix Figure 9A-1. Meta-analysis of associations between NO₂ and prevalence of wheeze ever in children.

9A.1.3 Additional meta-analyses

The two studies that suggested positive associations between exposure to NO₂ and prevalence of wheeze ever among children were based in North America (in fact, both were based in Southwestern Ontario, Canada). Appendix Figure 9A 2 illustrates that the heterogeneity of estimates of association with NO₂ was notably lower when stratified by region (i.e., $l^2 = 25\%$ for the European studies).

These differences in estimates of association between geographic regions may be due to differing pollution concentrations or mixtures, or to differing study designs and statistical adjustments, among other issues. There were no other notable differences in size or direction of effect estimates, nor any

obvious patterns of or explanations for heterogeneity, in meta-analyses for NO₂ stratified according to potential risk of bias, year of publication, adjustment for smoking, or study design.



Appendix Figure 9A-2. Association between NO₂ and prevalence of wheeze ever in children: metaanalysis by region.

9A.2.4 Associations with indirect traffic measures

Studies on indirect traffic measures (i.e., distance and traffic density measures) provide additional information to assess the evidence of associations between TRAP exposure and wheeze onset in children (Appendix Figure 9A-3). In the case of distance measures, although six of the nine studies suggested positive associations between living near major roads and this outcome, confidence intervals all included unity. Three studies reported estimates of association with traffic density measures, only one (Wjst et al. 1993, based in Munich Germany), reported a statistically significant association with prevalence of wheeze ever in children (i.e., RR 1.08, 95% CI: 1.01-1.16 associated with 25,000 vehicles per day around the home compared to no traffic around the home). The study by Oosterlee et al. (1996), set in the Netherlands, also reported increased odds of this outcome (i.e., RR 2.10, 95% CI: 0.99-4.40) associated with relatively high vs. relatively low densities of traffic around the home.

Reference	Study Name		Categories	RR	95% (
Rosenlund et al. 2009	ISAAC Rome	F	<100 vs. >100 m	0.80	[0.50,
Skrzypek et al. 2013	ISAAC Bytom		<100 vs. >100 m	1.09	[0.79,
Dell et al. 2014	T-CHEQ		ightarrow <100 vs. >100 m	0.75	[0.23, 2
Ranzi et al. 2014	GASPII	F	<86.1 vs. >86.1 m	0.98	[0.73,
Jung et al. 2015	CHEER	II	<75 vs. >225 m	1.17	[0.99, 1
Jung et al. 2015	CHEER		75-150 vs. >225 m	1.04	[0.89,
Jung et al. 2015	CHEER	F	150-225 vs. >225 m	1.09	[0.88,
Lee et al. 2018	CHEER		<75 vs. >700 m	1.29	[0.90, 1
Lee et al. 2018	CHEER	F	75-700 vs. >700 m	1.03	[0.74,
	0	1	2		

Appendix Figure 9A-3. Association of distance to major roads and traffic density with prevalence of wheeze ever in children.

9A.1.5 Narrative assessment

In summary, the evidence linking TRAP and wheeze ever in children is low: the overall body of evidence is relatively small, and few studies considered associations with pollutants other than NO_2 . As noted above, in the single case where meta-analysis was possible (i.e., for NO_2), moderate heterogeneity was evident, and the confidence intervals for the summary estimate included unity. Additionally, none of the studies not included in the meta-analysis (i.e., those that considered exposures to NO_x , PM_{10} , or EC) reported statistically significant associations, either.

Moreover, the studies on indirect traffic measures did not provide any substantial additional support for an association between TRAP and this outcome, as confidence intervals for 13 of the 14 reported RRs that also included unity. In conclusion, the evidence for the presence of an association between TRAP and prevalence of wheeze ever is low.

9A.1.6 Risk of bias assessment

Appendix Table 9A-2 presents an overview of the results of the risk of bias assessment for exposureoutcome pairs of studies on wheeze ever among children that were meta-analyzed; Appendix Table 9A-3 presents the assessment for each individual study. The purpose of the risk of bias assessment is to consider potential risk of bias, and does not provide a determination of actual risk. The risk of bias assessment also does not inform on the direction of any bias. Most of the estimates of association were rated low or moderate risk of bias for all the domains in this case. Only two studies were found to be at high risk of bias for any domain; both Pikhart et al. (1997) and Cakmak et al. (2016) were rated high for lack of adjustment for important potential confounders. Pikhart did not include a correction for smoking, whereas Cakmak did not correct for sex. **Appendix Table 9A-2.** Summary of risk of bias rating for studies on prevalence of wheeze ever in children.

			Per study		Per p	ollutant-stud	y pair
Domain	Subdomain	Low-risk	Moderate -risk	High-risk	Low-risk	Moderate -risk	High-risk
1. Confounding	Were all important potential confounders adjusted for in the design or analysis?	4	0	2	4	0	2
	Validity of measuring of confounding factors	6	0	0	6	0	0
	Control in analysis	5	1	0	5	1	0
	Overall	4	0	2	4	0	2
2. Selection Bias	Selection of participants into the study	5	1	0	5	1	0
3. Exposure assessment	Methods used for exposure assessment	6	0	0	6	0	0
	Exposure measurement methods comparable across the range of exposure	6	0	0	6	0	0
	Change in exposure status	6	0	0	6	0	0
	Overall	6	0	0	6	0	0
4. Outcome measurements	Blinding of outcome measurements	0	6	0	0	6	0
	Validity of outcome measurements	4	2	0	4	2	0
	Outcome measurements	4	2	0	4	2	0
	Overall	0	6	0	0	6	0
5. Missing data	Missing data on outcome measures	4	2	0	4	2	0
	Missing data on exposures	5	1	0	5	1	0
	Overall	3	3	0	3	3	0
6. Selective reporting	Authors reported a priori primary and secondary study aims	6	0	0	6	0	0

Appendix Table 9A-3. Risk of bias assessment for individual studies on prevalence of wheeze ever in children.

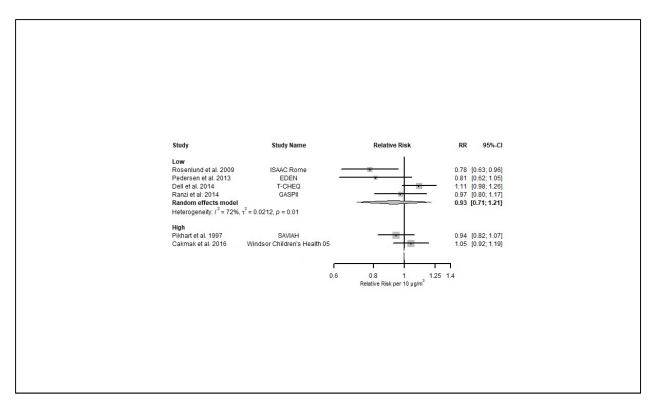
Reference	Study Name	Confounding	Selection Bias	Exposure Assessment	Outcome Measurem ent	Missing Data	Selective Reporting
Cakmak 2016	Windsor Children's Health 05	High	Mod	Low	Mod	Mod	Low
Dell 2014	T-CHEQ	Low	Low	Low	Mod	Low	Low
Pedersen 2013	EDEN	Low	Low	Low	Mod	Mod	Low
Pikhart 1997	SAVIAH	High	Low	Low	Mod	Low	Low
Ranzi 2014	GASPII	Low	Low	Low	Mod	Mod	Low
Rosenlund 2009	ISAAC Rome	Low	Low	Low	Mod	Low	Low

Mod=moderate.

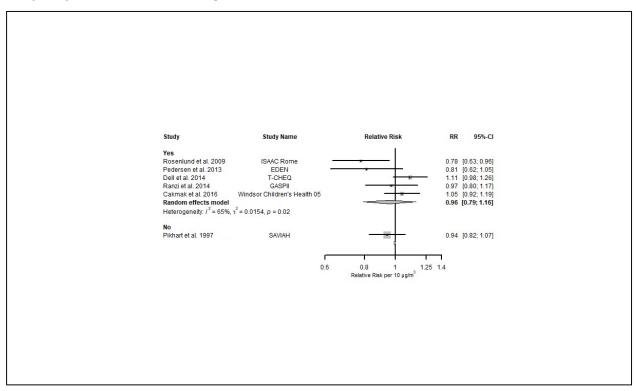
9A.1.7 Confidence assessment of the body of evidence

Appendix Table 9A-4 provides the assessment of the evidence for the exposures for which metaanalyses were conducted. The table, therefore, does not include the pollutants with fewer than three studies or the traffic indicators for which a meta-analysis was not possible.

The initial rating for the body of evidence for associations with NO_2 was set at low because, as explained above, longitudinal assessments (for which it is possible to ascertain if the exposure preceded the outcome) were not conducted here.


9A.1.7.1 Factors that decrease confidence

No downgrade was applied for *Risk of Bias*. Subgroup analyses with respect to risk of bias showed that excluding the two estimates rated at high risk of bias due to confounding, as well as specifically not adjusting for tobacco smoke, had minimal influence on the meta-analytic estimate (Appendix Figures 9A-4 and 9A-5).


Heterogeneity was moderate ($l^2 = 59\%$), but there were inconsistencies in the direction of association between NO₂ exposures and wheeze ever in children (i.e., both positive and negative estimates of association; Appendix Figure 9A 7). Confidence intervals around most estimates, however, included unity, which suggests minimal substantial heterogeneity overall. Across the six studies, there were some inconsistencies in study designs, and mean exposures, ranging from 11.6 (Cakmak et al. 2016) to 45 µg/m³ (Rosenlund et al. 2009). For these reasons, no downgrade was necessary for *unexplained inconsistency*.

Regarding *imprecision*, the confidence interval of the meta-analytic effect estimate included unity, and both a positive and a negative association cannot be excluded, and as such, a downgrade was applied.

Due to the small number of studies here it was not possible to assess *publication bias* for studies on associations with NO₂. For this, the Panel decided not to downgrade, per protocol.

Appendix Figure 9A-4. Association between NO₂ and prevalence of wheeze ever in children: metaanalysis by risk of bias confounding.

Appendix Figure 9A-5. Association between NO_2 and prevalence of wheeze ever in children: metaanalysis by smoking.

9A.1.7.2 Factors that increase confidence

No study provided evidence of a *plausible monotonic exposure-response function* and hence an upgrade was not applied. In the current body of evidence, the Panel found no clear indication that *residual confounding or other factors* are likely to lead to an underestimation of the associations. An upgrade was thus not considered appropriate. The Panel found positive associations between exposure to NO₂ and this outcome among the two studies based in Canada, but inverse associations among the remaining three studies, each of which was based in Europe, although all but one these five effect estimates included unity. All but one study was published after 2008, hence the Panel could not adequately assess *consistency* across time periods. Because of the general variability of the estimates, the Panel did not upgrade the evidence for NO₂.

9A.1.7.3 Evaluation of confidence for combined measures of TRAP

The Panel assessed the confidence in the quality of the body of evidence only for NO_2 and judged it to be very low. The Panel did not see any reason to upgrade because of traffic-specificity or studies not entering a meta-analysis.

9A.1.8 Overall assessment

Since the level of confidence in the evidence was considered low in the narrative assessment and the confidence in the body of evidence was very low, the overall confidence assessment of TRAP and prevalence of wheeze ever in children was very low to low.

	High ++++ Moderate + Low ++ Very low +		Factors decreasing co downgrade confidence		concern; "-" if serious	s concern to	Factors increasing "+" if sufficient to			
Pollutant	Study design	Initial confidence rating (# studies)	Risk of Bias	Unexplained inconsistency	Imprecision	Publication bias	Monotonic exposure-response	Consideration of residual confounding	Consistency across populations	Final confidence rating
NO ₂	Cross- sectional	++ (N = 6)	0	0	-	0	0	0	0	+ (Very low)
	Rationale	Studies were cross- sectional	Two studies rated high RoB, but no evidence of difference in effect estimates between these.	Moderate heterogeneity (l ² = 59%). Plausible reasons to explain inconsistency.	Sample size met but confidence interval wide and clearly includes unity.	No formal evaluation possible.	No evidence of plausible shape of ERF.	Confounding in both directions possible.	Too few studies to assess consistency.	

Appendix Table 9A-4. Confidence rating in the quality of the body of evidence for traffic-related air pollutants and wheeze ever in children^a.

^a The downgrading factor indirectness and the upgrading factor large magnitude of effect were not considered further.

9A.2 Prevalence of active wheeze and asthma-like symptoms in children

9A.2.1 Study selection and description

Forty studies reported associations between traffic-related air pollution and the prevalence of wheeze in the past 12 months (active wheeze) among children under the age of 18 (Appendix Table 9A-5). The vast majority of these studies were based in various locations across Europe, with a handful based in the United States or China. Study sample sizes varied from a few hundred to 20+ thousand participants, and covered periods from the early 1990s through to the early 2010s. Although approximately half of the studies were based on cohorts (as opposed to cross-sectional designs), nearly none were longitudinal by design and used logistic regression to report measures of prevalence. Several birth cohorts reported prevalence at various ages (e.g., Esplugues et al. 2011; Gruzieva et al. 2013; Lindgren et al. 2013). Combined, these 40 studies presented 100 effect estimates, including 45 for associations with NO₂, 30 for particulate matter generally, 12 for NO_x, and a few for each of EC, benzene, CO. Estimates of exposure from surface monitoring networks, LUR models, and dispersion models were used to estimate pollutant concentrations assigned to study participants. Twenty-five of these studies were published after 2008 (the end of the search date for the review of the HEI 2010 Traffic review).

Appendix Table 9A-5. Key Study Characteristics of Articles Included in the Systematic Review for Prevalence of Active Wheeze in Children – Pollutants.

Reference	Study Name	Study Design	Location	Study period	Sample size	Sex	Exposure Assessment	Pollutant	Mean or median exposure ^a	Exposure Window	Effect measure	Effect Estimate (95% CI) ^b	Increment
Abidin 2014	ISAAC Malaysia	Cross sectional	Kuala Lumpur, Malaysia	2009- 2009	1,893	Both	Surface monitoring	NO ₂	15.8-43.9	Annual average current year	OR	1.90 (1.02, 3.52)	10 µg/m ³
Aguilera 2013	INMA	Cohort	Multiple cities, Spain	2003- 2010	2,199	Both	LUR	NO ₂	17-38	Average first year	RR	1.04 (0.98, 1.12)	10 μg/m³
										Entire pregnancy		1.03 (0.96, 1.10)	
								Benzene	0.8-1.9	Average first year		0.97 (0.90, 1.05)	1 μg/m³
										Entire pregnancy		1.01 (0.94, 1.09)	
Altuğ 2013	ISAAC Eskisehir	Cross sectional	Eskişehir, Turkey	2008- 2009	1,667	Male	Surface monitoring	NO ₂	7.3-43.4	Annual average current year	OR	0.66 (0.35, 1.23) (summer) ^d	10 µg/m³
						Female						0.92 (0.53, 1.60) (summer) ^d	
						Male						0.88 (0.70, 1.09) (winter) ^d	
						Female						1.02 (0.81, 1.28) (winter) ^d	
Brauer 2002	PIAMA	Cohort	The Netherlands	1996- 1999	2,029	Both	LUR	NO ₂	25.6	Annual average	OR	1.08 (0.86, 1.34)	10.3 μg/m ³
								PM _{2.5 abs}	1.72			0.99 (0.79, 1.25)	0.54 1×10 ⁻⁵ /m
								PM _{2.5} mass	16.9			1.00 (0.74, 1.36)	3.2 μg/m ³

Chiu 2014	ACCESS	Cohort	Boston, Massachusetts, United States	2002- 2011	708	Both	LUR	BC	0.38	Entire pregnancy	OR	1.84 (1.08, 3.12)	<0.38 vs. >0.38 μg/m ³
								PM _{2.5} mass	11.22			2.02 (1.20, 3.40)	<11.22 vs. >11.22 µg/m ³
Clifford 2018	Brisbane Respiratory	Cross sectional	Brisbane Metropolitan Area, Australia	2010- 2012	468	Both	Personal exposure	PNC > 5 nm	15,000	Annual average current year	OR	1.06 (0.91, 1.25)	1,000 particles/cm ³
Dell 2014	T-CHEQ	Case- control	Toronto, Canada	2006- 2006	1,441	Both	LUR	NO ₂	18.3-28.3	Average first year	OR	0.98 (0.82, 1.17)	5.7 ppb
										Annual average current year		1.05 (0.89, 1.23)	5.3 ppb
										Cumulative average		0.88 (0.74, 1.04)	3.3 ppb
Deng 2016	CCHH Changsha	Cross sectional	Changsha, China	2011- 2012	2,598	Both	Surface monitoring	NO ₂	46	Entire pregnancy	OR	0.95 (0.77, 1.19)	16 μg/m³
										Cumulative average		0.95 (0.78, 1.16)	12 μg/m³
Ebisu 2011	Yale Childhood Asthma Study	Cohort	Connecticut, United States	1996- 1999	680	Both	LUR	NO ₂	27-46	Average first year	OR	1.22 (0.98, 1.52)	9.21 ppb
Emenius 2003	BAMSE	Case- control	Stockholm, Sweden	1994- 1996	500	Both	Surface monitoring	NO ₂	21.8	Average first year	OR	1.60 (0.78, 3.26)	>28.4 vs. <14.8 μg/m ³
												0.80 (0.43, 1.47)	21.4-28.4 vs. <14.8 μg/m ³
												0.76 (0.42, 1.36)	14.8-21.4 vs. <14.8 μg/m ³
Esplugues 2011	INMA Valencia	Cohort	Valencia, Spain	2003- 2006	706	Both	LUR	NO ₂	36.8	Entire pregnancy	OR	1.21 (0.92, 1.59)	10 μg/m³
					352		Surface monitoring			Average first year		1.04 (0.85, 1.27)	10 μg/m³
Gauderman 2005	СНЅ	Cohort	Multiple cities, United States	1993- 2000	208	Both	Dispersion / CTM	NO ₂ (freeways)	about 40	Annual average recent year	OR	1.70 (1.12, 2.58) ^c	0.64 ppb

Gehring 2010	PIAMA	Cohort	The Netherlands	1996- 2006	3,184	Both	LUR	NO ₂	25.4	Annual average at birth	OR	1.01 (0.86, 1.17)	10.4 μg/m ³
								PM _{2.5 abs}	1.72			1.03 (0.88, 1.20)	0.57 1×10⁻⁵/m
								PM _{2.5} mass	16.9			1.04 (0.85, 1.28)	3.2 μg/m³
Gruzieva 2013	BAMSE	Cohort	Stockholm County, Sweden	1994- 2008	3,633	Both	Dispersion / CTM	NOx	7.8-21.4	Average first year	OR	1.12 (0.84, 1.49)	46.8 μg/m³
										Cumulative average		1.07 (0.82, 1.39)	46.8 μg/m ³
								PM ₁₀ mass	3.5-4.6	Average first year		1.15 (0.81, 1.63)	7.2 μg/m³
										Cumulative average		1.03 (0.81, 1.30)	7.2 μg/m³
Hirsch 1999	ISAAC Dresden	Cross sectional	Dresden, Germany	1995- 1996	4,518	Both	Surface monitoring	NO ₂	33.8	Annual mean	OR	1.13 (0.93, 1.37)	10 μg/m³
								СО	0.69			1.05 (0.93, 1.18)	0.2 mg/m ³
								Benzene	4.0			1.05 (0.93, 1.18)	1 μg/m³
Janssen 2003	ISAAC Southwestern Netherlands	Cross sectional	Multiple cities, The Netherlands	1997- 1998	2,071	Both	Surface monitoring	NO ₂	34.8	Annual average current year	OR	1.74 (0.99, 3.05)	17.6 µg/m³
								BS	10.3			1.43 (0.66, 3.07)	9.3 μg/m ³
Knibbs 2018	ACHAPS	Cross sectional	Multiple cities, Australia	2007- 2008	2,601	Both	LUR	NO ₂	8.8	Previous year annual average	OR	1.25 (0.99, 1.57)	4.03 ppb
Krämer 2000	Düsseldorf School Survey	Cross sectional	Düsseldorf, Germany	1996- 1996	317	Both	Surface monitoring	NO ₂	44.4-61.7	Annual average current year	OR	1.70 (0.90, 3.19)	10 µg/m³
Krämer 2009	GINI, LISA: Wesel	Cohort	Multiple cities, Germany	1995- 2005	1,808	Both	LUR	NO ₂	24.0	Cumulative average	RR	0.64 (0.40, 1.03)	9 µg/m³
								PM _{2.5 abs}	1.6			0.75 (0.49, 1.14)	0.5 1×10⁻⁵/m

Lindgren 2013	Scania Birth Cohort 05/11	Cohort	Scania including Malmö, Sweden	2005- 2011	6,005	Both	Dispersion / CTM	NOx	22	Annual average at birth	HR	0.7 (0.6, 0.9)	>25 vs. <15 μg/m ³
												0.8 (0.7, 1.0)	15-25 vs. <15 μg/m ³
										Cumulative average		0.8 (0.6, 1.1)	>25 vs. <15 µg/m³
												0.8 (0.7, 0.9)	15-25 vs. <15 μg/m³
Liu 2013	SNEC Kindergarten	Cross sectional	Liaoning Province, China	2009- 2009	6,730	Both	Surface monitoring	NO ₂	36.7	Three-year average at baseline	OR	0.96 (0.82, 1.12)	10 µg/m³
Liu 2014	SNEC	Cross sectional	Liaoning Province, China	2009- 2009	23,326	Both	Surface monitoring	NO ₂	36.7	Three-year average at baseline	OR	0.92 (0.84, 1.01)	10 µg/m³
Madsen 2017	МоВа	Cohort	Multiple cities, Norway	1999- 2011	11,387	Both	LUR	NO ₂	13.6	Entire pregnancy	RR	1.02 (0.97, 1.07)	10 µg/m ³
McConnell 2006	СНЅ	Cross sectional	California, United States	2003- 2003	4,762	Both	Dispersion / CTM	NOx	25.9	Early life exposure	OR	1.14 (0.98, 1.32)	28.7 ppb
Mölter 2014	MAAS	Cohort	Manchester, United Kingdom	1995- 2008	373	Both	Personal exposure	NO ₂	20.3-31.9	Cumulative average	OR	0.97 (0.85, 1.10)	1 μg/m³
								PM ₁₀ mass	15.1-20			1.00 (0.78, 1.27)	1 μg/m³

Mölter 2015	ESCAPE	Cohort	Multiple cities, Multiple countries	1994- 2010	10,379	Both	LUR	NO ₂	11.9-23.7	Cumulative average	OR	1.07 (0.84, 1.35) (age 4-5)	10 μg/m³
									11.9-23.7			1.00 (0.85, 1.18) (age 8-10)	
								NO _x	21.1-39.6			1.07 (0.86, 1.33) (age 4-5)	20 μg/m³
									21.1-39.6			1.01 (0.87, 1.17) (age 8-10)	
								PM _{2.5 abs}	0.6-1.65			1.21 (0.88, 1.65) (age 4-5)	1 1×10⁻⁵/m
									0.6-1.65			1.19 (0.82, 1.73) (age 8-10)	
								PM ₁₀ mass	15.3-25.5			0.93 (0.73, 1.19) (age 4-5)	10 μg/m³
									15.3-25.5			1.11 (0.70, 1.75) (age 8-10)	
								PM _{2.5} mass	7.4-17.4			1.21 (0.85, 1.71) (age 4-5)	5 μg/m³
									7.4-17.4			0.96 (0.62, 1.49) (age 8-10)	
								PM _{coarse} mass	6.3-8.5			0.98 (0.83, 1.15) (age 4-5)	5 μg/m³
									6.3-8.5			1.03 (0.74, 1.44) (age 8-10)	

Morgenstern 2007	GINI, LISA: Munich	Cohort	Multiple cities, Germany	1995- 2001	2,882	Both	LUR	NO ₂	35.3	Annual average at birth	OR	1.09 (0.88, 1.35) (age 1)	5.7 μg/m³
												1.09 (0.90, 1.31) (age 2)	
								PM _{2.5 abs}	1.7			0.97 (0.77, 1.23) (age 1)	0.22 1×10 ⁻⁵ /m
												1.09 (0.90, 1.33) (age 2)	
								PM _{2.5} mass	12.8			1.01 (0.87, 1.18) (age 1)	1.04 μg/m³
												1.10 (0.96, 1.25) (age 2)	
Morgenstern 2008	GINI, LISA: Munich	Cohort	Multiple cities, Germany	1995- 2005	2,496	Both	LUR	NO ₂	34.6	Annual average at current address	OR	1.03 (0.90, 1.17)	6.4 μg/m³
								PM _{2.5 abs}	1.7			0.96 (0.83, 1.11)	0.2 1×10 ⁻⁵ /m
								PM _{2.5} mass	11.1			0.97 (0.91, 1.02)	1 μg/m ³
Nicolai 2003	ISAAC Munich	Cross sectional	Munich, Germany	1995- 1996	about 3,000	Both	LUR	NO ₂	about 45	Annual average current year	OR	1.58 (1.00, 2.48)	>57.44 vs. <57.44 μg/m³
								EC	about 9			1.41 (0.88, 2.25)	>10.73 vs. <10.73 μg/m ³
								Benzene	about 5			1.65 (1.06, 2.55)	>7.27 vs. <7.27 μg/m ³
Nordling 2008	BAMSE	Cohort	Stockholm County, Sweden	1994- 2000	3,515	Both	Dispersion / CTM	NOx	23.1	Average first year	OR	1.60 (1.09, 2.36)	44 μg/m³
								traffic PM ₁₀	3.9			1.64 (0.90, 3.00)	6 µg/m ³
Oftedal 2009	Oslo Birth Cohort	Cohort	Oslo, Norway	1992- 2002	2,205	Both	Dispersion / CTM	NO ₂	39.3	Annual average at birth	OR	1.01 (0.83, 1.23)	17.9 μg/m³

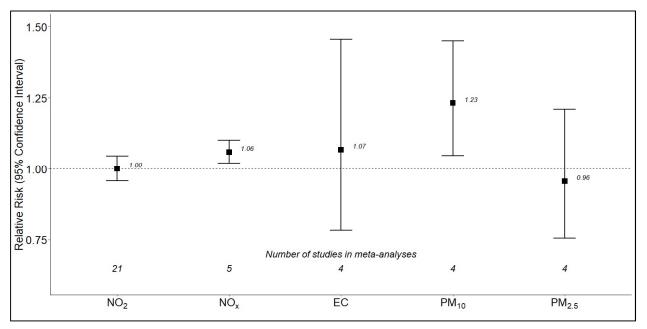
Pan 2010	Liaoning Survey 2002	Cross sectional	Liaoning Province, China	2002- 2002	11,860	Both	Surface monitoring	NO ₂	53	Four-year average at baseline	OR	0.87 (0.76, 1.00)	30 µg/m³
	French Six Cities	Cross sectional	Multiple cities, France	1999- 2000	4,907	Both	Dispersion / CTM	NO ₂	30.5-56.6	Annual average current year	OR	1.37 (0.85, 2.13)	18.5 µg/m ³
								NO _x	51.6- 108.6			1.32 (1.00, 1.89)	52.1 μg/m³
								СО	381.4- 637.5			1.45 (1.02, 2.04)	199 μg/m³
								PM ₁₀ mass	19.7-33.3			1.31 (0.92, 1.95)	10.5 μg/m³
								Benzene	1.5-3.3			1.36 (1.00, 1.96)	1.1 μg/m³
2006 Re	Leicestershire Respiratory Survey	Cohort	Leicestershire, United Kingdom	1998- 2001	1,319	Both	Dispersion / CTM	traffic PM ₁₀	1.33-1.47	Annual average current year	OR	1.42 (1.02, 1.97)	1 μg/m³
					2,175				1.47			0.99 (0.88, 1.12) (age 1-5)	1 μg/m³
					1,774				1.33			1.28 (1.04, 1.58) (age 4-8)	1 μg/m³
Pikhart 1997	SAVIAH	Cross sectional	Prague, Czech Republic	1993- 1994	3,334	Both	LUR	NO ₂	31.2	Annual average current year	OR	0.98 (0.82, 1.18)	10 μg/m³
Pikhart 2000	SAVIAH	Cross sectional	Prague, Czech Republic	1993- 1994	3,045	Both	LUR	NO ₂	35.8	Annual average current year	OR	1.08 (0.86, 1.36)	10 μg/m³
Rosenlund 2009	ISAAC Rome	Cross sectional	Rome, Italy	2000- 2001	1,760	Both	LUR	NO ₂	45	Exposure in 2000-2001 (recent year)	OR	1.0 (0.5, 1.7)	14.16 μg/m³
Ryan 2009	CCAAPS	Cohort	Cincinnati, Ohio, United States	2001- 2003	624	Both	LUR	EC	0.39	Average birth to age 3	OR	1.59 (0.88, 2.87)	>0.41 vs. <0.41 µg/m³

Sucharew 2010	CCAAPS	Cohort	Cincinnati, Ohio, United States	2001- 2006	550	Both	LUR	EC	about 0.4	Exposure at child's address at birth	OR	1.29 (1.01, 1.64)	>0.375 vs. <0.375 μg/m ³
Svendsen 2012	El Paso Children's Health	Cross sectional	El Paso and Texas, United States	2001- 2001	4,231	Both	LUR	NO ₂	20-27	Average recent	OR	1.45 (0.97, 2.19) (Upland schools) ^d	10 ppb
												0.51 (0.33, 0.79) (Valley schools) ^d	
Wood 2015	ISAAC East London	Cross sectional	London, United Kingdom	2008- 2011	995	Both	Dispersion / CTM	NO ₂	43.5	Annual average current year	OR	1.01 (0.97, 1.04)	1 μg/m³
								NO _x	75.7			1.00 (0.99, 1.02)	1 μg/m³
								PM ₁₀ mass	23.4			1.06 (0.91, 1.22)	1 μg/m³
								PM _{2.5} mass	13.7			1.16 (0.82, 1.65)	1 μg/m³

^a Units are in the increment column.

^b **Bold** indicates the effect estimate was included in the meta-analysis.

^c Estimate was log transformed.

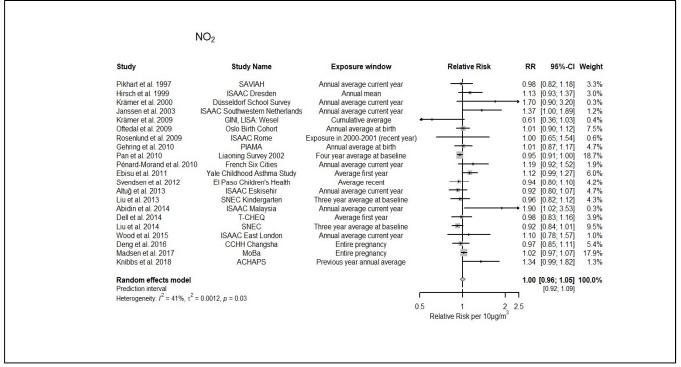

^d Estimates were combined by a fixed effect meta-analysis before entering the random-effects model.

9A.2.2 Primary meta-analysis

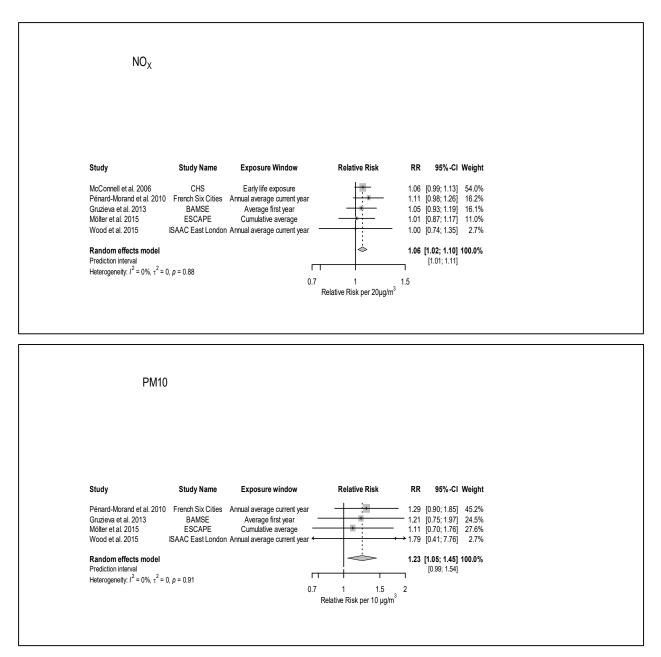
Appendix Figure 9A-6 presents the effect estimates across individual pollutants for wheeze prevalence in the past 12 months among children based upon meta-analyses. In these studies, wheeze prevalence is diagnosed through parental or self-reported responses to interviewer-led questionnaires at selected ages or at selected points during study follow-up. No meta-analyses were conducted for pollutants with fewer than three estimates of association. The number of studies included in Appendix Figure 9A-6 is also fewer than the total number of selected studies (Appendix Table 9A-5) because studies were also excluded from the meta-analyses when pollutant levels were logged or categorized or when indoor pollutant levels, or exposures related to time-activity patterns were modeled.

NO₂ was by far the most studied pollutant with 21 estimates of association, while there were five or fewer estimates for each of the other four pollutants for which meta-analyses were performed. In the case of NO₂, the random-effects summary estimate describes a null association, with an RR of 1.00.

These meta-analyses show significant, positive associations between wheeze and exposure to NO_x and PM_{10} , but no significant associations with either EC or $PM_{2.5}$. Note that estimates of association summarized here as EC are based on several related but distinct metrics (i.e., BC and $PM_{2.5}$ absorbance), which the Panel combined in the analysis.



Appendix Figure 9A-6. Meta-analysis of associations between TRAP and prevalence of active wheeze in children. The following increments were used: $10 \ \mu g/m^3$ for NO₂, $20 \ \mu g/m^3$ for NO_x, $1 \ \mu g/m^3$ for EC, $10 \ \mu g/m^3$ for PM₁₀ and $5 \ \mu g/m^3$ for PM_{2.5}. Effect estimates cannot be directly compared across the different traffic-related pollutants because the selected increments do not necessarily represent the same contrast in exposure. Appendix Figure 9A-7 presents forest plots of individual studies for selected pollutants (i.e., NO₂, NO_x, PM_{2.5}) for which at least three estimates of association were available (when considering the criteria described above).

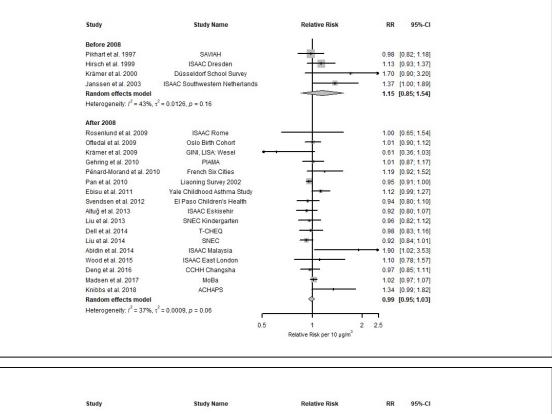

As noted above, the summary effect estimate for NO₂ was null (i.e., 1.00; 95% CI: 0.96–1.05 per increment in exposure of 10 μ g/m³). Although effect estimates from individual studies ranged from a low of 0.61 to a high of 1.90, most were in the range from ~0.95 to ~1.05 and there was evidence of only low heterogeneity ($l^2 = 41\%$). The overall summary estimate was not influenced highly by any single study as nearly all had weights below 10% and none had a weight greater than 18.7%. Only a single study (Abidin et al. 2014) had confidence intervals that did not include unity.

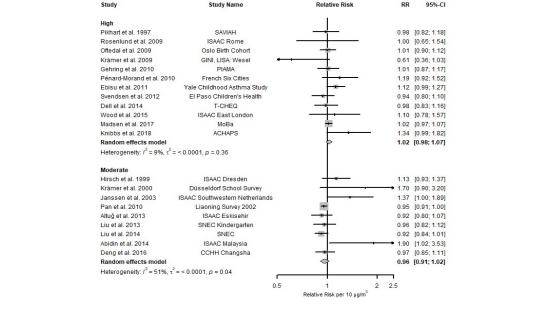
Five studies provided estimates for meta-analysis with NO_x and four provided estimates with PM₁₀. Estimates of associations between both of these pollutants and prevalence of wheeze in the past 12 months among children were all positive, but their confidence intervals all included unity. The measured heterogeneity of the associations in both cases was low ($l^2 = 0\%$). The summary estimate was 1.06 (95% CI: 1.02–1.10) per 20 µg/m³ increase in NO_x levels, and 1.23 (95% CI: 1.05–1.45) per 10 µg/m³ increase in PM₁₀ levels. The combined estimate for studies on associations with NO_x was influenced heavily by the estimate from the study by McConnell et al. 2006 (weight of 54%), and that for PM₁₀ was influenced by that from Penard-Morand et al. 2010 (weight of 45%).

Additionally, findings from two European studies (Hirsch et al. 1999; Penard-Morand et al. 2010) suggested positive associations with exposures to CO, and those from three other European studies (Hirsch et al. 1999; Nicolai et al. 2003; Penard-Morand et al. 2010) suggested positive associations with benzene.

Appendix Figure 9A-7. Association between NO₂, NO_x, and PM₁₀ and prevalence of active wheeze in children: primary meta-analysis. *Figure continues next page.*

Appendix Figure 9A-7. (Continued).


9A.2.3 Additional meta-analyses


Appendix Figure 9A-8 illustrates that the heterogeneity of estimates of association with NO₂ and wheeze prevalence in the past 12 months among children were somewhat low across the three studies based in North America (l^2 = 40%), as compared to among those studies based in Western Europe (l^2 = 25%) or Asia ($l^2 = 10\%$). In no region, however, was there evidence of statistically significant summary estimates between NO₂ and this outcome. There was an approximately equal amount of heterogeneity among those studies with NO₂ published before 2008 ($l^2 = 43\%$) and after ($l^2 = 37\%$). In the case of traffic specificity, there was very low heterogeneity across those studies with high specificity ($I^2 = 9\%$), but notably higher heterogeneity among those with only moderate specificity ($I^2 = 51\%$). Similar to all previous analyses mentioned above, however, in both cases here, confidence intervals for the randomeffects summary estimates included unity. The Panel also examined stratification by study design (i.e., case-control, cohort, cross-sectional) for estimates of association with NO_2 . Here, the summary estimates were all within 2% of unity, and confidence intervals all included unity. This general consistency of results across study designs suggests that the quality of outcome assessment and exposure assessment available through longitudinal vs. cross-sectional designs had no important bearings on results of these studies. Typically, one would expect that exposure and outcome assessment in a cross-sectional analysis of data from a longitudinal cohort would be of better quality than that of a similar analysis not nested in a cohort.

There were generally too few studies to consider meaningful differences in heterogeneity according to geographic region, traffic specificity, accounting for smoking, year of publication, or study design across the other pollutants.

Study	Study Name		Relative Risk	RR	95%-CI
Study	Study Name		Relative Risk	KK	90%-CI
North America					
Ebisu et al. 2011	Yale Childhood Asthma Study		-		0.99; 1.27]
Svendsen et al. 2012	El Paso Children's Health				0.80; 1.10]
Dell et al. 2014	T-CHEQ		- <u>t</u> -		0.83; 1.16]
Random effects model				1.02	0.81; 1.29]
Heterogeneity: $l^2 = 40\%$, $\tau^2 = 1$	0.0041, p = 0.19				
Western Europe					
Hirsch et al. 1999	ISAAC Dresden		+	1.13	0.93; 1.37]
Krämer et al. 2000	Düsseldorf School Survey		+ +		0.90; 3.20]
Janssen et al. 2003	SAAC Southwestern Netherlands	s	<u> </u>		1.00; 1.89]
Rosenlund et al. 2009	ISAAC Rome	-			0.65; 1.54]
Oftedal et al. 2009	Oslo Birth Cohort		+		0.90; 1.12]
Krämer et al. 2009	GINI, LISA: Wesel	•			[0.36; 1.03]
Gehring et al. 2010	PIAMA		+-		0.87; 1.17]
Pénard-Morand et al. 2010	French Six Cities		+		0.92; 1.52]
Wood et al. 2015	ISAAC East London				0.78; 1.57]
Madsen et al. 2017	MoBa		Ť		0.97; 1.07]
Random effects model			P	1.03	0.98; 1.09]
Heterogeneity. $l^2 = 25\%$, $\tau^2 = -$	< 0.0001, p = 0.21				
Asia					
Pan et al. 2010	Liaoning Survey 2002		-	0.95	0.91; 1.00]
Altuğ et al. 2013	ISAAC Eskisehir			0.92	0.80; 1.07]
Liu et al. 2013	SNEC Kindergarten			0.96	0.82; 1.12]
Liu et al. 2014	SNEC		+		0.84; 1.01]
Abidin et al. 2014	ISAAC Malaysia				1.02; 3.53]
Deng et al. 2016	CCHH Changsha			0.97	0.85; 1.11]
Random effects model			\$		0.90; 1.00]
Heterogeneity: $l^2 = 10\%$, $\tau^2 = -10\%$	< 0.0001, p = 0.35				
Australia/New Zealand					
Knibbs et al. 2018	ACHAPS			1 24	0.99; 1.82]
runuus et al. 2018	AUMAPS			1.34	0.39, 1.82]
Farther Frence					
Eastern Europe	CAMANU			0.00	0.00.4.40
Pikhart et al. 1997	SAVIAH		1	0.98	0.82; 1.18]
		0.5			
		0.5	1 Relative Risk per 10 µg/m ³	2 2.5	
			relative resk per 10 µg/m		

Appendix Figure 9A-8. Association between NO₂ and prevalence of active wheeze in children: metaanalysis by region, period and by traffic specificity. *Figure continues next page.*

Appendix Figure 9A-8. (Continued).

9A.2.4 Associations with indirect traffic measures

Studies on indirect traffic measures (i.e., distance and traffic density measures) were too heterogeneous in their definitions to allow meta-analysis and provided limited additional evidence of associations between TRAP exposure and the prevalence of wheeze in the past 12 months among children. Estimates of association with measures of distance to major roads were highly variable and many had large confidence intervals (Appendix Figure 9A-9). Although many studies suggested positive associations between living near roads and prevalence of active wheeze, only six of the 47 effect estimates from this body of literature reported positive associations that did not include unity. On the other hand, 11 other analyses suggested inverse associations between living near major roads and this outcome. Similarly, patterns from some studies suggested decreasing odds of this outcome associated with incremental increases in distances from major roads (e.g., Lewis et al. 2005; Miyake et al. 2002), whereas others reported the opposite (e.g., McConnell et al. 2006; Venn et al. 2001). The confidence intervals for only one of these (Pujades-Rodríguez et al. 2009a), however, did not include unity, namely RR 0.93 (95%CI: 0.88-0.98) for prevalence of wheeze within 12 months associated with living within 150m of a major road as compared to living beyond that.

In the case of density measures, only a single study (Nicolai et al. 2003) reported an effect estimate that did not include unity. These authors reported an increased RR (1.66; 95% CI: 1.07–2.58) of wheeze in the past 12 months among children with annual average counts of greater than 30,000 vehicles on streets within 50m of their home compared to those with no vehicles on streets within 50m of the home, in Munich, Germany. In their study based in Lulea, Sweden, Andersson et al. (2011) also reported increased RR (1.70; 95% CI: 1.00–2.70) of wheeze prevalence among those with volumes of heavy vehicles exceeding 500/day around the home as compared to those reporting volumes below that.

Reference	Study Name	Categories	RR	95%
van Vliet et al. 1997	South Holland Respiratory Survey	<100 vs. 100-1000 m	2.00	[0.9
Venn et al. 2001	Nottingham School Survey	<30 vs. >150 m	1.38	10.9
Venn et al. 2001	Nottingham School Survey		1.20	10.8
Venn et al. 2001	Nottingham School Survey	60-90 vs. >150 m	1.07	10.7
Venn et al. 2001	Nottingham School Survey	90-120 vs. >150 m	1.03	[0.7
Venn et al. 2001	Nottingham School Survey	<30 vs. >150 m	1.84	[1.0
Venn et al. 2001	Nottingham School Survey	- 30-80 vs. >150 m	1.22	10.6
Venn et al. 2001	Nottingham School Survey	60-90 vs. >150 m	1.09	10.6
Venn et al. 2001	Nottingham School Survey	90-120 vs >150 m	0.91	10.5
Mivake et al. 2002	ISAAC Suita	Facing road vs.>100 m	1.08	10.0
Miyake et al. 2002 Miyake et al. 2002	ISAAC Suita	Facing road vs 100 m	1.27	10.0
		150 vs. 1500 m	1.01	
Yang et al. 2002 Shima et al. 2003	Kaohsiung Respiratory Survey Chiba Cohort	100 vs. 1000 m <50 m vs. rural areas	1.35	[0.8
	Chiba Cohort			[0.3
Shima et al. 2003		<50 m vs. rural areas	0.76	[0.0]
Shima et al. 2003	Chiba Cohort	>50 m vs. rural areas	1.02	[0.4
Shima et al. 2003	Chiba Cohort	 >50 m vs. rural areas 	0.79	[0.2
Lewis et al. 2005	ISAAC Eastern UK	<30 vs. >150 m	0.95	[0.7
Lewis et al. 2005	ISAAC Eastern UK	30-89 vs. >150 m	1.05	[0.8
Lewis et al. 2005	ISAAC Eastern UK	90-149 vs. >150 m	1.14	[0.9
Ryan et al. 2005	CCAAPS	<100 vs. >100 m	2.50	[1.1
McConnell et al. 2006	CHS		1.40	[1.0
McConnell et al. 2006	CHS	- 75-150 vs. >300 m	1.30	[1.0
McConnell et al. 2006	CHS	150-300 vs. >300 m	1.02	[0.8
Dong et al. 2008	Liaoning Survey 2007	<20 vs. >100 m	1.32	[1.0
Dong et al. 2008	Liaoning Survey 2007	20-100 vs. >100 m	0.84	[0.6
Kim et al. 2008	EBCRHS		2.81	10.9
Kim et al. 2008	EBCRHS	- 75-150 vs. >300 m	1.82	10.7
Kim et al. 2008	EBCRHS	150-300 vs. >300 m	2.00	10.9
Rosenlund et al. 2009	ISAAC Rome	<100 vs. >100 m	0.50	10.2
Oftedal et al. 2009	Oslo Birth Cohort	580.3 m	1.00	[0.9
Krämer et al. 2009	GINI, LISA: Wesel	<50 vs. >50 m	0.76	[0.4
Pujades-Rodríguez et al. 2009	Health Survey England	<150 vs. >150 m	0.93	[0.8
Miyake et al. 2010	OMCHS	<50 ys. >200 m	0.85	10.4
Miyake et al. 2010	OMCHS	50-10 vs. >200 m	1.10	[0.4
Miyake et al. 2010	OMCHS	100-00 vs. >200 m	1.04	[0.0
Middleton et al. 2010	ISAAC Cyprus	<50 vs. >300 m	1.30	[0.0
Middleton et al. 2010	ISAAC Cyprus	50-0%. 500 m	1.08	10.0
Middleton et al. 2010	ISAAC Cyprus	00-100 VS. >300 m 100-150 vs. >300 m	1.08	10.5
Middleton et al. 2010 Middleton et al. 2010	ISAAC Cyprus	100-10 Vs. >300 m	0.89	[0.5
Patel et al. 2010	CCCEH		1.28	[0.9
Dell et al. 2014	T-CHEQ		1.20	
				[0.3
Jung et al. 2015	CHEER	<75 vs. >225 m	1.16	[0.9
Jung et al. 2015	CHEER		0.82	[0.6
Jung et al. 2015	CHEER	150-225 vs. >225 m	1.02	[0.7
Lee et al. 2018	CHEER	<75 m vs. >76 m and no bronchiolitis	1.01	[0.6
Lee et al. 2018	CHEER	<75 m and bronchiolitis vs. <75 m no bronchiolitis	1.63	[0.8
Lee et al. 2018	CHEER	bronchiolitis only vs. >75 m and no bronchiolitis	1.61	[1.0
	0	1 2 3		

Appendix Figure 9A-9. Association of distance to major roads and traffic density with prevalence of active wheeze in children. (Continues)

Reference	Study Name						Per Increment/Categories	RR	95% C
Oosterlee et al. 1996	Haarlem Respiratory Survey	-	-				high vs. low	1.50	[0.60, 3
van Vliet et al. 1997	South Holland Respiratory Survey			1			high vs. low car volume	0.82	[0.34, 1
van Vliet et al. 1997	South Holland Respiratory Survey	H	-			~	high vs. low truck volume	1.71	[0.72, 4
Venn et al. 2000	Nottingham School Survey		-				10 thousand km/day/km ²	1.00	[0.99,
Venn et al. 2000	Nottingham School Survey		-				10 thousand km/day/km ²	1.00	[0.99,
Nicolai et al. 2003	ISAAC Munich						>30000 vehicles/day vs. none	1.66	[1.07, 2
Nicolai et al. 2003	ISAAC Munich	-					15001-30000 vehicles/day vs. none	1.01	[0.61,
Nicolai et al. 2003	ISAAC Munich						2600-15000 vehicles/day vs. none	0.85	[0.48,
Kim et al. 2008	EBCRHS						9414-74041 vehicles-km/day vs. none	1.16	[0.57, 2
Kim et al. 2008	EBCRHS		1				4403-9413 vehicles-km/day vs. none	0.78	[0.36,
Kim et al. 2008	EBCRHS	H	-				1920-4402 vehicle-km/day vs. none	1.47	[0.73, 2
Kim et al. 2008	EBCRHS	—					<1919 vehicle-km/day vs. none	0.58	[0.27,
Andersson et al. 2011	OLIN						>500 vs. <500 heavy vehicles/day	1.70	[1.00, 2
Andersson et al. 2011	OLIN						>8000 vs. <8000 vehicles/day	1.40	[0.90, 2
Lindgren et al. 2013	Scania Birth Cohort 05/11	F	•				<8640 vs. >8640 vehicles/day	0.90	[0.80,
		1				Г			
		0	1	2	3	4			

Appendix Figure 9A-9. (Continued).

9A.2.5 Narrative assessment

In summary, the evidence for an association between TRAP and wheeze prevalence in the past 12 months among children is low. Overall, most studies from this moderately-sized body of literature (N~40 studies; including those that considered both exposures to pollutants and indirect exposures to TRAP) suggested null associations. Two reasons why it may be more difficult to see an association between wheeze and TRAP include: because it is a symptom for more than one disease and because of errors in reporting the symptoms. Several studies with NO_x, PM₁₀, benzene, and CO, however, did report positive associations between exposure and this outcome. It is beyond the scope of this review to speculate on why associations may have been reported with some pollutants but not with others.

It is also important to note that many studies from this body of evidence were not included in the metaanalyses for various reasons and were therefore excluded from most of the Panel's modified OHAT assessments. Specifically, of the 100 effect estimates presented in Appendix Table 9A-5, 61 were ultimately excluded from all meta-analyses. These studies still contribute insight, however, into the (lack of) associations between exposure to TRAP and risk of active wheeze among children. A large Swedish cohort study of >5,000 children (Lindgren et al. 2013) that was excluded from meta-analyses also reported null associations with active wheeze and exposure in categories to NO_x measured both cumulatively and at birth. In the case of studies with NO₂, the pollutant that was assessed the most frequently, only two of the 23 studies excluded from meta-analysis reported any associations with active wheeze among children, and one these (Gauderman et al. 2005) was based on only 208 participants. In summary, findings from such studies should not be discounted simply because they did not meet the Panel's meta-analysis inclusion criteria.

As noted above, some heterogeneity was evident across the many studies that considered NO₂, in terms of direction of association. It is unlikely, however, that potential biases would have attenuated all effect estimates towards the null given the overall number of studies and the fact that they represent diverse populations from different regions of the world.

As discussed above, studies that considered NO_x (N = 5) and PM₁₀ (N = 4) suggested positive associations with this outcome, whereas studies with the three other meta-analyzed pollutants suggested no evidence of an association. Additionally, the many studies on indirect traffic measures did not provide evidence of an association between TRAP broadly and this outcome, as confidence intervals for the effect estimates for all but a handful of these studies included unity. As noted above, however, a few other studies considered associations with other pollutants (for which no meta-analysis was possible), which tended to suggest that exposures were associated with increased risk of this outcome. Therefore, based on the Panel's assessment, the evidence for the presence of an association between TRAP and prevalence of wheeze in the past 12 months among children is low.

9A.2.6 Risk of bias assessment

Appendix Table 9A-6 shows an overview of the results of the risk of bias assessment for the 39 exposure-outcome pairs that were meta-analyzed for studies on wheeze prevalence in the past 12 months in children; Appendix Table 9A-7 presents the assessment for each individual study. The purpose of the risk of bias assessment is to consider a potential risk of bias; it is not a determination of actual risk and it does not inform on the direction or magnitude of any potential bias. Most estimates of association were rated low risk of bias across all categories of assessment other than that for blinding of outcome measurement. Typically, prevalence of wheeze among children is self-reported (either by the child or by the child's parent or guardian), and the Panel rated such instances as moderate or high risk of

bias. This rating reflects the fact that outcome measurements that are self-reported may be influenced by knowledge of exposures, often leading to potential over-reporting of outcomes (e.g., among those who live near major roads and who are aware of potential health risks associated with this exposure). Thirteen of the 39 exposure-outcome pairs were also rated as either moderate or high risk of bias due to potential selection bias, which relate to cases where for various reasons, participants in all exposure levels did not have equal opportunity to be included in the study.

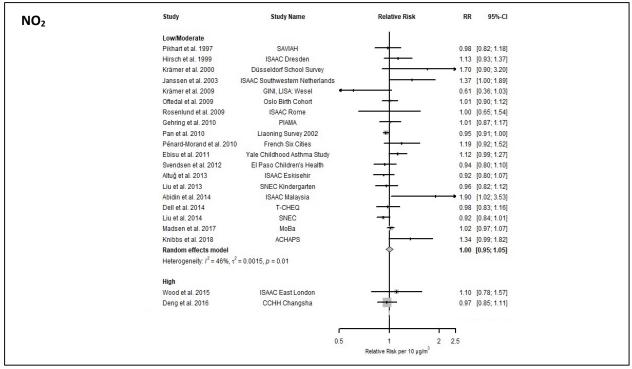
			Per study		Per p	Per pollutant-study pair			
Domain	Subdomain	Low- risk	Moderate -risk	High-risk	Low-risk	Moderate -risk	High-risk		
1. Confounding	Were all important potential confounders	20	2	3	33	2	4		
	adjusted for in the design or analysis?					Moderate -risk 2 0 2 4 8 0 4 8 0 6 34 1 34 3 3 3			
	Validity of measuring of confounding factors	25	0	0	39	0	0		
	Control in analysis	23	2	0	37	2	0		
	Overall	18	4	3	31	4	4		
2. Selection Bias	Selection of participants into the study	17	6	2	26	8	5		
3. Exposure assessment	Methods used for exposure assessment	25	0	0	39	0	0		
	Exposure measurement methods	25	0		0	0			
	comparable across the range of exposure Change in exposure status	24	1	0	33	6	0		
	Overall	24	1	0	33	6	0		
4. Outcome measurements	Blinding of outcome measurements	1	23	1	1	34	4		
measurements	Validity of outcome measurements	24	1	0	38	1	0		
	Outcome measurements	24	1	0	38	Moderate -risk 2 0 2 4 8 0 0 0 6 34 34 3	0		
	Overall	1	23	1	1		4		
5. Missing data	Missing data on outcome measures	23	2	0	36	3	0		
	Missing data on exposures	23	2	0	36	3	0		
	Overall	22	3	0	35	4	0		
6. Selective reporting	Authors reported a priori primary and secondary study aims	25	0	0	39	0	0		

Appendix Table 9A 6. Summary of risk of bias rating for studies on prevalence of active wheeze in children.

Appendix Table 9A 7. Risk of bias assessment for individual studies: prevalence of active wheeze in children.

Reference	Study Name	Confounding	Selection Bias	Exposure Assessment	Outcome Measure ment	Missing Data	Selective Reporting
Abidin 2014	ISAAC Malaysia	Low	Mod	Low	Mod	Low	Low
Altuğ 2013	ISAAC Eskisehir	Low	Low	Low	Mod	Low	Low
Dell 2014	T-CHEQ	Low	Low	Low	Mod	Low	Low
Deng 2016	CCHH Changsha	High	High	Low	Mod	Low	Low
Ebisu 2011	Yale Childhood Asthma Study	Low	Low	Low	Low	Mod	Low
Gehring 2010	PIAMA	Low	Low	Low	Mod	Low	Low
Gruzieva 2013	BAMSE (NO _x)	High	Low	Low	Mod	Low	Low
Gruzieva 2013	BAMSE (PM ₁₀)	High	Low	Mod	Mod	Low	Low
Hirsch 1999	ISAAC Dresden	Low	Low	Low	Mod	Low	Low
Janssen 2003	ISAAC Southwestern Netherlands	Low	Low	Low	Mod	Low	Low
Knibbs 2018	ACHAPS	Low	Mod	Low	Mod	Low	Low
Krämer 2000	Düsseldorf School Survey	Mod	Mod	Low	Mod	Low	Low
Krämer 2009	GINI, LISA: Wesel	Low	Low	Low	Mod	Mod	Low
Liu 2013	SNEC Kindergarten	Mod	Low	Low	Mod	Low	Low
Liu 2014	SNEC	Mod	Low	Low	Mod	Low	Low
Madsen 2017	МоВа	Low	Low	Low	Mod	Mod	Low
McConnell, 2006	CHS	Mod	Low	Low	Mod	Low	Low
Mölter 2015	ESCAPE	Low	Low	Mod	Mod	Low	Low
Morgenstern 2008	GINI, LISA: Munich	Low	Low	Low	Mod	Low	Low
Oftedal 2009	Oslo Birth Cohort	Low	Mod	Low	Mod	Low	Low
Pan 2010	Liaoning Survey 2002	Low	Low	Low	Mod	Low	Low
Pénard-Morand 2010	French Six Cities	Low	Mod	Low	Mod	Low	Low
Pikhart 1997	SAVIAH	High	Low	Low	Mod	Low	Low
Rosenlund 2009b	ISAAC Rome	Low	Low	Low	Mod	Low	Low
Svendsen 2012	El Paso Children's Health	Low	Mod	Low	Mod	Low	Low
Wood 2015	ISAAC East London	Low	High	Low	High	Low	Low

Mod = Moderate


9A.2.7 Confidence assessment of the body of evidence

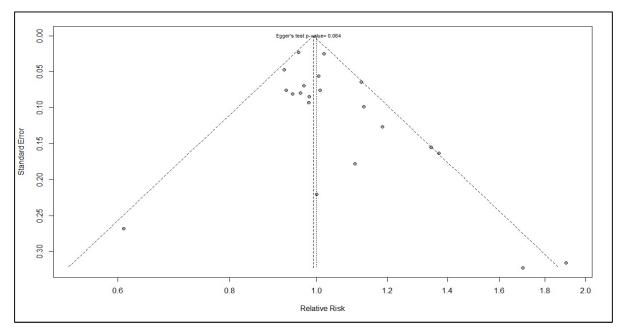
Appendix Table 9A-8 provides the modified OHAT assessment of the evidence for pollutants for which a meta-analysis was conducted.

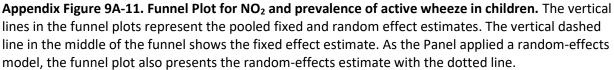
The initial rating for this body of evidence was set at low, as nearly all studies considered prevalence of this outcome in cross-sectional studies. A few studies did, however, consider disease incidence based on longitudinal designs, namely cohort studies (Chiu et al. 2014; Lindgren et al. 2013; Pierse et al. 2006) and case-control studies (Emenius et al. 2003). For the downgrade factor indirectness, all studies addressed the research question directly, and therefore no downgrade was applied. Next, factors that may increase confidence (upgrades) are discussed. The Panel decided a priori not to consider the upgrading factor large magnitude of the effect.

9A.2.7.1 Factors that decrease confidence

The overview of the *risk of bias* ratings for each exposure-outcome pair that was meta-analyzed was presented in Appendix Table 9A-6. Appendix Figure 9A-10 presents the results of meta-analysis stratified by low/moderate and potential high risk of bias for selection bias among studies that considered exposures to NO₂, NO_x, and PM₁₀. Here the Panel found essentially null associations in all but one case (i.e., low/moderate risk of bias studies that considered NO_x), suggesting that neither the potential presence nor absence of selection bias had a major impact on the reported patterns. Overall, the risk of bias assessment does not suggest a need to downgrade the confidence in the evidence for the pollutants included in the meta-analysis.

Appendix Figure 9A-10. Association between NO₂, NO_x, and PM₁₀ and prevalence of active wheeze in children: meta-analysis by risk of bias selection bias. *Figure continues next page.*


Appendix Figure 9A-10. (Continued).


As there appeared to be no real patterns of *inconsistency*, no downgrade was applied. The Panel found generally only low to moderate levels of heterogeneity among effect estimates across each of the pollutants that were meta-analyzed for prevalence of wheeze in the past 12 months among children. Although both positive and negative estimates of association were reported here, confidence intervals of most estimates included unity, and the magnitude of effect sizes were for the most part relatively low.

Regarding the downgrading factor *imprecision*, only for NO₂ was the overall sample size (number of people) larger than the minimum sample size specified in the protocol. The confidence intervals for EC and PM_{2.5} were wide, and clearly included unity. The evidence for those two pollutants was therefore downgraded. The Panel did not downgrade the other pollutants for various reasons. NO₂ was not downgraded because the confidence interval was considered narrow according to the protocol, although it included unity. In addition, the NO_x and PM₁₀ confidence interval did not included unity.

About *publication bias*, there were more than 10 studies and hence a funnel plot and Egger test were produced for NO₂. The funnel plot and the Egger test did not suggest asymmetry (Appendix Figure 9A 11) although the Egger test was almost significant (p-value = 0.064). Most effect estimates were clustered together, but the funnel plot did include one highly negative association (Kramer et al. 2010) and two highly positive associations (Abidin et al. 2014; Kramer et al. 2000).

Also, additional analyses on the number of studies reporting positive, negative, and no effect over time suggest no bias (Additional Materials to Chapter 14). Due to the small number of studies, it was not possible to assess publication bias for studies on associations with the other pollutants meta-analyzed. As there was no evidence of publication bias, the Panel chose to not downgrade the evidence for any pollutants.

9A.2.7.2 Factors that increase confidence

Only one study (Knibbs et al. 2018) provided evidence of a plausible *monotonic exposure-response function* and hence an upgrade was not applied. The Panel found no clear indication that *residual confounding or other factors* are likely to lead to an underestimation of the associations, thus an upgrade was not considered appropriate. Regarding *consistency*, the Panel found generally consistent null associations between this outcome and exposure to NO₂ overall and across geographic regions. There was suggestion, however, of a positive association among the pooled studies conducted before 2008, but the summary estimate was not statistically significant (i.e., RR = 1.15; 95% CI: 0.85–1.54). Given the absence of any evidence of associations here, the Panel decided not to upgrade the evidence for NO₂. There were too few studies on NO_x, EC, PM₁₀, or PM_{2.5} for the Panel to assess consistency adequately across regions of period of publication.

9A.2.7.3 Evaluation of confidence for combined measures of TRAP

Confidence assessments were low (NO_2, NO_X, PM_{10}) or very low (EC, PM_{2.5}). Since the highest rating was low, the Panel's assessment of confidence in the quality of the body of evidence of TRAP and prevalence of active wheeze among children is low. The Panel did not see any reason to downgrade or upgrade because of traffic specificity or studies not entering a meta-analysis.

9A.2.8 Overall assessment

Since the level of confidence in the evidence was considered low in the narrative assessment and the confidence in the body of evidence was low, the overall confidence assessment of TRAP and prevalence of active wheeze among children is low.

Appendix Table 9A-8. Confidence rating in the quality of the body of evidence for traffic-related air pollutants and prevalence of active wheeze in children^a.

	High +++ Moderate + Low ++ Very low +	+++		reasing confidence d downgrade confider	"0" if no concern; "-' nce	' if serious	Factors increasing sufficient to upgra		not present; "+" if	
Pollutant	Study design	Initial confidence rating (# studies)	Risk of Bias	Unexplained inconsistency	Imprecision	Publication bias	Monotonic exposure- response	Consideration of residual confounding	Consistency across populations	Final confidence rating
NO ₂	Cross- sectional	++ (N = 21)	0	0	0	0	0	0	0	+ (Low)
	Rationale	Nearly all studies were cross- sectional, and only a few were longitudinal.	Only 4 studies with high RoB.	Low heterogeneity (I ² = 41%). No clear patterns of inconsistency.	Sample size met and confidence interval includes unity, but confidence interval precise.	No evidence found in plot and test.	Very limited evidence of plausible shape of ERF (Knibbs 2018).	Confounding in both directions possible.	No evidence of associations in any region.	
NO _X	Cross- sectional	++ (N = 5)	0	0	0	0	0	0	0	++ (Low)
	Rationale	Nearly all studies were cross- sectional, and only a few were longitudinal.	Only 2/5 studies with high RoB.	No heterogeneity (I ² = 0%). No clear patterns of inconsistency.	Sample size not met, but confidence interval does not include unity.	No formal evaluation possible, no clear evidence.	No evidence of plausible shape of ERF	Confounding in both directions possible.	Too few studies to assess consistency.	
EC	Cross- sectional	++ (N = 4)	0	0	-	0	0	0	0	+ (Very low)
	Rationale	Nearly all studies were cross- sectional, and only a few were longitudinal.	No studies with high RoB	Low heterogeneity (I ² = 4%). No clear patterns of inconsistency.	Sample size not met and confidence interval wide and clearly includes unity.	No formal evaluation possible, no clear evidence.	No evidence of plausible shape of ERF.	Confounding in both directions possible.	Too few studies to assess consistency.	

PM ₁₀	Cross- sectional	++ (N = 4)	0	0	0	0	0	0	0	++ (Low)
	Rationale	Nearly all studies were cross-sectional, and only a few were longitudinal	2/4 studies with high RoB, but no evidence of difference in effect estimates between these.	No heterogeneity (l ² = 0%). No clear patterns of inconsistency.	Sample size not met, but confidence interval does not include unity.	No formal evaluation possible, no clear evidence.	No evidence of plausible shape of ERF.	Confounding in both directions possible.	Too few studies to assess consistency.	
PM _{2.5}	Cross- sectional	++ (N = 4)	0	0	-	0	0	0	0	+ (Very low)
	Rationale	Only one was longitudinal	Only 1 study with high RoB.	No heterogeneity (I ² = 0%). No clear patterns of inconsistency.	Sample size not met and confidence interval wide and clearly includes unity.	No formal evaluation possible, no clear evidence.	No evidence of plausible shape of ERF.	Confounding in both directions possible.	Too few studies to assess consistency.	

^a The downgrading factor indirectness and the upgrading factor large magnitude of effect were not considered further.

9A.3 Prevalence of wheeze ever and asthma-like symptoms in adults

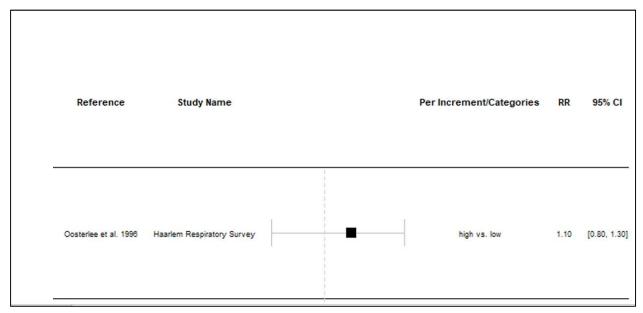
9A.3.1 Study selection and description

Only two studies reported associations between TRAP and prevalence of wheeze ever in adults whereas one additional study used traffic density as an indirect traffic measure. Appendix Table 9A-9 shows all the identified studies including effect estimates. Of the two studies assessing air pollutants, one was conducted in Estonia (Pindus et al. 2016) and the other in the Netherlands (Doiron et al. 2017). The study on traffic density was conducted in the Netherlands (Oosterlee et al. 1996), and it was the only one conducted before 2008.

The studies were based on a cross-sectional design with a limited sample size for both the study in Estonia (Pindus et al. 2016) and the traffic study in the Netherlands (Oosterlee et al. 1996), whereas the investigation of the Lifelines project included several cities in the Netherlands for a total of more than 50,000 individuals (Doiron et al. 2017). Pollutant exposure assessment was based on LUR or dispersion models. Cases were identified using a self-administered questionnaire. Note that the large study in the Netherlands (Doiron et al. 2017) included another cohort (UK Biobank), but the latter cohort did not meet the exposure framework, hence only the Lifelines estimate was included. The study was able to correct for several individual confounding factors.

For wheeze ever and all the individual pollutants, only a few effect estimates were available, and no meta-analysis was conducted. In fact, only two studies were available for PM_{10} exposure as a continuous variable and lifetime wheeze (Doiron et al. 2017; Pindus et al. 2016) indicating, the first one, an increased RR with large confidence intervals, and the second one a strong effect with a narrower confidence interval (RR 1.20, 95% Cl 1.02–1.41). Doiron et al. (2017) provided also results for NO₂, PM_{2.5}, and PM_{coarse} with statistically significant increased effect estimates for all but PM_{coarse}.

Appendix Table 9A-9. Key Study Characteristics of Articles Included in the Systematic Review for Prevalence of Wheeze Ever in Adults – Pollutants.


Reference	Study Name	Location	Study period	Sample size	Sex	Exposure Assessment	Pollutant	Mean or median exposure ^a	Effect Estimate (95% CI) ^b	Increment
Doiron 2017	Lifelines	Northern part, The Netherlands	2006-2013	52,062	Both	LUR	NO ₂	16.48	1.11 (1.05, 1.18)	10 µg/m³
							PM ₁₀ mass	24.23	1.20 (1.02, 1.41)	5 μg/m³
							PM _{coarse} mass	8.68	1.15 (0.90, 1.46)	5 μg/m³
							PM _{2.5} mass	15.55	1.51 (1.12, 2.03)	5 μg/m³
Pindus 2016	RHINE Tartu	Tartu, Estonia	2011-2012	905	Both	Dispersion / CTM	traffic PM ₁₀	3.3	1.06 (0.79, 1.45)	2.2 μg/m³

^a Units are in the increment column.

^b The effect estimate in all studies was odds ratio.

9A.3.2 Associations with indirect traffic measures

There was only one study (Oosterlee et al. 1996) that addressed traffic density from busy roads and prevalence of lifetime wheeze. Appendix Figure 9A-12 reports the results, and no evidence of an association was found.

Appendix Figure 9A-12. Association of traffic density with prevalence of wheeze ever in adults.

9A.3.3 Narrative and overall assessment

The evidence on TRAP and wheeze ever in adults is low, as the main results refer only to a few observations. There was, however, a strong association in the large study in the Netherlands (Doiron et al. 2017) for both NO₂ and PM₁₀, as already seen for prevalence of asthma ever. Ultimately, the evidence is still weak. No modified OHAT assessment was undertaken because of the lack of studies; therefore, the overall assessment was also low.

9A.4 Prevalence of active wheeze and asthma-like symptoms in adults

9A.4.1 Study selection and description

A total of seven studies, all conducted in Europe but one in Australia (Lazarevic et al. 2015), investigated the occurrence of active wheeze (wheeze in the last 12 months) in relation to traffic-related air pollutants, all studies were conducted after 2008. There were four cross-sectional studies assessing prevalence, one case-control study (Lindgren et al. 2010) based on prevalent cases, one cohort — the multicenter ECHRS study in Europe (Jacquemin et al. 2009) — evaluating incidence of wheeze in the last 12 months, and the SAPALDIA study in Switzerland (Schindler et al. 2009) evaluating prevalence of current wheeze in relation to changes of air pollution exposure during the 11 years of follow-up (Appendix Table 9A-10). All the studies included several thousand participants (minimum around 1700 participants for the study in Estonia (Orru et al. 2009), maximum 27,000 participants — all females — for the study in Australia (Lazarevic et al. 2015). Both dispersion models and LUR were used for exposure assessment.

Few results with a continuous exposure were available for active wheeze in adults. For NO₂, an increased risk of wheeze incidence (1.28, 95% Cl 1.0–1.62 per 10 μ g/m³) was seen in the ECHRS study (Jacquemin et al. 2009). An increased prevalence was detected in the Australian investigation (Lazarevic et al. 2015) in relation to NO₂, which did not reach statistical significance. No association with NO₂ was reported in a study from UK (Pujades-Rodríguez et al. 2009b) when the exposure was categorized. Similarly, no clear gradient was detected in two Swedish reports with the analyses based on categories of NO_x (Lindgren et al. 2009, 2010). The association with PM₁₀ was also weak in two investigations in Estonia and Switzerland (Orru et al. 2009; Schindler et al. 2009) as they reported increased risk but imprecise effect estimates.

9A.4.2 Associations with indirect traffic measures

Appendix Table 9A-11 lists the studies with indirect traffic measures for prevalence of active wheeze. The indirect traffic measures were too heterogeneous in their definitions and did not provide estimates useful for meta-analysis. Estimates of association with distance measures provided limited information for the overall evidence assessment, as positive and null associations were reported. For example, the two largest studies (Bayer-Oglesby et al. 2006; Lazarevic et al. 2015) provide no evidence of an association with distance from busy roads. Note that Lazarevic et al. 2015 presented only log transformed results.

9A.4.3 Narrative and overall assessment

The evidence on TRAP and active wheeze in adults is low as only some evidence exists for current wheeze in relation to NO₂ for studies in Europe (Jacquemin et al. 2009) and in Australia (Lazarevic et al. 2015) but such evidence is still weak. No modified OHAT assessment was undertaken because of the lack of studies; therefore, the overall confidence assessment was also low.

Reference	Study Name	Study Design	Location	Study period	Sample size	Sex	Exposure Assessment	Pollutant	Mean or median exposure ^a	Effect Estimate (95% CI) ^b	Increment
Jacquemin 2009	ECRHS	Cohort	Multiple cities, Multiple countries	1991- 2001	4,185	Both	LUR	NO ₂	27.7	1.28 (1.00, 1.62)	10 µg/m³
Lazarevic 2015	ALSWH	Cross sectional	Australia	2006- 2011	26,991	Female	LUR	NO ₂	5	1.05 (0.96, 1.15)	3.4 ppb
Lindgren 2009	Scania Respiratory Survey 2000	Cross sectional	Scania including Malmö, Sweden	2000- 2000	9,316	Both	Dispersion / CTM	NOx	13.5	1.21 (0.99, 1.46)	>19 vs. <8 µg/m³
										0.90 (0.74, 1.11)	14-19 vs. <8 μg/m ³
										0.94 (0.77, 1.15)	11-14 vs. <8 μg/m ³
										0.97 (0.80, 1.19)	8-11 vs. <8 μg/m³
Lindgren 2010	Scania Health Survey 2004	Case- control	Scania, Sweden	2004- 2005	2,858	Both	Dispersion / CTM	NOx	12	1.1 (0.60, 1.9)	>19 vs. <8 µg/m³
										0.99 (0.60, 1.6)	14-19 vs. <8 μg/m ³
										0.97 (0.68, 1.39)	11-14 vs. <8 μg/m ³
										1 (0.74, 1.49)	8-11 vs. <8 μg/m³
Orru 2009	RHINE Tartu	Cross sectional	Tartu, Estonia	2000- 2001	1,684	Both	Dispersion / CTM	traffic PM ₁₀	0.10	1.99 (0.36, 11.83)	1 μg/m³
Pujades-Rodríguez 2009b	Nottingham Cohort	Cross sectional	Nottingham, United Kingdom	1991- 1991	2,599	Both	Dispersion / CTM	NO ₂	34.5	0.88 (0.66, 1.19)	>36.79 μg/m³
										0.84 (0.63, 1.14)	34.73 – 36.79 μg/m ³
										0.86 (0.63, 1.16)	34.23 – 34.73 μg/m ³
										1.03 (0.76, 1.39)	33.92 – 34.23 μg/m ³

Appendix Table 9A-10. Key Study Characteristics of Art	cles in the Systematic Review for Prevalence of Active Wheeze in Adults – Pollutants.

Schindler 2009	SAPALDIA	Cohort	Multiple cities, Switzerland	1991- 2002	7,019	Both	Dispersion / CTM	PM ₁₀ mass	11-45	1.01 (0.74, 1.39) (new)	-10 μg/m³
										0.50 (0.32, 0.80) (persistent)	-10 μg/m³

^a Units are in the increment column.

^b The effect estimate in all studies was odds ratio.

Appendix Table 9A-11. Key Study Characteristics of Articles Included in the Systematic Review for Prevalence of Active Wheeze in Adults – Indirect Traffic Measures.

Reference	Study Name	Study Design	Location	Study period	Sample size	Age	Sex	Traffic measure	Effect Estimate (95% CI) ^a	Increment
Bayer-Oglesby 2006	SAPALDIA	Cross sectional	Multiple cities, Switzerland	1991- 2002	12,999	Adults (18-64)	Both	Distance	0.94 (0.78, 1.12)	<20 vs. >20 m
Bowatte 2017a	TAHS	Cohort	Tasmania, Australia	2005- 2012	709	Adults (18-64)	Both	Distance	1.61 (1.19, 2.19)	<200 vs. >200 m
Bowatte 2017b		Cross- sectional		2005- 2005	1,367				1.38 (1.06, 1.80)	<200 vs. >200 m
Garshick 2003	ATS US Veterans	Cross sectional	Massachusetts, United States	1988- 1992	2,243	Adults (18+)	Male	Distance	1.31 (1.00, 1.71)	<50 vs. >50 m
Hazenkamp-von Arx 2011	MfMU	Cross sectional	Multiple cities, Switzerland	2005- 2005	1,581	Adults (18+)	Both	Distance	3.10 (1.27, 7.55)	<200 vs. >200 m
Lazarevic 2015	ALSWH	Cross sectional	Australia	2006- 2011	26,991	Adults (18+)	Female	Distance	1.00 (0.98, 1.03) ^b	1 km
Lindgren 2010	Scania Health Survey 2004	Case- control	Scania, Sweden	2004- 2005	2,856	Adults (18-64)	Both	Density	2.7 (1.3, 5.5)	>10 vs. 0 vehicles/minute
									0.81 (0.38, 1.7)	6-10 vs. 0 vehicles/minute
									1.1 (0.8, 1.7)	2-5 vs. 0 vehicles/minute
									1.2 (0.92, 1.7)	<2 vs. 0 vehicles/minute
Nitta 1993	Tokyo Respiratory Survey	Cross sectional	Tokyo, Japan	1979	1,517	Adults (18-64)	Female	Distance	2.75 (1.65, 4.73)	<20 vs. 20-150 m
				1982	2,413				1.52 (0.91, 2.55)	<20 vs. 50-150 m
									1.17 (0.69, 2.00)	20-50 vs. 50-150 m
				1983	2,389				0.94 (0.61, 1.42)	<20 vs. 20-150 m

Nuvolone 2011	Tuscany Health Survey	Cross sectional	Pisa, Tuscany, Italy	1991- 1993	2,062	Children (<18) and Adults	Female	Distance	1.32 (0.76, 2.28)	<100 vs. 250-800 m
	lication out toy			2000		(18+)				
							Male		1.76 (1.08, 2.87)	<100 vs. 250-800 m
							Female		0.77 (0.42, 1.42)	100-250 vs. 250-800 m
							Male		1.54 (0.94, 2.53)	100-250 vs. 250-800 m
Oosterlee 1996	Haarlem Respiratory Survey	Cross sectional	Haarlem, The Netherlands	1991- 1991	1,108	Adults (18-64)	Both	Density	1.1 (0.6, 1.8)	high vs. low
Pujades-Rodríguez 2009a	Nottingham Cohort	Cross sectional	Nottingham, United Kingdom	1991- 1991	2,599	Adults (18+)	Both	Distance	1.60 (0.96, 2.68)	<50 vs. >100-150 m
									1.0 (0.61, 1.66)	50-100 vs. 100-150 m
Venn 2005	Jimma Respiratory Survey	Cohort	Jimma, Ethiopia	1996- 1996	7,609	Adults (18-64)	Both	Distance	1.83 (0.78, 4.23)	<30 vs. 120-150 m
									1.59 (0.65, 3.90)	30-60 vs. >120-150 m
									1.65 (0.65, 4.10)	60-90 vs. >120-150 m
									0.96 (0.30, 2.96)	90-120 vs. >120-150 m

^a The effect estimate in all studies was odds ratio.

^b Estimate was log transformed.

References

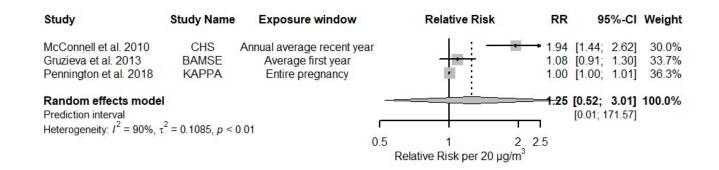
- Abidin EZ, Semple S, Rasdi I, Ismail SNS, Ayres JG. 2014. The relationship between air pollution and asthma in Malaysian schoolchildren. Air Qual Atmos Health; doi:10.1007/s11869-014-0252-0.
- Aguilera I, Pedersen M, Garcia-Esteban R, Ballester F, Basterrechea M, Esplugues A, et al. 2013. Early-life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study. Environ Health Perspect; doi:10.1289/ehp.1205281.
- Altuğ H, Gaga EO, Döğeroğlu T, Ozden O, Ornektekin S, Brunekreef B, et al. 2013. Effects of air pollution on lung function and symptoms of asthma, rhinitis and eczema in primary school children. Environ Sci Pollut Res Int; doi:10.1007/s11356-013-1674-1.
- Andersson M, Modig L, Hedman L, Forsberg B, Rönmark E. 2011. Heavy vehicle traffic is related to wheeze among schoolchildren: A population-based study in an area with low traffic flows. Environ Health; doi:10.1186/1476-069X-10-91.
- Bayer-Oglesby L, Schindler C, Hazenkamp-von Arx ME, Braun-Fahrländer C, Keidel D, Rapp R, et al. 2006. Living near main streets and respiratory symptoms in adults: The Swiss Cohort Study on Air Pollution and Lung Diseases in Adults. Am J Epidemiol; doi:10.1093/aje/kwj338.
- Bowatte G, Erbas B, Lodge CJ, Knibbs LD, Gurrin LC, Marks GB, et al. 2017a. Traffic-related air pollution exposure over a 5-year period is associated with increased risk of asthma and poor lung function in middle age. Eur Respir J; doi:10.1183/13993003.02357-2016.
- Bowatte G, Lodge CJ, Knibbs LD, Lowe AJ, Erbas B, Dennekamp M, et al. 2017b. Traffic-related air pollution exposure is associated with allergic sensitization, asthma, and poor lung function in middle age. J Allergy Clin Immunol; doi:10.1016/j.jaci.2016.05.008.
- Brauer M, Hoek G, Van Vliet P, Meliefste K, Fischer PH, Wijga A, et al. 2002. Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Respir Crit Care Med; doi:10.1164/rccm.200108-007OC.
- Cakmak S, Hebbern C, Cakmak JD, Vanos J. 2016. The modifying effect of socioeconomic status on the relationship between traffic, air pollution and respiratory health in elementary schoolchildren. J Environ Manage; doi:10.1016/j.jenvman.2016.03.051.
- Cakmak S, Mahmud M, Grgicak-Mannion A, Dales RE. 2012. The influence of neighborhood traffic density on the respiratory health of elementary schoolchildren. Environ Int; doi:10.1016/j.envint.2011.10.006.
- Chiu YH, Coull BA, Sternthal MJ, Kloog I, Schwartz J, Cohen S, et al. 2014. Effects of prenatal community violence and ambient air pollution on childhood wheeze in an urban population. J Allergy Clin Immunol; doi:10.1016/j.jaci.2013.09.023.
- Clifford S, Mazaheri M, Salimi F, Ezz WN, Yeganeh B, Low-Choy S, et al. 2018. Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environ Int; doi:10.1016/j.envint.2018.02.019.
- Dell SD, Jerrett M, Beckerman B, Brook JR, Foty RG, Gilbert NL, et al. 2014. Presence of other allergic disease modifies the effect of early childhood traffic-related air pollution exposure on asthma prevalence. Environ Int; doi:10.1016/j.envint.2014.01.002.

- Deng Q, Lu C, Ou C, Chen L, Yuan H. 2016. Preconceptional, prenatal and postnatal exposure to outdoor and indoor environmental factors on allergic diseases/symptoms in preschool children. Chemosphere; doi:10.1016/j.chemosphere.2016.03.032.
- Doiron D, de Hoogh K, Probst-Hensch N, Mbatchou S, Eeftens M, Cai Y, et al. 2017. Residential air pollution and associations with wheeze and shortness of breath in adults: A combined analysis of cross-sectional data from two large European cohorts. Environ Health Perspect; doi:10.1289/EHP1353.
- Dong GH, Ma YN, Ding HL, Jin J, Cao Y, Zhao YD, et al. 2008. Housing characteristics, home environmental factors and respiratory health in 3945 pre-school children in China. Int J Environ Health Res; doi:10.1080/09603120701842864.
- Ebisu K, Holford TR, Belanger KD, Leaderer BP, Bell ML. 2011. Urban land-use and respiratory symptoms in infants. Environ Res; doi:10.1016/j.envres.2011.04.004.
- Emenius G, Pershagen G, Berglind N, Kwon HJ, Lewné M, Nordvall SL, et al. 2003. NO2, as a marker of air pollution, and recurrent wheezing in children: A nested case-control study within the BAMSE birth cohort. Occup Environ Med; doi:10.1136/oem.60.11.876.
- Esplugues A, Ballester F, Estarlich M, Llop S, Fuentes-Leonarte V, Mantilla E, et al. 2011. Outdoor, but not indoor, nitrogen dioxide exposure is associated with persistent cough during the first year of life. Sci Total Environ; doi:10.1016/j.scitotenv.2011.08.007.
- Garshick E, Laden F, Hart JE, Caron A. 2003. Residence near a major road and respiratory symptoms in U.S. Veterans. Epidemiology; doi:10.1097/01.ede.0000082045.50073.66.
- Gauderman WJ, Avol E, Lurmann F, Kuenzli N, Gilliland F, Peters J, et al. 2005. Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology; doi:10.1097/01.ede.0000181308.51440.75.
- Gehring U, Wijga AH, Brauer M, Fischer P, de Jongste JC, Kerkhof M, et al. 2010. Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. Am J Respir Crit Care Med; doi:10.1164/rccm.200906-0858oc.
- Gruzieva O, Bergström A, Hulchiy O, Kull I, Lind T, Melén E, et al. 2013. Exposure to air pollution from traffic and childhood asthma until 12 years of age. Epidemiology; doi:10.1097/EDE.0b013e318276c1ea.
- Hansell AL, Rose N, Cowie CT, Belousova EG, Bakolis I, Ng K, et al. 2014. Weighted road density and allergic disease in children at high risk of developing asthma. PloS One; doi:10.1371/journal.pone.0098978.
- Hasunuma H, Sato T, Iwata T, Kohno Y, Nitta H, Odajima H, et al. 2016. Association between trafficrelated air pollution and asthma in preschool children in a national Japanese nested case-control study. BMJ Open; doi:10.1136/bmjopen-2015- 010410.
- Hazenkamp-von Arx ME, Schindler C, Ragettli MS, Künzli N, Braun-Fahrländer C, Liu LJ. 2011. Impacts of highway traffic exhaust in alpine valleys on the respiratory health in adults: A cross-sectional study. Environ Health; doi:10.1186/1476-069X-10-13.

- Hirsch T, Weiland SK, von Mutius E, Safeca AF, Gräfe H, Csaplovics E, et al. 1999. Inner city air pollution and respiratory health and atopy in children. Eur Respir J; doi:10.1034/j.1399-3003.1999.14c29.x.
- Jacquemin B, Sunyer J, Forsberg B, Aguilera I, Briggs D, García-Esteban R, et al. 2009. Home outdoor NO2 and new onset of self-reported asthma in adults. Epidemiology; doi:10.1097/EDE.0b013e3181886e76.
- Janssen NA, Brunekreef B, van Vliet P, Aarts F, Meliefste K, Harssema H, et al. 2003. The relationship between air pollution from heavy traffic and allergic sensitization, bronchial hyperresponsiveness, and respiratory symptoms in Dutch schoolchildren. Environ Health Perspect; doi:10.1289/ehp.6243.
- Jung DY, Leem JH, Kim HC, Kim JH, Hwang SS, Lee JY, et al. 2015. Effect of traffic-related air pollution on allergic disease: Results of the children's health and environmental research. Allergy Asthma Immunol Res; doi:10.4168/aair.2015.7.4.359.
- Kim JJ, Huen K, Adams S, Smorodinsky S, Hoats A, Malig B, et al. 2008. Residential traffic and children's respiratory health. Environ Health Perspect; doi:10.1289/ehp.10735.
- Knibbs LD, Cortés de Waterman AM, Toelle BG, Guo Y, Denison L, Jalaludin B, et al. 2018. The Australian Child Health and Air Pollution Study (ACHAPS): A national population-based cross-sectional study of long-term exposure to outdoor air pollution, asthma, and lung function. Environ Int; doi:10.1016/j.envint.2018.08.025.
- Krämer U, Koch T, Ranft U, Ring J, Behrendt H. 2000. Traffic-related air pollution is associated with atopy in children living in urban areas. Epidemiology; doi:10.1097/00001648-200001000-00014.
- Krämer U, Sugiri D, Ranft U, Krutmann J, von Berg A, Berdel D, et al. 2009. Eczema, respiratory allergies, and traffic-related air pollution in birth cohorts from small-town areas. J Dermatol Sci; doi:10.1016/j.jdermsci.2009.07.014.
- Lazarevic N, Dobson AJ, Barnett AG, Knibbs LD. 2015. Long-term ambient air pollution exposure and selfreported morbidity in the Australian Longitudinal Study on Women's Health: A cross-sectional study. BMJ Open; doi:10.1136/bmjopen-2015-008714.
- Lee JY, Leem JH, Kim HC, Lamichhane DK, Hwang SS, Kim JH, et al. 2018. Effects of traffic-related air pollution on susceptibility to infantile bronchiolitis and childhood asthma: A cohort study in Korea. J Asthma; doi:10.1080/02770903.2017.1313270
- Lewis SA, Antoniak M, Venn AJ, Davies L, Goodwin A, Salfield N, et al. 2005. Secondhand smoke, dietary fruit intake, road traffic exposures, and the prevalence of asthma: A cross-sectional study in young children. Am J Epidemiol; doi:10.1093/aje/kwi059.
- Lindgren A, Björk J, Stroh E, Jakobsson K. 2010. Adult asthma and traffic exposure at residential address, workplace address, and self-reported daily time outdoor in traffic: A two-stage case-control study. BMC Public Health; doi:10.1186/1471-2458-10-716.
- Lindgren A, Stroh E, Björk J, Jakobsson K. 2013. Asthma incidence in children growing up close to traffic: A registry-based birth cohort. Environ Health; doi:10.1186/1476-069X-12-91.

- Lindgren A, Stroh E, Montnémery P, Nihlén U, Jakobsson K, Axmon A. 2009. Traffic-related air pollution associated with prevalence of asthma and COPD/chronic bronchitis. A cross-sectional study in Southern Sweden. Int J Health Geogr; doi:10.1186/1476-072X-8-2.
- Liu F, Zhao Y, Liu YQ, Liu Y, Sun J, Huang MM, et al. 2014. Asthma and asthma related symptoms in 23,326 Chinese children in relation to indoor and outdoor environmental factors: The Seven Northeastern Cities (SNEC) Study. Sci Total Environ; doi:10.1016/j.scitotenv.2014.07.096.
- Liu MM, Wang D, Zhao Y, Liu YQ, Huang MM, Liu Y, et al. 2013. Effects of outdoor and indoor air pollution on respiratory health of Chinese children from 50 kindergartens. J Epidemiol; doi:10.2188/jea.JE20120175.
- Madsen C, Haberg SE, Magnus MC, Aamodt G, Stigum H, London SJ, et al. 2017. Pregnancy exposure to air pollution and early childhood respiratory health in the Norwegian Mother and Child Cohort Study (MoBa). BMJ Open; doi:10.1136/ bmjopen-2016-015796.
- McConnell R, Berhane K, Yao L, Jerrett M, Lurmann F, Gilliland F, et al. 2006. Traffic, susceptibility, and childhood asthma. Environ Health Perspect; doi:10.1289/ehp.8594.
- Middleton N, Yiallouros P, Nicolaou N, Kleanthous S, Pipis S, Zeniou M, et al. 2010. Residential exposure to motor vehicle emissions and the risk of wheezing among 7-8 year-old schoolchildren: A citywide cross-sectional study in Nicosia, Cyprus. Environ Health; doi:10.1186/1476-069X-9-28.
- Miyake Y, Tanaka K, Fujiwara H, Mitani Y, Ikemi H, Sasaki S, et al. 2010. Residential proximity to main roads during pregnancy and the risk of allergic disorders in Japanese infants: the Osaka Maternal and Child Health Study. Pediatr Allergy Immunol; doi:10.1111/j.1399-3038.2009.00951.x.
- Miyake Y, Yura A, Iki M. 2002. Relationship between distance from major roads and adolescent health in Japan. J Epidemiol; doi:10.2188/jea.12.418.
- Mölter A, Agius R, de Vocht F, Lindley S, Gerrard W, Custovic A, et al. 2014. Effects of long-term exposure to PM10 and NO2 on asthma and wheeze in a prospective birth cohort. J Epidemiol Community Health; doi:10.1136/jech- 2013-202681.
- Mölter A, Simpson A, Berdel D, Brunekreef B, Custovic A, Cyrys J, et al. 2015. A multicentre study of air pollution exposure and childhood asthma prevalence: the ESCAPE Project. Eur Respir J: doi:10.1183/09031936.00083614.
- Morgenstern V, Zutavern A, Cyrys J, Brockow I, Gehring U, Koletzko S, et al. 2007. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup Environ Med; doi:10.1136/oem.2006.028241.
- Morgenstern V, Zutavern A, Cyrys J, Brockow I, Koletzko S, Krämer U, et al. 2008. Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med; doi:10.1164/rccm.200701-036OC.
- Nicolai T, Carr D, Weiland SK, Duhme H, von Ehrenstein O, Wagner C, et al. 2003. Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children. Eur Respir J; doi:10.1006/enrs.2002.4393.

- Nitta H, Sato T, Nakai S, Maeda K, Aoki S, Ono M. 1993. Respiratory health associated with exposure to automobile exhaust. I. Results of cross-sectional studies in 1979, 1982, and 1983. Arch Environ Health; doi:10.1080/00039896.1993.9938393.
- Nordling E, Berglind N, Melén E, Emenius G, Hallberg J, Nyberg F, et al. 2008. Traffic-related air pollution and childhood respiratory symptoms, function and allergies. Epidemiology; doi:10.1097/EDE.0b013e31816a1ce3.
- Nuvolone D, Della Maggiore R, Maio S, Fresco R, Baldacci S, Carrozzi L, et al. 2011. Geographical information system and environmental epidemiology: A cross-sectional spatial analysis of the effects of traffic-related air pollution on population respiratory health. Environ Health; doi:10.1186/1476-069X-10-12.
- Oftedal B, Nystad W, Brunekreef B, Nafstad P. 2009. Long-term traffic-related exposures and asthma onset in schoolchildren in Oslo, Norway. Environ Health Perspect; doi:10.1289/ehp.11491.
- Oosterlee A, Drijver M, Lebret E, Brunekreef B. 1996. Chronic respiratory symptoms in children and adults living along streets with high traffic density. Occup Environ Med; doi:10.1136/oem.53.4.241.
- Orru H, Jõgi R, Kaasik M, Forsberg B. 2009. Chronic traffic-induced PM exposure and self-reported respiratory and cardiovascular health in the RHINE Tartu Cohort. Int J Env Res Pub Health; doi:10.3390/ijerph6112740.
- Pan G, Zhang S, Feng Y, Takahashi K, Kagawa J, Yu L, et al. 2010. Air pollution and children's respiratory symptoms in six cities of Northern China. Respir Med; doi:10.1016/j.rmed.2010.07.018.
- Pedersen M, Siroux V, Pin I, Charles MA, Forhan A, Hulin A, et al. 2013. Does consideration of larger study areas yield more accurate estimates of air pollution health effects? An illustration of the bias-variance trade-off in air pollution epidemiology. Environ Int; doi:10.1016/j.envint.2013.07.005.
- Pénard-Morand C, Raherison C, Charpin D, Kopferschmitt C, Lavaud F, Caillaud D, et al. 2010. Long-term exposure to close-proximity air pollution and asthma and allergies in urban children. Eur Respir J; doi:10.1183/09031936.00116109.
- Pierse N, Rushton L, Harris RS, Kuehni CE, Silverman M, Grigg J. 2006. Locally generated particulate pollution and respiratory symptoms in young children. Thorax; doi:10.1136/thx.2004.036418.
- Pikhart H, Bobak M, Kriz B, Danova J, Celko MA, Prikazsky V, et al. 2000. Outdoor air concentrations of nitrogen dioxide and sulfur dioxide and prevalence of wheezing in school children. Epidemiology; doi:10.1097/00001648-200003000-00012.
- Pikhart H, Príkazský V, Bobák M, Kríz B, Celko M, Danová J, et al. 1997. Association between ambient air concentrations of nitrogen dioxide and respiratory symptoms in children in Prague, Czech Republic. Preliminary results from the Czech part of the SAVIAH Study. Small Area Variation in Air Pollution and Health. Cent Eur J Public Health 5:82–85.

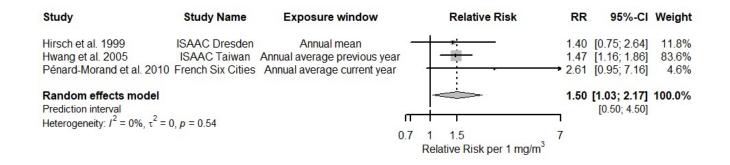

- Pindus M, Orru H, Maasikmets M, Kaasik M, Jõgi R. 2016. Association Between Health Symptoms and Particulate Matter from Traffic and Residential Heating – Results from RHINE III in Tartu. Open Respir Med J; doi:10.2174/1874306401610010058.
- Pujades-Rodríguez M, Lewis S, McKeever T, Britton J, Venn A. 2009a. Effect of living close to a main road on asthma, allergy, lung function and chronic obstructive pulmonary disease. Occup Environ Med; doi:10.1136/oem.2008.043885.
- Pujades-Rodríguez M, McKeever T, Lewis S, Whyatt D, Britton J, Venn A. 2009b. Effect of traffic pollution on respiratory and allergic disease in adults: Cross-sectional and longitudinal analyses. BMC Pulm Med; doi:10.1186/1471-2466-9-42.
- Ranzi A, Porta D, Badaloni C, Cesaroni G, Lauriola P, Davoli M, et al. 2014. Exposure to air pollution and respiratory symptoms during the first 7 years of life in an Italian birth cohort. Occup Environ Med; doi:10.1136/oemed-2013-101867.
- Rosenlund M, Forastiere F, Porta D, De Sario M, Badaloni C, Perucci CA. 2009. Traffic-related air pollution in relation to respiratory symptoms, allergic sensitisation and lung function in schoolchildren. Thorax; doi:10.1136/thx.2007.094953.
- Ryan PH, Bernstein DI, Lockey J, Reponen T, Levin L, Grinshpun S, et al. 2009. Exposure to traffic-related particles and endotoxin during infancy is associated with wheezing at age 3 years. Am J Respir Crit Care Med; doi:10.1164/rccm.200808-1307OC.
- Ryan PH, LeMasters G, Biagini J, Bernstein D, Grinshpun SA, Shukla R, et al. 2005. Is it traffic type, volume, or distance? Wheezing in infants living near truck and bus traffic. J Allergy Clin Immunol; doi:10.1016/j.jaci.2005.05.014.
- Schindler C, Keidel D, Gerbase MW, Zemp E, Bettschart R, Brändli O, et al. 2009. Improvements in PM₁₀ exposure and reduced rates of respiratory symptoms in a cohort of Swiss adults (SAPALDIA). Am J Respir Crit Care Med; doi:10.1164/rccm.200803-388OC.
- Shima M, Nitta Y, Adachi M. 2003. Traffic-related air pollution and respiratory symptoms in children living along trunk roads in Chiba Prefecture, Japan. J Epidemiol; doi:10.2188/jea.13.108.
- Skrzypek M, Zejda JE, Kowalska M, Czech EM. 2013. Effect of residential proximity to traffic on respiratory disorders in school children in upper Silesian Industrial Zone, Poland. Int J Occup Med Environ Health; doi:10.2478/S13382-013-0078-2.
- Sucharew H, Ryan PH, Bernstein D, Succop P, Khurana Hershey GK, Lockey J, et al. 2010. Exposure to traffic exhaust and night cough during early childhood: The CCAAPS birth cohort. Pediatr Allergy Immunol; doi:10.1111/j.1399-3038.2009.00952.x.
- van Vliet P, Knape M, de Hartog J, Janssen N, Harssema H, Brunekreef B. 1997. Motor vehicle exhaust and chronic respiratory symptoms in children living near freeways. Environ Res; doi:10.1006/enrs.1997.3757.
- Venn A, Lewis S, Cooper M, Hubbard R, Hill I, Boddy R, et al. 2000. Local road traffic activity and the prevalence, severity, and persistence of wheeze in school children: Combined cross sectional and longitudinal study. Occup Environ Med; doi:10.1136/oem.57.3.152.

- Venn A, Yemaneberhan H, Lewis S, Parry E, Britton J. 2005. Proximity of the home to roads and the risk of wheeze in an Ethiopian population. Occup Environ Med; doi:10.1136/oem.2004.017228.
- Venn AJ, Lewis SA, Cooper M, Hubbard R, Britton J. 2001. Living near a main road and the risk of wheezing illness in children. Am J Respir Crit Care Med; doi:10.1164/rccm2106126.
- Wjst M, Reitmeir P, Dold S, Wulff A, Nicolai T, von Loeffelholz-Colberg EF, et al. 1993. Road traffic and adverse effects on respiratory health in children. BMJ; doi:10.1136/bmj.307.6904.596.
- Wood HE, Marlin N, Mudway IS, Bremner SA, Cross L, Dundas I, et al. 2015. Effects of air pollution and the introduction of the London low emission zone on the prevalence of respiratory and allergic symptoms in schoolchildren in East London: A sequential cross-sectional study. PLoS One; doi:10.1371/journal.pone.0109121.
- Yang CY, Yu ST, Chang CC. 2002. Respiratory symptoms in primary schoolchildren living near a freeway in Taiwan. J Toxicol Environ Health; doi:10.1080/00984100290071036.
- Zhang JJ, Hu W, Wei F, Wu G, Korn LR, Chapman RS. 2002. Children's respiratory morbidity prevalence in relation to air pollution in four Chinese cities. Environ Health Perspect; doi:10.1289/ehp.02110961.

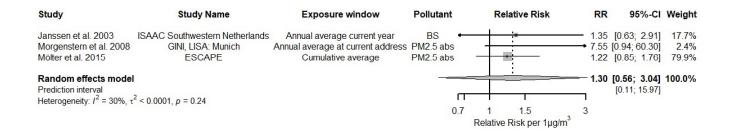
Chapter 9: Traffic-Related Air Pollution and Respiratory Outcomes

Appendices B and C

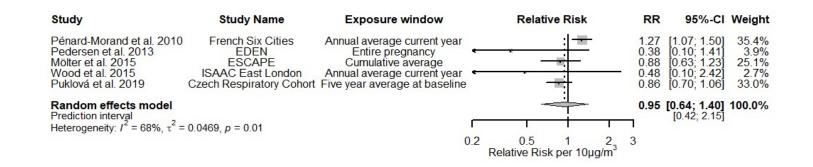
- Appendix 9B Additional Figures and Tables
- Appendix 9C References for Studies Included in the Systematic Review of Respiratory Outcomes

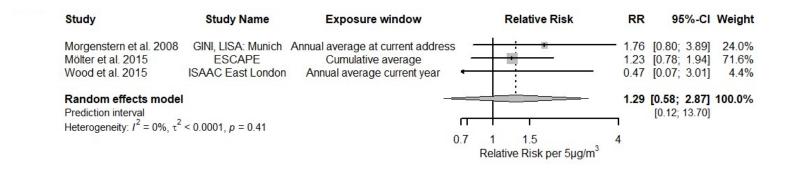

Appendix Figure 9B-1. Association between NO_x and asthma onset in children: meta-analysis.

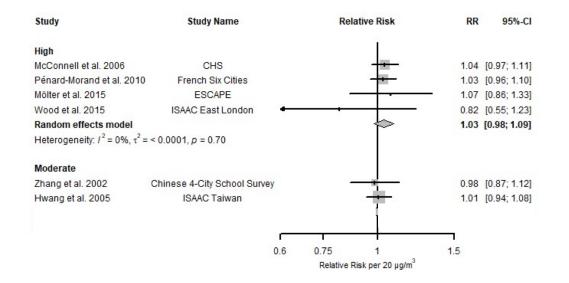
Study	Study Name		Relative R	isk	RR	95%-CI
North America			Ĩ			
Clougherty et al. 2007	EBNHC				1.28	[0.96; 1.70]
Jerrett et al. 2008	CHS			201	1.24	[1.06; 1.46]
Carlsten et al. 2011	Vancouver High Risk Asthma Infants		-		→ 1.76	[0.86; 3.57]
Tétreault et al. 2016	Quebec Birth Cohort		+		1.04	[1.02; 1.05]
Sbihi et al. 2016	BC 99/02 Birth Cohort		-		0.95	[0.89; 1.01]
Lavigne et al. 2018	BORN Ontario		-		1.05	[1.04; 1.07]
Lavigne et al. 2019	BORN Toronto		- B		1.01	[0.99; 1.03]
Random effects model			\Leftrightarrow		1.04	[0.96; 1.13]
Heterogeneity: $l^2 = 79\%$,	$\tau^2 = 0.0031, p < 0.01$					
Western Europe			2.4 J			
Oftedal et al. 2009	Oslo Birth Cohort				0.93	[0.86; 1.00]
Krämer et al. 2009	GINI, LISA: Wesel				1.19	[0.85; 1.67]
Gehring et al. 2010	PIAMA			-	1.16	[0.96; 1.40]
Ranzi et al. 2014	GASPII				1.07	[0.76; 1.52]
Gehring et al. 2015	ESCAPE		-		1.13	[1.02; 1.25]
Random effects model					1.07	[0.93; 1.22]
Heterogeneity: $l^2 = 67\%$,	$\tau^2 = 0.0094, \rho = 0.02$				12013	
		. 7		15		
	(0.7	1	1.5	2	
			Relative Risk per	TU µg/m		


Appendix Figure 9B-2. Association between NO₂ and asthma onset in children: meta-analysis by region.

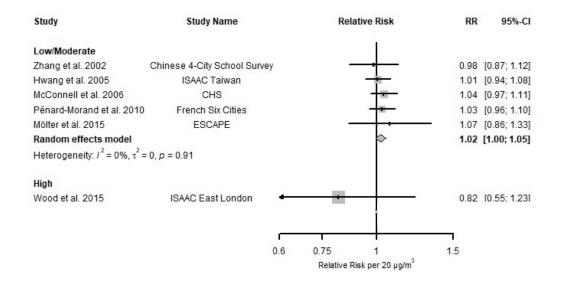
Study	Study Name		Relative R	lisk	RR	95%-CI
Low/Moderate			Ĩ			
Clougherty et al. 2007	EBNHC				1.28	[0.96; 1.70]
Jerrett et al. 2008	CHS				1.24	[1.06; 1.46]
Krämer et al. 2009	GINI, LISA: Wesel	1	•		1.19	[0.85; 1.67]
Oftedal et al. 2009	Oslo Birth Cohort	-	-		0.93	[0.86; 1.00]
Gehring et al. 2010	PIAMA		+++		1.16	[0.96; 1.40]
Carlsten et al. 2011	Vancouver High Risk Asthma Infants				• 1.76	[0.86; 3.57]
Ranzi et al. 2014	GASPII				1.07	[0.76; 1.52]
Gehring et al. 2015	ESCAPE				1.13	[1.02; 1.25]
Tétreault et al. 2016	Quebec Birth Cohort				1.04	[1.02; 1.05]
Lavigne et al. 2018	BORN Ontario				1.05	[1.04; 1.07]
Lavigne et al. 2019	BORN Toronto		÷		1.01	[0.99; 1.03]
Random effects model			\bigcirc		1.07	[1.00; 1.14]
Heterogeneity: / ² = 69%,	$\tau^2 = 0.0044, p < 0.01$					
High						
Sbihi et al. 2016	BC 99/02 Birth Cohort	-	=		0.95	[0.89; 1.01]
					100 000	
	0.	7	1	1.5	2	
	0.		Relative Risk per		2	

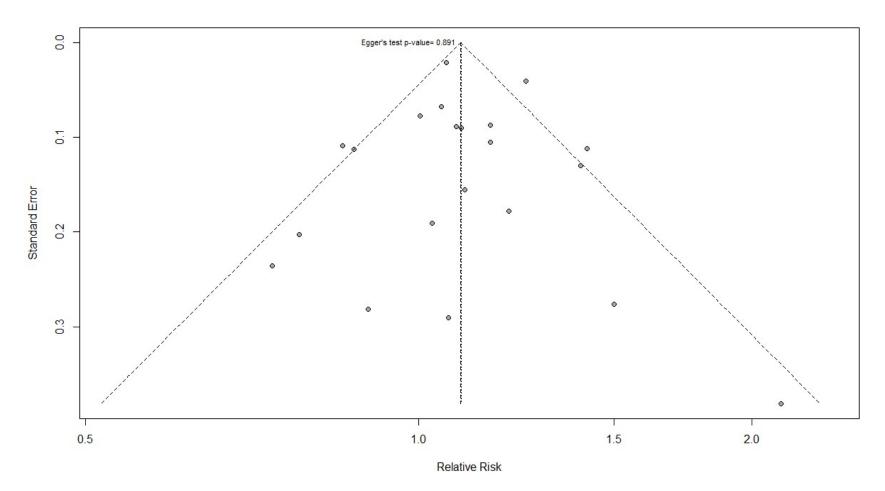

Appendix Figure 9B-3. Association between NO₂ and asthma onset in children: meta-analysis by risk of bias confounding.


Appendix Figure 9B-4. Association between CO and prevalence of asthma ever in children: meta-analysis.

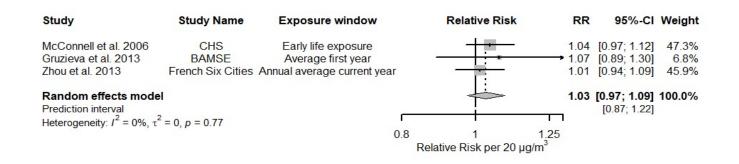

Appendix Figure 9B-5. Association between EC and prevalence of asthma ever in children: meta-analysis.

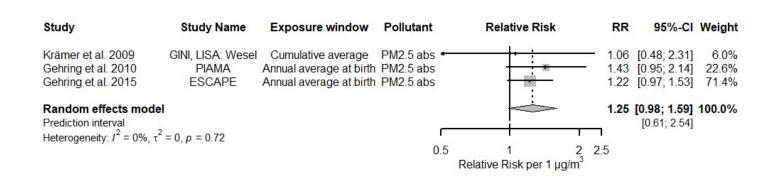
Appendix Figure 9B-6. Association between PM₁₀ and prevalence of asthma ever in children: meta-analysis.

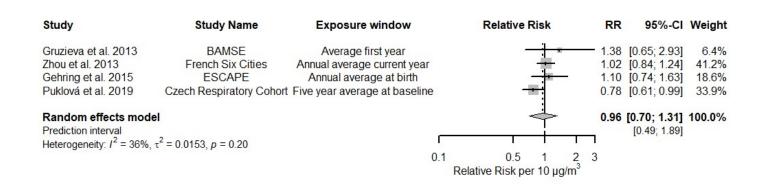

Appendix Figure 9B-7. Association between PM_{2.5} and prevalence of asthma ever in children: meta-analysis.

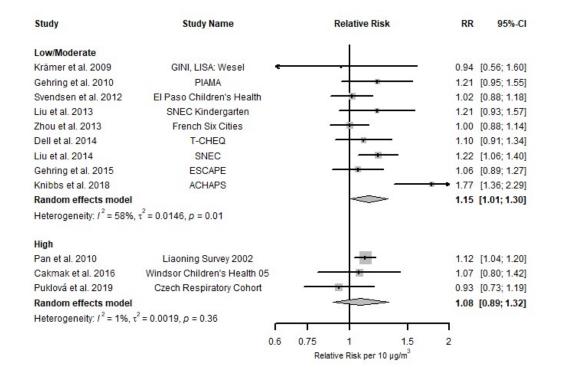

Appendix Figure 9B-8. Association between NO_x and prevalence of asthma ever in children: meta-analysis by traffic specificity.

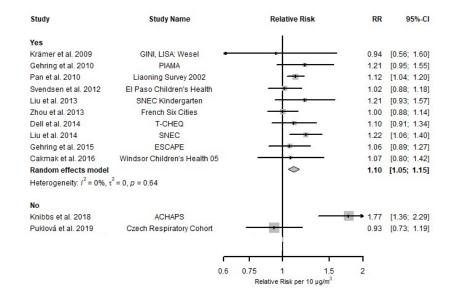
Study	Study Name			Relative Ris	k	RR	95%-CI
Low/Moderate							
Hirsch et al. 1999	ISAAC Dresden					1.16	[0.94; 1.43]
Krämer et al. 2000	Düsseldorf School Survey	~	-	•		0.90	[0.52; 1.56]
Janssen et al. 2003	ISAAC Southwestern Netherlands	6	0.	- ·		1.21	[0.85; 1.71]
Morgenstern et al. 2008	GINI, LISA: Munich					1.06	[0.60; 1.88]
Rosenlund et al. 2009	ISAAC Rome					0.85	[0.69; 1.06]
Pénard-Morand et al. 2010	French Six Cities			- - -		1.05	[0.92; 1.20]
Svendsen et al. 2012	El Paso Children's Health			-		1.00	[0.86; 1.17]
Liu et al. 2013	SNEC Kindergarten			-	_	1.16	[0.98; 1.38]
Pedersen et al. 2013	EDEN	-	· ·	_		0.78	[0.52; 1.16]
Abidin et al. 2014	ISAAC Malaysia				•	+ 1.50	[0.87; 2.58]
Dell et al. 2014	T-CHEQ			-	-	1.09	[0.92; 1.30]
Liu et al. 2014	SNEC				-	1.25	[1.15; 1.35]
Ranzi et al. 2014	GASPII		10			1.03	[0.71; 1.49]
Mölter et al. 2015	ESCAPE		_			1.10	[0.81; 1.49]
Wood et al. 2015	ISAAC East London	+	•			0.74	[0.46; 1.17]
Liu et al. 2016	CCHH Shanghai				•	1.08	[0.91; 1.29]
Oudin et al. 2017	SIMSAM Medication					1.06	[1.02; 1.11]
Knibbs et al. 2018	ACHAPS			1		- 1.40	[1.08; 1.81]
Random effects model				\diamond		1.09	[1.02; 1.16]
Heterogeneity: $l^2 = 47\%$, τ^2	= 0.0054, <i>p</i> = 0.02						
High							
Sahsuvaroglu et al. 2009	ISAAC Hamilton					> 2.12	[1.00; 4.48]
Deng et al. 2016	CCHH Changsha					1.42	[1.14; 1.77]
Puklová et al. 2019	Czech Respiratory Cohort		-	-		0.87	[0.70; 1.09]
Random effects model						1.27	[0.45; 3.54]
Heterogeneity: $l^2 = 83\%$, τ^2	= 0.1238, p < 0.01				200		
				1			
		0.6	0.75	1	1.5	2	
			Relat	tive Risk per 1) µg/m		

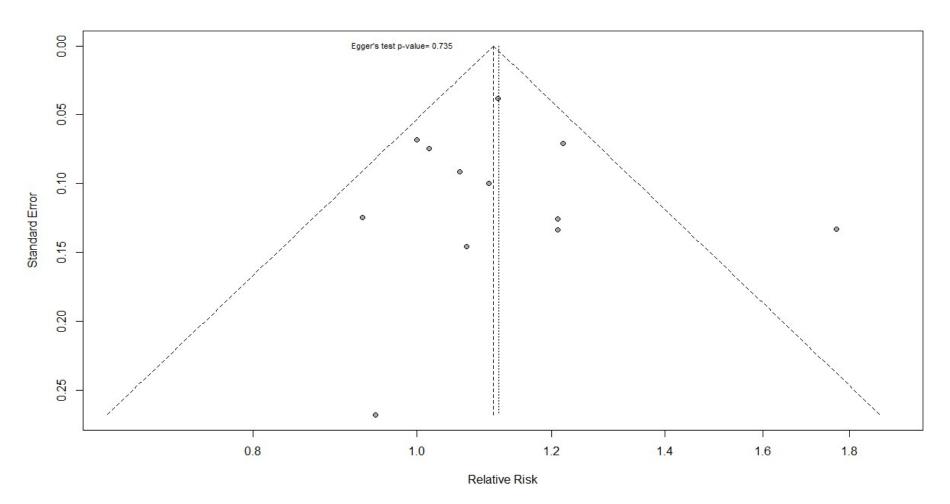

Appendix Figure 9B-9. Association between NO₂ and prevalence of asthma ever in children: meta-analysis by risk of bias confounding.

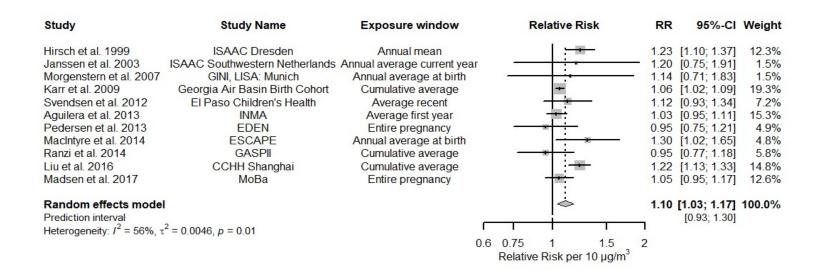

Appendix Figure 9B-10. Association between NO_x and prevalence of asthma ever in children: meta-analysis by risk of bias selection bias.

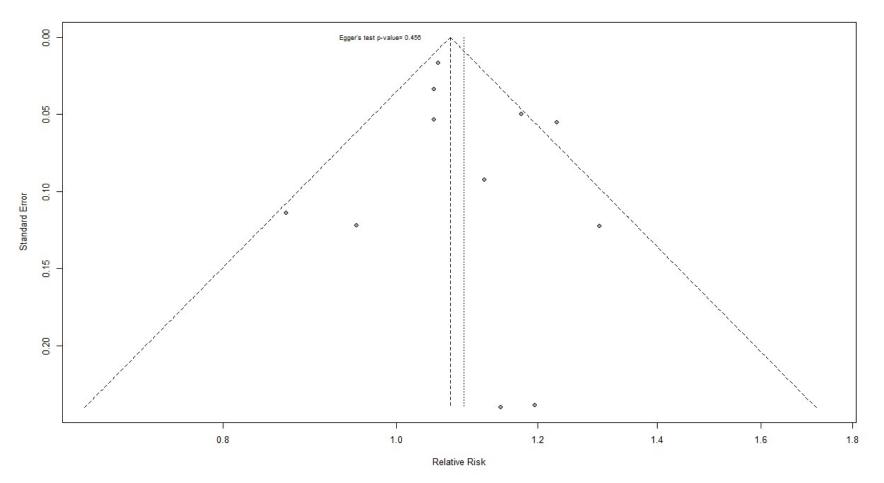

Appendix Figure 9B-11. Funnel plot for NO₂ and prevalence of asthma ever in children. The vertical lines in the funnel plots represent the pooled fixed and random effect estimates. The vertical dashed line in the middle of the funnel shows the fixed effect estimate. As the Panel applied a random-effects model, the funnel plot also presents the random-effects estimate with the dotted line.

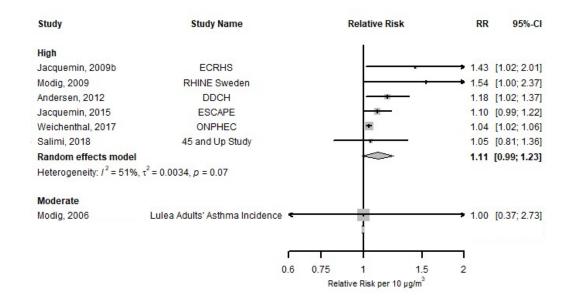

Appendix Figure 9B-12. Association between NO_x and prevalence of active asthma in children: meta-analysis.

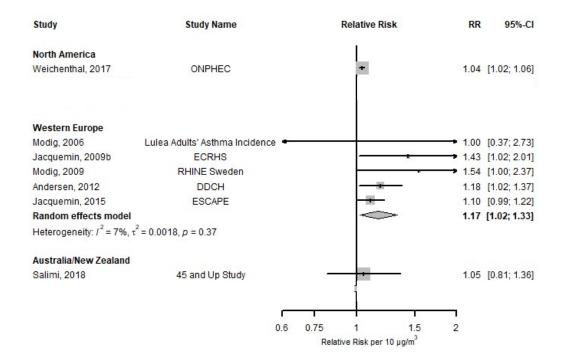

Appendix Figure 9B-13. Association between EC and prevalence of active asthma in children: meta-analysis.

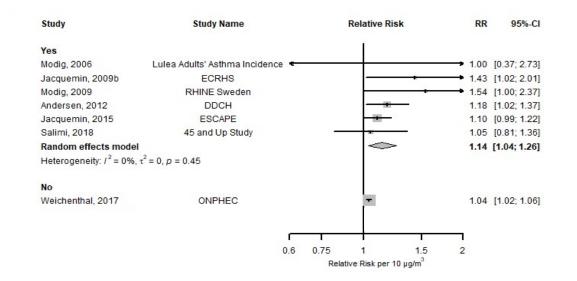

Appendix Figure 9B-14. Association between PM₁₀ and prevalence of active asthma in children: meta-analysis.

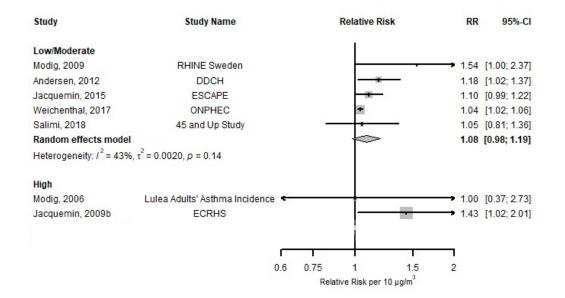

Appendix Figure 9B-15. Association between NO₂ and prevalence of active asthma in children: meta-analysis by risk of bias confounding.

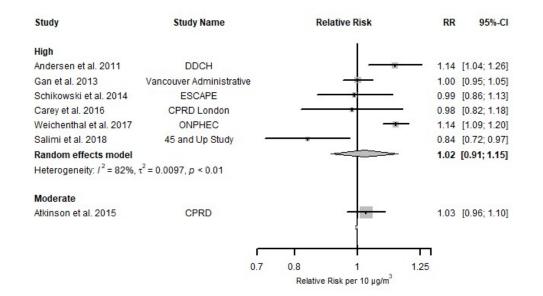

Appendix Figure 9B-16. Association between NO₂ and prevalence of active asthma in children: meta-analysis by smoking adjustment.

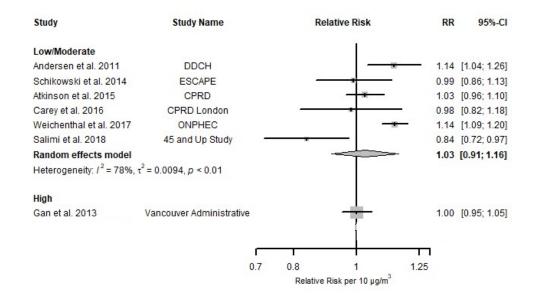

Appendix Figure 9B-17. Funnel plot for NO₂ and prevalence of active asthma in children. The vertical lines in the funnel plots represent the pooled fixed and random effect estimates. The vertical dashed line in the middle of the funnel shows the fixed effect estimate. As the Panel applied a random-effects model, the funnel plot also presents the random-effects estimate with the dotted line.

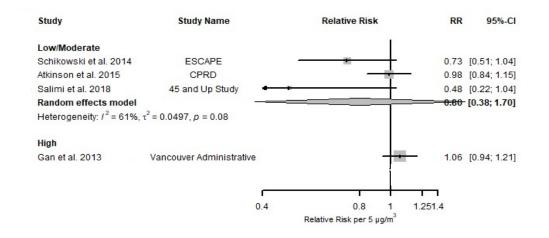

Appendix Figure 9B-18. Association between NO₂ and acute lower respiratory infections in children: meta-analysis giving priority to postnatal exposures.


Appendix Figure 9B-19. Funnel plot for NO₂ and acute lower respiratory infections in children. The vertical lines in the funnel plots represent the pooled fixed and random effect estimates. The vertical dashed line in the middle of the funnel shows the fixed effect estimate. As the Panel applied a random-effects model, the funnel plot also presents the random-effects estimate with the dotted line.


Appendix Figure 9B-20. Association between NO₂ and asthma onset in adults: meta-analysis by traffic specificity.


Appendix Figure 9B-21. Association between NO₂ and asthma onset in adults: meta-analysis by region.


Appendix Figure 9B-22. Association between NO₂ and asthma onset in adults: meta-analysis by smoking adjustment.


Appendix Figure 9B-23. Association between NO₂ and asthma onset in adults: meta-analysis by risk of bias missing data.

Appendix Figure 9B-24. Association between NO₂ and chronic obstructive pulmonary disease incidence in adults: meta-analysis by traffic specificity.

Appendix Figure 9B-25. Association between NO₂ and chronic obstructive pulmonary disease incidence in adults: meta-analysis by risk of bias confounding.

Appendix Figure 9B-26. Association between PM_{2.5} and chronic obstructive pulmonary disease incidence in adults: meta-analysis by risk of bias confounding.

Reference	Study Name	Confounding	Selection	Exposure	Outcome	Missing	Selective
			Bias	Assessment	Measurement	Data	Reporting
Carlsten 2011	Vancouver High Risk Asthma Infants	Low	Low	Low	Low	Mod	Low
Clougherty 2007	EBNHC	Low	Low	Low	Mod	Mod	Low
Gehring 2010	PIAMA	Low	Low	Low	Mod	Low	Low
Gehring 2015	ESCAPE	Low	Low	Mod	Mod	Mod	Low
Gruzieva 2013	BAMSE	High	Low	Low	Mod	Low	Low
(NO _x)							
Jerrett 2008	CHS	Mod	Low	Mod	Mod	Low	Low
Krämer 2009	GINI, LISA: Wesel	Low	Low	Low	Mod	Mod	Low
Lavigne 2018	BORN Ontario	Mod	Low	Low	Low	High	Low
Lavigne 2019	BORN Toronto	Mod	Low	Low	Low	Mod	Low
Lee 2018	ACCESS	High	Low	Low	Mod	High	Low
McConnell 2010	CHS	Mod	Low	Low	Mod	Low	Low
Oftedal 2009	Oslo Birth Cohort	Low	Mod	Low	Mod	Low	Low
Pennington 2018	КАРРА	High	Low	Low	Mod	High	Low
Ranzi 2014	GASPII	Low	Low	Low	Mod	Mod	Low
Sbihi 2016	BC 99/02 Birth Cohort	High	Low	Low	Low	Low	Low
Tétreault 2016	Quebec Birth Cohort	Mod	Low	Mod	Mod	Low	Low

Appendix Table 9B-1. Risk of bias assessment for individual studies: asthma onset in children.

Reference	Study Name	Confounding	Selection	Exposure	Outcome	Missing	Selective
			Bias	Assessment	Measurement	Data	Reporting
Abidin 2014	ISAAC Malaysia	Low	Mod	Low	Mod	Low	Low
Dell 2014	T-CHEQ	Low	Low	Low	Mod	Low	Low
Deng 2016	CCHH Changsha	High	High	Low	Mod	Low	Low
Hirsch 1999	ISAAC Dresden	Low	Low	Low	Mod	Low	Low
Hwang 2005	ISAAC Taiwan	Low	Low	Mod	Mod	Low	Low
Janssen 2003	ISAAC Southwestern Netherlands	Low	Low	Low	Mod	Low	Low
Knibbs 2018	ACHAPS	Low	Mod	Low	Mod	Low	Low
Krämer 2000	Düsseldorf School Survey	Mod	Mod	Low	Mod	Low	Low
Liu 2013	SNEC Kindergarten	Mod	Low	Low	Mod	Low	Low
Liu 2014	SNEC	Mod	Low	Low	Mod	Low	Low
Liu 2016	CCHH Shanghai	Low	Low	Low	Mod	Low	Low
McConnell 2006	CHS	Low	Low	Low	Mod	Low	Low
Mölter 2015	ESCAPE	Low	Low	Mod	Mod	Low	Low
Morgenstern 2008	GINI, LISA: Munich	Low	Low	Low	Mod	Low	Low
Oudin 2017	SIMSAM Medication	Mod	Low	Mod	Low	Low	Low
Pedersen 2013	EDEN	Low	Low	Low	Mod	Mod	Low
Pénard-Morand 2010	French Six Cities	Low	Mod	Low	Mod	Low	Low
Puklová 2019	Czech Respiratory Cohort	High	Low	Low	Low	Low	Low
Ranzi 2014	GASPII	Low	Low	Low	Mod	Mod	Low
Rosenlund 2009	ISAAC Rome	Low	Low	Low	Mod	Low	Low
Sahsuvaroglu 2009	ISAAC Hamilton	High	Low	Low	Mod	Low	Mod
Svendsen 2012	El Paso Children's Health	Low	Mod	Low	Mod	Low	Low
Wood 2015	ISAAC East London	Low	High	Low	High	Low	Low
Zhang 2002	Chinese 4-City School Survey	Low	Low	Low	Mod	Low	Low

Appendix Table 9B-2. Risk of bias assessment for individual studies: prevalence of asthma ever in children.

Reference	Study Name	Confounding	Selection	Exposure	Outcome	Missing	Selective
			Bias	Assessment	Measurement	Data	Reporting
Cakmak 2016	Windsor Children's Health 05	High	Mod	Low	Mod	Mod	Low
Dell 2014	T-CHEQ	Low	Low	Low	Mod	Low	Low
Gehring 2010	PIAMA	Low	Low	Low	Mod	Low	Low
Gehring 2015	ESCAPE	Low	Low	Mod	Mod	Mod	Low
Gruzieva 2013	BAMSE (NO _x)	High	Low	Low	Mod	Low	Low
Gruzieva 2013	BAMSE (PM ₁₀)	High	Low	Mod	Mod	Low	Low
Knibbs 2018	ACHAPS	Low	Mod	Low	Mod	Low	Low
Krämer 2009	GINI, LISA: Wesel	Low	Low	Low	Mod	Mod	Low
Liu 2013	SNEC Kindergarten	Mod	Low	Low	Mod	Low	Low
Liu 2014	SNEC	Mod	Low	Low	Mod	Low	Low
McConnell 2006	CHS	Low	Low	Low	Mod	Low	Low
Pan 2010	Liaoning Survey 2002	High	Low	Low	Mod	Low	Low
Puklová 2019	Czech Respiratory Cohort	High	Low	Low	Low	Low	Low
Svendsen 2012	El Paso Children's Health	Low	Mod	Low	Mod	Low	Low
Zhou 2013	French Six Cities	Low	Mod	Low	Mod	Low	Low

Appendix Table 9B-3. Risk of bias assessment for individual studies: prevalence of active asthma in children.

Reference	Study Name	Confounding	Selection Bias	Exposure Assessment	Outcome Measurement	Missing Data	Selective Reporting
Aguilera 2013	INMA	Mod	Low	Low	Mod	Low	Low
Hirsch 1999	ISAAC Dresden	Low	Low	Low	Mod	Low	Low
Janssen 2003	ISAAC Southwestern Netherlands	Low	Low	Low	Mod	Low	Low
Karr 2009	Georgia Air Basin Birth Cohort	Mod	Low	Low	Low	Low	Low
Liu 2016	CCHH Shanghai	Low	Low	Low	Mod	Low	Low
MacIntyre 2014	ESCAPE	Low	Low	Mod	Mod	Low	Low
Madsen 2017	МоВа	Low	Low	Low	Mod	Mod	Low
Morgenstern 2007	GINI, LISA: Munich	Low	Low	Low	Mod	Low	Low
Pedersen 2013	EDEN	Low	Low	Low	Mod	Mod	Low
Ranzi 2014	GASPII	Low	Low	Low	Mod	Mod	Low
Svendsen 2012	El Paso Children's Health	Low	Mod	Low	Mod	Low	Low

Appendix Table 9B-4. Risk of bias assessment for individual studies: acute lower respiratory infections in children.

Reference	Study Name	Confounding	Selection	Exposure	Outcome	Missing	Selective
			Bias	Assessment	Measurement	Data	Reporting
Andersen 2012	DDCH	Low	Low	Low	Low	Low	Low
Jacquemin 2009	ECRHS	Low	Low	Mod	Mod	High	Low
Jacquemin 2015	ESCAPE	Low	Low	Mod	Mod	Low	Low
Modig 2006	Lulea Adults' Asthma Incidence	High	Low	Mod	Low	High	Low
Modig 2009	RHINE Sweden	Mod	Low	Mod	Mod	Mod	Low
Salimi 2018	45 and Up Study	Low	Low	Low	Low	Low	Low
Weichenthal 2017	ONPHEC	Mod	Low	Mod	Low	Mod	Low

Appendix Table 9B-5. Risk of bias assessment for individual studies: asthma onset in adults.

Mod = moderate.

Appendix Table 9B-6. Risk of bias assessment for individual studies: acute lower respiratory infections in adults.

Reference	Study Name	Confounding	Selection	Exposure	Outcome	Missing	Selective
			Bias	Assessment	Measurement	Data	Reporting
Carey 2016	CPRD London	Mod	Low	Low	Low	Low	Low
Neupane 2010	Hamilton Pneumonia	Low	Mod	Low	Low	Low	Low
Salimi 2018	45 and Up Study	Low	Low	Low	Low	Low	Low

Reference	Study Name	Confounding	Selection Bias	Exposure Assessment	Outcome Measurement	Missing Data	Selective Reporting
Andersen 2011	DDCH	Mod	Low	Mod	Low	Low	Low
Atkinson 2015	CPRD	Mod	Low	Low	Low	Low	Low
Carey 2016	CPRD London	Mod	Low	Low	Low	Low	Low
Gan 2013	Vancouver Administrative	High	Low	Mod	Low	Low	Low
Salimi 2018	45 and Up Study	Low	Low	Low	Low	Low	Low
Schikowski 2014	ESCAPE	Low	Low	Mod	Low	Low	Low
Weichenthal 2017	ONPHEC	Mod	Low	Mod	Low	Mod	Low

Appendix Table 9B-7. Risk of bias assessment for individual studies: chronic obstructive pulmonary disease incidence in adults.

Appendix 9C References for Studies Included in the Systematic Review of Respiratory Outcomes

- Abidin EZ, Semple S, Rasdi I, Ismail SNS, Ayres JG. 2014. The relationship between air pollution and asthma in Malaysian schoolchildren. Air Qual Atmos Health; doi:10.1007/s11869-014-0252-0.
- Aguilera I, Pedersen M, Garcia-Esteban R, Ballester F, Basterrechea M, Esplugues A, et al. 2013. Early-life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study. Environ Health Perspect; doi:10.1289/ehp.1205281.
- Altuğ H, Gaga EO, Döğeroğlu T, Ozden O, Ornektekin S, Brunekreef B, et al. 2013. Effects of air pollution on lung function and symptoms of asthma, rhinitis and eczema in primary school children. Environ Sci Pollut Res Int; doi:10.1007/s11356-013-1674-1.
- Andersen ZJ, Bønnelykke K, Hvidberg M, Jensen SS, Ketzel M, Loft S, et al. 2012. Long-term exposure to air pollution and asthma hospitalisations in older adults: A cohort study. Thorax; doi:10.1136/thoraxjnl-2011-200711.
- Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, Loft S, Sorensen M, et al. 2011. Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: A cohort study. Am J Respir Crit Care Med; doi:10.1164/rccm.201006-0937OC.
- Andersson M, Modig L, Hedman L, Forsberg B, Rönmark E. 2011. Heavy vehicle traffic is related to wheeze among schoolchildren: A population-based study in an area with low traffic flows. Environ Health; doi:10.1186/1476-069X-10-91.
- Atkinson RW, Carey IM, Kent AJ, van Staa TP, Anderson HR, Cook DG. 2015. Long-term exposure to outdoor air pollution and the incidence of chronic obstructive pulmonary disease in a national English cohort. Occup Environ Med; doi:10.1136/oemed-2014-102266.
- Balmes JR, Cisternas M, Quinlan PJ, Trupin L, Lurmann FW, Katz PP, et al. 2014. Annual average ambient particulate matter exposure estimates, measured home particulate matter, and hair nicotine are associated with respiratory outcomes in adults with asthma. Environ Res; doi:10.1016/j.envres.2013.12.007.
- Bayer-Oglesby L, Schindler C, Hazenkamp-von Arx ME, Braun-Fahrländer C, Keidel D, Rapp R, et al. 2006. Living near main streets and respiratory symptoms in adults: The Swiss Cohort Study on Air Pollution and Lung Diseases in Adults. Am J Epidemiol; doi:10.1093/aje/kwj338.
- Bowatte G, Erbas B, Lodge CJ, Knibbs LD, Gurrin LC, Marks GB, et al. 2017a. Traffic-related air pollution exposure over a 5-year period is associated with increased risk of asthma and poor lung function in middle age. Eur Respir J; doi:10.1183/13993003.02357-2016.

- Bowatte G, Lodge CJ, Knibbs LD, Lowe AJ, Erbas B, Dennekamp M, et al. 2017b. Traffic-related air pollution exposure is associated with allergic sensitization, asthma, and poor lung function in middle age. J Allergy Clin Immunol; doi:10.1016/j.jaci.2016.05.008.
- Bowatte G, Lodge CJ, Knibbs LD, Erbas B, Perret JL, Jalaludin B, et al. 2018. Traffic related air pollution and development and persistence of asthma and low lung function. Environ Int; doi:10.1016/j.envint.2018.01.028.
- Brauer M, Hoek G, Van Vliet P, Meliefste K, Fischer PH, Wijga A, et al. 2002. Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Respir Crit Care Med; doi:10.1164/rccm.200108-007OC.
- Brown MS, Sarnat SE, DeMuth KA, Brown LA, Whitlock DR, Brown SW, et al. 2012. Residential proximity to a major roadway is associated with features of asthma control in children. PloS One; doi:10.1371/journal.pone.0037044.
- Brunst KJ, Ryan PH, Brokamp C, Bernstein D, Reponen T, Lockey J, et al. 2015. Timing and duration of traffic-related air pollution exposure and the risk for childhood wheeze and asthma. Am J Respir Crit Care Med; doi:10.1164/rccm.201407-1314OC.
- Cai Y, Zijlema WL, Doiron D, Blangiardo M, Burton PR, Fortier I, et al. 2017. Ambient air pollution, traffic noise and adult asthma prevalence: A BioSHaRE approach. Eur Respir J; doi:10.1183/13993003.02127-2015.
- Cakmak S, Hebbern C, Cakmak JD, Vanos J. 2016. The modifying effect of socioeconomic status on the relationship between traffic, air pollution and respiratory health in elementary schoolchildren. J Environ Manage; doi:10.1016/j.jenvman.2016.03.051.
- Cakmak S, Mahmud M, Grgicak-Mannion A, Dales RE. 2012. The influence of neighborhood traffic density on the respiratory health of elementary schoolchildren. Environ Int; doi:10.1016/j.envint.2011.10.006.
- Carey IM, Anderson HR, Atkinson RW, Beevers S, Cook DG, Dajnak D, et al. 2016. Traffic pollution and the incidence of cardiorespiratory outcomes in an adult cohort in London. Occup Environ Med; doi:10.1136/oemed-2015-103531.
- Carlsten C, Dybuncio A, Becker A, Chan-Yeung M, Brauer M. 2011. Traffic-related air pollution and incident asthma in a high-risk birth cohort. Occup Environ Med; doi:10.1136/oem.2010.055152.
- Cesaroni G, Badaloni C, Porta D, Forastiere F, Perucci CA. 2008. Comparison between various indices of exposure to traffic-related air pollution and their impact on respiratory health in adults. Occup Environ Med; doi:10.1136/oem.2007.037846.

- Chang J, Delfino RJ, Gillen D, Tjoa T, Nickerson B, Cooper D. 2009. Repeated respiratory hospital encounters among children with asthma and residential proximity to traffic. Occup Environ Med; doi:10.1136/oem.2008.039412.
- Chiu YH, Coull BA, Sternthal MJ, Kloog I, Schwartz J, Cohen S, et al. 2014. Effects of prenatal community violence and ambient air pollution on childhood wheeze in an urban population. J Allergy Clin Immunol; doi:10.1016/j.jaci.2013.09.023.
- Clark NA, Demers PA, Karr CJ, Koehoorn M, Lencar C, Tamburic L, et al. 2010. Effect of early life exposure to air pollution on development of childhood asthma. Environ Health Perspect; doi:10.1289/ehp.0900916.
- Clifford S, Mazaheri M, Salimi F, Ezz WN, Yeganeh B, Low-Choy S, et al. 2018. Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environ Int; doi:10.1016/j.envint.2018.02.019.
- Clougherty JE, Levy JI, Kubzansky LD, Ryan PB, Suglia SF, Canner MJ, et al. 2007. Synergistic effects of traffic-related air pollution and exposure to violence on urban asthma etiology. Environ Health Perspect; doi:10.1289/ehp.9863.
- Cook AG, de Vos AJ, Pereira G, Jardine A, Weinstein P. 2011. Use of a total traffic count metric to investigate the impact of roadways on asthma severity: A case-control study. Environ Health; doi.org/10.1186/1476-069X-10-52.
- Değer L, Plante C, Goudreau S, Smargiassi A, Perron S, Thivierge RL, et al. 2010. Home environmental factors associated with poor asthma control in Montreal children: A population-based study. J Asthma; doi:10.3109/02770901003615778.
- Delfino RJ, Chang J, Wu J, Ren C, Tjoa T, Nickerson B, et al. 2009. Repeated hospital encounters for asthma in children and exposure to traffic-related air pollution near the home. Ann Allergy Asthma Immunol; doi:10.1016/S1081-1206(10)60244-X.
- Dell SD, Jerrett M, Beckerman B, Brook JR, Foty RG, Gilbert NL, et al. 2014. Presence of other allergic disease modifies the effect of early childhood traffic-related air pollution exposure on asthma prevalence. Environ Int; doi:10.1016/j.envint.2014.01.002.
- Deng Q, Lu C, Norbäck D, Bornehag CG, Zhang Y, Liu W, et al. 2015. Early life exposure to ambient air pollution and childhood asthma in China. Environ Res; doi:10.1016/j.envres.2015.09.032.
- Deng Q, Lu C, Ou C, Chen L, Yuan H. 2016. Preconceptional, prenatal and postnatal exposure to outdoor and indoor environmental factors on allergic diseases/symptoms in preschool children. Chemosphere; doi:10.1016/j.chemosphere.2016.03.032.

- Doiron D, de Hoogh K, Probst-Hensch N, Mbatchou S, Eeftens M, Cai Y, et al. 2017. Residential air pollution and associations with wheeze and shortness of breath in adults: A combined analysis of cross-sectional data from two large European cohorts. Environ Health Perspect; doi:10.1289/EHP1353.
- Dong GH, Ma YN, Ding HL, Jin J, Cao Y, Zhao YD, et al. 2008. Housing characteristics, home environmental factors and respiratory health in 3945 pre-school children in China. Int J Environ Health Res; doi:10.1080/09603120701842864.
- Ebisu K, Holford TR, Belanger KD, Leaderer BP, Bell ML. 2011. Urban land-use and respiratory symptoms in infants. Environ Res; doi:10.1016/j.envres.2011.04.004.
- Emenius G, Pershagen G, Berglind N, Kwon HJ, Lewné M, Nordvall SL, et al. 2003. NO2, as a marker of air pollution, and recurrent wheezing in children: A nested case-control study within the BAMSE birth cohort. Occup Environ Med; doi:10.1136/oem.60.11.876.
- English P, Neutra R, Scalf R, Sullivan M, Waller L, Zhu L. 1999. Examining associations between childhood asthma and traffic flow using a geographic information system. Environ Health Perspect; doi:10.1289/ehp.99107761.
- Esplugues A, Ballester F, Estarlich M, Llop S, Fuentes-Leonarte V, Mantilla E, et al. 2011. Outdoor, but not indoor, nitrogen dioxide exposure is associated with persistent cough during the first year of life. Sci Total Environ; doi:10.1016/j.scitotenv.2011.08.007.
- Fisher JA, Puett RC, Hart JE, Camargo CA, Varraso R, Yanosky JD, et al. 2016a. Particulate matter exposures and adult-onset asthma and COPD in the Nurses' Health Study. Eur Respir J; doi:10.1183/13993003.00845-2015.
- Fisher JE, Loft S, Ulrik CS, Raaschou-Nielsen O, Hertel O, Tjønneland A, et al. 2016b. Physical activity, air pollution, and the risk of asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med; doi:10.1164/rccm.201510-2036OC.
- Fuertes E, MacIntyre E, Agius R, Beelen R, Brunekreef B, Bucci S, et al. 2014. Associations between particulate matter elements and early life pneumonia in seven birth cohorts: Results from the ESCAPE and TRANSPHORM projects. Int J Hyg Environ Health; doi:10.1016/j.ijheh.2014.05.004.
- Fuertes E, Standl M, Cyrys J, Berdel D, von Berg A, Bauer CP, et al. 2013. A longitudinal analysis of associations between traffic-related air pollution with asthma, allergies and sensitization in the GINIplus and LISAplus birth cohorts. PeerJ; doi:10.7717/peerJ.193.
- Gan WQ, FitzGerald JM, Carlsten C, Sadatsafavi M, Brauer M. 2013. Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. Am J Respir Crit Care Med; doi:10.1164/rccm.201211-2004OC.

- Garshick E, Laden F, Hart JE, Caron A. 2003. Residence near a major road and respiratory symptoms in U.S. Veterans. Epidemiology; doi:10.1097/01.ede.0000082045.50073.66.
- Gauderman WJ, Avol E, Lurmann F, Kuenzli N, Gilliland F, Peters J, et al. 2005. Childhood asthma and exposure to traffic and nitrogen dioxide. Epidemiology; doi:10.1097/01.ede.0000181308.51440.75.
- Gehring U, Wijga AH, Brauer M, Fischer P, de Jongste JC, Kerkhof M, et al. 2010. Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. Am J Respir Crit Care Med; doi:1164/rccm.200906-0858oc.
- Gehring U, Wijga AH, Hoek G, Bellander T, Berdel D, Brüske I, et al. 2015. Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: A population-based birth cohort study. Lancet Respir Med; doi:10.1016/S2213-2600(15)00426-9.Gordian ME, Haneuse S, Wakefield J. 2006. An investigation of the association between traffic exposure and the diagnosis of asthma in children. J Expo Sci Environ Epidemiol; doi:10.1038/sj.jea.7500436.
- Gruzieva O, Bergström A, Hulchiy O, Kull I, Lind T, Melén E, et al. 2013. Exposure to air pollution from traffic and childhood asthma until 12 years of age. Epidemiology; doi:10.1097/EDE.0b013e318276c1ea.
- Hansell AL, Rose N, Cowie CT, Belousova EG, Bakolis I, Ng K, et al. 2014. Weighted road density and allergic disease in children at high risk of developing asthma. PloS One; doi:10.1371/journal.pone.0098978.
- Hasunuma H, Sato T, Iwata T, Kohno Y, Nitta H, Odajima H, et al. 2016. Association between trafficrelated air pollution and asthma in preschool children in a national Japanese nested case-control study. BMJ Open; doi:10.1136/bmjopen-2015- 010410.
- Havet A, Zerimech F, Sanchez M, Siroux V, Le Moual N, Brunekreef B, et al. 2018. Outdoor air pollution, exhaled 8-isoprostane and current asthma in adults: The EGEA Study. Eur Resp J; doi:10.1183/13993003.02036-2017.
- Hazenkamp-von Arx ME, Schindler C, Ragettli MS, Künzli N, Braun-Fahrländer C, Liu LJ. 2011. Impacts of highway traffic exhaust in alpine valleys on the respiratory health in adults: A cross-sectional study. Environ Health; doi:10.1186/1476-069X-10-13.
- Hirsch T, Weiland SK, von Mutius E, Safeca AF, Gräfe H, Csaplovics E, et al. 1999. Inner city air pollution and respiratory health and atopy in children. Eur Respir J; doi:10.1034/j.1399-3003.1999.14c29.x.

- Huynh P, Salam MT, Morphew T, Kwong KY, Scott L. 2010. Residential proximity to freeways is associated with uncontrolled asthma in inner-city Hispanic children and adolescents. J Allergy; doi:10.1155/2010/157249.
- Hwang BF, Lee YL, Lin YC, Jaakkola JJ, Guo YL. 2005. Traffic related air pollution as a determinant of asthma among Taiwanese school children. Thorax; doi:10.1136/thx.2004.033977.
- Jacquemin B, Kauffmann F, Pin I, Le Moual N, Bousquet J, Gormand F, et al. 2012. Air pollution and asthma control in the Epidemiological study on the Genetics and Environment of Asthma. J Epidemiol Community Health; doi:10.1136/jech.2010.130229.
- Jacquemin B, Siroux V, Sanchez M, Carsin AE, Schikowski T, Adam M, et al. 2015. Ambient air pollution and adult asthma incidence in six European cohorts (ESCAPE). Environ Health Perspect; doi:10.1289/ehp.1408206.
- Jacquemin B, Sunyer J, Forsberg B, Aguilera I, Bouso L, Briggs D, et al. 2009a. Association between modelled traffic-related air pollution and asthma score in the ECRHS. Eur Respir J; doi:10.1183/09031936.00138208.
- Jacquemin B, Sunyer J, Forsberg B, Aguilera I, Briggs D, García-Esteban R, et al. 2009b. Home outdoor NO₂ and new onset of self-reported asthma in adults. Epidemiology; doi:10.1097/EDE.0b013e3181886e76.
- Janssen NA, Brunekreef B, van Vliet P, Aarts F, Meliefste K, Harssema H, et al. 2003. The relationship between air pollution from heavy traffic and allergic sensitization, bronchial hyperresponsiveness, and respiratory symptoms in Dutch schoolchildren. Environ Health Perspect; doi:10.1289/ehp.6243.
- Jerrett M, Shankardass K, Berhane K, Gauderman WJ, Künzli N, Avol E, et al. 2008. Traffic-related air pollution and asthma onset in children: a prospective cohort study with individual exposure measurement. Environ Health Perspect; doi:10.1289/ehp.10968.
- Jung DY, Leem JH, Kim HC, Kim JH, Hwang SS, Lee JY, et al. 2015. Effect of traffic-related air pollution on allergic disease: Results of the children's health and environmental research. Allergy Asthma Immunol Res; doi:10.4168/aair.2015.7.4.359.
- Karakatsani A, Andreadaki S, Katsouyanni K, Dimitroulis I, Trichopoulos D, Benetou V, et al. 2003. Air pollution in relation to manifestations of chronic pulmonary disease: a nested case-control study in Athens, Greece. Eur J Epidemiol; doi:10.1023/A:1022576028603.
- Karr CJ, Demers PA, Koehoorn MW, Lencar CC, Tamburic L, Brauer M. 2009. Influence of ambient air pollutant sources on clinical encounters for infant bronchiolitis. Am J Respir Crit Care Med; doi:10.1164/rccm.200901-0117OC.

- Kennedy CM, Pennington AF, Darrow LA, Klein M, Zhai X, Bates JT, et al. 2018. Associations of mobile source air pollution during the first year of life with childhood pneumonia, bronchiolitis, and otitis media. Environ Epidemiol; doi:10.1097/EE9.000000000000007.
- Kim JJ, Huen K, Adams S, Smorodinsky S, Hoats A, Malig B, et al. 2008. Residential traffic and children's respiratory health. Environ Health Perspect; doi:10.1289/ehp.10735.
- Kim JJ, Smorodinsky S, Lipsett M, Singer BC, Hodgson AT, Ostro B. 2004. Traffic-related air pollution near busy roads: The East Bay Children's Respiratory Health Study. Am J Respir Crit Care Med; doi:10.1164/rccm.200403-281OC.
- Knibbs LD, Cortés de Waterman AM, Toelle BG, Guo Y, Denison L, Jalaludin B, et al. 2018. The Australian Child Health and Air Pollution Study (ACHAPS): A national population-based cross-sectional study of long-term exposure to outdoor air pollution, asthma, and lung function. Environ Int; doi:10.1016/j.envint.2018.08.025.
- Krämer U, Koch T, Ranft U, Ring J, Behrendt H. 2000. Traffic-related air pollution is associated with atopy in children living in urban areas. Epidemiology; doi:10.1097/00001648-200001000-00014.
- Krämer U, Sugiri D, Ranft U, Krutmann J, von Berg A, Berdel D, et al. 2009. Eczema, respiratory allergies, and traffic-related air pollution in birth cohorts from small-town areas. J Dermatol Sci; doi:10.1016/j.jdermsci.2009.07.014.Künzli N, Bridevaux PO, Liu LJ, Garcia-Esteban R, Schindler C, Gerbase MW, et al. 2009. Traffic-related air pollution correlates with adult-onset asthma among never-smokers. Thorax; doi:10.1136/thx.2008.110031.
- Kuo HW, Lai JS, Lee MC, Tai RC, Lee MC. 2002. Respiratory effects of air pollutants among asthmatics in central Taiwan. Arch Environ Health; doi:10.1080/00039890209602936.
- Lai VWY, Bowatte G, Knibbs LD, Rangamuwa K, Young A, Dharmage S, et al. 2018. Residential NO exposure is associated with urgent healthcare use in a thunderstorm asthma cohort. Asia Pac Allergy; doi:10.5415/apallergy.2018.8.e33.
- Lamichhane DK, Leem JH, Kim HC. 2018. Associations between ambient particulate matter and nitrogen dioxide and chronic obstructive pulmonary diseases in adults and effect modification by demographic and lifestyle factors. Int J Environ Res Public Health; doi:10.3390/ijerph15020363.
- Lavigne E, Belair MA, Duque DR, Do MT, Stieb DM, P. Hystad, et al. 2018. Effect modification of perinatal exposure to air pollution and childhood asthma incidence. Eur Respir J; doi:10.1183/13993003.01884-2017.
- Lavigne E, Donelle J, Hatzopoulou M, Van Ryswyk K, van Donkelaar A, Martin RV, et al. 2019. Spatiotemporal variations in ambient ultrafine particles and the incidence of childhood asthma. Am J Respir Crit Care Med; doi:10.1164/rccm.201810-1976OC.

- Lazarevic N, Dobson AJ, Barnett AG, Knibbs LD. 2015. Long-term ambient air pollution exposure and selfreported morbidity in the Australian Longitudinal Study on Women's Health: A cross-sectional study. BMJ Open; doi:10.1136/bmjopen-2015-008714.
- Lee A, Leon Hsu HH, Mathilda Chiu YH, Bose S, Rosa MJ, Kloog I, et al. 2018a. Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex. J Allergy Clin Immunol; doi:10.1016/j.jaci.2017.07.017.
- Lee JY, Leem JH, Kim HC, Lamichhane DK, Hwang SS, Kim JH, et al. 2018b. Effects of traffic-related air pollution on susceptibility to infantile bronchiolitis and childhood asthma: A cohort study in Korea. J Asthma; doi:10.1080/02770903.2017.1313270
- Lewis SA, Antoniak M, Venn AJ, Davies L, Goodwin A, Salfield N, et al. 2005. Secondhand smoke, dietary fruit intake, road traffic exposures, and the prevalence of asthma: A cross-sectional study in young children. Am J Epidemiol; doi:10.1093/aje/kwi059.
- Li S, Batterman S, Wasilevich E, Elasaad H, Wahl R, Mukherjee B. 2011. Asthma exacerbation and proximity of residence to major roads: a population-based matched case-control study among the pediatric Medicaid population in Detroit, Michigan. Environ Health; doi:10.1186/1476-069X-10-34.
- Lin S, Munsie JP, Hwang SA, Fitzgerald E, Cayo MR. 2002. Childhood asthma hospitalization and residential exposure to state route traffic. Environ Res; doi:10.1006/enrs.2001.4303.
- Lindgren A, Stroh E, Montnémery P, Nihlén U, Jakobsson K, Axmon A. 2009a. Traffic-related air pollution associated with prevalence of asthma and COPD/chronic bronchitis. A cross-sectional study in Southern Sweden. Int J Health Geogr; doi:10.1186/1476-072X-8-2.
- Lindgren A, Stroh E, Nihlén U, Montnémery P, Axmon A, Jakobsson K. 2009b. Traffic exposure associated with allergic asthma and allergic rhinitis in adults. A cross-sectional study in southern Sweden. Int J Health Geogr; doi:10.1186/1476-072X-8-25.
- Lindgren A, Björk J, Stroh E, Jakobsson K. 2010. Adult asthma and traffic exposure at residential address, workplace address, and self-reported daily time outdoor in traffic: A two-stage case-control study. BMC Public Health; doi:10.1186/1471-2458-10-716.
- Lindgren A, Stroh E, Björk J, Jakobsson K. 2013. Asthma incidence in children growing up close to traffic: A registry-based birth cohort. Environ Health; doi:10.1186/1476-069X-12-91.
- Lindgren P, Johnson J, Williams A, Yawn B, Pratt GC. 2016. Asthma exacerbations and traffic: examining relationships using link-based traffic metrics and a comprehensive patient database. Environ Health; doi:10.1186/s12940-016-0184-2.

- Liu F, Zhao Y, Liu YQ, Liu Y, Sun J, Huang MM, et al. 2014. Asthma and asthma related symptoms in 23,326 Chinese children in relation to indoor and outdoor environmental factors: The Seven Northeastern Cities (SNEC) Study. Sci Total Environ; doi:10.1016/j.scitotenv.2014.07.096.
- Liu MM, Wang D, Zhao Y, Liu YQ, Huang MM, Liu Y, et al. 2013. Effects of outdoor and indoor air pollution on respiratory health of Chinese children from 50 kindergartens. J Epidemiol; doi:10.2188/jea.JE20120175.
- Liu W, Huang C, Hu Y, Fu Q, Zou Z, Sun C, et al. 2016. Associations of gestational and early life exposures to ambient air pollution with childhood respiratory diseases in Shanghai, China: A retrospective cohort study. Environ Int; doi:10.1016/j.envint.2016.04.019.
- Livingstone AE, Shaddick G, Grundy C, Elliott P. 1996. Do people living near inner city main roads have more asthma needing treatment? Case control study. BMJ; doi:10.1136/bmj.312.7032.676.
- Lovinsky-Desir S, Acosta LM, Rundle AG, Miller RL, Goldstein IF, Jacobson JS, et al. 2019. Air pollution, urgent asthma medical visits and the modifying effect of neighborhood asthma prevalence. Pediatr Res; doi:10.1038/s41390-018-0189-3.
- MacIntyre EA, Gehring U, Mölter A, Fuertes E, Klümper C, Krämer U, et al. 2014. Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE Project. Environ Health Perspect; doi:10.1289/ehp.1306755.
- Madsen C, Haberg SE, Magnus MC, Aamodt G, Stigum H, London SJ, et al. 2017. Pregnancy exposure to air pollution and early childhood respiratory health in the Norwegian Mother and Child Cohort Study (MoBa). BMJ Open; doi:10.1136/ bmjopen-2016-015796.
- McConnell R, Berhane K, Yao L, Jerrett M, Lurmann F, Gilliland F, et al. 2006. Traffic, susceptibility, and childhood asthma. Environ Health Perspect; doi:10.1289/ehp.8594.
- McConnell R, Islam T, Shankardass K, Jerrett M, Lurmann F, Gilliland F, et al. 2010. Childhood incident asthma and traffic-related air pollution at home and school. Environ Health Perspect; doi:10.1289/ehp.0901232.
- Meng YY, Wilhelm M, Rull RP, English P, Nathan S, Ritz B. 2008. Are frequent asthma symptoms among low-income individuals related to heavy traffic near homes, vulnerabilities, or both? Ann Epidemiol; doi:10.1016/j.annepidem.2008.01.006.
- Meng YY, Wilhelm M, Rull RP, English P, Ritz B. 2007. Traffic and outdoor air pollution levels near residences and poorly controlled asthma in adults. Ann Allergy Asthma Immunol; doi:10.1016/S1081-1206(10)60760-0.

- Middleton N, Yiallouros P, Nicolaou N, Kleanthous S, Pipis S, Zeniou M, et al. 2010. Residential exposure to motor vehicle emissions and the risk of wheezing among 7-8 year-old schoolchildren: A citywide cross-sectional study in Nicosia, Cyprus. Environ Health; doi:10.1186/1476-069X-9-28.
- Miyake Y, Tanaka K, Fujiwara H, Mitani Y, Ikemi H, Sasaki S, et al. 2010. Residential proximity to main roads during pregnancy and the risk of allergic disorders in Japanese infants: The Osaka Maternal and Child Health Study. Pediatr Allergy Immunol; doi:10.1111/j.1399-3038.2009.00951.x.
- Miyake Y, Yura A, Iki M. 2002. Relationship between distance from major roads and adolescent health in Japan. J Epidemiol; doi:10.2188/jea.12.418.
- Modig L, Järvholm B, Rönnmark E, Nyström L, Lundbäck B, Andersson C, et al. 2006. Vehicle exhaust exposure in an incident case-control study of adult asthma. Eur Respir J; doi:10.1183/09031936.06.00071505.
- Modig L, Torén K, Janson C, Jarvholm B, Forsberg B. 2009. Vehicle exhaust outside the home and onset of asthma among adults. Eur Respir J; doi:10.1183/09031936.00101108.
- Mölter A, Agius R, de Vocht F, Lindley S, Gerrard W, Custovic A, et al. 2014. Effects of long-term exposure to PM₁₀ and NO₂ on asthma and wheeze in a prospective birth cohort. J Epidemiol Community Health; doi:10.1136/jech- 2013-202681.
- Mölter A, Simpson A, Berdel D, Brunekreef B, Custovic A, Cyrys J, et al. 2015. A multicentre study of air pollution exposure and childhood asthma prevalence: The ESCAPE project. Eur Respir J; doi:10.1183/09031936.00083614.
- Morgenstern V, Zutavern A, Cyrys J, Brockow I, Gehring U, Koletzko S, et al. 2007. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup Environ Med; doi:10.1136/oem.2006.028241.
- Morgenstern V, Zutavern A, Cyrys J, Brockow I, Koletzko S, Krämer U, et al. 2008. Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med; doi:10.1164/rccm.200701-036OC.
- Morris SE, Sale RC, Wakefield JC, Falconer S, Elliott P, Boucher BJ. 2000. Hospital admissions for asthma and chronic obstructive airways disease in east London hospitals and proximity of residence to main roads. J Epidemiol Community Health; doi:10.1136/jech.54.1.75.
- Neupane B, Jerrett M, Burnett RT, Marrie T, Arain A, Loeb M. 2010. Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults. Am J Respir Crit Care Med; doi:10.1164/rccm.200901-01600C.

- Newman NC, Ryan PH, Huang B, Beck AF, Sauers HS, Kahn RS. 2014. Traffic-related air pollution and asthma hospital readmission in children: longitudinal cohort study. J Pediatr; doi:10.1016/j.jpeds.2014.02.017.
- Nicolai T, Carr D, Weiland SK, Duhme H, von Ehrenstein O, Wagner C, et al. 2003. Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children. Eur Respir J; doi:10.1006/enrs.2002.4393.
- Nitta H, Sato T, Nakai S, Maeda K, Aoki S, Ono M. 1993. Respiratory health associated with exposure to automobile exhaust. I. Results of cross-sectional studies in 1979, 1982, and 1983. Arch Environ Health; doi:10.1080/00039896.1993.9938393.
- Nordling E, Berglind N, Melén E, Emenius G, Hallberg J, Nyberg F, et al. 2008. Traffic-related air pollution and childhood respiratory symptoms, function and allergies. Epidemiology; doi:10.1097/EDE.0b013e31816a1ce3.
- Nuvolone D, Della Maggiore R, Maio S, Fresco R, Baldacci S, Carrozzi L, et al. 2011. Geographical information system and environmental epidemiology: A cross-sectional spatial analysis of the effects of traffic-related air pollution on population respiratory health. Environ Health; doi:10.1186/1476-069X-10-12.
- Oftedal B, Nystad W, Brunekreef B, Nafstad P. 2009. Long-term traffic-related exposures and asthma onset in schoolchildren in Oslo, Norway. Environ Health Perspect; doi:10.1289/ehp.11491.
- Oosterlee A, Drijver M, Lebret E, Brunekreef B. 1996. Chronic respiratory symptoms in children and adults living along streets with high traffic density. Occup Environ Med; doi:10.1136/oem.53.4.241.
- Orru H, Jõgi R, Kaasik M, Forsberg B. 2009. Chronic traffic-induced PM exposure and self-reported respiratory and cardiovascular health in the RHINE Tartu Cohort. Int J Env Res Pub Health; doi:10.3390/ijerph6112740.
- Oudin A, Bråbäck L. 2017. Air pollution and dispensed medications for asthma, and possible effect modifiers related to mental health and socio-economy: A longitudinal cohort study of Swedish children and adolescents. Int J Env Res Public Health; doi:10.3390/ijerph14111392.
- Pan G, Zhang S, Feng Y, Takahashi K, Kagawa J, Yu L, et al. 2010. Air pollution and children's respiratory symptoms in six cities of Northern China. Respir Med; doi:10.1016/j.rmed.2010.07.018.
- Patel MM, Quinn JW, Jung KH, Hoepner L, Diaz D, Perzanowski M, et al. 2011. Traffic density and stationary sources of air pollution associated with wheeze, asthma, and immunoglobulin E from birth to age 5 years among New York City children. Environ Res ; doi:10.1016/j.envres.2011.08.004.

- Pedersen M, Siroux V, Pin I, Charles MA, Forhan A, Hulin A, et al. 2013. Does consideration of larger study areas yield more accurate estimates of air pollution health effects? An illustration of the bias-variance trade-off in air pollution epidemiology. Environ Int; doi:10.1016/j.envint.2013.07.005.
- Pénard-Morand C, Raherison C, Charpin D, Kopferschmitt C, Lavaud F, Caillaud D, et al. 2010. Long-term exposure to close-proximity air pollution and asthma and allergies in urban children. Eur Respir J; doi:10.1183/09031936.00116109.
- Pennington AF, Strickland MJ, Klein M, Zhai X, Bates JT, Drews-Botsch C, et al. 2018. exposure to mobile source air pollution in early-life and childhood asthma incidence: The Kaiser Air Pollution and Pediatric Asthma Study. Epidemiology; doi:10.1097/EDE.00000000000754.
- Pereira G, De Vos AJ, Cook A. 2009. Residential traffic exposure and children's emergency department presentation for asthma: A spatial study. Int J Health Geogr; doi:10.1186/1476-072X-8-63.
- Pershagen G, Rylander E, Norberg S, Eriksson M, Nordvall SL. 1995. Air pollution involving nitrogen dioxide exposure and wheezing bronchitis in children. Int J Epidemiol; doi:10.1093/ije/24.6.1147.
- Pierse N, Rushton L, Harris RS, Kuehni CE, Silverman M, Grigg J. 2006. Locally generated particulate pollution and respiratory symptoms in young children. Thorax; doi:10.1136/thx.2004.036418.
- Pikhart H, Bobak M, Kriz B, Danova J, Celko MA, Prikazsky V, et al. 2000. Outdoor air concentrations of nitrogen dioxide and sulfur dioxide and prevalence of wheezing in school children. Epidemiology; doi:10.1097/00001648-200003000-00012.
- Pikhart H, Príkazský V, Bobák M, Kríz B, Celko M, Danová J, et al. 1997. Association between ambient air concentrations of nitrogen dioxide and respiratory symptoms in children in Prague, Czech Republic. Preliminary results from the Czech part of the SAVIAH Study. Small Area Variation in Air Pollution and Health. Cent Eur J Public Health 5:82–85.
- Pindus M, Orru H, Maasikmets M, Kaasik M, Jõgi R. 2016. Association Between Health Symptoms and Particulate Matter from Traffic and Residential Heating – Results from RHINE III in Tartu. Open Respir Med J; doi:10.2174/1874306401610010058.
- Pujades-Rodríguez M, Lewis S, McKeever T, Britton J, Venn A. 2009a. Effect of living close to a main road on asthma, allergy, lung function and chronic obstructive pulmonary disease. Occup Environ Med; doi:10.1136/oem.2008.043885.
- Pujades-Rodríguez M, McKeever T, Lewis S, Whyatt D, Britton J, Venn A. 2009b. Effect of traffic pollution on respiratory and allergic disease in adults: Cross-sectional and longitudinal analyses. BMC Pulm Med; doi:10.1186/1471-2466-9-42.

- Puklová V, Žejglicová K, Kratěnová J, Brabec M, Malý M. 2019. Childhood respiratory allergies and symptoms in highly polluted area of Central Europe. Int J Environ Health Res; doi:10.1080/09603123.2018.1514458.
- Ranzi A, Porta D, Badaloni C, Cesaroni G, Lauriola P, Davoli M, et al. 2014. Exposure to air pollution and respiratory symptoms during the first 7 years of life in an Italian birth cohort. Occup Environ Med; doi:10.1136/oemed-2013-101867.
- Rice MB, Rifas-Shiman SL, Oken E, Gillman MW, Ljungman PL, Litonjua AA, et al. 2015. Exposure to traffic and early life respiratory infection: A cohort study. Pediatr Pulmonol; doi:10.1002/ppul.23029.
- Rosenlund M, Forastiere F, Porta D, De Sario M, Badaloni C, Perucci CA. 2009. Traffic-related air pollution in relation to respiratory symptoms, allergic sensitisation and lung function in schoolchildren. Thorax; doi:10.1136/thx.2007.094953.
- Ryan PH, Bernstein DI, Lockey J, Reponen T, Levin L, Grinshpun S, et al. 2009. Exposure to traffic-related particles and endotoxin during infancy is associated with wheezing at age 3 years. Am J Respir Crit Care Med; doi:10.1164/rccm.200808-1307OC.
- Ryan PH, LeMasters G, Biagini J, Bernstein D, Grinshpun SA, Shukla R, et al. 2005. Is it traffic type, volume, or distance? Wheezing in infants living near truck and bus traffic. J Allergy Clin Immunol; doi:10.1016/j.jaci.2005.05.014.
- Sahsuvaroglu T, Jerrett M, Sears MR, McConnell R, Finkelstein N, Arain A, et al. 2009. Spatial analysis of air pollution and childhood asthma in Hamilton, Canada: Comparing exposure methods in sensitive subgroups. Environ Health; doi:10.1186/1476-069X-8-14.
- Salimi F, Morgan G, Rolfe M, Samoli E, Cowie CT, Hanigan I, et al. 2018. Long-term exposure to low concentrations of air pollutants and hospitalisation for respiratory diseases: A prospective cohort study in Australia. Environ Int; doi:10.1016/j.envint.2018.08.050.
- Sbihi H, Tamburic L, Koehoorn M, Brauer M. 2016. Perinatal air pollution exposure and development of asthma from birth to age 10 years. Eur Respir J; doi:10.1183/13993003.00746-2015.
- Schikowski T, Adam M, Marcon A, Cai Y, Vierkötter A, Carsin AE, et al. 2014. Association of ambient air pollution with the prevalence and incidence of COPD. Eur Respir J; doi:10.1183/09031936.00132213.
- Schikowski T, Sugiri D, Ranft U, Gehring U, Heinrich J, Wichmann HE, et al. 2005. Long-term air pollution exposure and living close to busy roads are associated with COPD in women. Respir Res; doi:10.1186/1465-9921-6-152.

- Schindler C, Keidel D, Gerbase MW, Zemp E, Bettschart R, Brändli O, et al. 2009. Improvements in PM₁₀ exposure and reduced rates of respiratory symptoms in a cohort of Swiss adults (SAPALDIA). Am J Respir Crit Care Med; doi:10.1164/rccm.200803-3880C.
- Shima M, Nitta Y, Adachi M. 2003. Traffic-related air pollution and respiratory symptoms in children living along trunk roads in Chiba Prefecture, Japan. J Epidemiol; doi:10.2188/jea.13.108.
- Skrzypek M, Zejda JE, Kowalska M, Czech EM. 2013. Effect of residential proximity to traffic on respiratory disorders in school children in upper Silesian Industrial Zone, Poland. Int J Occup Med Environ Health; doi:10.2478/S13382-013-0078-2.
- Sucharew H, Ryan PH, Bernstein D, Succop P, Khurana Hershey GK, Lockey J, et al. 2010. Exposure to traffic exhaust and night cough during early childhood: The CCAAPS birth cohort. Pediatr Allergy Immunol; doi:10.1111/j.1399-3038.2009.00952.x.
- Svendsen ER, Gonzales M, Mukerjee S, Smith L, Ross M, Walsh D, et al. 2012. GIS-modeled indicators of traffic-related air pollutants and adverse pulmonary health among children in El Paso, Texas. Am J Epidemiol; doi:10.1093/aje/kws274.
- Tétreault LF, Doucet M, Gamache P, Fournier M, Brand A, Kosatsky T, et al. 2016. Childhood exposure to ambient air pollutants and the onset of asthma: An administrative cohort study in Québec. Environ Health Perspect; doi:10.1289/ehp.1509838.
- Urman R, Eckel S, Deng H, Berhane K, Avol E, Lurmann F, et al. 2018. Risk effects of near-roadway pollutants and asthma status on bronchitic symptoms in children. Environ Epidemiol; doi:10.1097/EE9.00000000000012.
- van Vliet P, Knape M, de Hartog J, Janssen N, Harssema H, Brunekreef B. 1997. Motor vehicle exhaust and chronic respiratory symptoms in children living near freeways. Environ Res; doi:10.1006/enrs.1997.3757.
- Venn A, Lewis S, Cooper M, Hubbard R, Hill I, Boddy R, et al. 2000. Local road traffic activity and the prevalence, severity, and persistence of wheeze in school children: Combined cross sectional and longitudinal study. Occup Environ Med; doi:10.1136/oem.57.3.152.
- Venn A, Yemaneberhan H, Lewis S, Parry E, Britton J. 2005. Proximity of the home to roads and the risk of wheeze in an Ethiopian population. Occup Environ Med; doi:10.1136/oem.2004.017228.
- Venn AJ, Lewis SA, Cooper M, Hubbard R, Britton J. 2001. Living near a main road and the risk of wheezing illness in children. Am J Respir Crit Care Med; doi:10.1164/rccm2106126.
- Wang TN, Ko YC, Chao YY, Huang CC, Lin RS. 1999. Association between indoor and outdoor air pollution and adolescent asthma from 1995 to 1996 in Taiwan. Environ Res; doi:10.1006/enrs.1999.3985.

- Weaver GM, Gauderman WJ. 2018. Traffic-related pollutants: exposure and health effects among Hispanic children. Am J Epidemiol; doi:10.1093/aje/kwx223.
- Weichenthal S, Bai L, Hatzopoulou M, Van Ryswyk K, Kwong JC, Jerrett M, et al. 2017. Long-term exposure to ambient ultrafine particles and respiratory disease incidence in Toronto, Canada: A cohort study. Environ Health; doi:10.1186/s12940-017-0276-7.
- Wilhelm M, Qian L, Ritz B. 2009. Outdoor air pollution, family and neighborhood environment, and asthma in LA FANS children. Health Place; doi:10.1016/j.healthplace.2008.02.002.
- Wilkinson P, Elliott P, Grundy C, Shaddick G, Thakrar B, Walls P, et al. 1999. Case-control study of hospital admission with asthma in children aged 5-14 years: Relation with road traffic in Northwest London. Thorax; doi:10.1136/thx.54.12.1070.
- Wjst M, Reitmeir P, Dold S, Wulff A, Nicolai T, von Loeffelholz-Colberg EF, et al. 1993. Road traffic and adverse effects on respiratory health in children. BMJ; doi:10.1136/bmj.307.6904.596.
- Wood HE, Marlin N, Mudway IS, Bremner SA, Cross L, Dundas I, et al. 2015. Effects of air pollution and the introduction of the London low emission zone on the prevalence of respiratory and allergic symptoms in schoolchildren in East London: A sequential cross-sectional study. PLoS One; doi:10.1371/journal.pone.0109121.
- Yang CY, Yu ST, Chang CC. 2002. Respiratory symptoms in primary schoolchildren living near a freeway in Taiwan. J Toxicol Environ Health; doi:10.1080/00984100290071036.
- Yi SJ, Shon C, Min KD, Kim HC, Leem JH, Kwon HJ, et al. 2017. Association between exposure to trafficrelated air pollution and prevalence of allergic diseases in children, Seoul, Korea. BioMed Res Int; doi:10.1155/2017/4216107.
- Zhang JJ, Hu W, Wei F, Wu G, Korn LR, Chapman RS. 2002. Children's respiratory morbidity prevalence in relation to air pollution in four Chinese cities. Environ Health Perspect; doi:10.1289/ehp.02110961.
- Zhou C, Baïz N, Banerjee S, Charpin DA, Caillaud D, de Blay F, et al. 2013. The relationships between ambient air pollutants and childhood asthma and eczema are modified by emotion and conduct problems. Ann Epidemiol; doi:10.1016/j.annepidem.2013.09.004.
- Zmirou D, Gauvin S, Pin I, Momas I, Sahraoui F, Just J, et al. 2004. Traffic related air pollution and incidence of childhood asthma: Results of the Vesta case-control study. J Epidemiol Community Health; doi:10.1136/jech.58.1.18.