# HE

# ADDITIONAL MATERIALS AVAILABLE ON THE HEI WEBSITE

**Special Report 23** 

# Systematic Review and Meta-analysis of Selected Health Effects of Long-

Term Exposure to Traffic-Related Air Pollution

HEI Panel on the Health Effects of Long-Term Exposure to Traffic-Related Air

# Pollution

# Chapter 9: Traffic-Related Air Pollution and Respiratory Outcomes Additional Materials 9.1 to 9.7

These Additional Materials were not formatted or edited by HEI. This document was part of the HEI Panel's review process.

Correspondence concerning the Special Report may be addressed to Dr. Hanna Boogaard at Health Effects Institute, 75 Federal Street, Suite 1400, Boston, Massachusetts, 02110; email: *jboogaard@healtheffects.org*.

Although this document was produced with partial funding by the United States Environmental Protection Agency under Assistance Award CR-83467701 to the Health Effects Institute, it has not been subjected to the Agency's peer and administrative review and therefore may not necessarily reflect the views of the Agency, and no official endorsement by it should be inferred. The contents of this document also have not been reviewed by private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views or policies of these parties, and no endorsement by them should be inferred.

© 2022 Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110

# **Chapter 9: Traffic-Related Air Pollution and Respiratory Outcomes**

# Additional Materials: All Analyses

- 9.1 Asthma Onset
- 9.2 Prevalence of Asthma Ever
- 9.3 Prevalence of Active Asthma
- 9.4 Acute Lower Respiratory Infections (ALRI)
- 9.5 Incidence of Chronic Obstructive Pulmonary Disease (COPD)
- 9.6 Prevalence of Active Wheeze
- 9.7 Prevalence of Wheeze Ever

**Chapter 9 Additional Materials** 

# 9.1 Asthma onset





Footnote: The following increments were used:  $10 \mu g/m^3$  for NO<sub>2</sub>,  $20 \mu g/m^3$  for NO<sub>x</sub>,  $1 \mu g/m^3$  for EC, and  $5 \mu g/m^3$  for PM<sub>2.5</sub>. Effect estimates cannot be directly compared across the different traffic–related pollutants because the selected increments do not necessarily represent the same contrast in exposure.

# NO<sub>2</sub> – Asthma onset - Adults

# Primary meta-analysis

# $NO_2$ - Incidence of asthma, Adults

| Study                                    | Study Name                     | Relative Risk                         | RR     | 95%-CI                       | Weight |
|------------------------------------------|--------------------------------|---------------------------------------|--------|------------------------------|--------|
| Modig, 2006                              | Lulea Adults' Asthma Incidence |                                       | - 1.00 | [0.37; 2.73]                 | 0.6%   |
| Jacquemin, 2009b                         | ECRHS                          | - <del></del>                         | + 1.43 | [1.02; 2.01]                 | 4.5%   |
| Modig, 2009                              | RHINE Sweden                   |                                       | ➡ 1.54 | [1.00; 2.37]                 | 2.9%   |
| Andersen, 2012                           | DDCH                           |                                       | 1.18   | [1.02; 1.37]                 | 16.3%  |
| Jacquemin, 2015                          | ESCAPE                         |                                       | 1.10   | [0.99; 1.22]                 | 25.0%  |
| Weichenthal, 2017                        | ONPHEC                         | +                                     | 1.04   | [1.02; 1.06]                 | 43.5%  |
| Salimi, 2018                             | 45 and Up Study                |                                       | 1.05   | [0.81; 1.36]                 | 7.3%   |
| Random effects model Prediction interval |                                | ÷.                                    | 1.10   | [1.01; 1.21]<br>[0.92; 1.32] | 100.0% |
| Heterogeneity: $I^2 = 42\%$ ,            | $\tau^2 = 0.0033, p = 0.11$    |                                       |        |                              |        |
|                                          | 0.6 (                          | 0.75 1 1.5                            | 2      |                              |        |
|                                          | R                              | elative Risk per 10 µg/m <sup>3</sup> |        |                              |        |

NO<sub>2</sub> – Asthma onset – Adults

Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low/moderate vs high

| Study                     | Study Name                        | Relative Risk |                     |      | RR          | 95%-CI       |
|---------------------------|-----------------------------------|---------------|---------------------|------|-------------|--------------|
| Low/Moderate              |                                   |               | Ĩ                   |      |             |              |
| Jacquemin, 2009b          | ECRHS                             |               |                     |      | + 1.43      | [1.02; 2.01] |
| Modig, 2009               | RHINE Sweden                      |               |                     |      | <b>1.54</b> | [1.00; 2.37] |
| Andersen, 2012            | DDCH                              |               |                     | -    | 1.18        | [1.02; 1.37] |
| Jacquemin, 2015           | ESCAPE                            |               |                     |      | 1.10        | [0.99; 1.22] |
| Weichenthal, 2017         | ONPHEC                            |               | •                   |      | 1.04        | [1.02; 1.06] |
| Salimi, 2018              | 45 and Up Study                   |               |                     |      | 1.05        | [0.81; 1.36] |
| Random effects mode       | el                                |               | $\sim$              |      | 1.11        | [0.99; 1.23] |
| Heterogeneity: $I^2 = 51$ | %, $\tau^2 = 0.0034$ , $p = 0.07$ |               |                     |      |             |              |
| High                      |                                   |               |                     |      |             |              |
| Modig, 2006               | Lulea Adults' Asthma Incidence 🗧  |               | - <b>B</b>          |      | → 1.00      | [0.37; 2.73] |
|                           |                                   |               |                     |      |             |              |
|                           |                                   |               |                     |      |             |              |
|                           | 0.6                               | 0.75          | 1                   | 1.5  | 2           |              |
|                           |                                   | Rela          | ative Risk per 10 µ | ig/m |             |              |

# NO<sub>2</sub> – Asthma onset – Adults

Sensitivity analysis - risk of bias missing data domain - low/moderate vs high

| Study                      | Study Name                         |          | Relative Risk           | RR             | 95%-CI       |
|----------------------------|------------------------------------|----------|-------------------------|----------------|--------------|
| Low/Moderate               |                                    |          | Ĩ                       |                |              |
| Modig, 2009                | RHINE Sweden                       |          |                         | • 1.54         | [1.00; 2.37] |
| Andersen, 2012             | DDCH                               |          |                         | 1.18           | [1.02; 1.37] |
| Jacquemin, 2015            | ESCAPE                             |          |                         | 1.10           | [0.99; 1.22] |
| Weichenthal, 2017          | ONPHEC                             |          | +                       | 1.04           | [1.02; 1.06] |
| Salimi, 2018               | 45 and Up Study                    | <u> </u> |                         | 1.05           | [0.81; 1.36] |
| Random effects mode        | el                                 |          | $\sim$                  | 1.08           | [0.98; 1.19] |
| Heterogeneity: $l^2 = 439$ | $\%, \tau^2 = 0.0020, \rho = 0.14$ |          |                         |                |              |
| High                       |                                    |          |                         |                |              |
| Modig, 2006                | Lulea Adults' Asthma Incidence 📼   |          |                         | ₱ 1.00         | [0.37; 2.73] |
| Jacquemin, 2009b           | ECRHS                              |          |                         | ▶ 1.43         | [1.02; 2.01] |
|                            | _                                  |          |                         |                |              |
|                            |                                    |          |                         |                |              |
|                            | 0.6                                | 0.75     | 1 1                     | .5 2           |              |
|                            |                                    | Re       | lative Risk per 10 µg/n | 1 <sup>°</sup> |              |

# NO<sub>2</sub> – Asthma onset – Adults Subgroup analysis – region

| Study                               | Study Name                             |    |             | Relative Ris        | k                 | RR          | 95%-CI       |
|-------------------------------------|----------------------------------------|----|-------------|---------------------|-------------------|-------------|--------------|
| North America                       |                                        |    |             | Ĩ.                  |                   |             |              |
| Weichenthal, 2017                   | ONPHEC                                 |    |             | +                   |                   | 1.04        | [1.02; 1.06] |
|                                     |                                        |    |             |                     |                   |             |              |
|                                     |                                        |    |             |                     |                   |             |              |
| Western Europe                      |                                        |    |             |                     |                   |             |              |
| Modig, 2006                         | Lulea Adults' Asthma Incidence         | •  |             | _                   |                   | <b>1.00</b> | [0.37; 2.73] |
| Jacquemin, 2009b                    | ECRHS                                  |    |             |                     |                   | • 1.43      | [1.02; 2.01] |
| Modig, 2009                         | RHINE Sweden                           |    |             |                     |                   | 1.54        | [1.00; 2.37] |
| Andersen, 2012                      | DDCH                                   |    |             |                     | _                 | 1.18        | [1.02; 1.37] |
| Jacquemin, 2015                     | ESCAPE                                 |    |             | - <del>10</del> - 1 |                   | 1.10        | [0.99; 1.22] |
| Random effects model                |                                        |    |             | $\sim$              | -                 | 1.17        | [1.02; 1.33] |
| Heterogeneity: $l^2 = 7\%$ , $\tau$ | <sup>2</sup> = 0.0018, <i>p</i> = 0.37 |    |             |                     |                   |             |              |
| Australia/New Zealand               |                                        |    |             |                     |                   |             |              |
| Salimi, 2018                        | 45 and Up Study                        |    | 1. <u>.</u> |                     |                   | 1.05        | [0.81; 1.36] |
|                                     |                                        |    |             | 1                   |                   |             |              |
|                                     |                                        |    | _           | 1                   |                   |             |              |
|                                     | 0                                      | .6 | 0.75        | 1                   | 1.5               | 2           |              |
|                                     |                                        |    | Relat       | tive Risk per 10    | µg/m <sup>3</sup> |             |              |

# NO<sub>2</sub> – Asthma onset – Adults Subgroup analysis – year of publication



# NO<sub>2</sub> – Asthma onset – Adults Subgroup analysis – traffic specificity



# NO<sub>2</sub> – Asthma onset – Adults Subgroup analysis – smoking adjustment

| Study                      | Study Name                       |   |              | Relative Ris    | sk                         | RR          | 95%-CI       |
|----------------------------|----------------------------------|---|--------------|-----------------|----------------------------|-------------|--------------|
| Yes                        |                                  |   |              | Ĩ               |                            |             |              |
| Modig, 2006                | Lulea Adults' Asthma Incidence 🖪 | • |              | _               |                            | + 1.00      | [0.37; 2.73] |
| Jacquemin, 2009b           | ECRHS                            |   |              |                 |                            | • 1.43      | [1.02; 2.01] |
| Modig, 2009                | RHINE Sweden                     |   |              |                 |                            | <b>1.54</b> | [1.00; 2.37] |
| Andersen, 2012             | DDCH                             |   |              |                 |                            | 1.18        | [1.02; 1.37] |
| Jacquemin, 2015            | ESCAPE                           |   |              | - 10 -          |                            | 1.10        | [0.99; 1.22] |
| Salimi, 2018               | 45 and Up Study                  |   | 0.           |                 |                            | 1.05        | [0.81; 1.36] |
| Random effects mode        | 1                                |   |              | $\sim$          | -                          | 1.14        | [1.04; 1.26] |
| Heterogeneity: $I^2 = 0\%$ | $, \tau^2 = 0, \rho = 0.45$      |   |              |                 |                            |             |              |
| No                         |                                  |   |              |                 |                            |             |              |
| Weichenthal, 2017          | ONPHEC                           |   |              | -               |                            | 1.04        | [1.02; 1.06] |
|                            | -<br>-                           |   |              |                 |                            |             |              |
|                            | 0.6                              | 6 | 0.75         | 1               | 1.5                        | 2           |              |
|                            | 0.0                              | 0 | 0.75<br>Rela | tive Risk per 1 | с.т<br>0 µg/m <sup>3</sup> | 2           |              |

# NO<sub>2</sub> – Asthma onset - Children

# Primary meta-analysis

# NO<sub>2</sub> - Incidence of asthma - Children (<18 years)

| Study                                   | Study Name                                | Exposure window                        | Relative Risk                          | RR     | 95%-CI       | Weight |
|-----------------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------|--------|--------------|--------|
| Clougherty et al. 2007                  | EBNHC                                     | Annual average for the year of diagnos | is 🕂 💷                                 | 1.28   | [0.96; 1.70] | 2.9%   |
| Jerrett et al. 2008                     | CHS                                       | Annual average                         |                                        | 1.24   | [1.06; 1.46] | 6.5%   |
| Krämer et al. 2009                      | GINI, LISA: Wesel                         | Annual average at birth                | <del></del>                            | 1.19   | [0.85; 1.67] | 2.2%   |
| Oftedal et al. 2009                     | Oslo Birth Cohort                         | Average first year                     |                                        | 0.93   | [0.86; 1.00] | 11.8%  |
| Gehring et al. 2010                     | PIAMA                                     | Annual average at birth                |                                        | 1.16   | [0.96: 1.40] | 5.4%   |
| Carlsten et al. 2011                    | Vancouver High Risk Asthma Infants        | Annual average at birth                |                                        | - 1.76 | 0.86: 3.571  | 0.6%   |
| Ranzi et al. 2014                       | GASPI                                     | Annual average at birth                |                                        | 1.07   | [0.76: 1.52] | 2.2%   |
| Gehring et al. 2015                     | ESCAPE                                    | Annual average at birth                | ÷ • •                                  | 1.13   | [1.02; 1.25] | 10.0%  |
| Sbihi et al. 2016                       | BC 99/02 Birth Cohort                     | Entire pregnancy                       |                                        | 0.95   | [0.89; 1.01] | 12.9%  |
| Tétreault et al. 2016                   | Quebec Birth Cohort                       | Annual average at birth                | +                                      | 1.04   | [1.02: 1.05] | 15.2%  |
| Lavigne et al. 2018                     | BORN Ontario                              | Entire pregnancy                       | ÷                                      | 1.05   | [1.04: 1.07] | 15.2%  |
| Lavigne et al. 2019                     | BORN Toronto                              | Entire pregnancy                       |                                        | 1.01   | [0.99; 1.03] | 15.0%  |
| Random effects mode                     | ł                                         |                                        | ÷                                      | 1.05   | [0.99; 1.12] | 100.0% |
| Prediction interval                     |                                           |                                        |                                        |        | [0.89; 1.25] |        |
| Heterogeneity: $I^2 = 73\%$ ,           | $\tau^2 = 0.0051, p < 0.01$               |                                        |                                        |        |              |        |
| - · · · · · · · · · · · · · · · · · · · | an an assessed a second the second second |                                        | 0.7 1 1.5                              | 2      |              |        |
|                                         |                                           |                                        | Relative Risk per 10 µg/m <sup>3</sup> |        |              |        |

**Chapter 9 Additional Materials** 

# NO<sub>2</sub> – Asthma onset – Children Funnel plot



Footnote: The vertical lines in the funnel plots represent the pooled fixed and random effect estimates. The vertical dashed line in the middle of the funnel shows the fixed effect estimate. As the Panel applied a random–effects model, the funnel plot also presents the random–effects estimate with the dotted line.

#### NO<sub>2</sub> – Asthma onset – Children

Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low/moderate vs high

| Study                         | Study Name                        | Relative Risk | RR        | 95%-CI       |
|-------------------------------|-----------------------------------|---------------|-----------|--------------|
| Low/Moderate                  |                                   |               |           |              |
| Clougherty et al. 2007        | EBNHC                             |               | 1.28      | [0.96; 1.70] |
| Jerrett et al. 2008           | CHS                               |               | 1.24      | [1.06; 1.46] |
| Krämer et al. 2009            | GINI, LISA: Wesel                 |               | 1.19      | [0.85; 1.67] |
| Oftedal et al. 2009           | Oslo Birth Cohort                 |               | 0.93      | [0.86; 1.00] |
| Gehring et al. 2010           | PIAMA                             |               | 1.16      | [0.96; 1.40] |
| Carlsten et al. 2011          | Vancouver High Risk Asthma Infant | is            | ···· 1.76 | [0.86; 3.57] |
| Ranzi et al. 2014             | GASPII                            |               | 1.07      | [0.76; 1.52] |
| Gehring et al. 2015           | ESCAPE                            |               | 1.13      | [1.02; 1.25] |
| Tétreault et al. 2016         | Quebec Birth Cohort               | -             | 1.04      | [1.02; 1.05] |
| Lavigne et al. 2018           | BORN Ontario                      | -             | 1.05      | [1.04; 1.07] |
| Lavigne et al. 2019           | BORN Toronto                      | ÷             | 1.01      | [0.99; 1.03] |
| Random effects model          |                                   | $\diamond$    | 1.07      | [1.00; 1.14] |
| Heterogeneity: $l^2 = 69\%$ , | $\tau^2 = 0.0044, p < 0.01$       |               |           |              |
| High                          |                                   |               |           |              |
| Sbihi et al. 2016             | BC 99/02 Birth Cohort             |               | 0.95      | [0.89; 1.01] |
|                               |                                   |               |           |              |
|                               |                                   |               |           |              |
|                               |                                   | 0.7 1 1.5     | 2         |              |

Relative Risk per 10 µg/m<sup>3</sup>

# NO<sub>2</sub> – Asthma onset – Children

Sensitivity analysis - risk of bias missing data domain - low/moderate vs high

| Study                         | Study Name                         | Relative Risk                          | RR   | 95%-CI       |
|-------------------------------|------------------------------------|----------------------------------------|------|--------------|
| Low/Moderate                  |                                    | Ĩ.                                     |      |              |
| Clougherty et al. 2007        | EBNHC                              |                                        | 1.28 | [0.96; 1.70] |
| Jerrett et al. 2008           | CHS                                |                                        | 1.24 | [1.06; 1.46] |
| Krämer et al. 2009            | GINI, LISA: Wesel                  |                                        | 1.19 | [0.85; 1.67] |
| Oftedal et al. 2009           | Oslo Birth Cohort                  |                                        | 0.93 | [0.86; 1.00] |
| Gehring et al. 2010           | PIAMA                              |                                        | 1.16 | [0.96; 1.40] |
| Carlsten et al. 2011          | Vancouver High Risk Asthma Infants |                                        | 1.76 | [0.86; 3.57] |
| Ranzi et al. 2014             | GASPII                             |                                        | 1.07 | [0.76; 1.52] |
| Gehring et al. 2015           | ESCAPE                             |                                        | 1.13 | [1.02; 1.25] |
| Sbihi et al. 2016             | BC 99/02 Birth Cohort              |                                        | 0.95 | [0.89; 1.01] |
| Tétreault et al. 2016         | Quebec Birth Cohort                | -                                      | 1.04 | [1.02; 1.05] |
| Lavigne et al. 2019           | BORN Toronto                       | ÷                                      | 1.01 | [0.99; 1.03] |
| Random effects model          |                                    |                                        | 1.06 | [0.98; 1.14] |
| Heterogeneity: $I^2 = 70\%$ , | $\tau^2 = 0.0071, p < 0.01$        |                                        |      |              |
| High                          |                                    |                                        |      |              |
| Lavigne et al. 2018           | BORN Ontario                       | -                                      | 1.05 | [1.04; 1.07] |
|                               |                                    |                                        |      |              |
|                               |                                    |                                        |      |              |
|                               |                                    | 0.7 1 1.5                              | 2    |              |
|                               |                                    | Relative Risk per 10 µg/m <sup>3</sup> |      |              |

# NO<sub>2</sub> – Asthma onset – Children Subgroup analysis – region

| Study                               | Study Name                         |      | Relative Ris        | k      | RR     | 95%-CI       |
|-------------------------------------|------------------------------------|------|---------------------|--------|--------|--------------|
| North America                       |                                    |      | l l                 |        |        |              |
| Clougherty et al. 2007              | EBNHC                              |      | -                   | -      | 1.28   | [0.96; 1.70] |
| Jerrett et al. 2008                 | CHS                                |      |                     |        | 1.24   | [1.06; 1.46] |
| Carlsten et al. 2011                | Vancouver High Risk Asthma Infants |      |                     |        | • 1.76 | [0.86; 3.57] |
| Tétreault et al. 2016               | Quebec Birth Cohort                |      | +                   |        | 1.04   | [1.02; 1.05] |
| Sbihi et al. 2016                   | BC 99/02 Birth Cohort              |      | -                   |        | 0.95   | [0.89; 1.01] |
| Lavigne et al. 2018                 | BORN Ontario                       |      | Ξ.                  |        | 1.05   | [1.04; 1.07] |
| Lavigne et al. 2019                 | BORN Toronto                       |      | - <b>B</b>          |        | 1.01   | [0.99; 1.03] |
| Random effects model                |                                    |      | $\Rightarrow$       |        | 1.04   | [0.96; 1.13] |
| Heterogeneity: 1 <sup>2</sup> = 79% | $, \tau^2 = 0.0031, p < 0.01$      |      |                     |        |        |              |
| Western Europe                      |                                    |      | 2.1                 |        |        |              |
| Oftedal et al. 2009                 | Oslo Birth Cohort                  |      |                     |        | 0.93   | [0.86; 1.00] |
| Krämer et al. 2009                  | GINI, LISA: Wesel                  |      |                     |        | 1.19   | [0.85; 1.67] |
| Gehring et al. 2010                 | PIAMA                              |      | -                   | -      | 1.16   | [0.96; 1.40] |
| Ranzi et al. 2014                   | GASPII                             |      |                     |        | 1.07   | [0.76; 1.52] |
| Gehring et al. 2015                 | ESCAPE                             |      |                     |        | 1.13   | [1.02; 1.25] |
| Random effects model                |                                    |      |                     |        | 1.07   | [0.93; 1.22] |
| Heterogeneity: /2 = 67%             | $\tau^2 = 0.0094, p = 0.02$        |      |                     |        | 17.10  |              |
|                                     |                                    | 1-1- |                     |        |        |              |
|                                     |                                    | 0.7  | 1                   | 1.5    | 2      |              |
|                                     |                                    |      | Relative Risk per 1 | 0 µg/m |        |              |

# NO<sub>2</sub> – Asthma onset – Children Sensitivity analysis – year of publication

| Study                    | Study Name                         |     | Relative Ris        | sk                  | RR   | 95%-CI        |
|--------------------------|------------------------------------|-----|---------------------|---------------------|------|---------------|
| Before 2008              |                                    |     | ľ.                  |                     |      |               |
| Clougherty et al. 2007   | EBNHC                              |     |                     |                     | 1.28 | [0.96; 1.70]  |
| Jerrett et al. 2008      | CHS                                |     |                     |                     | 1.24 | [1.06; 1.46]  |
| After 2009               |                                    |     |                     |                     |      |               |
| Offedel et al. 2000      | Osla Bith Cabat                    |     |                     |                     | 0.02 | 10 96: 1 001  |
| Krämer et al. 2009       | CINI LISA: Wasal                   |     |                     |                     | 1 10 | [0.80, 1.00]  |
| Cebring et al. 2005      | PIAMA                              |     |                     |                     | 1.15 | [0.05, 1.07]  |
| Corleton et al. 2010     | Vancouver High Risk Asthma Infants |     |                     |                     |      | [0.96: 3.57]  |
| Ranzi et al. 2014        | GASPII                             |     |                     |                     | 1.07 | [0.76: 1.52]  |
| Gebring et al. 2015      | ESCAPE                             |     |                     |                     | 1 13 | [1 02: 1 25]  |
| Tétrepult et al. 2015    | Quebec Birth Cohort                |     |                     |                     | 1.13 | [1.02, 1.25]  |
| Shihi et al. 2016        | BC 99/02 Birth Cohort              |     |                     |                     | 0.95 | [0.89:1.01]   |
| Lavigne et al. 2018      | BORN Ontario                       |     | -                   |                     | 1.05 | [1 04: 1 07]  |
| Lavigne et al. 2019      | BORN Toronto                       |     | L.                  |                     | 1.00 | [0.99:1.03]   |
| Random effects model     |                                    |     | 5                   |                     | 1.03 | [0.97:1.09]   |
| Heterogeneity: 12 - 74%  | $r^2 = 0.0027$ $p < 0.01$          |     |                     |                     |      | [olori, lice] |
| neterogenety. / = / +/0, | t = 0.0027, p = 0.01               |     |                     | 10                  |      |               |
|                          | (                                  | 0.7 | 1                   | 1.5                 | 2    |               |
|                          |                                    |     | Relative Risk per 1 | 0 µg/m <sup>3</sup> |      |               |

# NO<sub>2</sub> – Asthma onset – Children Sensitivity analysis – traffic specificity

| Study                         | Study Name                        |     | Relative Risk        | <b>C</b> | RR     | 95%-CI       |
|-------------------------------|-----------------------------------|-----|----------------------|----------|--------|--------------|
| High                          |                                   |     | Ē                    |          |        |              |
| Clougherty et al. 2007        | EBNHC                             |     |                      |          | 1.28   | [0.96; 1.70] |
| Oftedal et al. 2009           | Oslo Birth Cohort                 |     |                      |          | 0.93   | [0.86; 1.00] |
| Krämer et al. 2009            | GINI, LISA: Wesel                 |     |                      |          | 1.19   | [0.85; 1.67] |
| Gehring et al. 2010           | PIAMA                             |     |                      | -        | 1.16   | [0.96; 1.40] |
| Carlsten et al. 2011          | Vancouver High Risk Asthma Infant | S   | -                    |          | → 1.76 | [0.86; 3.57] |
| Ranzi et al. 2014             | GASPII                            | _   | 10.0 <b>.</b> 0      | 1        | 1.07   | [0.76; 1.52] |
| Gehring et al. 2015           | ESCAPE                            |     |                      |          | 1.13   | [1.02; 1.25] |
| Tétreault et al. 2016         | Quebec Birth Cohort               |     |                      |          | 1.04   | [1.02; 1.05] |
| Sbihi et al. 2016             | BC 99/02 Birth Cohort             |     |                      |          | 0.95   | [0.89; 1.01] |
| Lavigne et al. 2019           | BORN Toronto                      |     | ÷                    |          | 1.01   | [0.99; 1.03] |
| Random effects model          |                                   |     | $\Rightarrow$        |          | 1.03   | [0.96; 1.11] |
| Heterogeneity: $I^2 = 68\%$ , | $\tau^2 = 0.0044, p < 0.01$       |     |                      |          |        |              |
| Moderate                      |                                   |     |                      |          |        |              |
| Jerrett et al. 2008           | CHS                               |     |                      |          | 1.24   | [1.06; 1.46] |
| Lavigne et al. 2018           | BORN Ontario                      |     | -                    |          | 1.05   | [1.04; 1.07] |
|                               |                                   |     |                      |          |        |              |
|                               |                                   | 11  |                      | 0.15     |        |              |
|                               |                                   | 0.7 | 1                    | 1.5      | 2      |              |
|                               |                                   |     | Relative Risk per 10 | µg/m     |        |              |

# NO<sub>2</sub> – Asthma onset – Children Subgroup analysis – smoking adjustment

#### Study Study Name **Relative Risk** RR 95%-CI Yes Clougherty et al. 2007 EBNHC 1.28 [0.96; 1.70] Oftedal et al. 2009 Oslo Birth Cohort 0.93 [0.86; 1.00] GINI, LISA: Wesel Krämer et al. 2009 1.19 [0.85; 1.67] Gehring et al. 2010 PIAMA 1.16 [0.96; 1.40] Vancouver High Risk Asthma Infants 1.76 [0.86; 3.57] Carlsten et al. 2011 Ranzi et al. 2014 GASPII 1.07 [0.76; 1.52] Gehring et al. 2015 ESCAPE 1.13 [1.02; 1.25] Lavigne et al. 2018 **BORN Ontario** 1.05 [1.04; 1.07] BORN Toronto Lavigne et al. 2019 1.01 [0.99; 1.03] Random effects model 1.06 [0.98; 1.14] Heterogeneity: $l^2 = 71\%$ , $\tau^2 = 0.0046$ , p < 0.01No Jerrett et al. 2008 CHS 1.24 [1.06; 1.46] Tétreault et al. 2016 Quebec Birth Cohort 1.04 [1.02; 1.05] Sbihi et al. 2016 BC 99/02 Birth Cohort 0.95 [0.89; 1.01] Random effects model 1.05 [0.76; 1.45] Heterogeneity: $l^2 = 85\%$ , $\tau^2 = 0.0128$ , $\rho < 0.01$ т 0.7 1 1.5 2 Relative Risk per 10 µg/m

# NO<sub>2</sub> – Asthma onset – Children Sensitivity analysis – reverse selection

# NO<sub>2</sub> - Incidence of asthma - Children (<18 years)

| Study                                      | Study Name                         | Exposure window                        |     | Relativ              | e Risk                   | RR     | 95%-CI                       | Weight |
|--------------------------------------------|------------------------------------|----------------------------------------|-----|----------------------|--------------------------|--------|------------------------------|--------|
| Clougherty et al. 2007                     | EBNHC                              | Annual average for the year of diagnos | is  | +:                   |                          | 1.28   | [0.96; 1.70]                 | 2.4%   |
| Jerrett et al. 2008                        | CHS                                | Annual average                         |     | i                    | -                        | 1.24   | [1.06; 1.46]                 | 5.9%   |
| Krämer et al. 2009                         | GINI, LISA: Wesel                  | Annual average at birth                |     | <u>i</u>             | •                        | 1.19   | [0.85; 1.67]                 | 1.8%   |
| Oftedal et al. 2009                        | Oslo Birth Cohort                  | Cumulative average                     |     | -                    |                          | 0.90   | [0.81; 1.01]                 | 9.4%   |
| Gehring et al. 2010                        | PIAMA                              | Annual average at birth                |     | ÷ •                  |                          | 1.16   | [0.96; 1.40]                 | 4.7%   |
| Carlsten et al. 2011                       | Vancouver High Risk Asthma Infants | Annual average at birth                |     |                      |                          | + 1.76 | [0.86; 3.57]                 | 0.4%   |
| Ranzi et al. 2014                          | GASPII                             | Cumulative average                     |     |                      |                          | 1.09   | [0.78; 1.52]                 | 1.8%   |
| Gehring et al. 2015                        | ESCAPE                             | Annual average current year            |     | -                    | -                        | 1.03   | [0.89; 1.20]                 | 6.4%   |
| Sbihi et al. 2016                          | BC 99/02 Birth Cohort              | Entire pregnancy                       |     |                      |                          | 0.95   | [0.89; 1.01]                 | 14.0%  |
| Tétreault et al. 2016                      | Quebec Birth Cohort                | Cumulative average                     |     | -                    |                          | 1.04   | [1.02; 1.05]                 | 17.9%  |
| Lavigne et al. 2018                        | BORN Ontario                       | Cumulative average                     |     | +                    |                          | 1.00   | [0.99; 1.01]                 | 17.9%  |
| Lavigne et al. 2019                        | BORN Toronto                       | Cumulative average                     |     | *<br>1:              |                          | 1.01   | [0.98; 1.03]                 | 17.3%  |
| Random effects mode<br>Prediction interval |                                    |                                        | _   | ÷                    |                          | 1.03   | [0.97; 1.09]<br>[0.89; 1.18] | 100.0% |
| Heterogeneity: $I^2 = 73\%$ , 1            | $c^2 = 0.0032, p < 0.01$           |                                        | 11  |                      | 12000                    | 1      |                              |        |
|                                            |                                    |                                        | 0.7 | 1                    | 1.5                      | 2      |                              |        |
|                                            |                                    |                                        |     | <b>Relative Risk</b> | per 10 µg/m <sup>3</sup> |        |                              |        |

Recent years > cumulative average > first year of life > at birth > pregnancy

#### NO<sub>x</sub> – Asthma onset - Children

#### Primary meta-analysis

NO<sub>X</sub> - Incidence of asthma - Children (<18 years)



#### EC – Asthma onset - Children

Primary meta-analysis

## EC - Incidence of asthma - Children (<18 years)



Relative Risk per 1 µg/m<sup>3</sup>

EC – Asthma onset – Children

Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low vs high

| Refid | Study                        | Study Name                     | Study Name |               | Relative Risk |              | 95%-CI       |
|-------|------------------------------|--------------------------------|------------|---------------|---------------|--------------|--------------|
|       | Low                          |                                |            |               |               |              |              |
|       | Krämer et al. 2009           | GINI, LISA: Wesel              |            |               | • 1.31        | [0.78; 2.20] |              |
|       | Gehring et al. 2010          | PIAMA                          |            |               | *             | 1.28         | [0.93; 1.77] |
|       | Carlsten et al. 2011         | Vancouver High Risk Asthma Inf |            |               | 1.07          | [0.76; 1.49] |              |
|       | Gehring et al. 2015          | ESCAPE                         |            |               | 1.26          | [1.00; 1.59] |              |
|       | Random effects model         |                                |            |               | -             | 1.22         | [1.07; 1.40] |
|       | Heterogeneity: $I^2 = 0\%$ , |                                |            |               |               |              |              |
|       | High                         |                                |            |               |               |              |              |
|       | Sbihi et al. 2016            | BC 99/02 Birth Cohort          |            | ÷.            |               | 0.99         | [0.95; 1.03] |
|       |                              |                                | _          |               |               |              |              |
|       |                              |                                |            |               |               | 1            |              |
|       |                              |                                | 0.7        | 1             | 1.5           | 2            |              |
|       |                              |                                |            | Relative Risk | per 1 µg/m    |              |              |

# EC – Asthma onset – Children Subgroup analysis – region

| Study                      | Study Name                       |      | Relative Risk             | RR     | 95%-CI       |
|----------------------------|----------------------------------|------|---------------------------|--------|--------------|
| North America              |                                  |      | 1                         |        |              |
| Carlsten et al. 2011       | Vancouver High Risk Asthma Infan | ts — |                           | 1.07   | [0.76; 1.49] |
| Sbihi et al. 2016          | BC 99/02 Birth Cohort            |      | ÷                         | 0.99   | [0.95; 1.03] |
|                            |                                  |      | I                         |        |              |
| Western Europe             |                                  |      |                           |        |              |
| Krämer et al. 2009         | GINI, LISA: Wesel                | 3    |                           | • 1.31 | [0.78; 2.20] |
| Gehring et al. 2010        | PIAMA                            |      |                           | 1.28   | [0.93; 1.77] |
| Gehring et al. 2015        | ESCAPE                           |      |                           | 1.26   | [1.00; 1.59] |
| Random effects mode        | el                               |      | $\diamond$                | 1.27   | [1.22; 1.33] |
| Heterogeneity: $l^2 = 0\%$ | $\tau^2 = 0, p = 0.99$           |      |                           |        |              |
|                            |                                  |      |                           |        |              |
|                            |                                  | 0.7  | 1 1.5                     | 2      |              |
|                            |                                  |      | Relative Risk per 1 µg/m3 |        |              |

Subgroup analysis – traffic specificity All studies rated high traffic specificity EC – Asthma onset – Children

#### Subgroup analysis – smoking adjustment



#### PM<sub>2.5</sub> – Asthma onset - Children

#### Primary meta-analysis

# PM<sub>2.5</sub> - Incidence of Asthma - Children (<18 years)



PM<sub>2.5</sub> – Asthma onset – Children

Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low vs high



#### PM<sub>2.5</sub> – Asthma onset – Children

Sensitivity analysis - risk of bias missing data domain - low/moderate vs high



# PM<sub>2.5</sub> – Asthma onset – Children Subgroup analysis – region



Subgroup analysis – traffic specificity

#### All rated as moderate

# PM<sub>2.5</sub> – Asthma onset – Children

# Subgroup analysis – smoking adjustment



.9 1 1.1 Relative Risk per 5 µg/m<sup>3</sup>

## Distance measures – Asthma onset – Adults

| Reference            | Study Name     |     |                      |   | Categories        | RR   | 95% CI       |
|----------------------|----------------|-----|----------------------|---|-------------------|------|--------------|
| Modig et al. 2009    | RHINE Sweden   |     |                      | - | → <50 vs. >50 m   | 3.88 | [1.93, 7.82] |
| Andersen et al. 2012 | DDCH           | -■  |                      |   | <100 vs. >100 m   | 0.98 | [0.81, 1.19] |
| Fisher et al. 2016   | Nurses' Health | +■  |                      |   | <50 vs. >200 m    | 1.13 | [0.93, 1.38] |
| Fisher et al. 2016   | Nurses' Health | ⊦∎⊣ |                      |   | 50-199 vs. >200 m | 0.90 | [0.77, 1.07] |
| Bowatte et al. 2018  | TAHS           |     |                      |   | <200 vs. >200 m   | 1.60 | [0.71, 3.60] |
|                      |                |     |                      |   |                   |      |              |
|                      | 0              | 1   | 2 3<br>Relative Risk | 4 | 5                 |      |              |

#### Distance measures - Incidence of asthma - Adults

## Distance measures – Asthma onset – Children

| Reference     | Study Name            |              |                      |     |               | Categories                                                                 | RR   | 95% CI        |
|---------------|-----------------------|--------------|----------------------|-----|---------------|----------------------------------------------------------------------------|------|---------------|
| Shima, 2003   | Chiba Cohort          |              |                      |     |               | <50 m vs. rural areas                                                      | 4.03 | [0.90, 17.96] |
| Shima, 2003   | Chiba Cohort          |              |                      | 2 P | >             | <50 m vs. rural areas                                                      | 3.77 | [1.00, 14.16] |
| Shima, 2003   | Chiba Cohort          |              |                      |     |               | >50 m vs. rural areas                                                      | 1.99 | [0.79, 4.99]  |
| Shima, 2003   | Chiba Cohort          | 1            |                      |     |               | >50 m vs. rural areas                                                      | 1.74 | [0.63, 4.81]  |
| Krämer, 2009  | GINI, LISA: Wesel     | <b>⊢</b> ∎∔i |                      |     |               | <50 vs. >50 m                                                              | 0.86 | [0.66, 1.14]  |
| Oftedal, 2009 | Oslo Birth Cohort     | -            |                      |     |               | per 541m                                                                   | 0.99 | [0.90, 1.08]  |
| Clark, 2010   | BC 99/00 Birth Cohort | H            |                      |     |               | <50 m to major road or <150 m to highway vs. higher                        | 0.97 | [0.82, 1.15]  |
| Ranzi, 2014   | GASPI                 | H            |                      |     |               | <86.1 vs. >86.1 m                                                          | 0.69 | [0.40, 1.20]  |
| Sbihi, 2016   | BC 99/02 Birth Cohort | H <b>a</b> H |                      |     |               | <50 m to major road or <150 m to highway vs. higher                        | 1.06 | [0.92, 1.21]  |
| Lee, 2018b    | CHEER                 |              |                      |     | $\rightarrow$ | <75 m vs. >75 m and no bronchiolitis                                       | 1.88 | [0.67, 5.29]  |
| Lee, 2018b    | CHEER                 |              |                      |     | >             | ${<}75\text{m}$ and bronchiolitis vs. ${<}75\text{m}$ and no bronchiolitis | 3.62 | [1.07, 12.26] |
| Lee, 2018b    | CHEER                 |              | -                    |     |               | bronchiolitis only vs. >75 m and no bronchiolitis                          | 1.93 | [1.01, 3.39]  |
|               |                       |              |                      |     |               |                                                                            |      |               |
|               |                       | 0 1          | 2 3<br>Relative Risł | 4   | 5             |                                                                            |      |               |

#### Distance measures - Incidence of asthma - Children (<18 years)

Shima et al. 2003 estimates were stratified by sex.

#### Density measures – Asthma onset – Adults





#### Density measures – Asthma onset – Children

#### Density measures - Incidence of asthma - Children (<18 years)



# 9.2 Prevalence of asthma ever

Meta-analysis overview – Children (<18).



Footnote: The following increments were used:  $10 \ \mu g/m^3$  for NO<sub>2</sub>,  $20 \ \mu g/m^3$  for NO<sub>x</sub>,  $1 \ mg/m^3$  for CO,  $1 \ \mu g/m^3$  for EC,  $10 \ \mu g/m^3$  for PM<sub>10</sub> and  $5 \ \mu g/m^3$  for PM<sub>2.5</sub>. Effect estimates cannot be directly compared across the different traffic–related pollutants because the selected increments do not necessarily represent the same contrast in exposure.

# NO<sub>2</sub> – Prevalence of asthma ever - children

# Primary meta-analysis

| Study                                                                                                                                                                                                                                                                                                                                                                                                   | Study Name                                                                                                                                                                                                                                                                                                                                    | Study Design                                                                                                                                                                                                                                                                                                                                                       | Exposure window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Relative Risk                      | RR                                                                                                                                                                                                                                                                                 | 95%-CI                                                                                                                                                                                                                                                                                                                        | Weight                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Study<br>Hirsch et al. 1999<br>Krämer et al. 2000<br>Janssen et al. 2003<br>Morgenstern et al. 2008<br>Rosenlund et al. 2009<br>Pénard-Morand et al. 2009<br>Pénard-Morand et al. 2009<br>Svendsen et al. 2019<br>Liu et al. 2013<br>Pedersen et al. 2013<br>Abidin et al. 2014<br>Dell et al. 2014<br>Liu et al. 2014<br>Ranzi et al. 2014<br>Möter et al. 2015<br>Wood et al. 2016<br>Liu et al. 2016 | Study Name<br>ISAAC Dresden<br>Düsseldorf School Survey<br>ISAAC Southwestern Netherlands<br>GINI, LISA: Munich<br>ISAAC Rome<br>ISAAC Hamilton<br>French Six Cities<br>EI Paso Children's Health<br>SNEC Kindergarten<br>EDEN<br>ISAAC Malaysia<br>T-CHEQ<br>SNEC<br>GASPII<br>ESCAPE<br>ISAAC East London<br>CCHH Changsha<br>CCHH Shanghai | Study Design<br>Cross sectional<br>Cross sectional<br>Cohort<br>Cross sectional<br>Cross sectional<br>Cross sectional<br>Cross sectional<br>Cross sectional<br>Cohort<br>Cross sectional<br>Case-control<br>Cross sectional<br>Cohort<br>Cross sectional<br>Cohort<br>Cross sectional<br>Cohort<br>Cohort<br>Cross sectional<br>Cross sectional<br>Cross sectional | Exposure window<br>Annual mean<br>Annual average current year<br>Annual average current year<br>Annual average at current address<br>Exposure in 2000-2001 (recent year<br>Cumulative average<br>Annual average current year<br>Average recent<br>Three year average at baseline<br>Entire pregnancy<br>Annual average current year<br>Average first year<br>Three year average at baseline<br>Annual average at birth<br>Cumulative average<br>Annual average current year<br>Entire pregnancy<br>Entire pregnancy |                                    | <ul> <li>RR</li> <li>1.16</li> <li>0.90</li> <li>1.21</li> <li>1.06</li> <li>0.85</li> <li>2.12</li> <li>1.05</li> <li>1.00</li> <li>1.16</li> <li>0.78</li> <li>1.50</li> <li>1.09</li> <li>1.25</li> <li>1.03</li> <li>1.10</li> <li>0.74</li> <li>1.42</li> <li>1.08</li> </ul> | <b>95%-Cl</b><br>[0.94; 1.43]<br>[0.52; 1.56]<br>[0.85; 1.71]<br>[0.60; 1.88]<br>[0.69; 1.06]<br>[1.00; 4.48]<br>[0.92; 1.20]<br>[0.86; 1.17]<br>[0.86; 1.17]<br>[0.86; 1.17]<br>[0.86; 1.17]<br>[0.87; 2.58]<br>[0.92; 1.30]<br>[1.15; 1.35]<br>[0.71; 1.49]<br>[0.81; 1.49]<br>[0.81; 1.77]<br>[1.14; 1.77]<br>[0.91; 1.29] | Weight 5.6% 1.3% 2.8% 1.2% 5.3% 0.7% 8.2% 7.7% 2.2% 1.3% 6.7% 2.2% 1.3% 6.5% 3.4% 1.7% 5.2% |
| Oudin et al. 2017<br>Knibbs et al. 2018<br>Puklová et al. 2019<br>Random effects model<br>Prediction interval<br>Heterogeneity: $I^2 = 55\%$ , $\tau^2 =$                                                                                                                                                                                                                                               | SIMSAM Medication<br>ACHAPS<br>Czech Respiratory Cohort<br>0.0091, <i>p</i> < 0.01                                                                                                                                                                                                                                                            | Cohort<br>Cross sectional<br>Cross sectional                                                                                                                                                                                                                                                                                                                       | Baseline year average<br>Previous year annual average<br>Five year average at baseline                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6 0.75 1<br>Relative Risk per 10 | ■ 1.06<br>1.40<br>0.87<br>1.09<br>1.5 2<br>µg/m <sup>3</sup>                                                                                                                                                                                                                       | [1.02; 1.11]<br>[1.08; 1.81]<br>[0.70; 1.09]<br><b>[1.01; 1.18]</b><br>[0.88; 1.35]                                                                                                                                                                                                                                           | 11.7%<br>4.3%<br>5.1%                                                                       |

NO<sub>2</sub> - Prevalence of asthma ever - Children (<18 years)

# $NO_2$ – Prevalence of asthma ever – Children

Funnel plot



Footnote: The vertical lines in the funnel plots represent the pooled fixed and random effect estimates. The vertical dashed line in the middle of the funnel shows the fixed effect estimate. As the Panel applied a random–effects model, the funnel plot also presents the random–effects estimate with the dotted line.
Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low/moderate vs high

| Study                                  | Study Name                             | Relative Risk                         | RR     | 95%-CI       |
|----------------------------------------|----------------------------------------|---------------------------------------|--------|--------------|
| Low/Moderate                           |                                        | I                                     |        |              |
| Hirsch et al. 1999                     | ISAAC Dresden                          | +                                     | 1.16   | [0.94; 1.43] |
| Krämer et al. 2000                     | Düsseldorf School Survey               | • • • • • • • • • • • • • • • • • • • | 0.90   | [0.52; 1.56] |
| Janssen et al. 2003                    | ISAAC Southwestern Netherlands         | s                                     | 1.21   | [0.85; 1.71] |
| Morgenstern et al. 2008                | GINI, LISA: Munich                     | · · · · · ·                           | 1.06   | [0.60; 1.88] |
| Rosenlund et al. 2009                  | ISAAC Rome                             |                                       | 0.85   | [0.69; 1.06] |
| Pénard-Morand et al. 2010              | French Six Cities                      |                                       | 1.05   | [0.92; 1.20] |
| Svendsen et al. 2012                   | El Paso Children's Health              |                                       | 1.00   | [0.86; 1.17] |
| Liu et al. 2013                        | SNEC Kindergarten                      |                                       | 1.16   | [0.98; 1.38] |
| Pedersen et al. 2013                   | EDEN                                   | • • • • • • • • • • • • • • • • • • • | 0.78   | [0.52; 1.16] |
| Abidin et al. 2014                     | ISAAC Malaysia                         |                                       | + 1.50 | [0.87; 2.58] |
| Dell et al. 2014                       | T-CHEQ                                 |                                       | 1.09   | [0.92; 1.30] |
| Liu et al. 2014                        | SNEC                                   |                                       | 1.25   | [1.15; 1.35] |
| Ranzi et al. 2014                      | GASPII                                 | · · · ·                               | 1.03   | [0.71; 1.49] |
| Mölter et al. 2015                     | ESCAPE                                 |                                       | 1.10   | [0.81; 1.49] |
| Wood et al. 2015                       | ISAAC East London                      | • • • ·                               | 0.74   | [0.46; 1.17] |
| Liu et al. 2016                        | CCHH Shanghai                          | -+                                    | 1.08   | [0.91; 1.29] |
| Oudin et al. 2017                      | SIMSAM Medication                      | +                                     | 1.06   | [1.02; 1.11] |
| Knibbs et al. 2018                     | ACHAPS                                 |                                       | - 1.40 | [1.08; 1.81] |
| Random effects model                   |                                        |                                       | 1.09   | [1.02; 1.16] |
| Heterogeneity: $l^2 = 47\%$ , $\tau^2$ | <sup>2</sup> = 0.0054, <i>p</i> = 0.02 |                                       |        |              |
| High                                   |                                        |                                       |        |              |
| Sahsuvaroglu et al. 2009               | ISAAC Hamilton                         |                                       | > 2.12 | [1.00; 4.48] |
| Deng et al. 2016                       | CCHH Changsha                          |                                       | 1.42   | [1.14; 1.77] |
| Puklová et al. 2019                    | Czech Respiratory Cohort               |                                       | 0.87   | [0.70; 1.09] |
| Random effects model                   |                                        |                                       | 1.27   | [0.45; 3.54] |
| Heterogeneity: $l^2 = 83\%$ , $\tau^2$ | <sup>2</sup> = 0.1238, <i>p</i> < 0.01 |                                       |        |              |
|                                        |                                        |                                       | _      |              |
|                                        |                                        | U.D U./5 1 1.5                        | 2      |              |
|                                        |                                        | Relative Risk per 10 µg/m             |        |              |

## Sensitivity analysis - risk of bias selection bias domain - low/moderate vs high

| Study                                | Study Name                             | Relative Risk                         | RR     | 95%-CI       |
|--------------------------------------|----------------------------------------|---------------------------------------|--------|--------------|
| Low/Moderate                         |                                        | Ĩ                                     |        |              |
| Hirsch et al. 1999                   | ISAAC Dresden                          | +                                     | 1.16   | [0.94; 1.43] |
| Krämer et al. 2000                   | Düsseldorf School Survey               | • • • • • • • • • • • • • • • • • • • | 0.90   | [0.52; 1.56] |
| Janssen et al. 2003                  | ISAAC Southwestern Netherland          | s                                     | - 1.21 | [0.85; 1.71] |
| Morgenstern et al. 2008              | GINI, LISA: Munich                     |                                       | 1.06   | [0.60; 1.88] |
| Rosenlund et al. 2009                | ISAAC Rome                             | <del>_ • +</del>                      | 0.85   | [0.69; 1.06] |
| Sahsuvaroglu et al. 2009             | ISAAC Hamilton                         |                                       | - 2.12 | [1.00; 4.48] |
| Pénard-Morand et al. 2010            | French Six Cities                      | - <del> .</del>                       | 1.05   | [0.92; 1.20] |
| Svendsen et al. 2012                 | El Paso Children's Health              | <u> </u>                              | 1.00   | [0.86; 1.17] |
| Liu et al. 2013                      | SNEC Kindergarten                      | <b>—</b>                              | 1.16   | [0.98; 1.38] |
| Pedersen et al. 2013                 | EDEN                                   | • • • • • • • • • • • • • • • • • • • | 0.78   | [0.52; 1.16] |
| Abidin et al. 2014                   | ISAAC Malaysia                         | · · · · · ·                           | • 1.50 | [0.87; 2.58] |
| Dell et al. 2014                     | T-CHEQ                                 | - <del>1 * -</del>                    | 1.09   | [0.92; 1.30] |
| Liu et al. 2014                      | SNEC                                   |                                       | 1.25   | [1.15; 1.35] |
| Ranzi et al. 2014                    | GASPII                                 | · · · · · · · · · · · · · · · · · · · | 1.03   | [0.71; 1.49] |
| Mölter et al. 2015                   | ESCAPE                                 | <del></del>                           | 1.10   | [0.81; 1.49] |
| Liu et al. 2016                      | CCHH Shanghai                          | -+                                    | 1.08   | [0.91; 1.29] |
| Oudin et al. 2017                    | SIMSAM Medication                      | +                                     | 1.06   | [1.02; 1.11] |
| Knibbs et al. 2018                   | ACHAPS                                 | · · · · · ·                           | 1.40   | [1.08; 1.81] |
| Puklová et al. 2019                  | Czech Respiratory Cohort               | — • <del>•</del> •                    | 0.87   | [0.70; 1.09] |
| Random effects model                 |                                        | $\diamond$                            | 1.09   | [1.01; 1.16] |
| Heterogeneity: $l^2 = 50\%$ , $\tau$ | <sup>2</sup> = 0.0064, <i>p</i> < 0.01 |                                       |        |              |
| High                                 |                                        |                                       |        |              |
| Wood et al. 2015                     | ISAAC East London                      | • <b>=</b>                            | 0.74   | [0.46; 1.17] |
| Deng et al. 2016                     | CCHH Changsha                          |                                       | - 1.42 | [1.14; 1.77] |
|                                      |                                        |                                       |        |              |
|                                      |                                        | I                                     |        |              |
|                                      |                                        |                                       |        |              |
|                                      |                                        | 0.6 0.75 1 1.5                        | 2      |              |

## Sensitivity analysis - risk of bias outcome measurement domain - low/moderate vs high

| Study                                  | Study Name                    |     |               | <b>Relative Risk</b> |                   | RR     | 95%-CI       |
|----------------------------------------|-------------------------------|-----|---------------|----------------------|-------------------|--------|--------------|
| Low/Moderate                           |                               |     |               | Ĩ                    |                   |        |              |
| Hirsch et al. 1999                     | ISAAC Dresden                 |     |               |                      |                   | 1.16   | [0.94; 1.43] |
| Krämer et al. 2000                     | Düsseldorf School Survey      | -   |               | •                    |                   | 0.90   | [0.52; 1.56] |
| Janssen et al. 2003                    | ISAAC Southwestern Netherland | s   | 0             |                      |                   | 1.21   | [0.85; 1.71] |
| Morgenstern et al. 2008                | GINI, LISA: Munich            |     |               |                      |                   | 1.06   | [0.60; 1.88] |
| Rosenlund et al. 2009                  | ISAAC Rome                    |     | $\rightarrow$ | _                    |                   | 0.85   | [0.69; 1.06] |
| Sahsuvaroglu et al. 2009               | ISAAC Hamilton                |     |               | -                    |                   | • 2.12 | [1.00; 4.48] |
| Pénard-Morand et al. 2010              | French Six Cities             |     |               |                      |                   | 1.05   | [0.92; 1.20] |
| Svendsen et al. 2012                   | El Paso Children's Health     |     |               | _ <del></del>        |                   | 1.00   | [0.86; 1.17] |
| Liu et al. 2013                        | SNEC Kindergarten             |     |               |                      | -                 | 1.16   | [0.98; 1.38] |
| Pedersen et al. 2013                   | EDEN                          | +   |               | _                    |                   | 0.78   | [0.52; 1.16] |
| Abidin et al. 2014                     | ISAAC Malaysia                |     |               |                      |                   | + 1.50 | [0.87; 2.58] |
| Dell et al. 2014                       | T-CHEQ                        |     |               | +                    |                   | 1.09   | [0.92; 1.30] |
| Liu et al. 2014                        | SNEC                          |     |               |                      |                   | 1.25   | [1.15; 1.35] |
| Ranzi et al. 2014                      | GASPII                        |     | <u>.</u>      |                      |                   | 1.03   | [0.71; 1.49] |
| Mölter et al. 2015                     | ESCAPE                        |     | 1             |                      |                   | 1.10   | [0.81; 1.49] |
| Deng et al. 2016                       | CCHH Changsha                 |     |               |                      |                   | 1.42   | [1.14; 1.77] |
| Liu et al. 2016                        | CCHH Shanghai                 |     |               | +                    |                   | 1.08   | [0.91; 1.29] |
| Oudin et al. 2017                      | SIMSAM Medication             |     |               | -                    |                   | 1.06   | [1.02; 1.11] |
| Knibbs et al. 2018                     | ACHAPS                        |     |               | <u> </u>             | •                 | 1.40   | [1.08; 1.81] |
| Puklová et al. 2019                    | Czech Respiratory Cohort      |     | 100           | •+-                  |                   | 0.87   | [0.70; 1.09] |
| Random effects model                   |                               |     |               | $\diamond$           |                   | 1.10   | [1.02; 1.18] |
| Heterogeneity: $l^2 = 54\%$ , $\tau^2$ | = 0.0085, <i>p</i> < 0.01     |     |               |                      |                   |        |              |
| High                                   |                               |     |               |                      |                   |        |              |
| Wood et al. 2015                       | ISAAC East London             | -   | •             |                      |                   | 0.74   | [0.46; 1.17] |
|                                        |                               | _   |               | _                    |                   | _      |              |
|                                        |                               | 0.6 | 0.75          | 1                    | 1.5               | 2      |              |
|                                        |                               |     | Rel           | ative Risk per 10    | µg/m <sup>3</sup> |        |              |

Subgroup analysis – region

| Study                                         | Study Name                     | Relative Risk                                            | RR     | 95%-CI       |
|-----------------------------------------------|--------------------------------|----------------------------------------------------------|--------|--------------|
| North America                                 |                                | l l                                                      |        |              |
| Sahsuvaroglu et al. 2009                      | ISAAC Hamilton                 |                                                          | - 2.12 | [1.00; 4.48] |
| Svendsen et al. 2012                          | El Paso Children's Health      |                                                          | 1.00   | [0.86; 1.17] |
| Dell et al. 2014                              | T-CHEQ                         |                                                          | 1.09   | [0.92; 1.30] |
| Random effects model                          |                                |                                                          | 1.06   | [0.74; 1.50] |
| Heterogeneity: $I^2 = 49\%$ , $\tau^2 = 4\%$  | = < 0.0001, <i>p</i> = 0.14    |                                                          |        |              |
| Western Europe                                |                                |                                                          |        |              |
| Hirsch et al. 1999                            | ISAAC Dresden                  |                                                          | 1 16   | [0 94 1 43]  |
| Krämer et al 2000                             | Düsseldorf School Survey       | •                                                        | 0.90   | [0 52 1 56]  |
| Janssen et al. 2003                           | ISAAC Southwestern Netherlands |                                                          | 1.21   | [0 85 1 71]  |
| Morgenstern et al 2008                        | GINL LISA: Munich              |                                                          | - 1.06 | [0 60 1 88]  |
| Rosenlund et al. 2009                         | ISAAC Rome                     | <del></del>                                              | 0.85   | [0.69: 1.06] |
| Pénard-Morand et al. 2010                     | ) French Six Cities            |                                                          | 1.05   | [0.92 1.20]  |
| Pedersen et al 2013                           | EDEN                           | • • • • • • • • • • • • • • • • • • •                    | 0.78   | [0 52 1 16]  |
| Ranzi et al 2014                              | GASPII                         |                                                          | 1.03   | [0 71 1 49]  |
| Mölter et al. 2015                            | ESCAPE                         |                                                          | 1.10   | [0.81: 1.49] |
| Wood et al. 2015                              | ISAAC East London              | • • • • • • • • • • • • • • • • • • •                    | 0 74   | [0 46 1 17]  |
| Oudin et al. 2017                             | SIMSAM Medication              | +                                                        | 1.06   | [1.02: 1.11] |
| Random effects model                          |                                | ♦                                                        | 1.05   | [1.01; 1.10] |
| Heterogeneity: $l^2 = 1\%$ , $\tau^2 =$       | 0, <i>p</i> = 0.43             |                                                          |        |              |
| Asia                                          |                                |                                                          |        |              |
| Liu et al. 2013                               | SNEC Kindergarten              |                                                          | 1.16   | [0.98: 1.38] |
| Abidin et al. 2014                            | ISAAC Malavsia                 |                                                          | - 1.50 | [0.87: 2.58] |
| Liu et al. 2014                               | SNEC                           |                                                          | 1.25   | [1.15: 1.35] |
| Deng et al. 2016                              | CCHH Changsha                  |                                                          | 1.42   | [1.14: 1.77] |
| Liu et al. 2016                               | CCHH Shanghai                  | <del></del>                                              | 1.08   | [0.91; 1.29] |
| Random effects model                          | 3                              | $\diamond$                                               | 1.23   | [1.11; 1.36] |
| Heterogeneity: $l^2 = 17\%$ , $\tau^2 = 17\%$ | = 0.0004, <i>p</i> = 0.31      |                                                          |        |              |
| Australia/New Zealand                         |                                |                                                          |        |              |
| Knibbs et al. 2018                            | ACHAPS                         |                                                          | 1.40   | [1.08; 1.81] |
|                                               |                                |                                                          |        |              |
| Eastern Europe                                |                                |                                                          |        |              |
| Puklová et al. 2019                           | Czech Respiratory Cohort       |                                                          | 0 87   | [0 70- 1 09] |
|                                               |                                | 1                                                        |        |              |
|                                               |                                |                                                          |        |              |
|                                               |                                | ).6 0.75 1 1.5<br>Relative Risk per 10 ug/m <sup>3</sup> | 2      |              |
|                                               |                                | resolutive real per re pg/m                              |        |              |

# $NO_2$ – Prevalence of asthma ever – Children

Subgroup analysis – year of publication

| Study                                   | Study Name                     | Relative Risk                         | RR     | 95%-CI       |
|-----------------------------------------|--------------------------------|---------------------------------------|--------|--------------|
| Before 2008                             |                                | 1                                     |        |              |
| Hirsch et al. 1999                      | ISAAC Dresden                  |                                       | 1.16   | [0.94; 1.43] |
| Krämer et al. 2000                      | Düsseldorf School Survey       | • =                                   | 0.90   | [0.52; 1.56] |
| Janssen et al. 2003                     | ISAAC Southwestern Netherlands |                                       | 1.21   | [0.85; 1.71] |
| Morgenstern et al. 2008                 | GINI, LISA: Munich             |                                       | 1.06   | [0.60; 1.88] |
| Random effects model                    |                                |                                       | 1.14   | [0.99; 1.31] |
| Heterogeneity: $l^2 = 0\%$ , $\tau^2 =$ | : 0, <i>p</i> = 0.83           |                                       |        |              |
| After 2008                              |                                |                                       |        |              |
| Rosenlund et al. 2009                   | ISAAC Rome                     |                                       | 0.85   | [0.69; 1.06] |
| Sahsuvaroglu et al. 2009                | ISAAC Hamilton                 |                                       | 2.12   | [1.00; 4.48] |
| Pénard-Morand et al. 2010               | French Six Cities              |                                       | 1.05   | [0.92; 1.20] |
| Svendsen et al. 2012                    | El Paso Children's Health      |                                       | 1.00   | [0.86; 1.17] |
| Liu et al. 2013                         | SNEC Kindergarten              | -                                     | 1.16   | [0.98; 1.38] |
| Pedersen et al. 2013                    | EDEN                           | • • • • • •                           | 0.78   | [0.52; 1.16] |
| Dell et al. 2014                        | T-CHEQ                         |                                       | 1.09   | [0.92; 1.30] |
| Ranzi et al. 2014                       | GASPII                         | · · · · · · · · · · · · · · · · · · · | 1.03   | [0.71; 1.49] |
| Liu et al. 2014                         | SNEC                           |                                       | 1.25   | [1.15; 1.35] |
| Abidin et al. 2014                      | ISAAC Malaysia                 |                                       | + 1.50 | [0.87; 2.58] |
| Mölter et al. 2015                      | ESCAPE                         | · · · ·                               | 1.10   | [0.81; 1.49] |
| Wood et al. 2015                        | ISAAC East London              | <                                     | 0.74   | [0.46; 1.17] |
| Deng et al. 2016                        | CCHH Changsha                  |                                       | 1.42   | [1.14; 1.77] |
| Liu et al. 2016                         | CCHH Shanghai                  |                                       | 1.08   | [0.91; 1.29] |
| Oudin et al. 2017                       | SIMSAM Medication              | -                                     | 1.06   | [1.02; 1.11] |
| Knibbs et al. 2018                      | ACHAPS                         | · · · ·                               | - 1.40 | [1.08; 1.81] |
| Puklová et al. 2019                     | Czech Respiratory Cohort       |                                       | 0.87   | [0.70; 1.09] |
| Random effects model                    |                                | <b></b>                               | 1.09   | [0.99; 1.19] |
| Heterogeneity: $l^2 = 63\%$ , $\tau^2$  | = 0.0118, p < 0.01             |                                       |        |              |
| -                                       |                                |                                       |        |              |
|                                         | 4                              | 0.6 0.75 1 1.5                        | 2      |              |

# $NO_2$ – Prevalence of asthma ever – Children

Subgroup analysis – traffic specificity

| Study                                   | Study Name                             |          |             | Relative Risk         |      | RR     | 95%-CI       |
|-----------------------------------------|----------------------------------------|----------|-------------|-----------------------|------|--------|--------------|
| High                                    |                                        |          |             | T I                   |      |        |              |
| Morgenstern et al. 2008                 | GINI, LISA: Munich                     | -        |             |                       |      | 1.06   | [0.60; 1.88] |
| Rosenlund et al. 2009                   | ISAAC Rome                             |          | -           |                       |      | 0.85   | [0.69; 1.06] |
| Sahsuvaroglu et al. 2009                | ISAAC Hamilton                         |          |             |                       |      | + 2.12 | [1.00; 4.48] |
| Pénard-Morand et al. 2010               | French Six Cities                      |          |             |                       |      | 1.05   | [0.92; 1.20] |
| Svendsen et al. 2012                    | El Paso Children's Health              |          |             | <del></del>           |      | 1.00   | [0.86; 1.17] |
| Pedersen et al. 2013                    | EDEN                                   | <u> </u> | -           | <u> </u>              |      | 0.78   | [0.52; 1.16] |
| Dell et al. 2014                        | T-CHEQ                                 |          |             |                       |      | 1.09   | [0.92; 1.30] |
| Ranzi et al. 2014                       | GASPII                                 |          | 10          |                       | -    | 1.03   | [0.71; 1.49] |
| Mölter et al. 2015                      | ESCAPE                                 |          | -           |                       | - 25 | 1.10   | [0.81; 1.49] |
| Wood et al. 2015                        | ISAAC East London                      | <u> </u> | -           | _                     |      | 0.74   | [0.46; 1.17] |
| Oudin et al. 2017                       | SIMSAM Medication                      |          |             | <del></del>           |      | 1.06   | [1.02; 1.11] |
| Knibbs et al. 2018                      | ACHAPS                                 |          |             |                       |      | 1.40   | [1.08; 1.81] |
| Puklová et al. 2019                     | Czech Respiratory Cohort               |          | <del></del> | -                     |      | 0.87   | [0.70; 1.09] |
| Random effects model                    |                                        |          |             |                       |      | 1.04   | [0.98; 1.11] |
| Heterogeneity: $I^2 = 39\%$ , $\tau^2$  | <sup>2</sup> = 0.0006, <i>p</i> = 0.07 |          |             |                       |      |        |              |
| Moderate                                |                                        |          |             |                       |      |        |              |
| Hirsch et al. 1999                      | ISAAC Dresden                          |          |             | -                     |      | 1.16   | [0.94; 1.43] |
| Krämer et al. 2000                      | Düsseldorf School Survey               | -        |             |                       |      | 0.90   | [0.52; 1.56] |
| Janssen et al. 2003                     | ISAAC Southwestern Netherlands         |          |             | -                     |      | 1.21   | [0.85; 1.71] |
| Liu et al. 2013                         | SNEC Kindergarten                      |          |             |                       |      | 1.16   | [0.98; 1.38] |
| Liu et al. 2014                         | SNEC                                   |          |             |                       |      | 1.25   | [1.15; 1.35] |
| Abidin et al. 2014                      | ISAAC Malaysia                         |          |             | -                     |      | → 1.50 | [0.87; 2.58] |
| Deng et al. 2016                        | CCHH Changsha                          |          |             |                       | _    | 1.42   | [1.14; 1.77] |
| Liu et al. 2016                         | CCHH Shanghai                          |          |             |                       |      | 1.08   | [0.91; 1.29] |
| Random effects model                    |                                        |          |             | $\diamond$            |      | 1.22   | [1.14; 1.30] |
| Heterogeneity: $l^2 = 0\%$ , $\tau^2$ : | = 0, p = 0.51                          |          |             |                       |      | _      |              |
|                                         |                                        | -        |             | 1                     |      | 1      |              |
|                                         | (                                      | 0.6      | 0.75        | 1                     | 1.5  | 2      |              |
|                                         |                                        |          | Rel         | ative Risk per 10 µg/ | m    |        |              |

# $NO_2$ – Prevalence of asthma ever – Children

Subgroup analysis – smoking adjustment

| Study                                  | Study Name                     |     | F       | Relative Risk       | RR     | 95%-C        |
|----------------------------------------|--------------------------------|-----|---------|---------------------|--------|--------------|
| Yes                                    |                                |     |         | T. C.               |        |              |
| Hirsch et al. 1999                     | ISAAC Dresden                  |     |         |                     | 1.16   | [0.94; 1.43] |
| Janssen et al. 2003                    | ISAAC Southwestern Netherlands | 3   | -       |                     | - 1.21 | [0.85; 1.71] |
| Morgenstern et al. 2008                | GINI, LISA: Munich             | -   |         |                     | 1.06   | [0.60; 1.88] |
| Rosenlund et al. 2009                  | ISAAC Rome                     |     | -       | -                   | 0.85   | [0.69; 1.06] |
| Sahsuvaroglu et al. 2009               | ISAAC Hamilton                 |     |         | 7                   | • 2.12 | [1.00; 4.48] |
| Pénard-Morand et al. 2010              | French Six Cities              |     | 3       |                     | 1.05   | [0.92; 1.20] |
| Svendsen et al. 2012                   | El Paso Children's Health      |     |         |                     | 1.00   | [0.86; 1.17] |
| Liu et al. 2013                        | SNEC Kindergarten              |     |         |                     | 1.16   | [0.98; 1.38] |
| Pedersen et al. 2013                   | EDEN                           | -   |         |                     | 0.78   | [0.52; 1.16] |
| Dell et al. 2014                       | T-CHEQ                         |     | 3       |                     | 1.09   | [0.92; 1.30] |
| Ranzi et al. 2014                      | GASPII                         |     | <u></u> |                     | 1.03   | [0.71; 1.49] |
| Liu et al. 2014                        | SNEC                           |     |         |                     | 1.25   | [1.15: 1.35  |
| Abidin et al. 2014                     | ISAAC Malaysia                 |     | -       |                     | + 1.50 | 10.87: 2.58  |
| Mölter et al. 2015                     | ESCAPE                         |     | _       | · · · ·             | 1.10   | [0.81: 1.49] |
| Wood et al. 2015                       | ISAAC East London              |     |         |                     | 0.74   | [0.46; 1.17] |
| Deng et al. 2016                       | CCHH Changsha                  |     |         |                     | 1.42   | [1.14; 1.77  |
| Liu et al. 2016                        | CCHH Shanghai                  |     |         | -                   | 1.08   | 10.91: 1.29  |
| Oudin et al. 2017                      | SIMSAM Medication              |     |         | +                   | 1.06   | [1.02: 1.11] |
| Random effects model                   |                                |     |         | $\diamond$          | 1.10   | [1.02: 1.18] |
| Heterogeneity: $l^2 = 53\%$ , $\tau^2$ | = 0.0065, <i>p</i> < 0.01      |     |         |                     |        |              |
| No                                     |                                |     |         |                     |        |              |
| Krämer et al. 2000                     | Düsseldorf School Survey       | -   |         |                     | 0.90   | [0.52; 1.56] |
| Knibbs et al. 2018                     | ACHAPS                         |     |         |                     | 1.40   | [1.08; 1.81] |
| Puklová et al. 2019                    | Czech Respiratory Cohort       |     | -       |                     | 0.87   | [0.70; 1.09  |
| Random effects model                   |                                |     |         |                     |        | [0.53; 2.08] |
| Heterogeneity: $l^2 = 74\%$ , $\tau^2$ | = 0.0589, p = 0.02             | _   |         |                     |        |              |
|                                        |                                |     |         |                     |        |              |
|                                        |                                | 0.6 | 0.75    | 1 1.5               | 2      |              |
|                                        |                                |     | Relativ | /e Risk per 10 µg/m |        |              |

## Sensitivity analysis - reverse selection

### NO<sub>2</sub> - Prevalence of asthma ever - Children (<18 years)

| Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Study Name                                                                                                                                                                                                                                                                                                                                                                                 | Exposure window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Relative Risk              | RR                                                                                                                                                                                           | 95%-CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weight                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hirsch et al. 1999<br>Krämer et al. 2000<br>Janssen et al. 2003<br>Morgenstern et al. 2008<br>Rosenlund et al. 2009<br>Sahsuvaroglu et al. 2009<br>Pénard-Morand et al. 2010<br>Svendsen et al. 2012<br>Liu et al. 2013<br>Pedersen et al. 2013<br>Abidin et al. 2014<br>Dell et al. 2014<br>Liu et al. 2014<br>Ranzi et al. 2014<br>Mölter et al. 2015<br>Deng et al. 2015<br>Deng et al. 2016<br>Liu et al. 2017<br>Knibbs et al. 2017<br>Knibbs et al. 2019<br><b>Random effects model</b><br>Prediction interval<br>Heterogeneity: $I^2 = 55\%$ , $\tau^2 =$ | ISAAC Dresden<br>Düsseldorf School Survey<br>ISAAC Southwestern Netherlands<br>GINI, LISA: Munich<br>ISAAC Rome<br>ISAAC Hamilton<br>French Six Cities<br>El Paso Children's Health<br>SNEC Kindergarten<br>EDEN<br>ISAAC Malaysia<br>T-CHEQ<br>SNEC<br>GASPII<br>ESCAPE<br>ISAAC East London<br>CCHH Changsha<br>CCHH Shanghai<br>SIMSAM Medication<br>ACHAPS<br>Czech Respiratory Cohort | Annual mean<br>Annual average current year<br>Annual average current year<br>Annual average at current address<br>Exposure in 2000-2001 (recent yea<br>Currulative average<br>Annual average current year<br>Average recent<br>Three year average at baseline<br>Entire pregnancy<br>Annual average current year<br>Annual average current year<br>Annual average current year<br>Currulative average<br>Currulative average<br>Annual average current year<br>Currulative average<br>Annual average current year<br>Annual average current year<br>Previous year annual average<br>Five year average at baseline | Sar)                       | 1.16<br>0.90<br>1.21<br>1.06<br>0.85<br>1.05<br>1.05<br>1.05<br>1.00<br>1.16<br>0.78<br>1.150<br>1.17<br>1.25<br>1.01<br>1.10<br>0.74<br>1.45<br>1.17<br>1.06<br>1.40<br>0.87<br><b>1.10</b> | $\begin{matrix} [0.94; 1.43]\\ [0.52; 1.56]\\ [0.85; 1.71]\\ [0.60; 1.88]\\ [0.69; 1.06]\\ [1.00; 4.48]\\ [0.92; 1.20]\\ [0.86; 1.17]\\ [0.98; 1.38]\\ [0.96; 1.43]\\ [0.52; 1.16]\\ [0.52; 1.16]\\ [0.52; 1.16]\\ [0.52; 1.53]\\ [0.69; 1.47]\\ [0.87; 2.58]\\ [0.96; 1.47]\\ [0.87; 2.58]\\ [0.96; 1.47]\\ [0.87; 2.58]\\ [0.96; 1.47]\\ [0.87; 1.35]\\ [0.69; 1.47]\\ [1.11; 1.88]\\ [1.01; 1.35]\\ [0.46; 1.17]\\ [1.11; 1.88]\\ [1.01; 1.36]\\ [1.02; 1.11]\\ [1.02; 1.11]\\ [1.02; 1.19]\\ [0.89; 1.36]\end{matrix}$ | 5.6%<br>1.3%<br>2.8%<br>5.4%<br>0.7%<br>8.2%<br>7.5%<br>6.8%<br>1.3%<br>5.8%<br>10.5%<br>2.4%<br>3.4%<br>10.5%<br>4.2%<br>7.6%<br>11.8%<br>4.2%<br>5.2% |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Relative Risk per 10 µg/m° |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                         |

Recent years > cumulative average > first year of life > at birth > pregnancy

Subgroup analysis – study design

| Study                                   | Study Name                     | Relative Risk                         | RR     | 95%-CI       |
|-----------------------------------------|--------------------------------|---------------------------------------|--------|--------------|
| Case-control                            |                                | L                                     |        |              |
| Dell et al. 2014                        | T-CHEQ                         | +=                                    | 1.09   | [0.92; 1.30] |
| Cohort                                  |                                | I                                     |        |              |
| Morgonstorn et al. 2009                 | CINIL LISA: Munich             |                                       | 1.06   | 10 60: 1 001 |
| Pederson at al 2012                     | EDEN                           |                                       | 0.79   | [0.50, 1.00] |
| Panzi et al. 2014                       | CASPIL                         |                                       | 1.02   | [0.32, 1.10] |
| Mölter et al. 2014                      | ESCAPE                         |                                       | 1.05   | [0.91:1.49]  |
| Oudin et al. 2017                       | SIMSAM Medication              | +                                     | 1.06   | [1 02: 1 11] |
| Random effects model                    | childen in medication          |                                       | 1.06   | [1.01.1.11]  |
| Heterogeneity: $l^2 = 0\%$ , $\tau^2 =$ | 0, <i>p</i> = 0.67             |                                       |        | []           |
| Cross sectional                         |                                |                                       |        |              |
| Hirsch et al. 1999                      | ISAAC Dresden                  | <del></del>                           | 1.16   | [0.94; 1.43] |
| Krämer et al. 2000                      | Düsseldorf School Survey       | · · · · · · · · · · · · · · · · · · · | 0.90   | [0.52; 1.56] |
| Janssen et al. 2003                     | ISAAC Southwestern Netherlands |                                       | 1.21   | [0.85; 1.71] |
| Rosenlund et al. 2009                   | ISAAC Rome                     | · · · · ·                             | 0.85   | [0.69; 1.06] |
| Sahsuvaroglu et al. 2009                | ISAAC Hamilton                 |                                       | > 2.12 | [1.00; 4.48] |
| Pénard-Morand et al. 2010               | French Six Cities              | -+                                    | 1.05   | [0.92; 1.20] |
| Svendsen et al. 2012                    | El Paso Children's Health      |                                       | 1.00   | [0.86; 1.17] |
| Liu et al. 2013                         | SNEC Kindergarten              |                                       | 1.16   | [0.98; 1.38] |
| Liu et al. 2014                         | SNEC                           |                                       | 1.25   | [1.15; 1.35] |
| Abidin et al. 2014                      | ISAAC Malaysia                 |                                       | → 1.50 | [0.87; 2.58] |
| Wood et al. 2015                        | ISAAC East London              | • • • • • • • • • • • • • • • • • • • | 0.74   | [0.46; 1.17] |
| Deng et al. 2016                        | CCHH Changsha                  | · · · · ·                             | 1.42   | [1.14; 1.77] |
| Liu et al. 2016                         | CCHH Shanghai                  |                                       | 1.08   | [0.91; 1.29] |
| Knibbs et al. 2018                      | ACHAPS                         | · · · ·                               | 1.40   | [1.08; 1.81] |
| Puklová et al. 2019                     | Czech Respiratory Cohort       | · · ·                                 | 0.87   | [0.70; 1.09] |
| Random effects model                    |                                | $\sim$                                | 1.11   | [1.00; 1.24] |
| Heterogeneity: $l^2 = 62\%$ , $\tau^2$  | = 0.0158, p < 0.01             |                                       |        |              |
|                                         |                                |                                       |        |              |
|                                         |                                | 0.6 0.75 1 1.5                        | 2      |              |
|                                         |                                | Relative Risk per 10 µg/m             |        |              |

44

Primary meta-analysis

## NO<sub>X</sub> - Prevalence of asthma ever - Children (<18 years)



Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias selection bias domain – low/moderate vs high

| Study                                       | Study Name                   |     | Re       | ative Risk                    | RR   | 95%-CI       |
|---------------------------------------------|------------------------------|-----|----------|-------------------------------|------|--------------|
| Low/Moderate                                |                              |     |          | 1                             |      |              |
| Zhang et al. 2002                           | Chinese 4-City School Survey | y   |          |                               | 0.98 | [0.87; 1.12] |
| Hwang et al. 2005                           | ISAAC Taiwan                 |     |          |                               | 1.01 | [0.94; 1.08] |
| McConnell et al. 2006                       | CHS                          |     |          | - <del></del> -               | 1.04 | [0.97; 1.11] |
| Pénard-Morand et al. 2010                   | French Six Cities            |     |          |                               | 1.03 | [0.96; 1.10] |
| Mölter et al. 2015                          | ESCAPE                       |     | -        |                               | 1.07 | [0.86; 1.33] |
| Random effects model                        |                              |     |          | $\diamond$                    | 1.02 | [1.00; 1.05] |
| Heterogeneity: $I^2 = 0\%$ , $\tau^2 = 0\%$ | = 0, <i>p</i> = 0.91         |     |          |                               |      |              |
| High                                        |                              |     |          |                               |      |              |
| Wood et al. 2015                            | ISAAC East London            | •   |          |                               | 0.82 | [0.55; 1.23] |
|                                             |                              |     |          |                               |      |              |
|                                             |                              |     |          | 1                             |      |              |
|                                             |                              | 0.6 | 0.75     | 1                             | 1.5  |              |
|                                             |                              |     | Relative | Risk per 20 µg/m <sup>3</sup> |      |              |

Sensitivity analysis - risk of bias outcome measurement domain - moderate vs high



# $\mathrm{NO}_{\mathrm{x}}-\mathrm{Prevalence}$ of asthma ever – Children

Subgroup analysis – region

| Study                                   | Study Name                   |     |      | Relative Risk | RR   | 95%-CI       |
|-----------------------------------------|------------------------------|-----|------|---------------|------|--------------|
| North America                           |                              |     |      |               |      |              |
| McConnell et al. 2006                   | CHS                          |     |      |               | 1.04 | [0.97; 1.11] |
| Master Furne                            |                              |     |      |               |      |              |
| western Europe                          | 5 1 01 011                   |     |      | 100           |      |              |
| Penard-Morand et al. 2010               | French Six Cities            |     |      |               | 1.03 | [0.96; 1.10] |
| Mölter et al. 2015                      | ESCAPE                       |     |      |               | 1.07 | [0.86; 1.33] |
| Wood et al. 2015                        | ISAAC East London            | •   |      |               | 0.82 | [0.55; 1.23] |
| Random effects model                    |                              |     |      | $\rightarrow$ | 1.03 | [0.91; 1.16] |
| Heterogeneity: $l^2 = 0\%$ , $\tau^2 =$ | = < 0.0001, <i>p</i> = 0.51  |     |      |               |      |              |
| Asia                                    |                              |     |      |               |      |              |
| Zhang et al. 2002                       | Chinese 4-City School Survey | у   |      |               | 0.98 | [0.87; 1.12] |
| Hwang et al. 2005                       | ISAAC Taiwan                 |     |      |               | 1.01 | [0.94; 1.08] |
|                                         |                              | _   | -    |               |      |              |
|                                         |                              | 0.6 | 0.75 | 1             | 1.5  |              |

# NO<sub>x</sub> – Prevalence of asthma ever – Children Subgroup analysis – year of publication

| Study                                   | Study Name                 |     | Re          | elative Risk           | RR   | 95%-CI       |
|-----------------------------------------|----------------------------|-----|-------------|------------------------|------|--------------|
| Before 2008                             |                            |     |             | 1                      |      |              |
| Zhang et al. 2002                       | Chinese 4-City School Surv | ey  |             |                        | 0.98 | [0.87; 1.12] |
| Hwang et al. 2005                       | ISAAC Taiwan               |     |             | - <del>10</del> -10-10 | 1.01 | [0.94; 1.08] |
| McConnell et al. 2006                   | CHS                        |     |             | - <del>1</del>         | 1.04 | [0.97; 1.11] |
| Random effects model                    |                            |     |             | $\Leftrightarrow$      | 1.02 | [0.96; 1.08] |
| Heterogeneity: $I^2 = 0\%$ , $\tau^2 =$ | 0, <i>p</i> = 0.70         |     |             |                        |      |              |
| After 2008                              |                            |     |             |                        |      |              |
| Pénard-Morand et al. 2010               | French Six Cities          |     |             | -                      | 1.03 | [0.96; 1.10] |
| Mölter et al. 2015                      | ESCAPE                     |     |             |                        | 1.07 | [0.86; 1.33] |
| Wood et al. 2015                        | ISAAC East London          | +   | <del></del> |                        | 0.82 | [0.55; 1.23] |
| Random effects model                    |                            |     |             |                        | 1.03 | [0.91; 1.16] |
| Heterogeneity: $l^2 = 0\%$ , $\tau^2 =$ | < 0.0001, p = 0.51         |     |             | 2.72572                |      |              |
|                                         |                            |     |             | 1                      |      |              |
|                                         |                            | 0.6 | 0.75        | 1                      | 1.5  |              |

# NO<sub>x</sub> – Prevalence of asthma ever – Children Subgroup analysis – traffic specificity

| Study                                     | Study Name                   | Relative Risk | RR     | 95%-CI      |
|-------------------------------------------|------------------------------|---------------|--------|-------------|
| High                                      |                              |               |        |             |
| McConnell et al. 2006                     | CHS                          |               | 1.04 [ | 0.97; 1.11] |
| Pénard-Morand et al. 2010                 | French Six Cities            |               | 1.03 [ | 0.96; 1.10] |
| Mölter et al. 2015                        | ESCAPE                       |               | 1.07 [ | 0.86; 1.33] |
| Wood et al. 2015                          | ISAAC East London            |               | 0.82 [ | 0.55; 1.23] |
| Random effects model                      |                              | $\diamond$    | 1.03 [ | 0.98; 1.09] |
| Heterogeneity: $I^2 = 0\%$ , $\tau^2 = 4$ | : 0.0001, p = 0.70           |               |        |             |
| Moderate                                  |                              |               |        |             |
| Zhang et al. 2002                         | Chinese 4-City School Survey |               | 0.98 [ | 0.87; 1.12] |
| Hwang et al. 2005                         | ISAAC Taiwan                 | -             | 1.01 [ | 0.94; 1.08] |
|                                           |                              |               |        |             |
|                                           |                              | 0.75          |        |             |

Subgroup analysis - smoking adjustment



### EC – Prevalence of asthma ever – Children

### Primary meta-analysis

### EC - Prevalence of asthma ever - Children (<18 years)



#### Primary meta-analysis

### PM<sub>10</sub> - Prevalence of asthma ever - Children (<18 years)



Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low vs high

| Study                                    | Study Name               | Relative Risk                         | RR   | 95%-CI       |
|------------------------------------------|--------------------------|---------------------------------------|------|--------------|
| Low                                      |                          | Ι                                     |      |              |
| Pénard-Morand et al. 2010                | French Six Cities        |                                       | 1.27 | [1.07; 1.50] |
| Pedersen et al. 2013                     | EDEN                     | • • • • • • • • • • • • • • • • • • • | 0.38 | [0.10; 1.41] |
| Mölter et al. 2015                       | ESCAPE                   |                                       | 0.88 | [0.63; 1.23] |
| Wood et al. 2015                         | ISAAC East London        | • • • •                               | 0.48 | [0.10; 2.42] |
| Random effects model                     |                          |                                       | 0.94 | [0.48; 1.86] |
| Heterogeneity: $l^2 = 60\%$ , $\tau^2 =$ | 0.0871, <i>p</i> = 0.06  |                                       |      |              |
| High                                     |                          |                                       |      |              |
| Puklová et al. 2019                      | Czech Respiratory Cohort | -=+                                   | 0.86 | [0.70; 1.06] |
|                                          |                          |                                       |      |              |
|                                          |                          | · · · · · · · · · · · · · · · · · · · | -    |              |

0.2

0.5 1 2 3 Relative Risk per 10 µg/m<sup>3</sup>

Sensitivity analysis - risk of bias selection bias domain - low/moderate vs high

| Study                           | Study Name               |     | Relati       | ve Risk       |     | RR   | 95%-CI       |
|---------------------------------|--------------------------|-----|--------------|---------------|-----|------|--------------|
| Low/Moderate                    |                          |     |              | 1             |     |      |              |
| Pénard-Morand et al. 201        | 0 French Six Cities      |     |              |               |     | 1.27 | [1.07; 1.50] |
| Pedersen et al. 2013            | EDEN                     |     |              | _             |     | 0.38 | [0.10; 1.41] |
| Mölter et al. 2015              | ESCAPE                   |     |              |               |     | 0.88 | [0.63; 1.23] |
| Puklová et al. 2019             | Czech Respiratory Coho   | t   |              |               |     | 0.86 | [0.70; 1.06] |
| Random effects model            |                          |     |              |               | -11 | 0.96 | [0.60; 1.55] |
| Heterogeneity: $l^2 = 74\%$ , 1 | $t^2 = 0.0454, p < 0.01$ |     |              |               |     |      |              |
| High                            |                          |     |              |               |     |      |              |
| Wood et al. 2015                | ISAAC East London        | -   |              |               |     | 0.48 | [0.10; 2.42] |
|                                 |                          |     |              |               |     |      |              |
|                                 |                          |     | 1            | -             | 1   |      |              |
|                                 |                          | 0.2 | 0.5          | 1             | 2   | 3    |              |
|                                 |                          |     | Relative Ris | k per 10 µg/n | 3   |      |              |

Sensitivity analysis - risk of bias outcome measurement domain - low/moderate vs high

| Study                                  | Study Name                |     | Relative      | e Risk                   |   | RR   | 95%-CI       |
|----------------------------------------|---------------------------|-----|---------------|--------------------------|---|------|--------------|
| Low/Moderate                           |                           |     |               | 1                        |   |      |              |
| Pénard-Morand et al. 2010              | French Six Cities         |     |               |                          |   | 1.27 | [1.07; 1.50] |
| Pedersen et al. 2013                   | EDEN                      |     | •             | -                        |   | 0.38 | [0.10; 1.41] |
| Mölter et al. 2015                     | ESCAPE                    |     |               | -                        |   | 0.88 | [0.63; 1.23] |
| Puklová et al. 2019                    | Czech Respiratory Cohort  |     |               | -                        |   | 0.86 | [0.70; 1.06] |
| Random effects model                   |                           |     |               |                          |   | 0.96 | [0.60; 1.55] |
| Heterogeneity: $l^2 = 74\%$ , $\tau^2$ | = 0.0454, <i>p</i> < 0.01 |     |               |                          |   |      |              |
| High                                   |                           |     |               |                          |   |      |              |
| Wood et al. 2015                       | ISAAC East London         | •   |               |                          |   | 0.48 | [0.10; 2.42] |
|                                        |                           |     |               |                          |   |      |              |
|                                        |                           |     |               | -                        | 1 |      |              |
|                                        |                           | 0.2 | 0.5           | 1                        | 2 | 3    |              |
|                                        |                           |     | Relative Risk | per 10 µg/m <sup>3</sup> |   |      |              |

# $PM_{10}$ – Prevalence of asthma ever – Children

Subgroup analysis – region



Subgroup analysis – year of publication



```
Subgroup analysis – traffic specificity
```

All studies moderate specificity

PM<sub>10</sub> – Prevalence of asthma ever – Children Subgroup analysis – smoking adjustment





#### Primary meta-analysis

### PM<sub>2.5</sub> - Prevalence of asthma ever - Children (<18 years)



### CO – Prevalence of asthma ever – Children

### Primary meta-analysis

## CO - Prevalence of asthma ever - Children (<18)



### Distance measures – Prevalence of asthma ever – Adults

| Reference            | Study Name            |          |                    |   | Categories            | RR   | 95% CI       |
|----------------------|-----------------------|----------|--------------------|---|-----------------------|------|--------------|
| Cesaroni et al. 2008 | SIDRIA                |          |                    |   | <50 vs. >200 m        | 1.01 | [0.73, 1.39] |
| Cesaroni et al. 2008 | SIDRIA                | ļ        |                    |   | 50-100 vs. >200 m     | 1.07 | [0.76, 1.52] |
| Cesaroni et al. 2008 | SIDRIA                | F        | <b></b>            |   | 100-200 vs. >200 m    | 1.00 | [0.77, 1.29] |
| Nuvolone et al. 2011 | Tuscany Health Survey |          |                    |   | <100 vs. 250-800 m    | 1.68 | [0.97, 2.88] |
| Nuvolone et al. 2011 | Tuscany Health Survey | ) —      |                    |   | <100 vs. 250-800 m    | 1.59 | [0.85, 2.98] |
| Nuvolone et al. 2011 | Tuscany Health Survey | <b> </b> |                    |   | 100-250 vs. 250-800 m | 0.58 | [0.30, 1.15] |
| Nuvolone et al. 2011 | Tuscany Health Survey |          |                    |   | 100-250 vs. 250-800 m | 1.55 | [0.83, 2.87] |
|                      |                       |          |                    |   |                       |      |              |
|                      |                       | 0 1      | 2<br>Relative Risk | 3 |                       |      |              |

### Distance measures - Prevalence of asthma ever - Adults

Nuvolone et al. 2011 estimates were stratified by sex. All prevalence studies.

### Distance measures – Prevalence of asthma ever – Children

### Distance measures - Prevalence of asthma ever - Children (<18 years)

| South Holland Respiratory Survey<br>ISAAC Eastern UK<br>ISAAC Eastern UK<br>ISAAC Eastern UK<br>CHS<br>CHS<br>CHS<br>GINI, LISA: Munich |                                                                                                                                                                                                                                               | <li>&lt;100 vs. &gt;100-1000 m<br/></li> <li>&lt;150 vs. &gt;300 m<br/></li> <li>&lt;150 vs. &gt;300 m     </li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.68<br>0.85<br>1.05<br>1.03<br>1.29<br>1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [0.68, 4.14]<br>[0.60, 1.05]<br>[0.90, 1.25]<br>[0.87, 1.23]<br>[1.01, 1.66]<br>[0.82, 1.36]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISAAC Eastern UK<br>ISAAC Eastern UK<br>ISAAC Eastern UK<br>CHS<br>CHS<br>GINI, LISA: Munich                                            |                                                                                                                                                                                                                                               | <30 vs. >150 m<br>30-89 vs. >150 m<br>90-149 vs. >150 m<br><75 vs. >300 m<br>75-150 vs. >300 m<br>150-300 vs. >300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.85<br>1.05<br>1.03<br>1.29<br>1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.60, 1.05]<br>[0.90, 1.25]<br>[0.87, 1.23]<br>[1.01, 1.66]<br>[0.82, 1.36]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ISAAC Eastern UK<br>ISAAC Eastern UK<br>CHS<br>CHS<br>CHS<br>GINI, LISA: Munich                                                         |                                                                                                                                                                                                                                               | 30-89 vs. >150 m<br>90-149 vs. >150 m<br><75 vs. >300 m<br>75-150 vs. >300 m<br>150-300 vs. >300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.05<br>1.03<br>1.29<br>1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [0.90, 1.25]<br>[0.87, 1.23]<br>[1.01, 1.66]<br>[0.82, 1.36]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ISAAC Eastern UK<br>CHS<br>CHS<br>CHS<br>GINI, LISA: Munich                                                                             |                                                                                                                                                                                                                                               | 90-149 vs. >150 m<br><75 vs. >300 m<br>75-150 vs. >300 m<br>150-300 vs. >300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.03<br>1.29<br>1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.87, 1.23]<br>[1.01, 1.66]<br>[0.82, 1.36]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CHS<br>CHS<br>CHS<br>GINI, LISA: Munich                                                                                                 |                                                                                                                                                                                                                                               | <75 vs. >300 m<br>75-150 vs. >300 m<br>150-300 vs. >300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.29<br>1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [1.01, 1.66]<br>[0.82, 1.36]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CHS<br>CHS<br>GINI, LISA: Munich                                                                                                        |                                                                                                                                                                                                                                               | 75-150 vs. >300 m<br>150-300 vs. >300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.82, 1.36]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CHS<br>GINI, LISA: Munich                                                                                                               |                                                                                                                                                                                                                                               | 150-300 vs. >300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| GINI, LISA: Munich                                                                                                                      |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.73, 1.15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                         |                                                                                                                                                                                                                                               | <50 vs. >50 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [1.00, 1.51]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GINI, LISA: Munich                                                                                                                      |                                                                                                                                                                                                                                               | <50 vs. >50 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [1.01, 2.59]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Liaoning Survey 2007                                                                                                                    |                                                                                                                                                                                                                                               | <20 vs. >100 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.83, 1.63]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Liaoning Survey 2007                                                                                                                    |                                                                                                                                                                                                                                               | 20-100 vs. >100 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.63, 1.11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ISAAC Rome                                                                                                                              | H                                                                                                                                                                                                                                             | <100 vs. >100 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.40, 1.10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Health Survey England                                                                                                                   |                                                                                                                                                                                                                                               | <150 vs. >150 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.95, 1.07]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OMCHS                                                                                                                                   |                                                                                                                                                                                                                                               | <50 vs. >200 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [1.44, 11.24]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OMCHS                                                                                                                                   |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.36, 4.54]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OMCHS                                                                                                                                   |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.91, 6.28]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ISAAC Bytom                                                                                                                             |                                                                                                                                                                                                                                               | <100 vs. >100 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.95, 2.27]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| T-CHEQ                                                                                                                                  |                                                                                                                                                                                                                                               | <100 vs. >100 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.33, 4.96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GASPII                                                                                                                                  | II                                                                                                                                                                                                                                            | <86.1 vs. >86.1 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.33, 1.13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CHEER                                                                                                                                   | I                                                                                                                                                                                                                                             | <75 vs. >225 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.84, 1.46]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CHEER                                                                                                                                   |                                                                                                                                                                                                                                               | 75-150 vs. >225 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.98, 1.56]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CHEER                                                                                                                                   |                                                                                                                                                                                                                                               | 150-225 vs. >225 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.81, 1.59]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CHEER                                                                                                                                   |                                                                                                                                                                                                                                               | <75 vs. >700 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [1.05, 3.06]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CHEER                                                                                                                                   |                                                                                                                                                                                                                                               | 75-700 vs. >700 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [0.83, 2.24]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                         |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                                                                                                                                       | 1 2                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                         | GINI, LISA: Munich<br>GINI, LISA: Munich<br>Liaoning Survey 2007<br>ISAAC Rome<br>Health Survey England<br>OMCHS<br>OMCHS<br>OMCHS<br>ISAAC Bytom<br>T-CHEQ<br>GASPII<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER | GINI, LISA: Munich<br>GINI, LISA: Munich<br>Liaoning Survey 2007<br>Liaoning Survey 2007<br>ISAAC Rome<br>Health Survey England<br>OMCHS<br>OMCHS<br>OMCHS<br>ISAAC Bytom<br>T-CHEQ<br>GASPII<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER | GINI, LISA: Munich<br>GINI, LISA: Munich<br>Liaoning Survey 2007<br>Liaoning Survey 2007<br>ISAAC Rome<br>Health Survey England<br>OMCHS<br>OMCHS<br>OMCHS<br>OMCHS<br>OMCHS<br>OMCHS<br>OMCHS<br>OMCHS<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CHEER<br>CH | GINI, LISA: Munich        <50 vs. >50 m       1.23         GINI, LISA: Munich        <50 vs. >50 m       1.66         Liaoning Survey 2007       20.100 vs. >100 m       0.84         ISAAC Rome       <100 vs. >100 m       0.84         Vertex Pengland       <150 vs. >100 m       0.70         Health Survey England       <150 vs. >100 m       0.70         OMCHS       <50 vs. >200 m       4.01         OMCHS        <50 vs. >200 m       1.39         OMCHS         <100 vs. >100 m       1.47         T-CHEQ         <100 vs. >100 m       1.47         T-CHEQ         <86.1 vs. >86.1 m       0.62         CHEER          <86.1 vs. >86.1 m       0.62         CHEER           75 vs. >225 m       1.11         CHEER           75 vs. >700 m       1.38         CHEER            1.33         CHEER            1.33         CHEER          3< |

All prevalence studies

### Density measures - Prevalence of asthma ever - Adults



#### Density measures - Prevalence of asthma ever - Adults

All prevalence studies

## Density measures – Prevalence of asthma ever – Children

| Reference             | Study Name                       |                          | Per Increment/Categories              | RR   | 95% CI       |
|-----------------------|----------------------------------|--------------------------|---------------------------------------|------|--------------|
| Wjst et al. 1993      | Munich Asthma and Allergy        | -                        | 25000 vehicles/day                    | 1.06 | [0.97, 1.16] |
| van Vliet et al. 1997 | South Holland Respiratory Survey | ⊢ <b>∎</b>               | high vs. low car volume               | 0.30 | [0.09, 0.97] |
| van Vliet et al. 1997 | South Holland Respiratory Survey |                          | high vs. low truck volume             | 0.54 | [0.18, 1.60] |
| Nicolai et al. 2003   | ISAAC Munich                     |                          | >30000 vehicles/day vs. none          | 1.19 | [0.76, 1.87] |
| Nicolai et al. 2003   | ISAAC Munich                     | F                        | 15001-30000 vehicles/day vs. none     | 0.93 | [0.58, 1.51] |
| Nicolai et al. 2003   | ISAAC Munich                     | <b>⊢</b>                 | 2600-15000 vehicles/day vs. none      | 0.90 | [0.55, 1.49] |
| Gordian et al. 2006   | Anchorage Respiratory            |                          | >8000 vs. <4000 vehicle-km/day        | 2.83 | [1.23, 6.51] |
| Gordian et al. 2006   | Anchorage Respiratory            | II                       | 4000 to 8000 vs. <4000 vehicle-km/day | 1.40 | [0.77, 2.55] |
| Andersson et al. 2011 | OLIN                             | L                        | >8000 vs. <8000 vehicles/day          | 1.40 | [0.80, 2.50] |
| Andersson et al. 2011 | OLIN                             | •                        | >500 vs. <500 heavy vehicles/day      | 1.50 | [0.80, 2.90] |
| Skrzypek et al. 2013  | ISAAC Bytom                      | •                        | >90th vs. <90th percentile            | 1.60 | [1.07, 2.39] |
|                       |                                  |                          |                                       |      |              |
|                       |                                  | 0 1 2 3<br>Relative Risk | 4                                     |      |              |

### Density measures - Prevalence of asthma ever - Children (<18 years)

All prevalence studies

## 9.3 Prevalence of active asthma



Footnote: The following increments were used:  $10 \ \mu g/m^3$  for NO<sub>2</sub>,  $20 \ \mu g/m^3$  for NO<sub>x</sub>,  $1 \ \mu g/m^3$  for EC and  $10 \ \mu g/m^3$  for PM<sub>10</sub>. Effect estimates cannot be directly compared across the different traffic–related pollutants because the selected increments do not necessarily represent the same contrast in exposure.

## NO<sub>2</sub> – Prevalence of active asthma – Children

## Primary meta-analysis

## NO<sub>2</sub> - Prevalence of active/current asthma - Children (<18 years)

| Study                                   | Study Name                   | Exposure window                |          |         | Relative Ris     | k                   | RR     | 95%-CI       | Weight |
|-----------------------------------------|------------------------------|--------------------------------|----------|---------|------------------|---------------------|--------|--------------|--------|
| Krämer et al. 2009                      | GINI, LISA: Wesel            | Cumulative average             | -        |         | •                |                     | 0.94   | [0.56; 1.60] | 1.9%   |
| Gehring et al. 2010                     | PIAMA                        | Annual average at birth        |          |         | - <u></u>        |                     | 1.21   | [0.95; 1.55] | 6.3%   |
| Pan et al. 2010                         | Liaoning Survey 2002         | Four year average at baseline  |          |         |                  |                     | 1.12   | [1.04; 1.20] | 16.1%  |
| Svendsen et al. 2012                    | El Paso Children's Health    | Average recent                 |          |         |                  |                     | 1.02   | [0.88; 1.18] | 11.2%  |
| Liu et al. 2013                         | SNEC Kindergarten            | Three year average at baseline | 9        |         |                  |                     | 1.21   | [0.93; 1.57] | 5.8%   |
| Zhou et al. 2013                        | French Six Cities            | Annual average current year    |          |         | <del>- # *</del> |                     | 1.00   | [0.88; 1.14] | 12.0%  |
| Dell et al. 2014                        | T-CHEQ                       | Average first year             |          |         |                  | •                   | 1.10   | [0.91; 1.34] | 8.4%   |
| Liu et al. 2014                         | SNEC                         | Three year average at baseline | 9        |         |                  |                     | 1.22   | [1.06; 1.40] | 11.6%  |
| Gehring et al. 2015                     | ESCAPE                       | Annual average at birth        |          |         |                  |                     | 1.06   | [0.89; 1.27] | 9.2%   |
| Cakmak et al. 2016                      | Windsor Children's Health 05 | Annual average current year    |          | -       | =                |                     | 1.07   | [0.80; 1.42] | 5.1%   |
| Knibbs et al. 2018                      | ACHAPS                       | Previous year annual average   |          |         |                  |                     | → 1.77 | [1.36; 2.29] | 5.9%   |
| Puklová et al. 2019                     | Czech Respiratory Cohort     | Five year average at baseline  |          |         | -                |                     | 0.93   | [0.73; 1.19] | 6.4%   |
| Random effects model                    |                              |                                |          |         | ÷                |                     | 1.12   | [1.02; 1.23] | 100.0% |
| Prediction interval                     |                              |                                |          |         |                  |                     |        | [0.90; 1.39] |        |
| Heterogeneity: $I^2 = 49\%$ , $\tau$    | $^{2} = 0.0078, p = 0.03$    |                                | <u> </u> |         |                  |                     |        | 10000        |        |
| . , , , , , , , , , , , , , , , , , , , |                              |                                | 0.6      | 0.75    | 1                | 1.5                 | 2      |              |        |
|                                         |                              |                                |          | Relativ | e Risk per 1     | 0 µg/m <sup>3</sup> |        |              |        |

## $NO_2$ – Prevalence of active asthma – Children

Funnel plot



Footnote: The vertical lines in the funnel plots represent the pooled fixed and random effect estimates. The vertical dashed line in the middle of the funnel shows the fixed effect estimate. As the Panel applied a random–effects model, the funnel plot also presents the random–effects estimate with the dotted line.

### NO<sub>2</sub> – Prevalence of active asthma – Children

Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low/moderate vs high

| Study                               | Study Name                        |        | Relative Risk     |     | RR     | 95%-CI       |
|-------------------------------------|-----------------------------------|--------|-------------------|-----|--------|--------------|
| Low/Moderate                        |                                   |        |                   |     |        |              |
| Krämer et al. 2009                  | GINI, LISA: Wesel                 |        | ·                 |     | 0.94   | [0.56; 1.60] |
| Gehring et al. 2010                 | PIAMA                             |        |                   |     | 1.21   | [0.95; 1.55] |
| Svendsen et al. 2012                | El Paso Children's Health         | 37     |                   |     | 1.02   | [0.88; 1.18] |
| Liu et al. 2013                     | SNEC Kindergarten                 |        | +                 | -   | 1.21   | [0.93; 1.57] |
| Zhou et al. 2013                    | French Six Cities                 | _      | +                 |     | 1.00   | [0.88; 1.14] |
| Dell et al. 2014                    | T-CHEQ                            |        |                   |     | 1.10   | [0.91; 1.34] |
| Liu et al. 2014                     | SNEC                              |        |                   | -   | 1.22   | [1.06; 1.40] |
| Gehring et al. 2015                 | ESCAPE                            | -      | *                 |     | 1.06   | [0.89; 1.27] |
| Knibbs et al. 2018                  | ACHAPS                            |        |                   |     | • 1.77 | [1.36; 2.29] |
| Random effects model                |                                   |        | $\sim$            |     | 1.15   | [1.01; 1.30] |
| Heterogeneity: 1 <sup>2</sup> = 58% | $p, \tau^2 = 0.0146, p = 0.01$    |        |                   |     |        |              |
| High                                |                                   |        |                   |     |        |              |
| Pan et al. 2010                     | Liaoning Survey 2002              |        |                   |     | 1.12   | [1.04; 1.20] |
| Cakmak et al. 2016                  | Windsor Children's Health 05      |        |                   |     | 1.07   | [0.80; 1.42] |
| Puklová et al. 2019                 | Czech Respiratory Cohort          |        | -                 |     | 0.93   | [0.73; 1.19] |
| Random effects model                |                                   | 1      |                   |     | 1.08   | [0.89; 1.32] |
| Heterogeneity: /2 = 1%,             | τ <sup>2</sup> = 0.0019, p = 0.36 |        |                   |     |        |              |
|                                     |                                   | 0.75   |                   | 15  |        |              |
|                                     | 0.6                               | 0.75   | T<br>Distance 40  | 1.5 | 2      |              |
|                                     |                                   | Relati | ive Risk per 10 µ | g/m |        |              |

## NO<sub>2</sub> – Prevalence of active asthma – Children

Subgroup analysis – region

| 1                                                  |                                          |
|----------------------------------------------------|------------------------------------------|
| 1.02                                               | [0.88; 1.18]                             |
| 1.10                                               | [0.91; 1.34]                             |
| 1.07                                               | [0.80; 1.42]                             |
| 1.05                                               | [0.94; 1.17]                             |
|                                                    |                                          |
| ~ ~ ~                                              |                                          |
| • 0.94                                             | [0.56; 1.60]                             |
| 1.21                                               | [0.95; 1.55]                             |
| 1.00                                               | [0.88; 1.14]                             |
| 1.06                                               | [0.89; 1.27]                             |
| 1.05                                               | [0.92; 1.19]                             |
|                                                    |                                          |
|                                                    |                                          |
| 1.12                                               | [1.04; 1.20]                             |
| 1.21                                               | [0.93; 1.57]                             |
| 1.22                                               | [1.06; 1.40]                             |
| 1.15                                               | [1.01; 1.29]                             |
|                                                    |                                          |
|                                                    |                                          |
| <b>1</b> .77                                       | [1.36; 2.29]                             |
|                                                    |                                          |
|                                                    |                                          |
| 0.93                                               | [0.73; 1.19]                             |
| — <del>                                     </del> |                                          |
|                                                    |                                          |
| 1 1.5 2                                            |                                          |
|                                                    | 1.03<br>1.12<br>1.21<br>1.22<br>1.15<br> |

Subgroup analysis – year of publication All published after 2008

# NO<sub>2</sub> – Prevalence of active asthma – Children Subgroup analysis – traffic specificity

| Study                               | Study Name                           |              |      | Relative Risk       |       | RR     | 95%-CI       |
|-------------------------------------|--------------------------------------|--------------|------|---------------------|-------|--------|--------------|
| High                                |                                      |              |      |                     |       |        |              |
| Krämer et al. 2009                  | GINI, LISA: Wesel                    | <del>.</del> |      | -                   |       | 0.94   | [0.56; 1.60] |
| Gehring et al. 2010                 | PIAMA                                |              |      |                     |       | 1.21   | [0.95; 1.55] |
| Svendsen et al. 2012                | El Paso Children's Health            |              |      | - <del> -</del>     |       | 1.02   | [0.88; 1.18] |
| Zhou et al. 2013                    | French Six Cities                    |              |      | - <u>+</u>          |       | 1.00   | [0.88; 1.14] |
| Dell et al. 2014                    | T-CHEQ                               |              |      |                     |       | 1.10   | [0.91; 1.34] |
| Gehring et al. 2015                 | ESCAPE                               |              |      |                     |       | 1.06   | [0.89; 1.27] |
| Cakmak et al. 2016                  | Windsor Children's Health 05         |              | _    |                     |       | 1.07   | [0.80; 1.42] |
| Knibbs et al. 2018                  | ACHAPS                               |              |      |                     |       | + 1.77 | [1.36; 2.29] |
| Puklová et al. 2019                 | Czech Respiratory Cohort             |              |      |                     |       | 0.93   | [0.73; 1.19] |
| Random effects model                |                                      |              |      | +                   |       | 1.10   | [0.96; 1.26] |
| Heterogeneity: 1 <sup>2</sup> = 56% | $t_{0}, \tau^{2} = 0.0172, p = 0.02$ |              |      |                     |       |        |              |
| Moderate                            |                                      |              |      |                     |       |        |              |
| Pan et al. 2010                     | Liaoning Survey 2002                 |              |      |                     |       | 1.12   | [1.04; 1.20] |
| Liu et al. 2013                     | SNEC Kindergarten                    |              |      |                     | 2.0   | 1.21   | [0.93; 1.57] |
| Liu et al. 2014                     | SNEC                                 |              |      |                     | 100   | 1.22   | [1.06; 1.40] |
| Random effects model                |                                      |              |      | $\sim$              |       | 1.15   | [1.01; 1.29] |
| Heterogeneity: $I^2 = 0\%$ ,        | $\tau^2 = 0.0003, p = 0.49$          |              |      |                     |       |        |              |
|                                     |                                      | <b>—</b>     |      |                     |       |        |              |
|                                     | 0                                    | ).6          | 0.75 | 1                   | 1.5   | 2      |              |
|                                     |                                      |              | Rela | ative Risk per 10 p | ug/m" |        |              |

# $\mathsf{NO}_2-\mathsf{Prevalence}$ of active asthma – Children

Subgroup analysis – smoking adjustment

| Study                        | Study Name                   | Relative Risk                           | RR               | 95%-CI       |
|------------------------------|------------------------------|-----------------------------------------|------------------|--------------|
| Yes                          |                              |                                         |                  |              |
| Krämer et al. 2009           | GINI, LISA: Wesel            | • • • • • • • • • • • • • • • • • • • • | 0.94             | [0.56; 1.60] |
| Gehring et al. 2010          | PIAMA                        |                                         | 1.21             | [0.95; 1.55] |
| Pan et al. 2010              | Liaoning Survey 2002         |                                         | 1.12             | [1.04; 1.20] |
| Svendsen et al. 2012         | El Paso Children's Health    |                                         | 1.02             | [0.88; 1.18] |
| Liu et al. 2013              | SNEC Kindergarten            | 2 <b></b>                               | 1.21             | [0.93; 1.57] |
| Zhou et al. 2013             | French Six Cities            |                                         | 1.00             | [0.88; 1.14] |
| Dell et al. 2014             | T-CHEQ                       |                                         | 1.10             | [0.91; 1.34] |
| Liu et al. 2014              | SNEC                         |                                         | 1.22             | [1.06; 1.40] |
| Gehring et al. 2015          | ESCAPE                       |                                         | 1.06             | [0.89; 1.27] |
| Cakmak et al. 2016           | Windsor Children's Health 05 |                                         | 1.07             | [0.80; 1.42] |
| Random effects model         |                              | $\diamond$                              | 1.10             | [1.05; 1.15] |
| Heterogeneity: $l^2 = 0\%$ , | $\tau^2 = 0, \rho = 0.64$    |                                         |                  |              |
| No                           |                              |                                         |                  |              |
| Knibbs et al. 2018           | ACHAPS                       |                                         | • • 1.77         | [1.36; 2.29] |
| Puklová et al. 2019          | Czech Respiratory Cohort     |                                         | 0.93             | [0.73; 1.19] |
|                              |                              |                                         |                  |              |
|                              | 0                            | 6 075 1                                 | 15 2             |              |
|                              | č                            | Relative Risk per 10 µ                  | g/m <sup>3</sup> |              |
# $NO_2$ – Prevalence of active asthma – Children

Sensitivity analysis – reverse selection

### NO<sub>2</sub> - Prevalence of active/current asthma - Children (<18 years)

| Study                                                                                                                                                                                                                                                        | Study Name                                                                                                                                                                                                                  | Exposure window                                                                                                                                                                                                                                                                                                                 |             | Relative Risk               | C RR                                        | 95%-CI                              | Weight                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|---------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------|
| Krämer et al. 2009<br>Gehring et al. 2010<br>Pan et al. 2010<br>Svendsen et al. 2012<br>Liu et al. 2013<br>Zhou et al. 2013<br>Dell et al. 2014<br>Liu et al. 2014<br>Gehring et al. 2015<br>Cakmak et al. 2016<br>Knibbs et al. 2018<br>Puklová et al. 2019 | GINI, LISA: Wesel<br>PIAMA<br>Liaoning Survey 2002<br>EI Paso Children's Health<br>SNEC Kindergarten<br>French Six Cities<br>T-CHEQ<br>SNEC<br>ESCAPE<br>Windsor Children's Health 05<br>ACHAPS<br>Czech Respiratory Cohort | Cumulative average<br>Annual average at birth<br>Four year average at baseline<br>Average recent<br>Three year average at baseline<br>Annual average current year<br>Annual average current year<br>Annual average current year<br>Annual average current year<br>Previous year annual average<br>Five year average at baseline | e<br>e<br>e |                             |                                             |                                     | 1.9%<br>6.2%<br>15.4%<br>10.8%<br>5.7%<br>11.6%<br>7.0%<br>11.2%<br>13.1%<br>5.1%<br>5.8%<br>6.3% |
| <b>Random effects model</b><br>Prediction interval<br>Heterogeneity: $I^2 = 51\%$ , $\tau^2$                                                                                                                                                                 | <sup>2</sup> = 0.0083, <i>p</i> = 0.02                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                 | 0.7<br>F    | 1 1<br>Relative Risk per 10 | <b>1.11</b><br>1.5 2<br>0 µg/m <sup>3</sup> | <b>[1.02; 1.22]</b><br>[0.89; 1.39] | 100.0%                                                                                            |

Recent years > cumulative average > first year of life > at birth > pregnancy

#### NO<sub>x</sub> – Prevalence of active asthma – Children

#### Primary meta-analysis

NO<sub>X</sub> - Prevalence of active/current asthma - Children (<18 years)



#### EC – Prevalence of active asthma – Children

#### Primary meta-analysis

### EC - Prevalence of active/current asthma - Children (<18 years)



#### PM<sub>10</sub> – Prevalence of active asthma – Children

#### Primary meta-analysis

### PM<sub>10</sub> - Prevalence of active/current asthma - Children (<18 years)



PM<sub>10</sub> – Prevalence of active asthma – Children

Sensitivity and subgroup analyses notes:

Risk of bias confounding domain – Gruzieva et al. 2013 and Puklova et al. 2019 high risk of bias; other two low risk of bias.

Smoking adjustment: Gruzieva et al. 2013 and Puklova et al. 2019 no smoking adjustment.

Year of publication: All studies published after 2008

### PM<sub>10</sub> – Prevalence of active asthma – Children Subgroup analysis – region

Study Study Name **Relative Risk** RR 95%-CI Western Europe Gruzieva et al. 2013 BAMSE 1.38 [0.65; 2.93] Zhou et al. 2013 French Six Cities 1.02 [0.84; 1.24] Gehring et al. 2015 ESCAPE 1.10 [0.74; 1.63] 1.05 [0.85; 1.30] Random effects model Heterogeneity:  $l^2 = 0\%$ ,  $\tau^2 = 0$ , p = 0.73Eastern Europe Puklová et al. 2019 Czech Respiratory Cohort -----0.78 [0.61; 0.99] n -0.1 0.5 1 2 3 Relative Risk per 10 µg/m<sup>3</sup>

## PM<sub>10</sub> – Prevalence of active asthma – Children Subgroup analysis – traffic specificity

| Study                   | Study Name                        | Relative Risk                          | RR   | 95%-CI       |
|-------------------------|-----------------------------------|----------------------------------------|------|--------------|
| High                    |                                   | 1                                      |      |              |
| Gruzieva et al. 2013    | BAMSE                             |                                        | 1.38 | [0.65; 2.93] |
|                         |                                   |                                        |      |              |
| Moderate                |                                   | 1                                      |      |              |
| Zhou et al. 2013        | French Six Cities                 | +                                      | 1.02 | [0.84; 1.24] |
| Gehring et al. 2015     | ESCAPE                            |                                        | 1.10 | [0.74; 1.63] |
| Puklová et al. 2019     | Czech Respiratory Cohort          | -                                      | 0.78 | [0.61; 0.99] |
| Random effects mode     | 4                                 | $\rightarrow$                          | 0.94 | [0.60; 1.46] |
| Heterogeneity: 12 = 469 | $6, \tau^2 = 0.0154, \rho = 0.16$ |                                        |      |              |
|                         |                                   |                                        |      |              |
|                         | 0.1                               | 0.5 1                                  | 2 3  |              |
|                         |                                   | Relative Risk per 10 µg/m <sup>3</sup> |      |              |

#### Distance measures - Prevalence of active asthma – Adults

| Reference               | Study Name                                   |            |      |   |              |        |   |                   | Categories         | RR   | 95% CI        |
|-------------------------|----------------------------------------------|------------|------|---|--------------|--------|---|-------------------|--------------------|------|---------------|
| Livingstone et al. 1996 | Tower Hamlets GP                             | ļ          |      |   |              |        |   |                   | <150 vs. >150 m    | 1.00 | [0.84, 1.19]  |
| Morris et al. 2000      | Tower Hamlets Respiratory                    | <b>⊢</b> ∎ |      |   |              |        |   |                   | <150 vs. >150 m    | 0.78 | [0.46, 1.32]  |
| Balmes et al. 2014      | Asthma Rhinitis Cohort, Severe Asthma Cohort |            |      |   |              |        |   |                   | <131 vs. >334 m    | 0.77 | [0.47, 1.26]  |
| Balmes et al. 2014      | Asthma Rhinitis Cohort, Severe Asthma Cohort | ŀ          | •    |   |              |        |   |                   | 131-334 vs. >334 m | 1.26 | [0.77, 2.06]  |
| Bowatte et al. 2017a    | TAHS                                         |            | -∎   | - |              |        |   |                   | <200 vs. >200m     | 1.49 | [1.09, 2.05]  |
| Bowatte et al. 2017b    | TAHS                                         |            | ╠╼╌┤ |   |              |        |   |                   | <200 vs. >200 m    | 1.21 | [0.91, 1.59]  |
| Bowatte et al. 2018     | TAHS                                         |            | -    |   |              | •      |   | $\longrightarrow$ | <200 vs. >200 m    | 5.21 | [1.54, 17.60] |
|                         |                                              |            |      | 1 |              |        |   |                   |                    |      |               |
|                         |                                              | 0          |      | 2 | 4<br>Relativ | e Risk | 6 | 8                 |                    |      |               |

#### Distance measures - Prevalence of active/current asthma - Adults

Note: Bowatte et al 2017a & b and 2018 refer to different study designs and study selections. All prevalence studies

### Distance measures - Prevalence of active asthma – Children

| Reference               | Study Name                         |               | incidence/Prevalence | Categories          | RR   | 95% CI        |
|-------------------------|------------------------------------|---------------|----------------------|---------------------|------|---------------|
| Pereira et al. 2009     | Perth Asthma ED Visits             |               | Incidence            | -1 km               | 1.20 | [0.96, 1.49]  |
| Li et al. 2011          | Detroit Medicaid Children's Asthma |               | Incidence            | 1000 m              | 0.98 | [0.93, 1.03]  |
| Livingstone et al. 1996 | Tower Hamlets GP                   | •             | Prevalence           | <150 vs. >150 m     | 0.96 | [0.78, 1.22]  |
| van Vliet et al. 1997   | South Holland Respiratory Survey   | H-            | Prevalence           | <100 vs. 100-1000 m | 0.87 | [0.32, 2.37]  |
| Lin et al. 2002         | Erie County Children's Asthma      | H <b>-</b> -I | Prevalence           | <200 vs. >600 m     | 1.24 | [0.87, 1.77]  |
| Lin et al. 2002         | Erie County Children's Asthma      | H <b>H</b> H  | Prevalence           | 201-400 vs. >600 m  | 0.88 | [0.61, 1.28]  |
| Lin et al. 2002         | Erie County Children's Asthma      | •             | Prevalence           | 401-600 vs. >600 m  | 0.73 | [0.50, 1.09]  |
| Yang et al. 2002        | Kaohsiung Respiratory Survey       | -             | Prevalence           | 150 vs. 1500 m      | 0.94 | [0.78, 1.13]  |
| McConnell et al. 2006   | CHS                                | H <b>H</b> H  | Prevalence           | <75 vs. >300 m      | 1.50 | [1.16, 1.95]  |
| McConnell et al. 2006   | CHS                                | <b>•</b> -1   | Prevalence           | 75-150 vs. >300 m   | 1.33 | [1.02, 1.72]  |
| McConnell et al. 2006   | CHS                                | •             | Prevalence           | 150-300 vs. >300 m  | 1.04 | [0.82, 1.33]  |
| Dong et al. 2008        | Liaoning Survey 2007               | H <b></b> 1   | Prevalence           | <20 vs. >100 m      | 1.25 | [0.79, 1.98]  |
| Dong et al. 2008        | Liaoning Survey 2007               | +             | Prevalence           | 20-100 vs. >100 m   | 0.89 | [0.56, 1.44]  |
| Kim et al. 2008         | EBCRHS                             |               | Prevalence           | <75 vs. >300 m      | 3.80 | [1.20, 11.71] |
| Kim et al. 2008         | EBCRHS                             | H             | Prevalence           | 75-150 vs. >300 m   | 1.87 | [0.71, 4.90]  |
| Kim et al. 2008         | EBCRHS                             |               | Prevalence           | 150-300 vs. >300 m  | 1.25 | [0.50, 3.11]  |
| Krämer et al. 2009      | GINI, LISA: Wesel                  | H.            | Prevalence           | <50 vs. >50 m       | 0.82 | [0.51, 1.32]  |
| Patel et al. 2011       | CCCEH                              | µ <b>−</b> −1 | Prevalence           | -0.96 km            | 1.31 | [0.88, 1.96]  |
| Dell et al. 2014        | T-CHEQ                             |               | Prevalence           | <100 vs. >100 m     | 1.91 | [0.46, 7.94]  |
| Jung et al. 2015        | CHEER                              | H <b>e</b> -H | Prevalence           | <75 vs. >225 m      | 1.08 | [0.69, 1.68]  |
| Jung et al. 2015        | CHEER                              | H <b>H</b> H  | Prevalence           | 75-150 vs. >225 m   | 1.00 | [0.68, 1.49]  |
| Jung et al. 2015        | CHEER                              | H <b>-</b>    | Prevalence           | 150-225 vs. >225 m  | 1.12 | [0.64, 1.96]  |
| Yi et al. 2017          | Seoul Atopy Friendly School        | •             | Prevalence           | <150 vs. >500 m     | 0.93 | [0.78, 1.11]  |
| Yi et al. 2017          | Seoul Atopy Friendly School        | •             | Prevalence           | 150-300 vs. >500 m  | 1.11 | [0.93, 1.32]  |
| Yi et al. 2017          | Seoul Atopy Friendly School        | -             | Prevalence           | 300-500 vs. >500 m  | 1.00 | [0.83, 1.20]  |
|                         |                                    |               |                      |                     |      |               |

### Distance measures - Prevalence of active/current asthma - Children (<18 years)

0 2 4 6 8 Relative Risk

### Density measures - Prevalence of active asthma – Adults

| Reference            | Study Name                     |              | Stratification           | Per Increment/Categories               | RR   | 95% CI       |
|----------------------|--------------------------------|--------------|--------------------------|----------------------------------------|------|--------------|
| Lindgren et al. 2009 | Scania Respiratory Survey 2000 | L            | only non-allergic asthma | >10 vehicles/minute vs. no heavy road  | 0.96 | [0.47, 1.96] |
| Lindgren et al. 2009 | Scania Respiratory Survey 2000 | <b>⊢</b>     | only allergic asthma     | >10 vehicles/minute vs. no heavy road  | 1.83 | [1.23, 2.72] |
| Lindgren et al. 2009 | Scania Respiratory Survey 2000 | <b>-</b>     | only non-allergic asthma | 6-10 vehicles/minute vs. no heavy road | 0.95 | [0.54, 1.69] |
| Lindgren et al. 2009 | Scania Respiratory Survey 2000 | H            | only allergic asthma     | 6-10 vehicles/minute vs. no heavy road | 1.34 | [0.92, 1.96] |
| Lindgren et al. 2009 | Scania Respiratory Survey 2000 | <b>⊢</b>     | only non-allergic asthma | 2-5 vehicles/minute vs. no heavy road  | 0.98 | [0.63, 1.53] |
| Lindgren et al. 2009 | Scania Respiratory Survey 2000 | <b>⊢−</b> −1 | only allergic asthma     | 2-5 vehicles/minute vs. no heavy road  | 0.96 | [0.69, 1.33] |
| Lindgren et al. 2009 | Scania Respiratory Survey 2000 | - <b>-</b>   | only non-allergic asthma | <2 vehicles/minute vs. no heavy road   | 0.82 | [0.53, 1.28] |
| Lindgren et al. 2009 | Scania Respiratory Survey 2000 | H <b>-</b>   | only allergic asthma     | <2 vehicles/minute vs. no heavy road   | 1.13 | [0.84, 1.51] |
| Havet et al. 2018    | EGEA                           | H            |                          | 4000 vehicle-km/day                    | 1.14 | [0.94, 1.37] |
|                      |                                |              |                          |                                        |      |              |
|                      |                                | 0.4 1 2 3    |                          |                                        |      |              |

#### Density measures - Prevalence of active/current asthma - Adults

All prevalence studies.

### Density measures - Prevalence of active asthma – Children

| Reference             | Study Name                       |                  | incidence/Prevalence | Per Increment/Categories            | RR   | 95% CI       |
|-----------------------|----------------------------------|------------------|----------------------|-------------------------------------|------|--------------|
| Wilkinson et al. 1999 | London Children's Asthma         |                  | Incidence            | >50 vs. <1.5 vehicle-km/hour        | 0.88 | [0.74, 1.06] |
| Wilkinson et al. 1999 | London Children's Asthma         | •                | Incidence            | 15-50 vs. <1.5 vehicle-km/hour      | 0.80 | [0.68, 0.95] |
| Wilkinson et al. 1999 | London Children's Asthma         | <b>i</b> ∎-1     | Incidence            | 1.5-15 vs. <1.5 vehicle-km/hour     | 1.03 | [0.87, 1.22] |
| Pereira et al. 2009   | Perth Asthma ED Visits           |                  | Incidence            | 1000 vehicle-km/peak morning hour   | 0.73 | [0.62, 0.85] |
| Wjst et al. 1993      | Munich Asthma and Allergy        | <b>.</b>         | Prevalence           | 25000 vehicles/day                  | 1.04 | [0.89, 1.21] |
| van Vliet et al. 1997 | South Holland Respiratory Survey | H <b></b>        | Prevalence           | high vs. low car volume             | 0.38 | [0.13, 1.12] |
| van Vliet et al. 1997 | South Holland Respiratory Survey | H                | Prevalence           | high vs. low truck volume           | 1.78 | [0.66, 4.77] |
| English et al. 1999   | San Diego Children's Asthma      | H <b>H</b> H     | Prevalence           | >50100 vs. <9100 vehicles/day       | 1.05 | [0.88, 1.26] |
| English et al. 1999   | San Diego Children's Asthma      | P <b>≣</b> -I    | Prevalence           | 25001-50100 vs. <9100 cars/day      | 1.00 | [0.83, 1.19] |
| English et al. 1999   | San Diego Children's Asthma      |                  | Prevalence           | 16701-25000 vs. <9100 cars/day      | 0.76 | [0.63, 0.91] |
| English et al. 1999   | San Diego Children's Asthma      | •                | Prevalence           | 9101-16700 vs. <9100 cars/day       | 0.83 | [0.69, 1.00] |
| Lin et al. 2002       | Erie County Children's Asthma    | I                | Prevalence           | >4043 vs. no vehicle-miles/day      | 1.93 | [1.13, 3.29] |
| Lin et al. 2002       | Erie County Children's Asthma    | H                | Prevalence           | 2367-4042 vs. no vehicle-miles/day  | 1.06 | [0.64, 1.76] |
| Lin et al. 2002       | Erie County Children's Asthma    | +                | Prevalence           | <2366 vs. no vehicle-miles/day      | 1.31 | [0.79, 2.16] |
| Nicolai et al. 2003   | ISAAC Munich                     |                  | Prevalence           | >30000 vehicles/day vs. none        | 1.79 | [1.05, 3.05] |
| Nicolai et al. 2003   | ISAAC Munich                     | ⊢I<br>I          | Prevalence           | 15001-30000 vehicles/day vs. none   | 1.18 | [0.64, 2.17] |
| Nicolai et al. 2003   | ISAAC Munich                     | <b>⊢−</b> ■−−−−− | Prevalence           | 2600-15000 vehicles/day vs. none    | 0.61 | [0.26, 1.40] |
| Kim et al. 2008       | EBCRHS                           |                  | Prevalence           | 9414-74041 vehicles-km/day vs. none | 2.37 | [1.05, 5.36] |
| Kim et al. 2008       | EBCRHS                           | )                | Prevalence           | 4403-9413 vehicles-km/day vs. none  | 1.40 | [0.60, 3.30] |
| Kim et al. 2008       | EBCRHS                           | +                | Prevalence           | 1920-4402 vehicles-km/day vs. none  | 1.96 | [0.85, 4.52] |
| Kim et al. 2008       | EBCRHS                           | <b>⊢</b>         | Prevalence           | <1919 vehicles-km/day vs. none      | 1.23 | [0.53, 2.83] |
|                       |                                  |                  |                      |                                     |      |              |

#### Density measures - Prevalence of active/current asthma - Children (<18 years)

0 1 2 3 4 5 Relative Risk

### 9.4 Acute lower respiratory infections (ALRI)

Meta-analysis overview – Children (<18).



Footnote: The following increments were used:  $10 \ \mu g/m^3$  for NO<sub>2</sub> and  $1 \ \mu g/m^3$  for EC. Effect estimates cannot be directly compared across the different traffic–related pollutants because the selected increments do not necessarily represent the same contrast in exposure.

#### NO<sub>2</sub> – ALRI – Adults

Primary meta-analysis

### NO<sub>2</sub> - ALRI - Adults (18+ years)



### NO<sub>2</sub> – ALRI – Children

### Primary meta-analysis

# NO<sub>2</sub> - ALRI - Children (<18 years)

| Study                                       | Study Name                     | Exposure window             |     |         | Relative R   | lisk                 | RR     | 95%-CI                       | Weight |
|---------------------------------------------|--------------------------------|-----------------------------|-----|---------|--------------|----------------------|--------|------------------------------|--------|
| Hirsch et al. 1999                          | ISAAC Dresden                  | Annual mean                 |     |         | :            | -                    | 1.23   | [1.10; 1.37]                 | 12.1%  |
| Janssen et al. 2003                         | ISAAC Southwestern Netherlands | Annual average current year | ar  | 08      |              |                      | - 1.20 | [0.75; 1.91]                 | 1.2%   |
| Morgenstern et al. 2007                     | GINI, LISA: Munich             | Annual average at birth     |     | <u></u> |              |                      | 1.14   | [0.71; 1.83]                 | 1.2%   |
| Karr et al. 2009                            | Georgia Air Basin Birth Cohort | Cumulative average          |     |         |              |                      | 1.06   | [1.02; 1.09]                 | 22.5%  |
| Svendsen et al. 2012                        | El Paso Children's Health      | Average recent              |     |         | -            |                      | 1.12   | [0.93; 1.34]                 | 6.4%   |
| Aguilera et al. 2013                        | INMA                           | Entire pregnancy            |     |         |              |                      | 1.05   | [0.98; 1.12]                 | 17.8%  |
| Pedersen et al. 2013                        | EDEN                           | Entire pregnancy            |     | -       |              |                      | 0.95   | [0.75; 1.21]                 | 4.1%   |
| MacIntyre et al. 2014                       | ESCAPE                         | Annual average at birth     |     |         |              | *                    | 1.30   | [1.02; 1.65]                 | 4.1%   |
| Ranzi et al. 2014                           | GASPI                          | Annual average at birth     |     | 0       |              |                      | 0.87   | [0.69; 1.09]                 | 4.6%   |
| Liu et al. 2016                             | CCHH Shanghai                  | Entire pregnancy            |     |         |              | _                    | 1.17   | [1.07; 1.30]                 | 13.5%  |
| Madsen et al. 2017                          | МоВа                           | Entire pregnancy            |     |         | -            |                      | 1.05   | [0.95; 1.17]                 | 12.6%  |
| Random effects model<br>Prediction interval |                                |                             | -   |         | \$           |                      | 1.09   | [1.03; 1.16]<br>[0.95; 1.25] | 100.0% |
| Heterogeneity: $I^2 = 45\%$ , $\tau$        | $^{2} = 0.0030, p = 0.05$      |                             |     | 1.0     |              |                      | 0      |                              |        |
|                                             |                                |                             | 0.6 | 0.75    | 1            | 1.5                  | 2      |                              |        |
|                                             |                                |                             |     | Relat   | ive Risk per | 10 µg/m <sup>3</sup> |        |                              |        |





Footnote: The vertical lines in the funnel plots represent the pooled fixed and random effect estimates. The vertical dashed line in the middle of the funnel shows the fixed effect estimate. As the Panel applied a random–effects model, the funnel plot also presents the random–effects estimate with the dotted line.

## NO<sub>2</sub> – ALRI – Children Subgroup analysis – region

| Study                                | Study Name                     |     |      | Relative Ris     | sk                   | RR     | 95%-CI       |
|--------------------------------------|--------------------------------|-----|------|------------------|----------------------|--------|--------------|
| North America                        |                                |     |      | E a              |                      |        |              |
| Karr et al. 2009                     | Georgia Air Basin Birth Cohort |     |      | -                |                      | 1.06   | [1.02; 1.09] |
| Svendsen et al. 2012                 | El Paso Children's Health      |     |      | -                |                      | 1.12   | [0.93; 1.34] |
|                                      |                                |     |      |                  |                      |        |              |
| Western Europe                       |                                |     |      |                  |                      | 10002  |              |
| Hirsch et al. 1999                   | ISAAC Dresden                  |     |      |                  |                      | 1.23   | [1.10; 1.37] |
| Janssen et al. 2003                  | ISAAC Southwestern Netherlands |     | -    |                  |                      | 1.20   | [0.75; 1.91] |
| Morgenstern et al. 2007              | GINI, LISA: Munich             |     | -    | - I ·            |                      | - 1.14 | [0.71; 1.83] |
| Aguilera et al. 2013                 | INMA                           |     |      | - <del>-</del> - |                      | 1.05   | [0.98; 1.12] |
| Pedersen et al. 2013                 | EDEN                           |     |      | -                |                      | 0.95   | [0.75; 1.21] |
| MacIntyre et al. 2014                | ESCAPE                         |     |      |                  | •                    | 1.30   | [1.02; 1.65] |
| Ranzi et al. 2014                    | GASPII                         |     |      | -                |                      | 0.87   | [0.69; 1.09] |
| Madsen et al. 2017                   | MoBa                           |     |      | - <del></del> -  |                      | 1.05   | [0.95; 1.17] |
| Random effects model                 |                                |     |      | $\Rightarrow$    |                      | 1.08   | [0.97; 1.20] |
| Heterogeneity: / <sup>2</sup> = 49%, | $\tau^2 = 0.0071, p = 0.06$    |     |      |                  |                      |        |              |
| Asia                                 |                                |     |      |                  |                      |        |              |
| Liu et al. 2016                      | CCHH Shanghai                  |     |      |                  | -                    | 1.17   | [1.07: 1.30] |
| Random effects model                 | States to                      |     |      | 4                |                      |        |              |
|                                      |                                |     | -    |                  | - 1                  |        |              |
|                                      |                                | 0.6 | 0.75 | 1                | 1.5                  | 2      |              |
|                                      |                                |     | Rela | tive Risk per 1  | 10 µg/m <sup>3</sup> |        |              |

# NO<sub>2</sub> – ALRI – Children

### Subgroup analysis – year of publication

| Study                          | Study Name                     |     |      | Relative Risk     | c    | RR   | 95%-CI       |
|--------------------------------|--------------------------------|-----|------|-------------------|------|------|--------------|
| Before 2008                    |                                |     |      |                   |      |      |              |
| Hirsch et al. 1999             | ISAAC Dresden                  |     |      |                   |      | 1.23 | [1.10; 1.37] |
| Janssen et al. 2003            | ISAAC Southwestern Netherlands |     | 8    |                   |      | 1.20 | [0.75; 1.91] |
| Morgenstern et al. 2007        | GINI, LISA: Munich             |     |      | -                 |      | 1.14 | [0.71; 1.83] |
| Random effects model           |                                |     |      | $\diamond$        |      | 1.22 | [1.16; 1.29] |
| Heterogeneity: $l^2 = 0\%$ , t | $c^2 = 0, p = 0.95$            |     |      |                   |      |      |              |
| After 2008                     |                                |     |      |                   |      |      |              |
| Karr et al. 2009               | Georgia Air Basin Birth Cohort |     |      | -                 |      | 1.06 | [1.02; 1.09] |
| Svendsen et al. 2012           | El Paso Children's Health      |     |      | - · ·             |      | 1.12 | [0.93; 1.34] |
| Aguilera et al. 2013           | INMA                           |     |      | - <del>-</del>    |      | 1.05 | [0.98; 1.12] |
| Pedersen et al. 2013           | EDEN                           |     |      |                   |      | 0.95 | [0.75; 1.21] |
| MacIntyre et al. 2014          | ESCAPE                         |     |      |                   |      | 1.30 | [1.02; 1.65] |
| Ranzi et al. 2014              | GASPII                         |     |      |                   |      | 0.87 | [0.69; 1.09] |
| Liu et al. 2016                | CCHH Shanghai                  |     |      | -                 |      | 1.17 | [1.07; 1.30] |
| Madsen et al. 2017             | MoBa                           |     |      |                   |      | 1.05 | [0.95; 1.17] |
| Random effects model           |                                |     |      | $\diamond$        |      | 1.06 | [1.02; 1.11] |
| Heterogeneity: /2 = 38%,       | $\tau^2 = < 0.0001, p = 0.12$  | _   |      |                   |      |      |              |
|                                |                                |     |      |                   |      |      |              |
|                                |                                | 0.6 | 0.75 | 1                 | 1.5  | 2    |              |
|                                |                                |     | Rela | ative Risk per 10 | µg/m |      |              |

## NO<sub>2</sub> – ALRI – Children Subgroup analysis – traffic specificity

| Study                        | Study Name                     |        | Relative Risk           | RR     | 95%-CI       |
|------------------------------|--------------------------------|--------|-------------------------|--------|--------------|
| High                         |                                |        | ÷                       |        |              |
| Morgenstern et al. 2007      | GINI, LISA: Munich             |        | · · ·                   | 1.14   | [0.71; 1.83] |
| Karr et al. 2009             | Georgia Air Basin Birth Cohort |        | <b>T</b>                | 1.06   | [1.02; 1.09] |
| Svendsen et al. 2012         | El Paso Children's Health      |        |                         | 1.12   | [0.93; 1.34] |
| Aguilera et al. 2013         | INMA                           |        |                         | 1.05   | [0.98; 1.12] |
| Pedersen et al. 2013         | EDEN                           |        | -                       | 0.95   | [0.75; 1.21] |
| MacIntyre et al. 2014        | ESCAPE                         |        |                         | - 1.30 | [1.02; 1.65] |
| Ranzi et al. 2014            | GASPII                         |        | -                       | 0.87   | [0.69; 1.09] |
| Madsen et al. 2017           | MoBa                           |        |                         | 1.05   | [0.95; 1.17] |
| Random effects model         |                                |        | ♦                       | 1.05   | [1.02; 1.09] |
| Heterogeneity: $l^2 = 2\%$ , | $\tau^2 = < 0.0001, p = 0.42$  |        |                         |        |              |
| Moderate                     |                                |        |                         |        |              |
| Hirsch et al. 1999           | ISAAC Dresden                  |        |                         | 1.23   | [1.10; 1.37] |
| Janssen et al. 2003          | ISAAC Southwestern Netherlands | -      | - · ·                   | 1.20   | [0.75; 1.91] |
| Liu et al. 2016              | CCHH Shanghai                  |        | 1                       | 1.17   | [1.07; 1.30] |
| Random effects model         |                                |        | $\diamond$              | 1.20   | [1.12; 1.28] |
| Heterogeneity: /2 = 0%,      | $\tau^2 = 0, p = 0.83$         |        |                         |        |              |
|                              |                                | -      | 1                       |        |              |
|                              | 0.6                            | 6 0.75 | 1 1.5                   | 2      |              |
|                              |                                | Re     | lative Risk per 10 µg/m |        |              |

Subgroup analysis – smoking adjustment

All corrected for smoking

## NO<sub>2</sub> – ALRI – Children Subgroup analysis – study design

| Study                                 | Study Name                     |     |              | Relative Risk      |      | RR     | 95%-CI       |
|---------------------------------------|--------------------------------|-----|--------------|--------------------|------|--------|--------------|
| Case-control                          |                                |     |              | E.                 |      |        |              |
| Karr et al. 2009                      | Georgia Air Basin Birth Cohort |     |              | -                  |      | 1.06   | [1.02; 1.09] |
| Cohort                                |                                |     |              |                    |      |        |              |
| Morgenstern et al. 2007               | GINI, LISA: Munich             |     |              | <u> </u>           |      | - 1.14 | [0.71: 1.83] |
| Aquilera et al. 2013                  | INMA                           |     |              |                    |      | 1.05   | [0.98: 1.12] |
| Pedersen et al. 2013                  | EDEN                           |     | _            |                    |      | 0.95   | [0.75; 1.21] |
| MacIntyre et al. 2014                 | ESCAPE                         |     |              |                    |      | 1.30   | [1.02; 1.65] |
| Ranzi et al. 2014                     | GASPII                         |     |              |                    |      | 0.87   | [0.69; 1.09] |
| Madsen et al. 2017                    | MoBa                           |     |              | - <del></del>      |      | 1.05   | [0.95; 1.17] |
| Random effects model                  |                                |     |              | $\Rightarrow$      |      | 1.05   | [0.97; 1.13] |
| Heterogeneity: $I^2 = 24\%$ ,         | $\tau^2 = < 0.0001, p = 0.25$  |     |              |                    |      |        |              |
| Cross sectional                       |                                |     |              | 1.100              |      |        |              |
| Hirsch et al. 1999                    | ISAAC Dresden                  |     |              |                    |      | 1.23   | [1.10; 1.37] |
| Janssen et al. 2003                   | ISAAC Southwestern Netherlands | 5   | 1            |                    |      | 1.20   | [0.75; 1.91] |
| Svendsen et al. 2012                  | El Paso Children's Health      |     |              | -                  |      | 1.12   | [0.93; 1.34] |
| Liu et al. 2016                       | CCHH Shanghai                  |     |              | -                  |      | 1.17   | [1.07; 1.30] |
| Random effects model                  |                                |     |              | $\diamond$         |      | 1.19   | [1.12; 1.26] |
| Heterogeneity: $I^2 = 0\%$ , $\tau^2$ | f = 0, p = 0.84                | _   |              |                    | _    | _      |              |
|                                       |                                | 0.6 | 0.75         |                    | 1 5  |        |              |
|                                       |                                | 0.0 | U.75<br>Dala | tive Diek ner 10 i | 1.0  | 2      |              |
|                                       |                                |     | Reid         | uve max per 10 p   | grin |        |              |

### NO<sub>2</sub> – ALRI – Children Sensitivity analysis – reverse selection

### NO<sub>2</sub> - ALRI - Children (<18 years)



Recent years > cumulative average > first year of life > at birth > pregnancy

#### EC-ALRI - Children

Primary meta-analysis

### EC - ALRI - Children (<18 years)



## EC – ALRI – Children Subgroup analysis – region

| Study            | Study Name                     | Relative Risk | RR 95       | %-CI  |
|------------------|--------------------------------|---------------|-------------|-------|
| North America    |                                |               |             |       |
| Karr et al. 2009 | Georgia Air Basin Birth Cohort | ÷             | 0.99 [0.96; | 1.02] |



EC – ALRI – Children

Subgroup analysis – traffic specificity

| Study                         | Study Name                     |     | 1     | Relative Risk        | RR           | 95%-CI       |
|-------------------------------|--------------------------------|-----|-------|----------------------|--------------|--------------|
| High                          |                                |     | 1     |                      |              |              |
| Morgenstern et al. 2007       | GINI, LISA: Munich             | -   | _     | *                    | • 1.22       | [0.46; 3.26] |
| Karr et al. 2009              | Georgia Air Basin Birth Cohort |     | - 慶二  |                      | 0.99         | [0.96; 1.02] |
| MacIntyre et al. 2014         | ESCAPE                         |     | 2222  |                      | 1.87         | [1.39; 2.51] |
| Random effects model          |                                |     |       |                      | <b>1</b> .31 | [0.53; 3.20] |
| Heterogeneity: $l^2 = 89\%$ , | $\tau^2 = 0.1274, p < 0.01$    |     |       |                      |              |              |
| Moderate                      |                                |     |       |                      |              |              |
| Janssen et al. 2003           | ISAAC Southwestern Netherlands | •   |       |                      | • 1.31       | [0.45; 3.83] |
|                               |                                | _   |       |                      |              |              |
|                               |                                | 0.7 |       | 15                   |              |              |
|                               |                                | 0.7 | 1     | 1.5                  | 3            |              |
|                               |                                |     | Relat | ive Risk per 1 ug/m" |              |              |

Chapter 9 Additional Materials

EC – ALRI – Children

Subgroup analysis notes:

Year of publication: Jansen 2003 and Morgenstern before 2008 Smoking adjustment: All corrected for smoking Study design: Karr 2009 case-control; Jansen 2003 cross-sectional, the other two cohorts

#### **Distance measures – ALRI – Adults**



#### Distance measures – ALRI – Children

| Reference               | Study Name                       |                      | Categories          | RR   | 95% CI                    |
|-------------------------|----------------------------------|----------------------|---------------------|------|---------------------------|
| van Vliet et al. 1997   | South Holland Respiratory Survey |                      | <100 vs. 100-1000 m | 0.99 | [0.39, 2.52]              |
| Yang et al. 2002        | Kaohsiung Respiratory Survey     | - <b>-</b> 1         | 150 vs. 1500 m      | 0.99 | [0.88, 1.12]              |
| Morgenstern et al. 2007 | GINI, LISA: Munich               | <b>⊢</b>             | <50 vs. >50 m       | 1.15 | [0.87, 1.53]              |
| Ranzi et al. 2014       | GASPII                           | <b>⊢</b>             | <86.1 vs. > 86.1 m  | 1.03 | [0.72, 1.48]              |
| Rice et al. 2015        | VIVA                             | Jj                   | <100 vs. >1000 m    | 1.38 | [1.11, <mark>1.63]</mark> |
| Lee et al. 2018         | CHEER                            | ⊢I                   | <75 vs. >700 m      | 1.12 | [0.71, 1.79]              |
| Lee et al. 2018         | CHEER                            | ⊨                    | 75-700 vs. >700 m   | 1.17 | [0.81, <b>1</b> .68]      |
|                         |                                  |                      |                     |      |                           |
|                         | 0                                | 1 2<br>Relative Risk |                     |      |                           |

#### Distance measures - ALRI - Children (<18 years)

**Density measures – ALRI – Adults** 



#### Density measures – ALRI – Children



#### Density measures - ALRI - Children (<18 years)

### 9.5 Incidence of chronic obstructive pulmonary disease (COPD)

Meta-analysis overview



Footnote: The following increments were used:  $10 \mu g/m^3$  for NO<sub>2</sub>,  $20 \mu g/m^3$  for NO<sub>x</sub> and  $5 \mu g/m^3$  for PM<sub>2.5</sub>. Effect estimates cannot be directly compared across the different traffic–related pollutants because the selected increments do not necessarily represent the same contrast in exposure.

### NO<sub>2</sub> – Incidence of COPD – Adults

Primary meta-analysis

| Study                                | Study Name                | Relative Risk                          | RR   | 95%-CI       | Weight |
|--------------------------------------|---------------------------|----------------------------------------|------|--------------|--------|
| Andersen et al. 2011                 | DDCH                      |                                        | 1.14 | [1.04; 1.26] | 14.9%  |
| Gan et al. 2013                      | Vancouver Administrative  |                                        | 1.00 | [0.95; 1.05] | 18.0%  |
| Schikowski et al. 2014               | ESCAPE                    |                                        | 0.99 | [0.86; 1.13] | 11.9%  |
| Atkinson et al. 2015                 | CPRD                      |                                        | 1.03 | [0.96; 1.10] | 17.0%  |
| Carey et al. 2016                    | CPRD London               |                                        | 0.98 | [0.82; 1.18] | 9.0%   |
| Weichenthal et al. 2017              | ONPHEC                    |                                        | 1.14 | [1.09; 1.20] | 18.4%  |
| Salimi et al. 2018                   | 45 and Up Study           |                                        | 0.84 | [0.72; 0.97] | 10.8%  |
| Random effects model                 |                           | ÷                                      | 1.03 | [0.94; 1.13] | 100.0% |
| Prediction interval                  |                           |                                        |      | [0.81; 1.30] |        |
| Heterogeneity: $I^2 = 79\%$ , $\tau$ | $^{2} = 0.0071, p < 0.01$ |                                        | 1    |              |        |
|                                      | C                         | 0.7 0.8 1 1.25                         | 5    |              |        |
|                                      |                           | Relative Risk per 10 µg/m <sup>3</sup> |      |              |        |

#### NO<sub>2</sub> – Incidence of COPD – Adults

Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low/moderate vs high

| Study                                | Study Name                  | Relative Risk | RR     | 95%-CI       |
|--------------------------------------|-----------------------------|---------------|--------|--------------|
| Low/Moderate                         |                             | 1             |        |              |
| Andersen et al. 2011                 | DDCH                        |               | - 1.14 | [1.04; 1.26] |
| Schikowski et al. 2014               | ESCAPE                      |               | 0.99   | [0.86; 1.13] |
| Atkinson et al. 2015                 | CPRD                        |               | 1.03   | [0.96; 1.10] |
| Carey et al. 2016                    | CPRD London                 |               | 0.98   | [0.82; 1.18] |
| Weichenthal et al. 2017              | ONPHEC                      |               | 1.14   | [1.09; 1.20] |
| Salimi et al. 2018                   | 45 and Up Study -           |               | 0.84   | [0.72; 0.97] |
| Random effects model                 |                             |               | 1.03   | [0.91; 1.16] |
| Heterogeneity: / <sup>2</sup> = 78%, | $\tau^2 = 0.0094, p < 0.01$ |               |        |              |
| High                                 |                             |               |        |              |
| Gan et al. 2013                      | Vancouver Administrative    |               | 1.00   | [0.95; 1.05] |
|                                      |                             |               |        |              |
|                                      |                             | - I           |        |              |
|                                      | 0.7                         | 0.8 1 1.      | 25     |              |

Relative Risk per 10 µg/m<sup>3</sup>

# $NO_2$ – Incidence of COPD – Adults

Subgroup analysis – region

| Study                                                                                                                                                                  | Study Name                                                           |              | Relative Risk                  | R                                             | R 95                                                              | %-CI                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------|--------------------------------|-----------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|
| <b>North America</b><br>Gan et al. 2013<br>Weichenthal et al. 2017                                                                                                     | Vancouver Administrative<br>ONPHEC                                   |              | ╉                              | 1.0<br>————————————————————————————————————   | 0 [0.95;<br>4 [1.09;                                              | 1.05]<br>1.20]                                   |
| Western Europe<br>Andersen et al. 2011<br>Schikowski et al. 2014<br>Atkinson et al. 2015<br>Carey et al. 2016<br>Random effects model<br>Heterogeneity: $J^2 = 34\%$ : | DDCH<br>ESCAPE<br>CPRD<br>CPRD London<br>$c^2 = 0.0018, \rho = 0.21$ |              |                                | 1.1<br>0.9<br>1.0<br>0.9<br>0.9<br>0.9<br>1.0 | 4 [1.04;<br>9 [0.86;<br>3 [0.96;<br>8 [0.82;<br>5 <b>[0.94;</b> 1 | 1.26]<br>1.13]<br>1.10]<br>1.18]<br><b>1.17]</b> |
| Australia/New Zealand<br>Salimi et al. 2018                                                                                                                            | 45 and Up Study                                                      | 0.7 0.8<br>R | + 1<br>lelative Risk per 10 ur | 0.8<br>1.25<br>a/m <sup>3</sup>               | 4 [0.72; (                                                        | 0.97]                                            |

Subgroup analysis – year of publication All post 2008

## NO<sub>2</sub> – Incidence of COPD – Adults Subgroup analysis – traffic specificity

| Study                         | Study Name                  |     |     | Relative Risk | RR   | 95%-CI       |
|-------------------------------|-----------------------------|-----|-----|---------------|------|--------------|
| High                          |                             |     |     | 1             |      |              |
| Andersen et al. 2011          | DDCH                        |     |     |               | 1.14 | [1.04; 1.26] |
| Gan et al. 2013               | Vancouver Administrative    |     |     | -+            | 1.00 | [0.95; 1.05] |
| Schikowski et al. 2014        | ESCAPE                      |     |     |               | 0.99 | [0.86; 1.13] |
| Carey et al. 2016             | CPRD London                 |     |     |               | 0.98 | [0.82; 1.18] |
| Weichenthal et al. 2017       | ONPHEC                      |     |     |               | 1.14 | [1.09; 1.20] |
| Salimi et al. 2018            | 45 and Up Study             | -   |     |               | 0.84 | [0.72; 0.97] |
| Random effects model          |                             |     |     |               | 1.02 | [0.91; 1.15] |
| Heterogeneity: $I^2 = 82\%$ , | $\tau^2 = 0.0097, p < 0.01$ |     |     |               |      |              |
| Moderate                      |                             |     |     |               |      |              |
| Atkinson et al. 2015          | CPRD                        |     |     | -             | 1.03 | [0.96; 1.10] |
|                               |                             |     |     |               |      |              |
|                               |                             |     |     |               |      |              |
|                               |                             | 0.7 | 0.8 | 1             | 1.25 |              |

Relative Risk per 10 µg/m<sup>3</sup>

### NO<sub>2</sub> – Incidence of COPD – Adults Subgroup analysis – smoking adjustment

#### Study Study Name **Relative Risk** RR 95%-CI Yes Andersen et al. 2011 DDCH 1.14 [1.04; 1.26] Schikowski et al. 2014 ESCAPE 0.99 [0.86; 1.13] Atkinson et al. 2015 CPRD 1.03 [0.96; 1.10] CPRD London 0.98 [0.82; 1.18] Carey et al. 2016 Salimi et al. 2018 45 and Up Study 0.84 [0.72; 0.97] Random effects model 1.00 [0.87; 1.15] Heterogeneity: $l^2 = 68\%$ , $\tau^2 = 0.0083$ , p = 0.02No Gan et al. 2013 Vancouver Administrative 1.00 [0.95; 1.05] -Weichenthal et al. 2017 ONPHEC 1.14 [1.09; 1.20] r 0.6 0.75 1.5 2 1 Relative Risk per 10 µg/m<sup>3</sup>

### NO<sub>x</sub> – Incidence of COPD – Adults

### Primary meta-analysis

### $\mathrm{NO}_{\mathrm{X}}$ - Incidence of COPD

| Study                                                               | Study Name                    | Rela        | tive Risk   | R                 | R 95%-CI                                           | Weight                  |
|---------------------------------------------------------------------|-------------------------------|-------------|-------------|-------------------|----------------------------------------------------|-------------------------|
| Andersen et al. 2011<br>Schikowski et al. 2014<br>Carev et al. 2016 | DDCH<br>ESCAPE<br>CPRD London |             | -           | - 1.0<br>- 0.9    | 8 [1.01; 1.16]<br>7 [0.85; 1.10]<br>9 [0.86; 1.13] | 51.3%<br>25.5%<br>23.2% |
| Ourcy cr ul. 2010                                                   | OF IND EXHIBIT                |             |             | 0.5               | 5 [0.00, 1.10]                                     | 20.270                  |
| Random effects mode                                                 | I                             |             | -           | 1.0               | 3 [0.88; 1.20]                                     | 100.0%                  |
| Prediction interval                                                 |                               |             |             |                   | [0.51; 2.07]                                       |                         |
| Heterogeneity: $I^2 = 31\%$ , a                                     | $c^2 = 0.0017$ , $p = 0.24$   |             | 1           |                   |                                                    |                         |
| · · · · · ·                                                         | 0.8                           | 0.9         | 1 .         | 1.1 1.2           |                                                    |                         |
|                                                                     | F                             | Relative Ri | sk per 20 µ | ıg/m <sup>3</sup> |                                                    |                         |

### PM<sub>2.5</sub> – Incidence of COPD – Adults

### Primary meta-analysis

### $\ensuremath{\mathsf{PM}_{2.5}}\xspace$ - Incidence of COPD

| Study                                                                                   | Study Name                                                    | Relative Risk                                       | RR                           | 95%-CI                                                       | Weight                          |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|------------------------------|--------------------------------------------------------------|---------------------------------|
| Gan et al. 2013<br>Schikowski et al. 2014<br>Atkinson et al. 2015<br>Salimi et al. 2018 | Vancouver Administrative<br>ESCAPE<br>CPRD<br>45 and Up Study |                                                     | 1.06<br>0.73<br>0.98<br>0.48 | [0.94; 1.21]<br>[0.51; 1.04]<br>[0.84; 1.15]<br>[0.22; 1.04] | 38.6%<br>19.7%<br>35.5%<br>6.3% |
| <b>Random effects mode</b><br>Prediction interval<br>Heterogeneity: $I^2 = 60\%$ ,      | $\tau^2 = 0.0253, p = 0.06$                                   | 0.8 1 1.25<br>Relative Risk per 5 μg/m <sup>3</sup> | 0.91<br>T                    | [0.62; 1.36]<br>[0.38; 2.18]                                 | 100.0%                          |
PM<sub>2.5</sub> – Incidence of COPD – Adults

Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low/moderate vs high



# PM<sub>2.5</sub> – Incidence of COPD – Adults Subgroup analysis – smoking adjustment

| Study                               | Study Name                  |        | Relative Risk         |                   | RR   | 95%-CI       |
|-------------------------------------|-----------------------------|--------|-----------------------|-------------------|------|--------------|
| Yes                                 |                             |        | 1                     |                   |      |              |
| Schikowski et al. 2014              | ESCAPE                      |        | -                     |                   | 0.73 | [0.51; 1.04] |
| Atkinson et al. 2015                | CPRD                        |        |                       |                   | 0.98 | [0.84; 1.15] |
| Salimi et al. 2018                  | 45 and Up Study             |        | 100                   |                   | 0.48 | [0.22; 1.04] |
| Random effects model                |                             | _      |                       |                   | 0.80 | [0.38; 1.70] |
| Heterogeneity: 1 <sup>2</sup> = 61% | $\tau^2 = 0.0497, p = 0.08$ |        |                       |                   |      |              |
| No                                  |                             |        |                       |                   |      |              |
| Gan et al. 2013                     | Vancouver Administrative    |        | -                     |                   | 1.06 | [0.94; 1.21] |
|                                     |                             |        | 1                     |                   |      |              |
|                                     | ſ                           | 1      | 1                     |                   |      |              |
|                                     | 0.6                         | 6 0.75 | 1                     | 1.5               | 2    |              |
|                                     |                             |        | Relative Risk per 5 j | ug/m <sup>3</sup> |      |              |

PM<sub>2.5</sub> – Incidence of COPD – Adults

Subgroup analysis – region Gan 2013 North America; Schikowski 2014 and Atkinson 2015 Western Europe, and Salimi 2018 Australia/New Zealand

Subgroup analysis – year of publication All post 2008

Subgroup analysis – traffic specificity All moderate

#### **Distance measures – Incidence of COPD – Adults**



#### Distance measures - Incidence of COPD

#### Density measures – Incidence of COPD – Adults



#### **Density measures - Incidence of COPD**

## 9.6 Prevalence of active wheeze

Meta-analysis overview – Children (<18)



Footnote: The following increments were used:  $10 \ \mu g/m^3$  for NO<sub>2</sub>,  $20 \ \mu g/m^3$  for NO<sub>x</sub>,  $1 \ \mu g/m^3$  for EC,  $10 \ \mu g/m^3$  for PM<sub>10</sub> and  $5 \ \mu g/m^3$  for PM<sub>2.5</sub>. Effect estimates cannot be directly compared across the different traffic–related pollutants because the selected increments do not necessarily represent the same contrast in exposure.

## Primary meta-analysis

| Study                                    | Study Name                         | Exposure window                    | Relative Risk                         | RR     | 95%-CI       | Weight |
|------------------------------------------|------------------------------------|------------------------------------|---------------------------------------|--------|--------------|--------|
| Pikhart et al. 1997                      | SAVIAH                             | Annual average current year        |                                       | 0.98   | [0.82; 1.18] | 3.3%   |
| Hirsch et al. 1999                       | ISAAC Dresden                      | Annual mean                        | +                                     | 1.13   | [0.93; 1.37] | 3.0%   |
| Krämer et al. 2000                       | Düsseldorf School Survey           | Annual average current year        |                                       | → 1.70 | [0.90; 3.20] | 0.3%   |
| Janssen et al. 2003                      | ISAAC Southwestern Netherlands     | Annual average current year        |                                       | 1.37   | [1.00; 1.89] | 1.2%   |
| Krämer et al. 2009                       | GINI, LISA: Wesel                  | Cumulative average                 | ••••                                  | 0.61   | [0.36; 1.03] | 0.4%   |
| Oftedal et al. 2009                      | Oslo Birth Cohort                  | Annual average at birth            | -+                                    | 1.01   | [0.90; 1.12] | 7.5%   |
| Rosenlund et al. 2009                    | ISAAC Rome                         | Exposure in 2000-2001 (recent year | r)                                    | 1.00   | [0.65; 1.54] | 0.6%   |
| Gehring et al. 2010                      | PIAMA                              | Annual average at birth            | ·                                     | 1.01   | [0.87; 1.17] | 4.7%   |
| Pan et al. 2010                          | Liaoning Survey 2002               | Four year average at baseline      |                                       | 0.95   | [0.91; 1.00] | 18.7%  |
| Pénard-Morand et al. 2010                | French Six Cities                  | Annual average current year        | +                                     | 1.19   | [0.92; 1.52] | 1.9%   |
| Ebisu et al. 2011                        | Yale Childhood Asthma Study        | Average first year                 |                                       | 1.12   | [0.99; 1.27] | 6.0%   |
| Svendsen et al. 2012                     | El Paso Children's Health          | Average recent                     |                                       | 0.94   | [0.80; 1.10] | 4.2%   |
| Altuğ et al. 2013                        | ISAAC Eskisehir                    | Annual average current year        |                                       | 0.92   | [0.80; 1.07] | 4.7%   |
| Liu et al. 2013                          | SNEC Kindergarten                  | Three year average at baseline     |                                       | 0.96   | [0.82; 1.12] | 4.3%   |
| Abidin et al. 2014                       | ISAAC Malaysia                     | Annual average current year        |                                       | → 1.90 | [1.02; 3.53] | 0.3%   |
| Dell et al. 2014                         | T-CHEQ                             | Average first year                 |                                       | 0.98   | [0.83; 1.16] | 3.9%   |
| Liu et al. 2014                          | SNEC                               | Three year average at baseline     |                                       | 0.92   | [0.84; 1.01] | 9.5%   |
| Wood et al. 2015                         | ISAAC East London                  | Annual average current year        |                                       | 1.10   | [0.78; 1.57] | 1.0%   |
| Deng et al. 2016                         | CCHH Changsha                      | Entire pregnancy                   |                                       | 0.97   | [0.85; 1.11] | 5.4%   |
| Madsen et al. 2017                       | MoBa                               | Entire pregnancy                   | ÷                                     | 1.02   | [0.97; 1.07] | 17.9%  |
| Knibbs et al. 2018                       | ACHAPS                             | Previous year annual average       |                                       | 1.34   | [0.99; 1.82] | 1.3%   |
| Random effects model                     |                                    |                                    | 4                                     | 1.00   | [0.96; 1.05] | 100.0% |
| Prediction interval                      |                                    |                                    |                                       | _      | [0.92; 1.09] |        |
| Heterogeneity: $I^2 = 41\%$ , $\tau^2 =$ | 0.0012, p = 0.03                   |                                    | 1                                     | 1      |              |        |
| -                                        | to see the cost of the cost of the |                                    | 0.5 1 2                               | 2.5    |              |        |
|                                          |                                    |                                    | Relative Risk per 10µg/m <sup>3</sup> |        |              |        |

## NO<sub>2</sub> - Prevalence of wheeze 12 months - Children (<18 years)

# $NO_2$ – Prevalence of active wheeze– Children

Funnel plot



Footnote: The vertical lines in the funnel plots represent the pooled fixed and random effect estimates. The vertical dashed line in the middle of the funnel shows the fixed effect estimate. As the Panel applied a random–effects model, the funnel plot also presents the random–effects estimate with the dotted line.

Trim and fill

| Study                                                        | Relative Risk                          | RR   | 95%-CI                   | Weight |
|--------------------------------------------------------------|----------------------------------------|------|--------------------------|--------|
| Pikhart et al 1997 SAVIAH                                    | +                                      | 0.98 | [0 82 <sup>.</sup> 1 18] | 3.3%   |
| Hirsch et al. 1999, ISAAC Dresden                            | 4                                      | 1.13 | [0.93: 1.37]             | 2.9%   |
| Krämer et al. 2000. Düsseldorf School Survey                 | · · · · · · · · · · · · · · · · · · ·  | 1.70 | [0.90: 3.20]             | 0.3%   |
| Janssen et al. 2003, ISAAC Southwestern Netherlands          | <u> </u>                               | 1.37 | [1.00; 1.89]             | 1.2%   |
| Krämer et al. 2009, GINI, LISA: Wesel                        |                                        | 0.61 | [0.36; 1.03]             | 0.4%   |
| Oftedal et al. 2009, Oslo Birth Cohort                       | +                                      | 1.01 | [0.90; 1.12]             | 7.3%   |
| Rosenlund et al. 2009, ISAAC Rome                            |                                        | 1.00 | [0.65; 1.54]             | 0.6%   |
| Gehring et al. 2010, PIAMA                                   | +                                      | 1.01 | [0.87; 1.17]             | 4.6%   |
| Pan et al. 2010, Liaoning Survey 2002                        |                                        | 0.95 | [0.91; 1.00]             | 17.7%  |
| Pénard-Morand et al. 2010, French Six Cities                 | <del>  • -</del>                       | 1.19 | [0.92; 1.52]             | 1.9%   |
| Ebisu et al. 2011, Yale Childhood Asthma Study               |                                        | 1.12 | [0.99; 1.27]             | 5.9%   |
| Svendsen et al. 2012, El Paso Children's Health              |                                        | 0.94 | [0.80; 1.10]             | 4.1%   |
| Altuğ et al. 2013, ISAAC Eskisehir                           |                                        | 0.92 | [0.80; 1.07]             | 4.6%   |
| Liu et al. 2013, SNEC Kindergarten                           | +                                      | 0.96 | [0.82; 1.12]             | 4.2%   |
| Abidin et al. 2014, ISAAC Malaysia                           | · · · · · · · · · · · · · · · · · · ·  | 1.90 | [1.02; 3.53]             | 0.3%   |
| Dell et al. 2014, T-CHEQ                                     | +                                      | 0.98 | [0.83; 1.16]             | 3.8%   |
| Liu et al. 2014, SNEC                                        | -                                      | 0.92 | [0.84; 1.01]             | 9.2%   |
| Wood et al. 2015, ISAAC East London                          | - <del> </del>                         | 1.10 | [0.78; 1.57]             | 1.0%   |
| Deng et al. 2016, CCHH Changsha                              | 主                                      | 0.97 | [0.85; 1.11]             | 5.3%   |
| Madsen et al. 2017, MoBa                                     | <b>7</b>                               | 1.02 | [0.97; 1.07]             | 17.0%  |
| Knibbs et al. 2018, ACHAPS                                   |                                        | 1.34 | [0.99; 1.82]             | 1.3%   |
| Filled: Knibbs et al. 2018, ACHAPS                           |                                        | 0.72 | [0.53; 0.98]             | 1.3%   |
| Filled: Janssen et al. 2003, ISAAC Southwestern Netherlands  |                                        | 0.71 | [0.52; 0.98]             | 1.2%   |
| Filled: Krämer et al. 2000, Düsseldorf School Survey         | <del>-</del>                           | 0.57 | [0.30; 1.08]             | 0.3%   |
| Filled: Abidin et al. 2014, ISAAC Malaysia -                 |                                        | 0.51 | [0.28; 0.95]             | 0.3%   |
| Random effects model                                         | \$                                     | 0.99 | [0.94; 1.04]             | 100.0% |
| Prediction interval                                          | <u>+</u>                               |      | [0.90; 1.08]             |        |
| Heterogeneity: $I^2 = 51\%$ , $\tau^2 = 0.0013$ , $p < 0.01$ |                                        |      |                          |        |
|                                                              | 0.5 1 2                                |      |                          |        |
|                                                              | Relative Risk per 10 µg/m <sup>2</sup> |      |                          |        |

#### NO<sub>2</sub> - Prevalence of active wheeze - Children (<18 years)

| Study                                             |                          |                 | RR               | 95%-CI       | Weights |
|---------------------------------------------------|--------------------------|-----------------|------------------|--------------|---------|
| Pikhart et al. 1997, SAVIAH                       |                          |                 | 0.98             | [0.82, 1.18] | 3.30    |
| Hirsch et al. 1999, ISAAC Dresden                 |                          |                 | 1.13             | [0.93, 1.37] | 2.95    |
| Krämer et al. 2000, Düsseldorf School Survey      |                          |                 | ▶ 1.70           | [0.90, 3.20] | 0.31    |
| Janssen et al. 2003, ISAAC Southwestern Netherlan | B                        |                 | 1.37             | [1.00, 1.89] | 1.16    |
| Krämer et al. 2009, GINI, LISA: Wesel             | <                        |                 | 0.61             | [0.36, 1.03] | 0.44    |
| Oftedal et al. 2009, Oslo Birth Cohort            |                          |                 | 1.01             | [0.90, 1.12] | 7.47    |
| Rosenlund et al. 2009, ISAAC Rome                 | <                        |                 | 1.00             | [0.65, 1.54] | 0.65    |
| Gehring et al. 2010, PIAMA                        |                          |                 | 1.01             | [0.87, 1.17] | 4.69    |
| Pan et al. 2010, Liaoning Survey 2002             | <b>_</b>                 |                 | 0.95             | [0.91, 1.00] | 18.72   |
| Pénard-Morand et al. 2010, French Six Cities      |                          |                 | 1.19             | [0.92, 1.52] | 1.88    |
| Ebisu et al. 2011, Yale Childhood Asthma Study    |                          |                 | 1.12             | [0.99, 1.27] | 6.03    |
| Svendsen et al. 2012, El Paso Children's Health   |                          |                 | 0.94             | [0.80, 1.10] | 4.19    |
| Altuğ et al. 2013, ISAAC Eskisehir                |                          |                 | 0.92             | [0.80, 1.07] | 4.67    |
| Liu et al. 2013, SNEC Kindergarten                |                          |                 | 0.96             | [0.82, 1.12] | 4.30    |
| Abidin et al. 2014, ISAAC Malaysia                |                          |                 | <b>&gt;</b> 1.90 | [1.02, 3.53] | 0.32    |
| Dell et al. 2014, T-CHEQ                          |                          |                 | 0.98             | [0.83, 1.16] | 3.87    |
| Liu et al. 2014, SNEC                             |                          |                 | 0.92             | [0.84, 1.01] | 9.53    |
| Wood et al. 2015, ISAAC East London               |                          |                 | 1.10             | [0.78, 1.57] | 0.99    |
| Deng et al. 2016, CCHH Changsha                   | <b>_</b>                 |                 | 0.97             | [0.85, 1.11] | 5.39    |
| Madsen et al. 2017, MoBa                          |                          |                 | 1.02             | [0.97, 1.07] | 17.87   |
| Knibbs et al. 2018, ACHAPS                        |                          | <u></u> .       | 1.34             | [0.99, 1.82] | 1.28    |
|                                                   |                          |                 |                  |              |         |
| Pooled Est.                                       |                          |                 | 1.00             | [0.96, 1.05] | 100%    |
| Trim-n-fill Pooled est                            |                          |                 | 0.99             | [0.94, 1.04] | l       |
|                                                   | ).7 1                    | 1.5             | 2                |              |         |
| N imputed studies= 4                              | Relative Risk per 10 µg/ | /m <sup>3</sup> |                  |              |         |

Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low/moderate vs high

| Study                                       | Study Name                     | Relative Risk                                     | RR     | 95%-CI       |
|---------------------------------------------|--------------------------------|---------------------------------------------------|--------|--------------|
| Low/Moderate                                |                                |                                                   |        |              |
| Hirsch et al. 1999                          | ISAAC Dresden                  | <b></b>                                           | 1 13   | [0 93: 1 37] |
| Krämer et al. 2000                          | Düsseldorf School Survey       | · · · · · · · · · · · · · · · · · · ·             | -+ 170 | [0.90: 3.20] |
| Janssen et al. 2003                         | ISAAC Southwestern Netherlands |                                                   | 1.37   | [1.00: 1.89] |
| Krämer et al. 2009                          | GINL LISA: Wesel               | • · · · · · · · · · · · · · · · · · · ·           | 0.61   | [0.36:1.03]  |
| Oftedal et al. 2009                         | Oslo Birth Cohort              | _ <b>_</b>                                        | 1.01   | [0.90: 1.12] |
| Rosenlund et al. 2009                       | ISAAC Rome                     |                                                   | 1.00   | [0.65: 1.54] |
| Gehring et al. 2010                         | PIAMA                          | _ <b>_</b>                                        | 1.01   | [0.87; 1.17] |
| Pénard-Morand et al. 2010                   | French Six Cities              |                                                   | 1.19   | [0.92; 1.52] |
| Ebisu et al. 2011                           | Yale Childhood Asthma Study    | <b></b>                                           | 1.12   | [0.99; 1.27] |
| Svendsen et al. 2012                        | El Paso Children's Health      | +-                                                | 0.94   | [0.80; 1.10] |
| Altuğ et al. 2013                           | ISAAC Eskisehir                |                                                   | 0.92   | [0.80; 1.07] |
| Liu et al. 2013                             | SNEC Kindergarten              |                                                   | 0.96   | [0.82; 1.12] |
| Abidin et al. 2014                          | ISAAC Malaysia                 |                                                   | → 1.90 | [1.02; 3.53] |
| Dell et al. 2014                            | T-CHEQ                         |                                                   | 0.98   | [0.83; 1.16] |
| Liu et al. 2014                             | SNEC                           |                                                   | 0.92   | [0.84; 1.01] |
| Wood et al. 2015                            | ISAAC East London              |                                                   | 1.10   | [0.78; 1.57] |
| Madsen et al. 2017                          | MoBa                           | ÷                                                 | 1.02   | [0.97; 1.07] |
| Knibbs et al. 2018                          | ACHAPS                         |                                                   | 1.34   | [0.99; 1.82] |
| Random effects model                        |                                | <b></b>                                           | 1.02   | [0.96; 1.08] |
| Heterogeneity: $I^2 = 42\%$ , $\tau^2$      | = 0.0016, <i>p</i> = 0.03      |                                                   |        |              |
| High                                        |                                |                                                   |        |              |
| Pikhart et al. 1997                         | SAVIAH                         |                                                   | 0.98   | [0.82; 1.18] |
| Pan et al. 2010                             | Liaoning Survey 2002           | -                                                 | 0.95   | [0.91; 1.00] |
| Deng et al. 2016                            | CCHH Changsha                  |                                                   | 0.97   | [0.85; 1.11] |
| Random effects model                        |                                | 0                                                 | 0.96   | [0.94; 0.98] |
| Heterogeneity: $l^2 = 0\%$ , $\tau^2 = 0\%$ | = 0, <i>p</i> = 0.95           |                                                   |        |              |
|                                             |                                |                                                   | 2.5    |              |
|                                             | l                              | J.D 1 2<br>Deletive Diek ses 10 us/m <sup>3</sup> | 2.5    |              |
|                                             |                                | Relative Risk per 10 µg/m                         |        |              |

## Sensitivity analysis - risk of bias selection bias domain - low/moderate vs high

| Study                                  | Study Name                     | Relative Risk                           | RR     | 95%-CI       |
|----------------------------------------|--------------------------------|-----------------------------------------|--------|--------------|
| Low/Moderate                           |                                | Ĩ                                       |        |              |
| Pikhart et al. 1997                    | SAVIAH                         | <b>_</b> _                              | 0.98   | [0.82; 1.18] |
| Hirsch et al. 1999                     | ISAAC Dresden                  | ++                                      | 1.13   | [0.93; 1.37] |
| Krämer et al. 2000                     | Düsseldorf School Survey       |                                         | • 1.70 | [0.90; 3.20] |
| Janssen et al. 2003                    | ISAAC Southwestern Netherlands | · · · ·                                 | 1.37   | [1.00; 1.89] |
| Krämer et al. 2009                     | GINI, LISA: Wesel              | • · · · · · · · · · · · · · · · · · · · | 0.61   | [0.36; 1.03] |
| Oftedal et al. 2009                    | Oslo Birth Cohort              |                                         | 1.01   | [0.90; 1.12] |
| Rosenlund et al. 2009                  | ISAAC Rome                     |                                         | 1.00   | [0.65; 1.54] |
| Gehring et al. 2010                    | PIAMA                          | _ <del></del>                           | 1.01   | [0.87; 1.17] |
| Pan et al. 2010                        | Liaoning Survey 2002           | +                                       | 0.95   | [0.91; 1.00] |
| Pénard-Morand et al. 2010              | French Six Cities              | ++                                      | 1.19   | [0.92; 1.52] |
| Ebisu et al. 2011                      | Yale Childhood Asthma Study    |                                         | 1.12   | [0.99; 1.27] |
| Svendsen et al. 2012                   | El Paso Children's Health      | + <del> -</del>                         | 0.94   | [0.80; 1.10] |
| Altuğ et al. 2013                      | ISAAC Eskisehir                |                                         | 0.92   | [0.80; 1.07] |
| Liu et al. 2013                        | SNEC Kindergarten              | <u> </u>                                | 0.96   | [0.82; 1.12] |
| Abidin et al. 2014                     | ISAAC Malaysia                 |                                         | • 1.90 | [1.02; 3.53] |
| Dell et al. 2014                       | T-CHEQ                         |                                         | 0.98   | [0.83; 1.16] |
| Liu et al. 2014                        | SNEC                           |                                         | 0.92   | [0.84; 1.01] |
| Madsen et al. 2017                     | MoBa                           | ÷                                       | 1.02   | [0.97; 1.07] |
| Knibbs et al. 2018                     | ACHAPS                         | <b>—</b> • <b>—</b> •                   | 1.34   | [0.99; 1.82] |
| Random effects model                   |                                | <b></b>                                 | 1.00   | [0.95; 1.05] |
| Heterogeneity: $I^2 = 46\%$ , $\tau^2$ | = 0.0015, <i>p</i> = 0.01      |                                         |        |              |
| High                                   |                                |                                         |        |              |
| Wood et al. 2015                       | ISAAC East London              |                                         | 1.10   | [0.78; 1.57] |
| Deng et al. 2016                       | CCHH Changsha                  |                                         | 0.97   | [0.85; 1.11] |
|                                        |                                | -                                       |        |              |
|                                        |                                | r                                       | ٦      |              |
|                                        | C                              | 0.5 1 2 2                               | 2.5    |              |

Relative Risk per 10 µg/m<sup>3</sup>

## Sensitivity analysis - risk of bias outcome measurement domain - low/moderate vs high

| Study                                  | Study Name                     | Relative Risk                         | RR     | 95%-CI       |
|----------------------------------------|--------------------------------|---------------------------------------|--------|--------------|
| Low/Moderate                           |                                | Ĩ                                     |        |              |
| Pikhart et al. 1997                    | SAVIAH                         | <del></del>                           | 0.98   | [0.82; 1.18] |
| Hirsch et al. 1999                     | ISAAC Dresden                  | +                                     | 1.13   | [0.93; 1.37] |
| Krämer et al. 2000                     | Düsseldorf School Survey       |                                       | → 1.70 | [0.90; 3.20] |
| Janssen et al. 2003                    | ISAAC Southwestern Netherlands | · · · · · · · · · · · · · · · · · · · | 1.37   | [1.00; 1.89] |
| Krämer et al. 2009                     | GINI, LISA: Wesel              | • • • • • • • • • • • • • • • • • • • | 0.61   | [0.36; 1.03] |
| Oftedal et al. 2009                    | Oslo Birth Cohort              | -+-                                   | 1.01   | [0.90; 1.12] |
| Rosenlund et al. 2009                  | ISAAC Rome                     |                                       | 1.00   | [0.65; 1.54] |
| Gehring et al. 2010                    | PIAMA                          |                                       | 1.01   | [0.87; 1.17] |
| Pan et al. 2010                        | Liaoning Survey 2002           | +                                     | 0.95   | [0.91; 1.00] |
| Pénard-Morand et al. 2010              | French Six Cities              | + •                                   | 1.19   | [0.92; 1.52] |
| Ebisu et al. 2011                      | Yale Childhood Asthma Study    | <b>⊢</b> ⊷                            | 1.12   | [0.99; 1.27] |
| Svendsen et al. 2012                   | El Paso Children's Health      | -+                                    | 0.94   | [0.80; 1.10] |
| Altuğ et al. 2013                      | ISAAC Eskisehir                | +-                                    | 0.92   | [0.80; 1.07] |
| Liu et al. 2013                        | SNEC Kindergarten              | +                                     | 0.96   | [0.82; 1.12] |
| Abidin et al. 2014                     | ISAAC Malaysia                 |                                       | - 1.90 | [1.02; 3.53] |
| Dell et al. 2014                       | T-CHEQ                         |                                       | 0.98   | [0.83; 1.16] |
| Liu et al. 2014                        | SNEC                           |                                       | 0.92   | [0.84; 1.01] |
| Deng et al. 2016                       | CCHH Changsha                  |                                       | 0.97   | [0.85; 1.11] |
| Madsen et al. 2017                     | MoBa                           | +                                     | 1.02   | [0.97; 1.07] |
| Knibbs et al. 2018                     | ACHAPS                         |                                       | 1.34   | [0.99; 1.82] |
| Random effects model                   |                                | <b></b>                               | 1.00   | [0.95; 1.05] |
| Heterogeneity: $l^2 = 43\%$ , $\tau^2$ | = 0.0012, <i>p</i> = 0.02      |                                       |        |              |
| High                                   |                                |                                       |        |              |
| Wood et al. 2015                       | ISAAC East London              |                                       | 1.10   | [0.78; 1.57] |
|                                        |                                | ·                                     | _      |              |
|                                        | 0                              | .5 1 2                                | 2.5    |              |



Subgroup analysis – region

| Study                                | Study Name                     | Relative Risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RR   | 95%-CI       |
|--------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|
| North America                        |                                | Ĩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |              |
| Ebisu et al. 2011                    | Yale Childhood Asthma Study    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.12 | [0.99; 1.27] |
| Svendsen et al. 2012                 | El Paso Children's Health      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.94 | [0.80; 1.10] |
| Dell et al. 2014                     | T-CHEQ.                        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.98 | [0.83; 1.16] |
| Random effects model                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.02 | [0.81; 1.29] |
| Heterogeneity: $l^2 = 40\%$ , $\tau$ | $c^2 = 0.0041, p = 0.19$       | 200 million (100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - |      |              |
| Western Furope                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
| Hirsch et al. 1999                   | ISAAC Dresden                  | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.13 | [0.93; 1.37] |
| Krämer et al. 2000                   | Düsseldorf School Survey       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.70 | [0.90: 3.20] |
| Janssen et al. 2003                  | ISAAC Southwestern Netherlands | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.37 | [1.00; 1.89] |
| Rosenlund et al. 2009                | ISAAC Rome                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00 | [0.65; 1.54] |
| Oftedal et al. 2009                  | Oslo Birth Cohort              | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.01 | [0.90; 1.12] |
| Krämer et al. 2009                   | GINI, LISA: Wesel              | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.61 | [0.36; 1.03] |
| Gehring et al. 2010                  | PIAMA                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.01 | [0.87; 1.17] |
| Pénard-Morand et al. 201             | 0 French Six Cities            | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.19 | [0.92; 1.52] |
| Wood et al. 2015                     | ISAAC East London              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.10 | [0.78; 1.57] |
| Madsen et al. 2017                   | МоВа                           | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.02 | [0.97; 1.07] |
| Random effects model                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.03 | [0.98; 1.09] |
| Heterogeneity: 12 = 25%, a           | $t^2 = < 0.0001, p = 0.21$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
| Asia                                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
| Pan et al. 2010                      | Liaoning Survey 2002           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.95 | [0.91; 1.00] |
| Altuğ et al. 2013                    | ISAAC Eskisehir                | -++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.92 | [0.80; 1.07] |
| Liu et al. 2013                      | SNEC Kindergarten              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.96 | [0.82; 1.12] |
| Liu et al. 2014                      | SNEC                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.92 | [0.84; 1.01] |
| Abidin et al. 2014                   | ISAAC Malaysia                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.90 | [1.02; 3.53] |
| Deng et al. 2016                     | CCHH Changsha                  | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.97 | [0.85; 1.11] |
| Random effects model                 |                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.95 | [0.90; 1.00] |
| Heterogeneity: /2 = 10%, a           | $t^2 = < 0.0001, p = 0.35$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
| Australia/New Zealand                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
| Knibbs et al. 2018                   | ACHAPS                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.34 | [0.99; 1.82] |
|                                      |                                | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |              |
| Eastern Europe                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
| Pikhart et al. 1997                  | SAVIAH                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.98 | [0.82; 1.18] |
|                                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
|                                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |              |
|                                      | 0                              | 1.5 1 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5    |              |

Relative Risk per 10 µg/m<sup>3</sup>

Subgroup analysis – year of publication

| Study                                  | Study Name                    | Relative Risk                                   | RR     | 95%-CI       |
|----------------------------------------|-------------------------------|-------------------------------------------------|--------|--------------|
| Before 2008                            |                               |                                                 |        |              |
| Pikhart et al. 1997                    | SAVIAH                        |                                                 | 0.98   | [0.82; 1.18] |
| Hirsch et al. 1999                     | ISAAC Dresden                 |                                                 | 1.13   | [0.93; 1.37] |
| Krämer et al. 2000                     | Düsseldorf School Survey      |                                                 | • 1.70 | [0.90; 3.20] |
| Janssen et al. 2003                    | ISAAC Southwestern Netherland | is .                                            | 1.37   | [1.00; 1.89] |
| Random effects model                   |                               |                                                 | 1.15   | [0.85; 1.54] |
| Heterogeneity: $l^2 = 43\%$ , $\tau^2$ | = 0.0126, p = 0.16            |                                                 |        |              |
| After 2008                             |                               |                                                 |        |              |
| Rosenlund et al. 2009                  | ISAAC Rome                    |                                                 | 1.00   | [0.65: 1.54] |
| Oftedal et al. 2009                    | Oslo Birth Cohort             | +                                               | 1.01   | [0.90; 1.12] |
| Krämer et al. 2009                     | GINI, LISA: Wesel             | • • • • • • • • • • • • • • • • • • •           | 0.61   | [0.36; 1.03] |
| Gehring et al. 2010                    | PIAMA                         | _ <del>_</del>                                  | 1.01   | [0.87; 1.17] |
| Pénard-Morand et al. 2010              | French Six Cities             | <del></del>                                     | 1.19   | [0.92; 1.52] |
| Pan et al. 2010                        | Liaoning Survey 2002          | -                                               | 0.95   | [0.91; 1.00] |
| Ebisu et al. 2011                      | Yale Childhood Asthma Study   |                                                 | 1.12   | [0.99; 1.27] |
| Svendsen et al. 2012                   | El Paso Children's Health     |                                                 | 0.94   | [0.80; 1.10] |
| Altuğ et al. 2013                      | ISAAC Eskisehir               |                                                 | 0.92   | [0.80; 1.07] |
| Liu et al. 2013                        | SNEC Kindergarten             |                                                 | 0.96   | [0.82; 1.12] |
| Dell et al. 2014                       | T-CHEQ                        | <u> </u>                                        | 0.98   | [0.83; 1.16] |
| Liu et al. 2014                        | SNEC                          |                                                 | 0.92   | [0.84; 1.01] |
| Abidin et al. 2014                     | ISAAC Malaysia                |                                                 | • 1.90 | [1.02; 3.53] |
| Wood et al. 2015                       | ISAAC East London             |                                                 | 1.10   | [0.78; 1.57] |
| Deng et al. 2016                       | CCHH Changsha                 |                                                 | 0.97   | [0.85; 1.11] |
| Madsen et al. 2017                     | MoBa                          | ÷                                               | 1.02   | [0.97; 1.07] |
| Knibbs et al. 2018                     | ACHAPS                        |                                                 | 1.34   | [0.99; 1.82] |
| Random effects model                   |                               |                                                 | 0.99   | [0.95; 1.03] |
| Heterogeneity: $l^2 = 37\%$ , $\tau^2$ | = 0.0009, p = 0.06            |                                                 |        |              |
|                                        |                               | 0.5 1                                           | 0 05   |              |
|                                        |                               | U.D I<br>Delative Disk per 10 volm <sup>3</sup> | 2 2.5  |              |
|                                        |                               | Relative Risk per 10 µg/m                       |        |              |

Subgroup analysis – traffic specificity

| Study                                        | Study Name                        | Relative Risk             | RR          | 95%-CI       |
|----------------------------------------------|-----------------------------------|---------------------------|-------------|--------------|
| High                                         |                                   |                           |             |              |
| Pikhart et al. 1997                          | SAVIAH                            |                           | 0.98        | [0.82; 1.18] |
| Rosenlund et al. 2009                        | ISAAC Rome                        |                           | 1.00        | [0.65; 1.54] |
| Oftedal et al. 2009                          | Oslo Birth Cohort                 | - <del>+</del> -          | 1.01        | [0.90; 1.12] |
| Krämer et al. 2009                           | GINI, LISA: Wesel                 | • • • • • • •             | 0.61        | [0.36; 1.03] |
| Gehring et al. 2010                          | PIAMA                             |                           | 1.01        | [0.87; 1.17] |
| Pénard-Morand et al. 2010                    | French Six Cities                 |                           | 1.19        | [0.92; 1.52] |
| Ebisu et al. 2011                            | Yale Childhood Asthma Study       |                           | 1.12        | [0.99; 1.27] |
| Svendsen et al. 2012                         | El Paso Children's Health         |                           | 0.94        | [0.80; 1.10] |
| Dell et al. 2014                             | T-CHEQ                            |                           | 0.98        | [0.83; 1.16] |
| Wood et al. 2015                             | ISAAC East London                 | <del></del>               | 1.10        | [0.78; 1.57] |
| Madsen et al. 2017                           | MoBa                              |                           | 1.02        | [0.97; 1.07] |
| Knibbs et al. 2018                           | ACHAPS                            |                           | 1.34        | [0.99; 1.82] |
| Random effects model                         |                                   | <b>\$</b>                 | 1.02        | [0.98; 1.07] |
| Heterogeneity: $l^2 = 9\%$ , $\tau^2 = 10\%$ | = < 0.0001, <i>p</i> = 0.36       |                           |             |              |
| Moderate                                     |                                   |                           |             |              |
| Hirsch et al. 1999                           | ISAAC Dresden                     |                           | 1.13        | [0.93; 1.37] |
| Krämer et al. 2000                           | Düsseldorf School Survey          | · · · · ·                 | - 1.70      | [0.90; 3.20] |
| Janssen et al. 2003                          | ISAAC Southwestern Netherlands    | · · ·                     | 1.37        | [1.00; 1.89] |
| Pan et al. 2010                              | Liaoning Survey 2002              | -                         | 0.95        | [0.91; 1.00] |
| Altuğ et al. 2013                            | ISAAC Eskisehir                   |                           | 0.92        | [0.80; 1.07] |
| Liu et al. 2013                              | SNEC Kindergarten                 |                           | 0.96        | [0.82; 1.12] |
| Liu et al. 2014                              | SNEC                              | -                         | 0.92        | [0.84; 1.01] |
| Abidin et al. 2014                           | ISAAC Malaysia                    |                           | <b>1.90</b> | [1.02; 3.53] |
| Deng et al. 2016                             | CCHH Changsha                     |                           | 0.97        | [0.85; 1.11] |
| Random effects model                         |                                   | 4                         | 0.96        | [0.91; 1.02] |
| Heterogeneity: $l^2 = 51\%$ , $\tau^2$       | <sup>2</sup> = < 0.0001, p = 0.04 |                           |             |              |
|                                              | 8                                 |                           |             |              |
|                                              | C                                 | 0.5 1 2                   | 2.5         |              |
|                                              |                                   | Relative Risk per 10 µg/m |             |              |

123

Subgroup analysis – smoking adjustment

| Study                                  | Study Name                             | Relative Risk | RR      | 95%-CI       |
|----------------------------------------|----------------------------------------|---------------|---------|--------------|
| Yes                                    |                                        |               |         |              |
| Hirsch et al. 1999                     | ISAAC Dresden                          | ++            | 1.13    | [0.93; 1.37] |
| Janssen et al. 2003                    | ISAAC Southwestern Netherlands         | s <u></u>     | 1.37    | [1.00; 1.89] |
| Rosenlund et al. 2009                  | ISAAC Rome                             |               | 1.00    | [0.65; 1.54] |
| Oftedal et al. 2009                    | Oslo Birth Cohort                      |               | 1.01    | [0.90; 1.12] |
| Krämer et al. 2009                     | GINI, LISA: Wesel                      | •             | 0.61    | [0.36; 1.03] |
| Gehring et al. 2010                    | PIAMA                                  | _ <del></del> | 1.01    | [0.87; 1.17] |
| Pénard-Morand et al. 201               | 0 French Six Cities                    | +             | 1.19    | [0.92; 1.52] |
| Pan et al. 2010                        | Liaoning Survey 2002                   | -             | 0.95    | [0.91; 1.00] |
| Ebisu et al. 2011                      | Yale Childhood Asthma Study            |               | 1.12    | [0.99; 1.27] |
| Svendsen et al. 2012                   | El Paso Children's Health              | -+-           | 0.94    | [0.80; 1.10] |
| Altuğ et al. 2013                      | ISAAC Eskisehir                        | -++           | 0.92    | [0.80; 1.07] |
| Liu et al. 2013                        | SNEC Kindergarten                      |               | 0.96    | [0.82; 1.12] |
| Dell et al. 2014                       | T-CHEQ                                 |               | 0.98    | [0.83; 1.16] |
| Liu et al. 2014                        | SNEC                                   |               | 0.92    | [0.84; 1.01] |
| Abidin et al. 2014                     | ISAAC Malaysia                         |               |         | [1.02; 3.53] |
| Wood et al. 2015                       | ISAAC East London                      | — <b>+</b> +  | 1.10    | [0.78; 1.57] |
| Deng et al. 2016                       | CCHH Changsha                          | <b>+</b>      | 0.97    | [0.85; 1.11] |
| Madsen et al. 2017                     | MoBa                                   | ÷             | 1.02    | [0.97; 1.07] |
| Random effects model                   |                                        | <b></b>       | 0.99    | [0.95; 1.04] |
| Heterogeneity: I <sup>2</sup> = 38%, a | <sup>2</sup> = 0.0010, <i>p</i> = 0.05 |               |         |              |
| No                                     |                                        |               |         |              |
| Pikhart et al. 1997                    | SAVIAH                                 |               | 0.98    | [0.82; 1.18] |
| Krämer et al. 2000                     | Düsseldorf School Survey               |               |         | [0.90; 3.20] |
| Knibbs et al. 2018                     | ACHAPS                                 |               | 1.34    | [0.99; 1.82] |
| Random effects model                   |                                        |               | =- 1.20 | [0.64; 2.26] |
| Heterogeneity: $I^2 = 60\%$ , $\tau$   | <sup>2</sup> = 0.0393, p = 0.08        |               |         |              |
|                                        |                                        | 0.5 1 2       | 2.5     |              |

Relative Risk per 10 µg/m<sup>3</sup>

Subgroup analysis – study design

| Study                                  | Study Name                     | Relative Risk                          | RR     | 95%-CI       |
|----------------------------------------|--------------------------------|----------------------------------------|--------|--------------|
| Case-control                           |                                | 1                                      |        |              |
| Dell et al. 2014                       | T-CHEQ                         |                                        | 0.98   | [0.83; 1.16] |
| Cohort                                 |                                |                                        |        |              |
| Offedal et al. 2009                    | Oslo Bith Cobot                |                                        | 1.01   | 10 00: 1 121 |
| Krämer et al. 2009                     | CINI LISA: Wesel               | •                                      | 0.61   | [0.36: 1.03] |
| Cebring et al. 2003                    | PIAMA                          |                                        | 1.01   | [0.30, 1.03] |
| Ehisu et al 2011                       | Vale Childhood Asthma Study    |                                        | 1 12   | [0.00; 1.27] |
| Madsen et al. 2017                     | MoBa                           | <u>_</u>                               | 1.02   | [0.00, 1.27] |
| Random effects model                   | intega                         | E C                                    | 1.02   | [0.96: 1.10] |
| Heterogeneity: $l^2 = 32\%$ , $\tau^2$ | = < 0.0001, p = 0.21           |                                        |        | [one of mol  |
| Cross sectional                        |                                |                                        |        |              |
| Pikhart et al. 1997                    | SAVIAH                         | · · · · ·                              | 0.98   | [0.82; 1.18] |
| Hirsch et al. 1999                     | ISAAC Dresden                  | - <del></del>                          | 1.13   | [0.93; 1.37] |
| Krämer et al. 2000                     | Düsseldorf School Survey       |                                        | + 1.70 | [0.90; 3.20] |
| Janssen et al. 2003                    | ISAAC Southwestern Netherlands | •                                      | 1.37   | [1.00; 1.89] |
| Rosenlund et al. 2009                  | ISAAC Rome                     | ······································ | 1.00   | [0.65; 1.54] |
| Pénard-Morand et al. 2010              | French Six Cities              |                                        | 1.19   | [0.92; 1.52] |
| Pan et al. 2010                        | Liaoning Survey 2002           | -                                      | 0.95   | [0.91; 1.00] |
| Svendsen et al. 2012                   | El Paso Children's Health      |                                        | 0.94   | [0.80; 1.10] |
| Altuğ et al. 2013                      | ISAAC Eskisehir                |                                        | 0.92   | [0.80; 1.07] |
| Liu et al. 2013                        | SNEC Kindergarten              |                                        | 0.96   | [0.82; 1.12] |
| Liu et al. 2014                        | SNEC                           |                                        | 0.92   | [0.84; 1.01] |
| Abidin et al. 2014                     | ISAAC Malaysia                 |                                        | + 1.90 | [1.02; 3.53] |
| Wood et al. 2015                       | ISAAC East London              |                                        | 1.10   | [0.78; 1.57] |
| Deng et al. 2016                       | CCHH Changsha                  |                                        | 0.97   | [0.85; 1.11] |
| Knibbs et al. 2018                     | ACHAPS                         | · · · · ·                              | 1.34   | [0.99; 1.82] |
| Random effects model                   |                                | \$                                     | 0.99   | [0.93; 1.05] |
| Heterogeneity: $l^2 = 42\%$ , $\tau^2$ | = 0.0014, p = 0.04             |                                        |        |              |
|                                        |                                |                                        | 1      |              |
|                                        |                                | 0.0 0.75 T 1.5                         | 2      |              |

#### Sensitivity analysis – reverse selection

| Study                                    | Study Name                     | Exposure Window                    | Rel        | lative Risk                  | RR      | 95%-CI       | Weight |
|------------------------------------------|--------------------------------|------------------------------------|------------|------------------------------|---------|--------------|--------|
| Pikhart et al. 1997                      | SAVIAH                         | Annual average current year        | 1 <u>.</u> | <del></del>                  | 0.98    | [0.82; 1.18] | 3.5%   |
| Hirsch et al. 1999                       | ISAAC Dresden                  | Annual mean                        |            | +                            | 1.13    | [0.93; 1.37] | 3.1%   |
| Krämer et al. 2000                       | Düsseldorf School Survey       | Annual average current year        | -          | +                            | -+ 1.70 | [0.90; 3.20] | 0.3%   |
| Janssen et al. 2003                      | ISAAC Southwestern Netherlands | Annual average current year        |            | <b>—</b>                     | 1.37    | [1.00; 1.89] | 1.3%   |
| Krämer et al. 2009                       | GINI, LISA: Wesel              | Cumulative average                 | • ·        | +                            | 0.61    | [0.36; 1.03] | 0.5%   |
| Oftedal et al. 2009                      | Oslo Birth Cohort              | Annual average at birth            | -          | +                            | 1.01    | [0.90; 1.12] | 7.7%   |
| Rosenlund et al. 2009                    | ISAAC Rome                     | Exposure in 2000-2001 (recent year | r)         | -                            | 1.00    | [0.65; 1.54] | 0.7%   |
| Gehring et al. 2010                      | PIAMA                          | Annual average at birth            |            | +                            | 1.01    | [0.87; 1.17] | 4.9%   |
| Pan et al. 2010                          | Liaoning Survey 2002           | Four year average at baseline      | ł          | -                            | 0.95    | [0.91; 1.00] | 17.9%  |
| Pénard-Morand et al. 2010                | French Six Cities              | Annual average current year        |            | +                            | 1.19    | [0.92; 1.52] | 2.0%   |
| Ebisu et al. 2011                        | Yale Childhood Asthma Study    | Average first year                 |            |                              | 1.12    | [0.99; 1.27] | 6.3%   |
| Svendsen et al. 2012                     | El Paso Children's Health      | Average recent                     |            | -                            | 0.94    | [0.80; 1.10] | 4.4%   |
| Altuğ et al. 2013                        | ISAAC Eskisehir                | Annual average current year        |            | <del>-</del>                 | 0.92    | [0.80; 1.07] | 4.9%   |
| Liu et al. 2013                          | SNEC Kindergarten              | Three year average at baseline     |            | <del>4</del> -               | 0.96    | [0.82; 1.12] | 4.5%   |
| Abidin et al. 2014                       | ISAAC Malaysia                 | Annual average current year        |            |                              | → 1.90  | [1.02; 3.53] | 0.3%   |
| Dell et al. 2014                         | T-CHEQ                         | Annual average current year        | -          |                              | 1.05    | [0.89; 1.24] | 4.2%   |
| Liu et al. 2014                          | SNEC                           | Three year average at baseline     |            | <del>4</del>                 | 0.92    | [0.84; 1.01] | 9.7%   |
| Wood et al. 2015                         | ISAAC East London              | Annual average current year        |            | - <del>  •</del>             | 1.10    | [0.78; 1.57] | 1.1%   |
| Deng et al. 2016                         | CCHH Changsha                  | Cumulative average                 |            | 4                            | 0.96    | [0.81; 1.13] | 4.1%   |
| Madsen et al. 2017                       | MoBa                           | Entire pregnancy                   |            | ÷.                           | 1.02    | [0.97; 1.07] | 17.2%  |
| Knibbs et al. 2018                       | ACHAPS                         | Previous year annual average       |            |                              | 1.34    | [0.99; 1.82] | 1.4%   |
| Random effects model                     |                                |                                    |            | \$                           | 1.00    | [0.96; 1.05] | 100.0% |
| Prediction interval                      |                                |                                    |            |                              |         | [0.92; 1.10] |        |
| Heterogeneity: $I^2 = 42\%$ , $\tau^2 =$ | 0.0014, p = 0.02               |                                    |            |                              |         |              |        |
|                                          |                                |                                    | 0.5        | 1 2                          | 2.5     |              |        |
|                                          |                                |                                    | Relative F | Risk per 10µg/m <sup>3</sup> |         |              |        |

# NO<sub>2</sub> - Prevalence of wheeze 12 months - Children (<18 years)

Recent years > cumulative average > first year of life > at birth > pregnancy

#### Primary meta-analysis

#### NO<sub>X</sub> - Prevalence of wheeze 12 months - Children (<18 years)



Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low vs high

| Study                                 | Study Name            |         | Relative Risk                          | RR   | 95%-CI       |
|---------------------------------------|-----------------------|---------|----------------------------------------|------|--------------|
| Low                                   |                       |         | 1                                      |      |              |
| McConnell et al. 2006                 | CHS                   |         |                                        | 1.06 | [0.99; 1.13] |
| Pénard-Morand et al. 201              | 0 French Six Cities   |         |                                        | 1.11 | [0.98; 1.26] |
| Mölter et al. 2015                    | ESCAPE                |         |                                        | 1.01 | [0.87; 1.17] |
| Wood et al. 2015                      | ISAAC East Londor     | n —     |                                        | 1.00 | [0.74; 1.35] |
| Random effects model                  |                       |         | $\sim$                                 | 1.06 | [1.01; 1.12] |
| Heterogeneity: $I^2 = 0\%$ , $\tau^2$ | $p^{2} = 0, p = 0.76$ |         |                                        |      |              |
| High                                  |                       |         |                                        |      |              |
| Gruzieva et al. 2013                  | BAMSE                 |         |                                        | 1.05 | [0.93; 1.19] |
|                                       |                       |         | 1                                      |      |              |
|                                       |                       |         |                                        |      |              |
|                                       |                       | 0.70.75 | 1                                      | 1.5  |              |
|                                       |                       |         | Relative Risk per 20 µg/m <sup>3</sup> |      |              |

Sensitivity analysis - risk of bias selection bias domain - low/moderate vs high

| Study                              | Study Name             |         | Relative Risk                          | RR   | 95%-CI       |
|------------------------------------|------------------------|---------|----------------------------------------|------|--------------|
| Low/Moderate                       |                        |         |                                        |      |              |
| McConnell et al. 2006              | CHS                    |         |                                        | 1.06 | [0.99; 1.13] |
| Pénard-Morand et al. 2             | 010 French Six Cities  |         |                                        | 1.11 | [0.98; 1.26] |
| Gruzieva et al. 2013               | BAMSE                  |         |                                        | 1.05 | [0.93; 1.19] |
| Mölter et al. 2015                 | ESCAPE                 |         |                                        | 1.01 | [0.87; 1.17] |
| Random effects mode                | el 🛛                   |         | $\diamond$                             | 1.06 | [1.01; 1.11] |
| Heterogeneity: 1 <sup>2</sup> = 0% | $\tau^2 = 0, p = 0.79$ |         |                                        |      |              |
| High                               |                        |         |                                        |      |              |
| Wood et al. 2015                   | ISAAC East London      |         |                                        | 1.00 | [0.74; 1.35] |
|                                    |                        |         |                                        |      |              |
|                                    |                        |         |                                        |      |              |
|                                    | (                      | 0.70.75 | 1                                      | 1.5  |              |
|                                    |                        |         | Relative Risk per 20 µg/m <sup>3</sup> |      |              |

Sensitivity analysis - risk of bias outcome measurement domain - moderate vs high

| Study                        | Study Name                |         | Relative Risk                          | RR   | 95%-CI       |
|------------------------------|---------------------------|---------|----------------------------------------|------|--------------|
| Moderate                     |                           |         | 1                                      |      |              |
| McConnell et al. 2006        | CHS                       |         |                                        | 1.06 | [0.99; 1.13] |
| Pénard-Morand et al. 2       | 010 French Six Cities     |         |                                        | 1.11 | [0.98; 1.26] |
| Gruzieva et al. 2013         | BAMSE                     |         | -                                      | 1.05 | [0.93; 1.19] |
| Mölter et al. 2015           | ESCAPE                    |         |                                        | 1.01 | [0.87; 1.17] |
| Random effects mode          | ł                         |         | $\diamond$                             | 1.06 | [1.01; 1.11] |
| Heterogeneity: $I^2 = 0\%$ , | $\tau^2 = 0, \rho = 0.79$ |         |                                        |      |              |
| High                         |                           |         |                                        |      |              |
| Wood et al. 2015             | ISAAC East Londor         | n       |                                        | 1.00 | [0.74; 1.35] |
|                              |                           |         | 1                                      |      |              |
|                              |                           |         | 1                                      |      |              |
|                              |                           | 0.70.75 | 1                                      | 1.5  |              |
|                              |                           |         | Relative Risk per 20 µg/m <sup>3</sup> |      |              |

# NO<sub>x</sub> – Prevalence of active wheeze – Children Subgroup analysis – region

| Study                        | Study Name             |         | Relative Risk              | RR     | 95%-CI       |
|------------------------------|------------------------|---------|----------------------------|--------|--------------|
| North America                |                        |         | 2                          |        |              |
| McConnell et al. 2006        | CHS                    |         |                            | 1.06   | [0.99; 1.13] |
|                              |                        |         |                            |        |              |
| Western Europe               |                        |         |                            |        |              |
| Pénard-Morand et al. 20      | 10 French Six Cities   |         |                            | 1.11   | [0.98; 1.26] |
| Gruzieva et al. 2013         | BAMSE                  |         |                            | 1.05   | [0.93; 1.19] |
| Mölter et al. 2015           | ESCAPE                 |         |                            | 1.01   | [0.87; 1.17] |
| Wood et al. 2015             | ISAAC East London      |         |                            | - 1.00 | [0.74; 1.35] |
| Random effects model         |                        |         | $\leftarrow$               | 1.06   | [0.98; 1.14] |
| Heterogeneity: $I^2 = 0\%$ , | $\tau^2 = 0, p = 0.76$ |         |                            |        |              |
|                              | (                      | 0.70.75 | 1                          | 1.5    |              |
|                              |                        |         | Relative Risk per 20 µg/m3 |        |              |

# NO<sub>x</sub> – Prevalence of active wheeze – Children Subgroup analysis – year of publication

Study Study Name **Relative Risk** RR 95%-CI Before 2008 McConnell et al. 2006 CHS 1.06 [0.99; 1.13] After 2008 1.11 [0.98; 1.26] 1.05 [0.93; 1.19] 1.01 [0.87; 1.17] Pénard-Morand et al. 2010 French Six Cities Gruzieva et al. 2013 BAMSE ESCAPE Mölter et al. 2015 Wood et al. 2015 ISAAC East London 1.00 [0.74; 1.35] Random effects model ----1.06 [0.98; 1.14] Heterogeneity:  $l^2 = 0\%$ ,  $\tau^2 = 0$ ,  $\rho = 0.76$ 0.70.75 1.5 1 Relative Risk per 20 µg/m3

Subgroup analysis – traffic specificity

All high traffic specificity

NO<sub>x</sub> – Prevalence of active wheeze – Children Subgroup analysis – smoking adjustment

| Study                                 | Study Name           | Relative Risk              | RR   | 95%-CI       |
|---------------------------------------|----------------------|----------------------------|------|--------------|
| Yes                                   |                      |                            |      |              |
| Pénard-Morand et al. 20               | 10 French Six Cities |                            | 1.11 | [0.98; 1.26] |
| Mölter et al. 2015                    | ESCAPE               |                            | 1.01 | [0.87; 1.17] |
| Wood et al. 2015                      | ISAAC East London    |                            | 1.00 | [0.74; 1.35] |
| Random effects model                  |                      |                            | 1.06 | [0.92; 1.23] |
| Heterogeneity: / <sup>2</sup> = 0%, 1 | $c^2 = 0, p = 0.56$  |                            |      |              |
| No                                    |                      | 1.07.0                     |      |              |
| McConnell et al. 2006                 | CHS                  |                            | 1.06 | [0.99; 1.13] |
| Gruzieva et al. 2013                  | BAMSE                |                            | 1.05 | [0.93; 1.19] |
|                                       |                      |                            |      |              |
|                                       |                      |                            |      |              |
|                                       | 0.7                  | 1 1                        | 1.5  |              |
|                                       |                      | Relative Risk per 20 µg/m" |      |              |

# NO<sub>x</sub> – Prevalence of active wheeze – Children Subgroup analysis – study design

| Study                                                                | Study Name                  |      | Relative Risk       |                  | RR       | 95%-CI                       |
|----------------------------------------------------------------------|-----------------------------|------|---------------------|------------------|----------|------------------------------|
| Cohort                                                               |                             |      | 1                   |                  |          |                              |
| Gruzieva et al. 2013                                                 | BAMSE                       |      |                     | 1.               | 05       | [0.93; 1.19]                 |
| Mölter et al. 2015                                                   | ESCAPE                      |      | <del></del>         | 1.               | 01       | [0.87; 1.17]                 |
| Cross sectional<br>McConnell et al. 2006<br>Pénard-Morand et al. 201 | CHS<br>10 French Six Cities |      | -                   | 1.<br>1.         | 06<br>11 | [0.99; 1.13]<br>[0.98; 1.26] |
| Wood et al. 2015                                                     | ISAAC East London           |      | _                   | 1.               | 00       | [0.74; 1.35]                 |
| Random effects model                                                 |                             |      | $\diamond$          | 1.               | 07       | [0.99; 1.15]                 |
| Heterogeneity: $I^2 = 0\%$ , $\tau$                                  | <sup>2</sup> = 0, p = 0.72  |      | _                   |                  |          |                              |
|                                                                      | 0.6                         | 0.75 | 1                   | 1.5 2            |          |                              |
|                                                                      |                             | Rela | ative Risk per 20 µ | g/m <sup>3</sup> |          |                              |

NO<sub>x</sub> – Prevalence of active wheeze– Children Sensitivity analysis – reverse selection

## NO<sub>X</sub> - Prevalence of wheeze 12 months - Children (<18 years)



Recent years > cumulative average > first year of life > at birth > pregnancy

#### EC - Prevalence of active wheeze – Children

#### Primary meta-analysis

#### EC - Prevalence of wheeze 12 months - Children (<18)



# EC – Prevalence of active wheeze – Children

# Subgroup analysis – year of publication

| Study                   | Study Name                       |     | Relative Risk             | RR     | 95%-CI       |
|-------------------------|----------------------------------|-----|---------------------------|--------|--------------|
| Before 2008             |                                  |     | 1                         |        |              |
| Janssen et al. 2003     | ISAAC Southwestern Netherlands   |     |                           | • 1.42 | [0.67; 3.01] |
|                         |                                  |     | 1                         |        |              |
| After 2008              |                                  |     |                           |        |              |
| Krämer et al. 2009      | GINI, LISA: Wesel                | •   |                           | 0.59   | [0.28; 1.28] |
| Gehring et al. 2010     | PIAMA                            | 5   | -                         | 1.05   | [0.82; 1.34] |
| Mölter et al. 2015      | ESCAPE                           |     |                           | 1.17   | [0.83; 1.64] |
| Random effects mode     |                                  |     |                           | - 1.05 | [0.65; 1.69] |
| Heterogeneity: /2 = 219 | $6, \tau^2 = < 0.0001, p = 0.28$ |     |                           |        |              |
|                         |                                  |     | 1 1                       |        |              |
|                         |                                  | 0.7 | 1 <u>1.5</u>              | 2      |              |
|                         |                                  |     | Relative Risk per 1 µg/m3 |        |              |

# Subgroup analysis – traffic specificity

| Study                       | Study Name                       |     | Relative Ris        | k                 | RR     | 95%-CI       |
|-----------------------------|----------------------------------|-----|---------------------|-------------------|--------|--------------|
| High                        |                                  |     | 1                   |                   |        |              |
| Krämer et al. 2009          | GINI, LISA: Wesel                | •   |                     |                   | 0.59   | [0.28; 1.28] |
| Gehring et al. 2010         | PIAMA                            |     | -                   |                   | 1.05   | [0.82; 1.34] |
| Mölter et al. 2015          | ESCAPE                           | 2   |                     |                   | 1.17   | [0.83; 1.64] |
| Random effects mode         | -                                |     |                     |                   | 1.05   | [0.65; 1.69] |
| Heterogeneity: $l^2 = 21\%$ | $b, \tau^2 = < 0.0001, p = 0.28$ |     |                     |                   |        |              |
| Moderate                    |                                  |     |                     |                   |        |              |
| Janssen et al. 2003         | ISAAC Southwestern Netherlands   | •   |                     | •                 | • 1.42 | [0.67; 3.01] |
|                             |                                  |     |                     |                   |        |              |
|                             |                                  |     | 1                   | 1                 |        |              |
|                             |                                  | 0.7 | 1                   | 1.5               | 2      |              |
|                             |                                  |     | Relative Risk per 1 | µg/m <sup>3</sup> |        |              |

# EC – Prevalence of active wheeze – Children

Subgroup analysis – study design

| Study                       | Study Name                       |      | Relative Risk           | RR            | 95%-CI       |
|-----------------------------|----------------------------------|------|-------------------------|---------------|--------------|
| Cohort                      |                                  |      |                         |               |              |
| Krämer et al. 2009          | GINI, LISA: Wesel                | 2    |                         | 0.59          | [0.28; 1.28] |
| Gehring et al. 2010         | PIAMA                            | -    | -                       | 1.05          | [0.82; 1.34] |
| Mölter et al. 2015          | ESCAPE                           | 1    |                         | 1.17          | [0.83; 1.64] |
| Random effects mode         |                                  |      |                         | <b>— 1.05</b> | [0.65; 1.69] |
| Heterogeneity: $l^2 = 21\%$ | $6, \tau^2 = < 0.0001, p = 0.28$ |      |                         |               |              |
| Cross sectional             |                                  |      |                         |               |              |
| Janssen et al. 2003         | ISAAC Southwestern Netherlands   | -    |                         | • 1.42        | [0.67; 3.01] |
|                             |                                  | 82   | 1                       | <u></u>       |              |
|                             |                                  |      |                         |               |              |
|                             | 0.6                              | 0.75 | 1 1                     | .5 2          |              |
|                             |                                  | R    | elative Risk per 1 µg/m | 3             |              |

Chapter 9 Additional Materials

EC – Prevalence of active wheeze – Children

Subgroup analyses notes:

Subgroup analysis – region

All Western Europe

Subgroup analysis – smoking adjustment

All studies controlled for smoking

#### Primary meta-analysis

#### PM10 - Prevalence of wheeze 12 months - Children (<18)



Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low vs high

| Study                               | Study Name           |            | Relative Risk        | ( I               | RR | 95%-CI       |
|-------------------------------------|----------------------|------------|----------------------|-------------------|----|--------------|
| Low                                 |                      |            |                      |                   |    |              |
| Pénard-Morand et al. 20             | 10 French Six Cities |            |                      | <u> </u>          | 29 | [0.90; 1.85] |
| Mölter et al. 2015                  | ESCAPE               | . <u> </u> |                      | <u> </u>          | 11 | [0.70; 1.76] |
| Wood et al. 2015                    | ISAAC East London    | -          |                      | 1.                | 79 | [0.41; 7.76] |
| Random effects model                |                      |            | -+                   | <u> </u>          | 24 | [0.91; 1.69] |
| Heterogeneity: 1 <sup>2</sup> = 0%, | $t^2 = 0, p = 0.77$  |            |                      |                   |    |              |
| High                                |                      |            |                      |                   |    |              |
| Gruzieva et al. 2013                | BAMSE                | 1.5        |                      | 1.                | 21 | [0.75; 1.97] |
|                                     |                      |            |                      |                   |    |              |
|                                     |                      |            |                      |                   |    |              |
|                                     |                      | 0.7        | 1                    | 1.5 2             |    |              |
|                                     |                      |            | Relative Risk per 10 | µg/m <sup>3</sup> |    |              |

Sensitivity analysis - risk of bias selection bias domain - low/moderate vs high

| Study         | Stu                                           | dy Name       | <b>Relative Risk</b>     | RR             | 95%-CI       |
|---------------|-----------------------------------------------|---------------|--------------------------|----------------|--------------|
| Low/Moder     | ate                                           |               | 1                        |                |              |
| Pénard-Mol    | rand et al. 2010 Frenc                        | h Six Cities  |                          | 1.29           | [0.90; 1.85] |
| Gruzieva et   | al. 2013 E                                    | BAMSE         |                          | 1.21           | [0.75; 1.97] |
| Mölter et al. | 2015 E                                        | SCAPE         | -                        | 1.11           | [0.70; 1.76] |
| Random ef     | fects model                                   |               |                          | 1.22           | [1.00; 1.48] |
| Heterogene    | eity: $l^2 = 0\%$ , $\tau^2 = 0$ , $\rho = 0$ | .88           |                          |                |              |
| High          |                                               |               |                          |                |              |
| Wood et al.   | 2015 ISAAC I                                  | East London 🔹 | 2.4                      | • • 1.79       | [0.41; 7.76] |
|               |                                               |               |                          |                |              |
|               |                                               |               |                          |                |              |
|               |                                               | 0.7           | 1 1.                     | 5 2            |              |
|               |                                               |               | Relative Risk per 10 µg/ | m <sup>3</sup> |              |
PM<sub>10</sub> – Prevalence of active wheeze – Children

Sensitivity analysis - risk of bias outcome measurement domain - moderate vs high



PM<sub>10</sub> – Prevalence of active wheeze – Children Subgroup analysis – traffic specificity



PM<sub>10</sub> – Prevalence of active wheeze – Children Subgroup analysis – smoking adjustment

| Study                                   | Study Name           |          | Relativ       | ve Risk     | RR     | 95%-CI       |
|-----------------------------------------|----------------------|----------|---------------|-------------|--------|--------------|
| Yes                                     |                      |          |               |             |        |              |
| Pénard-Morand et al. 2010               | French Six Cities    |          | _             |             | 1.29   | [0.90; 1.85] |
| Mölter et al. 2015                      | ESCAPE               |          | -             |             | - 1.11 | [0.70; 1.76] |
| Wood et al. 2015                        | ISAAC East London    | e        |               |             | • 1.79 | [0.41; 7.76] |
| Random effects model                    |                      |          | -+            |             | 1.24   | [0.91; 1.69] |
| Heterogeneity: $I^2 = 0\%$ , $\tau^2 =$ | : 0, <i>p</i> = 0.77 |          |               |             |        |              |
| No                                      |                      |          |               |             |        |              |
| Gruzieva et al. 2013                    | BAMSE                | <u>.</u> |               |             | 1.21   | [0.75; 1.97] |
|                                         |                      | ·        |               |             |        |              |
|                                         |                      | -        |               |             |        |              |
|                                         | 1                    | 0.7      | 1             | 1.5         | 2      |              |
|                                         |                      |          | Relative Risk | per 10 µg/m |        |              |

 $\mathsf{PM}_{10}-\mathsf{Prevalence}$  of active wheeze – Children

### Sensitivity analysis - reverse selection

### PM10 - Prevalence of wheeze 12 months - Children (<18)



Recent years > cumulative average > first year of life > at birth > pregnancy

Chapter 9 Additional Materials

PM<sub>10</sub> – Prevalence of active wheeze – Children

Subgroup analyses notes:

Subgroup analysis – region All Western Europe

Subgroup analysis – year of publication All after 2008

Subgroup analysis – study design Gruzieva 2013 and Molter 2015 cohorts; the other two cross sectional studies

#### PM<sub>2.5</sub> – Prevalence of active wheeze – Children

#### Primary meta-analysis

PM<sub>2.5</sub>- Prevalence of wheeze 12 months - Children (<18)



PM<sub>2.5</sub> – Prevalence of active wheeze – Children

Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias selection bias domain – low vs high

| Study                                 | Study Name          | Relative Risk                                | RR     | 95%-CI        |
|---------------------------------------|---------------------|----------------------------------------------|--------|---------------|
| Low                                   |                     |                                              |        |               |
| Morgenstern et al. 2008               | GINI, LISA: Munich  |                                              | 0.86   | [0.65; 1.14]  |
| Gehring et al. 2010                   | PIAMA               |                                              | 1.06   | [0.77; 1.46]  |
| Mölter et al. 2015                    | ESCAPE              |                                              | 0.96   | [0.62; 1.49]  |
| Random effects model                  |                     |                                              | 0.95   | [0.71; 1.27]  |
| Heterogeneity: $l^2 = 0\%$ , $\tau^2$ | $p^2 = 0, p = 0.62$ |                                              |        |               |
| High                                  |                     |                                              |        |               |
| Wood et al. 2015                      | ISAAC East London   |                                              | ⇒ 2.10 | 10.37: 12.061 |
|                                       |                     |                                              |        |               |
|                                       |                     |                                              |        |               |
|                                       | 0.4 0.              | 5 1<br>Relative Risk per 5 μg/m <sup>3</sup> | 2      |               |

PM<sub>2.5</sub> – Prevalence of active wheeze – Children

Sensitivity analysis - risk of bias outcome measurement domain - moderate vs high

| Study                                 | Study Name         | Relative Risk                                | RR     | 95%-CI        |
|---------------------------------------|--------------------|----------------------------------------------|--------|---------------|
| Moderate                              |                    |                                              |        |               |
| Morgenstern et al. 2008               | GINI, LISA: Munich |                                              | 0.86   | [0.65; 1.14]  |
| Gehring et al. 2010                   | PIAMA              |                                              | 1.06   | [0.77; 1.46]  |
| Mölter et al. 2015                    | ESCAPE             |                                              | 0.96   | [0.62; 1.49]  |
| Random effects model                  |                    |                                              | 0.95   | [0.71; 1.27]  |
| Heterogeneity: $l^2 = 0\%$ , $\tau^2$ | = 0, p = 0.62      |                                              |        |               |
| High                                  |                    |                                              |        |               |
| Wood et al. 2015                      | ISAAC East London  |                                              | → 2.10 | [0.37; 12.06] |
|                                       |                    |                                              |        |               |
|                                       |                    |                                              |        |               |
|                                       | 0.4 0.             | 5 1<br>Relative Risk per 5 μg/m <sup>3</sup> | 2      |               |

# PM<sub>2.5</sub> – Prevalence of active wheeze – Children Subgroup analysis – year of publication

| Study                     | Study Name         |        | Relative Risk                              | RR   | 95%-CI       |
|---------------------------|--------------------|--------|--------------------------------------------|------|--------------|
| Before 2008               |                    |        |                                            |      |              |
| Morgenstern et al. 2008   | GINI, LISA: Munich |        |                                            | 0.86 | [0.65; 1.14] |
| Affar 2000                |                    |        | I.                                         |      |              |
| Cabring at al. 2010       | DIAMA              |        |                                            | 1.06 | 10 77: 1 46  |
| Möltor of al. 2015        |                    |        |                                            | 0.06 | [0.77, 1.40] |
| Wood et al. 2015          | ISAAC East London  | -      |                                            | 2 10 | [0.02, 1.49] |
| Random effects model      | 2                  |        |                                            | 1.04 | [0.74; 1.48] |
| Heterogeneity: /~ = 0%, 1 | f = 0, p = 0.68    |        |                                            |      |              |
|                           | 0                  | .4 0.5 | 1<br>Relative Risk per 5 µg/m <sup>3</sup> | 2    |              |

# PM<sub>2.5</sub> – Prevalence of active wheeze – Children Subgroup analysis – study design

| Study                                 | Study Name           |        | Relative Risk       |                 | RR   | 95%-CI        |
|---------------------------------------|----------------------|--------|---------------------|-----------------|------|---------------|
| Cohort                                |                      |        | 1                   |                 |      |               |
| Morgenstern et al. 2008               | GINI, LISA: Munich   |        |                     |                 | 0.86 | [0.65; 1.14]  |
| Gehring et al. 2010                   | PIAMA                | 0,     | -                   |                 | 1.06 | [0.77; 1.46]  |
| Mölter et al. 2015                    | ESCAPE               |        |                     | -               | 0.96 | [0.62; 1.49]  |
| Random effects model                  |                      |        |                     |                 | 0.95 | [0.71; 1.27]  |
| Heterogeneity: $l^2 = 0\%$ , $\tau^2$ | = 0, <i>p</i> = 0.62 |        |                     |                 |      |               |
| Cross sectional                       |                      |        |                     |                 |      |               |
| Wood et al. 2015                      | ISAAC East London    |        |                     | 3               | 2.10 | [0.37; 12.06] |
|                                       |                      |        |                     |                 |      |               |
|                                       | r                    |        | 1                   | 1               | 1    |               |
|                                       | 0.                   | 6 0.75 | 1                   | 1.5             | 2    |               |
|                                       |                      | Rela   | ative Risk per 5 µg | /m <sup>3</sup> |      |               |

Chapter 9 Additional Materials

PM<sub>2.5</sub> – Prevalence of active wheeze – Children

Subgroup analyses notes:

Subgroup analysis – traffic specificity

All moderate specificity

Subgroup analysis – smoking

All yes

Subgroup analysis – region

All Western Europe

## Distance measures - Prevalence of active wheeze - Adults

| Distance measures - Prev | alence of w | heeze 12 mc | onths - Adults |
|--------------------------|-------------|-------------|----------------|
|--------------------------|-------------|-------------|----------------|

| Reference                     | Study Name               |                                       | Categories            | RR   | 95% CI       |
|-------------------------------|--------------------------|---------------------------------------|-----------------------|------|--------------|
| Nitta et al. 1993             | Tokyo Respiratory Survey | ⊢ <b>•</b> →                          | <20 vs. 20-150 m      | 2.75 | [1.65, 4.73] |
| Nitta et al. 1993             | Tokyo Respiratory Survey | F                                     | <20 vs. 50-150 m      | 1.52 | [0.91, 2.55] |
| Nitta et al. 1993             | Tokyo Respiratory Survey | <b>⊢</b>                              | 20-50 vs. 50-150 m    | 1.17 | [0.69, 2.00] |
| Nitta et al. 1993             | Tokyo Respiratory Survey | ⊢I                                    | <20 vs. 20-150 m      | 0.94 | [0.61, 1.42] |
| Garshick et al. 2003          | ATS US Veterans          | <b>—</b>                              | <50 vs. >50 m         | 1.31 | [1.00, 1.71] |
| Venn et al. 2005              | Jimma Respiratory Survey | •>                                    | <30 vs. 120-150 m     | 1.83 | [0.78, 4.23] |
| Venn et al. 2005              | Jimma Respiratory Survey | · · · · · · · · · · · · · · · · · · · | 30-60 vs. >120-150 m  | 1.59 | [0.65, 3.90] |
| Venn et al. 2005              | Jimma Respiratory Survey |                                       | 60-90 vs. >120-150 m  | 1.65 | [0.65, 4.10] |
| Venn et al. 2005              | Jimma Respiratory Survey | )                                     | 90-120 vs. >120-150 m | 0.96 | [0.30, 2.96] |
| Bayer-Oglesby et al. 2006     | SAPALDIA                 |                                       | <20 vs. >20 m         | 0.94 | [0.78, 1.12] |
| Pujades-Rodríguez et al. 2009 | Nottingham Cohort        | H                                     | <50 vs. >100-150 m    | 1.60 | [0.96, 2.68] |
| Pujades-Rodríguez et al. 2009 | Nottingham Cohort        | ii                                    | 50-100 vs. 100-150 m  | 1.00 | [0.61, 1.66] |
| Nuvolone et al. 2011          | Tuscany Health Survey    |                                       | <100 vs. 250-800 m    | 1.32 | [0.76, 2.28] |
| Nuvolone et al. 2011          | Tuscany Health Survey    | II                                    | <100 vs. 250-800 m    | 1.76 | [1.08, 2.87] |
| Nuvolone et al. 2011          | Tuscany Health Survey    | L                                     | 100-250 vs. 250-800 m | 0.77 | [0.42, 1.42] |
| Nuvolone et al. 2011          | Tuscany Health Survey    | L                                     | 100-250 vs. 250-800 m | 1.54 | [0.94, 2.53] |
| Hazenkamp-von Arx et al. 2011 | MfMU                     | ·                                     | <200 vs. >200 m       | 3.10 | [1.27, 7.55] |
| Bowatte et al. 2017a          | TAHS                     | F                                     | <200 vs. >200 m       | 1.61 | [1.19, 2.19] |
| Bowatte et al. 2017b          | TAHS                     |                                       | <200 vs. >200 m       | 1.38 | [1.06, 1.80] |
|                               |                          |                                       |                       |      |              |
|                               |                          | 0 1 2 3                               |                       |      |              |
|                               |                          | Relative Risk                         |                       |      |              |

Nitta et al. 1993 – results from different years; Nuvolone et al. results stratified by sex. Bowatte et al. 2017a and b refer to different study designs.

## Distance measures - Prevalence of active wheeze - Children

| Reference                     | Study Name                       |                                       |               |    |               | Categories                                               | RR   | 95% CI       |
|-------------------------------|----------------------------------|---------------------------------------|---------------|----|---------------|----------------------------------------------------------|------|--------------|
| van Vliet et al. 1997         | South Holland Respiratory Survey | -                                     |               | •  |               | <100 vs. 100-1000 m                                      | 2.00 | [0.99, 2.74] |
| Venn et al. 2001              | Nottingham School Survey         |                                       |               |    |               | <30 vs. >150 m                                           | 1.38 | [0.96, 1.92] |
| Venn et al. 2001              | Nottingham School Survey         |                                       |               |    |               | 30-60 vs. >150 m                                         | 1.20 | [0.85, 1.70] |
| Venn et al. 2001              | Nottingham School Survey         |                                       |               |    |               | 60-90 vs. >150 m                                         | 1.07 | [0.78, 1.49] |
| Venn et al. 2001              | Nottingham School Survey         |                                       | ·             |    |               | 90-120 vs. >150 m                                        | 1.03 | [0.78, 1.40] |
| Venn et al. 2001              | Nottingham School Survey         |                                       | -             |    | ÷             | <30 vs. >150 m                                           | 1.84 | [1.05. 3.22] |
| Venn et al. 2001              | Nottingham School Survey         |                                       |               |    |               | 30-60 vs. >150 m                                         | 1.22 | [0.69. 2.17] |
| Venn et al. 2001              | Nottingham School Survey         |                                       |               |    |               | 60-90 vs. >150 m                                         | 1.09 | [0.61, 1.92] |
| Venn et al. 2001              | Nottingham School Survey         |                                       |               |    |               | 90-120 vs >150 m                                         | 0.91 | 10 54 1 611  |
| Minake et al. 2002            | ISAAC Suita                      | h                                     |               |    |               | Facing road vs. >100 m                                   | 1.08 | 0.69 1.611   |
| Miyake et al. 2002            | ISAAC Suita                      | 1                                     |               |    |               | <100 vs >100 m                                           | 1.27 | 0.97 1.661   |
| Vang et al. 2002              | Kaohsiung Respiratory Survey     |                                       |               |    |               | 150 vs. 1500 m                                           | 1.01 | [0.84 1 21]  |
| Shima et al 2003              | Chiba Cohort                     |                                       |               |    |               | <50 m vs. rural areas                                    | 1 35 | 10 34 5 321  |
| Shima at al. 2003             | Chiba Cohort                     |                                       |               |    |               | <50 m vs. rural areas                                    | 0.78 | [0.09 7.00]  |
| Shima at al. 2003             | Chiba Cohort                     |                                       |               |    |               | 50 m vs. rural areas                                     | 1.02 | [0.00, 7.00] |
| Shima et al. 2003             | Chiba Cohort                     | · · · · · · · · · · · · · · · · · · · |               |    |               | >50 m vs. rural areas                                    | 0.79 | [0.94, 2.30] |
| Shima et al. 2005             | Chiba Conort                     | i                                     |               |    |               | 200 m vs. rural areas                                    | 0.75 | [0.20, 2.39] |
| Lewis et al. 2005             | ISAAC Eastern UK                 |                                       |               |    |               | <30 vs. >100 m                                           | 0.95 | [0.73, 1.23] |
| Lewis et al. 2005             | ISAAC Eastern UK                 |                                       |               |    |               | 30-89 vs. >150 m                                         | 1.05 | [0.89, 1.23] |
| Lewis et al. 2005             | ISAAC Eastern UK                 |                                       | -             |    |               | 90-149 vs. >150 m                                        | 1.14 | [0.97, 1.35] |
| Ryan et al. 2005              | CCAAPS                           |                                       |               |    |               | <100 vs. >100 m                                          | 2.50 | [1.15, 5.42] |
| McConnell et al. 2006         | CHS                              |                                       |               |    |               | <75 vs. >300 m                                           | 1.40 | [1.09, 1.78] |
| McConnell et al. 2006         | CHS                              |                                       |               |    |               | 75-150 vs. >300 m                                        | 1.30 | [1.02, 1.66] |
| McConnell et al. 2006         | CHS                              |                                       |               |    |               | 150-300 vs. >300 m                                       | 1.02 | [0.82, 1.27] |
| Dong et al. 2008              | Liaoning Survey 2007             |                                       | •             |    |               | <20 vs. >100 m                                           | 1.32 | [1.02, 1.73] |
| Dong et al. 2008              | Liaoning Survey 2007             |                                       |               |    |               | 20-100 vs. >100 m                                        | 0.84 | [0.65, 1.09] |
| Kim et al. 2008               | EBCRHS                           | <u> </u>                              |               |    |               | <75 vs. >300 m                                           | 2.81 | [0.94, 8.39] |
| Kim et al. 2008               | EBCRHS                           | -                                     | -             |    |               | 75-150 vs. >300 m                                        | 1.82 | [0.75, 4.40] |
| Kim et al. 2008               | EBCRHS                           | 1.1                                   |               | •  |               | 150-300 vs. >300 m                                       | 2.00 | [0.93, 4.29] |
| Rosenlund et al. 2009         | ISAAC Rome                       | -                                     |               |    |               | <100 vs. >100 m                                          | 0.50 | [0.20, 1.30] |
| Oftedal et al. 2009           | Oslo Birth Cohort                |                                       |               |    |               | 580.3 m                                                  | 1.00 | [0.91, 1.11] |
| Krämer et al. 2009            | GINI, LISA: Wesel                |                                       |               |    |               | <50 vs. >50 m                                            | 0.76 | [0.45, 1.28] |
| Pujades-Rodríguez et al. 2009 | Health Survey England            | H                                     |               |    |               | <150 vs. >150 m                                          | 0.93 | [0.88, 0.98] |
| Mivake et al. 2010            | OMCHS                            |                                       |               |    |               | <50 vs. >200 m                                           | 0.85 | [0,48, 1,47] |
| Mivake et al. 2010            | OMCHS                            |                                       |               |    |               | 50-100 vs. >200 m                                        | 1.10 | 10.65. 1.811 |
| Mivake et al. 2010            | OMCHS                            |                                       |               |    |               | 100-200 vs. >200 m                                       | 1.04 | 10.66. 1.641 |
| Middleton et al. 2010         | ISAAC Cyprus                     | · · · · ·                             |               |    |               | <50 vs. >300 m                                           | 1.30 | [0.86. 1.97] |
| Middleton et al. 2010         | ISAAC Cyprus                     |                                       | -             | -  |               | 50-100 vs. >300 m                                        | 1.08 | [0.61, 1.89] |
| Middleton et al. 2010         | ISAAC Cyprus                     |                                       |               |    |               | 100-150 vs. >300 m                                       | 1.01 | [0.51. 2.00] |
| Middleton et al. 2010         | ISAAC Cyprus                     |                                       |               |    |               | 150-300 vs ≥300 m                                        | 0.89 | [0.52 1.50]  |
| Patel et al. 2011             | CCCEH                            | ji ji                                 |               |    |               | -0.96 km                                                 | 1.28 | [0.98 1.62]  |
| Dellet al 2014                | T-CHEO                           |                                       |               |    | $\rightarrow$ | <100 vs >100 m                                           | 1.35 | 10 38 4 821  |
| lung et al. 2015              | CHEER                            |                                       |               |    |               | 675 vs. 5225 m                                           | 1.18 | [0.91 1.49]  |
| Jung et al. 2015              | CHEER                            |                                       | 1             |    |               | 75.150 us 5225 m                                         | 0.92 | 10.65 1.041  |
| Jung et al. 2015              | CHEER                            |                                       |               |    |               | 150 225 vs. >225 m                                       | 1.02 | [0.00, 1.04] |
| Jung et al. 2019              | CHEER                            |                                       |               |    |               | 100-220 VS220 ml<br><75 m vs. >75 m and no branchiolitic | 1.02 | [0.74, 1.40] |
| Lee et al. 2010               | CHEER                            |                                       |               |    |               | <75 as and hereable bis us <75 as an hereable bis        | 1.01 | [0.00, 1.09] |
| Lee et al. 2010               | CHEER                            |                                       | a             | 20 |               |                                                          | 1.05 | [0.65, 5.20] |
| Lee et al. 2018               | CHEER                            |                                       |               | 1  |               | prononiolitis only vs. >/o m and no prononiolitis        | 1.01 | 1.03, 2.03   |
|                               |                                  |                                       |               |    |               |                                                          |      |              |
|                               |                                  |                                       |               |    |               |                                                          |      |              |
|                               |                                  | 0 1                                   |               | 2  | 3             |                                                          |      |              |
|                               |                                  |                                       | Relative Risk |    |               |                                                          |      |              |

#### Distance measures - Prevalence of wheeze 12 months - Children (<18 years)

Venn et al. 2001 results stratified by sex; Miyake et al. 2002 results for residence and school; Shima et al. 2003 results stratified by sex

#### Density measures - Prevalence of active wheeze - Adults



#### Density measures - Prevalence of wheeze 12mths - Adults

## Density measures - Prevalence of active wheeze - Children

| Reference             | Study Name                       |   |   |                 |          |      | Per Increment/Categories            | RR   | 95% CI       |
|-----------------------|----------------------------------|---|---|-----------------|----------|------|-------------------------------------|------|--------------|
| Oosterlee et al. 1996 | Haarlem Respiratory Survey       | H |   | •               |          |      | high vs. low                        | 1.50 | [0.60, 3.70] |
| van Vliet et al. 1997 | South Holland Respiratory Survey |   | - |                 |          |      | high vs. low car volume             | 0.82 | [0.34, 1.93] |
| van Vliet et al. 1997 | South Holland Respiratory Survey | H |   |                 |          | >    | high vs. low truck volume           | 1.71 | [0.72, 4.08] |
| Venn et al. 2000      | Nottingham School Survey         |   | - |                 |          |      | 10 thousand km/day/km <sup>2</sup>  | 1.00 | [0.99, 1.02] |
| Venn et al. 2000      | Nottingham School Survey         |   | - |                 |          |      | 10 thousand km/day/km <sup>2</sup>  | 1.00 | [0.99, 1.01] |
| Nicolai et al. 2003   | ISAAC Munich                     |   | ŀ |                 |          |      | >30000 vehicles/day vs. none        | 1.66 | [1.07, 2.58] |
| Nicolai et al. 2003   | ISAAC Munich                     |   | - |                 |          |      | 15001-30000 vehicles/day vs. none   | 1.01 | [0.61, 1.67] |
| Nicolai et al. 2003   | ISAAC Munich                     |   | • |                 |          |      | 2600-15000 vehicles/day vs. none    | 0.85 | [0.48, 1.49] |
| Kim et al. 2008       | EBCRHS                           |   | - |                 |          |      | 9414-74041 vehicles-km/day vs. none | 1.16 | [0.57, 2.36] |
| Kim et al. 2008       | EBCRHS                           |   | 1 |                 |          |      | 4403-9413 vehicles-km/day vs. none  | 0.78 | [0.36, 1.67] |
| Kim et al. 2008       | EBCRHS                           | ŀ |   | -               |          |      | 1920-4402 vehicle-km/day vs. none   | 1.47 | [0.73, 2.95] |
| Kim et al. 2008       | EBCRHS                           |   |   | 4               |          |      | <1919 vehicle-km/day vs. none       | 0.58 | [0.27, 1.25] |
| Andersson et al. 2011 | OLIN                             |   | - | •               |          |      | >500 vs. <500 heavy vehicles/day    | 1.70 | [1.00, 2.70] |
| Andersson et al. 2011 | OLIN                             |   | + |                 |          |      | >8000 vs. <8000 vehicles/day        | 1.40 | [0.90, 2.10] |
| Lindgren et al. 2013  | Scania Birth Cohort 05/11        |   | H |                 |          |      | <8640 vs. >8640 vehicles/day        | 0.90 | [0.80, 1.00] |
|                       |                                  |   |   |                 |          |      |                                     |      |              |
|                       |                                  | 1 |   |                 |          | - 10 |                                     |      |              |
|                       |                                  | 0 | 1 | 2<br>Relative R | 3<br>isk | 4    |                                     |      |              |

## Density measures - Prevalence of wheeze 12mths - Children (<18 months)

**Chapter 9 Additional Materials** 

## 9.7 Prevalence of wheeze ever

### NO<sub>2</sub> – Prevalence of wheeze ever – Children

#### Primary meta-analysis

#### NO<sub>2</sub> - Prevalence of wheeze ever - Children (<18 years)



NO<sub>2</sub> – Prevalence of wheeze ever – Children

Plots not shown for risk of bias domains if all studies were rated low or moderate. Sensitivity analysis – risk of bias confounding domain – low vs moderate vs high

| Study                               | Study Name                    | Relative Risk | RR   | 95%-CI       |
|-------------------------------------|-------------------------------|---------------|------|--------------|
| Low                                 |                               | 1             |      |              |
| Rosenlund et al. 2009               | ISAAC Rome                    |               | 0.78 | [0.63; 0.96] |
| Pedersen et al. 2013                | EDEN -                        |               | 0.81 | [0.62; 1.05] |
| Dell et al. 2014                    | T-CHEQ                        |               | 1.11 | [0.98; 1.26] |
| Ranzi et al. 2014                   | GASPII                        |               | 0.97 | [0.80; 1.17] |
| Random effects model                |                               |               | 0.93 | [0.71; 1.21] |
| Heterogeneity: / <sup>2</sup> = 72% | $\tau^{2} = 0.0212, p = 0.01$ |               |      |              |
| High                                |                               |               |      |              |
| Pikhart et al. 1997                 | SAVIAH                        |               | 0.94 | [0.82; 1.07] |
| Cakmak et al. 2016                  | Windsor Children's Health 05  |               | 1.05 | [0.92; 1.19] |
|                                     |                               |               |      |              |
|                                     | _                             | i i           |      |              |

0.6

0.8 1 1.25 1.4 Relative Risk per 10 μg/m<sup>3</sup>

# $\mathsf{NO}_2-\mathsf{Prevalence}$ of wheeze $\mathsf{ever}-\mathsf{Children}$

Subgroup analysis – region

| Study                   | Study Name                  | Relative Risk | RR       | 95%-CI       |
|-------------------------|-----------------------------|---------------|----------|--------------|
| North America           |                             | 1             |          |              |
| Dell et al. 2014        | T-CHEQ                      |               | 1.11     | [0.98; 1.26] |
| Cakmak et al. 2016      | Windsor Children's Health 0 | 5             | 1.05     | [0.92; 1.19] |
| Western Europe          |                             | I             |          |              |
| Recentlund et al. 2000  | ISAAC Rome                  | 3000 m        | 0.78     | 10 63: 0 961 |
| Redercon et al. 2003    | EDEN                        |               | 0.01     | [0.62: 1.05] |
| Pedersen et al. 2013    | CASPIL                      | -             | 0.01     | [0.02, 1.03] |
| Ralizi et al. 2014      | GASEI                       |               | 0.97     | [0.60, 1.17] |
| Random effects model    | 2                           | T             | 0.80     | [0.05; 1.17] |
| Heterogeneity: / = 25%, | $\tau = 0.0053, p = 0.26$   |               |          |              |
| Eastern Europe          |                             |               |          |              |
| Pikhart et al. 1997     | SAVIAH                      |               | 0.94     | [0.82; 1.07] |
|                         |                             |               |          |              |
|                         |                             | 1 1 1         |          |              |
|                         |                             | 0.6 0.8 1     | 1.25 1.4 |              |

6 0.8 1 1.25 1.4 Relative Risk per 10 μg/m<sup>3</sup>

# NO<sub>2</sub> – Prevalence of wheeze ever – Children Subgroup analysis – year of publication

| Study                       | Study Name                      | Relative Risk              | RR     | 95%-CI              |
|-----------------------------|---------------------------------|----------------------------|--------|---------------------|
| Before 2008                 |                                 | 1                          |        |                     |
| Pikhart et al. 1997         | SAVIAH                          |                            | 0.94   | [0.82; 1.07]        |
| A4 2000                     |                                 |                            |        |                     |
| After 2008                  | 10110 8-00                      |                            | 0.70   | 10.00.0.001         |
| Roseniund et al. 2009       | ISAAC Rome -                    |                            | 0.78   | [0.63; 0.96]        |
| Pedersen et al. 2013        | EDEN -                          | •                          | 0.81   | [0.62; 1.05]        |
| Dell et al. 2014            | T-CHEQ                          | -                          | 1.11   | [0.98; 1.26]        |
| Ranzi et al. 2014           | GASPII                          |                            | 0.97   | [0.80; 1.17]        |
| Cakmak et al. 2016          | Windsor Children's Health 05    |                            | 1.05   | [0.92; 1.19]        |
| Random effects model        |                                 |                            | 0.96   | [0.79; 1.16]        |
| Heterogeneity: $l^2 = 65\%$ | $\tau^2 = 0.0154 \ \rho = 0.02$ |                            |        | (7.9 m) (9 m) (9 m) |
|                             |                                 |                            |        |                     |
|                             | 0.6                             | 0.8 1 1.2                  | 25 1.4 |                     |
|                             |                                 | Relative Risk per 10 µg/m3 |        |                     |

Subgroup analysis – traffic specificity All high specificity

# $NO_2$ – Prevalence of wheeze ever – Children

Subgroup analysis – smoking adjustment

| Study                    | Study Name                                 |   | Relativ | e Risk         |      | RR   | 95%-CI       |
|--------------------------|--------------------------------------------|---|---------|----------------|------|------|--------------|
| Yes                      |                                            |   |         | T              |      |      |              |
| Rosenlund et al. 2009    | ISAAC Rome                                 |   | -       |                |      | 0.78 | [0.63; 0.96] |
| Pedersen et al. 2013     | EDEN                                       |   |         | -              |      | 0.81 | [0.62; 1.05] |
| Dell et al. 2014         | T-CHEQ                                     |   |         | - <del> </del> | -    | 1.11 | [0.98; 1.26] |
| Ranzi et al. 2014        | GASPII                                     |   |         |                |      | 0.97 | [0.80; 1.17] |
| Cakmak et al. 2016       | Windsor Children's Health 05               |   |         |                |      | 1.05 | [0.92; 1.19] |
| Random effects model     |                                            |   | _       |                | -    | 0.96 | [0.79; 1.16] |
| Heterogeneity: / 2 = 65% | , τ <sup>2</sup> = 0.0154, <i>p</i> = 0.02 |   |         |                |      |      |              |
| No                       |                                            |   |         |                |      |      |              |
| Pikhart et al. 1997      | SAVIAH                                     |   |         |                |      | 0.94 | [0.82; 1.07] |
|                          |                                            |   |         |                |      |      |              |
|                          | r                                          |   | 1       |                | 18   |      |              |
|                          | 0.                                         | 6 | 0.8     | 1              | 1.25 | 1.4  |              |



# $NO_2$ – Prevalence of wheeze ever – Children

## Subgroup analysis – by study design

| Study                                                                                                                                                 | Study Name                                                                          | Relative Risk                                        | RR                                  | 95%-CI                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------|
| Case-control<br>Dell et al. 2014                                                                                                                      | T-CHEQ                                                                              | -                                                    | 1.11                                | [0.98; 1.26]                                                        |
| <b>Cohort</b><br>Pedersen et al. 2013<br>Ranzi et al. 2014                                                                                            | EDEN -<br>GASPII                                                                    |                                                      | 0.81<br>0.97                        | [0.62; 1.05]<br>[0.80; 1.17]                                        |
| Cross sectional<br>Pikhart et al. 1997<br>Rosenlund et al. 2009<br>Cakmak et al. 2016<br>Random effects model<br>Heterogeneity: / <sup>2</sup> = 65%, | SAVIAH<br>ISAAC Rome<br>Windsor Children's Health 05<br>$\tau^2 = 0.0129, p = 0.06$ | 0.75 1 1.5<br>Peletice Bick per 10 up/m <sup>3</sup> | 0.94<br>0.78<br>1.05<br><b>0.93</b> | [0.82; 1.07]<br>[0.63; 0.96]<br>[0.92; 1.19]<br><b>[0.65; 1.33]</b> |

## NO<sub>2</sub> – Prevalence of wheeze ever – Children

#### Sensitivity analysis - reverse selection

#### NO<sub>2</sub> - Prevalence of wheeze ever - Children (<18 years)



Recent years > cumulative average > first year of life > at birth > pregnancy

## Distance measures - Prevalence of wheeze ever - Children

| Reference             | Study Name  | Categories             | RR   | 95% CI       |
|-----------------------|-------------|------------------------|------|--------------|
| Rosenlund et al. 2009 | ISAAC Rome  | <100 vs. >100 m        | 0.80 | [0.50, 1.20] |
| Skrzypek et al. 2013  | ISAAC Bytom | <100 vs. >100 m        | 1.09 | [0.79, 1.51] |
| Dell et al. 2014      | T-CHEQ      | • <100 vs. >100 m      | 0.75 | [0.23, 2.44] |
| Ranzi et al. 2014     | GASPI       | <86.1 vs. >86.1 m      | 0.98 | [0.73, 1.32] |
| Jung et al. 2015      | CHEER       | <75 vs. >225 m         | 1.17 | [0.99, 1.38] |
| Jung et al. 2015      | CHEER       | ■ 75-150 vs. >225 m    | 1.04 | [0.89, 1.21] |
| Jung et al. 2015      | CHEER       | ■ 150-225 vs. >225 m   | 1.09 | [0.88, 1.35] |
| Lee et al. 2018       | CHEER       | ■ <75 vs. >700 m       | 1.29 | [0.90, 1.85] |
| Lee et al. 2018       | CHEER       | ■ 75-700 vs. >700 m    | 1.03 | [0.74, 1.43] |
|                       |             |                        |      |              |
|                       | 0           | 1 1 2<br>Relative Risk |      |              |

## Distance measures - Prevalence of wheeze ever - Children (<18 years)

## Density measures - Prevalence of wheeze ever – Adults





## Density measures - Prevalence of wheeze ever - Children

#### Density measures - Prevalence of wheeze ever - Chidlren (<18 years)

