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ABSTRACT: Accurate data concerning historical fine particulate
matter (PM,;) concentrations are needed to assess long-term
changes in exposure and associated health risks. We estimated
historical PM, s concentrations over North America from 1981 to
2016 for the first time by combining chemical transport modeling,
satellite remote sensing, and ground-based measurements. We
constrained and evaluated our estimates with direct ground-based
PM, ; measurements when available and otherwise with historical
estimates of PM, s from PM,, measurements or total suspended
particle (TSP) measurements. The estimated PM, s concentrations
were generally consistent with direct ground-based PM, 5 measure- 0 ‘ ‘
ments over their duration from 1988 onward (R = 0.6 to 0.85) and 1961 1885 1980 1985 2000 2005 2010 2015

. . Year
to a lesser extent with PM,; inferred from PM,, measurements
from 1985 to 1998 (R* = 0.5 to 0.6). The collocated comparison of
the trends of population-weighted annual average PM, from our estimates and ground-based measurements was highly
consistent (RMSD = 0.66 ug m™). The population-weighted annual average PM, s over North America decreased from 22 +
6.4 ug m™> in 1981, to 12 + 3.2 uyg m™> in 1998, and to 7.9 + 2.1 ug m™> in 2016, with an overall trend of —0.33 g m~ yr™*
(95% CI: —0.35, —0.31).

——5-year running average

Population-Weighted Mean PM25 [;Lg/m3]

1. INTRODUCTION to understand long-term changes in exposure and their
implications for health effects research.

Understanding historical long-term exposure is complicated
by the paucity of PM, 5 monitoring sites across North America
before the late 1990s and by the spatial variation of monitoring
sites over time. Ground-based monitoring provides historical
time series at specific points for PM,5, PM,,, and total
suspended particles (TSP). Several cohort studies have
attempted to infer historical PM estimates using monitoring

Ambient fine particulate matter with aerodynamic diameter
less than 2.5 um (PM,;) is recognized as the leading
environmental risk factor for the global burden of disease,
with an estimated 4.1 million (3.6 to 4.6 million) attributable
deaths in 2016." Long-term exposure to high PM, s adversely
affects human health.”™® Several epidemiological studies
reported adverse effects from long-term exposure at levels of

PM, s concentrations’ '* below the World Health Organ- data for urban areas in later years.”'>'* A recent study by Kim
ization (WHO) guideline (10 #g m™ annual average), the et al."® demonstrated that historical measurements of PM,,
United States standard (12 yg m™ annual average), and the and TSP offer valuable information for the prediction of

Canadian standard (10 yg m™> annual average, to be reduced
to 88 ug m™> in 2020). However, the shape of the

Received: December 6, 2018

concentration—response function at these low PM, 5 concen- Revised:  April 8, 2019
trations remains uncertain. Information about historical PM, g Accepted: April 17, 2019
concentrations across Canada and the United States is needed Published: April 17, 2019

ACS Publications  © 2019 American Chemical Society 5071 DOI: 10.1021/acs.est.8b06875
3 Environ. Sci. Technol. 2019, 53, 5071-5079


pubs.acs.org/est
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.8b06875
http://dx.doi.org/10.1021/acs.est.8b06875
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html

Environmental Science & Technology

Satellite-based PM, 5 (2004-2008)
0.01°x 0.01

Y

>

=
GEOS-Chem PM, 5

Downscaled estimates
simulation(1989-2016) 1989-2016
0.5° x 0.625° 0.01° x 0.01

p—

Hybrid Estimates
1989 - 2016
0.01°x 0.01

PM,; inferred from
TSP and PM,,
Measurements
1981 - 1988

PM, s Measurements
1981 - 1988

PM, s inferred from
PM,;, Measurements
1989 - 1998

PM, s Measurements
1989 - 2016

Backcast Estimates

Figure 1. Overview of the estimation method.

Ground-based measurements
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historical PM, 5 concentrations across the continental United
States.

Additional sources of data are available to inform estimates
of historical PM, s spatial and temporal variations to improve
the overall representativeness. Chemical transport modeling
offers additional valuable information about historical PM,
concentrations through the representation of atmospheric
processes with historical emission inventories.'®”'® Satellite
remote sensing offers a powerful additional constraint on PM, g
spatial distributions,'””" especially after 2002, when both the
Terra and Aqua satellites were in orbit. Some studies”"*” have
developed prediction models to estimate historical PM, 5 by
backcasting using the ratio between PM, s and PM,, or TSP
observations. Other studies'”*>™*° use land-use regression,
which includes predictor variables derived from geographic
information systems or combines information from other PM
measurements or satellite data. However, those studies focused
on either smaller regionsu’25 or shorter durations."’

In this Article, we present historical estimates of PM,
across North America by combining information from
chemical transport modeling, satellite-derived PM, g estimates,
and ground-based monitoring from 1981 to 2016. These
estimates can be used to assess long-term health impacts
associated with low levels of PM, s throughout North America.

2. MATERIALS AND METHODS

Figure 1 provides an overview of our method to develop
estimates of historical PM, concentrations across North
America by incorporating information from ground-based
monitoring, chemical transport modeling, and satellite-derived
PM, ;. We started with a fine-resolution chemical transport
model (GEOS-Chem) simulation across North America for
1989—-2016. We downscaled the simulation to 0.01° X 0.01°
using a satellite-derived PM, data set.”> We applied
geographically weighted regression (GWR) to the downscaled
simulation to incorporate information from ground-based
measurements into the estimates. For 1981—1988, we relied
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on information on interannual variation from ground-based
measurements to backcast the gridded PM, s concentrations.
Each step is described further below.

2.1. Historical Particulate Matter Monitoring Data.
We collected ground-based measurements for 1981-2016
across Canada and the United States. Canadian PM data were
obtained from the National Air Pollutant Surveillance (NAPS)
(http://maps-cartes.ec.gc.ca/rnspa-naps/data.aspx?lang=en).
This database includes continuous PM measurement data,
dichotomous sampler (dichot, PM,, and PM, ;) data, and TSP
data. Instrument-specific calibrations were applied as recom-
mended by the Canadian Council of Ministers of the
Environment (CCME).*® Daily PM data for the United States
were obtained from the United States Air Quality System Data
Mart for PM,, and PM,; (https://ags.epa.gov/agsweb/
airdata/download_fileshtml). In addition, data from the
inhalable particle network (IPN), which consisted of PM,
measurements in the early 1980s, were included. Table S1
summarizes the available monitoring data by measurement
type in the selected years (1981—2016). In Canada, dichot
PM, 5 and PM,, sampling began in the mid-1980s, followed by
continuous PM, s monitoring in the late 1990s. In the United
States, most PM), sampling began in the late 1980s, followed
by widespread PM, monitoring in 1999. Limited PM,
measurements were available prior to 1999. Separate predictive
models based on the uniform method were created for
Canadian and United States monitoring data because the larger
number of monitoring stations in the United States would
overwhelm the Canadian dataset. Detailed information about
the predictive models of inferring monthly PM,s concen-
trations from the historical PM,, and TSP measurements is
provided in the Supporting Information SI.1

2.2. Estimated Historical Gridded PM,; Data.
2.2.1. GEOS-Chem Chemical Transport Model. We use the
GEOS-Chem chemical transport model (version 11-01,
http:// www.geos-chem.org) , with updated historical emissions
inventories and meteorological data, to consistently simulate
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Figure 2. Comparison over 2004—2008 of mean PM, ; estimates with in situ measurements before (top left) and after GWR adjustment using all
sites (top right), using cross-validation sites using 50% random holdout (bottom left), and using PM,  sites present over 1989—1997 (bottom
right). Open circles are Canadian sites, and crosses are United States sites. The number of sites is shown in brackets. Statistics shown are mean bias
(MB, in ug m™*), coefficient of determination (R*), and root-mean-square difference (RMSD, in pg m™).

PM, ; concentrations across North America for 1989—2016.
GEOS-Chem includes detailed aerosol—oxidant chemistry.””**
The simulation of concentrations of PM,s components
includes the sulfate—nitrate—ammonium (SNA) aerosol
2829 mineral dust,®® sea salt,’' and carbonaceous
aerosol,”> with updates to black carbon™ and secondary
organic aerosol (SOA),***° including an aqueous-phase
mechanism for SOA from isoprene.”® Our simulation used a
relative-humidity-dependent and composition-dependent fixed
size distribution following Martin et al,*® with updates to
organics37 and mineral dust.*® We drove the simulation using
MERRA-2 meteorological data from NASA’s Global Modeling
and Assimilation Office (GMAO) with a nested resolution at
0.5° X 0.625° over North America for 1989—2016 for which
updated historical emissions were available. Anthropogenic
emissions over North America were from the 2011 National
Emissions Inventory (NEI2011, http://www.epa.gov/air-
emissions-inventories) for the United States and the Criteria
Air Contaminants (CAC, http://www.ec.gc.ca/inrp-npri/) for
Canada, with historical scale factors applied to each simulating
year. Black carbon (BC) and organic carbon (OC) emissions
were calculated by applying sector-specific OC and BC to
PM, 5 emission ratios." % Open fire emissions were from
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GFED4"' for 1997—2016 and from the RETRO fire emission
inventory** for earlier years.

2.2.2. Creation of Historical Gridded PM,; Data Set.
Given our objective of a consistent data set over the entire
1989—-2016 period and the lack of satellite aerosol optical
depth (AOD) for the entire period, we used the S-year average
from near the middle of the period (2004—2008) of
geophysical satellite-based PM, estimates (referred to as
PM,,,),” derived from both the Terra and Aqua satellites, to
downscale the GEOS-Chem model simulation (1989—2016)
to a resolution relevant for exposure at 0.01° X 0.01° following
Li et al."® We calculated the ratio between PM,, and the 5 yr
average (2004—2008) of GEOS-Chem simulations. Then, we
used this ratio to downscale simulations in all years from 1989
to 2016. The downscaling process does not change the
simulated relative temporal variation of PM,s because the
same scale factor was applied to all years. This downscaled
estimate (referred to as PM,,) contained fine-scale spatial
information from satellite-derived PM, ¢ estimates (PM,,) and
long-term temporal information from the GEOS-Chem
simulation. We evaluate the approach by excluding the
satellite-based estimates.
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Figure 3. Comparison over 1992—1996 of mean PM,  estimates with in situ measurements before (top left) and after GWR adjustment using all
sites (top right), using cross validation using 50% random holdout (bottom left), and using only PM, g sites (bottom right). Open circles are
Canadian sites, and crosses are United States sites. Number of sites is shown in brackets. Comparison of PM, ¢ (black) and PM,, (red) sites is
shown separately. Statistics shown are mean bias (MB, in pug m™2), coefficient of determination (R*), and root-mean-square difference (RMSD, in

pg m™>).

Ground-based monitoring offers reliable information on
PM, s when and where available. We used this information to
constrain our estimates. We included monitor information
across both the United States and Canada to produce a
continuous surface for North America. Following van
Donkelaar et al,”” we applied GWR to PM,, over 1989—
2016 using available PM,§ observations and PM, s concen-
trations inferred from PM;, observations. GWR™ is a multiple
regression, an extension of least-squares regression, to allow
predictor coeflicients to vary by choosing different spatial
weighting function at several geographic locations according to
their inverse-squared distance from individual observation
sites. We used GWR to regress the spatial relationship between
multiple predictors and the bias between PM, 5 estimates and
PM, s measurements. Our predictors in GWR include urban
land cover (ULC), subgrid elevation difference (SED), and
aerosol chemical composition from GEOS-Chem simulation.
We fit the GWR model at the same resolution (0.01° X 0.01°)
as the downscaled PM,; estimates, which was scaled by
satellite-driven PM, 5 following eq 1
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(measured PM, ; — estimated PM, ;)
= qULC + @,SED + a,SUL + a,NIT + a,PrC

+ asSOA + a,DST + ¢ (1)

where a; to a, represented the spatial weighted predictor
coefficients for each predictor and € is the error. ULC is the
percent of urban land cover from the 500 m spatial resolution
MODIS land cover type product.** The SED is the difference
between the site elevations, which are from the ETOPOI1
Global Relief Model of the National Geophysical Data
Center,™ and the annual mean elevation of the GEOS-Chem
grid cell. SUL, NIT, PrC, SOA, and DST are sulfate, nitrate,
primary carbon, secondary carbon, and dust, respectively, as
simulated with GEOS-Chem. We conducted sensitivity tests by
changing the weight of PM,, observations in the GWR
regression and found that a reduction by 75% of the weight of
PM,, best represented its uncertainty compared with direct
PM,; measurements from ground-based measurements,
GEOS-Chem transport model simulations, and satellite remote
sensing.
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For 1981—1988, reliable emission inventories were not
available for the GEOS-Chem simulation. Instead, we used the
information on interannual variation from ground-based
measurements to backcast the gridded PM, s concentrations
following previous studies.”"”> Ground-based measurements
include TSP measurements, PM,, measurements, and PM, ¢
measurements. Ground-based PM, concentrations inferred
from TSP measurements were included for this time period
because fewer than 200 PM,, sites existed before 1986, and
even fewer PM, ; monitoring sites existed. For each year (e.g,
1988), we calculated the ratio between the annual mean PM, ¢
of this year and the following 3-year mean PM, ; (e.g, 1989—
1991) for each ground-based monitoring site. We used the
ratios from TSP sites as the basis, which were overwritten by
the ratios from PM,, sites and then by the ratios from PM,
sites. This ratio field from ground-based measurements was
then interpolated to other grids using distance-weighted
interpolation. Finally, we applied this gridded ratio field to
the following 3-year mean PM, g estimates to get the estimated
PM,  for each year. The process is described by eq 2

Y(t) = y[Y(t+ 1) + Y(t+2) + Y(t + 3)]/3 (2)

where Y(t) represents the PM,  estimates in year t and y is the
gridded ratio field.

We evaluated the backcasting method by repeating the
procedure for 2001—2008 using measurements from
2001 to 2011 for comparison with our estimates from
2001 to 2008 (Table S5).

We calculated the overall root-mean-square difference
(RMSD) between the estimates and measurements for each
year over 1981—2016 as a measure of uncertainty.

3. RESULTS AND DISCUSSION

We first evaluated the approach in the years when only PM, g
stations were used for GWR adjustment to statistically
incorporate information from ground-based observations into
the downscaled model results. Figure 2 shows scatter plots of
2004—2008 mean PM,; from the downscaled simulation
(PM,) before and after GWR adjustment versus in situ PM, ;.
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As found by van Donkelaar et al,”° the GWR model
significantly reduces the mean bias (MB) and RMSD over
both Canada and the United States Out-of-sample cross
validation using 50% of randomly selected sites to train the
GWR model exhibits significantly improved performance (R* =
0.69; RMSD = 2.3 ug m~>) (bottom left panel) compared with
the base case (R* = 0.52; RMSD = 3.1 yug m™). In such a
holdback analysis, GWR parameter coeflicients are trained
using only 50% of available ground-based monitors. The
withheld sites provide an independent data set with which to
evaluate the quality of fused PM, 5 estimates in areas without
ground-based observation. The improvement at these
independent sites suggests improvement in the GWR-adjusted
surface, even at locations away from ground-based observation.
The bottom right panel of Figure 2 shows the 2004—2008
mean performance of GWR-adjusted values made using only
the PM,  sites that were also available before 1998 (<70 sites
in total), consisting mostly of remote and rural United-States-
based sites. Limiting the GWR-based adjustment to only these
earlier vailable PM,; sites provided no improvement in
agreement compared with the initial estimates without GWR.
The negative MB in PM, (—1.00 ug m™) (top left panel) is
not corrected in the adjusted estimates (—0.83 ug m™)
(bottom right panel) due to a lack of representative urban and
Eastern sites, which generally have higher PM,; levels.
Complementary information from PM,, sites that are
representative of urban environments is necessary for early
years.

Figure 3 shows scatter plots for the 1992—1996 time period
to evaluate the performance of PM, ; inferred from PM,,. The
top panels show that the performance of the scaled geophysical
estimate is promising, with an R?* versus PM, ; monitors of 0.69
that increases to 0.86 after GWR adjustment. The RMSD
decreases from 2.7 to 1.5 ug m™> over ~100 PM, sites in the
adjusted estimates. For ~2000 PM,, sites, significantly
improved agreement is also found after GWR adjustment.
Cross validation with 50% out-of-sample sites (bottom left)
further confirms the overall robustness of the approach. As
found in the 2004—2008 period, using only PM, sites for
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GWR modeling does not improve the overall representation of
the estimates, especially for PM, sites in urban areas.

Figure 4 shows the R* and RMSD for each year (1981—
2016) of the estimates versus ground-based measurements to
provide an overall assessment of uncertainty. Only PM, 5 data
are used over 1999—2016 because sufficient PM, ; measure-
ments are available after 1999. Because the number of PM,,
sites significantly decreases prior to 1989 (~1000 in 1989,
~600 in 1988, ~400 sites in 1986, and <50 sites in 1984), the
backcasting from 1985 to 1981 is primarily based on the trend
information from TSP-based estimates and is expected to be
more uncertain. The R* increases with the increase in PM,,
sites for 1985—1990. The R* is ~0.8 for 1989—2005 compared
with PM, g sites. The relative RMSD at only PM, s sites drops
from 30% in the early 1990s to <20% prior to 1999, when the
PM, s measurements became more widespread. The decrease
in R after 2008 reflects weaker spatial PM, gradients in
recent years as PM, levels decrease across North America.
Higher RMSD errors are expected before 1999 due to more
uncertainties in emission inventories as well as larger
uncertainties in the monitor data used in GWR adjustments.
Opverall, the GWR-adjusted PM, 5 estimates yield an estimated
error of <20% since 1999 and <30% from 1981 to 1998.

We tested how the satellite-derived PM, data used for
downscaling affected the performance of the estimated data
set. Supporting Information SI.3 describes sensitivity estimates
of PM, ¢ data without satellite remote sensing. The R* values of
these sensitivity estimates are between 0.1 and 0.2 lower than
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our base estimate across all years, with larger differences in
years preceding 1999 when fewer PM,; measurements were
available. The relative RMSDs of the sensitivity estimates at
direct observed PM, g sites are higher than the base estimates
by 10 to 20%. This analysis indicates the significance of the
constraints on PM, s spatial distributions offered by satellite
remote sensing.

Figure 5 shows the distribution of PM, estimates and
ground-based measurements for 1985, 1995, 200S, and 2015
from this study. Enhancements in both the GWR -adjusted
estimates and ground-based measurements are apparent across
the Eastern United States and California. The estimated PM, g
is generally consistent with ground-based measurements
(Figure 4), especially with the direct PM, s measurements.
PM, s concentrations decreased dramatically during the last
three decades, especially in the Eastern United States

Figure 6 shows the time series of population-weighted
annual average PM,; concentrations across North America.
We used gridded population estimates from the Socio-
economic Data and Applications Center*®*” for calculating
the population-weighted average (Supporting Information
S1.3). The population-weighted annual average PM, over
North America decreased from 22 + 6.4 ug m™ in 1981 to 7.9
+ 2.1 ug m™> in 2016. The linear tendency over this period is
—0.33 + 0.2 ug m™> yr ', Both time series of the in situ
measurements and estimates of population-weighted annual
mean PM,; exhibit minor peaks in 2005 and 2007. The
collocated comparison of the trends of population-weighted
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Figure 6. Time series of population-weighted average annual PM, g
concentrations across North America. Error bars are included for
population-weighted annual mean estimated PM, 5 concentrations.

annual average PM, from our estimates and ground-based
measurements is highly consistent (RMSD = 0.66 ug m™>)
over 1985—199S. The population-weighted annual average
PM, ; calculated from direct PM, ; sites is 20% lower than that
calculated from all in situ sites, illustrating the effects of
changes in monitor placement over time when assessing long-
term changes in ambient PM, 5 and the value of spatiotempor-
ally continuous PM, 5 estimates from this work. Larger error
bars prior to 1990 reflect greater uncertainty in the TSP data
set.

Figure S5 shows regional time series of the population-
weighted annual average PM, ;. Figure S6 shows regional time
series of the relative percentage change of population-weighted
annual average PM, concentrations using 2016 as the
reference year. Northwestern North America has the most
dramatic decrease for population-weighted average PM,
concentrations with a factor of 2.7 decrease over 1981—
2016, followed by Southeastern and Northeastern North
America, with a factor of 2.4 decrease over 1981—2016. The
relative changes in North Central, South Central, and
Southwestern North America are similar, with a factor of 1.6
to 2.0 decrease in population-weighted PM, 5 over 1981—2016.
Opverall, the spatially resolved historical PM, s data set across
North America reveals a factor of 1.7 decrease in population-
weighted PM, 5 over 1981—-2016.

The comparison with previous estimates of historical PM, 5
concentrations is instructive. Our estimated historical PM, g
concentrations from 1982—1991 in the Southeastern United
States indicate a decrease of 3.9 yg m~>, similar to the reported
decrease of 3—5 ug m™> found by Parkhurst et al.”' We find
similar large-scale reductions in historical PM, g concentrations
from 1981-2000, as found by Lall et al,”* albeit with
smoother temporal trends in the present study that are more
consistent with Kim et al.'> The primary difference with our
prior historical PM, 5 estimates** ™ is that our current study
spans a time period (1981—2016) that is about twice as long as
our prior work by including more trend information from our
GEOS-Chem simulation and includes historical ground-based
measurements prior to 1999. Nonetheless, the population-
weighted trends from our current data set remain within 0.03
ug m~ yr! of our prior work, indicating overall consistency,
as further discussed in the Supporting Information SI.4.
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Abstract. Aerosol mass scattering efficiency affects climate
forcing calculations, atmospheric visibility, and the inter-
pretation of satellite observations of aerosol optical depth.
We evaluated the representation of aerosol mass scatter-
ing efficiency (ogp) in the GEOS-Chem chemical transport
model over North America using collocated measurements
of aerosol scatter and mass from IMPROVE network sites
between 2000 and 2010. We found a positive bias in mass
scattering efficiency given current assumptions of aerosol
size distributions and particle hygroscopicity in the model.
We found that overestimation of mass scattering efficiency
was most significant in dry (RH <35 %) and midrange hu-
midity (35 % < RH <65 %) conditions, with biases of 82 %
and 40 %, respectively. To address these biases, we investi-
gated assumptions surrounding the two largest contributors
to fine aerosol mass, organic (OA) and secondary inorganic
aerosols (SIA). Inhibiting hygroscopic growth of SIA below
35 % RH and decreasing the dry geometric mean radius, from
0.069 um for SIA and 0.073 um for OA to 0.058 um for both
aerosol types, significantly decreased the overall bias ob-
served at IMPROVE sites in dry conditions from 82 % to 9 %.
Implementation of a widely used alternative representation of
hygroscopic growth following x -Kohler theory for secondary
inorganic (hygroscopicity parameter x = 0.61) and organic
(«x = 0.10) aerosols eliminated the remaining overall bias in
asp. Incorporating these changes in aerosol size and hygro-
scopicity into the GEOS-Chem model resulted in an increase
of 16 % in simulated annual average o, over North America,
with larger increases of 25 % to 45 % in northern regions with
high RH and hygroscopic aerosol fractions, and decreases in
asp up to 15 % in the southwestern U.S. where RH is low.

1 Introduction

The interaction of atmospheric aerosols with radiation has
substantial implications for the direct radiative effects of at-
mospheric aerosols, atmospheric visibility, and satellite re-
trievals of aerosol optical properties. The direct radiative ef-
fects of aerosols remain a major source of uncertainty in ra-
diative forcing (Myhre et al., 2013). Atmospheric visibility
affects the appearance of landscape features, which is of par-
ticular concern in national parks and wilderness areas (Malm
et al., 1994). Gaining insight into the concentration and com-
position of atmospheric aerosols via interpretation of satellite
retrievals of aerosol optical depth (AOD) also relies heavily
on an understanding of the interaction of aerosols with ra-
diation (Kahn et al., 2005). Analysis of collocated measure-
ments of aerosol scatter, mass, and composition could offer
valuable insight into aerosol optical properties.

Mass scattering efficiency is a complex function of aerosol
size, composition, hygroscopicity, and mixing state (Hand
and Malm, 2007; Malm and Kreidenweis, 1997; White,
1986). Current chemical transport models and global circu-
lation models often calculate atmospheric extinction due to
aerosols from speciated aerosol mass concentrations using a
composition- and size-dependent mass extinction efficiency
(Cext, M2 g_l). Many of these models use aerosol optical
and physical properties defined by the Global Aerosol Data
Set (GADS), compiled from measurements and models from
1970 to 1995 (Koepke et al., 1997). The subsequent expan-
sion in long-term aerosol monitoring offers an exciting pos-
sibility to further improve model representation of aerosol
physical and optical properties. The Interagency Monitoring
of Protected Visual Environments (IMPROVE) network of-
fers long-term collocated measurements since 1987 of par-
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ticle scatter (bgp), relative humidity (RH), particulate mass
concentrations less than 10 um (PMjg) and less than 2.5 um
(PM55), as well as PM» s chemical composition at sites
across the United States and Canada (Malm et al., 1994,
2004). These collocated measurements provide direct esti-
mates of mass scattering efficiency (asp) across North Amer-
ica that are useful to evaluate and improve the mass scattering
efficiency currently used in models.

Several prior studies have analysed mass scattering effi-
ciencies. Hand et al. (2007) performed an extensive review
that examined and compared mass scattering efficiencies
calculated from ground-based measurements from approxi-
mately 60 mostly short-term studies from 1990 to 2007. In
this review, the importance of long-term measurements was
emphasized. Malm and Hand (2007) applied IMPROVE net-
work data between 1987 and 2003 to evaluate mass scattering
efficiency of organic and inorganic aerosols at 21 IMPROVE
sites. A couple of more recent examples of short-term studies
of mass scattering efficiency are Titos et al. (2012) and Tao
et al. (2014). Many other long-term multi-site studies have
investigated aerosol optical properties (e.g. Andrews et al.,
2011; Collaud Coen et al., 2013; Pandolfi et al., 2017), but
few include measurements of aerosol mass concentrations
and therefore do not provide information on mass scattering
efficiencies. Our study builds upon previous studies of mass
scattering efficiency by reducing initial assumptions regard-
ing size and hygroscopicity of inorganic and organic aerosols
and by using measurements of particle speciation, mass, and
scatter to inform the representation of these properties. We
interpret long-term measurement data to obtain a representa-
tion of mass scattering efficiency that can be used across an
array of conditions and locations to facilitate incorporation
into chemical transport models.

Here we interpret collocated measurements of PMj s,
PMio, bsp, and RH from the IMPROVE network to under-
stand factors affecting the representation of mass scattering
efficiency. Section 2 provides a description of IMPROVE
network measurements, of the GEOS-Chem chemical trans-
port model, and of an alternative aerosol hygroscopic growth
scheme. In Sect. 3, we present an analysis of the current
representation of mass scattering efficiency in the GEOS-
Chem model, and identify changes that improve the consis-
tency with observations. The impacts of these changes on
GEOS-Chem-simulated mass scattering efficiency, as well as
on agreement between the GEOS-Chem model and observa-
tions from the IMPROVE network, are described in Sect. 4.

2 Methods
2.1 IMPROVE network measurements
The IMPROVE network (Malm et al., 1994) is a long-term

monitoring program established in 1987 to monitor visibility
trends in national parks and wilderness areas in the United
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States. The network offers measurements of PM; 5 specia-
tion, PM3 5 and PM ¢ gravimetric mass, and collocated mea-
surements of by, and RH at a subset of sites that we interpret
to understand mass scattering efficiency.

The IMPROVE particle sampler collects PM; 5 and PM
on filters. Sampling occurs over a 24 h period every third day.
Collected PM> 5 is analysed for fine gravimetric mass, el-
emental concentrations (including Al, Si, Ca, Fe, Ti), ions
(SOz_, NO; ', NO, , CI7), and organic and elemental carbon.
Collected PM ¢ undergoes gravimetric analysis for total par-
ticulate mass less than 10 um, allowing for the determination
of coarse mass (PM9 — PM, s) (Malm et al., 1994).

Particle scatter (bgp) is measured at 550 nm at a subset of
IMPROVE sites using OPTEC NGN-2 open air integrating
nephelometers (Malm et al., 1994; Malm and Hand, 2007;
Molenar, 1997). b, is reported hourly at ambient air temper-
ature and relative humidity; all three parameters are recorded.
We filter byp data to exclude measurements likely affected
by meteorological interference such as fog. These conditions
include an RH threshold of 95 %, a maximum by, thresh-
old of 5000Mm™!, and an hourly rate of change threshold
for bgp, of 50 Mm~!, following IMPROVE filtering protocols
(IMPROVE, 2004).

The IMPROVE network collects collocated samples at a
subset of sites, which can provide insight into precision er-
rors associated with the measurements of major species. Hys-
lop and White (2008) and Solomon et al. (2014) found mean
collocated precision errors ranging from 6 % to 11 % for par-
ticulate mass measured by IMPROVE. Typical uncertainties
in IMPROVE by, measurements are in the range of 5 %—15 %
(Gebhart et al., 2001). Due to nephelometer truncation er-
rors, uncertainties in measured by increase as particle size
distributions increase, and coarse particle scattering can be
underestimated (Molenar, 1997).

For this study, we select sites where fine aerosol mass
and speciation measurements are collocated with IMPROVE
nephelometers between 2000 and 2010. We exclude data af-
ter 2010 to address concerns about variable laboratory RH
for PM o measurement after 2010. Sea salt aerosols are ex-
cluded from the analysis from 2000 to 2004, as reliable es-
timates of sea salt concentrations were not reported during
this period. We exclude coastal sites during this period, as sea
salt can contribute significantly to b, in coastal conditions of
high RH due to its highly hygroscopic nature (Lowenthal and
Kumar, 2006). We use only days with coincident mass and
scatter measurements, and a minimum of 23 hourly measure-
ments per day, to reduce influence of meteorological interfer-
ence. Additionally, only sites with a minimum of 90 days of
measurements are included in the analysis.

Figure 1 shows at the 28 sites used in this study the aver-
age hourly by, at ambient RH and the average 24 h PM¢ and
PM; 5 measured between 2000 and 2010. Measured by, val-
ues vary by a factor of 7, with scatter below 20 Mm~! across
the southwestern U.S. and scatter above S0 Mm ™! across the
southeastern U.S. Measured PMjo concentrations vary by a
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Figure 1. Map of IMPROVE sites with collocated scatter (bsp) at
550 nm and ambient relative humidity, PM1q, and PM; 5 measure-
ments in North America between 2000 and 2010.

factor of 3, with values below 6 ugm~3 in the west to above
14 ugm™3 in the southeast. Measured PM; 5 concentrations
also vary by a factor of 3, with values below 3 ugm~ in the
west to above 9 ug m~ in the southeast.

2.2 GEOS-Chem simulation
We simulate hourly PM» s and PM|o mass concentrations

and particle scatter using the global chemical transport model
GEOS-Chem (version 11-02, http://geos-chem.org, last ac-
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cess: 7 September 2017). The GEOS-Chem model is driven
by assimilated meteorology from the Goddard Earth Obser-
vation System (GEOS MERRA-2, Gelaro et al., 2017) of the
NASA Global Modeling and Assimilation Office (GMAO).
Our simulation for North America is conducted at 2° x 2.5°
resolution over 47 vertical levels.

The majority of our analysis focuses on the accuracy of the
GEOS-Chem parameterization of mass scattering efficiency
based on optical parameters given in Table Al. These de-
fault aerosol physical and optical properties are defined by
the Global Aerosol Data Set (GADS) (Koepke et al., 1997),
as implemented by Martin et al. (2003), with modifications to
dry size distributions (Drury et al., 2010) and dust mass parti-
tioning (Ridley et al., 2012). After evaluating and improving
this parameterization, implications are examined using the
full GEOS-Chem simulation in Sect. 3.3.

GEOS-Chem simulates detailed aerosol-oxidant chem-
istry (Bey et al., 2001; Park et al., 2004). The aerosol sim-
ulation includes the sulfate—nitrate—ammonium system (Park
et al., 2004), primary (Park et al., 2003; Wang et al., 2014)
and secondary (Pye et al., 2010) carbonaceous aerosols, min-
eral dust (Fairlie et al., 2007, 2010; Zhang et al., 2013), and
sea salt (Jaeglé et al., 2011). Organic matter (OM) is es-
timated from primary organic carbon (OC) using spatially
and seasonally varying OM / OC ratios at 0.1° x 0.1° reso-
lution (Philip et al., 2014b). The thermodynamic equilibrium
model ISORROPIA-II (Fountoukis and Nenes, 2007), imple-
mented by Pye et al. (2009), is used to calculate gas—aerosol
partitioning. Total PMy is calculated following van Donke-
laar et al. (2010), but at 40 % RH here for consistency with
the IMPROVE network gravimetric analysis in the range of
30 %-50 % RH (Solomon et al., 2014). Particle scatter and
aerosol optical depth are calculated at modelled ambient RH
based on dry species mass concentrations and aerosol phys-
ical and optical properties. The GEOS-Chem aerosol simu-
lation has been extensively evaluated with observations of
mass (van Donkelaar et al., 2015; Li et al., 2016), composi-
tion (Achakulwisut et al., 2017; Kim et al., 2015; Marais et
al., 2016; Philip et al., 2014a; Ridley et al., 2017; Zhang et
al., 2013), and scatter (Drury et al., 2010).

We conduct a simulation for the year 2006, to represent
the period of greatest measurement density of collocated bgp
and PM sites over North America. We archive model fields
every hour over North America. We simulate PM1o, PM> s,
and byp, allowing for the comparison of model mass scatter-
ing efficiency coincident with that measured at IMPROVE
network sites over the same time period over North America.

2.3 Determining mass scattering efficiency ()

One method of determining mass scattering efficiencies from
measurements involves bs, measurements and particle mass
concentration measurements (Mpeas). Mass scattering effi-
ciency of a given aerosol population can be defined as the
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ratio of particle scatter to mass.

bsp, meas

Mmeas

Osp, meas = €))

Hourly mass scattering efficiencies are determined us-
ing collocated measurements of by, and mass concentrations
from the IMPROVE network, treating IMPROVE mass con-
centrations as constant over each 24 h sampling period. To-
tal scatter is typically dominated by fine-mode aerosols, but
in certain conditions coarse dust can also make a significant
contribution (White et al., 1994). Thus, measured PM ;o mass
is used in the denominator of Eq. (1).

Multiple definitions of ag, exist. We define agp opera-
tionally here based on optical measurements at ambient RH,
and PM measurements at controlled RH (treated as 40 % RH
for consistency with IMPROVE protocols prior to 2011). At
40 % RH, hygroscopic components of PM;( will have asso-
ciated water, and thus measured PM ;g mass is not treated
as dry. We compare these measured oy, with calculated
asp based on species-specific mass scattering efficiencies
(aGc, j) used in GEOS-Chem, constrained with mass con-
centrations (M) and PM mass measured by IMPROVE.

bsp, calc _ ZjaGC,ij
PMIO, meas PMIO, meas

Asp, calc = 2)

To reduce the impacts of meteorological variation on the
comparison of measured and calculated mass scattering effi-
ciency, we perform averages of hourly by, caic, bsp, meas> and
PM; over the entire sampling period at each IMPROVE site
i. Equation (3) is then used to obtain average calculated and
measured mass scattering efficiency at each site.

bsp, avg, i

(3
PMIO, avg, i

Asp, avg, i =

Although the OPTEC open air nephelometer reduces trun-
cation error compared with other nephelometers, truncation
error can be significant for coarse particles (Hand and Malm,
2007; Lowenthal and Kumar, 2006). Thus our analysis below
focuses on conditions dominated by fine-mode aerosols, and
mechanisms affecting fine-mode aerosols.

Appendix A describes the calculation of mass scattering
efficiency in more detail. This approach enables isolation of
the mass scattering efficiencies used in GEOS-Chem from
the species concentrations.

2.4 Introducing an alternate hygroscopic growth
scheme

We examine for GEOS-Chem the use of a widely adopted
alternate hygroscopic growth scheme, in which aerosol hy-
groscopic growth is defined by a single parameter, « (Petters
and Kreidenweis 2007, 2008, 2013). This representation of
water uptake by aerosols was originally developed for super-
saturated CCN conditions, but in recent years has been used
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extensively in subsaturated conditions (Dusek et al., 2011;
Hersey et al., 2013).
The hygroscopic parameter « is defined by

1 v,
— =1+x2, “)
Ay Vw

where Vy is dry particulate matter volume, Vi, is the wa-
ter volume, and ay, is water activity (Petters and Kreiden-
weis, 2013), which is unity for secondary inorganic aerosols
(STA) and organic aerosols (OA). The diameter growth factor
(GF = D/ Dy) can be expressed (Snider et al., 2016) as

RH )1/3

GF=(14+xk—r_
( e 00—RH

®)

where D is the wet aerosol radius and Dy is the dry aerosol
radius. Typically, « is in the range of 0.5-0.7 for SIA (Hersey
et al., 2013; Kreidenweis et al., 2008; Petters and Kreiden-
weis, 2007) and 0-0.2 for OA (Duplissy et al., 2011; Krei-
denweis et al., 2008; Rickards et al., 2013; Snider et al.,
2016).

3 Results
3.1 Understanding the current representation of op

Figure 2 (left) shows measured vs. calculated mass scat-
tering efficiency using GEOS-Chem default optical tables.
Each point represents the average ogp over the entire sam-
pling period at each IMPROVE site. A significant correla-
tion (r = 0.94) is apparent; however, a bias in o) is evident.
A positive correlation between average mass scattering effi-
ciency and RH is apparent; sites with low average RH have
low average asp and vice versa. (Panel (b) of Fig. 2 is dis-
cussed below.)

To further investigate the RH dependence of this bias, we
separate our analysis of calculated as, into three relative hu-
midity groupings: 0 %—35 % (low), 35 %—65 % (mid), and
65 %95 % (high). The IMPROVE data are divided among
the RH groupings using IMPROVE measurements of hourly
RH. Within each grouping, average calculated and measured
mass scattering efficiencies are obtained for each site using
Eq. (3). The blue dots in Fig. 3 show average calculated vs.
measured o for each RH range. In the low RH case, a sig-
nificant overestimation of mass scattering efficiency is appar-
ent at most sites, with a bias of 82 % indicated by the slope.
In the mid RH case, overestimation of s, is less significant
but still apparent, with a bias of 40 % indicated by the slope.
At high RH, bias is weak.

To further understand the source of the bias in calculated
mass scattering efficiency, we now examine calculated ap
in conditions dominated by different aerosol types. Using
IMPROVE measurements of 24 hr PM> 5 mass and specia-
tion and PMjo mass, the IMPROVE data are grouped based
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Figure 2. Average measured vs. calculated a;sp at 550nm at IMPROVE sites between 2000 and 2010 using GEOS-Chem default optical
tables and revised optical tables. The colour of each point corresponds to the average relative humidity at the site. The 1 : 1 line is black.

Slope, offset, and correlation coefficient are inset.
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Figure 3. Average measured vs. calculated asp at 550 nm at IMPROVE sites between 2000 and 2010 using GEOS-Chem default and revised
optical tables (Table A1) for measurements taken in 0 %-35 %, 35 %—65 %, and 65 %—-95 % RH conditions. The 1 : 1 line is black. Slope,

offset, and correlation coefficient are inset.

on dominant aerosol type. Within each group, average cal-
culated and measured mass scattering efficiency is obtained
for each site using Eq. (3). Figure 4 shows in blue average
measured vs. calculated ap using default optical tables for
conditions where measured PM3 5 is dominated (>60 %) by
secondary inorganic aerosol, organic aerosol, and fine dust,
as well as conditions where PMq is dominated (>60 %) by
PMoarse (PM19—PM3 5). The scatterplot in the SIA-dominant
case resembles the overall relationship shown in Fig. 2. ap
is overestimated at most sites, with significant correlation
(r =0.88) and a bias evident in the offset of 0.70. Where
OA is the dominant component of PM3 5, the slope is close
to unity (1.02), but the large offset of 0.80m?*g~! results
in ayp being largely overestimated. Where dust is the dom-
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inant fine aerosol, correlation is significant (» = 0.89) and
mass scattering efficiency is accurately calculated at the vast
majority of sites, despite a prominent outlier at a site in the
Columbia River Gorge, Washington. The PM garse-dominant
case shows significant correlation (» = 0.88) and a slight ten-
dency for overestimation of asp. As this case is not indepen-
dent of the other cases, this overestimation is likely linked
to the overestimation in the OA- and SIA-dominant cases as
demonstrated below.

These results indicate that the bias in calculated mass scat-
tering efficiency arises mostly due to the representation of the
physical and optical properties of secondary inorganic and
organic aerosols. The following will focus on improving the
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Figure 4. Average measured vs. calculated asp (550 nm) at IMPROVE sites between 2000 and 2010 using GEOS-Chem default and revised
optical tables for measurements taken in conditions dominated by secondary inorganic aerosols (SIA), organic aerosols (OA), fine dust, and
PMcoarse (PM19—PM> 5). The 1 : 1 line is black. Slope, offset, and correlation coefficient are inset.

representation of physical and optical properties of these two
aerosol types.

3.2 Changing the physical properties of SIA and OA

Figure 5 shows mass scattering efficiency as a function
of aerosol size for secondary inorganic (orange) and or-
ganic (blue) aerosols for dry aerosols (solid) and aerosols
at 80 % RH (dashed lines) as calculated using a Mie algo-
rithm (Mishchenko et al., 1999). Water uptake at 80 % RH for
OA and SIA is calculated using default hygroscopic growth
factors from GEOS-Chem. The uptake of water increases
aerosol scatter, decreases aerosol density, and decreases the
refractive index. The increase in aerosol scatter with increas-
ing ambient RH drives the increase in asgp.

The points in Fig. 5 represent the current mass scatter-
ing efficiency values of OA and SIA in GEOS-Chem. For
dry aerosols, asp = 4.4 m? g~! for OA and asp=3.2 m?g~!
for SIA. In a review of ground-based estimates of aerosol
mass scattering efficiencies, Hand et al. (2007) found dry
asp values of 2.5m? g=! for ammonium sulfate, 2.7 m? g~
for ammonium nitrate, and 3.9 m? g~! for particulate organic
matter. These values suggest that the default optical tables
in GEOS-Chem currently overestimate mass scattering effi-
ciency of SIA and OA in dry conditions. This reaffirms the
overestimation of ayp in dry conditions evident in panel (a)
of Fig. 3. As aerosol size is the strongest determinant of dry
mass scattering efficiency, we begin by examining the dry
sizes of SIA and OA in GEOS-Chem.

The current dry sizes of SIA and OA in GEOS-Chem
were informed by measurements from several aircraft cam-
paigns over eastern North America during the summer of
2004 (Drury et al., 2010) as part of the International Con-
sortium for Atmospheric Research on Transport and Trans-
formation (ICARTT) (Fehsenfeld et al., 2006; Singh et al.,
2006). Aerosol surface area and volume distributions fluctu-
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Figure 5. Mass scattering efficiency (osp) at 550nm as a function
of aerosol wet effective radius for organic aerosol and secondary
inorganic aerosol. Solid lines show ap for dry aerosol (RH = 0 %);

dashed lines show agp for aqueous aerosols (RH = 80 %). Points
represent the default size in GEOS-Chem.

ate seasonally in the northeastern U.S., with summer maxima
and winter minima (Stanier et al., 2004). We divide our anal-
ysis at low RH by season, in an effort to discern a seasonal
pattern in the overestimation of .

Figure 6 (blue) shows seasonal measured vs. calculated
mass scattering efficiency in dry conditions using default op-
tical tables (Table Al). Estimations of o, are most accurate
in the summer, consistent with the dry sizes chosen by Drury
et al. (2010) which were informed by summertime size distri-
bution measurements. The larger overestimation of as, in all
other seasons, most notably in winter, is consistent with the
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Figure 6. Average measured vs. calculated o, (550 nm) at IMPROVE sites between 2000 and 2010 using GEOS-Chem default and revised
optical tables for measurements taken in dry conditions (RH <35 %) in winter, spring, summer, and fall. The 1 : 1 line is black. Slope, offset,

and correlation coefficient are inset.

seasonality in aerosol size distributions observed by Stanier
et al. (2004).

3.2.1 Efflorescence relative humidity

To address the overestimation of mass scattering efficiency
in dry conditions illustrated in Figs. 3 and 6, we begin by
accounting for efflorescence transitions in secondary inor-
ganic aerosols. Efflorescence phase transitions are charac-
terized by nucleation of the crystalline phase followed by
rapid evaporation of water. Field measurements have found
evidence for these transitions (Martin et al., 2008). The ef-
florescence relative humidity (ERH) of ammonium sulfate
reported in several experimental studies ranges from 35 %
to 40 % (Ciobanu et al., 2010). Laboratory tests have shown
that mixtures of sulfate—nitrate—ammonium particles will un-
dergo efflorescence when the ammonium sulfate fraction is
high (Dougle et al., 1998; Martin et al., 2003). This condition
is true at most global measurement sites, with the possible
exception of Europe, where particles are nitrate rich (Martin
et al., 2003).

We therefore define the hygroscopic growth factor for STA
as unity for RH < 35 %, linearly increasing between 35 %
and 40 % RH from unity to GF49¢9, (calculated by Eq. 5),
and following the default (or «-Kohler) growth curve for
RH > 40 %.

Incorporating an ERH for SIA and consequently inhibit-
ing hygroscopic growth of SIA below 35 % RH significantly
reduce the overestimation of mass scattering efficiency in
dry conditions. In the case of default hygroscopic growth
in GEOS-Chem, the overall dry bias in o) is reduced from
82 % to 48 %.

3.2.2 Aerosol dry size

To address the remaining overestimation of mass scattering
efficiency in dry conditions, we explore different dry sizes of
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secondary inorganic and organic aerosols. Effective variance
may also be important (Chin et al., 2002), but given insuffi-
cient information to simultaneously constrain size and vari-
ance, we focus on size. Figure 7 shows the slope of the av-
erage measured vs. calculated ap plot for RH <35 % for dry
radii ranging from 0.048 to 0.074 um at intervals of 0.001 pum,
assuming SIA and OA have the same dry size. The slope of
the best fit line acts as an indicator of the appropriate dry
size for each season. Sensitivity tests exploring alternative er-
ror metrics (RMSE, MSE) yielded similar results. The slope
decreases steadily as dry radius is decreased in all seasons.
Using the dry radius which gives a slope of unity, we find
that aerosols are largest in summer (+ = 0.067 um), smallest
in winter (r = 0.051 um), and in between in spring and fall
(0.059 and 0.054 um, respectively). The spring and summer
radii are consistent with accumulation-mode size distribu-
tion measurements performed by Levin et al. (2009) in the
spring and summer of 2006. Averaging the sizes from all
four seasons results in an annual representative dry radius
of 0.058 um. This annual radius is smaller than the GEOS-
Chem default sizes of SIA and OA that were informed by
summertime measurements alone (Drury et al., 2010).

Figure 6 (red) shows seasonal measured vs. calculated agp
in dry conditions using a new representative annual geomet-
ric mean radius of 0.058 um for SIA and OA. This change in
geometric mean radius reduces the overestimation of ap in
all seasons, with the largest improvements in fall (slope de-
creases from 1.84 to 1.17) and winter (slope decreases from
1.94 to 1.20). Changes in correlation are minor. For the re-
mainder of the analysis, this new dry radius of 0.058 um is
implemented for SIA and OA.

3.2.3 Aerosol hygroscopicity

We now examine the implementation of the widely adopted
k-Kohler hygroscopic growth scheme described in Sect. 2.4.
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Figure 7. Slope of measured vs. calculated agp plot vs. dry geomet-
ric mean aerosol radius, by season. Winter (DJF) is in blue, spring
(MAM) in red, summer (JJA) in green, and fall (SON) in orange.
The line slope = 1 is shown in black. Numbers in the legend repre-
sent the dry radius for which the slope = 1 for each season.
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Figure 8. Slope of measured vs. calculated agp plot as a function of
the x of secondary inorganic aerosols (x5, a) and the « of organic
aerosols (ko, b). The line slope =1 is shown in black. ks and «o
values for which slope = 1 are inset.

A range of measured « values for SIA (k) and OA (k,) exist
in the literature. We explore the range of possible « values,
using the slope of the measured vs. calculated ap plot as an
indicator of the appropriate values.

Figure 8 shows the slope of the measured vs. calculated
agp plot for « values for SIA (k) ranging from 0.5 to 0.7
and for OA (k,) ranging from 0.08 to 0.20. Slope increases
steadily as ks and k, increase. A slope of unity identifies rep-
resentative values of kg = 0.61 and «x, = 0.10. These values
are in the middle of the range of measured « values (Du-
plissy et al., 2011; Hersey et al., 2013; Kreidenweis et al.,
2008; Petters and Kreidenweis, 2007; Rickards et al., 2013).

Figure 9 shows the diameter growth factor as a function
of relative humidity following k-Kohler theory, as well as
GADS hygroscopic growth for both SIA and OA used in
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the default GEOS-Chem model. Hygroscopic growth from
the Aerosol Inorganic Model (AIM) at T =298 K (Wexler
and Clegg, 2002) and laboratory measurements (Wise et
al., 2003) are also shown for ammonium sulfate (Snider et
al., 2016). The GADS hygroscopic growth schemes used
in the default GEOS-Chem simulation are characterized by
larger growth at low RH and smaller growth at high RH for
both secondary inorganic and organic aerosols. The «-Kohler
scheme exhibits greater consistency with both AIM and lab-
oratory hygroscopic growth for SIA.

Using the revised dry size of 0.058 um and the «-Kohler
theory of hygroscopic growth, we calculate revised physical
and optical properties for SIA and OA over a range of RH
values. Table Al contains geometric mean radius, extinction
efficiency, and single scattering albedo for the revised optical
tables at eight relative humidity values.

Figure 2 (right) shows the measured vs. calculated mass
scattering efficiency using these revised optical tables for
SIA and OA. The overestimation of mass scattering effi-
ciency has been eliminated with these revised aerosol prop-
erties, with a slope of 1.00 and an offset of 0.09. Correlation
remains significant at r = 0.96.

Figure 4 (red) shows measured vs. calculated o) in condi-
tions dominated by different aerosol types using the revised
optical tables. The overestimation of ogp in SIA-dominant
conditions using the default optical tables has been elim-
inated, with a slope of 1.03 and a decreased offset (0.70
to 0.1). The large overestimation of oy that was apparent
in OA-dominant conditions has been reduced by a factor
of 2. ag, remains accurately estimated at the majority of
dust-dominant sites, with the outlier at the Columbia River
Gorge site in Washington still skewing the best fit line. The
slight overestimation of «s), that was present in the PMcoarse-
dominant case using default optical tables has been elimi-
nated using the revised tables (offset 0.33 to 0.03). Slight in-
creases in correlation coefficients are apparent in all cases ex-
cept for the SIA-dominant case, where it decreased by 0.02.

Figure 3 (red) shows measured vs. calculated ap us-
ing revised optical tables. The overestimation in cp has
been significantly reduced in the low RH case (slope=
1.82 to slope = 1.09) and in the mid RH case (slope = 1.40
to slope = 1.01) compared to when default optical tables
were used. The slight overestimation in high RH conditions
present in the default case has also been reduced, as shown
by the decreased offset (0.90 to 0.71).

3.3 Changes in GEOS-Chem-simulated as),

Here, we examine how these changes to aerosol properties
impact both GEOS-Chem simulation of mass scattering ef-
ficiency over North America and the fit between modelled
and measured ap at IMPROVE sites. These simulations rely
on GEOS-Chem simulations of aerosol composition using
GEOS RH fields.

www.atmos-chem-phys.net/19/2635/2019/
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Figure 9. Hygroscopic growth factor curves for secondary inorganic aerosols (SIA, a) and organic aerosols (OA, b). GADS (Global Aerosol
Data Set) hygroscopic growth from empirical data and x-Kohler hygroscopic growth are shown for both SIA and OA. For ammonium
sulfate, AIM (Aerosol Inorganic Model) hygroscopic growth at 7' =298 K (Wexler and Clegg, 2002) and laboratory hygroscopic growth
with a deliquesence point of RH = 80 % (Wise et al., 2003) are also shown.

Figure 10 shows the relative and absolute change in mass
scattering efficiency when switching from the default to re-
vised optical tables. Continental mean «p, increased by 16 %.
Increases in as), range from 25 % to 45 % in northeastern re-
gions of North America, corresponding to an increase of 1.5—
3.5m?g~!. These larger changes reflect the higher RH and
SIA fractions. Decreases in ap of up to 15 % or —0.5 m’g !
are found in the southwest where RH is low and mineral dust
dominates.

Figure 11 shows GEOS-Chem annual average mass scat-
tering efficiency using default (top) and revised (bottom) op-
tical tables over North America for the year 2006. The over-
laying circles represent average measured o5, at IMPROVE
network sites for the year 2006, and the outer rings show
the coincident simulated oyp for each site. We exclude sites
within 1° of the coast, where sea salt affects o), as well as
sites where elevation differs from average gridbox elevation
by more than 1500 m. These criteria result in a decrease from
24 to 19 in the number of sites available for the analysis in
2006.

Using default optical tables, simulated continental mean
agsp is 5.4 m?g~!. A maximum agp of 10 m? g~ occurs in
British Columbia, and a minimum e of 1.7 m? g’l occurs
in the southwestern United States. Using revised optical ta-
bles, simulated continental mean osp is 6.3 m? g_l, with a
maximum of 12.5m?g~! in the northwest and a minimum
of 1.5m? g~ ! in the southwest. The elevated mass scattering
efficiencies in the northwest can be attributed in part to the
high average RH in this region of 83 %.

www.atmos-chem-phys.net/19/2635/2019/

Figure 12 (left) shows coincident measured vs. simulated
mass scattering efficiency at the 19 IMPROVE sites, using
default optical tables. Correlation is significant (r = 0.88),
but a bias in simulated o), is apparent (slope = 0.83). Sim-
ulated o), is notably biased low at sites in the southeastern
United States where average ap is largest, and simulated agp
is notably biased high at sites in the southwestern United
States where average mass scattering efficiency is lowest.
Sites with the lowest average RH correspond to those with
the lowest average mass scattering efficiency and vice versa.
The tendency of mass scattering efficiency to be overesti-
mated at low RH reflects the tendency that was originally
seen in Fig. 4.

Figure 12 (right) shows coincident measured vs. simulated
asp using revised optical tables. Correlation remains signif-
icant (r = 0.89), and a decrease in bias is evident from the
increase in slope (0.83 to 0.93) and decrease in offset (0.47
to 0.08). Most sites now lie closer to the 1 : 1 line. The over-
estimation of simulated osp in the southwest, where RH is
low, has been reduced or eliminated at all sites.

3.4 Comparison with AERONET measurements

Appendix B investigates changes to simulated AOD, and
compares measured and simulated AOD at AERONET sites.
Although large relative increases upwards of 60 % in aver-
age AOD are evident in large parts of northern high lati-
tudes where absolute AOD is small, absolute AOD gener-
ally changes by less than 0.1 (Fig. B1). Comparisons with
AERONET AOD reveal that the revised optical properties
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Figure 10. Average relative and absolute change in GEOS-Chem
mass scattering efficiency over North America for the year 2006
after implementing revised optical tables for secondary inorganic
and organic aerosols.

slightly improve the simulation of AOD worldwide (slope
decreases from 1.08 to 1.00) despite the large influence
of other factors (e.g. ambient aerosol concentrations) upon
AOD.

4 Conclusions

The current representation of mass scattering efficiency in
the GEOS-Chem global chemical transport model was eval-
uated using collocated ground-based measurements of parti-
cle mass, speciation, scatter, and relative humidity from the
IMPROVE network.

Calculated mass scattering efficiency had a positive bias
using default physical and optical properties used in the
GEOS-Chem model. This bias was most significant when
PM; 5 mass was dominated by secondary inorganic (SIA) or
organic aerosols (OA). Mass scattering efficiency in PMj 5
dust and coarse particulate matter dominant conditions was
accurately represented at the majority of IMPROVE sites.
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Revised ag, (m2 g'l) 2006

Figure 11. GEOS-Chem annual average mass scattering efficiency
(at 550nm) for the year 2006 using default and revised sizes and
hygroscopicity for secondary inorganic and organic aerosols. Over-
laying inner circles represent annual averages of asp at IMPROVE
network sites for the year 2006. Outer rings represent coincident
average simulated ogp.

Relative humidity played an important role in the sever-
ity of the bias in mass scattering efficiency. Mean ap was
overestimated by 82 % in dry conditions (RH <35 %). This
bias was largest in the winter (94 %) and smallest in the sum-
mer (27 %). Implementing an efflorescence relative humidity
for STA and thus inhibiting hygroscopic growth below 35 %
RH decreased the dry bias by 34 %. An annual representative
dry geometric mean radius of 0.058 um for SIA and OA de-
creased the dry mass scattering efficiency of these aerosols,
and subsequently further reduced the bias in dry conditions
t0 9 %.

«-Kohler theory was implemented for the hygroscopic
growth of SIA and OA, which is characterized by smaller
growth factors at low RH and larger growth factors at high
RH compared to default growth factors in GEOS-Chem. «
values of 0.61 for SIA and 0.10 for OA eliminated the over-
all bias in calculated mass scattering efficiency.

www.atmos-chem-phys.net/19/2635/2019/
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Figure 12. Coincident simulated vs. measured average mass scattering efficiency at 550 nm for the year 2006, using default and revised

optical tables. Slope, offset, and correlation coefficient are inset.

These changes to SIA and OA optical tables resulted in
a continental mean increase in GEOS-Chem-simulated mass
scattering efficiency of 16 %. Northeastern regions of North
America exhibited the largest increases (25 %—45 %) due to
high RH and SIA fractions, while southwestern regions of
the continent exhibited decreases in cp of up to 15 % due to
low RH and high dust fractions. These changes to the GEOS-
Chem optical tables improved the fit between measured and
simulated mass scattering efficiency at IMPROVE sites, re-
flected in the changes to the slope (0.83 to 0.93) and the offset
(0.47 to 0.08).

Future work should examine the implications of these
changes for satellite-derived estimates of fine particulate
matter that depend on the relationship of AOD with PM 5.
Future work should also expand analysis of the represen-
tation of mass scattering efficiency for other years, and by
incorporating measurements from other ground-based mea-
surement networks such as the Surface PARTiculate MAt-
ter network (SPARTAN), which provides measurements of
particulate mass, speciation, and scatter in populated regions
worldwide (Snider et al., 2015, 2016). Such comparisons
may also be useful to evaluate and improve prognostic sim-
ulations of aerosol size (Mann et al., 2010; Spracklen et al.,
2005; Trivitayanurak et al., 2008; Yu and Luo, 2009). Repre-
sentation of particle RH history may also be important (Wang
et al., 2008).

Data availability. IMPROVE network data for 2000-2010 can
be accessed at http://vista.cira.colostate.edu/Improve/improve-data/
(last access: 3 October 2018). The GEOS-Chem chemical transport

www.atmos-chem-phys.net/19/2635/2019/

model used here is available at http://www.geos-chem.org (last ac-
cess: 7 September 2017).
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Appendix A
Al b, and ag, calculations in GEOS-Chem

In GEOS-Chem, surface-level by, is calculated using model
particle mass concentrations and local relative humidity, as
well as predefined mass densities and aerosol optical proper-
ties for each aerosol component following

3 Rwi 2
‘T'(Tﬂ) “Mq, i Qu, i SSAy,i
od,iRa,i

bsp = Zspecies, i

where pq is the dry particle mass density, Ry, is the effective
radius (defined as the ratio of the third to second moments
of an aerosol size distribution), Ry is the dry effective radius,
Mg is the dry surface-level mass concentration, Q. is the ex-
tinction efficiency, and SSA,, is the single scattering albedo.
Parameters with subscript w indicate values at ambient RH.
Species included in this calculation are SO2, NHI, NO3,
BC, OM, and fine and coarse dust and sea salt.

Dividing Eq. (A1) by total surface-level PM1q results in
the following equation for mass scattering efficiency:

. (AD

Ry i \2 My ;
z %( Rl:i’;) ‘ﬁ'Qll:,i‘SSAzAﬁ,i
By species, i : R :
— P — pod, i Id, i ) (A2)
PMio PM;o

Osp

The effective radius, extinction efficiency, and single scatter-
ing albedo in Eqgs. (A1) and (A2) are obtained from GEOS-
Chem optical tables for the ambient RH values measured by
IMPROVE. Dry mass density pq is specified for each aerosol
species in GEOS-Chem (Table A2). My, ; and PMjg are ob-
tained from IMPROVE network measurements of aerosol
mass and composition. agp calculated by Eq. (A2) is com-
pared to ayp directly measured by the IMPROVE network.
Mass scattering efficiency is dependent on particle density,
refractive index, and particle size. Mass scattering efficiency
is typically most dependent on aerosol size, which is dictated
by both the dry size distribution chosen to represent a given
aerosol species and the hygroscopic growth scheme used to
represent aerosol water uptake for hydrophilic species.
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A2 Incorporating IMPROVE network measurements

The IMPROVE network measures every 3 days PM» 5 mass
and speciation and PM ¢ mass. The IMPROVE particle sam-
pler consists of four independent modules with separate in-
lets and pumps. The first three modules (A, B, and C) collect
only fine particulate matter (PM, s5), while the fourth module
(D) collects both fine and coarse particles (PMjg). Module A
collects PM; 5 on a Teflon filter, which undergoes gravimet-
ric analysis for total PM; 5 mass and X-ray florescence for
elemental concentrations (including Al, Si, Ca, Fe, and Ti).
The nylon filter in module B undergoes ion chromatography
analysis for SOi_, NO;, NO, , and CI™. Module C contains
a quartz filter that is analysed for organic and elemental car-
bon via thermal optical reflectance. The Teflon filter in mod-
ule D undergoes gravimetric analysis for PM¢ mass (Malm
etal., 1994, 2004). Prior to gravimetric analysis, filters A and
D undergo equilibration at 30 %—-50 % RH and 20-25 °C for
several minutes (Solomon et al., 2014).

The GEOS-Chem model partitions OM into hydrophilic
and hydrophobic fractions, so the same is done for OM mea-
sured by IMPROVE to enable isolation of mass scattering ef-
ficiency in our comparisons. OM in remote regions tends to
be highly oxidized, and oxidation level of organics has been
shown to positively correlate with hygroscopicity (Duplissy
et al., 2011; Jimenez et al., 2009; Ng et al., 2010). We treat
measured OM as 90 % hydrophilic, due to the rural nature of
IMPROVE sites. EC is treated as 50 % hydrophilic. As spe-
ciation of coarse material is unavailable, we treat all coarse
material as crustal in origin, an assumption that may break
down at coastal sites. We partition fine and coarse dust mea-
sured by the IMPROVE network into the GEOS-Chem size
bins using the dust particle size distribution (PSD) described
by Zhang et al. (2013).

www.atmos-chem-phys.net/19/2635/2019/
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Table A1. Default and revised aerosol size and optical properties for secondary inorganic aerosols (SIA) and organic aerosols (OA) at 550 nm
at eight relative humidity values. Columns indicate geometric mean radius (rg), effective radius (refr), extinction efficiency (Q), and single

scattering albedo (SSA). ks and ko represent the hygroscopic growth parameters for SIA and OA, respectively.

Default ‘ Revised (ks = 0.61; kg = 0.10)

Aerosol RH  rg (um)  reff (Um) 0 SSA ‘ rg (Um)  reff (LmM) 0 SSA
0 0.069 0.121 0.902  0.965 0.058 0.101 0.603 0.959

35 0.081 0.141 0.965 0975 0.058 0.101 0.603 0.959

50 0.086 0.149 0.992 0979 0.068 0.118 0.656 0.972

SIA 70 0.093 0.163 1.062 0.983 0.078 0.135 0.742 0.981
80 0.100 0.174 1.137  0.986 0.088 0.152 0.847 0.987

90 0.114 0.198 1.301  0.991 0.108 0.188 1.116 0.993

95 0.131 0.227 1.517 0.994 0.135 0.234 1.500 0.997

99 0.175 0304 1.2725 0.993 0.229 0.397 2.570  0.999

0 0.073 0.127 1.007  0.966 0.058 0.101 0.603 0.959

35 0.078 0.135 0.965 0.972 0.059 0.103  0.608 0.965

50 0.080 0.139 0.947 0975 0.060 0.104 0.610 0.963

OA 70 0.083 0.145 0.947 0978 0.063 0.108 0.622 0.966
80 0.086 0.149 0.955 0.980 0.065 0.113  0.639 0.970

90 0.092 0.159 0.990 0.984 0.073 0.125 0.696 0.977

95 0.099 0.171 1.053  0.988 0.084 0.144 0.811 0.985

99 0.117 0.203 1.273  0.993 0.132 0.223  1.463 0.996

Table A2. Current microphysical properties of each aerosol species in GEOS-Chem. rg represents the dry geometric mean radius (um) and
o the geometric standard deviation of the lognormal size distributions assumed for each species. pq represents the dry mass densities of each

species (g cm™3).

Component rg o £d
(um) (gem™)
Sulfate—nitrate— 0.070 1.6 1.7
ammonium
Organic carbon 0.073 1.6 1.3
Black carbon 0.020 1.6 1.8
Sea salt (fine) 0.085 1.5 2.2
Sea salt (coarse) 0401 1.8 2.2
Brown carbon 0.073 1.6 1.3
Dust 1 a—d 0.030- 2.2 2.5
0.170
Dust 2 0265 2.2 2.65
Dust 3 0.530 2.2 2.65
Dust 4 0.845 22 2.65
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Appendix B

The Aerosol Robotics Network (AERONET) is a long-term
network of ground-based sun photometers that provides con-
tinuous, cloud-screened measurements of aerosol optical
depth (AOD) at several fixed wavelengths in the visible and
near infrared (Holben et al., 1998). The calculation of AOD
in GEOS-Chem is performed using simulated mass con-
centrations of aerosol species and mass extinction efficien-
cies, summed over all vertical layers. Our analysis of mass
scattering efficiency can therefore be extended globally by
comparing GEOS-Chem-calculated AOD to AOD measured
at AERONET sites. During our simulation year of 2006,
AERONET consisted of 231 sites across the globe.

Here we examine how the changes to SIA and OA proper-
ties impact GEOS-Chem simulated AOD globally. Figure B1
shows the relative (top) and absolute (bottom) changes
in AOD. Global mean AOD increases by 19 %. Relative
changes in AOD are most pronounced in northern regions
where mean relative humidity is high, with increases in sim-
ulated AOD ranging from 50 % to 90 %. Decreases in AOD
between 0 % and 20 % are present in most of the Southern
Hemisphere, in part due to the lower average RH. Abso-
lute changes in AOD show a similar tendency, with slight
increases in AOD of up to 0.2 in northern regions, and slight
decreases of up of —0.09 in southern regions. An exception
to this is seen over parts of China, where AOD increases by
0.5 due to the elevated SIA and OA concentrations.

Figure B2 shows coincident measured (inner circles) and
simulated (outer rings) AOD for the year 2006 using default
optical tables (top) and revised optical tables (bottom). We
exclude sites within 1° of the coast, as well as sites where el-
evation differs from average gridbox elevation by more than
1500 m. We also exclude sites where average PM> 5 is dom-
inated by dust (dust / PMj 5>0.6), to focus on the represen-
tation of the optical properties of SIA and OA. Across the
globe, we see that AOD is both overestimated and underes-
timated. AOD is overestimated at most sites in Africa, with
the most notable overestimation at the site in Nigeria. AOD is
moderately overestimated at sites in Australia. Underestima-
tion of AOD occurs at most sites in South America, as well
as at sites in southern North America and southern Asia.
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Figure B1. Average relative and absolute change in GEOS-Chem
aerosol optical depth at 550 nm globally for the year 2006 after im-
plementing revised optical tables for SIA and OA.

Figure B3 shows coincident measured vs. simulated AOD
at AERONET sites for default (left) and revised (right) opti-
cal tables. The correlation coefficient (r = 0.80 to r = 0.78)
changes insignificantly, while the slope decreases from 1.08
to 1.00 when switching to the revised optical tables. In sum-
mary, the revised optical properties developed for North
America slightly improve the representation of AOD at the
global scale, despite the large influence of other factors (e.g.
ambient aerosol concentrations and composition) upon AOD.
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Figure B2. Global comparison for the year 2006 of AERONET AOD (inner circles) and GEOS-Chem coincident simulated AOD (outer

rings) using default optical tables.
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Figure B3. Coincident simulated vs. measured AOD at 550 nm at AERONET sites for the year 2006, using default and revised sizes and
hygroscopicity. Slope, offset, and correlation coefficient are inset. The 1 : 1 line is shown in black.
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Examining the Shape of the Association between Low Levels of Fine Particulate
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BACKGROUND: Ambient fine particulate air pollution with aerodynamic diameter <2.5 pm (PM3s) is an important contributor to the global burden of
disease. Information on the shape of the concentration—response relationship at low concentrations is critical for estimating this burden, setting air
quality standards, and in benefits assessments.

OBJECTIVES: We examined the concentration—response relationship between PM, 5 and nonaccidental mortality in three Canadian Census Health and
Environment Cohorts (CanCHECS) based on the 1991, 1996, and 2001 census cycles linked to mobility and mortality data.

METHODS: Census respondents were linked with death records through 2016, resulting in 8.5 million adults, 150 million years of follow-up, and 1.5
million deaths. Using annual mailing address, we assigned time-varying contextual variables and 3-y moving-average ambient PM, s at a 1 X 1 km
spatial resolution from 1988 to 2015. We ran Cox proportional hazards models for PM, 5 adjusted for eight subject-level indicators of socioeconomic
status, seven contextual covariates, ozone, nitrogen dioxide, and combined oxidative potential. We used three statistical methods to examine the shape
of the concentration—response relationship between PM; 5 and nonaccidental mortality.

REesuLTs: The mean 3-y annual average estimate of PM, 5 exposure ranged from 6.7 to 8.0 pug/m? over the three cohorts. We estimated a hazard ratio
(HR) of 1.053 [95% confidence interval (CI): 1.041, 1.065] per 10-ug/m? change in PM, 5 after pooling the three cohort-specific hazard ratios, with
some variation between cohorts (1.041 for the 1991 and 1996 cohorts and 1.084 for the 2001 cohort). We observed a supralinear association in all
three cohorts. The lower bound of the 95% Cls exceeded unity for all concentrations in the 1991 cohort, for concentrations above 2 pg/m? in the
1996 cohort, and above 5 pig/m? in the 2001 cohort.

Discussion: In a very large population-based cohort with up to 25 y of follow-up, PM, 5 was associated with nonaccidental mortality at concentra-

tions as low as 5 pg/m?. https://doi.org/10.1289/EHP5204

Introduction

Exposure to ambient fine particulate air pollution with aerody-
namic diameter <2.5 um (PM,5) consistently ranks among the
leading risk factors for premature death and disease worldwide
(Burnett et al. 2018; GBD 2017 Risk Factors Collaborators 2018;
Lim et al. 2012). A number of studies supporting this work have
found that the relationship between PM;s concentrations and
mortality risk (for various causes) was supralinear across the
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global range (Burnett et al. 2014; Pope et al. 2009, 2011; Yin
et al. 2017). In a detailed examination of the shape of the PM; s—
mortality association in 15 of the world’s largest cohorts (Burnett
et al. 2018), 12 displayed a supralinear association. A supralinear
concentration—response curve is characterized by a positively
sloped curve of decreasing steepness, such that risk initially rises
rapidly with a decreasing slope as concentrations increase.
Studies that specifically characterize the shape of concentration—
response relationships at low-PM,s mass concentrations offer
great value given the steady decline in PM; 5 levels over recent
decades in North America (ECCC 2017). Further, a substantial
proportion of the global PM, 5 disease burden is from relatively
low level exposures (Apte et al. 2015). Canada is an ideal setting
to conduct such analyses, given the availability of large, national
cohorts with sufficient sample sizes and detailed exposure infor-
mation at low PM, 5 concentrations.

Canadian cohort studies have shown consistent positive asso-
ciations between PM; 5 and mortality from various causes at low
PM, 5 concentrations (i.e., annual concentrations generally below
20 ug/m3 even in large urban areas) (Crouse et al. 2012, 2015;
Nasari et al. 2016; Pinault et al. 2016b, 2017; Weichenthal et al.
2017). Crouse et al. (2012) used the 1991 Canadian Census
Health and Environment Cohort (CanCHEC) to conduct the first
nationwide cohort analysis and identified a hazard ratio (HR) for
nonaccidental mortality of 1.07 [95% confidence interval (CI):
1.06, 1.08] per 10-ug/m? change in PM, s among nonimmigrant
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adults. In a recent analysis of the 2001 CanCHEC, Pinault et al.
(2017) reported a larger HR of 1.18 (95% CIL: 1.15, 1.21) for
PM, 5 and nonaccidental mortality. While these studies made im-
portant contributions to the evidence base for mortality risks at
low PM; 5 levels, they also had several important limitations. For
example, with the exception of Pinault et al. (2017), past studies
used coarser-resolution PM; 5 models (i.e., 10 X 10 km) to assign
exposures to census respondents. Furthermore, most of the previ-
ous studies excluded immigrants, although this group represents
nearly 20% of the Canadian population. Additionally, most of
these studies had only 10 y of follow-up.

The present study specifically investigated the shape of the
concentration—response function between PM; s and nonacciden-
tal mortality at low levels of exposure among Canadian adults.
We examined data from the 1991, 1996, and 2001 CanCHECs
with follow-up until 2016. We address a number of limitations of
previous cohort studies in Canada by extending the period of
follow-up to 25 y (i.e., for individuals in the 1991 cohort), includ-
ing all but recent immigrants in the analysis, using annual 1 km?
PM,; 5 estimates from 1988-2015, using time-varying contextual
covariates over the duration of follow-up, and applying a vali-
dated marginalization index to represent four orthogonal dimen-
sions of neighborhood- or community-level socioeconomic status.
We examined the shape of associations at low levels of PM, 5 expo-
sure by applying restricted cubic splines (RCS) (Harrell 2015),
monotonically increasing smoothing splines (MISS) (Pya and
Wood 2015), and the Shape Constrained Health Impact Function
(SCHIF) (Nasari et al. 2016).

Methods

Analytical Cohort

We created three new, separate analytical cohorts from the 1991,
1996, and 2001 CanCHECsS. Briefly, the CanCHECS are population-
based, administrative data cohorts that link eligible census respond-
ents (i.e., noninstitutional respondents to the mandatory Statistics
Canada long-form census questionnaire that is distributed to 20% of
all Canadian households) to their annual mailing address (1981—
2016) and follow subjects for mortality. Information on a number of
variables capturing the social and economic status of the subjects was
available from the long-form census (Table 1).

The linkage was approved by Statistics Canada (linkage
requests 037-2016 and 045-2015) and is governed by the Directive
on Microdata Linkage (Statistics Canada 2017a). Eligible respond-
ents were first linked probabilistically to tax records using sex, date
of birth, postal code (PC), and spousal date of birth (if available).

Table 1. PM; s Distribution by cohort with lowest (2nd percentile) and high-
est (98th percentile) knot values for restricted cubic spline.

2001 1996 1991
100% max 18.50 20.00 20.00
99% 12.30 15.00 17.26
98% (highest knot) 11.70 13.97 17.03
95% 10.70 12.20 14.63
90% 9.80 10.70 12.60
75% Q3 8.23 8.84 9.83
50% median 6.40 6.75 7.40
25% Q1 4.87 5.04 5.38
10% 3.97 4.10 4.26
5% 3.57 3.67 3.80
2% (lowest knot) 3.00 3.29 343
1% 3.00 3.05 3.13
0% min 0.37 0.37 0.37
Mean 6.68 7.18 7.95
SD 2.24 2.70 3.28

Note: SD, standard deviation.
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This initial linkage was necessary since linkage to the mortality
database is based on the social insurance number (SIN), a unique
personal identifier. The long form censuses did not capture the
SIN, but they are available on tax records. The linkage rate to tax
records near the time of cohort inception was approximately 80%,
of which 99% were determined to be accurate matches (Christidis
etal. 2018; Pinault et al. 2016a; Wilkins et al. 2008).

Mortality and PC history data were attached to the census-tax
cohorts using Statistics Canada’s Social Data Linkage Environment
(SDLE) Derived Record Depository (DRD) (Statistics Canada
2017b), a dynamic relational database. About 99.8% of all deaths
that occurred in Canada between 1991 and 2016 were linked to the
DRD before being linked to eligible census respondents. From this
linkage, we obtained death date and underlying cause of death if it
occurred between census day and 31 December 2016. Mortality
data were coded by underlying cause of death according to the
International Classification of Diseases, 9th Revision, prior to 2000
(ICD-9; WHO 1977), and 10th Revision post-2000 (ICD-10; WHO
2016).

We enhanced the cohort with a number of data elements char-
acterizing the environment in which each subject lived, using PC
histories from tax records, of which the primary source was
income tax filings (1981 to 2016). We assigned a representative
point (latitude and longitude) to each PC (Statistics Canada
2017c¢). In large cities, PCs often correspond to a single block
face, though in rural areas, they can range over much larger areas.
Similarly, the point estimates of PCs are accurate within 0.2 km
in urban centers and 5.6km in rural areas (Khan et al. 2018).
These point estimates were used to derive estimates of air pollu-
tion and location-based contextual risk factors.

We note that these three linked cohorts are newly created
using an enhanced linkage environment (SDLE) and thus are not
identical to the CanCHEC cohorts used in previous publications
(Crouse et al. 2015; Pinault et al. 2017).

Outdoor Air Pollution Concentrations

We used annual ambient PM, 5 surfaces as our main exposure of in-
terest at a 0.01° X 0.01° resolution (~ 1km?) over North America
for 1981-2016 (Meng et al. 2019; van Donkelaar et al. 2015). PM; 5
estimates for the years 1998-2012 were developed by relating
satellite-based retrievals of total column aerosol optical depth to
near-surface PM; s concentrations using the geophysical relation-
ship simulated by a chemical transport model (CTM). These esti-
mates were constrained using ground-based monitoring from the
National Air Pollution Surveillance (NAPS) program stations, along
with other North America—based measurements, land-use informa-
tion, and simulated composition in a geographically weighted
regression (V4.NA.O1; van Donkelaar et al. 2015). For years outside
this period, we used PM; 5 surfaces developed using a backcasting
method (Meng et al. 2019) that applied observed annual trends in
ground monitoring data for PM; 5 and coarser size fractions to adjust
pregridded PM; s estimates backwards or forwards in time. We esti-
mated a 3-y moving-average exposure window with 1-y lag for
assigning PM; 5 exposures for consistency with previous studies, as
ambient PM, s is regulated based on a 3-y time window in Canada
(CCME2012).

We assigned estimates of exposures to ambient ozone (Os3; as
a May—September daily maximum 8-h average) and nitrogen
dioxide (NO,; annual) for inclusion in multipollutant models.
Additionally, we estimated a measure of the combined oxidant
capacity of O3 and NO,, expressed as Ox=2/303+1/3NO,
(Weichenthal et al. 2017). We estimated a 3-y average with 1-y
lag for each of Oz, NO,, and Oy for inclusion in the hazard mod-
els. Modeled Oj surfaces at 21-km spatial resolution were devel-
oped by Environment and Climate Change Canada (ECCC) for
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2002-2015 using chemical transport modeling informed by sur-
face observations (Robichaud and Ménard 2014; Robichaud et al.
2016). Estimates of ambient NO, were based on a national land-
use regression model (LUR) developed for 2006 (Hystad et al.
2011) with a spatial resolution of 100m. The LUR estimates
were built using satellite-derived NO, (with 10-km resolution),
distances to highways and major roads, and roadway kernel den-
sity gradients as predictive variables.

We temporally adjusted the O3 and NO, models to obtain ex-
posure estimates over our study period (i.e., 1988-2015). Our
adjustment was based on observed trends in ground monitoring
data for NO, and O3 from the NAPS in Canada. For each of 24
census divisions (CDs) that had monitoring data available, we
estimated yearly adjustment factors from the ratio of observed
CD-average concentration in a specific year to the reference year(s)
for which the original surfaces were estimated (i.e., 2006 for NO,
and 2002-2015 average for Oz). We assigned adjustment factors
for each PC from the closest CD.

Contextual Covariates

We assigned contextual risk factors describing neighborhood-level
characteristics and geographic identifiers using residential PC and
data from the closest census (every 5 y from 1991 through 2016).
We included in our analysis the Canadian Marginalization Index
(CAN-Marg), population size of home community or city, an indi-
cator of urban form, and regional airshed to capture risk factors
beyond those captured at the subject level. We assigned these four
categories of contextual covariates to residential PCs linked to cen-
sus geography for each census year.

CAN-Marg is a publicly available index of neighborhood mar-
ginalization in Canada that was developed by Matheson et al.
(2012) using an analysis of the 2001 and 2006 long-form census
cycles. CAN-Marg consists of four dimensions that aim to capture
different aspects of marginalization: material deprivation, residen-
tial instability, ethnic concentration, and dependency. Following
the methodology of Matheson et al. (2012), we developed CAN-
Marg using the 1991 and 1996 censuses. We assigned CAN-Marg
to PC locations and then created quintiles (based on the cohort dis-
tribution) of the continuous values in the four Can-MARG dimen-
sions in order to account for any potentially nonlinear associations
with mortality.

We used a variable to describe the population size of a subject’s
community (Pinault et al. 2017) (Table 2). We categorized geo-
graphic locations into the following: census metropolitan areas
(CMAs) or census agglomerations (CAs; Statistics Canada 2003)
with a population exceeding 1.5 million; 500,000-1.49 million;
100,000—499,999; 30,000-99,999; or 10,000-29,999, as well as
non-CMAs/CAs. We note that although non-CMA/CAs are always
rural areas, CMAs cover both the urban core of a city and the
urban—rural fringe, such that some rural locations fall within a
CMA/CA. As such, this variable does not perfectly delineate sub-
jects living in rural vs. urban settings.

To further differentiate between the kinds of built environments
and neighborhoods within communities, we created an urban form
variable following the methodology developed by Gordon and
Janzen (2013). This measure of urban form is informed by popula-
tion density and the most frequently reported mode of transporta-
tion (active or transit) in each census tract as reported on each
census cycle. The categories of this variable include an active
urban core, transit-reliant suburb, car-reliant suburb, exurban, and
non-CMA/CA. We note that mode of commute was not reported
on the 1991 census cycle and was derived from the 1996 census.

We included airshed as a geographic covariate in our analysis
(Crouse et al. 2016). Airsheds divide Canada into six regions
(Western, Prairie, West Central, Southern Atlantic, East Central,
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and Northern) based on large-scale differences in air masses and
meteorology. Airsheds can also be used to represent regional dif-
ferences in mortality rates across Canada that remain uncaptured
by other geographic covariates.

Exclusion of Person-Years of Follow-Up

PC history was not available for each person in every year of
follow-up, either because they did not file a tax return or from
gaps in administrative data. Any gaps in PCs that had the same
PC prior to and after the gap were assigned that PC for all years
of the gap. After this imputation, 87.8% of person-years had an
available PC. We imputed an additional 2.1% of person-years of
missing PCs if the bounding PCs shared the first two characters
(Fines et al. 2017; Pinault et al. 2017), totaling 89.9% of person-
years with a PC.

After imputation, person-years were excluded if they did not
have an assigned PC. Further exclusions of person-years
occurred due to: immigrated to Canada less than 10 y before sur-
vey date (9,364,400 person-years), age during follow-up period
exceeded 89 y (7,357,200), could not be linked to air pollution
values (17,814,400), could not be linked to CAN-Marg values
(25,973,900), could not be linked to CMA/CA size (25,613,100),
could not be linked to airshed (25,545,500), 3-y moving average
being informed by only 1y of exposure (20,056,400), and year af-
ter subject death (17,936,100). The above are not mutually exclu-
sive numbers of exclusions. The total available person-years for
analyses were 150,996,500 after all exclusions (Figure S1).

Statistical Analysis

Our primary statistical model relating exposure to mortality was
the Cox proportional hazards model (Cox 1972). Participants were
at least 25 y of age at the beginning of each cohort, and the time
axis was the year of follow-up until 2016. Person-years before a
census year and after a subject’s death year were excluded from
analysis. Events were determined by year of death for nonacciden-
tal causes. The Cox model baseline hazard function was stratified
by age (5-y groups), sex, and immigrant status (yes or no). This lat-
ter strata variable was included since immigrants to Canada live
longer, on average, than do Canadian-born citizens (Ng 2011). We
excluded immigrants living in Canada for less than 10 y at cohort
commencement due to the healthy immigrant effect (Ng 2011) and
lack of knowledge of their historical air pollution exposures. Each
subject was censored at 89 y of age, either at the start of each cohort
or during follow-up, due to evidence suggesting an increased mis-
match between home address and the tax return mailing address with
increasing age (Bérard-Chagnon 2017). We postulate that relatives
of elderly people were completing their tax returns. Each of the three
CanCHEC cohorts (1991, 1996, and 2001) was examined separately.
Estimates of the cohort-specific hazard ratios were then pooled to
form a single summary hazard ratio. We also conducted a test for dif-
ferences in the hazard ratios between cohorts (Cochran 1950).

We fit two covariate adjustment models for each cohort. The
first was based on a directed acyclic graph (DAG; Figure S2) and
consisted of all the geographically based predictors: CAN-Marg
(four dimensions), airshed, urban form, and CMA/CA size. The
second model, denoted as “Full,” additionally included the subject-
level predictors (income, education, occupational class, Indigenous
status, visible minority status, employment status, and marital sta-
tus), which are not a priori causes of outdoor PM, 5 concentrations,
but which may contribute to confounding owing to a chance imbal-
ance across the PM,; 5 distribution.

We also conducted analysis by categories of: immigrant status
(yes or no), sex (male or female), and age during follow-up (<65,
65-74, or >75y) for each cohort separately, again pooling the
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Table 2. Descriptive statistics of 1991, 1996, and 2001 Canadian Census Health and Environment Cohort (CanCHEC) study cohorts.

1991 CanCHEC 1996 CanCHEC 2001 CanCHEC
PM> 5 PM; s PM> 5
concentration concentration concentration
Person-years (ng/m?) Person-years (ng/m?) Person-years (ng/m?)
Covariate n % Mean SD n % Mean SD n % Mean SD
Total 54,042,100 100.0% 8.10  3.44 54,082,700 100.0% 7.18 2.70 42,871,700 100.0% 6.68 2.24
Sex
Male 27,769,300 51.4 8.14  3.43 28,240,300 52.2 7.23 2.69 22,308,500 52.0 6.72 2.24
Female 26,272,800 48.6 8.06 3.45 25,842,400 47.8 7.13 2.70 20,563,200 48.0 6.64 2.24
Age group
24-34y 3,540,300 6.6 10.56  3.96 3,170,900 5.9 8.37 3.18 2,659,100 6.2 7.18 2.52
35-44y 10,088,100 18.7 8.75 3.58 10,368,100 19.2 7.37 2.82 8,518,300 19.9 6.64 2.29
45-54y 14,381,600 26.6 7.72 325 14,364,600 26.6 6.99 2.61 11,112,700 25.9 6.58 2.21
55-64y 11,986,800 22.2 7.55  3.19 11,839,400 21.9 6.93 2.56 9,401,200 21.9 6.57 2.17
65-74y 8,227,800 15.2 7.84 332 8,259,400 15.3 7.12 2.64 6,335,700 14.8 6.69 2.21
75-89y 5,817,700 10.8 7.88  3.13 6,080,300 11.2 7.26 2.55 4,844,600 11.3 6.90 2.20
Immigrant status
Nonimmigrant 45,568,900 84.3 7.82  3.34 45,280,200 83.7 6.94 2.62 35,465,100 82.7 6.46 2.20
Immigrant, 11-20 y 2,711,900 5.0 948 348 2,114,600 3.9 8.40 2.60 1,871,300 44 7.82 2.00
Immigrant, 21-30 y 2,585,500 4.8 9.57 3.57 3,148,000 5.8 8.45 2.69 2,055,200 4.8 7.69 2.06
Immigrant, >30 y 3,175,800 5.9 9.63 3.74 3,539,800 6.6 8.47 2.84 3,480,100 8.1 7.69 2.23
Visible minority status
No 51,309,700 94.9 8.02 342 51,075,900 94.4 7.10 2.69 37,791,200 88.2 6.69 2.22
Yes 2,732,400 5.1 9.61 340 3,006,700 5.6 8.56 249 5,080,500 11.9 6.60 2.41
Indigenous status
No 51,920,400 96.1 8.17  3.43 51,916,000 96.0 7.28 2.68 40,921,000 95.5 6.78 222
Yes 2,121,800 3.9 6.28  3.06 2,166,700 4.0 4.90 1.99 1,950,700 4.6 4.61 1.69
Marital status
Never married/not 6,776,600 12.5 852 349 6,597,000 12.2 7.57 2.74 5,233,700 12.2 7.05 2.29
common-law
Common-law 4,035,500 7.5 7.73 324 5,066,100 94 6.81 2.50 4,693,200 11.0 6.50 2.15
Married 37,316,200 69.1 795 340 36,029,200 66.6 7.07 2.68 27,590,800 64.4 6.57 2.22
Separated 1,275,500 2.4 846  3.53 1,323,000 2.5 7.49 2.78 1,032,800 24 6.89 2.29
Divorced 2,524,900 4.7 8.62 346 2,861,000 53 7.65 2.68 2,404,100 5.6 7.09 2.21
Widowed 2,113,400 3.9 9.11 3.76 2,206,300 4.1 7.83 291 1,917,000 4.5 7.09 2.37
Educational attainment
<High school graduation 17,025,100 31.5 8.00 3.55 16,190,200 29.9 7.01 2.80 11,564,900 27.0 6.50 2.34
High school, with or 20,516,400 38.0 8.00 3.39 19,575,600 36.2 7.11 2.65 15,491,200 36.1 6.60 2.22
without trades certificate
Postsecondary nonuniversity 8,940,200 16.5 8.11 3.35 10,185,400 18.8 7.23 2.63 8,542,100 19.9 6.71 2.17
University degree 7,560,400 14.0 855 338 8,131,400 15.0 7.64 2.62 7,273,600 17.0 7.08 2.16
Income inadequacy
Q1 (lowest income) 8,373,700 15.5 825 3.61 8,693,400 16.1 7.21 2.81 7,216,300 16.8 6.76 2.36
Q2 9,989,100 18.5 822 350 9,949,900 18.4 7.28 2.75 8,078,000 18.8 6.74 2.28
Q3 11,417,600 21.1 8.09 3.42 11,248,900 20.8 7.21 2.69 8,772,600 20.5 6.70 2.23
Q4 12,023,900 22.3 8.03 337 11,875,400 22.0 7.15 2.65 9,194,600 21.5 6.64 2.19
Q5 (highest income) 12,237,800 22.6 797 334 12,315,200 22.8 7.08 2.62 9,610,200 22.4 6.58 2.17
Employment status
Employed 38,679,600 71.6 8.00 3.36 36,133,000 66.8 7.13 2.64 28,781,900 67.1 6.65 2.20
Unemployed 3,380,300 6.3 7.65 342 3,018,000 5.6 6.72 2.71 1,739,800 4.1 6.06 2.29
Not in labor force 11,982,200 22.2 853  3.63 14,931,700 27.6 7.41 2.82 12,350,000 28.8 6.82 2.32
Occupational class
Management 4,811,500 8.9 8.17 336 4,107,400 7.6 7.25 2.62 3,806,700 8.9 6.75 2.18
Professional 6,718,300 12.4 825 335 6,598,700 12.2 7.39 2.62 5,593,100 13.1 6.87 2.17
Skilled, technical, 14,058,800 26.0 7.77  3.33 12,379,800 229 6.89 2.61 10,290,500 24.0 6.45 2.18
and supervisory
Semi-skilled 14,023,100 26.0 799 340 13,401,200 24.8 7.11 2.67 9,410,200 22.0 6.62 2.22
Unskilled 4,339,400 8.0 792 346 4,091,000 7.6 6.95 2.72 2,996,100 7.0 6.46 2.29
Not applicable 10,090,900 18.7 8.64  3.66 13,504,600 25.0 7.47 2.82 10,775,000 25.1 6.88 2.33

Residential instability (CAN-Marg)
QI (lowest marginalization) 12,129,000 22.4 728  3.19 12,537,400 232 6.50 2.53 10,200,700 23.8 6.06 2.09

Q2 13,959,900 25.8 746 329 14,328,200 26.5 6.63 2.61 11,519,100 26.9 6.20 2.16
Q3 11,234,900 20.8 8.18  3.56 11,059,600 20.5 7.23 279 8,645,800 20.2 6.69 2.29
Q4 9,674,400 17.9 8.86  3.41 9,488,700 17.5 7.92 2.62 7,407,900 17.3 7.37 2.14

Q5 (highest marginalization) 7,044,000 13.0 9.58 325 6,668,800 12.3 8.53 2.37 5,098,300 11.9 7.97 1.95
Dependence (CAN-Marg)

Q1 (lowest marginalization) 8,881,200 16.4 830  3.48 8,958,200 16.6 7.14 2.68 7,416,500 17.3 6.44 2.12
Q2 9,310,000 17.2 8.44 343 8,908,400 16.5 7.38 2.65 6,938,000 16.2 6.73 2.11
Q3 9,079,900 16.8 8.67 3.55 8,702,200 16.1 7.65 275 6,663,500 15.5 7.06 2.25
Q4 11,665,500 21.6 822 343 11,497,400 213 7.36 271 8,882,800 20.7 6.93 2.31

Note: CA, census agglomeration; CAN-Marg, Canadian Marginalization Index; CMA, census metropolitan area; Pop, population; SD, standard deviation.
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Table 2. (Continued.)

1991 CanCHEC 1996 CanCHEC 2001 CanCHEC
PM> 5 PM; s PM> 5
concentration concentration concentration
Person-years (ng/m?) Person-years (ng/m?) Person-years (ng/m?)
Covariate n % Mean SD n % Mean SD n % Mean SD
Q5 (highest marginalization) 15,105,600 28.0 732 322 16,016,500 29.6 6.72 2.62 12,970,900 30.3 6.41 2.27
Material deprivation (CAN-Marg)
Q1 (lowest marginalization) 11,497,200 21.3 7.59  3.07 10,947,700 20.2 7.00 2.52 8,651,800 20.2 6.61 2.04
Q2 12,268,900 22.7 8.18  3.24 11,270,800 20.8 7.29 2.49 8,383,500 19.6 6.86 2.06
Q3 10,965,300 20.3 8.46  3.43 10,652,500 19.7 7.44 2.63 8,375,900 19.5 6.85 2.16
Q4 8,826,900 16.3 8.59  3.49 9,190,500 17.0 7.61 273 7,335,900 17.1 7.08 2.29
Q5 (highest marginalization) 10,483,800 19.4 7.76  3.88 12,021,200 22.2 6.70 2.98 10,124,600 23.6 6.15 2.47
Ethnic concentration (CAN-Marg)
Q1 (lowest marginalization) 15,066,600 27.9 6.81 320 17,014,800 31.5 6.08 2.38 14,272,200 33.3 5.71 1.96
Q2 12,404,500 23.0 7.79 322 13,274,500 24.5 7.02 2.54 10,882,100 254 6.57 2.16
Q3 9,435,300 17.5 837 333 9,457,600 17.5 7.48 2.63 7,569,000 17.7 6.93 2.22
Q4 8,678,400 16.1 9.18 334 7,620,700 14.1 8.26 2.66 5,616,300 13.1 7.71 2.16
Q5 (highest marginalization) 8,457,300 15.7 943 348 6,715,100 12.4 8.65 2.64 4,532,100 10.6 8.28 1.80
CMA/CA size
Pop: > 1,500,000 15,000,000 27.8 10.07  3.32 14,932,200 27.6 8.85 2.36 12,159,300 28.4 8.13 1.83
Pop: 500,000-1,499,999 8,747,700 16.2 8.16 2.82 8,679,700 16.1 7.40 2.18 6,991,200 16.3 6.95 1.81
Pop: 100,000-499,999 9,759,400 18.1 8.68 356 9,751,700 18.0 7.83 292 7,826,800 18.3 7.16 2.42
Pop: 30,000-99,999 5,510,600 10.2 7.66 327 5,267,500 9.7 6.63 242 4,081,700 9.5 6.14 1.98
Pop: 10,000-29,000 2,111700 3.9 644 251 2,107,400 3.9 5.73 1.88 1,699,900 4.0 5.27 1.42
Non-CMA/CA 12,912,700 239 578 233 13,344,100 24.7 5.13 1.72 10,112,800 23.6 4.83 1.39
Urban form
Active urban core 4,152,200 7.7 10.02  3.26 4,006,700 7.4 8.95 240 3,220,700 7.5 8.32 1.92
Transit-reliant suburb 3,490,900 6.5 10.50  3.26 3,405,600 6.3 9.31 2.30 2,689,000 6.3 8.58 1.69
Car-reliant suburb 21,595,500 40.0 9.16 330 21,787,500 40.3 8.18 2.50 17,930,300 41.8 7.53 2.00
Exurban 2,951,100 5.5 6.57 2.59 3,000,100 5.6 5.98 2.06 2,471,500 5.8 5.68 1.72
Non-CMA/CA 21,852,400 40.4 6.50 2.87 21,882,700 40.5 5.70 2.16 16,560,200 38.6 5.27 1.74
Airshed
Western 6,532,200 12.1 7.92 344 6,404,500 11.8 6.58 2.08 5,137,600 12.0 5.95 1.55
Prairie 6,942700 12.9 645 207 7,016,900 13.0 5.92 1.73 5,675,500 13.2 5.61 1.54
West Central 3,205,600 5.9 586  1.73 3,322,900 6.1 5.30 141 2,589,400 6.0 5.01 1.25
Southern Atlantic 5,312,600 9.8 541 1.87 5,324,000 9.8 4.80 1.30 4,044,400 9.4 4.54 1.05
East Central 31,626,600 58.5 923  3.48 31,439,700 58.1 8.25 2.71 24,932,700 58.2 7.65 2.17
Northern 422,300 0.8 419 137 574,600 1.1 3.80 1.11 492,100 1.2 3.67 1.05

cohort-specific hazard ratio estimates among the three cohorts. In
addition, we examined the PM; s association, adjusting for Os,
NO,, or Oy by cohort.

Shape of the Association between PM, 5 and Mortality

The main purpose of the current study was to describe the associ-
ation between PM; 5 and mortality in a manner that can be used
for risk and benefits assessment. The standard approach is the
log-linear (LL) model that relates the logarithm of the hazard ra-
tio to exposure in a linear manner: logHR(PM,s)=pPM,s.
Here, B represents a change in relative risk per unit change in
concentration estimated using the Cox model. Nasari et al. (2016)
developed the SCHIF in order to extend the LL. model to nonlin-
ear transformations of exposure, T(PM,s), with the form:
SCHIF(PM,s5) =0T (PM,). Nasari et al. (2016) proposed a spe-
cific family of transformations based on a sigmodal function that
could accommodate a variety of shapes they suggested would be
suitable for risk and benefits assessment. Here, 0 represents a
change in risk per unit change in 7(PM; 5). The SCHIF can then
be used in benefits assessment in a manner similar to the LL
model after a suitable transformation of concentration.

The SCHIF approach has two major limitations: The first is in
defining an appropriate number of transformations of a sigmodal
function that can capture all shapes of interest; the second is that
the method requires considerable computational capacity if the
selected family is very large. This can be a serious limitation
when cohort sizes are very large, such as with the CanCHECs.
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Spline methods have also been proposed to characterize the
shape. RCS with a few knots have been used (Beelen et al. 2014) in
addition to smoothing splines (Di et al. 2017). However, the man-
ner in which splines are presented by graphic representation of the
mean predictions and uncertainty bounds over the concentration
range limits their use in risk and benefits assessment, as these
assessments typically require a differentiable algebraic function in
addition to a quantitative estimate of uncertainty by concentration.

We developed and applied a new method that combines the
flexibility of splines and the ease of use of the SCHIF in benefits
assessment. Our method involves three steps. The first step is a
data reduction step in which we fit a RCS with a large number of
knots in order to characterize the shape of the concentration—
response relationship in sufficient detail. RCS can easily be fit to
large cohorts, as they only involve a series of transformations of
concentration. Here, we have converted millions of person-years
of data into a few hundred observations of RCS predictions over
the observed concentration range. In step 2, we smooth the poten-
tial erratic predictions due to the large number of knots using a
MISS, and in step 3, we fit our SCHIF function to the MISS pre-
dictions. In addition, we model the uncertainty in the spline fit as
a cubic polynomial in concentration in a manner that assigns all
uncertainty to the 0 parameter in the SCHIF model, but unlike
the LL model, uncertainty can vary with concentration. We now
have a differentiable algebraic function of both relative risk and
its uncertainty by concentration. This approach also allows for
visualization of the SCHIF as well as its representation of the
underlying data (as summarized by the RCS).
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Specifically, we selected 15 knots defined at the 2nd, 4th,
10th, 14th, 18th, 22nd, 26th, 50th, 74th, 78th, 82nd, 86th, 90th,
94th, and 98th percentiles of the PM, 5 person-year distribution.
We selected a large number of knots covering both the lower and
upper quartiles in order to capture a variety of desired shapes.
From this first step, we obtain estimates of the logarithm of the
RCS hazard ratio (IogRCS) and the associated standard error at
several hundred concentrations between the minimum and the
99th percentile of the exposure distribution. We do not include
predictions above the 99th percentile, since RCS are linear
beyond the highest knot concentration. This linear form can have
some influence on the shape of the SCHIF throughout the con-
centration range, and especially over the higher concentrations,
since the SCHIF is a single algebraic function. We also fixed the
1ogRCS to zero at the minimum concentration, and its associated
standard error was also set to zero.

In step 2, we smooth the potentially erratic logRCS predic-
tions with a MISS in order to obtain predictions suitable to model
with the SCHIF algebraic function, which itself is monotonically
increasing (Pya and Wood 2015). The SCHIF hazard ratio func-
tion has the form:

logSCHIF(z) = 6f (2)(z)

with [(z)= ) a logistic function in concentration.

[1 + expl(‘"—;'_’l
Here, 0, i1, and T are unknown parameters to be estimated from
the data, r is the range in the translated exposure, and
z=PM; 5 —min(PM,;5) such that logSCHIF(0) = 0. The function
f(z) can take two forms: f(z) =z (linear) and f(z) =log(z+1)
(log). We have constructed the SCHIF to be similar to the LL
model, logLL(z) =Pz, by writing: logSCHIF(z) =0T (z), where
T(z) =f(z)l(z) is a specific transformation of concentration.

The linear form f(z) =z can model both linear and sublinear
associations, while the log form f(z)=log(z+1) can model
supralinear associations with mortality. Both forms can accom-
modate S-shaped functions through /(z). Sets of values (j1,t) are
selected that define the shape of /(z). Larger values of p result in
larger ranges of concentration for which a sublinear association is
modeled at lower concentrations due to the property of the logis-
tic function. Larger values of t generate shapes for /(z) with less
curvature. By limiting the ranges for (p,t), we can limit the
amount of curvature in the SCHIF.

A linear regression model was constructed using each trans-
formation as the single predictor and the MISS prediction as the
response. Using the MISS predictions, we were then able to
select a wide range of values of the parameters to examine a wide
variety of shapes that is not possible by modeling the subject-
level cohort data. We selected values of | ranging from O to » by
integers, and T ranging from 0.1 to 1 by 0.1 increments. For each
set of parameters and the two forms of f(z), we obtained an esti-
mate of 0 and its standard error. We then created a single SCHIF
curve by a weighted average of all the SCHIF curves examined,
with weights determined by the fit of each curve on the MISS
values. However, as the model averaged predictions at each con-
centration are themselves a potentially complicated function,
these predictions can be summarized as a single algebraic func-
tion. Specifically, we fit a generalization of the SCHIF model

Blog(: +1)
logSCHIF (z) = 1 +exp[— (z— p,)/v}

to the mean SCHIF predicted curve over the concentration range.
We added an additional parameter o to model the combination of
the linear and log forms of f(z) used in the fitting step. The func-
tion log (é + 1) is nearly linear in z for large values of o. We
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collapse the product tr into a single parameter v to simplify the
reporting of the parameter estimates.

In the LL model, all uncertainty in the hazard ratio is assigned
to the single unknown parameter, 3. We aim to make a similar char-
acterization of uncertainty in the SCHIF predictions, where all the
uncertainty is ascribed to the parameter 0. We do this by consider-
ing a model of the standard error in the RCS predictions. However,
unlike the LL model, RCS standard errors can vary in a nonlinear
manner with concentration. We therefore consider a model for the
standard error as a function of concentration of the form:
sercs(z) =sep(z) X T(z), with seg(z) denoting our standard error
model of 0, dependent on concentration. We select a general model
that can accommodate a variety of shapes such as a cubic polyno-
mial with the form: seq(z) = 6o + 612 + 622> + 532°.

Finally, we construct pooled SCHIF models among the three
cohorts in the following manner: Let v.(z) be the variance of the
logarithm of the SCHIF prediction, logSCHIF,(z), at concentra-
tion z for cohort ¢ =1,2,3. We construct a meta-analytic summary
of the SCHIF predictions among the three cohorts as:

3
10¢SCHIF pooiea(z) = Y _ W logSCHIF(2),

c=1

where  w.(z)=[1/v.(z)]/ -Z;:ll/vc(z). For the variance of

logSCHIF p,y104(z), we include the variation in predictions among
the cohorts in addition to the sampling uncertainty for each
cohort as:

i we(2){ve(2) + [logSCHIF . (2) ~ logSCHIFpootea(2)]"}-

c=1

In order to obtain an algebraic function for the pooled SCHIF,
we used nonlinear regression to estimate the SCHIF parameters,
with logSCHIFpyyi0q(z) defining the data for the regression. We
also modeled the standard error of the pooled SCHIF in a manner
similar to that for each cohort separately. The variance of the
pooled SCHIFs is a function of both the variance of each cohort-
specific SCHIF prediction and the squared difference between the
cohort-specific SCHIF predictions and the pooled SCHIF predic-
tion. This latter term captures the uncertainty in both the shape
and magnitude of the hazard ratio predictions among the three
cohorts.

Results
Main Analysis

PM 5 by cohort and covariate categories. Table 1 presents per-
centiles of the PM; 5 distribution based on person-years for each
of the three cohorts separately. Concentrations were highest for
the 1991 cohort, moderate for the 1996 cohort, and lowest for the
2001 cohort. Concentration differences were well within 1 pg/m?
between cohorts for median and lower percentiles, with greater
differences for the higher percentiles, suggesting that greater
declines in exposure were observed in locations with higher lev-
els. The spatial distribution of PM; 5 across Canada is presented
for selected 3-y averages (Figure 1). Concentrations declined
over time in the heavily populated areas of Southern Ontario and
Quebec. Moderate concentrations were observed in the earlier
time periods for Northern Canada and the Prairies. These levels
declined through the 1990s but then increased during the latter
part of our cohort follow-up period.
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PM,  [ug/m?]

Figure 1. Spatial distribution of particulate matter with aerodynamic diameter <2.5 um (PM; s) across Canada for selected 3-y averages: 1998-2000 (first ex-
posure assigned to the 1991 cohort), 1993-1995 (first exposure assigned to 1996 cohort), 1998-2000 (first exposure assigned to 2001 cohort), 2003-2005,

2008-2010, and 2013-2015 (exposure assigned to last year of follow-up, 2015).

Table 2 reports both the number of person-years and percen-
tages among the categories of mortality predictors for each cohort
separately, in addition to the mean and standard deviation of PM; 5
assigned to each category. Males tended to be assigned higher con-
centrations than females in all three cohorts, although the differ-
ence was very small (<1 pg/m?). There was a U-shaped pattern
with age at cohort commencement for all three cohorts, with con-
centration declining with age up to the 55- to 64-y-old group and
then increasing. Immigrants were consistently assigned higher
concentrations than nonimmigrants; however, concentrations were
similar over the length an immigrant subject lived in Canada.
Subjects who defined themselves as visible minorities had higher
assigned concentrations than those subjects who did not in the 1991
and 1996 cohorts. Subjects of Indigenous identity had lower concen-
trations. Married and common-law subjects had lower assigned
exposures compared to other marital categories in all cohorts.
Exposure monotonically increased with educational attainment in all
cohorts. However, exposure monotonically declined with income.
Employed subjects at the time of interview had higher exposures
compared to those unemployed subjects. Exposure tended to decline
over the occupational class categories moving from management/
professional to semi- and unskilled workers. Note that the “not in the
labor force” and “not-applicable occupational class™ categories had
the highest exposures, possibly to due to older subjects who tended
to have higher than average exposures. There was a tendency for ex-
posure to increase over the quintiles of three of the CAN-Marg
dimensions: residential instability, material deprivation, and ethnic
concentration, with no clear trend for the fourth dimension, depend-
ence. Outdoor concentrations increased with CMA/CA size and for
the inner-city categories of urban form. Of the six airsheds, the East
Central contained 58% of person-years and had the highest concen-
trations. Based on the associations between several geographic and
subject based covariates, there is some potential that adjustment for
these variables could influence the magnitude of our estimates of the
PM; s—mortality association.

Hazard ratio estimates. Table 3 reports the hazard ratio and
95% confidence limits per 10-pg/m?, for each cohort separately and
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pooled among the three cohorts by categories of immigrant status,
age, and sex, for both the DAG and Full models. There was a tend-
ency for the hazard ratio to be larger under the Full model compared
to the DAG for the 1991 and 1996 cohorts, but smaller for the 2001
cohort. Consequently, there was less variation among the hazard
ratios between cohorts under the Full compared to the DAG models.
The Full model was a better predictor of mortality compared to the
DAG model based on its much lower Akaike Information Criterion/
Schwarz's Bayesian Criterion values (see Table S1). We therefore
focus our interpretation on the results using the Full model.

When all subjects were considered together, hazard ratio esti-
mates were similar for the 1991 and 1996 cohorts (HR =1.041),
with a larger estimate observed for the 2001 cohort (HR = 1.084).
The pooled cohort HR estimate was 1.053 (95% CI: 1.041,
1.065). Hazard ratio estimates for nonimmigrants were higher
than for immigrants in the 1991 and 1996 cohorts, but lower in
the 2001 cohort. Hazard ratio estimates for males were higher
than for females in the 1991 and 1996 cohorts but lower in the
2001 cohort. Hazard ratio estimates declined with age in all three
cohorts, however.

Hazard ratio estimates based on interquartile range changes
in concentrations were larger for Ox compared to O3, and low-
est for NO, (Table 3). The PM;, s HR estimate was moderately
sensitive to adjustment for NO,, declining from 1.053 to 1.043
per 10-pg/m?, but very sensitive to adjustment for either Oj,
declining to 0.982, and Oy, declining to 0.955.

Shape of PM; s—mortality association. The shape of the asso-
ciation between PM, 5 concentrations and mortality for the Full
model is displayed in Figure 2 for each of the three cohorts sepa-
rately and pooled among cohorts using the SCHIF. MISS predic-
tions (dashed black line) and RCS predictions (dashed red line)
over the concentration range are also displayed. A similar shape
is observed in each cohort for the MISS, with a steep increase
below 5 pg/m? followed by a much shallower increase for higher
concentrations. The SCHIF predictions also display a supralinear
association with concentration. Note that the SCHIF predictions
display much less curvature than the MISS; a design feature of
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Table 3. Hazard ratio (HR) estimates and 95% confidence intervals (CIs) for the association between PM,; 5 and nonaccidental mortality, as well as for copollu-
tants (NO,, Ozone, oxidative potential), within the Canadian Health and Environment Cohorts (CanCHECs) from 1991, 1996, 2001, and pooled cohorts. Effect
modification analyses by immigrant status, sex, and age, and multi-pollutant models are also provided.

1991 Cohort 1996 Cohort 2001 Cohort Pooled results”
Subgroup/model ~ Model form HR 95% CI HR 95% CI HR 95% CI1 HR 95% CI p-Value
All subjects
— DAG? 0.982  0.959 1.006 1.033 1.016 1.051 1.120 1.096 1.146 1.044 1.031 1.056 <0.01
— Full® 1.041 1.016 1.066 1.041 1.024 1.059 1.084 1.060 1.108 1.053 1.041 1.065 <0.01
Immigrant status?
No DAG 0.975 0.951 1.000 1.024 1.005 1.043 1.105 1.078 1.133 1.032 1.019 1.045 <0.01
No Full 1.049 1.022 1.076 1.058 1.039 1.078 1.089 1.062 1.116 1.064 1.050 1.078 0.09
Yes DAG 1.016  0.945 1.092 1.082 1.040 1.125 1.190 1.131 1.253 1.104 1.073 1.136 <0.01
Yeds Full 1.006  0.935 1.081 1.027 0.987 1.068 1.109 1.053 1.167 1.049 1.019 1.079 0.03
Sex
Female DAG 0.956  0.921 0.993 1.001 0.976 1.026 1.121 1.084 1.160 1.022 1.004 1.040 <0.01
Female Full 1.009  0.972 1.048 1.008 0.983 1.034 1.093 1.056 1.130 1.031 1.013 1.050 <0.01
Male DAG 0.993 0.963 1.024 1.055 1.032 1.078 1.116 1.083 1.150 1.055 1.039 1.071 <0.01
Male Full 1.053 1.021 1.086 1.062 1.039 1.086 1.071 1.040 1.104 1.062 1.046 1.079 0.74
Age during follow-up?
<65y DAG 1.022 0971 1.075 1.057 1.019 1.097 1.176 1.119 1.236 1.078 1.051 1.106 <0.01
<65y Full 1.079 1.026 1.136 1.095 1.056 1.136 1.165 1.108 1.225 1.109 1.081 1.137 0.07
65-74y DAG 0.984  0.939 1.031 1.079 1.044 1.116 1.176 1.122 1.232 1.077 1.052 1.103 <0.01
65-74y Full 1.069 1.020 1.120 1.092 1.057 1.130 1.130 1.078 1.184 1.096 1.070 1.122 0.25
>75y DAG 0.929  0.899  0.961 0.986  0.964 1.009 1.062 1.031 1.094  0.994 0.978 1.010 <0.01
>75y Full 0.972  0.940 1.005 0.985 0.963 1.008 1.031 1.001 1.062  0.995 0.979 1.011 0.02
Single pollutant
NO, DAG 1.009 1.004 1.015 0.997 0.993 1.001 1.003 0.998 1.008 1.002  0.999 1.004 <0.01
NO, Full 1.015 1.009 1.020 1.001 0.997 1.005 1.003 0.998 1.009 1.005 1.002 1.008 <0.01
O3 DAG 1.016 1.006 1.027 1.035 1.029 1.041 1.041 1.034 1.049 1.034 1.030 1.038 <0.01
O3 Full 1.044 1.033 1.055 1.076 1.069 1.082 1.081 1.073 1.088 1.073 1.068 1.077 <0.01
Oy DAG 1.030 1.018 1.043 1.037 1.029 1.044 1.049 1.040 1.058 1.040 1.035 1.045 0.03
Oy Full 1.068 1.056 1.081 1.086 1.078 1.093 1.094 1.085 1.103 1.086 1.080 1.091 <0.01
Two pollutant
Adjusted for NO,*
PM; 5 DAG 0.966 0942 0991 1.038 1.02 1.057 1.115 1.089 1.142 1.040 1.028 1.053 <0.01
NO, DAG 1.010 1.004 1.015 0.997 0.993 1.001 1.003 0.998 1.009 1.002  0.999 1.005 <0.01
PM; s Full 1.014  0.989 1.041 1.039 1.021 1.058 1.078 1.052 1.104 1.043 1.030 1.056 <0.01
NO, Full 1.015 1.010 1.021 1.001 0.997 1.006 1.004  0.998 1.009 1.006 1.003 1.009 <0.01
Adjusted for O5°
PM; 5 DAG 0.969 0944 0994 0.996 0.978 1.014 1.073 1.048 1.098 1.011 0.998 1.024 <0.01
O3 DAG 1.016 1.006 1.026 1.034 1.028 1.04 1.040 1.033 1.047 1.033 1.029 1.037 <0.01
PM; 5 Full 1.003 0.978 1.029 0.963 0.946  0.981 0.996  0.973 1.020 0982 0970 0.994 0.01
O3 Full 1.043 1.033 1.054 1.074 1.068 1.08 1.079 1.072 1.086 1.071 1.067 1.075 <0.01
Adjusted for O4°
PM; s DAG 0.950  0.925 0.977 0.988 0.97 1.007 1.056 1.031 1.083 0.998 0.985 1.011 <0.01
Oy DAG 1.028 1.017 1.039 1.034 1.027 1.04 1.045 1.037 1.053 1.037 1.032 1.041 0.03
PM; 5 Full 0.967  0.941 0.994  0.941 0.923 0.959 0970 0946 0994 0.955 0.943 0.968 0.10
Oy Full 1.062 1.051 1.074 1.078 1.071 1.085 1.086 1.077 1.094 1.078 1.073 1.083 <0.01
Note: —, no data; NO,, nitrogen dioxide; O, combined oxidant capacity of O3 and NO,; Oz, ambient ozone; PM, s, particulate matter with aerodynamic diameter <2.5 pm.

“Tests for heterogeneity of hazard ratio among cohorts: *p < 0.05, *p < 0.01.

“Directed acyclic graph (DAG) model is stratified by 5-y age groups by age at baseline, sex, and immigrant status and included the following geographic-based covariates: four
Canadian Marginalization Index dimensions, urban form, CMA/CA size and airshed.

“Full model is stratified by 5-y age groups by age at baseline, sex, and immigrant status and included the geographic based covariates: four Canadian Marginalization Index dimen-
sions, urban form, CMA/CA size and airshed, and the subject-based covariates: marital status, education, income quintile, Indigenous status, visible minority status, employment status,
and occupational class.

“Note that the models by immigrant status are not stratified by immigrant status. The models by sex are not stratified by sex.

“PM, 5 always uses 10 units, copollutants use: O3, 10.20 ppb; NO,, 6.63 ppb; Oy, 8.05 ppb.

constraining the shape of the SCHIF. The SCHIF 95% ClIs (gray-
shaped area) are clearly widest in the 2001 cohort, as it had the
shortest follow-up time (15 y) and lowest concentrations (Table 1)
compared to the 1991 and 1996 cohorts. The steepness of the
increase in the HR below 5 pg/m? appears to dampen between
the 1991 to 1996 to 2001 cohorts, with the SCHIF predictions
of the MISS improving over these lower concentrations as the
start date of the cohorts increased. The lower bound of the CIs
exceeded unity for all concentrations for the 1991 cohort, above
2 ug/m? for the 1996 cohort, and above 5 ug/m? for the 2001
cohort.

We display the association between both 0 and its standard
error and show that association varies with concentration by the ra-
tio N(z) =0/seo(z) in Figure 3. Here, N(z) represents the signal-to-
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noise ratio by concentration. This ratio increases with concentration
for all three cohorts, exceeding the 1.96 value (dashed black line)
for all concentrations in the 1991 cohort, above 2 pg/ m? in the 1996
cohort, and above 5pg/m?® in the 2001 cohort. For the pooled
SCHIF, the ratio increases for concentrations less than 7 pg/m? and
then is relatively stable for higher concentrations. This pattern is
due to the additional variation between the SCHIF values among the
three cohorts at higher levels. The parameter estimates for both the
SCHIF and its standard error are given in Table 4.

Discussion
The three CanCHEC cohorts included 8.5 million adults with 150
million person-years of follow-up and nearly 1.5 million deaths,
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Figure 2. Shape Constrained Health Impact Function (SCHIF) (solid blue line), monotonically increasing smoothing spline (MISS) (dotted black line), and re-
stricted cubic spline (RCS) (dashed red line) predictions by particulate matter with aerodynamic diameter <2.5 pm (PM; s5) concentration and Canadian Census
Health and Environment Cohort (CanCHEC) (1991, 1996, and 2001). Hazard ratio predictions based on pooling cohort-specific SCHIFs are also presented.
Uncertainty bounds are displayed as gray shaded area. Tick marks on PM; 5 axis represent the 15-RCS knot locations.

representing one of the largest population-based air pollution
cohort analyses conducted to date. We found a HR of 1.053 (95%
CI: 1.041, 1.065) per 10-pug/m* change in PM,s after pooling
the three cohort-specific hazard ratios. Hazard ratio estimates
based on a LL model do not fully characterize the relationship
between PM; s exposure and mortality, as in each cohort, a supra-
linear association was observed (Figure 1).

We found variation in the sensitivity of covariate model spec-
ification. The full model yielded larger hazard ratio estimates
compared to the DAG model for both the 1991 and 1996 cohorts,
with the opposite pattern observed in the 2001 cohort. It is not
completely clear why such patterns occur, as the change in
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exposure among the categories of the covariates was similar in
all three cohorts (Table 1), although the differences in exposure
among the categories decreases with more recent cohort start
dates due to generally declining concentrations over time.

We observed an increase in the hazard ratio for the immigrant
population over time, starting with the weakest association for
the 1991 cohort (HR =1.006; 95% CI: 0.935, 1.081), a slightly
stronger association in the 1996 cohort (HR=1.027; 95% CI:
0.987, 1.068), with the strongest association in the 2001 cohort
(HR=1.109; 95% CI: 1.053, 1.167). We previously also obs-
erved no association in the 1991 cohort (Crouse et al. 2015) for
immigrants to Canada. There also appeared to be little evidence
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Figure 3. Signal-to-noise ratio, N(z)=0/seq(z), by concentration and
Canadian Census Health and Environment Cohort (CanCHEC; 1991, 1996,
2001). Dashed-dotted horizontal black line represents a ratio of 1.96.

of an association for females in the 1991 and 1996 cohorts, with
much stronger evidence for males. However, the association was
similar for males and females in the 2001 cohort (Table 3).

The observation that the PM; s hazard ratio can be partially
explained by NO, and fully explained by O3 also supports previ-
ously reported results (Crouse et al. 2015). As these gaseous pol-
lutants may exhibit varying correlations with different components
of PM; s, these multipollutant results can provide insight into the
source components of PM; s that are most influential in the rela-
tionship between PM, 5 mass and mortality. That is, the results of
our models with NO, and Oz may, in part, reflect differences in
the mixture/composition of PM, s across space and time. Earlier
work has shown that the distribution of components, such as sul-
fate, organic matter, and black carbon, vary by total mass concen-
tration in Canada (van Donkelaar et al. 2019). Using this spatial
variation, Crouse et al. (2016) showed that inclusion of compo-
nents in addition to total mass improved the prediction of mortality
in the 1991 cohort. Mortality from ischemic heart disease has been
shown to vary by source of PM,s in the U.S.-based American
Cancer Society (ACS) cohort (Thurston et al. 2016). Therefore,
differences over time in the component distribution could explain
some of the differences in our hazard ratio estimates between
cohorts. However, the empirical evidence for such temporal
changes in the component distribution is not supported by our

Table 4. Shape-constrained health impact function and standard error param-
eter estimates by Canadian Census Health and Environment Cohort
(CanCHEC) cohorts.

Shape-constrained health impact function parameters

Cohort 0 ol n v
1991 0.1102 1 0 1.688
1996 0.0942 1 0 1.465
2001 0.0703 1 0 1.193
Pooled 0.1126 1.477 —-0.233 1.165
Standard error parameters
oo x 1072 o1 x 107 oy x 107 o3 x 1076

1991 5.639 —6.608 4.148 -9.179
1996 5.835 —6.942 4.411 -9.747
2001 6.267 —-5.330 1.183 6.406
Pooled 3.383 —-3.640 3.593 —11.13
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recent modeling efforts (van Donkelaar et al. 2019), which suggest
that the proportion of components is relatively stable over time,
even as total mass concentrations have clearly declined.

We find a substantially lower hazard ratio estimate based on
the LL model than in previous CanCHEC analyses. There are a
number of possible explanations for these differences. First, this
new version of the cohort includes an improved death and mobil-
ity linkage with updated methodology. Second, the period of
follow-up in our analysis ranges from 15 to 25 y (up to 2016).
Our analysis further differs from previous CanCHEC studies
(e.g., Crouse et al. 2012; Pinault et al. 2017; Weichenthal et al.
2017) in our inclusion of immigrants in the analytical cohort.
Immigrants generally have lower mortality rates than the
Canadian-born population due to screening criteria for immigra-
tion into Canada (Newbold 2005; Ng 2011). Immigrants also
tend to live in cities with higher PM; s concentrations, leading to
different risks of air pollution exposure. Our methods of PM; s
averaging at the PC level and imputation differed slightly from
previous analyses. Specifically, we required a minimum of a two-
digit PC (e.g., K1) to assign a PM; 5 value based on a population-
weighted average of the geographic area. Some previous analyses
assigned the national average PM, s value in absence of any PC
information. We also removed all person-years that resulted in
missing environmental (PM; 5, O3, or NO;) or contextual covari-
ates that may have informed previous analyses, while in previous
analyses, we either imputed all missing person-years or included
dummy variables for geographically based predictors. Finally,
these analyses employ updated PM, 5 estimates for the 2012-2016
period based on enhancements to the satellite retrievals (van
Donkelaar et al. 2019) and backcasted estimates prior to 2000 that
were not available previously. We do note, however, that the rela-
tionship between PM, 5 and mortality, in both shape and magni-
tude, is similar to that previously reported for the 1991 (Crouse
et al. 2015) and 2001 (Pinault et al. 2017) cohorts. This observa-
tion suggests that caution is required in interpreting the magnitude
of an association solely based on the LL model without further
consideration of the shape of the association.

This work supports observations of a supralinear concentra-
tion—response between PM, 5 exposure and risk of nonaccidental
mortality similar to that reported in Crouse et al. (2012, 2015) for
the 1991 cohort and Pinault et al. (2017) for the 2001 cohort in
more limited analyses. Most of the previous major cohort studies
on PM; 5 did not examine the shape of the concentration—mortality
association at the low levels that are observed in our cohort, in
which the 25th percentile is 5.1 pg/m?, and the median is
6.9 png/m?* among all person-years of the three cohorts combined.
For example, the lower end of the exposure distribution in the
Medicare cohort was 6.2 ug/ m? (minimum; Di et al. 2017), the
National Health Interview Survey cohort (NHIS) was 7.6 ug/m?
(minimum; Pope et al. 2018), and the ACS Cancer Prevention
Study II cohort was 6.7 pg/m? (first percentile; Turner et al. 2016).
Our mortality HR estimate of 1.053 (95% CI: 1.041, 1.065) is
slightly below estimates of U.S. cohorts such as the Medicare
cohort (HR=1.073; 95% CI: 1.071, 1.075), NHIS cohort (HR =
1.056;95% CI: 1.005, 1.110), and the ACS cohort (HR =1.07;95%
CL: 1.06, 1.09). Our estimate for the 2001 cohort—the only
CanCHEC cohort that did not require backcasted exposure data—
was slightly higher than the U.S. cohorts at 1.084 (95% CI: 1.060,
1.108).

Strengths and Limitations

Our study has a number of strengths and limitations. These analy-
ses include a large number of deaths (nearly 1.5 million); popula-
tion representativeness; a number of subject-level mortality
predictors, such as occupation, income, and education, that are
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often not available in such large administrative-based cohorts
(Di et al. 2017); and annual location information through linkage
to income tax filings back to 1981. Our temporally resolved air
pollution estimates could then be assigned to each year of follow-
up. We also developed a method to combine the flexibility of
splines to characterize the shape of the relationship between
PM, 5 and mortality with the usefulness of the SCHIF in risk and
benefits assessments. This new approach is feasible with respect
to computing resources for very large cohort studies.

Despite these important strengths, the study includes a number
of limitations. Specifically, the cohorts lack individual information
on behavioral mortality risk factors such as smoking, diet, and obe-
sity. We have previously examined the influence of further adjust-
ment for these missing risk factors using statistical methods of
indirect adjustment (Crouse et al. 2015; Erickson et al. 2019; Shin
et al. 2014) and direct adjustment in a cohort based on annual health
surveys in Canada where such information was available (Pinault
et al. 2016b). For both of these approaches, we found that the
PM, s—mortality association remained positive. These observations
indicate that it is unlikely that the positive associations we observed
are entirely due to lack of inclusion of missing risk factors.

We captured information on social and economic status of
each subject only at cohort inception. Thus, information on mari-
tal status, income, education, occupation, and employment may
have changed over time, and we were not able to model any
potential influence of such changes on the PM, s—mortality asso-
ciation. The 1991 cohort may have been most influenced by this
lack of temporal adjustment given its 25 y of follow-up.

As we examined a 3-y moving-average PM, 5 exposure win-
dow lagged by 1 y in all analyses, for the 2001 cohort, the initial
exposure window assigned to the 2001 follow-up year was a
1998-2000 average and thus did not include backcasted expo-
sures. The 1991 cohort used more years of backcasted exposures
(1988-1997) than the 1996 cohort (1993-1997). Backcasted pre-
dictions may have induced greater exposure error in the two ear-
lier cohorts.

We employed three very different exposure models for PM; s,
NO,, and O3. The PM; 5 exposure model included remote sens-
ing information coupled with CTM predictions. Land-use infor-
mation informed any bias in the CTM predictions for the
chemical components of total mass, but were not included as
direct predictors of ground measurement data. The NO, model
used both land-use and remote sensing information, while the O3
model fused ground data with CTM predictions. The spatial reso-
lution of the models was also different, with NO, having the fin-
est resolution of 100m and PM, 5 at 1 km, while the O3 model
was at a resolution of 21 km. It was therefore difficult to directly
compare the associations with mortality between pollutants and
even more difficult with multiple-pollutant models subject to
potential differential exposure error. However, the observed stron-
ger associations with O3 may be due to a lower exposure error in
both the original surfaces and the temporal adjustments, since O3 is
known to be more spatially homogenous than PM; s, while NO; is
known to have the largest spatial variation. Additionally, although
the quantitative estimates presented here reflect the large and
diverse geographic area of Canada, they may not apply to places
around the world with notably different sources and compositions
of PM; s, for example, in areas where a much higher proportion of
the PM,, 5 is from dust and sand.

In summary, we found positive associations between PM s
and mortality in all three cohorts, and a similar supralinear concen-
tration—response relationship. Lower uncertainty bounds were ele-
vated above unity for all concentrations in the 1991 cohort, above
2 pg/m? in the 1996 cohort, and above 5 pg/m? in the 2001 cohort,
suggesting our confidence in identifying concentrations where
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there exists a positive response is declining as concentrations
decline over time. Therefore, interest exists in examining subse-
quent CanCHEC cohorts as they become available with the admin-
istration of more recent long form censuses.
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Abstract

Background: Approximately 2.9 million deaths are attributed to ambient fine particle air pollution around the world
each year (PM,5). In general, cohort studies of mortality and outdoor PM, 5 concentrations have limited information on
individuals exposed to low levels of PM, s as well as covariates such as smoking behaviours, alcohol consumption, and
diet which may confound relationships with mortality. This study provides an updated and extended analysis of the
Canadian Community Health Survey-Mortality cohort: a population-based cohort with detailed PM, 5 exposure data
and information on a number of important individual-level behavioural risk factors. We also used this rich dataset to
provide insight into the shape of the concentration-response curve for mortality at low levels of PM,s.

Methods: Respondents to the Canadian Community Health Survey from 2000 to 2012 were linked by postal code
history from 1981 to 2016 to high resolution PM, s exposure estimates, and mortality incidence to 2016. Cox
proportional hazard models were used to estimate the relationship between non-accidental mortality and ambient
PM, 5 concentrations (measured as a three-year average with a one-year lag) adjusted for socio-economic, behavioural,
and time-varying contextual covariates.

Results: In total, 50,700 deaths from non-accidental causes occurred in the cohort over the follow-up period. Annual
average ambient PM, s concentrations were low (ie. 5.9 pg/m?, s.d. 2.0) and each 10 pg/m? increase in exposure was
associated with an increase in non-accidental mortality (HR=1.11; 95% CI 1.04-1.18). Adjustment for behavioural
covariates did not materially change this relationship. We estimated a supra-linear concentration-response curve
extending to concentrations below 2 pg/m? using a shape constrained health impact function. Mortality risks
associated with exposure to PM, s were increased for males, those under age 65, and non-immigrants. Hazard ratios for
PM, s and mortality were attenuated when gaseous pollutants were included in models.

Conclusions: Outdoor PM, s concentrations were associated with non-accidental mortality and adjusting for
individual-level behavioural covariates did not materially change this relationship. The concentration-response
curve was supra-linear with increased mortality risks extending to low outdoor PM, s concentrations.

Keywords: PM, s, Air pollution, Canada, Cohort study, Fine particulate matter, Mortality, Fine particle air
pollution
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Background

Exposure to ambient fine particle air pollution (PM, 5)
is responsible for an estimated 2.9 million deaths annu-
ally and 83 million disability-adjusted life years lost [1],
with several large epidemiological cohort studies link-
ing long-term exposure to PM,s to all-cause and
cause-specific mortality [2—4]. Even in settings with
relatively low concentrations of air pollution, such as
Canada, the relationships persist [5, 6]. Despite these
findings, there remain two key areas of potential bias
and uncertainty that past work has been unable to
address simultaneously. The first is the inability to
directly adjust for individual-level behavioural risk fac-
tors associated with chronic disease mortality, such as
smoking, diet, and exercise, or health measures such as
body mass index; various indirect methods for adjust-
ment have been applied elsewhere [7, 8]. The second
regards the shape of the concentration-response curve
for PM, 5 and mortality. This issue has become increas-
ingly pertinent as clean air regulations have succeeded
in reducing PM, 5 concentrations across North America
and elsewhere, and thus a better understanding of the
shape of the PM, s-mortality associations at low con-
centrations are required for cost-benefit assessments of
future reduction efforts.
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The purpose of this study was to provide an updated
and extended analysis of the Canadian Community
Health Survey-Mortality cohort [9] including [1]: add-
itional years of follow-up to 2016 [2]; improvements in
the resolution of PM,s exposure (approximately 1km?
grid) [3]; annual residential history from 1981 to 2016
for all cohort members from a linkage to postal code
records [4]; time-varying contextual covariates [5]; inclu-
sion of immigrants to Canada, and [6] an improved link-
age between survey respondents and death records. We
examine the shape of the concentration-response curves
using a Shape Constrained Health Impact Function
(SCHIF) [10] and perform sensitivity analyses.

Methods

CCHS-mortality cohort

The Canadian Community Health Survey (CCHS) is a
national cross-sectional survey of the Canadian popula-
tion that collects information related to health status,
health care utilization, and health determinants. From
2000 to 2007 the survey was administered every 2 years
to approximately 130,000 respondents; from 2007 on-
wards, data has been collected on an ongoing basis from
65,000 respondents per year and released annually with
response rates declining over time (Fig. 1) [11-16]. The

Canadian Community Health Survey 2001-2012
(Cycles 1.1t0 2011/2012)*

666,000 survey respondents who agreed to linkage=®

Mortality records Mobility history

601,000 respondents with
postal code history

71,800 deaths linked®

Statistics Canada Social Data Linkage Environment Derived Record Depository

Exclude subjects (1) with reported deaths that occurred
before date of survey administration, (2) those under 25 or
over 89 years of age at date of survey administration

| 540,900 respondentsin

cohort (50,700 deaths) |

Multiply by all years of mobility history (n=36)

| 19,472,400 person-years |

Exclusionsby person-year’

4,452,700 person-yearsinfinal cohorts
(431,800 person-years associated with a death)

Fig. 1 Flowchart of CCHS-Mortality cohort creation from linkage of survey to mortality and mobility history to person-year based analytical file®. “numbers
rounded to the nearest 100 for confidentiality. bresponse rates: 2000/2001 (Cycle 1.1) 84.7%, 2003 (Cycle 2.1) 80.7%, 2005 (Cycle 3.1) 789%, 2007/2008
(Cycle 4.1) 76.4%, 2009/2010 72.3%, 2011/2012 684%. “respondents who agreed to data linkage: 2000/2001 (Cycle 1.1) n=117,800, 2003 (Cycle 2.1) n=
112,900, 2005 (Cycle 3.1) n= 113,900, 2007/2008 (Cycle 4.1) n=112,700, 2009/2010 n = 104,700, 2011/2012 n = 104,100. danage rate of respondents who
agreed to linkage to the SDLE DRD: 95.2%. Slinkage rate of relevant deaths to the SDLE DRD: 99.8%. 'see methods for list of exclusion criteria, totals will
exceed number of deleted person-years given that more than one exclusion criteria may apply to a single person-year; immigrated to Canada less than

10 years before survey date n= 541,600, age during follow-up period exceeds 89 years n= 161,000, no postal code n = 5,009,900, could not be linked to air
pollution values n= 5,711,600, could not be linked to Can-MARG values n = 7,668,000, could not be linked to Census Metropolitan Area/Census
Agglomeration size n = 4,800,600, could not be linked to airshed n = 3500, 3-year moving average being informed by only 1 year of exposure n =
4,321,500, year after subject death n= 343,600, year before survey interview date n = 13,570,300. %from 452,700 unique individuals
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CCHS data are sampled from approximately 98% of the
Canadian population aged 12 and older living in private
dwellings within the 115 Heath Regions covering all
provinces and territories. Individuals living on Indian
Reserves and on Crown Land, institutional residents,
full-time members of the Canadian Forces, and residents
of certain remote regions are excluded.

Consent to record linkage and data sharing was ob-
tained at time of survey (Fig. 1) and only those CCHS
respondents who agreed were linked to death records
and residential history through Statistics Canada’s Social
Data Linkage Environment (SDLE) [17]. The linkage was
approved by Statistics Canada [18] and is governed by
the Directive on Microdata Linkage [19]. The linkage oc-
curred within the Derived Record Depository, a highly
secure linkage environment comprised of a national
dynamic relational database of basic personal identifiers.
Survey and administrative data are linked to the Derived
Record Depository using a SAS-based generalized record
linkage software (G-link) that supports deterministic and
probabilistic linkage based on the mathematical theory
of record linkage developed at Statistics Canada [20].
Mortality linkage to the Derived Record Depository be-
tween 2000 and 2016 was 99.8% [21]. A list of linked
unique individuals is created through linkages that are
deterministic (matching records based on unique identi-
fiers) and probabilistic (matching records based on non-
unique identifiers such as names, sex, date of birth, and
postal code and estimating the likelihood that records
are referring to the same entity). For the CCHS cycles
considered, there was a linkage rate to the Derived
Record Depository of 95.2% and a false error rate for the
CCHS to SDLE linkage of 0.4% [22].

There were 666,000 CCHS respondents who agreed to
data linkage (Fig. 1), reduced to 540,900 after excluding
subjects with death dates prior to survey response dates
(i.e. either the death record or linkage must be incorrect)
or who were below the age of 25 or above 89 at time of
survey as they are less likely to reside at the same postal
code as their income tax mailing address [23]. The
CCHS to SDLE linkage rates across key indicators were
consistently high, ranging from 94.4% for the 20-29 age
group to 96.2% for the 80-89 age group, 95.5 and 95.3%
for males and females respectively, and by province/ter-
ritory from 91.8% for the Yukon to 96.7% for Newfound-
land and Labrador [22].

After linkage, we stacked the CCHS cycles into one
data file. We standardized the variable categorizations
when discrepancies between cycles existed. The covari-
ates (listed, along with categorizations in Table 1) in-
cluded socio-economic, behavioural, and contextual
measures. More information about the definitions and
classifications of these variables can be found elsewhere
[9]. Provincially standardized deciles were calculated
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according to the distribution of residents in each prov-
ince and the ratio of their total household income to the
low-income cut-off for their corresponding household
and community size. As this measure excluded subjects
living in territories, we took the mean income within
each decile and used these as cut-offs to categorize sub-
jects living in territories by income into deciles. Once all
subjects were placed in deciles, we merged groups to
create quintiles.

Postal code history was complete from 1981 to 2016
for 35.0% of respondents and 12.6% of respondents had
no postal code history. There were gaps in postal code
histories for 52.4% of respondents, which is to be
expected, as taxes may not have been filed for various
reasons (e.g immigration, death, or age). We imputed
complete or partial postal codes only when bookended
by postal codes with sufficient similarity before and after
the gap [24]. For example, if a postal code in 2008 was
K1A 0T6 and then K1A 0K9 in 2012, a partial postal
code of K1A 0** would be imputed for the four missing
years from 2009 to 2011. We did not impute postal
codes if a gap existed at the beginning or end of the fol-
low-up period or after a person’s death; full or partial
postal codes (two to five digits) were imputed for 1.5%
of person-years.

We organised the cohort into a person-year file with
each year of exposure (1981-2016) per person repre-
senting a row of data. Subsequently we excluded specific
person-years [1] once they turned age 90 during follow-
up [2], if the person had immigrated to Canada less than
10 years prior to survey interview [3], if there was no
postal code [4], if the postal code could not be linked to
air pollution or contextual covariates [5], if the PM, 5
three-year moving average with a one-year lag was cal-
culated by fewer than 2 years of exposure data, or [6] if
the person-year was before survey interview date or after
a person’s death (Fig. 1). We excluded recent immigrants
to Canada (10years or less) since they have spent the
majority of their lives outside of Canada with unknown
exposure, and this time exceeds the number of years in
Canada where exposure can be estimated.

Exposure file and analytical file

The task of linking contextual covariates and air pollu-
tion values to the cohort required the creation of a mas-
ter list of postal codes with their respective points of
latitude and longitude and census geography. We pro-
duced this list from Statistics Canada’s June 2017 Postal
Code Conversion File and the two previous versions
(August 2015 and May 2011) to ensure coverage of
retired postal codes [25-27]. Since census geography
does not align with postal code locations, a single postal
code can have multiple points of latitude and longitude.
Each can represent the centroid of a blockface (ie. a
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Table 1 Descriptive statistics of the cohort and PM, s Os, and NO, exposure, with Cox proportional hazard ratios

95% Cl
Covariate Person-years® HR Lower Upper PMs 5 S.D. 05 SD. NO, S.D.
Al 4,452,700 - - - 59 20 36.0 75 86 59
Sex
Male 1,995,100 - - - 59 20 359 76 85 59
Female 2,457,600 - - - 6.0 20 36.0 7.5 86 59
Age group (years)
25t0 29 381,100 - - - 59 20 357 76 838 59
30 to 39 869,300 - - - 59 20 359 7.7 8.7 59
40 to 49 887,000 - - - 59 20 358 76 87 6.0
50 to 59 918,100 - - - 58 20 358 74 82 5.7
60 to 69 753,800 - - - 59 20 36.2 7.3 83 58
70 to 79 497,100 - - - 6.1 2.1 364 74 89 6.1
80 to 89 146,200 - - - 6.2 2.1 36.3 76 9.6 6.3
Immigrant status
Non-immigrants 3,945,800 1.00 - - 58 20 357 74 8.1 56
In Canada for 30+ years 317,900 0.86 0.83 0.88 6.8 2.1 385 80 1.2 6.5
In Canada for 20-29 years 92,300 0.74 0.68 0.80 7.0 20 374 80 132 7.0
In Canada for 10-19 years 96,800 0.62 0.56 0.69 7.2 1.9 376 7.7 14.5 70
Visible minority identity
Not a visible minority 4,119,200 1.00 - - 59 20 36.1 74 84 57
Visible Minority 244,900 0.89 0.84 0.93 6.6 2.1 349 89 12.8 7.2
Missing (dummy variable) 88,600 148 1.37 1.59 49 1.6 317 83 6.5 43
Indigenous identity
Non-Indigenous or not stated 4,295,500 1.00 - - 6.0 20 36.2 74 86 59
Indigenous 146,000 1.58 1.50 1.67 49 17 303 88 6.9 4.7
Missing (dummy variable) 11,300 1.16 0.99 1.35 56 18 350 7.5 82 56
Marital status
Married or Common-law 2,823,000 1.00 - - 58 20 36.1 76 8.1 55
Separated, Widowed, or Divorced 945,100 142 139 145 6.1 2.1 36.1 75 9.1 6.2
Single 681,400 1.57 1.52 1.62 6.2 2.1 354 7.5 9.8 6.8
Missing (dummy variable) 3200 1.58 1.20 207 59 1.9 345 80 94 6.1
Educational attainment
No high school diploma 980,900 1.00 - - 57 2.1 35.2 75 78 58
High School 757,200 0.82 0.80 0.84 6.0 20 36.6 77 86 58
Any post-secondary 1,926,400 0.77 0.75 0.78 59 20 36.0 7.5 84 57
University 752,100 0.55 0.54 0.57 6.2 20 364 74 10.1 6.5
Missing (dummy variable) 36,000 0.98 091 1.06 59 20 356 77 838 58
Employment status
Employed 2,701,800 1.00 - - 59 20 36.0 76 87 58
Unemployed 115,100 167 1.54 1.82 5.8 2.1 349 77 84 6.3
Not in work force 1,630,100 2.02 1.96 2.08 6.0 2.1 36.0 74 85 6.0
Missing (dummy variable) 5800 1.62 1.24 2.12 55 1.8 340 7.2 88 54

Income quintile

Q1 (lowest income) 788,200 1.00 - - 6.1 2.1 356 74 9.2 6.5
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Table 1 Descriptive statistics of the cohort and PM, s Os, and NO, exposure, with Cox proportional hazard ratios (Continued)

95% Cl
Covariate Person-years® HR Lower Upper PMs 5 S.D. 05 SD. NO, S.D.
Q2 788,700 0.76 0.74 0.78 6.0 20 36.1 74 87 6.1
Q3 808,500 0.64 0.62 0.66 6.0 20 36.3 74 85 58
Q4 828,500 053 0.52 0.55 59 20 36.2 75 84 5.7
Q5 (highest income) 909,000 044 043 0.46 5.7 19 359 7.7 8.2 55
Missing (dummy variable) 329,800 0.74 0.72 0.77 58 20 355 8.0 86 58
Alcohol consumption
Never drinker 392,400 1.00 - - 58 20 358 7.3 80 59
Occasional drinker 840,300 0.84 0.81 0.86 58 20 357 76 83 58
Regular drinker, binging unknown 1,332,300 0.64 0.62 0.66 6.1 20 36.7 7.3 9.1 6.0
Regular, non-binge drinker 1,169,600 0.69 067 0.72 58 2.0 358 75 84 57
Regular, binge drinker 260,400 1.08 1.03 1.14 59 20 358 7.8 8.1 58
Former drinker 447,500 1.10 1.07 1.14 59 2.1 353 80 88 6.2
Missing (dummy variable) 10,200 093 0.81 1.07 56 19 348 75 85 55
Smoking behaviours
Never smoker 1,293,700 1.00 - - 6.0 20 364 75 9.0 6.1
Occasional smoker 177,200 2.1 2.00 223 6.0 20 356 77 9.0 6.3
Smoke under 10 cigarettes/day 263,000 245 235 2.55 59 2.1 353 79 8.7 6.2
Smoke 11-20 cigarettes /day 398,900 276 266 286 59 20 356 77 83 58
Smoke 20+ cigarettes /day 255,300 3.69 355 3.82 59 2.1 36.0 76 8.2 59
Former smoker 2,058,700 1.32 1.29 1.35 59 20 359 74 84 58
Missing (dummy variable) 6100 1.51 1.26 1.80 57 1.8 356 74 83 57
Fruit and vegetable consumption
Under 5 servings/day 2,411,900 1.00 - - 59 20 36.0 7.7 86 59
5-10 servings/day 1,450,300 0.82 0.80 0.83 6.0 20 36.6 75 88 59
10+ servings/day 132,700 0.82 0.77 0.87 6.1 20 36.6 7.5 89 6.0
Missing (dummy variable) 457,900 1.19 1.16 123 56 19 336 58 79 6.1
Leisure exercise frequency
Active 1,005,700 1.00 - - 59 20 36.1 76 8.6 5.7
Moderate 1,123,600 1.10 1.07 1.14 59 20 36.1 7.5 86 58
Inactive 2,224,700 1.70 1.65 1.74 59 20 359 75 85 6.0
Missing (dummy variable) 98,700 249 2.39 2.60 59 2.1 352 78 9.0 6.2
Body mass index (BMI)
Normal weight (18.5-24.9) 1,425,400 1.00 - - 6.1 20 36.1 74 9.1 6.2
Overweight (25.0-29.9) 1,671,700 0.81 0.80 0.83 59 20 36.0 75 85 58
Obese 1 (30.0-34.9) 800,500 0.93 0.90 0.95 58 20 359 76 8.1 56
Obese 2 (= 35) 355,300 133 1.28 137 5.7 20 357 77 79 55
Underweight (< 18.5) 57,700 213 2.00 226 6.2 2.1 36.0 74 9.7 6.5
Missing 142,200 1.61 1.53 1.68 58 20 358 7.8 82 55
Residential Instability
Q1 (lowest marginalization) 993,500 1.00 - - 53 18 36.9 78 7.1 48
Q2 1,231,300 0.98 0.95 1.00 56 1.9 36.7 79 7.1 4.8

Q3 957,500 0.98 0.95 1.01 59 20 346 77 86 55
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Table 1 Descriptive statistics of the cohort and PM, s Os, and NO, exposure, with Cox proportional hazard ratios (Continued)

95% Cl
Covariate Person-years® HR Lower Upper PMs 5 S.D. 05 SD. NO, S.D.
Q4 780,100 0.96 093 0.99 65 20 357 6.8 100 6.2
Q5 (highest marginalization) 490,300 1.04 1.01 1.07 7.2 1.9 355 6.1 13.0 76
Dependency
Q1 (lowest marginalization) 701,400 1.00 - - 57 19 334 8.7 10.0 6.2
Q2 601,900 0.96 092 0.99 6.1 1.9 358 7.3 99 6.0
Q3 602,400 0.92 0.89 0.95 6.3 2.1 374 75 9.7 6.1
Q4 945,800 0.90 087 0.93 6.2 2.1 376 7.5 8.6 58
Q5 (highest marginalization) 1,601,300 0.88 0.86 091 5.7 20 357 6.7 7.0 53
Material deprivation
Q1 (lowest marginalization) 713,600 1.00 - - 6.0 18 377 74 9.8 52
Q2 777,700 1.03 1.00 1.06 6.2 1.9 380 80 94 54
Q3 897,400 1.04 1.01 1.07 6.2 19 375 73 838 55
Q4 783,800 1.08 1.04 mm 6.2 2.1 357 75 92 6.3
Q5 (highest marginalization) 1,280,200 1.15 112 1.19 53 20 329 6.4 6.8 6.2
Ethnic concentration
Q1 (lowest marginalization) 1,839,100 1.00 - - 52 1.7 35.7 6.9 59 38
Q2 1,211,600 1.02 1.00 1.04 6.0 20 36.7 80 80 4.8
Q3 749,900 1.01 0.99 1.04 6.3 20 355 78 10.1 5.7
Q4 409,500 1.04 1.00 1.07 70 2.1 357 82 14.2 6.9
Q5 (highest marginalization) 242,600 0.98 0.94 1.02 7.7 1.7 364 7.5 17.7 6.2
Census Metropolitan Area/Census Agglomeration size
Not applicable (non-CMA/CA) 1,485,900 1.00 - - 4.7 13 339 7.1 49 27
10,000-29,999 355,900 1.03 0.99 1.06 50 13 316 79 6.0 3.1
30,000-99,999 570,900 1.03 1.00 1.06 58 18 36.6 6.9 7. 33
100,000-499,999 872,600 1.00 0.98 1.03 6.8 2.2 39.5 80 89 4.6
500,000-1,499,999 506,400 0.94 091 0.97 6.7 1.7 36.5 6.2 132 6.2
> 1,500,000 661,000 091 0.89 0.94 75 1.7 374 6.5 155 6.9
Urban form
Active urban core 304,800 1.00 - - 76 1.9 36.7 7.1 14.5 7.1
Transit-reliant suburb 179,500 0.98 0.93 1.04 78 1.7 36.7 7.1 16.1 74
Car-reliant suburb 1,242,700 0.81 0.78 0.84 70 19 383 70 121 6.0
Exurban 216,400 0.83 0.78 0.87 55 1.6 387 7.0 6.8 36
Non-CMA/CA 2,509,400 093 0.90 0.96 5.1 1.6 344 75 5.7 32
Airshed
East Central 2,041,500 1.00 - - 7.0 2.1 413 6.0 99 6.6
Northern 117,800 1.18 1.1 127 39 12 26.0 7.0 47 26
Southern Atlantic 711,700 1.11 1.08 1.13 44 1.0 30.7 3.1 39 26
Prairie 666,900 1.00 097 1.02 52 14 34.1 57 9.5 49
West Central 397,100 1.07 1.03 1.10 49 1.1 313 5.0 80 49
Western 517,600 1.04 1.01 1.07 5.7 15 306 59 9.8 50

Columns 6, 8, and 10 are mean values
#numbers rounded to the nearest 100 for confidentiality
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street block), dissemination block (i.e. an area bounded
on all sides by roads), or dissemination area (i.e. adjacent
dissemination blocks that collectively contain 400 to 700
persons) within a postal code.

We developed and used annual exposure estimates of
PM,5 from 1998 to 2012 by relating satellite retrievals of
aerosol optical depth (AOD) to near-surface PM,5 concen-
trations using the geophysically-based relationship simulated
by a chemical transport model [28]. Ground monitoring data
from the National Air Pollution Surveillance (NAPS) net-
work were then incorporated, along with other North
American-based measurements, to constrain these PM, 5 es-
timates with geographically weighted regression. The result-
ing ambient PM,5 surface provided estimates for North
America at about a 1km? resolution [28]. Spatial variation
from this surface was used with simulated PM, 5 and consist-
ently constrained with local ground-based monitors to ex-
tend our PM, 5 coverage to 2015 [29].

The ambient warm season daily-maximum eight-hour
average Oj surfaces were developed by Environment and
Climate Change Canada for 2002-2015 using chemical
transport modelling informed by surface observations as
hourly estimates from 2002 to 2015 [30-32]. Estimates of
NO, were created using a national land use regression model
(LUR) informed by on satellite-derived NO, (10 km reso-
lution), distances to highways and major roads, and roadway
kernel density gradients [33]. Ozone and NO, values were
back-casted to obtain exposures for 1981-2015 using ground
monitoring data from the Canadian National Air Pollution
Surveillance program. Annual adjustment factors were calcu-
lated at a census division level from the ratio of observed
concentration to the values in the surface for the reference
year (see Pinault et al. for more detail [9]).

We linked postal codes to PM, 5 in ArcGIS Desktop 10.5.1
using the points of latitude and longitude from the master
postal code list and the air pollutant surfaces. In cases where
there were multiple points of latitude and longitude for a sin-
gle urban postal code, we used equal weighting of the mul-
tiple air pollutant values to provide a singular value. In rural
communities, we took the population-weighted average of
the values associated with duplicate postal codes. We used
population-weighing to average multiple values to create in-
puts for partial postal codes (2 to 5 digits).

Covariates

Contextual covariates were available at various census
geographies and we merged these to individual person-
years via postal codes (as described below). We created
historic measures when possible to reflect neighbourhood-
level changes over the time.

Regions of Canada that share air quality characteristics
and movement patterns have been defined by the Air
Quality Management System (AQMS) as six distinct
airsheds [34]. By subdividing the country into large
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geographic areas, adjustment for the broad spatial vari-
ation in mortality rates can be performed [9, 34]. We
assigned airshed to the cohort by postal code. We used a
population weighted mode in cases where there were
multiple points of latitude and longitude for a single
postal code.

We developed a historic community size variable to ac-
count for different sizes of metropolitan regions and changes
in population over time, classifying Census Metropolitan
Areas (CMAs: major urban core, 100,000+ residents) and
Census Agglomerations (CAs: smaller urban cores, 10,000+
residents) by population counts [35]. Since CMA/CAs cover
large areas that can include farmland near the urban-rural
fringe and residential enclaves of commuters to the city, we
created a measure that accounts for differences in urban
form within these CMA/CAs. We used population density
measures (1991-2016) and frequencies for different modes
of transportation at the neighbourhood level (1996-2016) to
categorize census tracts as active urban core, transit-reliant
suburb, car-reliant suburb, exurban, and non-CMA/CA [36].
Both CMA/CA size and urban form were attached to the
postal code list via census geography before merging with
the cohort. In cases where there were multiple points of lati-
tude and longitude representing a postal code, we used a
population-weighted mode to assign categories.

The Canadian Marginalization Index (Can-MARG) is a
measure of community-level marginalization comprised of
four factors: material deprivation (e.g. proportion of people
living in dwellings in need of repair), residential instability
(e.g. proportion of people who live in a dwelling that they do
not own) dependency (e.g. proportion of seniors and youth
compared to those who are not), and ethnic concentration
(e.g. proportion of recent immigrants and self-reported vis-
ible minorities) [37]. We used historic census tract-level
Can-MARG values in CMA/CAs, and a population-weighted
aggregation of the dissemination area-level Can-MARG
values at the census subdivision level in rural areas outside of
CMA/CAs that are not covered by census tracts. We
assigned Can-MARG values to points of latitude and longi-
tude before quintiles were assigned.

Statistical analysis

We calculated for each individual and year of follow-up
a three-year moving average for PM, 5 with a one-year
lag, (e.g. the exposure in 2002 is the average of expo-
sures in 1999, 2000, and 2001).

We ran standard Cox proportional hazard models to
assess the relationship between PM,s exposure and
non-accidental death (ICD-10 codes A to R) from survey
interview year to the end of follow-up period or year of
death. We started model building with a baseline hazard
function for PM, 5 stratified by five-year age groups, sex,
and survey cycle to ensure that respondents within these
strata would be broadly comparable. We calculated new
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hazard ratios for models that included each socio-eco-
nomic and behavioural covariate individually. We in-
cluded covariates in the partially-adjusted model if the log
difference between the new hazard ratio and the baseline
was more than 10%. Subsequently, we added contextual
covariates individually to the partially-adjusted model and
included them in the final model using the same criteria
(comparing to the partially-adjusted model that included
socio-economic and behavioural covariates). All covariates
considered for inclusion in the final model and the associ-
ated hazard ratios are found in Table 1.

We examined the shape of the association between
PM, 5 and mortality with a SCHIF [10]. This method is
based on a construction of several transformations of
concentration and fitting the transformed variable in a
Cox model, estimating the log-hazard ratio for a unit
change in the transformed variable and its standard
error. An ensemble of all models examined was then
constructed using a weighted average of the predicted
log-hazard ratio and any concentration, with weights de-
fined by the AIC of each model. The transformations are
variations on a sigmoidal function which yields supra-
linear, near linear, and sub-linear shapes.

Sensitivity analyses

We examined effect modification by select socio-eco-
nomic and behavioural covariates, and by high- and low-
exposure groups to the combined oxidant capacity of
NO, and O3 (henceforth: Ox) which is calculated as the
redox-weighted oxidant capacity [38] ie. a weighted
average using redox potentials as the weights (O, =
[(1.07V x NOy) + (2.075 V x 03)]/3.145 V) (Table 4). We
examined multiple pollutant models to investigate
whether the inclusion of other common pollutants
(NO,, O3, and Ox) in the model may modify the PM, 5-
mortality relationship [5, 39].

Results

There were 4,452,700 person-years in the cohort after exclu-
sion criteria were applied (Fig. 1) from 452,700 unique indi-
viduals. Entry into the cohort and length of the follow-up
period varied by survey cycle, with the first cohort having up
to 15 years of follow-up. For those who died, the average fol-
low-up period was 5.1years (s.d. 34); it was 6.5 years (s.d.
4.1) for those who survived the follow-up period. There were
50,700 non-accidental deaths. Of these, there were 7900
deaths from ischemic heart disease, 2800 from cerebrovascu-
lar disease, and 4300 from other cardiovascular diseases; 900
from pneumonia, 2800 from COPD, and 1100 from other
respiratory diseases; 5500 from lung cancer, 1300 from colon
cancer, 1300 from breast cancer, 1100 from pancreatic can-
cer, and 9900 from all other cancers. Further, there were
1700 deaths from diabetes, 3900 deaths from neuropsychi-
atric conditions, 2200 from digestive diseases, 1100 from
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genitourinary diseases and 3000 from all other non-acciden-
tal causes.

Exposure to PM, 5 was higher in women, more recent
immigrants, and non-Indigenous people. Being single,
university educated, and in the poorest income quintile
were also associated with higher exposures (Table 1).
We observed higher exposure to PM, s in people living
in the largest CMAs and in the East Central airshed
(which includes Toronto and Montreal). The distribu-
tion of exposure estimates for PM,5, NO,, O3, and Ox
is found in Table 2.

The cohort was generally representative of the Canad-
ian population, as seen through their mortality rates by
subgroup (Table 1). Immigrants and non-Indigenous
people had lower mortality rates compared to their
counterparts. Being married, holding a university degree,
and being employed were associated with a lower risk of
mortality. As expected, there were clear trends in mor-
tality risk with income, education, and immigrant status.

The unadjusted model had a hazard ratio of 0.96 (95%
CI 0.92-1.00) which increased to 1.11 (95% CI 1.04—1.18)
when adjusted by the socio-economic, behavioural, and
contextual covariates that met the inclusion threshold
(Table 3). All covariates except for body mass index
(BMI), employment status, and urban form met the cri-
teria and were included in the final model. When we
added the behavioural covariates to a model that included
only socio-economic covariates the hazard ratio increased
from 1.05 (95% CI 1.00-1.09) to 1.09 (95% CI 1.05-1.15).
Conversely, when we added the behavioural covariates to
a model that included both the socio-economic and con-
textual covariates, they lowered the PM,s hazard ratio
from 1.13 (95% CI 1.06-1.21) to 1.11 (95% CI 1.04-1.18).

The SCHIF characterisation of the PM, s-mortality as-
sociation (for all cohort members) displayed a supra-lin-
ear shape that rises in a steeper fashion compared to the
standard log-linear model prediction for lower concen-
trations and changes in a more moderate manner for
higher levels (Fig. 2). Note that the SCHIF displays wider
uncertainty intervals compared to the log-linear model
at low concentrations, in part due to the additional vari-
ation associated with model shape, a feature captured by
the SCHIF but not the log-linear model. We observed a
positive and statistically significant (p < 0.05) association

Table 2 Distribution of air pollutant values for all person-years

mean minimum  percentile maximum
5th 25th  50th  75th  95th
PM,s 59 04 34 43 55 7.1 9.7 17.2
O3 36.0 3.1 249 307 353 409 490 658
NO, 86 0.0 23 44 6.9 1.1 205 691
Ox® 267 41 186 226 262 306 365 541

“the combined oxidant capacity of NO, and O3



Christidis et al. Environmental Health (2019) 18:84

Page 9 of 16

Table 3 Cox proportional hazard ratios for non-accidental mortality® and PM, s exposure, all respondents, 10% inclusion threshold

Model 95% Cl
HR Lower Upper 2L

Unadjusted (stratified by age, sex, and cycle) 0.96 092 1.00 769,047.51

Socio-economic covariates (Unadjusted model +)
Visible minority identity 098 093 1.02 768,923.2
Indigenous identity 0.98 094 1.03 7688128
Immigrant status 102 0.98 1.07 768,784.2
Educational attainment 1.05 1.01 1.10 7675537
Marital status 092 0.88 0.96 7674794
Income quintile 0.94 0.90 0.98 766,080.2
Adjusted by socio-economic covariates* 1.05 1.00 1.09 7643964

Behavioural level covariates (Unadjusted model +)
Fruit and vegetable consumption 1.00 0.96 1.05 768,304.6
Leisure exercise frequency 1.00 0.96 1.05 768,304.6
Alcohol consumption 1.04 1.00 1.09 766,726.1
Smoking behaviours 0.97 093 1.02 762,432.6
Adjusted by all socio-economic + 1.09 1.05 1.15 756,074.0
behavioural covariates

Contextual covariates (Adjusted by

socio-economic covariates +)
Ethnic concentration 1.00 0.95 1.05 7644116
Material deprivation 1.04 0.99 1.09 7644112
Residential instability 1.06 1.01 1.11 764,408.0
Census Metropolitan Area/Census 1.04 0.98 1.09 764,401.7
Agglomeration size
Airshed 1.11 1.05 117 764,378.8
Dependency 1.03 0.98 1.08 764,314.1
Adjusted by all socio-economic 1.13 1.06 1.21 764,157.5
+ contextual covariates*

Contextual covariates (Adjusted by

socio-economic + behavioural covariates +)
Ethnic concentration 1.05 1.00 1.10 756,050.7
Material deprivation 1.12 1.07 1.17 756,049.0
Census Metropolitan Area/Census Agglomeration size 1.05 0.99 1.10 756,039.5
Dependency 1.08 1.03 113 7559854
Airshed 1.11 1.05 1.17 755,969.1
Residential instability 1.08 1.03 113 7559629
Final model (Adjusted by all socio-economic 1.11 1.04 118 755,760.2

+ behavioural + contextual covariates)

®due toa 10 |.1g/m3 increase in PM, 5 concentration

between PM, 5 and non-accidental mortality for all con-
centrations examined as indicated by the SCHIF hazard
ratio predictions.

We assessed effect modification within the PM, 5-mor-
tality relationship by separating the cohort by age, sex, im-
migrant status (i.e. immigrants who had been in Canada
for 10 or more years vs. non-immigrants), and educational
attainment, and comparing resulting hazard ratios with

Cochrane’s Q (Table 4). The hazard ratio was 4% higher
for males (1.13 95% CI 1.03—1.23) than females (1.09 95%
CI 0.99-1.19). When contrasted by age, the hazard ratio
was 9% lower for those aged 75 years or more (1.04 95%
CI 0.94-1.16) compared to those aged 65-74 (1.13 95%
CI 1.01-1.27) and 10% lower compared to those aged 65
or less (1.14 95% CI 1.01-1.29). The hazard ratio for non-
immigrants was higher than that of the final model (1.14
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Fig. 2 SCHIF model of PM, 5
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95% CI 1.07-1.23) and the immigrant group had a
null hazard ratio (0.98 95% CI 0.83—-1.16). The haz-
ard ratio for those without a high school diploma
(1.08 95% CI 098-1.19) was lower than those who
graduated from high school (1.14 95% CI 1.04-1.24).
The Cochrane’s Q p-values did not indicate that the
above hazard ratios were significantly different be-
tween subgroups. We repeated the effect modifica-
tion analyses for behavioural covariates. There was
no significant difference between those who con-
sumed fewer than five servings of fruits and vegeta-
bles per day compared to those who consumed five
or more (1.10 95% CI 1.01-1.20 vs. 1.16 95% CI
1.04-1.30) although the hazard ratio was higher for
those who consumed more fruits and vegetables. We
found that hazard ratios were higher for regular
drinkers (1.18 95% CI 1.09-1.28) and daily or occa-
sional smokers (1.13 95% CI 0.99-1.27) compared to
never or former drinkers (1.01 95% CI 0.90-1.12) or
never or former smokers (1.11 95% CI 1.03-1.20),
with a significant difference found between those
who do and do not consume alcohol (p <0.05). The
HRs produced for each subgroup were pooled
(Table 4), resulting in HRs that were similar to the
full cohort final model. The high- and low- O,
groups had significantly different PM, s-mortality
hazard ratios. The inclusion of other pollutants (O3,
NO,, and Ox) attenuated the PM,s hazard ratios
and produced confidence intervals that include a
null value, with the greatest reduction seen in the
model that included PM,s, NO,, and Os (1.00 95%

CI 0.98-1.02, 1.03 95% CI 1.01-1.05, 1.05 95% CI
1.03-1.07 respectively) (Table 5).

Discussion

Using a cohort comprised of several cycles of a health
survey with up to a 15-year follow-up period and high
resolution exposure estimates, we found that exposure
to PM, 5 was associated with an 11% increase in non-ac-
cidental mortality per 10 pg/m> after extensive adjust-
ment for socio-economic, behavioural, and contextual
covariates.

The hazard ratio for the full cohort was similar to that
of the Nurse’s Health Study in the United States (1.13
95% CI 1.05-1.22) that adjusted for individual-level
socio-economic and behavioural covariates [40] and a
cohort from England (1.13 95% CI 1.00-1.25) that
controlled for smoking, BMI, income, age, and sex [41].
Burnett and colleagues [42] report hazard ratio estimates
for a 10 ug/m>® change in long-term exposure to PM, g
and non-accidental mortality in 41 cohorts conducted
globally, 36 of which included adjustment for behav-
ioural risk factors. The pooled hazard ratio among these
36 cohorts was 1.09 (95% CI 1.05-1.12), a value similar
to that observed in our current study (1.11 95% CI 1.04—
1.18). A version of the 2001 CanCHEC census-based co-
hort produced a hazard ratio that is similar to this work
(1.09 95% CI 1.07-1.11) [6].

The impact of individual-level behavioural risk factors
on the PM,s-mortality association was assessed to
address a common critique of many large administrative
cohort studies examining the air pollution-mortality
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Table 4 Examination of effect modification for non-accidental
mortality® for the cohort through Cox proportional hazards
models and Cochrane’s Q

95% Cl
HR Lower Upper

Full cohort® 111 1.04 118
Sex

Male 113 1.03 123

Female 1.09 0.99 1.19

Pooled HR .11 1.04 1.18
Age

Under 65 1.14 1.01 1.29

65-74 113 1.01 127

75 or over 1.04 0.94 1.16

Pooled HR 1.10 1.03 117
Immigrant status

Non-immigrants 1.14 1.07 1.23

Immigrants® 098 083 116

Pooled HR 1.12 1.05 1.19
Educational attainment

No high school 1.08 098 1.19

High school graduate 1.14 1.04 1.24

Pooled HR 1.11 1.04 1.19
Fruit and vegetable consumption
(servings per day)

Less than five 1.10 1.01 1.20

Five or more 1.16 1.04 1.30

Pooled HR 112 1.05 1.20
Alcohol consumption

Never or former drinker 1.01* 0.90 1.12

Occasional or regular drinker 1.18* 1.09 1.28

Pooled HR 112 1.05 1.19
Smoking behaviours

Never or former smoker 1.1 1.03 1.20

Daily or occasional smoker 1.13 0.99 1.27

Pooled HR 1.12 1.05 1.19
Oxidant capacity”

Low Oy 0.92*% 0.81 1.04

High Oy 1.16* 1.07 1.26

Pooled HR 1.08 1.01 1.16

2due to a 10 ug/m? increase in PM, 5 concentration

Pexcludes immigrants who have been living in Canada for fewer than
ten years

“above or below the median value of Oxidant Capacity of all
person-years (26.19 ppb)

“Cochrane’s Q p<0.05

relationship. The inclusion of behavioural covariates to a
model including socio-economic and ecological covariates
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lowered the PM, s hazard ratio 2% (from 1.13 to 1.11).
This modest change in the hazard ratio can be interpreted
to indicate that the behavioural covariates were being ad-
equately controlled for by the socio-economic and eco-
logical covariates in the established relationship between
PM, 5 exposure and non-accidental mortality. This finding
is similar to the previous CCHS cohort analysis and ana-
lysis of a Medicare-based cohort; both reported that ad-
justment for behavioural covariates had a minimal effect
on hazard ratios [3, 7]. There is evidence (Tables 3 and 4)
for a small increase in risk of PM, s-related mortality in
occasional or regular drinkers but this may be masked by
null effects from the inclusion of other behavioural covari-
ates (fruit and vegetable consumption, smoking behav-
iours) and this confounding is likely the result of the
spatial distribution of drinking behaviours, with binge
drinkers having the largest mortality risk but lower PM, 5
exposures. This study, through its inclusion of multiple
covariates and an explicit a priori analysis approach for
model building therefore provides the most extensive evi-
dence to date that, in the Canadian context, missing data
on behavioural risk factors for mortality have a minimal
confounding bias on the PM, s-mortality association.

The increase in the PM, 5 hazard ratio with the addition
of the ecological covariates was largely driven by the
addition of airsheds. Not only do these airsheds
characterize broad air movement patterns, they also cap-
ture areas with similar composition of PM, 5 (e.g., propor-
tion of PM, 5 composed of nitrate is highest in the Prairie
airshed, whereas the Southern Atlantic airshed is com-
posed of a notably higher proportion of black carbon)
[34]. They also delineate general socio-cultural groups
with distinct mortality risk factors beyond those captured
by the typical socioeconomic census variables included in
our survival models. The three airsheds with the largest
hazard ratios, along with high material deprivation, all
have the lowest levels of air pollutants which would
account for the negative confounding effect observed in
Table 3. Further, the largest airshed (East Central) con-
tains both Toronto and Montreal, the two largest CMAs
in Canada and significant population hubs. High PM, 5
exposure and related mortality are largely driven by the
population of Toronto (21% of the national population in
2006) where the mean PM,s5 exposure is 9.33 pg/m3
whereas the mean in the rest of the country is 7.68 ug/m>
[43]. These results are consistent with a descriptive ana-
lysis of PM, 5 exposure in 2006 long-form census respon-
dents [9]. Although urban areas are the most common
residence for both high income and highly educated
Canadians, rural residences are more common among the
high income earners than university graduates (i.e within
the highest income quintile, 73.7% urban vs 26.3% urban
fringe or rural; among those who are university educated,
82.6% urban vs. 17.3% urban fringe or rural). The greater
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Table 5 Cox proportional hazard ratios for non-accidental mortality® and PM, s NO,, Os, and Oy, and multiple-pollutant models

95% Cl

Pollutant HR Lower Upper -2 LL SBC AlC
PM,s PM, 5 1.03 101 1.05 755,760.2 756,453.5 755,888.2
03 03 1.05 1.03 1.07 755,742.1 756,435.4 755,870.1
NO, NO, 1.03 1.02 1.05 755,756.9 7564503 755,884.9
Ox® Oy 1.06 1.04 1.09 755,734.0 756,427.3 755,862.0
PM,s and O3 PM, 5 1.01 1.00 1.03

03 1.05 1.03 1.07 755,740.0 756,444.2 755,870.0
PM,5 and NO, PM, 5 1.02 1.00 1.04

NO, 1.03 101 1.05 755,753.4 756,457.6 7558834
PMs5 and Oy ° PM,5 101 099 1.03

Oy 1.06 1.04 1.09 755,733.7 756,437.9 755,863.7
PM,5, O3 and NO, PM,5 1.00 098 1.02

O3 1.05 1.03 1.07

NO, 1.03 101 1.05 755,732.5 756,447.5 755,864.5

2hazard ratios are per increase in inter-quartile range: PM, 5 2.80 pg/m?, O 10.20 ppb, NO, 6.63 ppb, O 8.05 ppb

Pthe combined oxidant capacity of NO, and O,

tendency for high-income Canadians to live in rural areas
is consistent with the findings in this paper. As a result,
PM, 5 exposure by income categories is a slightly more
linear pattern than education in both of these studies.

We estimated the shape of the concentration-response
(CR) function for the PM, s-mortality association. A slight
supra-linear association (Fig. 2) was found, with a steep CR
function at the low to median PM, 5 range which levelled
off slightly after approximately 10 ug/m>. The SCHIF haz-
ard ratio predictions indicated a positive and significant as-
sociation between PM, 5 and non-accidental mortality for
all concentrations, suggesting risks to concentrations below
2 pg/m?>. Previous work using a CCHS-based cohort used a
spline-based procedure and found that the shape of the re-
lationship between non-accidental mortality and PM, 5 was
supra-linear in shape with a threshold of 4.5 pg/m?®, but was
limited due to wide confidence intervals [9]. A study in
China using a SCHIF function found non-linear relation-
ships for multiple causes of death [44]. Such a relationship,
when applied in a health impact framework, as in the Glo-
bal Burden of Disease [45, 46] and in the recent Global
Exposure Mortality Model [42] suggest benefits both from
reducing PM, 5 concentrations areas with the highest con-
centrations and from continuing to reduce them in rela-
tively cleaner areas, including Canada, where it is estimated
that the entire population now lives in areas with ambient
PM, 5 concentrations below the current WHO Guideline
[47]. Worldwide it is estimated that small absolute reduc-
tions under 3 pg/m> could prevent hundreds of thousands
of deaths in areas that comparatively have low levels of
PM, 5 [48].

The risk of non-accidental mortality from exposure to
PM, 5 was 4% higher in males over females (males 1.13,

females 1.09), a pattern that has emerged in similar
work. The hazard ratios from the current study are more
aligned with the ESCAPE European pooled cohort
(males 1.14 95% CI 1.04-1.24; females 0.99 95% CI
0.92-1.07) [2] albeit with a higher hazard ratio for
women when compared to the previous version of
CCHS-based cohort (males 1.34 95% CI 1.24—1.46; fe-
males 1.18 95% CI 1.09-1.28) [9]. Hazard ratios were
lowest for members of the cohort aged 75 and older
(1.04) and were similar for those aged 65 and under
(1.14) and 65 to 75 (1.13); this is similar to the European
study which found that risk decreases with age (<60
years 1.16 95% CI 1.00-1.34; 60—75 years 1.10 95% CI
1.00-1.20; >75years 1.03 95% CI 0.95-1.11). When we
divided the cohort into immigrants (in Canada for 10
years or more) and non-immigrants, the PM, s-mortality
association increased for non-immigrants and was null
among the immigrant population. This result is consist-
ent with prior Canadian census-based cohort studies [5]
and is possibly the result of what is termed the “healthy
immigrant effect” [49-53], likely intensified by the pref-
erential settlement of immigrants into the largest cities
which have higher PM, 5 exposure. The hazard ratio for
high school graduates (1.14) was higher than for those
without a diploma (1.08) which is to be expected given
that the latter is more likely to live in rural areas [43],
and have a mean PM,5 exposure that is lower than
other educational groups (Table 1) [43]. We examined
effect modification by behavioural covariates (i.e., fruit
and vegetable consumption, smoking behaviour, and al-
cohol consumption) and found significant difference in
the resulting hazard ratios only in the case of alcohol
consumption. Effect modification analyses on the
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ESCAPE cohort also found no effect modification by
fruit and vegetable consumption or smoking behaviour,
but did not consider alcohol consumption [2].

The multiple pollutant models indicated that the rela-
tionship between non-accidental mortality and PM, 5 ex-
posure are attenuated when we included other
pollutants (NO,, O3, and Ox) in the models. These find-
ings indicate both that PM, 5 is associated with mortality
and that the inclusion of gaseous co-pollutants, Oy in
particular, may better characterize the biologically active
aspects of PM, 5 and the overall air pollution mixture
compared to the PM,s mass concentration [5].
Weichenthal et al. looked at the effect modification of
oxidant gases on PM, s more specifically and found that
spatial variations in O, concentrations may act as surro-
gates for the presence or absence of harmful air pollu-
tant mixtures that enhance PM,; toxicity [42]. We
examined the PM, s-mortality association in both low-
and high- O person-years and found a 24% difference
in risk. Our findings support these previous studies
using different longitudinal Canadian cohorts and that
knowledge of interactions between PM,s and oxidant
gases leading to adverse health will improve risk
management activities and public health.

We performed this analysis on an extended and updated
version of a cohort described in a previous study by
Pinault et al. [9] with improvements to the exposure
assessment and linkage to death, postal code history, en-
vironmental exposures, and contextual covariates. While
some of the results are comparable to the previous cohort
(e.g. socio-economic + behavioural covariate models are
within a 1% margin), there are differences in the covariates
included in the final models and the resulting hazard ra-
tios. This is not unexpected since the contextual covari-
ates addressing area-level marginalization in the two
studies were created differently (area-level proportions of
specific variables vs. a principle component analysis which
resulted in four factors), and measured at different
geographical units (census divisions vs. census tracts and
census subdivisions). Another difference is that the
updated cohort and current work includes immigrants
who have lived in Canada for ten or more years whereas
the previous work only included those who had been in
Canada for 20 or more years. This newly included group
of semi-recent immigrants (10-19 years in Canada) have
substantially lower hazard ratios of mortality compared to
the non-immigrant population (Table 1). Their inclusion
in the current study acts to reduce the overall PM, 5
hazard ratio (Table 4).

This large, national cohort is an extension and im-
provement to the previous CCHS-Mortality cohort, with
an updated linkage and extended follow-up period for
mortality and postal code history which now spans 36
years (1981 to 2016). More broadly the cohort has many
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strengths, including the fine resolution of the PM, 5 esti-
mates (1km?), the ability to incorporate mobility across
the follow-up years, an explicit a priori model building
strategy, the inclusion of multiple time-varying context-
ual covariates to address spatial, neighbourhood- and
city-level characteristics, and most uniquely the behav-
ioural covariates such as smoking behaviours, alcohol
consumption, diet, and exercise to control for health be-
haviours related to mortality that are not typically found
on cohorts of this size.

This cohort and the analysis are limited by the data
available. First, postal code history was derived from tax
and administrative data. Historical postal codes reflect
the mailing address as reported on a tax return and not
necessarily a person’s residence; in 92.9% of cases the
postal code reflects the person’s residence at time of sur-
vey [23]. Similarly, outdoor ambient levels of PM, 5 at a
person’s residence may not reflect their actual exposure.
Sensitivity analysis performed with the 2001 CanCHEC
found that finer scale resolution (1km?) estimates of
PM, 5 resulted in lower AIC values and higher hazard
ratios in the PM,s-mortality model for non-accidental
death compared to a 10km* or 5km” grid indicating that
exposure estimates that are more specific to a person’s
residence are appropriate [54]. Gaps in postal code his-
tory are imputed under the assumption that the person
did not leave the country or community during that
time. In assigning contextual covariates by postal code,
misclassification may occur from taking the mode or
mean when estimating a single value to represent mul-
tiple points of latitude and longitude for a single postal
code. Second, in contrast to the CanCHEC cohorts (Pap-
pin AJ, Crouse DL, Christidis T, Pinault LL, Tjepkema
M, Erickson A, Brauer M, Weichenthal S, van Donkelaar
A, Martin RV, Brook J, Hystad P. Burnett RT. Associa-
tions between low levels of fine particulate matter
andmortality within Canadian cohorts. Environ Health
Persp., under review), this cohort does not completely
represent the full Canadian population; the Canadian
Community Health Survey is not a census of the popula-
tion and survey weights were not used in this analysis.
Further, in creating this cohort persons were removed if
they did not consent to data linkage or if they could not
be linked to the SDLE. The CCHS over-samples rural
communities [55] which results in a disproportionate
sample in areas with low levels of PM, 5 and higher rates
of mortality. The sampling framework and un-weighted
analysis likely caused the null unadjusted hazard ratio
which became positive as covariates were added to the
model to address confounding. These results are consist-
ent with the Agricultural Health study which examined
non-accidental death related to PM, 5 in rural communi-
ties in two American states (Iowa and North Carolina)
and found a protective hazard ratio in minimally and
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fully adjusted models [56]. Regardless, the protective
unadjusted hazard ratio should not come as a surprise
as contextual and socio-economic covariates are in-
cluded in models because we know that they are re-
lated to both PM,s and mortality and can act as
confounders (see Table 1 for the mortality Hazard
Ratios by individual covariates). Given that these fac-
tors covary with both mortality and PM, 5 their inclu-
sion in the models is crucial. We suggest that the
unadjusted model is not reflective of the PM,5-mor-
tality relationship and that the direction or magnitude
should not be over-interpreted. Third, although this
cohort includes behavioural covariates these are self-
reported and in some cases there are missing re-
sponses. To avoid introducing bias into the cohort,
we used dummy variables to code missing informa-
tion rather than excluding non-respondents outright.
Finally, the cohort itself is limited by follow-up and
some persons have as few as 4 years of follow-up
(with a maximum follow-up of 15 years).

Conclusions

We provided an update to the Canadian Community
Health Survey-Mortality cohort, with a new linkage of
the survey respondents to death records, inclusion of
additional survey cycles, an extension of the annual resi-
dential history and mortality follow-up period, a finer
scale of air pollution exposure, time-varying contextual
covariates, and the inclusion of immigrants who have
lived in Canada for 10-20 years (rather than only those
who have been in Canada for 20+ years). The risk of
non-accidental mortality from ambient PM, 5 was found
even at low levels although the hazard ratio was attenu-
ated in models that included other pollutants (NO,, O3,
and Ox). The PM,s-mortality association displayed a
supra-linear concentration-response curve. The inclu-
sion of behavioural covariates that could confound the
PM, s-mortality association (fruit and vegetable con-
sumption, leisure exercise frequency, alcohol consump-
tion, and smoking behaviours) did not appear to impact
hazard ratios. Hazard ratios were higher for males, those
aged 65 or less, and non-immigrants.
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ABSTRACT

Background: Indirect adjustment via partitioned regression is a promising technique to control for unmeasured
confounding in large epidemiological studies. The method uses a representative ancillary dataset to estimate the
association between variables missing in a primary dataset with the complete set of variables of the ancillary
dataset to produce an adjusted risk estimate for the variable in question. The objective of this paper is threefold:
1) evaluate the method for non-linear survival models, 2) formalize an empirical process to evaluate the suit-
ability of the required ancillary matching dataset, and 3) test modifications to the method to incorporate time-
varying exposure data, and proportional weighting of datasets.

Methods: We used the association between fine particle air pollution (PM, s) with mortality in the 2001 Canadian
Census Health and Environment Cohort (CanCHEC, N = 2.4 million, 10-years follow-up) as our primary dataset,
and the 2001 cycle of the Canadian Community Health Survey (CCHS, N = 80,630) as the ancillary matching
dataset that contained confounding risk factor information not available in CanCHEC (e.g., smoking). The main
evaluation process used a gold-standard approach wherein two variables (education and income) available in both
datasets were excluded, indirectly adjusted for, and compared to true models with education and income included
to assess the amount of bias correction. An internal validation for objective 1 used only CanCHEC data, whereas an
external validation for objective 2 replaced CanCHEC with the CCHS. The two proposed modifications were ap-
plied as part of the validation tests, as well as in a final indirect adjustment of four missing risk factor variables
(smoking, alcohol use, diet, and exercise) in which adjustment direction and magnitude was compared to models
using an equivalent longitudinal cohort with direct adjustment for the same variables.

Results: At baseline (2001) both cohorts had very similar PM, 5 distributions across population characteristics,
although levels for CCHS participants were consistently 1.8-2.0 ug/m? lower. Applying sample-weighting largely
corrected for this discrepancy. The internal validation tests showed minimal downward bias in PM, 5 mortality
hazard ratios of 0.4-0.6% using a static exposure, and 1.7-3% when a time-varying exposure was used. The
external validation of the CCHS as the ancillary dataset showed slight upward bias of —0.7 to —1.1% and
downward bias of 1.3-2.3% using the static and time-varying approaches respectively.

Conclusions: The CCHS was found to be fairly well representative of CanCHEC and its use in Canada for indirect
adjustment is warranted. Indirect adjustment methods can be used with survival models to correct hazard ratio
point estimates and standard errors in models missing key covariates when a representative matching dataset is
available. The results of this formal evaluation should encourage other cohorts to assess the suitability of ancillary
datasets for the application of the indirect adjustment methodology to address potential residual confounding.
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1. Introduction

The use of large administrative cohorts linked to national mortality
registries and environmental exposure data have been important in
establishing consistent population-based risk coefficients, such as esti-
mating the air pollution mortality relationship in support of clean air
policy (Cesaroni et al., 2013; Di et al., 2017; Pinault et al., 2017). While
the large size of these national cohorts provides advantages, their lack
of person-level risk factors such as smoking and body mass index (BMI)
may bias risk estimates if these factors are correlated with both the
exposure and outcome. Indirect adjustment for missing confounding
has multiple configurations and incarnations (Gail et al., 1988;
Richardson et al., 2014; Villeneuve et al., 2011). In environmental
epidemiology, indirect adjustment techniques have included the use of
person-level pre-existing comorbidities related to smoking (Cesaroni
et al., 2013), adjusting for area-level risk factors (Chen et al., 2013), or
area-level comorbidities as a proxy for common lifestyle risk factors
(Fischer et al., 2015; Pope et al., 2009; Zeger et al., 2008). Recently
Shin and colleagues (Shin et al., 2014) proposed a method based on
partitioned regression which has since been applied to several en-
vironmental exposure cohort studies (Crouse et al., 2015b, 2015a;
Weichenthal et al., 2016).

The Shin et al. (2014) method does not attempt to estimate the
missing risk factors directly from ancillary data, but rather uses in-
formation contained within a representative ancillary dataset regarding
the multivariate relationships between the observed covariates, the
exposure, and the missing covariates to produce an adjustment factor
which is then applied to the risk estimates from a model with the
missing factors. The advantage of this method is that adjustment is at
the individual-level and can accommodate multiple missing risk factors
simultaneously. Simulation studies performed by Shin et al. (2014)
indicated relative bias (HR ruge-HRadjustea/HRerude) Of less than 20%
under all realistic testing scenarios. Using a longitudinal cohort and
indirectly adjusting for smoking and BMI, they reported a 3% increase
in the association between fine particulate matter (PM, s) and ischemic
heart disease (IHD) (Shin et al., 2014), compared with no adjustment
for smoking and BMI. Other studies have reported both minor (< 1%)
and moderate (10%) bias correction after indirect adjustment for
smoking and other risk factors in air pollution-mortality analyses
(Crouse et al., 2015b, 2015a; Strak et al., 2017; Villeneuve et al., 2013,
2012; Weichenthal et al., 2016).

An important aspect of the indirect adjustment method depends on
the representativeness of the ancillary information to the main cohort.
Ideally, the ancillary data would be drawn from the same target po-
pulation as the main cohort and shown to be similar across important
characteristics, such as age, sex, health status, and geographic coverage.
Further, the method of quantification for matching variables available
in both cohorts should be similar (e.g. equivalent group assignment
between ‘highest level of school’ versus ‘total years of schooling’). Shin
et al. (2014) recommended three criteria to assess the suitability of
ancillary health studies in representing the cohort: 1) consistency be-
tween the distribution of the primary exposure among subjects across
characteristics (e.g. age, sex, marital status); 2) similar direction and
magnitude in the correlation amongst the variables available; and 3)
evaluation of the magnitude of bias correction for survival models by
excluding and indirectly adjusting for specific variables available in
both datasets and comparing to models including these variables (i.e. a
type of “gold-standard” evaluation).

We applied the above recommendations to evaluate the metho-
dology using non-linear Cox proportional hazard models for the re-
lationship between PM, s and mortality using 2001 Canadian Census
Health and Environment Cohort (CanCHEC) as the primary data cohort
and the Canadian Community Health Survey (CCHS) as the ancillary
matching dataset. We further incorporated a time-varying exposure
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measure in the representative dataset and applied a weighting scheme
to account for sampling differences between the two datasets as two
novel additions. Finally, we applied an indirect adjustment using the
CanCHEC and CCHS for missing risk factors (cigarettes/day, alcohol
use, fruit and vegetable intake, leisure exercise) and compared adjust-
ment direction and magnitude to models using a third equivalent
longitudinal cohort that was not missing those variables (the CCHS-
mortality linked cohort).

2. Materials and methods
2.1. Population and air pollution data

The primary dataset used was the 2001 CanCHEC, a longitudinal
cohort of 3.5 million Canadian adult respondents to the mandatory
2001 Canadian long-form census (1 in 5 households) linked to the
Canadian mortality database and annual income tax filings to obtain
residential six-digit postal codes through 2011. Missing postal codes in
the historical tax files were imputed based on those reported in adjacent
years, using a method where the probability of imputation varies de-
pending on the number of adjacent years missing (Fines et al., 2017).
The linkage methodology and cohort description have been provided
elsewhere (Pinault et al., 2016a,b; Pinault et al., 2017). Eligibility cri-
teria included: persons between the ages of 25 and 89 years at baseline,
Canadian-born, and complete person-year PM, s estimates and cov-
ariate information, for a final baseline sample of 2,468,180 re-
spondents. A total of 196,540 deaths were recorded during the 10 year
follow-up period.

The ancillary matching dataset was the CCHS, a national, cross-
sectional survey providing information about the health, behaviours,
and health care use of the Canadian population aged 12 or older. For
consistency with the 2001 CanCHEC, we limited the analysis to the
2001 CCHS (cycle 1.1) and applied the same eligibility criteria as above
for a final cohort size of 80,630 respondents. The response rate for the
2001 CCHS was 85%. In contrast to the census long-form used for
CanCHEC, the CCHS excludes residents living on reserves and other
Aboriginal settlement areas, altogether less than 3% of the target po-
pulation of Canada (Statistics Canada, 2007). Additional CCHS cycles
(2003-2011) were pooled and assessed for sensitivity.

A third dataset used was the CCHS-mortality (mCCHS) longitudinal
cohort that includes four pooled cycles of the CCHS linked to the
Canadian Mortality Database (Sanmartin et al., 2016). CCHS re-
spondents who gave permission to share and link their information with
other administrative datasets at the time of the survey (86% agreement)
and died between January 1, 2000 and December 31, 2011 were eli-
gible for linkage. We limited the analytical dataset to the aforemen-
tioned eligibility criteria for a final cohort size of 642,000.

PM, 5 estimates were derived from a national model that produced
annual average estimates (1998-2012) at an approximately 1 km? grid
(spatial correlation of model estimates with ground measurements:
R? = 0.82, slope = 0.97, n = 1440) (van Donkelaar et al., 2015). These
were assigned to individuals based on their residential 6-digit postal
codes which were updated for each person-year of follow-up, in-
corporating annual residential mobility for the CanCHEC and mCCHS
cohorts (CCHS survey data was cross-sectional). For consistency with
our previous work, we employed a 3-year moving average with a 1-year
lag. For example, exposure for 2001 equaled the mean of PM, s for the
years 1998, 1999, and 2000. Canadian six-digit postal codes have po-
sitional accuracy of 100-160 m in urban areas, but only about 1-5km
in rural areas (Khan et al., 2018). Postal codes were geocoded using
Statistics Canada's Postal Code Conversion File Plus (PCCF + v7)
(Statistics Canada, 2017), and used to also assign subjects to census
geography units which in turn were used to ascribe time-varying eco-
logical variables (described further below).
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2.2. Design of indirect adjustment evaluation

A visual summary of the evaluation process is depicted Fig. 1. Step 1
was to assess the representativeness of the ancillary matching dataset
(i.e., CCHS) to the primary dataset (i.e., CanCHEC). We compared ab-
solute and proportional differences in the distribution of PM,s ex-
posure by demographic and socioeconomic characteristics at the 2001
baseline year. We further assessed temporal changes in the distribution
of PM, 5 across the 10 years of follow-up between the two datasets. To
account for differences in the sampling scheme between the two data-
sets, sample weights were produced using Health Regions as the sam-
pling unit and applied to the CCHS to emulate the proportions of the
CanCHEC. Rural areas with lower PM, s levels are typically over-sam-
pled in the CCHS and were thus down-weighted, while under-sampled
urban areas in the CCHS were up-weighted.

Step 2 was to perform an internal validation to assess the degree of
bias in adjusted hazard ratios when applying indirect adjustment to
non-linear Cox proportional hazards models. We employed a ‘gold-
standard’ methodology which involved the removal and indirect ad-
justment for variables available in CanCHEC (education and income)
and compared the result to a true model that included both variables
and which used the internally derived coefficients and standard errors
from the true model in the indirect adjustment formula. To accomplish
this, three sets of models were estimated for each mortality outcome.
First, the gold-standard hazard ratios and 95% confidence intervals
(95% CI) for PM, 5 on mortality were obtained from a “True Model”
that was age-sex stratified and adjusted for education, income, and the
other individual-level covariates in Table 1. Second, the same models
were run but with education and income removed to obtain the “Partial
Model” PM, 5 coefficients and standard errors. Third, the coefficient
and variance terms used for education and income within the indirect
adjustment formula to calculate the “Internal (validation) Model” were
derived from the True Model but with PM, 5 excluded. This is the step
where one would obtain values (coefficients and standard errors) from
the published literature for the missing variables (e.g. see Supplemental
Table s4). The X and U matrices (described in detail below) were de-
rived from CanCHEC for the baseline year of 2001 only (no follow-up
years included) and employed a static as well as a time-varying PM, 5
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exposure value. PM, 5 — mortality hazard ratios from the True Model
(with direct measurement of income and education) and the Internal
Model incorporating indirect adjustment for education and income
were then compared (i.e. values obtained from the True Model were
used to indirectly adjust the Partial Model to calculate the Internal
Model which was then compared to the True Model).

Step 3 was the external validation to assess the bias of using the
CCHS as the ancillary matching dataset to indirectly adjust for the
CanCHEC. We applied a similar approach to the internal validation by
using variables available in both datasets (education and income), re-
moving and indirectly adjusting for them. The only difference is the
CCHS, not CanCHEQC, is used to create the X and U matrices. We also
tested using both a static and a time-varying PM, 5 value in the X-ma-
trix. The exact same mortality outcomes and related education and
income coefficients used in the interval validation were applied here in
order to determine the true bias of using the CCHS in place of the
CanCHEC for the removed variables.

The X and U matrices were constructed to represent the covariance
structure between the missing (U-matrix) and non-missing (X-matrix)
variables, including the exposure variable. The stratification of age and
sex are incorporated into the X-matrix by creating a series of 5-year age-
sex dummy codes with the reference category (males 25 to 29) given a
value of all ‘1s’. The remaining variables are categorized into 0/1
dummy codes with the reference group as ‘0’ along with the continuous
PM, s values as separate columns in the X-matrix. For example, a 3-
category marital status variable would be represented by two columns
in the matrix. To account for the time-varying nature of PM, s in the
models, an X-matrix was created for each year of follow-up, transposed
and summed. The U-matrix represents the missing covariates and is set
up in a similar manner as the X-matrix, except it is time invariant. A
new addition to this method was to incorporate a sampling weights
matrix (W-matrix) to adjust for urban-rural sampling differences be-
tween the CanCHEC and the CCHS. This matrix contained only one
column of values, the ratio of the proportion of CanCHEC subjects to the
proportion of CCHS subjects by Health Region (the CCHS sampling
unit) for each individual in the CCHS. The goal was to make the CCHS
more like the CanCHEC by giving more weight to urban respondents
and less weight to rural respondents. The indirect adjustment formula

Evaluation of Indirect Adjustment Datasets

Compare
Datasets

Primary cohort vs. matching dataset (e.g. CanCHEC vs. CCHS)

* Compare correlations between covariates within each dataset

* Assess proportions of characteristics by exposure level (e.g. PM, 5)
* Create sample weights to reflect potential exposure differences

Primary cohort only

Internal

Validation

* Assess potential bias of non-linear models using a gold standard approach
* Apply indirect adjustment to models with known covariates removed
* Compare to full models with covariates included

External
Validation

Primary cohort and matching dataset

» Assess bias of matching dataset to primary cohort using indirect adjustment
* Compare models with/without covariates common to both datasets
* Re-run using sample weights (if applicable)

Fig. 1. Schematic showing the steps involved to evaluate the datasets used for indirect adjustment.
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Table 1

Descriptive Statistics and PM, 5 exposure (ug/m>) by demographic and

socioeconomic characteristics for the 2001 CanCHEC and 2001 CCHS cohorts.

CanCHEC CCHS
% PM, s mean % PM, s mean
(SE) (SE)

Full data (N) 2,468,190 8.40 (2.8) 80,630 6.70 (3.1)
Sex
Male 48.3 8.30 (2.8) 46.2 6.65 (3.1)
Female 51.6 8.37 (2.8) 53.7 6.80 (3.1)
Age group (years)
25-29 9.0 8.49 (2.7) 9.1 6.93 (3.1)
30-39 23.4 8.28 (2.7) 22.8 6.77 (3.0)
40-49 26.0 8.23 (2.7) 24.2 6.69 (3.0)
50-59 18.2 8.28 (2.7) 17.4 6.61 (3.0)
60-69 11.8 8.32 (2.8) 12.3 6.61 (3.0)
70-79 8.5 8.52 (2.8) 9.8 6.84 (3.1)
80-89 3.2 8.55 (2.8) 4.4 6.84 (3.2)
Visible minority status
White or Aboriginal 98.6 8.31 (2.8) 95.8 6.78 (3.1)
Visible minority 1.3 9.17 (2.7) 4.1 5.59 (3.0)
Aboriginal status
Not Aboriginal 94.3 8.4 (2.8) 97.1 6.79 (3.1)
Aboriginal 5.6 7.02 (2.4) 2.9 4.81 (2.5)
Marital status
Single/Never married 73 8.18 (2.7) 62.1 6.5 (3.0)
Married/Common-law  13.8 8.58 (2.8) 22.4 7.0 (3.1)
Divorced/Widowed 13.1 8.82 (2.8) 15.4 7.24 (3.2)
Educational attainment
No high school 28.6 8.07 (2.8) 27.9 6.38 (3.1)
High school or higher  71.3 8.42 (2.7) 72 6.86 (3.1)
Income quintile
1st quintile - lowest 15.3 8.43 (2.8) 21.8 6.83 (3.1)
2nd quintile 19.0 8.33 (2.8) 19.5 6.72 (3.1)
3rd quintile 20.8 8.32 (2.8) 18.8 6.76 (3.1)
4th quintile 21.9 8.28 (2.8) 19.3 6.71 (3.0)
5th quintile - highest ~ 22.9 8.27 (2.7) 20.3 6.61 (3.1)
Labour force status
Employed 64.5 8.07 (2.8) 62.0 6.75 (3.1)
Unemployed 4.1 8.28 (2.8) 2.6 6.47 (3.0)
Not in labour force 31.2 8.56 (2.7) 35.2 6.71 (3.1)
CMA-Size
> 1.5 Million 24.1 10.29 (2.4) 11.0 9.73 (2.5)
500,000-1.5M 17.7 8.34 (2.0) 9.9 7.92 (1.9)
100,000-499,999 18.7 8.43 (3.0) 18.8 8.67 (3.2)
30,000-99,999 8.0 7.57 (2.9) 135 6.57 (2.9)
10,000-29,999 5.1 6.54 (2.1) 9.7 5.89 (2.1)
< 10,000 26.4 6.99 (2.2) 36.9 4.79 (2.1)
Airshed
Western 10.8 6.95 (1.9) 12.1 6.07 (2.2)
Prairie 13.7 7.14 (1.7) 16.2 5.29 (2.0)
West Central 6.7 6.52 (1.9) 9.8 4.7 (1.7)
South Atlantic 10.8 5.98 (2.0) 17.9 4.65 (1.6)
East Central 56.1 9.6 (2.6) 40.9 9.08 (2.9)
Northern 1.7 6.44 (2.3) 2.8 4.01 (1.6)
Can-Marg Index
Residential Instability
1st quintile - lowest 23.8 7.89 (2.5) 23.8 5.77 (2.8)
2nd quintile 25.7 7.75 (2.7) 25.8 6.23 (2.8)
3rd quintile 20.6 8.14 (2.9) 21.6 6.57 (3.1)
4th quintile 17.2 8.97 (2.8) 17.4 7.69 (3.0)
5th quintile - highest 12.6 9.7 (2.7) 11.2 8.75 (3.0)
Material Deprivation
1st quintile — lowest 15.5 8.62 (2.6) 10.6 7.62 (2.8)
2nd quintile 20.5 8.4 (2.6) 18.7 7.07 (2.9)
3rd quintile 19.3 8.53 (2.6) 185 7.38 (3.0)
4th quintile 18.8 8.44 (2.8) 18.3 6.88 (3.2)
5th quintile — highest 25.7 7.82 (3.0) 33.7 5.82 (3.0)
Dependency
1st quintile — lowest 15.8 8.09 (2.5) 15.0 6.17 (2.8)
2nd quintile 16.9 8.41 (2.6) 12.9 6.9 (3.1)
3rd quintile 16.3 8.58 (2.8) 14.7 7.38 (3.1)
4th quintile 21.5 8.57 (2.9) 22,5 7.16 (3.2)
5th quintile — highest ~ 29.2 8.06 (2.8) 34.8 6.35 (3.0)
Ethnic Concentration
1st quintile — lowest 36.0 7.54 (2.5) 42.9 5.82 (2.7)
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Table 1 (continued)

CanCHEC CCHS
% PM, s mean % PM, s mean
(SE) (SE)
2nd quintile 26.2 8.29 (2.7) 28.1 7.07 (3.0)
3rd quintile 17.6 8.6 (2.9) 15.9 7.13 (3.1)
4th quintile 12.4 9.33 (2.8) 8.7 7.99 (3.4)
5th quintile — highest 7.5 9.8 (2.3) 4.2 9.58 (2.6)

and associated methodology is detailed in the Supplemental materials,
Appendix A).

Finally, we applied the above indirect adjustment to a real missing
data scenario to estimate adjusted PM, 5 — mortality hazard ratios and
compared the results to those using the mCCHS in which smoking, al-
cohol consumption, fruit and vegetable intake and physical activity
were directly measured. Here, the CCHS was used to create the X, U,
and W-matrices with time-varying PM, s to indirectly adjust for the
above missing behavioural risk factors not available in the CanCHEC.
We obtained risk estimates from published meta-analyses for the spe-
cific risk factors on mortality, including smoking intensity (Thun et al.,
2013), alcohol consumption (Xi et al., 2017), BMI (Yu et al., 2017), fruit
and vegetable intake (Leenders et al., 2014), and physical activity
(Hupin et al., 2015). The specific risk estimates are summarized in
Supplemental Table s4.

2.3. Statistical analysis

We fit Cox proportional hazard models to examine the association
between ambient PM, 5 exposure with four causes of death: non-acci-
dental (ICD-10 codes A to R), cardiovascular (ICD-10: 110 to 169), is-
chemic heart disease (ICD-10: 120 to 125), and lung cancer (ICD-10: C33
to C34). Respondents were followed until death or the end of follow-up.
All models were stratified by sex and 5-year age categories. Models
were further adjusted for the individual covariates of marital status,
Aboriginal identity, visible minority identity, and employment status.
Education and income were the two variables that were removed and
indirectly adjusted for in the validation tests as both were available in
the CanCHEC and CCHS datasets. Education was categorized into a
dichotomous variable, those with or without a high school education.
Additional educational attainment groupings were considered but
proportional comparability between the CanCHEC and CCHS were less
favourable. Income adequacy quintiles are based on the ratio between
pre-tax income of economic families or unattached individuals to the
Statistics Canada low-income cut-off for family and community size,
and adjusted for regional differences in economy (Pinault et al., 2016a).

In the final indirect adjustment, we further adjusted the models by
contextual ecological covariates. The Canadian Marginalization (CAN-
Marg) Index is a census-based, empirically derived, and theoretically
informed tool designed to reflect four dimensions of marginalization
that characterize inequalities in health and social well-being: re-
sidential instability, material deprivation, dependency, and ethnic
concentration (Matheson et al., 2012). We assigned the CAN-Marg
factors based on neighbourhood-scale census tracts (CTs) in medium
and large cities (core population of 50,000 or more), and municipal-
scale census subdivisions (CSDs) everywhere else outside of these me-
tropolitan areas. CAN-Marg values were available for two census years
(2001 and 2006), and were applied to all datasets based on the closest
corresponding year. The other ecological adjustment covariates in-
cluded Census Metropolitan Area Size (CMA size) categorized into six
groups based on population (< 10,000; 10,000-29,999;
30,000-99,999; 100,000-499,999; 500,000-1,499,999; and 1.5 million
+), and a geographic identifier for airshed which divides the country
into six large geographic areas to adjust for broad scale spatial variation
in mortality rates not captured by other risk factors.
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3. Results

The representativeness of the CCHS to CanCHEC with respect to the
distribution of characteristics and PM, s exposures is presented in
Table 1, Fig. 2, and Supplemental Table s1. Overall, the two datasets
were quite similar across the individual variables, with some slight
differences among the ecological variables. The largest proportional
differences were for CMA-size and airshed, showing a greater propor-
tion of CCHS respondents in rural locations. While the levels of PM, 5
for the CCHS were consistently lower than for CanCHEC, the relative
differences were fairly uniform across the demographic, socioeconomic,
and ecological variable groups (Fig. 2). The aim of Fig. 2 was to help

Sex Age Group

Income Quintiles

CMA Size Airshed

Q—<
e e——

Employment Status

Dependency
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reveal absolute differences as well as similar relative differences across
variable groups demonstrated by approximate parallel lines. In general
the two datasets track reasonably well in their exposure distributions.
Visible minority and Aboriginal identity had the largest absolute dif-
ferences of 4.3 and 4.0 pg/m? respectively, while the parallel qualities
of the ecological variables were less consistent compared to the in-
dividual variables but still displayed similar overall trends. Larger dif-
ferences tended to be in the middle of the PM, 5 distribution, while the
tails were more similar. Further examination of the representativeness
between the CCHS and CanCHEC is available in Supplemental Table s1
which compared the proportions of characteristics across PM, s quin-
tiles (e.g. the proportion of males in both the CCHS and CanCHEC

Marital Status

Data suppressed due to low cell count at
distribution cut-points for CMA Size,
Airshed, and Ethnic Concentration

Fig. 2. Absolute differences in PM, s (ug/m®) distribution by demographic, socioeconomic, and ecological characteristics between the 2001 CanCHEC and 2001

CCHS cohorts (CanCHEC — CCHS).
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decrease with increasing PM, s exposure). Overall PM, s differences
between CanCHEC and CCHS become smaller over time (Supplemental
Fig. 1). Correlation coefficients showed consistency in both the mag-
nitude and direction between all the variables in both datasets (sup-
plemental Table s2).

The results of the validation tests are presented in Fig. 3for four
different cause of mortality, non-accidental (N deaths = 196,540),
cardiovascular (55,720), ischemic heart disease (33,425), and lung
cancer (22,200). The True Model is the gold-standard model showing
hazard ratios adjusted for education and income, whereas the Partial
Model shows hazard ratios with education and income removed. Using
the static PM, 5 scenario (Fig. 3a), the True versus Partial adjustment
bias ranged from 1.7% to 3.3% depending on the cause of death. The
Internal validation model in which education and income were in-
directly adjusted for using CanCHEC had an adjustment bias less than
1%. The external validation model replaces the CanCHEC with the
CCHS as the ancillary dataset and showed a small over-adjustment bias
between —0.7% and —1.2%. Using the time-varying scenario (Fig. 3b),
the overall bias caused by the missing covariates (education and in-
come) was larger (Partial Model bias of 3%-5.6%), with the Internal
and External validation models showing improved adjustment bias of
1.7%-2.9% and 1.3-2.3% respectively. The inclusion of the sample
weights using either the static or time-varying approach did not im-
prove the adjustments (data not shown).

The adjustment correction of indirectly adjusted models missing
four common confounding risk factors (smoking, diet, exercise, and
alcohol use) are shown in Fig. 4 and are compared to equivalent models
using the CCHS-mortality linked cohort (mCCHS) which are directly
adjusted by the same risk factors. The Individual covariate models in-
dicate that indirect adjustment for the missing risk factors increases the
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hazard ratios consistent with that from the mCCHS, except for the un-
weighted lung cancer estimate. The Individual + Ecological covariate
models have the opposite adjustment direction, lowering the hazard
ratios after (indirect) adjustment for the missing risk factors, and show
similar adjustment direction and magnitude comparable to that from
the mCCHS. If using the mCCHS adjustment correction as the guide
post, the weighted indirect adjustment performs slightly better than the
unweighted version for all mortality outcomes except for IHD. The in-
direct adjustment for lung cancer was inconsistent. Supplemental Table
s3 contains the model hazard ratios and 95% CIs that formed the basis
for the adjustment correction results presented in Fig. 4.

4. Discussion

In this paper we demonstrate the application and evaluation of the
indirect adjustment method whereby secondary ancillary data is used to
adjust for missing covariates in a primary dataset. Using the method
developed by Shin and colleagues (Shin et al., 2014), we show that the
adjustment bias for non-linear survival models (internal validation) was
less than 1% with static PM, 5 exposure models and under 3% for time-
varying PM, 5 models. The external validation assessing the CCHS as
the ancillary matching dataset also performed well, indicating small
downward (over) adjustment bias for time-varying PM, s models. These
results are comparable to those from Shin et al. (2014) using a similar
longitudinal cohort (1991 CanCHEC) that indirectly adjusted for
smoking and BMI and reported a 3% increase in the association be-
tween PM, s and IHD following indirect adjustment.

In an analysis of actual missing behavioural risk factors from the
CanCHEC (smoking, alcohol use, fruit and vegetable intake, and ex-
ercise), the adjustment correction from the indirectly adjusted models

3a: 1.20
Static
1.15
1.10 + + +
1.05 + + + +
1.00 +
0.9
True | Partial |Internal External True | Partial Internal External True | Partial |Internal External True | Partial  Internal External
High 95% CI 1.101 | 1.083 @ 1.097  1.109 1.058  1.039  1.053 | 1.066 1.150 | 1.124 | 1.142 @ 1.158 1.193 | 1.153 | 1.186 | 1.207
Low 95% CI 1.067 | 1.050 | 1.063 @ 1.075 0.999 @ 0.980 @ 0.993 | 1.005 1.067 | 1.043 | 1.059 1.074 1.088 1.052 1.081 | 1.100
HR 1.084 | 1.066 @ 1.080 1.092 1.028 1.009 @ 1.022 | 1.035 1.107 | 1.083 | 1.100 @ 1.115 1139 1101 @ 1.132 | 1.152
Adjustment Bias (%) ref. 1.7 0.4 -0.7 ref. 1.9 0.6 0.7 ref. 2.2 0.6 -0.8 ref. 33 0.6 -1.2
Non-Accidental Cardiovascular Ischemic Heart Disease Lung Cancer
3b: 1.25
time-varying 1.20
1.15 +
1.10 # + + +
1.0 ' +
- T
0.95 5 - i 5
True | Partial |Internal External True | Partial Internal External True | Partial |Internal External True | Partial |Internal |External
High 95% CI 1.123 | 1.089 | 1.103  1.108 1.070  1.034 1.048 1.053 1.187 | 1.142 | 1.159 @ 1.166 1248 | 1.178 | 1.211 | 1.221
Low 95% CI 1.084 | 1.052 @ 1.065 1.069 1.003 = 0969 0.982 0.987 1.093 | 1.051 | 1.067 | 1.072 1.126 | 1.063 | 1.093 | 1.100
HR 1.103 | 1.070 @ 1.084 1.088 1.036 1.001 1.015  1.019 1.139 | 1.095 | 1.112 | 1.118 1.185 | 1.119 | 1.150 | 1.159
Adjustment Bias (%) ref. 3.0 1.7 1.3 ref. 3.4 24 1.6 ref. 39 2.4 1.8 ref. 5.6 29 23
Non-Accidental Cardiovascular Ischemic Heart Disease Lung Cancer

Fig. 3. Internal and External validation model results of PM, s mortality hazard ratios (HR, 95% CI) True Model: adjusted by marital status, visible minority,
Aboriginal identity, employment, education, income; Partial Model: adjusted by marital status, visible minority, Aboriginalidentity, employment; Internal and
External validation models are same as Partial Model but indirectly adjusted for education and income using the CanCHEC and CCHS respectively; Adjustment Bias %
= ([HRrye — HRagjl/HR 1) *100; All models stratified by 5-year age-sex groups; hazard ratios are per 10 ug/m3 increase in PM, s, *Time-varying internal validation

HRs (95%CI) used static PM, s x-matrix with time-varying coefficients.
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Individual Model
Non-accidental

Cardiovascular
Ischemic Heart Disease

Lung Cancer

Individual + Ecological Model
Non-accidental

Cardiovascular

Ischemic Heart Disease

Lung Cancer

-7.5 -65 -55 -45

B Unweighted (%) ® Weighted (%)

-3.5

-25 -15 05 05 15 25 35 45 55 6.5

mCCHS

Fig. 4. Adjustment correction (%) of indirect adjustment for missing behavioural risk factors on PM, s mortality hazard ratios. Individual Model: stratified by 5-year
age-sex groups, adjusted by marital status, visible minority, Aboriginal identity, employment, income quintile, education and indirectly adjusted by smoking, alcohol
use, exercise, diet; Individual + Ecological Model: includes Can-Marg Index, Community Size, Airshed; mCCHS: equivalent models using the CCHS-mortality linked
cohort and directly adjusted by smoking, alcohol use, exercise, diet; Weighted vs. Unweighted models used sample weights (W-matrix) in the indirect adjustment

formula; Adjustment correction % = ([HRagjust — HRunadjust]/HRadjus) *100.

using the CCHS as the ancillary data were comparable to equivalent
models using the mCCHS and directly adjusting for the same risk fac-
tors. In these analyses the models that applied sample weights per-
formed slightly better overall than the unweighted models, potentially
correcting for population sampling differences. As expected, including
ecological socioeconomic covariates into the base models reduced the
amount of subsequent adjustment required by the indirect adjustment
of the individual risk factors. These results indicate that indirect ad-
justment improves the adjustment by reducing the bias from models
missing important confounding (e.g. the Partial Models in Fig. 3), but
that internal and external validation tests should be run to assess the
magnitude and direction of adjustment prior to running the actual in-
direct adjustment. Including sampling weights could help improve the
adjustments if the proportion of respondents between the primary co-
hort and ancillary survey data differ geographically between urban and
rural areas.

Of the four mortality outcomes assessed, the adjustments for lung
cancer were the most inconsistent. This finding could be due to the
strong causal relationship between smoking and lung cancer and the
potential confounding via regional differences of smoking prevalence in
Canada and differential PM, 5 exposure (Villeneuve et al., 2011). In-
terestingly, we showed a similar magnitude but opposite adjustment
direction of PM, s HRs on lung cancer in the mCCHS cohort when ad-
justing for smoking behaviour compared to Villeneuve et al. (2011). For
example, whereas Villeneuve et al. (2011) estimated that PM, s risk
ratios on lung cancer would increase by 6.2%-6.9% when smoking
status was included into models; we found that adjustment for smoking,
alcohol use, diet, and exercise lower the hazard ratio of PM, s on lung
cancer by —5.9% in the individual covariate model and —2.1% when
ecological covariates were included. Our findings are more aligned with
those of the ACS CPS II Study (Pope et al., 2002).

We introduced two potential improvements to the Shin et al. (2014)
indirect adjustment method by incorporating a time-varying exposure
component and a weighting scheme to adjust for sampling differences
between the primary and matching datasets. For longitudinal survival
models that have a time-varying exposure value, it makes logical sense
to include this into the indirect adjustment. Shown in Fig. 3, we as-
sessed both static and time-varying models; however, it's not straight-
forward to assess which scenario indirect adjustment performed better.
Under the static PM, s scenario, indirect adjustment produced very
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similar hazard ratios to that of the True Model but the absolute ad-
justment required was smaller. For example, for non-accidental mor-
tality the bias produced by the missing covariates (education and in-
come) was 1.7% which was over-corrected in the External Model. In the
time-varying scenario, the Partial Model bias was nearly double (3%)
and was reduced to 1.3% in the External Model, a 57% reduction. We
were unable to fully implement the time-varying adaptation for the
internal validation due to size restrictions of the matrix algebra re-
quired (2.4 million by 2.4 million matrix), therefore the time-varying
internal validation is not a direct apples-to-apples comparison with the
static scenario. However, the main purpose of the internal validation
was to show that indirect adjustment is a viable method with Cox
proportional hazard models and is not necessarily a step that others
would need to repeat, unlike the external validation step which is
highly recommended. That said, it may be possible to take a random
sample of the primary cohort to reduce its size and perform a time-
varying internal validation.

The second modification we tested was incorporating sampling
weights into the formula to adjust for regional (urban-rural) sampling
differences between the two datasets. The results were mixed. For the
validation tests, including the W-matrix did not improve the adjust-
ments; whereas for the final indirect adjustments in Fig. 4, the weighted
results corresponded slightly better to the mCCHS models for non-ac-
cidental and CVD mortality, but less so for IHD and lung cancer. Similar
to the time-varying modification, in theory, adding sample weights
makes logical sense. As this additional adjustment was sensitive to the
formula calculating the sample weights, different formulations may
improve the results.

This exercise confirms that confounding bias is not unidirectional
across models. Our initial hypothesis was that by including the three
sets of ecological variables (CAN-Marg, CMA-size, and airshed) they
would dramatically reduce the potential bias from the missing risk
factors prior to (indirect) adjustment. That was not necessarily the case.
In Fig. 4 (and supplemental Table s3), adjustment magnitude was only
marginally larger for the individual covariate model compared to the
individual plus ecological covariate model, but in opposite directions.
This trend was supported by direct adjustment of risk factors using the
mCCHS cohort data.

Confounding is data specific, thus the results have been mixed re-
garding the magnitude of the adjusted bias on the final risk estimates in
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the few studies to have used this method. The direction and magnitude
of the potential confounding bias in risk estimates depends on, 1) the
degree of correlation between omitted and exposure variables, 2) the
magnitude of their parameter estimates on the outcome, and 3) whether
confounding can be partially accounted for by other extraneous vari-
ables in the model (e.g. education, income, occupation, neighbourhood
factors) (Villeneuve et al., 2011). Using the 1991 CanCHEC, Crouse
et al. and Weichenthal et al. report that indirect adjustment for smoking
behaviour and obesity had very little impact (1-2%) on the hazard
ratios between air pollutants and various mortality outcomes (Crouse
et al., 2015a, 2015b; Weichenthal et al., 2016). Similarly, using Ontario
Tax Cohort data, Villeneuve et al. found small attenuations of exposure
risk ratios after indirectly adjusting for smoking and other risk factors
(Villeneuve et al., 2013, 2012). Conversely, Strak et al. showed that the
potential bias for excluding smoking was substantial (up to 10%) on air
pollution mortality estimates for CVD and particularly lung cancer
(Strak et al., 2017). What has become apparent is that the direction and
magnitude of the potential bias is largely dependent on the direction
and magnitude of the correlation between air pollution and the missing
risk factors, and will thus be population dependent. In Canada, the
addition of SES risk factors largely explain much of the impact of
smoking and other risk factors on air pollution effect estimates (Pinault
et al., 2016b).

The generalizability of the indirect adjustment method to other
cohorts could be considered universal, however its effectiveness will
depend on the availability of suitably representative ancillary data.
Specifically, researchers can assess the appropriateness of available
ancillary matching data to use for indirect adjustment by following the
evaluation methodology we have described here. In addition to the
descriptive and visual comparisons, we suggest running external vali-
dation tests to quantify the representativeness of the ancillary dataset
by determining the magnitude and direction of adjustment bias when
important variables available in both primary and ancillary dataset are
removed and indirectly adjusted for. An ideal ancillary matching da-
taset would be drawn from the same target population as the main
cohort and have similar geographic coverage, common variables to
match on such as age, sex, income, and education, and similar ex-
posure-to-characteristic proportions (Fig. 2, Supplemental Table s1 &
s2). If the primary cohort and ancillary data have differing population
sampling schemes, applying custom sample weights may correct for this
discrepancy. For example, we categorized education into a dichot-
omous variable since the proportional comparability between the
CanCHEC and CCHS among the higher education groups were less fa-
vourable. Simulation tests to examine under what conditions the pri-
mary and ancillary data can differ before the results produced by in-
direct adjustment are no longer acceptable would be a valuable
contribution to the literature.

5. Conclusion

Our results show promise in applying indirect adjustment methods
with Cox proportional hazard models, and that hazard ratio point es-
timates and standard errors in models missing key covariates can be
reliably adjusted when using a representative matching dataset.
Relevant to Canada, these results show that the CCHS can be used as an
ancillary dataset to indirectly adjust for missing risk factors in the
CanCHEC data. While the method itself is universally generalizable to
other cohorts, its effectiveness will depend on the availability of sui-
tably representative ancillary data, as evaluated in an approach similar
to that describe here. This formal evaluation will help establish proto-
cols that others can follow to assess the suitability of their data.
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ABSTRACT

Background: Large cohort studies have been used to characterise the association between long-term exposure to
fine particulate matter (PM,s) air pollution with non-accidental, and cause-specific mortality. However, there
has been no consensus as to the shape of the association between concentration and response.

Methods: To examine the shape of this association, we developed a new cohort based on respondents to the 2001
Canadian census long-form. We applied new annual PM, 5 concentration estimates based on remote sensing and
ground measurements for Canada at a 1 km spatial scale from 1998 to 2011. We followed 2.4 million re-
spondents who were non-immigrants aged 25-90 years and did not reside in an institution over a 10 year period
for mortality. Exposures were assigned as a 3-year mean prior to the follow-up year. Income tax files were used
to account for residential mobility among respondents using postal codes, with probabilistic imputation used for
missing postal codes in the tax data. We used Cox survival models to determine hazard ratios (HRs) for cause-
specific mortality. We also estimated Shape Constrained Health Impact Functions (a concentration-response
function) for selected causes of death.

Results: In models stratified by age, sex, airshed, and population centre size, and adjusted for individual and
neighbourhood socioeconomic variables, HR estimates for non-accidental mortality were HR = 1.18 (95% CI:
1.15-1.21) per 10 ug/m> increase in concentration. We observed higher HRs for cardiovascular disease
(HR=1.25; 95% CI: 1.19-1.31), cardio-metabolic disease (HR = 1.27; 95% CI: 1.21-1.33), ischemic heart
disease (HR = 1.36; 95% CI: 1.28-1.44) and chronic obstructive pulmonary disease (COPD) mortality (HR =
1.24; 95% CI: 1.11-1.39) compared to HR for all non-accidental causes of death. For non-accidental, cardio-
metabolic, ischemic heart disease, respiratory and COPD mortality, the shape of the concentration-response
curve was supra-linear, with larger differences in relative risk for lower concentrations. For both pneumonia and
lung cancer, there was some suggestion that the curves were sub-linear.

Abbreviations: AMDB, Amalgamated Mortality Database (Statistics Canada); AQMS, Air Quality Management System; CanCHEC, Canadian Census Health and Environment Cohort
(1991 and 2001); CD, Census Division; COPD, Chronic obstructive pulmonary disease; DA, Dissemination area; DB, Dissemination block; GEOS, Goddard Earth Observing System; MODIS,
Moderate Resolution Imaging Spectroradiometer; NAC, Non-Accidental; PCCF +, Postal Code Conversion File Plus (Statistics Canada); SCHIF, Shape-Constrained Health Impact Function;

SIN, Social insurance number
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Conclusions: Associations between ambient concentrations of fine particulate matter and several causes of death
were non-linear for each cause of death examined.

1. Introduction

Fine particulate matter (PM,5) is a complex mixture of particles
(e.g., sulfate, smoke, and dust) smaller than 2.5 um in aerodynamic
diameter, and is one of the main components of ambient air pollution.
Exposure to PM, 5 air pollution was estimated by the Global Burden of
Disease study to be responsible for 4.2 million deaths and 108 million
disability-adjusted life years in 2015 (GBD, 2016). Several large epi-
demiological cohort studies have linked long-term exposure to PM, s to
mortality. In the United States, for example, the American Cancer So-
ciety cohort study estimated increased relative risks of non-accidental
mortality (RR = 1.06, 95% CI: 1.02-1.11 per 10 pg/m? increase), as
well as cardiopulmonary and lung cancer mortality associated with
exposures to PM, 5 (Pope et al., 2002). In an analysis of 22 European
cohorts (European Study of Cohorts for Air Pollution Effects: ESCAPE),
pooled hazard ratios (HRs) for non-accidental mortality were 1.07 (95%
CI: 1.02-1.13) per increase of 5 ug/m3 (Beelen et al., 2014).

Despite relatively lower concentrations of air pollution in Canada,
previous studies have also indicated that exposure to PM, s is associated
with increased risk of non-accidental and cardiovascular mortality. In
Crouse et al. (2012), the 1991 Canadian Census Health and Environ-
ment Cohort (1991 CanCHEC) followed 2.1 million census respondents
during a 10 year follow-up period, and observed associations between
ambient PM, s and non-accidental and cardiovascular mortality. How-
ever, there were several limitations of this study. First, PM, 5 estimates
were based on a model that had relatively coarse (approximately 10 km
grid) spatial resolution, thereby possibly contributing to exposure
misclassification, particularly in smaller cities (i.e., less than 10 km
across). Second, estimates of exposure were assigned based on postal
codes at baseline, therefore not accounting for residential mobility
during follow-up. Third, exposure estimates were based on a
2001-2006 average, meaning that changes over time were not con-
sidered, and the vintage of the exposure data did not match that of the
follow-up period. Fourth, behavioural covariates such as smoking were
not considered in the model. To overcome some of these limitations, a
follow-up study of the same cohort followed respondent mobility and
assigned a 7-year moving average of PM, s exposure to respondents,
based on year-adjusted PM, 5 estimates (Crouse et al., 2015). Restricted
cubic splines with three knots were used to examine the association
between PM, s and non-accidental mortality. These relative risk pre-
dictions suggested that differences in risk were greater for lower con-
centrations compared to higher concentrations, suggesting a supra-
linear association. A separate study using the Canadian Community
Health Survey-Mortality cohort accounted for behavioural covariates
(e.g., smoking) directly, and reported only a small effect upon hazard
ratio estimates for the association between PM, s and mortality (Pinault
et al., 2016a). Again using restricted cubic splines with three knots, a
supra-linear association was observed. There was no suggestion of a
sub-linear association at lower concentrations in either study.

The purpose of the present study is to provide an updated analysis
using a larger and more recent cohort: the 2001 Canadian Census
Health and Environment Cohort (2001 CanCHEC), which overcomes
many of the remaining limitations of previous studies. We assigned
exposures based on a relatively fine-scale PM, 5 model (approximately
1 km grid), which incorporated both remote sensing estimates and
ground observations. Then, we generated a complete annual residential
history for all cohort members from a linkage to postal codes in tax
records (as in Crouse et al., 2015). As a novel contribution, we imputed
missing postal codes in the residential history with a probabilistic al-
gorithm. As in Crouse et al., 2015, exposures were based on year-ad-
justed estimates from 1998 onwards, and the vintage of the exposure

data matched that of the follow-up period. We also sought to more
thoroughly examine the shape of the concentration-response curve
beyond using restricted cubic splines with a pre-specified small number
of knots (i.e. 3). This analysis also builds on the previous work by
Nasari et al. (2016), where an older (1991) CanCHEC was used with
coarsely-scaled exposure data and where multiple causes of death were
not examined. There is specific interest in the shape of the association at
very low concentration in order to conduct burden analysis (GBD,
2016). The concentration-response relationship at low levels is an issue
of particular interest in Canada, as a country with relatively low levels
of PM, 5, and in many global regions that are approaching these lower
ranges of exposure.

2. Materials and methods
2.1. Data

The 2001 CanCHEC is an analytical dataset that was formed through
the linkage of the 2001 Census long-form questionnaire to tax and
mortality databases. The 2001 Census long-form questionnaire is dis-
tributed to nearly 20% of Canadian households, although it is dis-
tributed to nearly 100% of households in remote areas and enumerated
Indian reserves (Statistics Canada, 2003). The linkage methodology and
cohort have been described elsewhere (Pinault et al., 2016b). Briefly,
non-institutionalized respondents to the 2001 Census long-form ques-
tionnaire that lived in Canada were considered in scope for linkage (n
= 4,500,200). Of these, 78.6% (n = 3,537,500) were linked through
standard deterministic and probabilistic linkage techniques (Fellegi and
Sunter, 1969) using sex, date of birth, postal code, and marital status to
income tax files (T1 Personal Master File, Canada Revenue Agency) to
obtain an annual postal code history and a Social Insurance Number
(SIN). The proportion of respondents successfully linked to tax files was
lower for younger adults, Aboriginal respondents, and persons who had
moved in the previous year, possibly due to being less likely to have
filed taxes and/or difficulties in matching linkage keys (e.g., postal
codes). The false-positive error rate in the linkage was less than 0.2%
(Pinault et al., 2016b).

Subsequently, tax-linked Census respondents were deterministically
linked to the Amalgamated Mortality Database (AMDB) using SINs. The
AMDB is a dataset that includes death records from both the Canadian
Mortality Database (which compiles provincial and territorial hospital
death registries beginning in 1950) and deaths recorded in tax files.
Deaths that occurred between census day (May 15, 2001) and
December 31, 2011 were eligible for linkage. A total of 347,000 deaths
were recorded during the 10.6 year follow-up period. Mortality statis-
tics for the cohort were broadly consistent with patterns observed in the
1991 CanCHEC and national vital statistics (Wilkins et al., 2008;
Pinault et al., 2016b). Members of the final cohort were slightly more
likely to be married or common-law, have higher income or higher
educational attainment, or be employed than were the general Cana-
dian population (Pinault et al., 2016b).

Respondents were assigned estimates of exposure to fine particulate
matter (PM,s), derived from a national model (van Donkelaar et al.,
2015). Briefly, total column optical aerosol depth retrievals from the
Moderate Resolution Imaging Spectroradiometer (MODIS) were related
to near-surface PM, 5 using the GEOS-Chem chemical transport model,
and a geographically weighted regression applied to incorporate
ground-level observations, thereby adjusting for bias in the remote-
sensed estimates. Yearly (2004-2012) averages in estimated surface
PM, 5 at approximately 1 km? resolution were obtained (van Donkelaar
et al.,, 2015), and extended back in time to 1998 by applying inter-
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annual variation from a previously published PM, 5 dataset (Boys et al.,
2014). Within North America, these mean bias-adjusted PM, s estimates
were strongly spatially correlated with ground level measurements over
areas where the estimated PM, 5 was less than 20 ug/m3 (R? = 0.82,
slope = 0.97, n = 1440) (van Donkelaar et al., 2015).

2.2. Data preparation

All respondents who were not matched to air pollution estimates
due to missing postal codes at entry or residing outside of the bound-
aries of air pollution models (i.e., in the far north) were excluded (n
86,100, or 2.4%). Consistent with previous long-term air pollution
studies (Crouse et al., 2012; Pinault et al., 2016a), the analytical cohort
was limited to adults aged 25-90 years at enrollment (additional
n=319,900 respondents excluded, or 9.0%). All immigrants were ex-
cluded from the cohort (additional n = 683,100, or 19.3%) for the
following reasons: prior to arrival in Canada, their previous exposure to
air pollution was unknown. After immigrants arrive in Canada, their
health is generally better than the Canadian-born population, due lar-
gely to a screening effect (Newbold, 2005; Ng, 2011). Additionally,
mean immigrant exposure to air pollution (PM, s) remains higher than
the native-born population for decades following arrival in Canada,
never approaching the Canadian-born mean, largely due to a primarily
urban residence (Pinault et al., 2017). For these reasons, associations
between air pollution and immigrant health require separate analyses.
The final analytical sample was 2,448,500 respondents. All sample sizes
were rounded to the nearest hundred for institutional confidentiality,
and therefore sums may not add up to totals.

The residential location was determined for all respondents based
on postal codes reported in tax files between 1998 and 2010, using
Statistics Canada's Postal Code Conversion File plus (PCCF+) V.6 C.
The program uses a population-weighted random allocation algorithm
to determine representative latitude and longitude coordinates for
postal codes in Canada based on the centroid of a block-face, dis-
semination block (DB), or dissemination area (DA) (Statistics Canada,
2016). A block-face represents one side of a street between two con-
secutive intersecting features of the street. A DB is the smallest geo-
graphic area used for population and dwelling counts, and is bounded
by roads or boundaries of standard geographic areas. DAs are composed
of one or more adjacent dissemination blocks and represent populations
of approximately 400 to 700 persons (Statistics Canada, 2016).

Postal code histories from tax files include many gaps in reporting,
which makes it difficult to follow respondents over time. Incomplete
postal codes histories were imputed using a method developed by
Statistics Canada (Fines et al., 2017). Briefly, postal codes were imputed
based on reported postal codes in years before and after the time gap in
reporting, with a non-null probability that the imputed postal codes did
not match. The probability that the same postal code was imputed from
neighbouring postal codes decreased with increasing gap length, with a
95%, 80%, and 60% probability of the same postal code being imputed
with a gap length of 1 or 2, 3 or 4, or 5 or more years, respectively.
Imputed postal codes that did not match those reported before and after
were assigned partial postal codes. In general, these were common
characters of the first digits of postal codes, which represented a
coarser-scaled division of mail delivery service (Finés et al., 2017). In
cases where a postal code was not imputed from neighbouring postal
codes, the missing postal code was assigned a dummy value, and the
exposure was estimated as a national mean. In a validation exercise
with the 1991 CanCHEC, when 5% of postal codes were randomly de-
leted and then imputed using the program, only 4.2% of imputed postal
codes had an absolute PM, 5 difference greater than 0.1 ug/m? (Finés
et al., 2017). In the analytical file, 18.0% of all person-years received an
imputed postal code through this process.

Based on residential locations from postal codes, all respondents
were assigned an exposure estimate for each year from 1998 to 2010
(described above) based on the closest 1 km? grid cell of PM, 5. In order
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Table 1
Descriptive statistics of the 2001 CanCHEC and air pollution exposure, with Cox pro-
portional hazard ratios among levels of each covariate.

Covariate Persons HR®  95% CI PM, 5"
Lower Upper Mean SD
All 2,448,500 - - - 7.37  2.60
Sex
Male 1,185,500 - - - 7.32 259
Female 1,263,000 - - - 7.42 261
Age group (years)
25 to 29 222,100 - - - 7.43 2.59
30 to 39 574,400 - - - 7.31 257
40 to 49 634,900 - - - 7.30 258
50 to 59 446,000 - - - 7.30 2.61
60 to 69 286,700 - - - 7.40  2.64
70 to 79 206,200 - - - 7.72  2.68
80 to 89 78,100 - - - 7.89 2.68
Visible minority status
White or Aboriginal® 2,419,700 1.000 - - 7.36  2.60
Visible minority 28,800 0.868 0.825 0.913 846 237
Aboriginal identity
Not Aboriginal® 2,304,700 1.000 - - 7.46  2.60
Aboriginal 143,700 1.704 1.673 1736 587 213
Marital status
Single® 323,000 1.000 - - 791 267
Common-law 294,700 0.788 0.769 0.807 7.35 2.61
Married 1,491,200 0.676 0.666 0.686 7.18 2.55
Separated 59,700 0.996 0.966 1.026 7.59 2.62
Divorced 140,700 1.006 0.985 1.028 7.88 2.61
Widowed 139,200 0.898 0.884 0.913 7.67 2.70
Educational attainment
Not completed high school® 704,400  1.000 - - 7.08 2.63
High school with/without 887,600 0.803° 0.795 0.810 7.31 2.58
trades certificate
Post-secondary non- 473,600 0.670 0.660 0.680 7.45 2.55
university
University degree 382,900 0.551 0.542 0.561 7.92 258
Income adequacy quintile
1st quintile - lowest® 373,600 1.000 - - 7.49  2.67
2nd quintile 465,100 0.816 0.807 0.825 7.41 2.64
3rd quintile 509,900 0.711 0.702 0.720 7.37 2.60
4th quintile 537,400  0.633 0.625 0.642 7.33 2.57
5th quintile - highest 562,600 0.536 0.528 0.543 7.30 2.55
Labour force status
Employed® 1,580,900 1.000 - - 7.39 256
Unemployed 103,800 1.608 1.559 1.659 6.73 2.62
Not in labour force 763,800 1.944 1917 1971 7.43 2.67
Population Centre Size®
Rural area® 641,800 1.000 - - 5.47 1.96
Small pop centre (1000 to 387,000 0.982° 0.968 0.996 6.07 2.01
29,999)
Medium pop centre (30,000 230,700 0.980 0.965 0.995 7.57 2.59
to 99,999)
Large pop centre (100,000 1,151,400 0.982° 0.972 0.993 8.74 2.40
or more)
Not assigned (dummy 37,600 - - - 6.84 1.53
variable)
Airshed?
Western® 265,800  1.000 - - 6.55 1.80
Prairie 288,600 1.083 1.062 1.104 6.39 1.78
West Central 164,900 1.115 1.091 1.139 556 1.56
East Central 1,376,300 1.035 1.021 1.049 845 261
South Atlantic 268,200 1.060° 1.041 1.079 4.82 1.57
Northern 42,500 1.121° 1.067 1.178 4.47 1.88
Not assigned (dummy 42,100 - - - 6.87 1.60
variable)
Ecological covariates - per
10% increase
% unemployed - 1.082° 1.056 1.109 - -
% not graduated high school - 1.026° 1.020 1.031 - -
% low income - 0.959 0.951 0.967 - -

" Significant Hazard Ratio (p < 0.05).

@ Hazard ratios stratified by age (5 year categories) and sex.

Y Calculated for all person-years.

¢ Reference category.

4 Based on first year of postal code data included or imputed for each respondent.
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to ensure that exposure always preceded the event, respondents were
assigned a 3-year mean value in the year preceding the follow-up year,
as in Pinault et al. (2016a). For example, the mean PM, 5 estimates from
1998 to 2000 were used for the 2001 follow-up year.

2.3. Statistical analysis

We fit standard Cox proportional hazards models (Cox, 1972) to
explore the associations between exposures to PM, 5 and non-accidental
and cause-specific mortality, as described in detail below. Respondents
were followed from Census year (2001) to either the year of death or
the final year of follow-up (2011). All survival models were stratified by
age (5-year groups) and sex. Models were adjusted for the following
individual demographic and socioeconomic variables at baseline (on
Census day): Aboriginal identity, visible minority status, marital status,
educational attainment, income adequacy quintile, and labour force
status (Table 1). Visible minority status was defined as in the Employ-
ment Equity Act as “persons, other than Aboriginal persons, who are not
white in race or colour” (Statistics Canada, 2003). Income adequacy
quintiles were calculated based on the ratio between the pre-tax income
of economic families or unattached individuals to the Statistics Canada
low-income cut-off for family and community size, and they are ad-
justed for regional differences in family economic status (e.g., housing
costs) (Pinault et al., 2016b). Low-income cut-off values are the income
levels at which families or individuals spend 20% more than average on
food, shelter and clothing than others in their community (Statistics
Canada, 2003). Labour force status was defined as employed, un-
employed, or persons not in the labour force, which included persons
who had left on disability, had retired, or had never worked, in the
week prior to Census day (Statistics Canada, 2003). Finally, models
were also stratified by population centre size and airshed. Six airsheds
that share air quality characteristics and air movement patterns have
been defined in Canada by the Air Quality Management System (AQMS)
(Crouse et al., 2016). The east central airshed includes the large cities of
Toronto and Montreal, whereas the western airshed includes the city of
Vancouver, the prairie airshed includes the cities of Calgary and Ed-
monton, and the northern airshed includes a broad swath of the
northern territories of Canada. Population centre size was derived from
the PCCF + and classified the postal code as being rural or in a small
(1000 to 29,999), medium (30,000 to 99,999) or large (100,000 or
greater) population centre (Statistics Canada, 2016). The large popu-
lation centre size includes all Census Metropolitan Areas (the 27 largest
cities in Canada, as of 2001). For all years of follow-up, respondents
were assigned to one of these airsheds and population centre sizes,
though some (<2%) were assigned to dummy values because of
missing imputed postal codes for the person-year.

Models were also adjusted for the following contextual (ecological)
covariates at the Census Division (CD) scale: the proportion of persons
aged 25 or older who were unemployed, the proportion that had not
graduated from high school, and the proportion of persons who were in
low-income families (Table 2). There were 288 CDs in 2001. CDs re-
present an intermediate geographic area between province and muni-
cipality scales, and are relatively geographically stable areas, allowing
their use in longitudinal studies (Statistics Canada, 2003). Covariates
were derived from the 2001 Census year for the follow-up years of
2001-2003, from the 2006 Census year for 2004-2008, and from the
2011 Census year for 2009-2011. Covariates (CD means) obtained from
Census were calculated using Census weights from the long-form
questionnaire in 2001 and 2006, and the National Household Survey in
2011.

Covariates were added to the survival models in a sequential
manner: models were created with age and sex as strata, then individual
adjustment factors were added, followed by contextual covariates, and
finally models were stratified by airshed and population centre size to
create the fully adjusted models. The following causes of death were
considered: non-accidental (ICD-10 codes A to R), cardiovascular (ICD-
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10: 110 to 169, with and without diabetes, E10 to E14), ischemic heart
disease (ICD-10: 120 to 125), cerebrovascular disease (ICD-10: 160 to
169), non-malignant respiratory disease (ICD-10: J00-J99), chronic
obstructive pulmonary disease (COPD) (ICD-10: J19 to J46), pneu-
monia (ICD-10: J10 to J19), and lung cancer (ICD-10: C33 to C34).

There are several limitations to our previous approach to examining
the shape of the concentration-mortality association using restrict cubic
splines with three knots (Crouse et al., 2015; Pinault et al., 2016a). The
spline definition (number and placement of knots) was not examined to
select the most appropriate structure. Second, there is no guarantee that
the best fitting spline would be suitable for health impact assessment
(i.e. not only monotonically increasing but display an appropriate
amount of curvature). We thus turned to an alternative modeling ap-
proach using the Shape Constrained Health Impact Function (SCHIF),
which characterises the shape of the association between exposure and
mortality (Nasari et al., 2016). The method fits several different shapes
of association as variations on sigmoidal functions. The relative risk
R(PM,s) between concentrations of PM, 5 and mortality are described
by a family of shapes:

R(PM,5) = J(PM,s5)"PM23),

Here, J(PM,s) can take on two shapes,J(PM,s) = ef™25 or
J(PM,5) = 1 + PM,s. The parameter n(PM, ;) is a function of PM, 5 and
a set of additional unknown parameters, (6, u, 7), where

2

n(PMys) = 1+ exp(—(PMys — p)/(t X 1))’

with r the range in PM,s. The parameter 7 controls the amount of
curvature in 7 with u controlling the shape. The magnitude of u char-
acterises sub-linear shapes over lower concentrations, with larger va-
lues related to wider sub-linear concentration range. Here, O represents
the logarithm of the relative risk for a unit change in the transformed
concentrations log(J(PM,s))/(1 + exp(—(PM,5s — w)/(t X r))).

The logarithm of the SCHIF can represent a variety of shapes, in-
cluding near linear when J(PM,s) = ¢”25 and u < 0. The SCHIF is
supra-linear when J(PM,s) =1 + PM,s, 6 < 1, and u ~ 0. The SCHIF
has a threshold-type shape (no association for low concentrations and a
near linear association for higher concentrations) for x> 0 and
J(PM,5) = eP™25_ The larger the value of yu the larger the PM, s con-
centration corresponding to R(PM,s) > 1. Finally, the SCHIF can take
on a sigmodal shape when u > 0, 6 < 1, and J(PM,5) = 1 + PM,s.

The method to estimate the SCHIF selects multiple values of (J, u, 7)
and given these values, estimate 0 and its standard error using standard
computer software that fit the Cox proportional hazards model. In order
to reduce the computational burden we perform a limited number of
shapes to be examined.

We first perform Cox regressions on 16 shapes defined by the Oth,
25th, 50th, and 75th percentiles of the PM, 5 exposure distribution to
define values of u with both specifications of J and two values of 7(0.1
and 0.2). We find that the SCHIF displays an unreasonable amount of
curvature if 7 < 0.1 and does not allow enough curvature when 7 > 0.2.
We then identify the value of (J, u, 7) corresponding to the best fitting
model using the log-likelihood function. We then toggle u up and down
by 5 percentile points until we achieve the best fit. Our search algo-
rithm results in a minimum of 16 shapes fit and a maximum of 21. The
SCHIF is then defined as a weighted average of the predictions of all
models examined at any concentration with weights defined by the
likelihood function value. Uncertainty estimates of the ensemble model
predictions were obtained by bootstrap methods which incorporate
both sampling and model shape uncertainty.

3. Results
A final analytical population of 2,448,500 persons were followed for

up to 10.6 years (mean = 10.4 years, or 25,484,400 person-years). The
mean (* standard deviation, SD) age of cohort members at baseline
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Table 2
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Cox proportional hazard ratios for non-accidental mortality (n = 233,300) per 10 pg/m?® increase in PM, 5, with stepwise addition of covariates and strata variables.

Covariate added HR 95% CI (—2) Log likelihood
Lower Upper
Stratified by age and sex 1.043 1.026 1.060 4,979,063
Stratified by age and sex + individual covariates added separately
Marital status 1.000 0.984 1.016 4,973,718
Educational attainment 1.126 1.108 1.145 4,971,245
Income adequacy quintiles '1.024 1.007 1.041 4,970,057
Employment status 1.051 1.034 1.068 4,969,655
Visible minority status '1.044 1.027 1.061 4,979,030
Aboriginal identity 1.097 1.079 1.115 4,976,266
Stratified by age and sex + all individual covariates "1.102 1.084 1.120 4,955,833
Stratified by age and sex + all individual covariates + ecological covariates added separately
% unemployed (aged 25 and older) 1.086 1.068 1.105 4,955,774
% not graduated from high school (aged 25 and older) "1.060 1.042 1.079 4,955,700
% low income status "1.129 1.110 1.149 4,955,753
Stratified by age and sex + all individual covariates + all ecological covariates 1.087 1.068 1.107 4,955,545
Stratified by age and sex + all individual covariates + all ecological covariates + new strata
Stratified by age, sex, airshed + all individual covariates + all ecological covariates "1.126 1.102 1.151 4,303,714
Stratified by age, sex, population centre size + all individual covariates + all ecological covariates '1.081 1.059 1.103 4,301,452
Stratified by age, sex, airshed, population centre size + all individual covariates + all ecological covariates 1.177 1.148 1.207 3,809,238

" Significant HR (p < 0.05).

was 48.4 (* 15.0) years. The mean PM, s exposure (= SD) of re-
spondents from the 3-year moving average was 7.4 (+ 2.6) ug/m>
(Table 1), with the following percentiles: min < 0.01 ug/m?, 5th =
3.51 ug/m°, 25th = 5.37 ug/m°, 50th = 7.12 ug/m>, 75th = 9.07 ug/
m?, 95th = 11.97 ug/m> max = 20.00 ug/m>. During the follow-up
period, the age/sex adjusted mortality rate was 1012.5 per 100,000. In
general, air pollutant mean exposures were similar across most socio-
demographic characteristics (Table 1), although they were greater for
visible minority and lower for Aboriginal populations, and varied across
airsheds. The distribution of PM, 5 across different airsheds and popu-
lation centre size categories is provided in Supplementary Table 1. In
general, PM, s exposures were higher in increasing population centre
sizes, and were particularly large in the east central airshed, where two
of the largest cities in Canada (i.e., Toronto and Montreal) are located.
The contextual covariates at the CD scale did not differ substantially
across Census years, representing a median of 4.1-5.8% unemployed,
23.6-27.5% not graduated from high school, and 10.2-14.6% low in-
come status (Supplementary Table 2). The contextual covariates were

Table 3

weakly correlated to PM, s exposures (Supplementary Table 2). The
population characteristics of the cohort are provided by PM, s quintile
in Supplementary Table 3.

Separate Cox survival models for non-accidental mortality were
carried out for all covariates used in subsequent survival models
(Table 1). In general, lower mortality HRs were observed for persons of
visible minority, common-law, married or widowed (versus single),
increasingly higher educational attainment, and increasingly higher
income. Higher mortality HRs were observed for Aboriginal re-
spondents, and persons who were unemployed or not in the labour
force. Hazard ratios also varied across geographical regions, with
higher HRs observed in rural areas (vs. population centres) and in
certain airsheds.

All individual and contextual covariates, as well as strata variables,
were added in a stepwise manner to a model for non-accidental mor-
tality. Additional variables and strata improved model fit, as evidenced
by log-likelihood values (Table 2). In general, the addition of individual
covariates strengthened the association between PM,s and non-

Cox proportional survival model hazard ratios for different causes of mortality per 10 pg/m?® increase in PM, 5.

Deaths® Unadjusted” Adjusted: individual covariates® Adjusted: individual + ecological Fully adjusted®
covariates’

HR 95% CI HR 95% CI HR 95% CI HR 95% CI
Lower Upper Lower Upper Lower Upper Lower Upper
Non-accidental 233,300 "1.043 1.026 1.060 "1.102 1.084 1.120 "1.087 1.068 1.107 "1.177 1.148 1.207
Cardiovascular 69,000 0.984 0.955 1.014 "1.037 1.006 1.068 1.048 1.013 1.083 “1.246 1.190 1.305
Cardiovascular 77,000 0.978 0.951 1.006 "1.048 1.019 1.078 1.068 1.035 1.102 "1.268 1.214 1.325

+diabetes

Ischemic heart disease 40,400 "1.094 1.053 1.137 "1.158 1.114 1.204 "1.184 1.134 1.236 *1.355 1.276 1.439
Cerebrovascular disease 13,300 "0.816 0.762 0.874 "0.855 0.797 0.916 *0.857 0.794 0.926 1.110 0.998 1.235
Respiratory 21,100 0.948 0.898 1.001 1.038 0.982 1.097 1.011 0.951 1.075 "1.216 1.116 1.324
COPD 11,900 "0.888 0.826 0.955 0.962 0.895 1.035 1.001 0.923 1.086 “1.238 1.106 1.386
Pneumonia 4,600 0.915 0.813 1.030 1.006 0.892 1.134 0.918 0.804 1.049 “1.210 1.004 1.457
Lung cancer 23,900 "1.128 1.073 1.186 1.206 1.146 1.268 "1.168 1.104 1.236 "1.158 1.072 1.252

@ Rounded to nearest 100.
b Stratified by age (5 year categories), sex.

¢ Stratified by age (5 year categories), sex, and adjusted for visible minority identity, Aboriginal identity, marital identity, educational attainment, income quintile, and labour force

identity.

4 Stratified by age (5 year categories), sex, and adjusted for visible minority identity, Aboriginal identity, marital identity, educational attainment, income quintile, and labour force
identity, and also for the % unemployed (aged 25 and older), % not graduated from high school (aged 25 and older), and % low income identity, for CDs.

¢ Stratified by age (5 year categories), sex, airshed and population centre size, and adjusted for visible minority status, Aboriginal identity, marital status, educational attainment,
income quintile, and labour force status, and also for the % unemployed (aged 25 and older), % not graduated from high school (aged 25 and older), and % low income status, for CDs.
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accidental mortality, while the subsequent addition of contextual cov-
ariates attenuated this association. Stratifying the model by airshed and
population centre size improved model fit substantially, and also in-
flated HRs when both strata were used together.

Models for the association between PM, 5 and mortality were cre-
ated for nine causes of death. In fully adjusted models, HR estimates for
non-accidental mortality were 1.18 (95% C.L: 1.15-1.21) per 10 pg/m>
increase in PM, 5 (Table 3). Notably high HRs were observed for car-
diovascular disease (HR = 1.25; 95% CI: 1.19-1.31), cardio-metabolic
disease (HR=1.27; 95% CI: 1.21-1.33), ischemic heart disease (HR =
1.36; 95% C.L: 1.28-1.44 per 10 pg/m? increase) and COPD mortality
(HR = 1.24; 95% C.L: 1.11-1.39 per 10 ug/m? increase). The hazard
ratios were smaller for cerebrovascular disease in fully adjusted models.

To illustrate the family of shapes considered we plotted the pre-
dicted value of the SCHIF by PM, 5 for each curve for COPD (solid blue
line in Fig. 1). The thickness of the line is proportional to the weight.
There are a variety of shapes examined, from near linear, sub-linear,
and supra-linear. In this case, the best fitting shape is supra-linear
(thickest solid blue line). The ensemble curve is also displayed (dashed
black line) showing less curvature at the origin compared to the best
fitting shape. A linear in concentration curve is also displayed (solid red
line). The difference in —2LL between the best fitting model and the
linear model is 7.5. Since the SCHIF family of curves does not strictly
contain a linear model we cannot compare the fit using a likelihood
ratio test. However, if we consider the SCHIF to be defined by four
unknown parameters (J, u, 7, 6) and the linear model with a single
parameter, the AIC difference for improved fit would be 6, suggesting
that the best fitting shape has improved predictive power over the
linear model. The differences in —2LL for non-accidental deaths was
37, cardio-metabolic deaths was 48, cardiovascular was 36, ischemic
heart disease was 27, non-malignant respiratory disease was 9, and lung
cancer was 7. These results suggested that there is some evidence that
the association between long-term PM, 5 exposure and mortality is non-
linear in this cohort.

The concentration-response curves for various causes of death in
fully adjusted models are presented in Fig. 2. The minimum con-
centration in the models (0 pg/ms) was used to specify the reference
concentration, at which the hazard function was equal to 1. In general,
the shape of the curves for most causes of death (other than pneumonia,
cerebrovascular disease and lung cancer) was supra-linear, with the
greatest increase in the lower ranges of exposure (Fig. 2). Since the
concentration-response curves were non-linear, we also provide an al-
ternative method of describing the shape of the PM, s-mortality asso-
ciation by estimating HRs in ranges of PM, 5 concentrations (0-5, 5-10,
and >10pug/m® for the causes of death outlined in Fig. 2

Hazard Ratio

PM, 5 - ug/m’

Fig. 1. Predicted values of the family of shapes examined by the Shape Constrained
Health Impact Function (solid blue lines) with line thickness proportional to model fit.
Ensemble of family of shapes (dashed black line) and linear in concentration (dashed red
line) are also displayed. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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(Supplementary Table 4) assuming a linear in concentration model
within each range. Mortality HRs were larger for the <5 ug/m? range
than the other two ranges for all causes of death examined expect lung
cancer, a pattern also observed using our SCHIF model. For lung cancer,
we observed a pattern with a low (negative) HR estimate in the lowest
range, a high estimate in the middle range, and a moderate estimate in
the highest range. A similar pattern was also observed with our SCHIF
model (Fig. 2).

4. Discussion

In our large Canadian cohort, exposure to ambient PM, 5 was as-
sociated with an increased risk of non-accidental mortality, with HR =
1.18 per 10 ug/m? increase in concentration in a model adjusted for
many individual and contextual covariates. The highest HRs were those
of associations between PM, 5 with ischemic heart disease and cardio-
metabolic disease, while weaker associations were observed between
PM, s with cerebrovascular disease. Importantly, the association at the
lowest concentrations appeared to be supra-linear for most causes of
death.

One notable strength of this study was that it used a large, national
cohort based on a census of population, which provides a sample po-
pulation that is largely representative of the population of Canada. The
timing of the cohort and its follow-up period corresponded to annual
estimates of air pollution, thus avoiding misalignment in applying more
recent estimates for historical exposure. As a result, it was also possible
to assign exposures using a 3-year average window, occurring prior to
any follow-up year and death event.

An important development in this study over previous ones was the
use of a finer-scale and more accurate national PM, s model that pro-
vided estimates on an approximate 1km? grid, and explained 23%
more variance (82% vs. 59%) in PM,s measured by ground-based
monitors, compared with previously used models (e.g., van Donkelaar
et al., 2010; Crouse et al., 2012). This change in scale was particularly
critical for small to large-sized cities, where the previous exposure
model often underestimated exposures. For example, in Calgary, Al-
berta (2011 population 1,096,833), a typical PM, 5 estimate in the
city core was approximately 11 pg/m? in the new model and 8 pg/m?® in
the previous model, due to estimates in the previous model being
averaged over a larger area. In southern Ontario, the small city of
Chatham-Kent (2011 population = 101,700), the PM, 5 estimate in the
city core was 10.5 ug/m?® in the current model and 13.8 pg/m? in the
previous model, while just outside the city core it was 6.5 ug/m? in the
current model and 13.0 pg/m® in the previous model (Statistics Canada,
2011). Similarly, our current model more clearly resolved gradients
associated with clean air in rural areas. For example, rural areas west of
Kitchener, Ontario, were estimated at 10.9 ug/m°® in the previous
model, but only 3.5 ug/m? in the our current model.

In our earlier study with coarse-scaled PM, s, incorporating annual
residential mobility patterns did not have a significant impact on the
results of our survival models, due in part to the fact that differences in
exposures related to movements within an urban area may not have
been captured (Crouse et al., 2015). For example, subjects would not be
assigned different exposure estimates in situations where they moved
anywhere within 10 km of their original location. In the case of this
study, however, in which we used a finer-scale PM, 5 model, we likely
reduced exposure misclassification, particularly among subjects who
moved during the follow-up period. The addition of a new imputation
for missing postal codes allowed these persons to be considered
throughout the follow-up period, and a more complete follow-up his-
tory to be considered.

Stratifying the analysis by airshed and population centre size, in
addition to age and sex, ensured that persons living in similar en-
vironments were compared to their peers. This step adjusted for po-
tential confounding from local influences upon health, such as avail-
ability of health services, as well as known neighbourhood influences
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upon health. For example, the Ontario Tax Cohort (n = 548,000) was
followed for a 22 year follow-up period. After adjusting for individual
socioeconomic status, elevated mortality risk was associated with living
in the most socially and materially deprived neighbourhoods (HRs
ranged between 1.09 and 1.15) (Ross et al., 2013). Similarly, mortality
rates are higher in increasingly rural areas that are less influenced by
metropolitan areas (Pong et al., 2009). However, it is important to note
that stratifying by both airshed and population centre size inflated the
HRs substantially from fully adjusted models without these strata.

In comparison to the results of the 1991 CanCHEC analyses, our
estimates of HRs were somewhat higher. For non-accidental mortality,
HRs reported by Crouse et al. (2015) of HR = 1.04 (95% CI: 1.03-1.04)
per 5 ug/m?® increase (Cochran's Q = 39.5, p < 0.001) were lower than
our (re-scaled) HR of 1.09 (95% CI: 1.07-1.10). Similarly, our estimate
of ischemic heart disease risk (re-scaled HR = 1.16; 95% CI: 1.13-1.20)
was significantly greater than that of Crouse et al. (2015) of HR = 1.09
(95% CI: 1.07-1.10) per 5 ug/m?> increase (Cochran's Q = 16.3, p <
0.001). These higher HRs may be due to the addition of the population
centre size and airshed as new model strata. Indeed, when we excluded
these new strata from our models, our HRs were consistent with those
in the literature (i.e., non-accidental mortality HR = 1.08 (95% CI:
1.06-1.10)). Differences in ischemic heart disease mortality have been
associated with different sources and mass constituents of PM, 5
(Thurston et al., 2016). Changes to the source and type of PM, 5 mea-
sured over the past decade may also have an influence on the strength
of association with mortality.

Our results were broadly consistent with studies conducted else-
where. Associations between PM, 5 and non-accidental mortality were
within the same range as that reported by ESCAPE (1.07; 95% CI:
1.02-1.13 per 5 pg/m3 increase) (Beelen et al., 2014). Non-accidental
mortality associations were higher than those reported in older cohort
studies, such as the American Cancer Society study (HR = 1.06; 95%
CI: 1.02-1.11; Pope et al., 2002), as well as a global pooled meta-
analysis (HR = 1.06; 95% CIL: 1.04-1.08; Hoek et al., 2013). Associa-
tions between cardiovascular mortality and PM, s air pollution in our
cohort (HR = 1.25) were generally also greater than those in other
cohorts and meta-analyses, including the global pooled meta-analysis
(HR = 1.11; 95% CI: 1.05-1.16) (Hoek et al., 2013), and the Dutch
Environmental Longitudinal Study (DUELS) (HR 1.09; 95% CI:
1.06-1.12) (Fischer et al., 2015). Our higher results may be due to the
inclusion of location-specific strata variables as well as the supra-linear
nature of PM, s-mortality associations, as suggested by Burnett et al.
(2014), since our study exposures are at the extreme lower end of the
global exposure distribution (Brauer et al., 2016).

Our estimate for the association between non-malignant respiratory
mortality with PM, 5 (HR = 1.22) was within the broad range of those
reported in the literature, for example, in DUELS (HR = 1.18) and the
California Teachers study (HR = 1.21) (Ostro et al., 2010; Fischer et al.,
2015). In the ESCAPE cohort, lung cancer associations with PM, 5 were
stronger than in our study (HR = 1.18; 95% CI: 0.96-1.46 per 5 ug/m?>
increase), though CI were wide and overlapped with ours (Raaschou-
Nielsen et al., 2013).

There were some important limitations in this study. First, although
estimates of exposure were assigned more accurately than in previous
studies, they are still derived by assigning exposures based on a place of
residence according to a postal code. We possibly underestimate ex-
posure for the working-age population who live in areas of lower air
pollution (i.e., the suburbs) and who commute into regions of higher air
pollution exposure. Since the majority of deaths occur among the older
population, this difference in exposure may have little effect on overall
HR estimates. While the placement of postal codes in urban centres is
relatively accurate since it is usually based on a block face, the accuracy
in rural areas is likely far less so. We were also unable to account for the
exact date where participants may have moved to a different postal
code, resulting in further misclassification. However, the mis-
classification of exposure may be mitigated somewhat by the generally
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lower variation in exposures across the rural landscape. Second, ex-
posures were based on outdoor estimates at a person's place of re-
sidence, and ignore exposures that occur at work or in other locations.
Further refinement of models to include place of work might provide a
more accurate estimate of exposures. Our models were relatively robust
to the imputation of postal codes and PM, 5 estimates (non-accidental
mortality HR prior to imputation was the same). Third, our cohort in-
cluded some exclusions, including persons who had not filed any taxes,
as well as all immigrants. Although very few persons were excluded
based on taxes, the generalizability of these findings is relatively lim-
ited to the non-immigrant portion of Canadians, and a follow-up study
focusing on immigrant exposures may be warranted.

We observed a near linear association between PM, s and all non-
accidental and several specific causes of death for lower concentrations,
with less change in relative risk for higher concentrations. We do not
observe any evidence to suggest that the association is sub-linear over
the lowest concentrations. A diminished change in relative risk at
higher concentrations has been previously suggested (Pope et al., 2009,
2011a, 2011b) and relative risk models have been based on this as-
sumption (Burnett et al., 2014) to create global burden of disease es-
timates. However, we suggest that the biological mechanism of sa-
turation is unlikely to be the reason for the observed non-linear pattern
at the very low concentrations observed in the present study.

We did not have reported information on several behavioural risk
factors, such as smoking habits, obesity, diet, and alcohol consumption.
In another nationally representative cohort in Canada based on re-
peated health surveys whose subjects were linked to vital status, we
observed a similar supra-linear association, as evidenced by fitting re-
stricted cubic splines (Pinault et al., 2016a). The same follow-up period
(2001-2011) and PM, 5 exposure model was used as the current study.
Although we cannot completely rule out residual confounding by
missing risk factors, we suggest that it is unlikely since the Pinault et al.
(2016a) study did adjusted for these behavioural risk factors. However,
smoking is the strongest risk factor for both malignant and non-ma-
lignant respiratory diseases, and a small, positive interaction between
smoking and PM, 5 exposure has been observed in the American Cancer
Society Cancer Prevention Study-II (Turner et al., 2017).

We also note that in a study of 60 million MEDICARE participants in
the continental United States (Di et al., 2017), when PM, 5 concentra-
tions above 12 ug/m> were removed, the effect estimate per 10 pg/m?>
change in PM, 5 greatly increased from 7.3% (95% CI: 7.1-7.5%) with
all the exposure data, to 13.6% (13.1-14.1%) for exposures less than
12 pg/m>. The lowest concentration in that study was 5 ug/m>, and
thus these authors could not direct investigate the shape of the con-
centration-mortality association at lower levels. We observed a similar
effect estimate of 13.3 (9.3-17.4) over the 5-12 ug/m® exposure range
in the current study. However, in our study, 25% of person-years of
follow-up were assigned PMS 5 exposures below 5 ug/m?>, enabling us to
examine the association at these lower levels (Supplementary Table 4).
The effect estimate over the 0-5 ug/m> range for all non-accidental
deaths in our study was 23.7% (8.7-49.1%), a much larger value than
in the 5-12 pg/m°® range observed in this study and the MEDICARE
cohort. In both the MEDICARE cohort and our study, the supra-linear
association could be due to increasing measurement error as con-
centration increases (Sheppard et al., 2012) and thus this possibility
cannot also be ruled out.

However, we suggest the most likely reason for the observed non-
linear pattern is that the physical and chemical composition of the at-
mosphere is likely changing, even over the very narrow range in PM, 5
concentrations. The chemical composition of the atmosphere has been
shown in another Canadian cohort, based on linking the respondents of
the 1991 long-form census to vital status up to 2006, to improve pre-
dictive power in addition to PM, 5 mass (Crouse et al., 2016). Penalized
smoothing splines were used to examine the shape of the component-
mortality association. Although shapes did vary by component (sulfate,
nitrate, carbon, dust, organic matter, and ammonium), there was no
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evidence of a sub-linear association, with a supra-linear shape observed
for many components.

Another possible explanation for the supra-linear concentration-re-
sponse curves is that the relative abundance of components and prop-
erties of PM, 5 responsible for health effects vary across the exposure
distribution. For example, we previously reported that oxidative po-
tential can modify both the acute and chronic health impacts of PM, 5
(Weichenthal et al., 2016a, 2016b, 2016c), and thus the shape of the
relationship between PM,s and mortality may also depend on the
oxidative potential of particles across the gradient of mass concentra-
tions. In turn, the oxidative potential of PM, s is influenced by com-
ponents including transition metals, quinones, and polycyclic aromatic
hydrocarbons (Crobeddu et al., 2017) and if the relative abundance of
these components (or others) is greater at lower PM,s mass con-
centrations this may explain a steeper slope at lower PM, 5 levels (i.e.
each unit change in PM, 5 at low levels may contain more “active”
substances compared to a similar change at higher concentrations).
Ultimately, more work is needed to understand the specific components
and properties of PM, 5 that determine health effects before we can
arrive at a more complete understanding of the shape of concentration-
response curves at low mass concentrations. Given the heterogeneous
nature of PM, s, there is no reason to believe that a single shape is
appropriate for all studies and populations as spatial differences in
components (or properties such as oxidative potential) likely play an
important role in determining the functional form of these associations.

Using an updated, large Canadian census cohort, we refined our
previous air pollution exposure estimation methods by using a finer-
scale exposure model at a 1 km? grid, following respondent mobility
using a linkage to tax files, and imputing missing postal codes to gen-
erate a more complete residential history for cohort members. In gen-
eral, these improvements in methodology produced greater hazard ra-
tios for non-accidental and specific causes of death, than those
previously reported in Canada.
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