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A B O U T  H E I

 v

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the institute

• Identifies the highest-priority areas for health effects research;

• Competitively funds and oversees research projects;

• Provides intensive independent review of HEI-supported studies and related 
research;

• Integrates HEI’s research results with those of other institutions into broader 
evaluations; and

• Communicates the results of HEI’s research and analyses to public and private 
decision makers.

HEI typically receives balanced funding from the U.S. Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the 
United States and around the world also support major projects or research programs. HEI has 
funded more than 340 research projects in North America, Europe, Asia, and Latin America, the 
results of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, 
diesel exhaust, ozone, particulate matter, and other pollutants. These results have appeared in 
more than 260 comprehensive reports published by HEI, as well as in more than 2,500 articles in 
the peer-reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Research Committee solicits input from HEI sponsors and other stakeholders and works with 
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and oversee 
their conduct. The Review Committee, which has no role in selecting or overseeing studies, works 
with staff to evaluate and interpret the results of funded studies and related research.

All project results and accompanying comments by the Review Committee are widely 
disseminated through HEI’s website (www.healtheffects.org), printed reports, newsletters and other 
publications, annual conferences, and presentations to legislative bodies and public agencies.
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Research Report 202, Enhancing Models and Measurements of Traffic-Related Air Pollutants for 
Health Studies Using Dispersion Modeling and Bayesian Data Fusion, presents a research project 
funded by the Health Effects Institute and conducted by Dr. Stuart Batterman of the University of 
Michigan, Ann Arbor, and his colleagues. The report contains three main sections.

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the 
study and its findings; it also briefly describes the Review Committee’s comments on 
the study.

The Investigators’ Report, prepared by Batterman and colleagues, describes the 
scientific background, aims, methods, results, and conclusions of the study.

The Critique, prepared by members of the Review Committee with the assistance 
of HEI staff, places the study in a broader scientific context, points out its strengths 
and limitations, and discusses remaining uncertainties and implications of the study’s 
findings for public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of the Review 
Committee, an independent panel of distinguished scientists who have no involvement in 
selecting or overseeing HEI studies. During the review process, the investigators have an 
opportunity to exchange comments with the Review Committee and, as necessary, to revise 
their report. The Critique reflects the information provided in the final version of the report.
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HEI’s Research Program to Improve Assessment of 
Exposure to Traffic-Related Air Pollution

INTRODUCTION

Traffic emissions are an important source of urban
air pollution. Emissions from motor vehicles and ambi-
ent concentrations of most monitored traffic-related
pollutants have decreased steadily over the last several
decades in most high-income countries as a result of
air quality regulations and improvements in vehicular
emission control technologies, and this trend is likely to
continue. However, these positive developments have
not been able to fully compensate for the rapid growth
of the motor vehicle fleet due to growth in population
and economic activity and increased traffic congestion,
as well as the presence of older or malfunctioning ve-
hicles on the roads.

In 2010, HEI published Special Report 17, Traffic-Re-
lated Air Pollution: A Critical Review of the Literature on
Emissions, Exposure, and Health Effects. The report
“identified an exposure zone within a range of up to
300 to 500 m from a major road as the area most
highly affected by traffic emissions (the range reflects
the variable influence of background pollution concen-
trations, meteorologic conditions, and season)” and es-
timated that 30% to 45% of people living in large North
American cities reside within this zone. Based on a re-
view of health studies, the report concluded that expo-
sure to traffic-related air pollution was causally linked to
worsening asthma symptoms. It also found “suggestive
evidence of a causal relationship with onset of child-
hood asthma, nonasthma respiratory symptoms, im-
paired lung function, total and cardiovascular mortality,
and cardiovascular morbidity” (HEI 2010).

Special Report 17 also noted that exposure assess-
ment of traffic-related air pollution is challenging be-
cause it is a complex mixture of pol lutants in
particulate and gaseous forms, many of which are also

emitted by other sources. Traffic–related air pollution
is also characterized by high spatial and temporal vari-
ability, with the highest concentrations occurring at or
close to major roads. Therefore, it has been difficult to
identify an appropriate exposure metric that uniquely
indicates traffic-related air pollution, and to model the
distribution of exposure at a sufficiently high degree of
spatial and temporal resolution. 

The most commonly used exposure metrics are mea-
sured or modeled concentrations of individual pollutants
considered to be indicators of traffic-related air pollution
(such as nitrogen dioxide or black carbon) and simple in-
dicators of traffic (such as distance of the residence from
busy roads or traffic density near the residence).

A range of models — such as dispersion, land-use
regression, and hybrid models — has been developed
to estimate exposure. Some attempts to account for
outdoor air entering buildings and how people spend
time outdoors versus indoors have been made to re-
fine such estimates. Many improvements in these ex-
posure models have occurred over time, especially
with the advance of geographical information system
approaches and the application of more sophisticated
statistical methods. However, their usefulness still de-
pends on the model assumptions and input data qual-
ity. Few studies have compared the performance of
different models and evaluated exposure measure-
ment error and possible bias in health estimations. 

To star t addressing these issues, HEI issued a Re-
quest for Applications in 2013. To inform the develop-
ment of the RFA, the HEI Research Committee held a
workshop in April 2012 with experts in the areas of
atmospheric chemistry, pollutant measurements, ex-
posure models, epidemiology, and health assessment
in order to discuss and identify the highest priority re-
search questions.
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Preface

OBJECTIVES OF RFA 13-1 

RFA 13-1, Improving Assessment of Near-Road Ex-
posure to Traffic Related Pollution, aimed to solicit stud-
ies to improve exposure assessment for use in future
work on the health effects of traffic-related air pollu-
tion. The RFA had three major objectives:

• Demonstrate novel surrogates of near-road traf-
fic-related pollution, taking advantage of new
sensors and/or existing monitoring data. 

• Determine the most important variables that ex-
plain spatial and temporal variance of near-road
traffic-related pollutant concentrations at the per-
sonal, residential, and/or community levels, and ex-
plain the implications of these for future monitoring,
modeling, exposure, and health effects studies.

• Improve inputs for exposure models for traffic-
related health studies; evaluate and compare the
performance of alternative models to existing
models and actual measurements to quantify
exposure measurement error.

DESCRIPTION OF THE PROGRAM

Five studies were funded under RFA 13-1 to rep-
resent a variety of geographical locations and cover
the various RFA objectives; they are summarized be-
low. The study by Batterman and colleagues de-
scribed in this report (Research Report 202) is the
third to be published. In the meantime, HEI has
funded additional studies on similar exposure assess-
ment topics. All recent and ongoing exposure assess-
ment studies are included in the Preface Table.

“The Hong Kong D3D Study: A Dynamic Three Dimen-
sional Exposure Model for Hong Kong,” Benjamin Bar-
ratt, King’s College London, United Kingdom. Barratt
and colleagues estimated exposure to traffic-related
air pollution using a dynamic three-dimensional land-
use regression model for Hong Kong, which has
many high-rise buildings, resulting in street canyons.
Different exposure models were developed with in-
creasing complexity (e.g., incorporating infiltration in-
doors, vertical gradients, and time–activity patterns)
and applied in an epidemiological study to evaluate
the potential impact of exposure measurement error
in mortality estimates (Research Report 194).

“Enhancing Models and Measurements of Traffic-
Related Air Pollutants for Health Studies Using Disper-
sion Modeling and Bayesian Data Fusion,” Stuart Batter-
man, University of Michigan, Ann Arbor, Michigan. I n
the study presented in this report, Batterman and
colleagues evaluated the ability to predict traffic–
related air pollution using a variety of methods and
models, including a line source air pollution disper-
sion model and sophisticated spatiotemporal Bayes-
ian data fusion methods. The study made extensive
use of data collected in the Near-road EXposures
and effects of Urban air pollutants Study (NEXUS), a
cohort study designed to examine the relationship
between near-roadway pollutant exposures and re-
spiratory outcomes in children with asthma who live
close to major roadways in Detroit.

“Characterizing the Determinants of Vehicle Traffic
Emissions Exposure: Measurement and Modeling of
Land-Use, Traffic , Transformation, and Transport,”
Christopher Frey, North Carolina State University, Ra-
leigh, North Carolina. Frey and colleagues investi-
gated key factors that influence exposure to traffic-
related air pollution: traffic and its composition; built
environment including road characteristics and land
use; and dispersion, transport, and transformation
processes. They made extensive measurements of
fine particulate matter, ultrafine particles, oxides of
nitrogen, and semi-volatile organic compounds in
various near-road locations in the Raleigh–Durham
area. This study has been completed and, at the time
of publication of this volume, was in review. 

“Developing Multipollutant Exposure Indicators of Traf-
fic Pollution: The Dorm Room Inhalation to Vehicle
Emissions (DRIVE) Study,” Jeremy Sarnat, Emory Uni-
versity, Atlanta, Georgia Sarnat and colleagues eval-
uated novel multipollutant traffic surrogates by col-
lecting measurements in and around two student
dormitories in Atlanta and explored the use of me-
tabolomics to identify possible exposure-related me-
tabolites. The DRIVE study made use of a unique
emission-exposure setting in Atlanta, on the Georgia
Institute of Technology campus, with one dorm im-
mediately adjacent to the busiest and most con-
gested highway ar tery in the city (with more than
300,000 vehicles per day) and another dorm located
farther away (Research Report 196).
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*Current study.

Preface Table. Summary of Recently Completed, Ongoing, and Projected Studies Funded by HEI to Improve 
Exposure Assessment for Health Studies

Principal Investigator Title Study Status

RFA 13-1, Improving Assessment of Near-Road Exposure to Traffic Related Pollution

Benjamin Barratt, King’s 
College London, United 
Kingdom

The Hong Kong D3D Study: A Dynamic Three Dimensional Expo-
sure Model for Hong Kong

Research 
Report 194

Stuart Batterman, Univer-
sity of Michigan, Ann Arbor

Enhancing Models and Measurements of Traffic-Related Air Pollutants for 
Health Studies Using Dispersion Modeling and Bayesian Data Fusion

Research 
Report 202*

Christopher Frey, North 
Carolina State University, 
Raleigh

Characterizing the Determinants of Vehicle Traffic Emissions Expo-
sure: Measurement and Modeling of Land-Use, Traffic, Transfor-
mation, and Transport

In review

Jeremy Sarnat, Emory 
University, Atlanta

Developing Multipollutant Exposure Indicators of Traffic Pollution: 
The Dorm Room Inhalation to Vehicle Emissions (DRIVE) Study

Research 
Report 196

Edmund Seto, University of 
Washington, Seattle

Evaluation of Alternative Sensor-Based Exposure Assessment Meth-
ods

Unpublished 
report

RFA 17-1, Assessing Adverse Health Effects of Exposure to Traffic-Related Air Pollution, Noise, and Their Interactions with 
Socioeconomic Status

Payam Dadvand and Jordi 
Sunyer, Barcelona Insti-
tute for Global Health 
(ISGlobal), Spain

Traffic-Related Air Pollution and Birth Weight: The Roles of Noise, 
Placental Function, Green Space, Physical Activity, and Socioeco-
nomic Status (FRONTIER)

Ongoing

Ole Raaschou-Nielsen, 
Danish Cancer Society 
Research Center, Copen-
hagen, Denmark

Health Effects of Air Pollution Components, Noise and Socioeco-
nomic Status (“HERMES”)

Ongoing

Meredith Franklin, Univer-
sity of Southern California, 
Los Angeles

Intersections as Hot Spots: Assessing the Contribution of Localized 
Non-Tailpipe Emissions and Noise on the Association between 
Traffic and Children’s Health

Ongoing

RFA 16-1, Walter A. Rosenblith New Investigator Award

Joshua Apte, University of 
Texas, Austin

Scalable Multi-Pollution Exposure Assessment Using Routine Mobile 
Monitoring Platforms

Ongoing

RFA 19-1, Applying Novel Approaches to Improve Long-Term Exposure Assessment of Outdoor Air Pollution for Health Studies

Scott Weichenthal, McGill 
University, Montreal, Can-
ada 

Comparing the Estimated Health Impacts of Long-Term Exposures 
to Traffic-Related Air Pollution Using Fixed-Site, Mobile, and Deep 
Learning Models

Projected start 
in 2020

Gerard Hoek, Utrecht Uni-
versity, The Netherlands

Comparison of Long-Term Air Pollution Exposure Assessment 
Based on Mobile Monitoring, Low-Cost Sensors, Dispersion Mod-
elling and Routine Monitoring-Based Exposure Models

Projected start 
in 2020

Kees de Hoogh, Swiss Trop-
ical and Public Health In-
stitute, Basel, Switzerland

Accounting for Mobility in Air Pollution Exposure Estimates in Stud-
ies on Long-Term Health Effects

Projected start 
in 2020

Klea Katsouyanni, King’s 
College London, United 
Kingdom

Investigating the Consequences of Measurement Error of Gradually 
More Sophisticated Long-Term Personal Exposure Models in As-
sessing Health Effects: The London Study (MELONS)

Projected start 
in 2020

Lianne Sheppard, University 
of Washington, Seattle

Optimizing Exposure Assessment for Inference about Air Pollution 
Effects with Application to the Aging Brain

Projected start 
in 2020
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“Evaluation of Alternative Sensor-Based Exposure Assess-
ment Methods,” Edmund Seto, University of Washington,
Seattle, Washington. Seto and colleagues performed
an evaluation of novel, low-cost air pollution sensors to
characterize traffic-related air pollution in the San Fran-
cisco Bay area. They deployed various sensors — in-
cluding Shinyei par ticulate matter sensors and
Alphasense electrochemical sensors — for an extended
period of time. Sensors were colocated with reference
monitors to evaluate sensor performance. This study re-
sulted in an unpublished report, which can be obtained
by contacting HEI at pubs@healtheffects.org.

FURTHER RESEARCH UNDERWAY

The studies funded under RFA 13-1 offer valuable
lessons that can be integrated into new epidemiologi-
cal research on the health effects of traffic–related air
pollution. Thus, HEI issued RFA 17-1, Assessing Adverse
Health Effects of Exposure to Traffic-Related Air Pollution,
Noise, and Their Interactions with Socioeconomic Status,
seeking studies to assess adverse health effects of
short- and/or long-term exposure to traffic-related air
pollution. The applicants were asked to consider spa-
tially correlated factors that may either confound or
modify the health effects of traffic-related air pollution,
most notably, traffic noise, socioeconomic status, and
factors related to the built environment, such as pres-
ence of green space. Three studies funded under RFA
17-1 are in progress as of the publication of this report
(see Preface Table). In addition, HEI funded a related
study under the Walter A. Rosenblith New Investiga-
tor Award to compare exposure estimates obtained
from intensive air pollutant measurement campaigns
with Google Street View cars with estimates from
more conventional methods.

Subsequently, HEI issued RFA 19-1, Applying Novel
Approaches to Improve Long-Term Exposure Assessment
of Outdoor Air Pollution for Health Studies to address
challenges in accurately assigning exposures of pollut-
ants that vary highly in space and time to individuals,
and to quantify the influence of exposure measure-
ment error on estimated health risks. At the time of

publication of this report, five studies have been se-
lected for funding under RFA 19-1 and are expected to
start in the spring of 2020. Three of the studies plan to
combine measurements of air pollution from emerging
sources — such as satellite data — and diverse expo-
sure assessment approaches to improve exposure as-
signment in well-established cohorts. Two studies plan
to test the added value of incrementally more complex
statistical modeling approaches to improving exposure
assessment and how this may affect uncer tainty in
health effect estimates in epidemiological studies.

In addition, since the release of HEI’s critical review
of the traffic literature in 2010, many additional studies
about traffic-related air pollution have been published,
and regulations and vehicular technology have ad-
vanced significantly. Therefore, HEI is under taking a
new review of the epidemiological literature on se-
lected health effects of long-term exposure to traffic-
related air pollution. Further information on these ac-
tivities can be obtained at the HEI website, www.heal-
theffects.org/air-pollution/traffic-related-air-pollution.
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Synopsis of Research Report 202
H E I  S TAT E M E N T

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Stuart
Batterman at the University of Michigan, Ann Arbor, and colleagues. Research Report 202 contains both the detailed Investigators’ Report
and a Critique of the study prepared by the Institute’s Review Committee.
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What This Study Adds
• The investigators undertook to improve the 

estimation of air pollution exposure from 
traffic by applying and testing different 
statistical models of concentrations near 
major roads.

• Specifically, they evaluated whether 
inclusion of predictions from the RLINE 
model of traffic-related air pollution would 
improve sophisticated statistical models for 
potential use in exposure assessment.

• Each model provided different useful 
information, and inclusion of RLINE 
improved predictions of the increase in 
near-road concentrations of PM2.5, but not 
of NOx, relative to background levels.

• The application of the statistical models 
was an important contribution. However, 
the usefulness and generalizability of these 
models remain limited until they have been 
evaluated with long-term measurements.

Dispersion and Bayesian Models of Traffic-Related 
Air Pollutants

INTRODUCTION

Traffic emissions are an important source of
urban air pollution, and exposure to traffic-related
air pollution has been associated with various
adverse health effects. However, exposure assess-
ment is challenging because traffic-related air pol-
lution is a complex mixture of particles and gases
that varies greatly by location and over time. This
variability complicates the development of accu-
rate models of traffic-related air pollution to assess
exposure to air pollutants for epidemiological
studies, in particular because of small-scale varia-
tions within cities. Dr. Stuart Batterman from the
University of Michigan and his team aimed to
improve estimates of traffic-related air pollution
concentrations for use in health studies. They used
a systematic approach to apply and test a disper-
sion model — RLINE — developed by the United
States Environmental Protection Agency (U.S. EPA)
and novel statistical approaches (called “Bayesian
spatiotemporal data fusion models” by the investi-
gators) that combine measurements with concentra-
tion estimates generated by RLINE. The long-term
goal was to apply and improve existing models that
could then be employed in other settings.

APPROACH

The study used data collected as part of NEXUS
(Near-road EXposures and effects of Urban air pol-
lution Study), a large study conducted in Detroit to
evaluate health effects of air pollution in children
with asthma living near major roads. All air pollu-
tion data were previously collected for the NEXUS
study at central and near-road monitoring sites in
2011–2014 or by measuring concentrations at dif-
ferent distances from roads with a mobile moni-
toring platform during one week in December 2012
(see Statement Figure).

The investigators employed models of varying
computational complexity — RLINE plus five differ-
ent statistical methods — for particulate matter
≤ 2.5 µm in aerodynamic diameter (PM2.5), nitrogen
oxides (NOx), carbon monoxide (CO), and black car-
bon (BC). RLINE was designed to model concentra-
tions of air pollutants by including factors such as
traffic volume, meteorology, and other factors that in-
fluence how those pollutants spread after being emit-
ted by motor vehicles. First, the investigators
evaluated the RLINE model by predicting daily aver-
age ambient NOx, CO, and PM2.5 concentrations at
five U.S. EPA monitoring sites in the Detroit area.
Second, the investigators systematically applied and
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evaluated the performance of a series of increasingly
complex statistical models by including factors such
as day of week, upwind versus downwind of the near-
est major road, and traffic activity. They also devel-
oped a model that predicted both PM2.5 and NOx
concentrations together instead of in separate models.

MAIN RESULTS AND INTERPRETATION

In its independent review of the study, the HEI
Review Committee concluded that Batterman and
colleagues had successfully evaluated the perfor-
mance of the RLINE model, as well as the perfor-
mance of universal kriging and sophisticated
statistical models that combined RLINE output with
measurements. The Committee agreed with the
investigators that both RLINE and measurements
contributed useful information to the concentration
predictions from statistical models. The perfor-
mance of the RLINE model depended on the pol-
lutant as well as on spatial and temporal factors,
such as distance from the nearest major road. In
addition, statistical models with different sets of
assumptions generally led to the same conclusions
and provided complementary information on how
the air pollutants were spatially distributed.
Finally, adding RLINE to the statistical models or
jointly modeling NOx and PM2.5 improved predic-
tions only for PM2.5 and not for NOx.

The Committee thought the statistical models
were state of the science and well executed and that
the application of the statistical models was a novel
and important contribution. They appreciated that
the models were systematically compared using a
number of performance statistics. On the other
hand, the Committee thought that the report may
have overstated the usefulness of the models for
epidemiological studies for several reasons. First,
the models appeared to have limited use over a
broad geographic area. Second, the models per-
formed better closer to roads than farther away,
which might translate to biased health effect esti-
mates because the exposure predictions would be
more accurate for the most highly exposed people
in an epidemiological cohort (with participants
living at varying distances from major roads). In
addition, the uncertainties in the predictions of air
pollutant concentrations remained large, even for
the most refined models.

There remains a need to further refine the models
and distribute these new tools for wider use. In par-
ticular, these and similar models will need to be rig-
orously tested on large databases of measurements
collected over long periods before they are used on
a large scale in epidemiological studies.

Statement Figure. Map of Detroit showing air quality monitoring stations, airport weather stations, and near-road
mobile monitoring locations. (The map is based on Figure 1 of the Investigators’ Report and Figure 6 in the Additional
Materials, with background layers from Michigan GIS Open Data.)
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INVESTIGATORS’ REPORT

Enhancing Models and Measurements of Traffic-Related Air Pollutants for Health
Studies Using Dispersion Modeling and Bayesian Data Fusion

Stuart Batterman1, Veronica J. Berrocal2, Chad Milando3, Owais Gilani4, Saravanan Arunachalam5, 
and K. Max Zhang6

1Environmental Health Sciences, and Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan;
2School of Public Health, University of Michigan, Ann Arbor, Michigan; 3Department of Environmental Health, Boston
University, Massachusetts; 4Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania; 5Institute for the
Environment at the University of North Carolina, Chapel Hill; 6Sibley School of Mechanical and Aerospace Engineering,
Cornell University, Ithaca, New York

ABSTRACT

INTRODUCTION

The adverse health effects associated with exposure to
traffic-related air pollutants (TRAPs*) remain a key public
health issue. Often, exposure assessments have not repre-
sented the small-scale variation and elevated concentra-
tions found near major roads and in urban settings. This
research explores approaches aimed at improving expo-
sure estimates of TRAPs that can reduce exposure mea-
surement error when used in health studies. We consider
dispersion models designed specifically for the near-road
environment, as well as spatiotemporal and data fusion
models. These approaches are implemented and evaluated
utilizing data collected in recent modeling, monitoring, and
epidemiological studies conducted in Detroit, Michigan.

APPROACH

Dispersion models, which estimate near-road pollutant
concentrations and individual exposures based on first
principles — and in particular, high fidelity models — can
provide great flexibility and theoretical strength. They can
represent the spatial variability of TRAP concentrations at
locations not measured by conventional and spatially
sparse air quality monitoring networks. A number of
enhancements to dispersion modeling and mobile on-road
emissions inventories were considered, including the rep-
resentation of link-based road networks and updated esti-
mates of temporal allocation of traffic activity, emission
factors, and meteorological inputs. The recently developed
Research LINE-source model (RLINE), a Gaussian line-
source dispersion model specifically designed for the near-
road environment, was used in an operational evaluation
that compared predicted concentrations of nitrogen oxides
(NOx), carbon monoxide (CO), and PM2.5 (particulate
matter ≤ 2.5 µm in aerodynamic diameter) with observed
concentrations at air quality monitoring stations located
near high-traffic roads. Spatiotemporal and data fusion
models provided additional and complementary
approaches for estimating TRAP exposures. We formu-
lated both nonstationary universal kriging models that
exploit the spatial correlation in the monitoring data, and
data fusion models that leverage the information con-
tained in both the monitoring data and the output of
numerical models, specifically RLINE. These models were
evaluated using observations of nitric oxide (NO), NOx,
black carbon (BC), and PM2.5 monitored along transects
crossing major roads in Detroit. We also examined model
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tute; therefore, it may not reflect the views or policies of these parties, and
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assumptions, including the appropriateness of the covari-
ance functions, errors in RLINE outputs, and the effects of
jointly modeling two pollutants and using an updated
emission inventory.

RESULTS

For CO and NOx, dispersion model performance was
best when monitoring sites were close to major roads,
during downwind conditions, during weekdays, and
during certain seasons. The ability to discern local and
particularly the traffic-related portion of PM2.5 was lim-
ited, a result of high background levels, the sparseness of
the monitoring network, and large uncertainties for certain
sources (e.g., area, fugitive) and some processes (e.g., for-
mation of secondary aerosols). Sensitivity analyses of
alternative meteorological inputs and updated emission
factors showed some performance gain when using local
(on-site) meteorological data and updated inventories.
Overall, the operational evaluation suggested RLINE’s use-
fulness for estimating spatially and temporally resolved
exposure estimates. The application of the universal
kriging models confirmed that wind speed and direction
are important drivers of nonstationarity in pollutant con-
centrations, and that these models can predict exposure
estimates that have lower prediction errors than do sta-
tionary model counterparts. The application of the
Bayesian data fusion models suggested that the RLINE
output had a spatially varying additive bias for NOx and
PM2.5 and provided little additional information for NOx,
besides what is already contained in traffic and geograph-
ical information system (GIS) covariates, but had
improved estimates of PM2.5 concentrations. Results of the
nonstationary Bayesian data fusion model that used RLINE
output across a field spanning the measurement sites were
similar to a regression-based Bayesian data fusion approach
that used only RLINE output at the monitoring locations,
with the latter being computationally less burdensome.
Using the regression-based Bayesian data fusion model,
we found that RLINE with the updated emission inventory
provided results that were more useful for estimating NOx
concentration at unmonitored sites, but the updated emis-
sion inventory did not improve predictions of PM2.5 con-
centrations. Joint modeling of NOx and PM2.5 was not
useful, a result of differences in RLINE’s utility in pre-
dicting PM2.5 and NOx — useful for the former, but not for
the latter — and differences in the spatial dependence
structures of the two pollutants. Overall, information pro-
vided by RLINE was shown to have the potential to improve
spatiotemporal estimates of TRAP concentrations.

CONCLUSIONS

The study results should be interpreted and generalized
cautiously given the limitations of the data used. Similar
analyses in other settings are recommended for confirming
and extending our findings. Still, the study highlights con-
siderations that are relevant for exposure estimates used in
health studies. The ability of a dispersion model to accu-
rately reproduce and predict a pollutant depends on the
pollutant as well as on spatial and temporal factors, such
as the distance and direction from the road, time-of-day,
and day-of-week. The nature and source of exposure mea-
surement errors should be taken into consideration, partic-
ularly in health studies that take advantage of time–
activity information that describes where and when indi-
viduals are exposed to pollution. Efforts to refine model
inputs and improve model performance can be helpful;
meteorological inputs may be the most critical. For both
dispersion and spatiotemporal statistical models, suffi-
cient and high-quality monitoring data are essential for
developing and evaluating these models. Our analyses
using Bayesian data fusion models confirm the presence of
spatially varying errors in dispersion model outputs and
allow quantification of both the magnitude and the spatial
nature of these errors. This valuable information can be
leveraged in health studies examining air pollution expo-
sure as well as in studies informing regulatory responses.

INTRODUCTION

Starting in the 1990s, population-based observational
epidemiological studies began to associate residential
proximity to busy roads, and sometimes to truck traffic,
with adverse respiratory health outcomes such as asthma
exacerbations, lung function decrements, and hospital
admissions (Brunekreef et al. 1997; English et al. 1999;
Pönkä 1990; Wjst et al. 1993). Since these and other early
investigations, literally hundreds of studies on TRAP have
been conducted and published. In 2010, HEI’s critical
review of the literature concluded that exposure to TRAP
was causally linked to worsening asthma, possibly suffi-
ciently causally linked to incident childhood asthma, and
suggestively linked to adult-onset asthma, deterioration of
lung function, cardiovascular death, myocardial infarction,
and atherosclerosis progression (HEI Panel on the Health
Effects of Traffic-Related Air Pollution 2010). Subsequently,
causal links have been established between exposure to
TRAP and incident asthma (Anderson et al. 2013) and
between diesel engine exhaust and lung cancer (Interna-
tional Agency for Research on Cancer [IARC] 2014). Links
have been suggested for many other outcomes, for example,
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adverse pregnancy outcomes (Stieb et al. 2016), childhood
cancer (Heck et al. 2013), neurological and cognition
effects (Woodward et al. 2015), accelerated aging-related
declines in physical ability (Weuve et al. 2016), shorter
sleep duration (Fang et al. 2015), and heart rate variability
(Adar et al. 2007). The associations have been attributed to
ambient exposure to high levels of TRAP near major road-
ways and have been corroborated by other epidemiological
studies that have found weak or no association between
ambient exposure to background concentrations of pollut-
ants and adverse health outcomes (Hoek et al. 2002; Lewis
et al. 2005; Venn et al. 2000). While the progression of
emission standards has lowered exhaust emissions of
many pollutants, growth in vehicle-kilometers-traveled
(Office of Highway Policy Information 2014), increased
urbanization of populations worldwide, and strengthened
evidence regarding the health significance of air pollutants
at even low concentrations suggest that TRAP exposure
will remain a major public health concern.

Individuals living in urban areas, especially those living
near major roads, may be exposed to high levels of TRAP.
Elevated exposures are found in the near-road zone that
extends to distances of roughly 100 to 500 meters from
major urban roads and major highways, respectively;
levels decline rapidly with distance from the road
(Baldwin et al. 2015; Brauer et al. 2013; HEI Panel on the
Health Effects of Traffic-Related Air Pollution 2010; Karner
et al. 2010; Shi et al. 1999; Zhu et al. 2002a,b). This zone
frequently contains large and potentially susceptible pop-
ulations. For example, an estimated 11.3 million individ-
uals in the United States live within 150 meters of a major
highway (Boehmer et al. 2013); 40 million live within 100
meters of a four-lane highway, railroad, or airport (U.S.
Census Bureau 2007); and many schools and other facili-
ties housing potentially vulnerable populations are near
major roads (Wu and Batterman 2006). Residence location
is an important determinant of TRAP exposure. Other fac-
tors include ambient concentrations of TRAP, the amount
of time spent indoors and outdoors, building and vehicle-
cabin air exchange and pollutant penetration rates, and
breathing rates (Özkaynak et al. 2013). TRAP itself is a het-
erogeneous mixture, as summarized in Appendix 1 (see
Additional Materials on the HEI website) of this report.

A critical element, and a major weakness in many epide-
miological studies that have analyzed the health effects of
TRAP exposure, is the assignment of pollutant exposure to
study participants. Given the cost of air quality measure-
ments, monitoring stations are spatially sparse and only a
few pollutants are measured. Biological monitoring is
rarely feasible or practical. Thus, exposure to study partic-
ipants must be assigned using approaches that estimate

pollutant concentrations at unsampled locations, typically
residences or workplaces of participants. A wide variety of
approaches has been used to derive concentration or expo-
sure estimates (Appendix 2; see Additional Materials on
the HEI website). Improved estimates of TRAP exposure
can minimize exposure measurement and misclassifica-
tion errors that can adversely affect results of epidemi-
ology studies, thus increasing the accuracy of risk and
disease burden projections in health impact studies, and
better identify affected populations in environmental jus-
tice studies.

ROADMAP TO THIS REPORT

The Introduction provides background on the nature,
causes, and implications of exposure measurement errors
pertaining especially to TRAPs in epidemiological appli-
cations.

The Methods and Study Design and the Results sections
sequentially describe the formulation, application, and
evaluation of dispersion models and of spatiotemporal and
Bayesian data fusion models for estimating exposure. The
model applications build, in part, on work performed for
the Near-road EXposures and effects of Urban air pollut-
ants Study (NEXUS) exposure assessment and epidemio-
logical studies conducted earlier in Detroit, Michigan.
Dispersion modeling features the use of RLINE, a new line-
source dispersion model developed by the U.S. Environ-
mental Protection Agency (U.S. EPA) specifically for near-
road applications (https://cmascenter.org/r-line/). We
describe an operational evaluation of this model using a
highly detailed link-based emission inventory and daily
observations of NOx, CO, and PM2.5 concentrations mea-
sured at fixed sites in Detroit over the 2011 to 2014 period.
These measurements represent the best dataset available
for this application given the duration, completeness, and
relevance of these data for TRAPs.

Additionally, sensitivity analyses are presented for crit-
ical model parameters, including different meteorological
datasets that contrast site-specific versus airport data, and
for receptor networks that contrast a population-weighted
sample with a network for a vulnerable and susceptible
population, the latter using the homes and school loca-
tions of children in the NEXUS. We then describe the for-
mulation and evaluation of several spatiotemporal
statistical models, including nonstationary universal
kriging models, joint Bayesian data fusion models, and
regression-based Bayesian data fusion models; these
models are designed to test different approaches and
assumptions. These applications focus on NOx and PM2.5
observations measured in a highway transect study in
Detroit, along with observations from the fixed-site
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monitors. These data provide the spatial resolution neces-
sary for the spatiotemporal models. In addition, the data
fusion models utilize RLINE dispersion model predictions
and the same modeling framework just described. The per-
formance evaluation of both dispersion and statistical
models uses a variety of statistical measures and sensi-
tivity analyses.

The Discussion and Conclusion sections highlight the
strengths, limitations, lessons learned, and implications
for epidemiological studies. The report is supplemented
with 11 appendices (see Additional Materials available on
the HEI website) that provide significant depth on RLINE
and the spatiotemporal statistical models, data and
methods used in the analysis, as well as general descrip-
tions of TRAP and other models and approaches for expo-
sure assessment.

EXPOSURE MEASUREMENT ERRORS

Exposure estimates should minimize exposure mea-
surement error, defined as the difference between the mea-
sured or predicted exposure used in the analysis compared
to the underlying true exposure. Exposure misclassifica-
tion is the analogous term for a categorical exposure vari-
able. Importantly, such errors can lead to incorrect
inference in epidemiological studies; specifically, to
biased and/or imprecisely estimated effect coefficients
that can invalidate inferences regarding the effect of pollu-
tion on health (Carroll et al. 2006; Sheppard et al. 2012).

Exposure measurement errors can be classified either as
Berkson-like errors, which originate when only part of the
true exposure or aggregated exposure is measured, or clas-
sical measurement errors, which arise when the true expo-
sure is measured with noise. While Berkson-like errors in
the exposure measurements lead to unbiased but more
uncertain and variable health effect estimates, classical
measurement errors can cause the effect estimates to be
biased, with standard errors that can be either larger or
smaller than they would be in the case of no exposure mea-
surement error. When exposure measurement error is due
to the spatial misalignment between the monitoring data
and the residential locations of the subjects, the resulting
errors are a combination of Berkson-like errors (e.g., from
predicting the true exposure surface with an invariably
smoother one) and classical-like measurement errors (e.g.,
from noise in the observed concentrations that is not inde-
pendent of exposure) (Szpiro and Paciorek 2013).

Additional types of errors are at play when dealing with
TRAP exposure estimates. Specifically, these include:

• errors related to the modifiable areal unit problem,
which results in biases when point-based measures

(e.g., concentrations measured or predicted at a site or
model receptor) are aggregated into districts (e.g., cen-
sus tracts or other arbitrary spatial boundary), which
can lead to the ecological fallacy (Shafran-Nathan et
al. 2017);

• pure spatial location errors associated with geocoding
(e.g., identifying true locations of participants’ homes
and schools) (Zhang et al. 2016b);

• location-based covariate measurement errors (e.g.,
distance from highways) (Ganguly et al. 2015);

• differences between ambient and personal exposures
(Kioumourtzoglou et al. 2014); and

• exposure timing errors (e.g., using current exposure
conditions when evaluating chronic exposures or dis-
eases that may develop over years to decades, or not
considering the diurnal pattern of traffic) (Lipfert and
Wyzga 2008).

Health studies likely involve the presence of multiple
error types, with potentially important consequences
regarding study outcomes as well as implications for the
development of policies and regulations (Adam-Poupart et
al. 2014; Dionisio et al. 2016; Jerrett et al. 2010; Shafran-
Nathan et al. 2017; Sheppard et al. 2012; Szpiro et al.
2011).

EPIDEMIOLOGICAL STUDY DESIGNS AND 
APPLICATIONS

Accounting for exposure measurement error and
deriving more accurate exposure metrics, are broadly ben-
eficial for all epidemiological studies, but they are particu-
larly important for epidemiological studies examining
populations where TRAP exposures are expected to vary
over time and space. This includes many types of cohort
and longitudinal study designs. For example, NEXUS
examined the relationship between near-roadway expo-
sures to air pollutants and respiratory outcomes in chil-
dren with asthma living near major roadways in Detroit,
Michigan (Vette et al. 2013). Children in NEXUS were
recruited into three groups based on residence location:
children living within 175 meters of major roads, with this
group divided into roads with low and high volumes of
diesel trucks, and children living more than 500 meters
from major roads. The NEXUS cohort is an example of sus-
ceptible and vulnerable populations, which are often the
focus of epidemiological studies. Susceptibility generally
refers to intrinsic factors that tend to intensify the biolog-
ical response from exposure to a stressor, asthma in this
case, while vulnerability refers to extrinsic factors that can
increase exposures or reduce the ability to mitigate them
(e.g., poverty or proximity to major roads) (O’Neill et al.
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2012; Sacks et al. 2011). Health outcome measures in
NEXUS were obtained on a seasonal basis over 14-day
periods and included daily measures of pulmonary func-
tion, medication and health care use, diary reports of
upper respiratory infection symptoms, fraction of exhaled
NO, missed school days, sleep quality, and other aspects.
In such studies, each subject’s exposure is expected to vary
temporally with diurnal, daily, weekly, and seasonal
effects. These temporal variations are driven principally
by variation in traffic patterns, temperature-dependent
emission factors, meteorology, and time–activity factors. In
addition, exposures will vary spatially, reflecting differ-
ences between locations where individuals spend most of
their time, primarily home and school for children.

In NEXUS, a hybrid air quality modeling approach
obtained quantitative, daily, and individual-level exposure
estimates. The approach combined two dispersion models
— AERMOD (www.epa.gov/scram/air-quality-dispersion-
modeling-preferred-and-recommended-models) (Cimo-
relli et al. 2004) and RLINE-source dispersion, which mod-
eled local non-road (point and area) and road sources,
respectively — local emission information, detailed road
network information and traffic activity, local meteorolog-
ical data, and a combination of the Community Multiscale
Air Quality (CMAQ) model and space–time ordinary
kriging models to estimate background concentrations of
pollutants (contributions of pollutants from distant
sources [Isakov et al. 2014]). While state-of-the-art, this
exposure assessment framework utilized a number of
deterministic and physically based (or process) models
with results that may diverge from measured concentra-
tions. As a result, NEXUS included a number of sensitivity
analyses and performance evaluations to understand
model performance (Heist et al. 2013; Milando and Bat-
terman 2018a,b; Snyder et al. 2013a), an important step in
applying model-derived exposure estimates in epidemio-
logical studies. This report utilizes and extends the
NEXUS modeling framework.

Considerations of spatial and temporal variability apply
to other types of study designs. For example, in case–
crossover studies examining short-term associations
between exposure TRAPs and morbidity and/or mortality,
the temporal variation of pollutant levels or traffic vol-
umes may be aggregated across the study population (e.g.,
if a single monitoring site is used to represent pollutant
levels). More typically, however, some approach is needed
to account for spatial differences; for example, the distance
between residence location and major roads may be used
to select or group individuals in the study. However, such
approaches may provide only qualitative exposure

metrics, and the representation of spatial variation may be
highly simplified.

ISSUES AND CHALLENGES IN DEVELOPING 
EXPOSURE METRICS FOR TRAPS

Several important issues and challenges regarding the
development of exposure metrics for TRAPs are reviewed;
these shaped the nature of modeling used in this report.

• Desired spatial resolution of exposure metrics ranges
from point estimates at discrete locations (e.g., resi-
dence locations or dispersion model receptors) to
large zonal aggregations or districts (e.g., ZIP code,
census tract, and census block). Larger zonal units are
poorly suited for TRAP investigations due to the spa-
tial mismatch of concentration gradients and zone
sizes; based on a modeling analysis, interpolations of
TRAP exposure should be limited to not more than 40
meters near major roads and 100 meters at larger dis-
tances from major roads (Batterman et al. 2014b). This
topic is further explored in Appendix 1.

• Averaging times should take into account the dynam-
ics of biological processes governing the health out-
comes, the diurnal and seasonal patterns of TRAP
emissions, the time constants pertaining to pollutant
entry and fate in exposure compartments (e.g., build-
ings and vehicle cabins), and the time–activity pat-
terns of study participants governing exposure (e.g.,
locations and breathing rates at home, work, and
while commuting). Averaging times must also con-
sider the frequency of air quality measurements (typi-
cally hourly to daily) and the limited
representativeness of short-term (e.g., hourly) wind
fields in urban areas that drive dispersion-modeling-
based predictions (Chang and Hanna 2004). Most
studies use daily to annual averaging times.

• Time–activity patterns bring together the spatial and
temporal factors affecting TRAP exposure. Few stud-
ies have utilized the microcompartmental exposure
estimates needed to represent activity–travel patterns
and dwell times spent at different locations (Chang et
al. 2015; Dons et al. 2014; Gurram et al. 2015; Yu and
Stuart 2016).

• Variability and uncertainty of emissions of TRAPs
include large time-of-day, day-of-week, seasonal, and
multiyear changes that affect emission rates, phase,
chemical composition, and particle sizes of both
exhaust and non-exhaust components of TRAP.

• Limited measurements of ambient TRAPs are due to
the spatial sparseness of the monitoring network, the
presence of high background levels for many pollutants
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that make it difficult to distinguish TRAP from other
sources of pollutants (especially for PM2.5), and the
lack of unique or cost-effective tracers of TRAP.

• Complex micrometeorology in near-road and urban
environments is a result of influences of sound walls,
road characteristics, nearby buildings, vehicle-
induced turbulence, and other factors (Hanna and
Chang 2012), which may not be reflected by typical
airport observations.

• Data gaps and complexity of physically based models
for predicting concentrations of TRAPs. While in the-
ory, dispersion models can generate estimates of near-
road concentrations at high spatial and temporal reso-
lutions based on first principles, these models require
extensive input data. The accuracy of their predic-
tions, as well as the uncertainty in such predictions,
particularly in urban settings, have not been well
characterized (Claggett et al. 2009; Colvile et al. 2002;
Hanna 2007; Jerrett et al. 2005; Rao 2005).

Such issues have led to a variety of approaches for esti-
mating TRAP exposures. They include: the use of air
quality monitoring data (ambient fixed site, ambient
mobile, in-cabin, indoor, personal); biomonitoring mea-
surements; surrogates such as residential proximity to
high-traffic roads and traffic intensity measures; land use
regression models; source-oriented dispersion (or simula-
tion) models; spatiotemporal modeling; data fusion statis-
tical models; and hybrid methods that combine several
approaches. A number of these approaches have been
reviewed and compared (Batterman et al. 2014a; Baxter et
al. 2013; Dionisio et al. 2016; Hannam et al. 2013; HEI
Panel on the Health Effects of Traffic-Related Air Pollution
2010; Hoek et al. 2008; Huang and Batterman 2000; Jerrett
et al. 2005; Lipfert and Wyzga 2008; Martenies et al. 2015;
Patton et al. 2017; Wu et al. 2011). Further details are pre-
sented in Appendix 2. The methods differ with respect to
their data demands, feasibility, cost, intended applica-
tions, strengths, and weaknesses.

As summarized above, concentration estimates of
TRAPs used in health effect studies should incorporate
sufficient spatial and temporal resolution to reflect condi-
tions near major roads. This report evaluates the use of dis-
persion models, which predict concentrations at
unmonitored sites based on physical mechanisms (e.g.,
emissions and dispersion), and spatiotemporal statistical
models, which represent observed dependencies in con-
centrations measured at different sites as functions of spa-
tial,  meteorological,  and other covariates.  These
approaches are considered both separately and together
with the goal of improving exposure estimates for epide-
miological studies. The combined approach, using

Bayesian data fusion models, is potentially valuable given
the spatial sparseness of ambient monitoring networks —
which rarely represent locations of susceptible and vulner-
able populations — and the data demands, uncertainty,
and possible systematic biases in dispersion modeling.

SPECIFIC AIMS

This report investigates ways to improve estimates of
TRAP concentrations for use in health effect studies, with
specific attention to dispersion modeling and spatiotem-
poral statistical methods that can provide the spatial and
temporal resolution needed to accurately determine near-
road exposures. The specific aims are to:

1. explore potential enhancements for dispersion
models, including alternate treatments of meteorolog-
ical inputs, background levels, and traffic inputs;

2. assess the performance of dispersion models for pre-
dicting concentrations of TRAPs in a full-scale urban
case study, including identification of critical inputs
and uncertainties; and

3. apply spatiotemporal and Bayesian data fusion statis-
tical techniques for combining dispersion model out-
puts and pollutant monitoring observations.

These aims are motivated by the need to improve esti-
mates of exposure to TRAPs, particularly in the near-road
zone extending up to 300 to 500 meters or possibly more
from major roads, and to provide the spatial, temporal, and
source resolution needed for studies examining asthma,
cardiovascular, pregnancy, and other important health out-
comes.

METHODS AND STUDY DESIGN

DISPERSION MODELING

This section presents the approach used to develop and
evaluate dispersion model predictions of TRAPs in the
Detroit application. We perform an operational evaluation
relevant to health studies, investigating whether model
estimates agree with observations in an overall sense. Rou-
tine observations of pollutant concentrations, emissions,
meteorology, and other variables are utilized with the goal
of characterizing prediction uncertainties and limitations
of models for particular applications (Dennis et al. 2010).
Daily average concentrations of NOx, CO, and PM2.5 mea-
sured at sites across Detroit for the 2011 to 2014 period are
compared to dispersion model predictions. Performance is
evaluated by pollutant, site, wind speed, meteorological
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condition, averaging time, and other factors. The evalua-
tion utilizes a state-of-the-science modeling system that
includes an updated link-based roadway inventory, an
updated point-source inventory; the MOVES2014b emis-
sion factor model (www.epa.gov/moves/latest-version-
motor-vehicle-emission-simulator-moves) with monthly-
adjusted fuel characteristics and ambient temperature in
Detroit, and hourly-adjusted link-specific volumes. Local
point and on-road mobile sources are modeled using
AERMOD and RLINE, respectively. The modeling domain
uses a 40 × 30 kilometer region, covering portions of
Macomb, Oakland, and Wayne counties in Michigan.
Hourly pollutant concentrations were modeled from 2011
(the first complete year of near-road monitoring in Detroit)
to 2014 (the most recent year of point-source emission
inventory data).

The evaluation compares observed and predicted con-
centrations using a 24-hour averaging period, an exposure
metric frequently used in epidemiological and health
impact studies; this averaging period is also supported by
previous evaluations suggesting that meteorological vari-
ability makes comparisons at the hourly level “almost
fruitless” (Chang and Hanna 2004). Analyses were con-
ducted by pollutant, wind direction, monitoring site,
season, and day-of-week. Wind directions were defined for
wind speeds exceeding 1 m/s, and monitoring sites were
considered to be downwind for directions within ±30° of
perpendicular of the largest road near each site, and par-
allel for directions within ±15° of parallel (Venkatram et al.
2013). Daily average downwind or parallel concentrations
were calculated for those hours of each (calendar) day that
met these conditions if a minimum of 6 hours of valid
model–observation pairs was available. Periods with fewer
than five valid days were not considered. Sensitivity anal-
yses were also performed for critical model parameters, for
example, meteorological data. We also contrasted concen-
trations predicted for two receptor grids: one designed to
represent a population-weighted sample and one repre-
senting a vulnerable and susceptible group using the
homes and school locations of children in the NEXUS
study (Vette et al. 2013), two-thirds of whom lived within
175 meters of major roads.

The evaluation emphasized four metrics following air qual-
ity model evaluation guidelines (Chang and Hanna 2004;
Hanna and Chang 2012). The F2 statistic (percentage of mod-
eled values within a factor of 2 of observed values) shows
over- and underpredictions and provides a measure of overall
model performance. The Spearman rank correlation coeffi-
cient (RSP) assesses the similarity between ranked observa-

tions and predictions and may be particularly appropriate
for epidemiological studies as it can indicate whether

exposures are correctly classified. The fractional bias (FB) —

defined as where

and are mean predicted and observed concentrations,
respectively — shows the tendency to over- or under-
predict, in other words, the likelihood of false positives or
false negatives. (Equal weight is given to under- and over-
estimates.) The geometric variance (VG), defined as

 indicates the irreducible (sys-

tematic) and reducible (random) errors. This metric can
help identify conditions where performance potentially
could be improved; in other words, the percentage of er-
rors that are reducible (% Red) is the ratio between the nat-
ural logarithm of the reducible component of VG and the

total VG (the product of the systematic and random compo-

nents). Minimum performance criteria suggested for air
quality models are F2 ≥ 50%, mean bias ≤ 30%, and VG ≤1.6

(Chang and Hanna 2004). We also tabulate R2 and mean
standard error metrics.

Given the number of comparisons made, several rules
were used to identify potentially meaningful differences
and produce a summary measure. Each performance
metric was compared to its best value (i.e., 1.00 for RSP and
VG, 0.00 for FB and % Red). Results were recorded as
whether the nominal model input improved model per-
formance (•), gave results that were among those that
improved results (~), did not conclusively improve model
performance (‘ ’), or diminished performance (°) (see
Appendix 8, Tables 9 and 10; Additional Materials, avail-
able on the HEI website). A minimum of at least one set
with RSP = 0.1 was required for comparisons to be consid-
ered. Only potentially meaningful changes were distin-
guished, for example, changes in RSP and other metrics
had to exceed 0.05, a threshold selected to balance sensi-
tivity and avoid false indications. Comparisons of 2010
(nominal) and 2015 emission factors, and comparisons of
the U.S. default temporal allocation factor (TAF) (nominal)
to the two alternative TAFs (Detroit-specific with commer-
cial and noncommercial traffic separated and combined)
used the same scheme.

Comparisons of the four sets of meteorological inputs
were more complex. We checked whether on-site/KDET
(Detroit City Airport) meteorology provided the best
results (denoted as on-site/KDET highest?); whether KDET
data provided better results than KDTW (Detroit Metro
Airport) data when using National Weather Service (NWS)
data alone or in conjunction with on-site data (KDET >
KDTW?), and if on-site data generally improved results
over NWS data alone (on-site > NWS?).

   p o p oFB = C C / C C /2 ,�    pC

oC

 2o pexp ln C ln C ,�
 
  
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RLINE Dispersion Model

Concentrations from on-road mobile sources were pre-
dicted using RLINE version 1.2, a research-grade disper-
sion model developed by the U.S. EPA to support risk
assessments and health studies related to near-road pollut-
ants (www.cmascenter.org/r-line/). (RLINE and other dis-
persion models are described in Appendix 3 in Additional
Materials on the HEI website.) Like its predecessors,
RLINE is based upon a steady-state Gaussian formulation
that simulates line-type emission sources (e.g., mobile
sources on roadways) by numerically integrating point-
source emissions along the line source. RLINE was
designed to simulate concentrations at receptors (arbi-
trarily placed point locations) positioned very near the
line source.

The current version (RLINE 1.2) was formulated for
near-surface releases in flat terrain (simple terrain without
surrounding complexities). It contains new formulations
of vertical and lateral dispersion rates based on recent field
and wind tunnel studies. The model also simulates low
wind meander conditions, includes Monin-Obukhov simi-
larity profiling of winds near the surface, and selects
plume-weighted winds for transport and dispersion calcu-
lations (www.cmascenter.org/r-line/). The current version
includes beta-option algorithms for simulating several
complex near-source effects, for example, effects of noise
and vegetative barriers and depressed roadways (these fea-
tures have not been evaluated in the peer-reviewed litera-
ture). RLINE also provides an analytical approximation (an
option to the default numerical integration), which can
dramatically speed calculations, although the guidance
notes that “this solution includes some simplifying
assumptions that lead to slightly different results than the
numerical solution, especially for receptors close to the
source, or for sources and/or receptors significantly off the
ground.” RLINE requires hourly values of sensible heat
flux, surface friction velocity, convective velocity, convec-
tive stable planetary boundary layer heights, Monin-
Obukhov length, surface roughness, wind speed, and wind
direction, and it utilizes the AERMET meteorological data
preprocessor surface to process surface and upper air
meteorological datasets for these purposes (U.S. EPA
2004). A simplified version of RLINE, called CLINE (com-
munity LINE-source model), is available as a web applica-
tion (https://cmascenter.org/c-tools/c-line.cfm).

RLINE modeling used the numerical integration
method, an iteration limit of 1,000 and an error limit of
0.001. Beta modules for roadside barriers and depressed
roadways were not used. For large urban scale applica-
tions, RLINE is computationally intensive. For example,
using the Detroit emissions inventory (described below)

with 9,701 links, hundreds to tens of thousands of model
receptors (depending on the application), and long-term
simulation (e.g., annual with 8,760 hours), could require
run times of many days with a high-speed computer
cluster. Moreover, RLINE runs a single hour at a time; mul-
tihour runs are normally accomplished by post-processing
of RLINE output, which generates extremely large files.
Thus, for some analyses, the model was modified to
increase efficiency:

• a source-receptor cut-off distance was imposed (i.e.,
calculations were not performed for receptor-link dis-
tances exceeding 4 kilometers — these concentrations
were very small);

• precomputed (lookup) tables were used for emission
factors, following earlier work that binned emission
factors by pollutant, vehicle type, speed, ambient tem-
perature, hour-of-day, and month (Isakov et al. 2014);

• a more flexible input/output scheme was imple-
mented; and

• data checks and other features were incorporated.

These changes made negligible differences in model
predictions. The following sections summarize dispersion
model inputs, which include the emission inventories,
meteorological data, and receptor networks.

Emissions Inventory

In Detroit, we assembled an emissions inventory that
contained mobile, point, and area sources. The 2011
National Emission Inventory data for Wayne County,
Michigan, which includes Detroit, gives a high-level view
of the emissions data. (See Appendix 4 in Additional
Materials on the HEI website, especially Appendix Table 2
for details.) In the Detroit area, on-road mobile sources con-
stitute 48% of NOx emissions and 54% of CO emissions, but
only 21% of PM2.5 emissions. Area and non-road emissions
of PM2.5 substantially exceeded on-road mobile sources.
Notably, the National Emission Inventory lacks both tem-
poral and spatial information for these area, road, and non-
road emissions. As described later, this can restrict the
ability of dispersion models to portray small-scale variation
in PM2.5 concentrations and lead to model evaluation
results (i.e., comparisons between dispersion model predic-
tions and observations) that are not informative.

Mobile source emissions inventories suitable for expo-
sure modeling in the near-road environment require spa-
tially and temporally resolved estimates of on-road
emissions. We used a link-level inventory that provides
information for individual road segments or links, which
was assembled using a bottom-up approach. This starts
with the road network configuration (location, number of
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lanes, depth above/below grade), adds traffic activity
information (vehicle volume, speed, acceleration, and
vehicle mix on each link), and then emission factors. Such
inventories consolidate data from multiple sources, for
example, GIS shape files representing roads, estimates of
total vehicle-kilometers-traveled from metropolitan plan-
ning organizations, historical traffic measurements and
estimates, traffic demand model estimates of vehicle vol-
umes, and other data types. Comparable urban scale link-
level mobile source inventories have been assembled for
Detroit, Atlanta, Houston, Beijing, and Macau (Huo et al.
2009; Lindhjem et al. 2012; Snyder et al. 2014; Venugopal
and Yang 2014; Zhang et al. 2016a).

In addition to on-road mobile sources, other emission
sources in the Detroit area were modeled. Appendix 4
describes area and point-source inventories of CO, NOx,
and PM emissions for southeast Michigan (including
Lenawee, Livingston, Macomb, Monroe, Oakland, Wash-
tenaw, and Wayne counties) generated for the years 2011
to 2014.

Meteorological Data

Meteorological data for dispersion modeling should be
representative of local conditions and thus is normally col-
lected at or near the site of interest, most commonly, at the
closest NWS sites. Meteorological surface observations
also are collected at air quality monitoring sites, including
near-road sites; however, such sites generally measure
only a subset of parameters (e.g., wind direction and
speed, temperature, humidity, and pressure). These vari-
ables are insufficient for running AERMET (Cimorelli et al.
2004) since surface friction velocity (Ustar or U*), convec-
tive velocity scale (W*), surface roughness length (Zo), and
other (hourly) parameters are missing. These parameters
can be calculated using data collected at NWS stations
(NWS 2016) and upper air data stations (National Oceanic
and Atmospheric Administration [NOAA] 2016).

Meteorological data were obtained at five air quality
system (AQS) sites (described in the next section), two
local NWS stations located 33 kilometers apart (KDET and
KDTW) (NWS 2016), and the Pontiac, Michigan radio-
sonde site (approximately 45 km north of Detroit) (NOAA
2016). The NWS datasets include the parameters needed
by the AERMET preprocessor to develop the surface (SFC)
files used by RLINE (Cimorelli et al. 2004), whereas the
AQS sites collect only basic meteorological parameters, for
example, surface wind speed and direction. We also
obtained meteorological data from the weather research
and forecasting (WRF) model, a mesoscale numerical
weather prediction system designed to serve both atmo-
spheric research and operational forecasting needs

(www.wrf-model.org/). WRF data are continuous in space
and time, and can serve as a diagnostic reference providing
spatial information (typically at 12-km intervals). The latest
version (V3.0) of the Meteorological Model Interface tool
(www.epa.gov/ttn/scram/models/relat/mmif/MMIFv3.1
_Users_Manual.pdf) was used to extract the meteorolog-
ical fields from WRF for January and July 2010 for the grid
cell containing the downtown Detroit files. Key meteoro-
logical variables were compared to AERMET-generated
SFC files based on KDET airport data for the same periods.
(This analysis was feasible given the availability of WRF
data from other projects.)

Procedures recommended in the AERMET User’s Guide
(U.S. EPA 2004) and AERMET version 14134 were used to
create quality-checked site meteorological data in calendar
years 2010 to 2012 for screening and sensitivity analysis
purposes, and in years 2011 to 2014 for detailed modeling.
The NWS data at KDET was designated as the nominal
input due to its central location and presumed representa-
tiveness (Isakov et al. 2014). Three sets of alternative mete-
orological inputs were developed: SFC files using NWS
data at KDTW; AQS-site-specific meteorology supple-
mented with KDET data (on-site/KDET); and site-specific
meteorology supplemented with KDTW data (on-
site/KDTW). The correlation between wind direction mea-
surements across the sites was evaluated using the circular
correlation coefficient (Jammalamadaka and Sengupta
2001). Correlations of other meteorological variables used
Pearson correlation coefficients. Hours missing any
required parameter were excluded. The SFC files were
mostly complete, for example, 6% to 15% of hours were
missing across the five sites and four years. Impacts of the
different meteorological datasets on RLINE predictions
were evaluated in sensitivity analyses.

Monitoring Data and Background Concentrations

Ambient air quality monitoring data for CO, NO, NO2,
NOx, and PM2.5 collected at AQS sites in Wayne County
were downloaded from the U.S. EPA database (U.S. EPA
2015). Data completeness, detection frequencies, quality
assurance checks, maps of the five near-road AQS sites,
and other details are given in Appendix 5 (see Additional
Materials on the HEI website).

The model performance evaluation requires background
concentrations, defined as contributions from both
regional sources (outside the modeled area) and local but
unmodeled area and mobile sources. The background
sources are not explicitly modeled because they are dis-
tant ,  too numerous,  or  too di f f icul t  to  s imulate
(Arunachalam et al. 2014), or because the data are incom-
plete. For NOx and CO, background was estimated using a
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conditional selection method that subtracted the geo-
metric mean of monthly upwind modeled concentrations
due to point and on-road sources from the observed geo-
metric monthly mean concentration (Malby et al. 2013).
Missing months were imputed by linear interpolation, and
then leave-one-out nearest neighbor linear regressions
were performed to obtain a smoothed sequence of monthly
background estimates at each monitor. A different
approach was used for PM2.5, given the variation in daily
levels. First, a daily PM2.5 dataset was created that consol-
idated Detroit area daily measurements (9 sites) and 24-
hour averages of hourly PM2.5 measurements (3 sites using
tapered element oscillating microbalances [TEOMs]), then
a complete dataset was generated by imputation (50 itera-
tions) using the mice package in R (van Buuren and Groot-
huis-Oudshoorn 2011). Using this complete dataset, the
second lowest concentration at any monitor on each day
was selected, and a leave-one-out nearest neighbor linear
regression was performed on the imputed lowest values to
obtain a smoothed time series of daily levels representing
the PM2.5 background. These background estimates reflect
temporal changes and do not require additional model runs.

SPATIOTEMPORAL AND DATA FUSION MODELING

This section summarizes the development and evalua-
tion of nonstationary universal kriging models and nonsta-
tionary data fusion models for TRAPs in localized near-
road environments. We used measurements of NO, NOx,
BC, and PM2.5 collected at transect areas surrounding
major highways in Detroit, Michigan to investigate the per-
formance of several types of models and applicability of
model assumptions, including whether nonstationary
covariance functions are appropriate modeling choices for
TRAPs. In other words, we investigate whether the spatial
correlation between the concentration of TRAPs at any two
sites is just a function of their separation (e.g., their dis-
tance and the direction of one site with respect to the
other), and not a function of where these two sites are actu-
ally located. If only the separation matters, the covariance
function is stationary, otherwise the covariance is nonsta-
tionary. In addition, we develop Bayesian data fusion sta-
tistical models that address the following research
questions:

1. Is incorporation of RLINE outputs useful for esti-
mating ambient concentrations of TRAPs in near-road
urban environments?

2. Does RLINE correctly capture the spatial dependence
structure of TRAP concentrations in near-road envi-
ronments?

3. Do updates in emission inventories translate into pre-
dictive improvements of the RLINE output?

4. Do estimations of TRAP concentrations improve if
pollutants are modeled jointly versus independently?

In developing our proposed nonstationary covariance
model that addresses possible differences in the spatial
dependence structure between upwind and downwind
pollutant concentrations, we followed and expanded the
kernel mixing approach of Fuentes (2001) by incorporating
covariate information in the covariance function. How-
ever, in contrast to Reich and colleagues (2011), instead of
including the covariates only in the weighting kernels, we
also included them in the covariance functions of the
underlying spatial processes, similar in spirit to Schmidt
and colleagues (2011). In particular, based on physical
considerations, we incorporated wind speed and direction
in the covariance function as key factors that influence the
spatial distribution and variability of TRAPs. We evalu-
ated the appropriateness of this assumption by comparing
the predictive performance of nonstationary and sta-
tionary spatial statistical models. We first describe the data
sources, followed by the statistical models.

Ambient Monitoring and Other Data

Ambient pollutant data were collected using a Mobile
Air Pollution Lab (MAPL), a recreational vehicle equipped
with a variety of air quality monitoring instruments, along
nine transects that crossed major roadways in Detroit,
Michigan, on seven consecutive days (December 14–20,
2012) during morning and afternoon rush-hour periods
(Baldwin et al. 2015). No afternoon observations were
taken on December 14 and December 20, 2012, and no
morning observations were taken on December 16, 2012.
Figure 1 shows the locations of the transect areas. In areas
1 through 8, sampling sites were located at a nominal dis-
tance of 50 meters (two sites), 150 meters (two sites), and
500 meters (one site) from both edges of the road. In area
9, six sampling sites were used at distances of 50, 150, and
500 meters from each edge of the road. Areas 1 through 8
were monitored during both morning (07:15–09:45) and
afternoon (15:45–18:15) rush-hour periods, while area 9
was monitored once or twice each day, just after the morn-
ing rush hour, or before the afternoon rush hour. On any
given day, up to three different areas were monitored. The
MAPL visited each site and conducted measurements for 5
minutes before proceeding to the next site. The vehicle en-
gine was turned off during measurements. Air was sam-
pled at a 3.5 meter height. NO and NOx concentrations
were measured using a conventional federal reference mon-
itor (Model 42i, Thermo, MA, USA); BC was measured us-
ing a two wavelength aethalometer (Model AE42, Magee
Scientific, Berkeley, CA, USA); and particle number
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concentrations in multiple-size bins were measured with a
GRIMM Model 1.109 Spectrometer (Grimm Aerosol Tech-
nik, Germany) and a Fast Mobility Particle Sizer Spectrom-
eter (Model 3091, TSI Incorporated, Shoreview, MN,
USA). Particle number concentrations were converted to
mass concentrations (Grimm and Eatough 2009) assuming
a particle density of 1.67 g/cm3. PM2.5 concentrations were
calculated as the sum of mass concentrations for particles
with a diameter less than or equal to 2.5 µm.

Across the nine areas, 5-minute average concentrations
were collected for NO and NOx (a total of 286 measure-
ments), BC (277 measurements), and PM2.5 (235 measure-
ments). As an example of the collected data, Figure 2

shows NO and BC concentrations at area 8 sites on the
morning of December 20, 2012.

Besides the actual measured concentrations of NOx and
PM2.5 at monitoring sites, we also derived the NOx and
PM2.5 near-road increment (NRI) at the monitoring sites.
These are defined as the difference between observed and
background pollutant concentrations. For a transect area,
we took as background concentration the lowest pollutant
concentration observed in that area during the monitoring
period. Using this definition, across the nine areas, a total
of 254 5-minute average NRI concentrations were collected
for NOx, and 235 for PM2.5. In creating the working dataset
used for the Bayesian data fusion statistical models, we

Figure 1. Map showing transect areas (boxes 1–9) and major roads in the study area. Two transects were used in each area except
area 9 (single transect). (Reprinted from Baldwin et al. 2015 by permission of Elsevier.)
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restricted ourselves to time periods (e.g., days and periods
of the day — morning versus afternoon) for which RLINE
output was available. In some time periods, the RLINE
model could not be run due to unavailability of some
inputs. The final number of monitoring NRI data used was
254 NOx and 235 PM2.5 values at the MAPL sites. Figure 3
shows the NRI for NOx and PM2.5 at sites within area 5 on
the morning of December 18, 2012. These quantities will
be used in Bayesian data fusion statistical models that
combine monitoring observations with the output of the
RLINE dispersion model, also referred to as the RLINE pre-
dictions (described below).

RLINE Predictions

Concentrations of NOx and PM2.5 in the near-road
environment attributable to on-road vehicular traffic
were modeled by the dispersion model RLINE (Snyder et
al. 2013b), described earlier. The dispersion model used
the spatially and temporally resolved link-based emis-
sions inventory, the initial (2010) and updated (2012)
emissions factors from the Motor Vehicle Emission Simu-
lator (MOVES) that depend on vehicle class, speed,
ambient temperature, and other factors, and the Detroit-
specific hourly temporal allocation factors that separated

commercial and noncommercial traffic patterns (Bat-
terman et al. 2015).

Multiple runs of the RLINE model were used. Initially,
RLINE model estimates of average hourly pollutant con-
centrations for the time periods corresponding to MAPL
data collection were obtained at 96 regularly spaced point
locations (receptors) within a 2-km square centered on the
major road at each transect area. This modeling used the
2010 emission inventory. Given the 96 receptors, 9 areas,
and 3 to 4 periods monitored at each area, a total of 3,038
1-hour average NRI concentrations were available for both
NOx and PM2.5. Figure 3 provides an example of MAPL
sites and RLINE receptors for NOx and PM2.5 for one sam-
pling event. This first set of RLINE output is called RLINE
output set 1. Because RLINE modeling reflects concentra-
tions due only to local traffic emissions, modeling outputs
are considered equivalent to the NRI. To determine
whether the updated emission inventory yielded an
improvement in the RLINE output, additional RLINE out-
puts were generated that estimated NOx and PM2.5 concen-
trations at receptors placed exactly at the MAPL sites. The
set of RLINE runs using the original 2010 emission inven-
tory is called RLINE output set 2 – 2010, and the set of oth-
erwise identical RLINE runs using the updated inventory
is called RLINE output set 2 – 2012.

Figure 2. Maps of transect area 8 showing (A) NO concentrations (ppb) and (B) BC concentrations (µg/m3). Measurements for each were
taken at 10 sites on the morning of December 20, 2012. The area of the bubble is proportional to the concentration.
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Exploratory investigation showed considerable vari-
ability in RLINE outputs for the two pollutants between
the different areas. Reporting summary statistics for RLINE
output set 1, the lowest mean concentrations of both pol-
lutants occurred in area 7 for both NOx (8.0 ± 10.1 ppb) and
PM2.5 (0.23 ± 0.30 µg/m3); the highest concentrations
occurred in area 6 for both NOx (42.4 ± 52.1 ppb) and
PM2.5 (1.2 ± 1.5 µg/m3). Figure 4A compares the observed
NRI concentrations of NOx at the MAPL monitoring sites
to RLINE outputs at the corresponding receptors using
both sets of emissions; Figure 4B gives the comparable plot
for PM2.5. These plots suggest that RLINE tends to provide
higher predictions of the NRI for both NOx and PM2.5, with
the RLINE PM2.5 NRI being larger than the corresponding
MAPL observations almost all the time.

Covariates

We obtained traffic and meteorological data for the study
area. Annual average daily traffic (AADT) and commercial
AADT (CAADT) volumes for major roads in Detroit were
obtained from the Michigan Department of Transportation
Traffic Monitoring Information System (2014), and adjusted
to hourly volumes using Detroit-specific temporal alloca-
tion factors (Batterman et al. 2015) (see Appendices 4 and 7
in Additional Materials on the HEI website). Because emis-
sions from commercial vehicles, especially heavy-duty
diesel vehicles, can greatly exceed those from noncommer-
cial traffic, which are mostly light-duty gasoline vehicles
(Batterman et al. 2015; Watkins 2012), we defined an
adjusted traffic volume to account for the relative contribu-
tion of these vehicles to air pollution. This covariate was
calculated as NCAADT + c CAADT, where NCAADT is the
noncommercial volume (estimated hourly as AADT —
CAADT), and parameter c, sometimes referred to as the

Figure 3. Maps of transect area 5 showing NRI for (A) NOx and (B) PM2.5. Measurements for each were taken at 9 sites on the morning of
December 18, 2012. The panels show the NRI concentrations determined at the MAPL sites and the RLINE predicted concentrations using
a 150-meter receptor grid for the corresponding pollutant and period.
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passenger car equivalent, was set to 10 for NO and NOx
and to 50 for BC and PM2.5 following prior work in Detroit
(Baldwin et al. 2015).

Wind speed and direction data measured at five airport
meteorological sites were obtained as Quality Controlled Local
Climatological Data (National Oceanic and Atmospheric
Administration, http://cdo.ncdc.noaa.gov/qclcd/QCLCD).
To obtain representative statistics, hourly wind direction
and wind speed were averaged across sites. Hourly mea-
surements of NO and NOx concentrations were obtained
from the AQS site at the East 7 Mile site in Detroit
(http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/
download_files.html). BC concentrations were not avail-
able for a representative site in the study area. 

Model Formulation

Several spatiotemporal statistical models were devel-
oped for (1) universal kriging and spatial interpolation of
observed concentrations of TRAP; and (2) data fusion of
observations of NRIs of pollutant concentrations with dis-
persion model outputs. In each model, we assumed that
the spatial dependence in TRAP concentration between
any two sites depended on the actual locations of the two
sites; in other words, we assumed that the spatial correla-
tion in TRAP concentrations was nonstationary.

Each model uses the following notation: Let t represent
the time period for the day and time of day (morning or after-
noon) of pollutant monitoring. There were either T = 10 or T
= 11 distinct time periods during the study period

depending on the pollutant considered. Due to the right-
skewness in both observed concentrations and NRIs
(Appendix 6 in Additional Materials on the HEI website), we
decided to work on the log scale. Hence, Yt(s) denotes the
natural log of an ambient pollutant concentration (NO, NOx,
or BC) or the NRI concentration (PM2.5 and NOx) at location
s in a spatial domain  and time period t = 1, …, T. Let Xt(s)
indicate the natural log of the RLINE output, that is, the esti-
mated NRI for a pollutant concentration. The general mod-
eling framework adopted decomposes Yt(s) as the sum of
three terms: 

where µt(s) accounts for the large-scale spatial trend in the
pollutant log-concentration or in the log NRI at time period
t, ηt(s) accounts for the small-scale spatial variation in the
pollutant concentration or NRI at site s at time period t not
captured by µt(s), and εt(s) is an independent error process,
independent across time periods and space, with mean 0
and variance τ2, often referred to in the geostatistical litera-
ture as the nugget effect (Banerjee et al. 2004; Cressie 1993).

Nonstationary Universal Kriging Models For the log of
an ambient pollutant concentration, we formulated several
single-pollutant nonstationary universal kriging models
that accounted for day-of-week, upwind versus down-
wind, topographic features, meteorology, traffic activity,
and fleet composition features identified as important pre-
dictors in an exploratory analysis (Appendix 6). Following

          2,    ( 0, ),       (1)iid
t t t t tY N� � � � �  s s s s s 

Figure 4. Scatterplots of NRI in monitored concentrations at MAPL sites versus RLINE model predictions at corresponding receptors
for (A) NOx (ppb) and (B) PM2.5 (µg/m3). In each panel, the dotted line indicates 45 degrees.
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earlier work examining the near-road environment in
Detroit (Baldwin et al. 2015), we modeled the large-scale
spatial trend µt(s) at s as a function of various predictors
with regression coefficients β: the background concentra-
tion (ambient air quality measured by AQS monitors), an
indicator for whether a site s was downwind of the nearest
road during time period t, an indicator for weekday, an
indicator for morning, a scalar that quantifies the normal-
ized amount of traffic on the nearest highway around s
during time period t, the distance of site s from the edge of
the nearest highway and some appropriate interactions: 

We further assume, and confirm through autocorrelation
function plots, that the temporal variability in each pol-
lutant log concentration Yt(s) is captured by the term µt(s),
so that the term ηt(s) in equation 1 accounts for purely spa-
tial dependence and can be modeled as independent real-
izations over time periods of a Gaussian process with
mean zero and a given covariance function. We hypothe-
size that the covariance function of said spatial process is
nonstationary. Empirical evaluations provided with more
detail in Gilani and colleagues (2015), show that this is
indeed the case.

Given the potentially different spatial dependences in
log concentrations between upwind and downwind sites,
for each pollutant, we model the term ηt(s), t = 1, …, T as
independent realizations in time of a mixture of two mutu-
ally independent mean-zero Gaussian processes, η1,t(s)
and η2,t(s), which are independent over time and equipped
with covariance functions Cθ1(⋅,⋅) and Cθ2(⋅,⋅), respectively.
In other words, for each time period t and 

In turn, the weights, w1,t(s) and w2,t(s), in equation 3 are
spatially and temporally varying and sum to 1, which we
achieve by setting

Analogous to the kernel expression of the weights

(Fuentes 2001), we specify the weights and 

in such a way that if a site s is downwind during time
period t, the spatial process η1,t(s) in equation 3 receives a

larger weight, and vice versa. A specification of

that allows this is: 

where s* is defined as the projection of the site s onto the
farther edge of the highway. Note that the parameter ψ in

the definition of the unnormalized weights  and

, and thus in the definition of the mixture weights

 and , is the same across pollutants since the

three traffic-related pollutants are recorded at the same
monitoring sites and at the same time periods. Parameter ψ

controls how quickly the unnormalized weights 

and , decay to zero as the point s is farther away

from the edge of the highway. At a distance of approxi-

mately 3ψ, the unnormalized weight  (or ) will

be equal to 0.05 if the point s is downwind (respectively,
upwind) during time period t.

For the covariance functions, Cθ1(⋅,⋅) and Cθ2(⋅,⋅) of the se-

rially independent copies η1,t(s) and η2,t(s) across time peri-

ods t of the two mutually independent mean-zero Gaussian
processes, we use different covariance models: a stationary
one (e.g., exponential) and a nonstationary one. As we be-
lieve that for each pollutant and time period t, the covariance
functions of the two underlying spatial processes η1,t(s) and

η2,t(s) are nonstationary and potentially influenced by wind

speed, we follow Schmidt and colleagues (2011). Thus, we

define a transformation  from the spa-

tial domain  to a subset  of R3 that, for each time

period t, maps a site into  where

ht(s) is the signed wind speed at s and time period t; in

other words, wind speed has a positive sign if s is down-
wind at time t and with a negative sign otherwise. Finally,
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for each pollutant and time period t, the covariance func-
tion of the underlying process ηi,t(s), i = 1, 2 is modeled us-

ing an exponential  covariance function and the

Mahalanobis distance. Hence, for any pair of sites 

Φi is a 3 × 3 diagonal matrix for each i = 1, 2, 

with ϕi controlling the range or smoothness of the covari-
ance function along the x-y direction and φi controlling it 
along the signed wind-speed direction. 

This covariance function is a valid covariance function,
and simply an application of the model proposed by
Schmidt and colleagues (2011), which in turn extends an
already well-known and well-accepted method to model
nonstationary covariance functions, using the deformation
method (Sampson and Guttorp 1992).

The model proposed for the spatial covariance function
of the term ηt(s) is a mixture of the two nonstationary cova-
riance functions, and as such is a valid covariance func-
tion with nonstationarity driven by a covariate (e.g., signed

wind speed) with weights that vary spatially and tempo-
rally and that depend on a covariate as well (e.g., being
upwind or downwind): for each pollutant, at time period t
and sites 

Note that the specification of the nonstationary covari-
ance function of ηt(s) in equation 7 contains simpler models

as special cases. As examples, removing the influence of the
covariate in the expression of the unnormalized mixture

weights leads to a model formulation remi-
niscent of Fuentes (2001); while setting one of the two
mixture weights w1,t(s), w2,t(s) to zero for any s and time

period t, but maintaining equation 6 as the model for the
covariance functions of the underlying spatial processes,
η1,t(s) and η2,t(s), leads to the formulation of Schmidt and

colleagues (2011).

In summary, we modeled the small-scale spatial variation
ηt(s) of the pollution concentration field as a weighted spa-
tiotemporal mixture of two mutually independent spatio-
temporal processes, loosely interpretable as concentrations
upwind and downwind, with wind speed and wind direc-
tion influencing the mixture weights and the dependence
structure of each latent process. Six models that differed in
the approach used to model the spatial dependence were
considered. Table 1 summarizes these models, the combina-
tion of weighting schemes, and their covariance functions.
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Table 1. Description of the Universal Kriging Modelsa, b 

Model Name Weighting Scheme Covariance Function

Model 1: Independence None Independence

Model 2: Stationary None Exponential covariance function

Model 3 Binary upwind-downwind Exponential covariance function

Model 4 Binary upwind-downwind Covariates in covariance function, as in Eq. 6

Model 5 As in Eq. 5 Exponential covariance function

Model 6 As in Eq. 5 Covariates in covariance function, as in Eq. 6

a For each model, the trend term µt(s) is modeled according to equation 2. 

b For each model, we report the type of weighting scheme used in the mixture, and the covariance functions used for η1,t(s) and η2,t(s). 
Models 1 and 2 do not express ηt(s) as a mixture; thus the covariance function in the table refers to the covariance function of ηt(s).
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Joint-Modeling Bayesian Data Fusion Models   Data fu-
sion models are statistical models that aim to provide more
accurate spatiotemporal estimates of air pollutant concen-
trations by combining different data sources — in this
case, data observed at air quality monitors and the output
of the dispersion model RLINE. Data fusion models for
pollutants can be classified into two general categories:
(1) joint modeling approaches in which both measured
monitor data and RLINE model output are treated as sto-
chastic realizations of an underlying unobserved true pol-
lutant concentration field (Choi et al. 2009; Fuentes and
Raftery 2005; McMillan et al. 2010; Sahu et al. 2010); and
(2) regression-based approaches in which measured monitor
data are the outcome variables and are regressed on the
RLINE model output through a Bayesian hierarchical spa-
tiotemporal model without additional covariates (Berrocal
et al. 2010a,b, 2012; Crooks and Özkaynak 2014; Gilani et al.
2016; Reich et al. 2014; Rundel et al. 2015; Zidek et al.
2012). We considered both approaches. Specifically, using
RLINE output set 1 (concentrations derived using the 2010
emission inventories and 96 regularly spaced receptors
within a 2-km square centered on the major road), we devel-
oped a single-pollutant, nonstationary joint data fusion
modeling approach for both the NOx and the PM2.5 NRIs. In
RLINE output set 2 – 2010 and RLINE output set 2 – 2012 we
assessed whether changes in the emission inventory im-
proved the predictive power of RLINE output using a non-
stationary, single-pollutant, regression-based framework.

Still in the context of nonstationary regression-based data
fusion approaches, we also developed a multipollutant,
nonstationary data fusion model that leverages the correla-
tion between NOx and PM2.5 and jointly predicts them.

Single-Pollutant, Nonstationary Spatiotemporal, Joint 
Modeling Bayesian Data Fusion Models Let now

represent the true, underlying and unobserved natural log of
the NRI concentration for a pollutant (PM2.5 or NOx) at loca-

tion  ( with spatial domain) and time period t = 1, …, T.

In a similar fashion to equation 1, we decompose  as

the sum of two terms

where accounts for the large-scale spatial trend in the

pollutant’s log NRI concentration at location s and time

period t, and accounts for the small-scale spatial

structure. Since is a latent, unobserved field, equa-

tion 8 does not include an error term with a nugget effect

variance τ2.

At a MAPL monitoring site s and time period t, the
measured log NRI concentration, Yt(s) is an error-prone
measurement of , in other words,

where et(s) represents the measurement error at site s and
time period t and is independent of the true underlying
process .

For the RLINE output, we assume that the log NRI con-
centration estimate at location s and time t, denoted by
Xt(s), displays both additive and multiplicative biases that
may be spatially varying or constant. While previous
studies have shown evidence of spatially varying additive
bias, the multiplicative bias is generally modeled as
constant in space and time. Therefore, the log RLINE NRI
concentration is modeled as

where a is a constant (over space and time) additive bias,
and at(s) is a spatially correlated mean-zero additive bias,

local deviation at s during period t from the overall addi-
tive bias a. This spatially varying additive bias in turn is
modeled as a Gaussian process with mean 0 and with an

exponential covariance function with parameters (mar-
ginal variance) and ϕa (decay parameter). With this mod-

eling choice, we assume that the additive bias of the RLINE
output is similar at nearby locations but less so at distant
locations, with a correlation that decays exponentially with
distance. Finally, in equation 10, b is the constant (over
space and time) multiplicative bias of the RLINE output,
and t(s) captures the random deviation of the RLINE

output from the true underlying process  at location s

and time t. We hypothesize that the deviation t(s) is mean-

zero, independent across space and time, and follows a

Gaussian distribution, in other words,  

Adopting an analogous model to equation 2 for the
large-scale spatial trend  of the true unobserved log
NRI concentration 
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where Downt(s) is an indicator for site s at time t being

downwind (versus upwind) of the highway; Weekdayt is

an indicator for time period t falling on a weekday (versus
weekend); Morning is an indicator for morning versus

afternoon time period t; is a scalar that

quantifies the traffic volume on the nearest highway
around s during time period t normalized by the wind
speed at site s during time period t; and Distance(s) records
the distance of s from the nearest highway.

Additionally, for both NOx and PM2.5 we use the model

formulation in equation 3 for the small-scale spatial

structure of the true, unobserved log NRI field. In

other words, for t = 1, …, T, is assumed to be a
weighted mixture of two mutually independent mean-zero

Gaussian spatial processes and . In turn, the
latter are taken to be independent over time, and combined
as in equation 3 with weights defined as in equation 5 to

yield . Finally, the nonstationary covariance func-

tions  and  of  and , respectively,

are taken as in equation 6.

We compare the predictive performance of six joint
Bayesian data fusion models that differ in the approach
used to model the bias of the log RLINE output (e.g., con-
stant in space and time versus not) and for the type of spa-
tial dependence structure hypothesized for the two latent

processes,  and . Table 2 provides a descrip-
tion of the models considered. The simplest model, called
model 1-JBDF, assumes that the error of the RLINE output
in representing the true, unobserved field is constant in
space, thus at(s) is equal to 0. Model 2-JBDF postulates that

even though the RLINE output has a spatially additive

error with mean 0, overall, the RLINE output does not have
an additive bias, that is, a ≡ 0. Model 3-JBDF is the full

model whether the small-scale spatial structure, , of

the unobserved true pollution field, , is stationary or
not. For each of these three models, we contrast two cases:

the first assumes that  is a Gaussian process indepen-
dent in time with mean 0 and with a stationary exponen-

tial covariance function; the second assumes  is
equipped with the nonstationary covariance function
described in equation 7. These cases are distinguished by
appending S or NS.

Single-Pollutant, Regression-Based Bayesian Data 
Fusion Models The single-pollutant nonstationary
regression-based Bayesian data fusion approach proposed
to combine RLINE output with monitoring data can be
interpreted as a compromise between the nonstationary
universal kriging model and the Bayesian data fusion

model. Specifically, letting  be the observed natural
log NRI concentration at site s at time period t, we write

 according to the general model (equation 1), for

example, with

µt(s) being the large-scale spatial trend of the observed log

NRI and ηt(s) accounting for the small-scale residual spa-

tial structure. The large-scale trend µt(s) is modeled as a

linear function of the RLINE output:

with α0 representing the overall additive bias of the RLINE
output and α1 indicating the multiplicative bias. The
small-scale spatial structure  in equation 1, ηt(s), can
now be interpreted both as the residual spatial structure of
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Table 2. Summary of the Joint Bayesian Data Fusion Models for Log NRI of NOx 
and PM2.5

Model Name
Form of Additive 

Bias for RLINE
Covariance 

Structure of η ˆt (s)

Model 1-JBDF-S δt(s) ≡ 0 Stationary: exponential

Model 2-JBDF-S a0 ≡ 0 Stationary: exponential

Model 3-JBDF-S Full Stationary: exponential

Model 1-JBDF-NS δt(s) ≡ 0 Nonstationary, as in Eq.7

Model 2-JBDF-NS a0 ≡ 0 Nonstationary, as in Eq.7

Model 3-JBDF-NS Full Nonstationary
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the observed log NRI field after having accounted for the
log RLINE output, or as the spatial additive error of RLINE.
As before, the spatial additive error of RLINE, ηt(s), is mod-
eled as a spatially varying mixture of two nonstationary,
independent in time, spatiotemporal processes as in equa-
tion 3 with weights w1,t(s) and w2,t(s) defined in equations
4 and 5. Moreover, both underlying spatiotemporal
processes η1,t(s) and η2,t(s) are taken to be mean-zero
Gaussian processes provided with nonstationary covari-
ance functions, as described earlier. Consequently, the
resulting covariance function of the additive bias of RLINE
is given by equation 7.

To evaluate whether RLINE adds any additional infor-
mation to that contained in meteorological and traffic co-
variates when estimating the large-scale behavior of the log
NRI field, we consider an additional regression-based
Bayesian data fusion model. This regression-based Bayes-
ian data fusion model maintains the same general formu-
lation for the log NRI field used above, for example,

and it employs

the same spatial dependence structure for the small-scale
residual spatial structure ηt(s), but models the large-scale

trend µt(s) as:

Even though the regression-based Bayesian data fusion
approach uses the RLINE output only at locations where
monitors are located, after substituting equation 12 (or
equation 13, respectively) in equation 11, the log NRI con-
centration can be obtained at any prediction site. Thus,
spatial maps of the NRI continuous surface can be gener-
ated if the RLINE output is available on a very fine grid.

Multiple-Pollutants, Regression-Based Bayesian Data 
Fusion Model The final modeling approach extends the
single-pollutant regression-based Bayesian data fusion
model to multiple pollutants using models that estimate
the overall additive and multiplicative biases of the RLINE

output corresponding to NOx and PM2.5, as well as the spa-

tial additive errors of the RLINE NRI output for the two
pollutants. Specifically, the multiple-pollutant regression-
based Bayesian data fusion model specifies a regression-
based Bayesian data fusion model for each single pol-

lutant. If  and  are, respectively, the log
observed NRI and the RLINE estimated log NRI for pol-
lutant k (1 = NOx, 2 = PM2.5) at location s and time period

t, adopting the same model as equations 1 and 12 for each

Yt(k)(s) individually, yields: 

where α0(k) and α1(k) are, respectively, the additive and

multiplicative bias of the log RLINE output for pollutant k.
These models will yield estimates of the overall additive

and multiplicative bias of the RLINE output corre-
sponding to NOx and PM2.5, respectively, while estimates

of  and  will provide an idea of the magnitude
of the spatial additive errors of the RLINE NRI output for
NOx and PM2.5, respectively.

To explicitly account for nonstationarity in both pollut-
ants and to exploit the correlation among the two pollut-
ants, we express each , k = 1, 2, according to equation
3, that is, as a mixture with pollutant-specific weights,

and of the same two underlying, latent
processes, η1,t(s) and η2,t(s), thus 

In turn, while the pollutant-specific weights, and
, are modeled as in equations 4 and 5 with pol-

lutant-specific decay parameter ψ(k), k = 1, 2, as in the
other models, the latent underlying processes η1,t(s) and
η2,t(s) are modeled as mutually independent, independent
in time and equipped with nonstationary covariance func-
tions as in equation 6.

Fitting and Performance Evaluation

Details regarding fitting and performance evaluation of
the spatiotemporal models are provided in Appendix 7
(see Additional Materials on the HEI website). Evaluation
of the predictive performance of each model was made for
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each pollutant and for each type of measurement (concen-
tration or NRI) through comparisons between observations
and predictions at out-of-sample sites. For example, for the
nonstationary universal kriging models of ambient pol-
lutant concentrations, of the 286 observed NO and NOx
concentrations, we randomly selected 253 observations for
model fitting and held out 33 observations for model
validation. As our objective was to evaluate whether each
model was able to capture both the spatial and temporal
structure in the TRAPs and NRI concentration, for each
model and pollutant, we held out 10%–15% of the obser-
vations, resulting in 1–3 observations per time period,
which we randomly sampled from the complete dataset.
Predictive performance was assessed by back transforming
predictions to the original scale. Using the median of the
posterior predictive distribution as the predicted value at
each site, the predictive performance of each model was
evaluated in terms of mean absolute prediction error
(MAPE), average length of the 90% prediction interval (PI),
and empirical coverage of the 90% PI. The latter is used to
assess whether the uncertainty in the prediction is correctly
quantified: if empirical coverage is below the nominal level,

assuming no bias in the predictions, the model is underes-
timating the variability/uncertainty in the predictions.
Vice versa, empirical coverage of the PIs above the nom-
inal level indicates that the model overestimates the
variability/uncertainty. For the Bayesian data fusion
models, along with the above-mentioned prediction met-
rics, we also reported the root mean square error (RMSE)
and the Pearson correlation between the predicted concen-
trations and the held-out data.

RESULTS

DISPERSION MODELING

Operational Evaluation

Performance metrics are summarized in Table 3; scatter-
plots of observed versus modeled NOx and CO at the I-69
near-road site are shown in Figure 5. For NOx, daily mean
predictions (modeled background + modeled traffic con-
tributions) were similar to observations (20–38 ppb and

Table 3. Performance Metrics for Dispersion Modeling of Daily Average NOx and CO Concentrationsa

Pollutant 
/ Site Method Days

Means (ppb)

F2 RSP

FB VG

NMSE R2 RPObs Back Model Ncom Com Point FP FN Irr Red

NOx

School ICHEM 918 23 17 3 1.2 0 1 95 0.32 0.07 0.22 1.01 1.12 18 0.07 0.26

Near-road ICHEM 334 37 16 21 18.6 2 1 92 0.58 0.17 0.17 1.01 1.18 30 0.37 0.61

Near-road IGpCHEM 705 48 15 23 18.5 4 1 95 0.74 0.05 0.28 1.03 1.11 34 0.46 0.68

Urban ICHEM 238 25 18 11 8.5 1 1 93 0.57 0.22 0.09 1.03 1.12 23 0.27 0.52

Urban IGpCHEM 565 26 16 12 8.5 2 1 97 0.58 0.15 0.09 1.01 1.09 17 0.33 0.57

CO

Suburban IGFC 40 673 671 27 19 3 5 100 0.21 0.11 0.07 1.00 1.04 153 0.01 0.11

Near-road EC9830T 82 479 128 192 180 9 4 94 0.89 0.00 0.40 1.14 1.05 204 0.72 0.85

Near-road INDiI 655 667 519 291 277 9 5 99 0.45 0.21 0.01 1.04 1.03 197 0.18 0.43

Urban INDiI 284 639 545 126 115 5 6 99 0.17 0.12 0.07 1.00 1.05 166 0.02 0.15

Industrial IGFC 63 585 535 115 100 10 5 100 0.00 0.14 0.03 1.01 1.03 132 0.00 �0.01

a Back = modeled background contribution; Com = modeled contribution from commercial traffic; F2 = % of model + background within 
a factor of 2 of observed; FB = fractional bias; FP = false positive component of fraction bias; FN = false negative component of 
fractional bias; ICHEM = instrumental chemiluminescence; IGpCHEM = instrumental gas-phase chemiluminescence; Irr = irreducible 
or systematic component of VG; Model = modeled contribution from traffic (Ncom + Com); Ncom = modeled contribution from 
noncommercial traffic; NMSE = normalized mean square error; Obs = observed concentrations; Point = modeled contribution from 
point sources; R2 = coefficient of determination; RP = Pearson correlation coefficient; RSP = Spearman rank correlation coefficient; Red 
= reducible or random component of VG; RMSE = root mean square error; VG = geometric variance.
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23–48 ppb, respectively). Performance tended to decrease
with distance from the roadway, for example, RSP ranged
from 0.58 to 0.74 at the near-road site (10 meters from I-96),
0.57 to 0.58 at the urban site (100 meters from I-96), and 0.32
at the schools site (350 meters from MI-97). The near-road
site using the instrumental gas-phase chemiluminescence
(IGpCHEM) monitor had the highest RSP, the lowest % re-
ducible VG and the highest mean model-to-background
ratio. However, the model of near-road NOx measured using
IGpCHEM had the highest false negative FB, above that
using the instrumental chemiluminescence (ICHEM) instru-
ment, a result obtained mainly because the IGpCHEM mea-
surements (average of 48 ppb) exceeded the ICHEM
measurements (37 ppb), while predictions were similar (38
and 37 ppb, respectively). Performance for NOx at other
sites varied. The schools site tended to underpredict daily
averages; the near-road and urban sites were overpredicted;
and reducible errors at all four sites exceeded systematic er-
rors, suggesting improvements in model inputs or parame-
terization could improve model performance.

For CO, daily predictions (320 to 810 ppb) was in the
range of observed levels (479 to 673 ppb). For NOx, perfor-
mance generally decreased with distance from the
roadway (e.g., RSP was 0.45 to 0.89 at the near-road site,
0.17 at the urban site, and 0.21 at the suburban site).
Despite its proximity to I-75 (150 meters), the industrial
site had an RSP near zero, probably due to that monitor’s
high detection limit that falsely elevated the background
estimates. (At the industrial site, for example, the estimated
background averaged 92% of measurements.) Also as for

NOx, the near-road site (with the EC9830T instrument) had
the highest RSP for CO (Figure 5) and again, this case had
the lowest ratio of reducible to overall VG, the highest
mean model-to-background ratio, but the highest negative
FB. Patterns at the other sites were similar to those seen for
NOx. For CO, observations frequently fell below the detec-
tion limit for the less sensitive instruments (IGFC and
INDiI), which yielded relatively high background esti-
mates (averaging 519 to 671 ppb). Ideally, trace-level CO
instrumentation would be used.

For PM2.5, background averaged 8.8 µg/m3, equivalent
to 88% to 92% of observed levels (9.5 and 10 µg/m3,
respectively), and day-to-day variability was significant.
Predicted contributions from point and on-road mobile
sources at the monitoring sites were small (averaging from
0.1 to 0.8 µg/m3), and including local sources did not
increase model fit. This result can be attributed to the
dominance of regional sources and the small signal
remaining from local sources after considering background
levels, the gaps and uncertainties of the PM2.5 emission
inventory, the absence of chemical transformations in
RLINE, and the few near-road sites monitoring PM2.5.
Thus, RLINE performance evaluations for PM2.5 were not
attempted. Performance evaluations of the spatiotemporal
models (described later) did include PM2.5; however, the
transect dataset used for this evaluation included moni-
toring sites much closer to major roads, and measurements
were conducted at peak traffic periods — factors that tend
to increase the NRI (as described in later sections of this
report and in Appendix 6).

Figure 5. Observed vs. modeled NOx and CO at the near-road site (using the IGpCHEM and EC9830T monitors, respectively). Figures
show 1:1 and factor of 2 lines.
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Sensitivity Analyses

The sensitivity of concentration predictions to meteoro-
logical, emission, and traffic allocation inputs is summa-
rized below. (Detailed analyses are provided in the
appendices.) The analysis uses the modeling system
described earlier to estimate daily average concentrations
of CO and NOx, and it compares baseline (or nominal) and
alternative inputs. We also examined effects of downwind
versus parallel winds, day-of-week and seasonal effects,
and the updated emissions inventory. These analyses
include the use of four years of ambient monitoring data,
exposures predicted for both general and vulnerable popu-
lations in Detroit, and the same performance metrics used
in the models described earlier.

Downwind vs. Parallel Winds We first compared model
performance when receptors were downwind of the road,
and when winds were parallel to the road. For NOx, down-
wind conditions generally gave higher F2 and higher RSP
(0.30 to 0.64); other performance metrics were mixed (e.g.,
at the urban site during downwind periods, FB was slightly
lower, VG was unchanged, and the % Red was lower,
mainly for the ICHEM monitor). Performance for CO was
also generally better during downwind periods, albeit less
conclusively than for NOx. F2 exceeded 92% at all sites.
The near-road and urban sites had higher RSP (0.29 to 0.83)
during downwind periods compared to parallel winds
(−0.07 to 0.60). While limited by high detection limits, the
CO dataset indicated better performance during downwind
conditions. This is largely consistent with the more limited
evaluation using hourly CO and NOx at the near-road sites
(Appendix 10, see Additional Materials on the HEI website)
that suggested systematic model biases by wind direction
(e.g., overprediction with downwind winds, and under-pre-
diction during parallel winds). The better performance
during downwind conditions may reflect the greater signal
from local (on-road) emission sources.

Day of Week For NOx, performance on weekdays generally
was better than on Saturdays and Sundays (e.g., weekdays
gave higher F2 and higher RSP in most cases, although week-
days tended to have more underpredictions). For CO, the
evaluation was hampered by data limitations, but weekday
performance again appeared better, although the metrics
were inconsistent and the sample sizes was small. This
may reflect the more regular traffic volume and fleet-mix
patterns occurring on weekdays that are more accurately
represented by temporal allocation factors (Batterman et
al. 2015). In contrast, traffic patterns on weekends (espe-
cially Sundays) are more variable. Higher traffic volumes
on weekdays also may increase traffic-related emissions

and concentrations. Underpredictions on weekdays might
result from higher emissions, possibly due to a higher
diesel fraction in the fleet mix, and possibly lower disper-
sion than assumed. These speculations might be examined
using diagnostic (rather than operational) evaluations that
examine rush-hour periods and traffic conditions (Zhang
and Batterman 2010; Zhang et al. 2011).

Season Performance trends by season were not strong,
but performance appeared slightly better during winter.
For example, RSP at the near-road site was 0.79 to 0.84 in
winter (depending on the instrument), and from 0.52 to
0.69 in other seasons (excluding spring with one instru-
ment when RSP was also 0.79). At the near-road site, F2
was highest in winter with the ICHEM instrument (but in
spring with the IGpCHEM instrument), and the lowest rel-
ative reducible error was in winter. However, seasonal
trends differed at other sites and data limitations restricted
the reliability of the CO data. Potentially important sea-
sonal changes in Detroit include shifts in prevailing wind
directions, changes in the relative frequency of dispersion
regimes (represented in RLINE as MO lengths), large tem-
perature swings — which affects MOVES emission factors
(Chan et al. 2013), changes in atmospheric composition
(especially OH−) that can alter pollutant transformation
and fate, and changes in the level and composition of
regional pollutants (particularly for PM2.5). Only some of
these processes are captured in dispersion models.

Emission Factors Performance was slightly better using
the updated emission factors, which changed emission
factors for several vehicle classes. For example, overall
emissions of NOx and CO from light-duty gas vehicle and
heavy-duty diesel vehicle classes increased by 48% and
30%, respectively (Appendix 8). The results suggest that
NOx emission estimates can be very sensitive to the esti-
mated traffic activity (e.g., commercial traffic volume),
especially during cold weather and congestion when
speeds are lower and emissions are high relative to gaso-
line vehicles.

Temporal Allocation Factors The three sets of TAFs yield-
ed few differences in either NOx and CO predictions that
exceeded the significance thresholds (Appendix 9, see Ad-
ditional Materials on the HEI website). Thus, the Detroit-
specific TAFs that separated commercial and noncommer-
cial traffic did not perform better than the simpler and de-
fault TAFs. This result was unanticipated, especially for
NOx, given the differences between commercial and non-
commercial vehicles and the differences seen in the sim-
plified analyses.
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Meteorology Meteorological datasets obtained at NWS
stations 18 kilometers or more apart caused large differ-
ences in daily concentration predictions on some days at
both sets of receptors, which supports findings from com-
parisons at the monitoring sites (Appendix 10). Both NWS
stations are at airports, and the surrounding terrain is flat
and mostly urban, commercial, wooded, or agricultural.
The differences in predicted concentrations seem likely to
result mainly from changes in atmospheric stability that
alters near-road concentration gradients, possibly due to
very stable conditions — which can cause the highest con-
centrations (as seen in Appendix 3) (Snyder et al. 2013b).
This suggests the possibility of significant exposure mea-
surement error if the meteorological dataset is not repre-
sentative. Errors may be higher for more vulnerable
populations, as portrayed by the NEXUS receptors repre-
senting children who lived close to major roads (Appendix
11, see Additional Materials on the HEI website).

Due to siting and instrumentation limitations, few air
quality monitoring sites (including near-road sites) mea-
sure all of the meteorological parameters required for dis-
persion modeling. For example, of the 79 near-road sites in
the United States (2015; www3.epa.gov/ttnamti1/near-
road.html), the geocoordinates of 7 sites were not avail-
able. For the remaining 72 sites, the distance to the nearest
NWS station averaged 18.5 kilometers; 6 sites were within
5 kilometers and 28 were within 10 kilometers of an NWS
station. This suggests that available meteorological inputs
at many sites may not be representative of near-road set-
tings. Blending local meteorological data with NWS (or
other) datasets is workable and is incorporated in the
AERMET processor. This procedure generally obtained the
best performance in the Detroit application. Still, a full set
of measurements at the local site of interest may be prefer-
able for obtaining measurements that are most representa-
tive of near-road environments. This option, which could
not be fully tested in Detroit, leads to a recommendation to
collect a full set of local meteorological measurements for
dispersion modeling when practicable, reinforcing long
standing model guidance that recognizes the increased
heat flux and surface roughness in urban areas and the
general need for multiple monitoring sites in large urban
areas (Giambini et al. 2012; U.S. EPA 2000). (No specific
guidance was available during the study.) At larger roads
in urban settings, such modeling involves dispersion tran-
sitioning from the road microenvironment to the adjacent
suburban microenvironment. Differences between these
microenvironments may be considerable. Many urban
roads are large paved areas. For example, portions of the
I-96 right-of-way in Detroit exceeds 150 meters in width as
each traffic direction includes three local and three

express lanes, a two-lane service road, multiple shoulders,
and some vegetated buffers. The suburban road microenvi-
ronment has buildings and trees bordering a smaller area
of flat and paved surfaces. Guidance defining the most rep-
resentative meteorological data for traffic-related emis-
sions in such settings, which differ from the general urban
environment, would be helpful for improving near-road
modeling. (See Implications of the Findings for additional
dispersion modeling recommendations.)

Treatment of Low Concentrations Omitting low measured
concentrations (e.g., below the detection limit) from the
evaluation may have artificially increased correlations by
limiting analyses to those observations when local-source
impacts are seen. In another sensitivity analysis, values
below the detection limit were set to half of the detection
limit and all analyses were repeated. This dampened some
trends (e.g., the wind direction analysis of NOx, and in
some cases RSP and other metrics changed noticeably),
although the general conclusions remain unchanged.
Removing low values has the advantage of largely elimi-
nating (meaningless) comparisons between modeled and
measured background, which can be important if roadway
impacts are small or if monitoring methods have low
detection frequencies.

SPATIOTEMPORAL MODELING

Nonstationary Universal Kriging Models

The predictive performance of the nonstationary uni-
versal kriging models for the three pollutants is shown in
Table 4. Model 6 provided the smallest MAPE among the
six models and had at least 97% empirical coverage of the
90% PI for all pollutants. The independent and stationary
models (models 1 and 2, respectively) had smaller average
90% PIs compared with the nonstationary models, but the
PIs appeared to be overly conservative, as shown by the
smaller empirical coverage across pollutants. The
improved predictive performance of Models 4 and 6 for all
three pollutants suggests that the signed wind speed is an
important factor that explains the nonstationarity pro-
cesses in the near-road environment.

Posterior summaries of regression coefficients and
covariance parameters for Model 6 are shown in the top
and bottom sections of Table 5, respectively. For all pollut-
ants, decay parameters ϕ1 and ϕ2 of the underlying spatial
processes η1,t(s) and η2,t(s) relative to the x-y direction
were very similar, giving effective ranges for NO of 55 and
45 meters for η1,t(s) and η2,t(s), respectively, 35 and 28
meters for NOx, and 44 and 32 meters for BC. In other
words, 55 and 45 meters were distances at which the spatial
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correlation in NO concentration at any two sites reduced
to 0.05 upwind and downwind, respectively. Similarly, the
correlation in NOx concentrations between any two sites
upwind (respectively, downwind) is 0.05 or less if their
distance is greater or equal than 35 meters (respectively, 28
meters). Analogous interpretations can be provided for the
effective ranges for BC.

Hence, spatial correlation decayed quickly with
increasing distance, with similar rates for the two under-
lying spatial processes (e.g., at downwind and upwind
sites). On the other hand, decay parameters for the signed
wind speed directions ϕ1 and ϕ2 were very different: the
effective ranges for NO were 0.02 and 4.22 m/s for η1,t(s)
and η2,t(s), respectively, 0.01 and 2.64 m/s for NOx, and
0.02 and 2.99 m/s for BC. Considering the weighting
scheme, these results suggest that downwind sites are
practically uncorrelated in the signed wind speed direc-
tion, while correlation between upwind sites decays rather
slowly with increasing differences in the signed wind
speeds between sites. These results provide further
evidence that the nonstationarity observed in the log con-
centrations is driven predominantly by the signed wind

speed and not by the geographical distance, and that the
wind speed influences the spatial correlation differently
for upwind and downwind sites.

The coefficient estimated for the downwind indicator
(β1) was positive for all three pollutants. Controlling for
other covariates in the model, downwind concentrations
of NO averaged exp(0.98) = 2.7 ppb higher than upwind
concentrations; NOx and BC concentrations were 1.8 ppb
and 1.52 µg/m3 higher, respectively. The coefficient for the
interaction between downwind indicator and distance (β9)
was negative, indicating a significant difference in the
decay rate of concentrations with distance from the
highway between downwind and upwind sites. In partic-
ular, NO concentrations decreased exp(−1.85) = 0.16 times
slower at downwind compared to upwind sites, 0.28 times
slower for NOx, and 0.41 times slower for BC. The estimated
coefficients for morning (β4) were positive for all three pol-
lutants, and negative for the interactions between morning
and weekday (β5), suggesting that after controlling for the
other covariates, morning concentrations did not vary
greatly between weekdays and weekends, but evening con-
centrations did. In particular, on average, NO on weekday

Table 4. Predictive Performance of the Nonstationary Universal Kriging Models Averaged Across Validation Sites and 
Time Periodsa 

Criteria Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

NO

MAPE (ppb) 7.91 7.24 15.07 7.36 15.96 7.20

Avg. length of 90% PI (ppb) 57.4 65.0 132 69.96 3,146 72.45

Emp. coverage of 90% PI (%) 94 97 94 100 100 100

NOx

MAPE (ppb) 10.0 9.29 17.7 9.26 18.5 8.93

Avg. length of 90% PI (ppb) 65.7 69.9 200 75.5 5,794 77.2

Emp. coverage of 90% PI (%) 94 94 97 100 100 100

BC

MAPE (µg/m3) 0.54 0.54 0.69 0.43 0.65 0.42

Avg. length of 90% PI (µg/m3) 2.96 3.15 7.00 3.09 203 3.18

Emp. coverage of 90% PI (%) 85 85 100 97 100 97

a Shown is the mean absolute prediction error (MAPE) and the average length and empirical coverage of 90% prediction intervals (PI).

b Models are defined in Table 2.
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mornings was exp(0.2) = 1.22 ppb higher concentrations
than on weekday evenings, and NO on weekend mornings
was 4.62 ppb higher than on weekend evenings. Similarly,
NOx and BC concentrations on weekday mornings were
respectively 1.11 ppb and 1.16 µg/m3 higher than on
weekday afternoons; differences between weekend morn-
ings and evenings were 2.12 ppb and 2.89 µg/m3, respec-
tively. While the magnitude of these differences seems
modest, they apply to observations from 50 to 500 meters
from the road; downwind sites nearest roads are expected to
have larger differences, as shown earlier. As expected, the
estimated coefficients are positive both for the log of back-
ground concentration (β2) for NO and NOx, and for the ratio
of traffic to wind speed (β6) for all three pollutants.

The sensitivity of results for Models 4 and 6 to the
parameter ψ used to calculate weights in equation 5 was

evaluated by rerunning models for different values of ψ.
This showed only negligible changes, suggesting that the
choice of ψ did not have much influence.

Model 6 was used to predict concentrations of the three
pollutants over the spatial domain. As an example, Figure 6
shows the mean and 90% PIs of NO concentrations around
area 8, which straddles I-94 in Detroit, on December 20, 2012
on a 50-meter grid. Analogous plots for NOx and BC concen-
trations are displayed in Figures 7 and 8, respectively. The
prediction maps show clear concentration gradients with
increasing distance from the highway, particularly in the
downwind direction. Upwind concentrations are more
homogenous, with slightly higher concentrations near the
road than at distant sites.

Table 5. Posterior Medians and 95% Credible Intervals of Regression Coefficients and Covariance Parameters Estimated 
by Model 6 (Full Nonstationary Kriging Model) Fitted to NO, NOx, and BCa 

Coefficient / 
Parameterb

NO NOx BC

Median 95% CI Median 95% CI Median 95% CI

β0 Intercept −0.66 (−1.24, −0.09) 0.60 (0.14, 1.08) −0.23 (−0.49, 0.03)

β1 DW 0.98 (0.60, 1.35) 0.58 (0.32, 0.83) 0.42 (0.13, 0.70)

β2 log(AQS) 1.01 (0.81, 1.20) 0.82 (0.68, 0.96) —

β3 Weekday 0.04 (−0.36, 0.42) −0.19 (−0.45, 0.08) −0.11 (−0.42, 0.19)

β4 Morning 1.53 (1.02, 2.04) 0.75 (0.41, 1.10) 1.06 (0.66, 1.48)

β5 Weekday*morning −1.33 (−1.93, −0.72) −0.65 (−1.08, −0.25) −0.91 (−1.37, −0.42)

β6 (Traffic/WS) × 10−5 0.79 (−1.79, 3.35) 0.87 (−0.84, 2.62) 1.60 (−0.26, 3.44)

β7 (Traffic/WS)*DW × 10−5 −1.92 (−5.43, 1.56) −0.76 (−3.13, 1.62) −0.37 (−3.03, 2.32)

β8 Distance −0.69 (−1.52, 0.13) −0.11 (−0.67, 0.46) −0.19 (−0.87, 0.47)

β9 Distance*DW −1.85 (−3.23, −0.52) −1.29 (−2.24, −0.4) −0.88 (−1.95, 0.17)

τ2 Nugget 0.34 (0.26, 0.46) 0.16 (0.12, 0.21) 0.20 (0.15, 0.27)

σ2
1 Sill — DW 0.48 (0.25, 2.52) 0.21 (0.11, 1.25) 0.31 (0.16, 1.86)

ϕ1 DW 1,700 (1,256, 2,248) 1,702 (1,262, 2,278) 1,701 (1,262, 2,278)

φ1 DW, WS 12,420 (9,349, 16,133) 12,365 (9,225, 16,128) 12,413 (9,303, 16,268)

σ2
2 Sill — UW 0.33 (0.24, 0.45) 0.16 (0.12, 0.22) 0.19 (0.14, 0.27)

ϕ2 UW 1,732 (1,276, 2,275) 1,711 (1,283, 2,266) 1,735 (1,291, 2,266)

φ2 UW, WS 0.20 (0.15, 0.26) 0.20 (0.15, 0.26) 0.20 (0.15, 0.27)

a AQS = Concentration measured by Air Quality System monitor; CI = credible interval; DW = downwind; UW = upwind; WS = wind 
speed. Regression coefficients are in the top part of the table (β0–β9); covariance parameters are in the bottom part of the table. 

b Traffic was recorded in adjusted number of vehicles per hour, WS in m/s; and distance in km.
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Figure 6. Mean and 90% PI of NO concentrations (ppb) yielded by model 6 on 50-meter grids. Measurements were taken around area
8 on December 20, 2012. (A) Predicted hourly NO concentrations; 90% PI (B) lower and (C) upper bounds.

Figure 7. Mean and 90% PI of NOx concentrations (ppb) yielded by model 6 on 50-meter grids. Measurements were taken around area
8 on December 20, 2012. (A) Predicted hourly NOx concentrations; the 90% PI (B) lower and (C) upper bounds.

Figure 8. Mean and 90% PI of BC concentrations (µg/m3) yielded by model 6 on 50-meter grids. Measurements were taken around area 
8 on December 20, 2012. (A) Predicted hourly NOx concentrations; the 90% PI (B) lower and (C) upper bounds.
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Joint Bayesian Data Fusion Models

Performance statistics of the joint Bayesian data fusion
models for NOx and PM2.5 NRI are shown in Table 6. No
single model was clearly dominant with respect to all cri-
teria for both pollutants, in other words, no single model
had the lowest MAPE, the lowest RMSE, the highest corre-
lation with the held-out data, and the shortest PI with
empirical coverage close to the nominal level.

For NOx, the stationary models provided better predic-
tive performance than the nonstationary counterparts.
Model 2-JBDF-S yielded the lowest MAPE and RMSE, and
its 90% PIs had an empirical coverage that was the second
closest to the nominal coverage, even though on average
they were wider than the 90% PIs from Model 1-JBDF-S.
(Estimated parameters for Model 2-JBDF-S are shown in
Table 7.) This suggests that although the RLINE output dis-
plays a spatial error in representing the true, underlying
NOx NRI field, possibly the magnitude of the site-specific

errors is not very large and is uniform in space. This is in
part confirmed by the estimate of the marginal variance

of the spatially varying error at(s) of the log RLINE
output, which was estimated to be quite small and equal to
0.60 (95% credible interval: 0.43 to 0.92). Although com-
parisons of estimates in Tables 5 and 7 are not meaningful
since different variables are considered (observed concen-
trations in one case versus NRI in the other), and the obser-
vations and sites used for model fitting do not coincide, we
infer that the additional information provided by the
RLINE output reduces the uncertainty of the estimated
model parameters. However, this may be achieved at the
cost of the empirical coverage of the PIs.

For PM2.5, the situation was different; the Bayesian data
fusion models with nonstationary covariance functions pro-
vided strikingly better predictive performance than the sta-
tionary models. However, as for NOx, no model was better
in terms of all five criteria (MAPE, RMSE, correlation,

2
a	

Table 6. Predictive Performance of the Bayesian Data Fusion Models Averaged Across Validation Sites and Time Periodsa,b

Criteria
Model 1 
JBDF-S

Model 2 
JBDF-S

Model 3 
JBDF-S

Model 1 
JBDF-NS

Model 2 
JBDF-NS

Model 3 
JBDF-NS

NOx

MAPE (ppb) 6.59 6.29 7.00 6.95 6.69 8.13

RMSE (ppb) 8.75 8.65 9.34 9.42 8.92 11.99

Pearson correlation 0.55 0.44 0.38 0.49 0.42 0.28

Avg. length of 90% PI (ppb) 23.81 28.31 32.49 108.25 33.98 300.41

Emp. coverage of 90% PI (%) 84.0 77.0 77.0 84.0 74.0 74.0

PM2.5

MAPE (µg/m3) 1.10 0.71 0.77 0.48 0.42 0.44

RMSE (µg/m3) 1.63 0.90 0.97 0.67 0.60 0.63

Pearson correlation 0.02 0.44 0.41 0.14 0.36 0.34

Avg. length of 90% PI (µg/m3) 4.72 7.10 7.66 3.30 4.87 4.22

Emp. coverage of 90% PI (%) 55.0 90.0 86.0 66.0 69.0 69.0

a Shown are the mean absolute prediction error (MAPE), root mean squared error (RMSE), Pearson correlation with held-out data, and 
the average length and empirical coverage of 90% prediction intervals (PI). JBDF = joint Bayesian data fusion; NS = nonstationary; S = 
stationary.

b Models are defined in Table 2.
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Table 7. Posterior Medians and 95% Credible Intervals of Regression Coefficients and Covariance Parameters Estimated 
by the Best-Fitting Models, Model 2-JBDF-S and Model 2-JBDF-NS, Fitted to NOx and PM2.5, Respectivelya 

Coefficient / 
Parameterb

NOxc PM2.5d

Median (95% CI) Median (95% CI)

Intercept 1.65 (1.26, 2.10) −0.89 (−2.06, 0.51)

DW 0.96 (0.83, 1.11) 1.37 (−0.65, 3.36)

Weekday 0.57 (0.03, 1.15) −0.25 (−1.57, 1.10)

Morning 0.32 (−0.43, 1.07) 1.06 (−0.88, 3.05)

  Weekday*morning −0.77 (−1.67, 0.06) −0.63 (−2.79, 1.59)

 (Traffic/WS) × 10−5 5.78 (2.71, 8.63) 14.1 (4.79, 24.3)

  (Traffic/WS)*DW × 10−5 −4.54 (−6.04, −3.13) −15.7 (−27.0, −5.22)

Distance −15.1 (−17.8, −12.6) −12.9 (−19.2, −6.88)

 Distance*DW −3.01 (−6.28, 0.15) −1.49 (−8.44, 5.40)

a Additive bias of RLINE output — —

b Multiplicative bias of RLINE 
output

1.25 (1.11, 1.35) 0.66 (0.59, 0.75)

Nugget effect 0.42 (0.42, 0.43) 0.06 (0.06, 0.06)

Variance of the deviation 
between the RLINE output 
and the true NRI

0.07 (0.05, 0.09) 0.07 (0.06, 0.009)

 Sill — DW — 6.34 (2.70, 13.00)

 DW — 0.004 (0.001, 0.03)

 DW, WS — 6.58 (6.18, 35.3)

 Sill — UW — 8.90 (5.06, 14.3)

UW — 0.07 (0.02, 0.19)

 UW, WS — 25.6 (64.5, 76.5)

Marginal variance of the true, 
underlying NRI

0.49 (0.35, 0.69) —

Range parameter of the true, 
underlying NRI

1.01 (0.65, 1.52) —

Marginal variance of the 
spatially varying additive error 
of RLINE

0.60 (0.43, 0.92) 1.01 (0.68, 1.69)

Range parameter of the spatially 
varying additive error of RLINE

0.78 (0.44, 1.26) 0.15 (0.07, 0.26)

a CI = credible interval; DW = downwind; UW = upwind; WS = wind speed. Regression coefficients  are in the top part of the 
table, covariance parameters are in the bottom part of the table.

b Traffic was recorded in adjusted number of vehicles per hour, WS in m/s; and distance in km.

c NOx: Model 2-JBDF-S.

d PM2.5: Model 2-JBDF-NS.
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average length, and empirical coverage of 90% PI).
Weighting the MAPE and RMSE criterion the most, Model
2-JBDF-NS yielded the best predictions. As for NOx, Model
2-JBDF-NS hypothesized a null overall additive bias, but
localized additive error at each location. Again, as for NOx
and also for PM2.5, the spatially varying additive bias of
RLINE had a small marginal variance and a very short
range, indicating that the spatial correlation decays very
fast (Table 7).

Even though the best-performing joint Bayesian data
fusion models are the models specified by equations 8
through 11 with a ≡ 0, that is, models that do not include a
global additive calibration term for the RLINE output, both
models include a global multiplicative calibration term b.
Hence, according to these models RLINE should be
rescaled to represent the true unobserved NOx and PM2.5
NRI fields. Given the observed data, the multiplicative cal-
ibration term b for NOx and PM2.5 are estimated to be 1.25
and 0.66, respectively (see Table 7), with 95% credible
intervals that do not contain 1. This suggests that in light
of the observed data, the RLINE output is not appropriately
scaled to correctly represent the true NRI concentration for
both pollutants.

In other words, the Bayesian data fusion models suggest
that the RLINE output needs to be calibrated to be consid-
ered as a good representation of the true unobserved NRI
field for both NOx and PM2.5, but the bias adjustment
mostly consists of multiplicative correction (or rescaling)
of the RLINE output for both pollutants, as the best per-
forming model for both pollutants (in terms of MAPE) are
models that did not include an overall additive bias. For
both pollutants, RLINE displayed a spatial error that had a
small to moderate marginal variance and a fast-decaying
spatial correlation. Interestingly, while the universal
kriging models for observed NOx and PM2.5 concentrations
better matched the data when a nonstationary covariance
function was used, data fusion models that exploited the
information in the RLINE output to represent the true
unobserved NOx NRI field performed better when the
covariance function was modeled to be stationary.

Regression-Based Bayesian Data Fusion Models

Single-Pollutant Models Performance statistics of the
regression-based Bayesian data fusion models for NOx
(Table 8) were inferior to the nonstationary universal
kriging model, which indicates that RLINE does not pro-
vide any additional useful information than what is con-
tained in the GIS covariates used in the nonstationary
kriging model. As reported in the previous section, when
incorporating the RLINE output, a stationary covariance

function described the residual small-scale spatial struc-
ture of the NRI field better, suggesting that the nonstation-
arity in the NRI field was partly accounted for by the
RLINE output.

Results of joint Bayesian data fusion models and single-
pollutant regression-based Bayesian data fusion models
cannot be compared since different RLINE outputs were
used; the former used RLINE output set 1 (2010 emissions
inventory and dense set of receptors), while the latter used
RLINE output set 2 (both 2010 and 2012 emissions inven-
tory, receptors located at MAPL sites only). The many
receptors used in the joint Bayesian data fusion model
application likely explains the divergent widths of the
90% PIs of these two modeling approaches: 28.3 ppb
(Table 6) for Model 2-JBDF-S versus 113.3 ppb (Table 8) for
the stationary regression-based Bayesian data fusion
model using the best-fitting model within their Bayesian
data fusion model category. While the joint Bayesian data
fusion modeling approach yielded smaller PIs, this
imposed increased computational complexity and running
time, in addition to potential identifiability issues.

The influence of the emission inventories used in the
dispersion modeling on the predictive performance of the
regression-based Bayesian data fusion models is displayed
in Table 8, which compares the predictive performance of
a model that uses the RLINE output derived using, respec-
tively, the original (2010) and the updated (2012) emis-
sions. For NOx, the updated inventory led to a slight gain
in predictive performance regardless of whether a sta-
tionary or nonstationary covariance function was used for
the dependence structure of the spatial additive bias of the
RLINE.

As noted for the joint Bayesian data fusion models, the
RLINE output was helpful for predicting PM2.5 NRI con-
centration (although not for NOx), especially when the
small-scale covariance structure of the observed NRI field
was modeled using a nonstationary covariance function.
In particular, this latter class of model yielded predictions
that had a good correlation with the held-out data, while
there was almost no correlation between the predictions
obtained using the stationary Bayesian data fusion models.
In addition, the empirical coverage of the 90% PI for PM2.5
was very close to the nominal level. Finally, the updated
emissions inventory made only minimal differences in
terms of predictive performance for the PM2.5 NRI, another
difference from NOx.

Parameters of the best-fitting regression-based Bayesian
data fusion models for NOx and PM2.5 NRI are listed in
Table 9. As already noted for the joint Bayesian data fusion
model, the best-fitting model for NOx had an overall addi-
tive bias equal to 0 and a local spatial additive bias with a
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small marginal variance and a fast-decaying correlation. In
contrast, the best regression-based Bayesian data fusion
model for PM2.5 had an overall additive bias that was esti-
mated to be significantly different from 0, while the local-
ized, spatially varying additive bias had a small marginal
variance. Finally, for both pollutants, the best-fitting
models contained a multiplicative RLINE bias term that
was estimated to be less than 1.

As an example case, Figure 9 shows the predicted PM2.5
NRI (and 90% PIs) for Area 8 on the morning of December
20, 2012, yielded by the nonstationary regression-based
Bayesian data fusion model with the 2012 emission inven-
tory. The figure displays also the observed NRI and the
RLINE output, and again highlights that RLINE underesti-
mated the NRI values of NOx and PM2.5.

The predictive performance of the regression-based
Bayesian data fusion models that include, along with the
RLINE NRI output, meteorological and traffic covariates, is
summarized in Table 10. In agreement with the results pre-
sented in Table 9, the stationary data fusion model with
the most recent emissions provided the best predictive
performance for NOx in terms of MAPE, RMSE, and corre-
lation coefficient, while the nonstationary model yielded
the best performance for PM2.5 without much difference
among the two sets of emissions.

Table 11 lists estimates of coefficients for the RLINE
output, regression coefficients for the meteorological and
traffic covariates, and covariance parameters for the best-fit-
ting regression-based Bayesian data fusion models that
included meteorological and traffic covariates for NOx and

Table 8. Predictive Performance of Regression-Based Bayesian Data Fusion Models Averaged Across Validation Sites and 
Time Periods Using RLINE with 2010 vs. 2012 Emissions Inventoriesa,b

Criteria

Nonstationary 
Universal 
Kriging

Stationary Data Fusion
(emissions)

Nonstationary Data Fusion
(emissions)

2010 2012 2010 2012

NOx

MAPE (ppb) 6.60 7.25 6.97 7.10 7.07

RMSE (ppb) 9.01 10.22 9.65 9.92 9.90

Pearson correlation 0.71 0.64 0.67 0.66 0.64

Avg. length of 90% PI (ppb) 116.95 113.27 113.34 116.97 121.27

Emp. coverage of 90% PI (%) 66.67 69.70 69.70 69.70 69.70

PM2.5

MAPE (µg/m3) 0.51 0.62 0.62 0.47 0.47

RMSE (µg/m3) 0.82 1.05 1.05 0.86 0.87

Pearson correlation 0.56 0.01 0.001 0.75 0.73

Avg. length of 90% PI (µg/m3) 3.08 3.41 3.35 2.60 2.55

Emp. coverage of 90% PI (%) 86.67 76.67 76.67 86.67 83.33

a The nonstationary universal kriging model is fitted to the two pollutants individually, the stationary data fusion model is defined using 
equation 12, but the two underlying spatial processes are assumed to have a stationary covariance function. The nonstationary data 
fusion model is defined using equation 12 with the covariance function defined using equations  4, 5, and 6 (see section Single 
Pollutant Models in Regression-Based Bayesian Data Fusion Models).

b Shown are the mean absolute prediction error (MAPE), root mean squared error (RMSE), Pearson correlation with held-out data, and 
the average length and empirical coverage of 90% prediction intervals (PI). RLINE = Research LINE-source model.
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PM2.5, that is, the stationary model with 2012 emissions for
NOx and the nonstationary model with 2012 emissions for
PM2.5. After including RLINE in the data fusion model,
meteorological and traffic covariates gave no additional
information that was useful in explaining the variability in
the NOx NRI, with the exception of distance to the edge of
the road, which is significantly and negatively associated
with NOx NRI (the farther from the edge of the road, the
lower the NRI concentration for NOx, as expected). How-
ever, the magnitude of the effect of distance from the edge of
the road had little consequence on the NOx NRI concentra-
tion: for each additional meter farther from the road, the
NOx NRI concentration is exp(−0.003) = 0.997 times

smaller. Interestingly, estimates of the covariance parame-
ters for the stationary Bayesian data fusion model for NOx
that includes meteorological and traffic covariates are very
similar to those in Table 9, which did not include the addi-
tional covariate information.

For PM2.5, the conclusions are quite different: after
accounting for meteorological and traffic covariates,
RLINE does not provide any additional information that is
useful for estimating the PM2.5 NRI concentration. In par-
ticular, as seen in Table 11, only the indicator for morning
and the interaction of weekday and morning were signifi-
cantly associated with PM2.5 NRI. More specifically, the
PM2.5 NRI concentration is expected to be greater during

Table 9. Posterior Medians and 95% Credible Intervals of Additive and Multiplicative Bias of the 
RLINE Output Coefficients and Covariance Parameters as Estimated by the Best-Fitting Regression-
Based Bayesian Data Fusion Model to NOx and PM2.5, Respectivelya

Coefficient / 
Parameter

NOxb PM2.5b

Median 95% CI Median 95% CI

α0 Additive bias 0.05 (−0.47, 0.57) −0.85 (−1.02, −0.66)

α1 Multiplicative bias 0.45 (0.32, 0.58) 0.12 (0.006, 0.23)

τ2 Nugget 1.45 (1.06, 1.98) 0.40 (0.24, 0.65)

Sill —  DW — 1.01 (0.67, 1.53)

DW — 39.25 (36.42, 41.05)

DW, WS — 36.38 (35.16, 37.71)

Sill — UW — 0.96 (0.64, 1.45)

UW — 39.33 (36.38, 40.79)

UW, WS — 0.21 (0.15, 0.27)

Still spat-vary add biasc 0.99 (0.67, 1.49) —

Range covar spat-vary 
add biasc

39.34 (36.70, 40.66)
—

a CI = credible interval; DW = downwind; RLINE = Research LINE-source model; UW = upwind; WS = wind 
speed. RLINE output coefficients are in the top part of the table (α0 & α1), covariance parameters are in the 
bottom part of the table. 

b For NOx the best fitting model is the stationary regression-based Bayesian data fusion model; for PM2.5 the best 
fitting model is the nonstationary regression-based Bayesian data fusion model.

c Sill spat-vary add bias = sill or marginal variance for the spatially varying additive bias; Range covar spat-vary 
add bias = range parameter for the covariance of the spatially varying additive bias.
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the morning, while the NRI concentration is expected to be
lower during weekday mornings than the weekday
evenings. As observed with NOx NRI, estimates of the spa-
tial covariance parameters are very similar to those
obtained for the regression-based Bayesian data fusion
model that included only the RLINE output as predictor.
Comparing the predictive performance of the nonsta-
tionary regression-Bayesian data fusion models for PM2.5,
when only RLINE is used as predictor, versus the case
where other meteorological and traffic covariates also are
included as predictors, we can see that adding additional
covariates leads to a small deterioration of predictive per-
formance with respect to MAPE and RMSE criteria. In
addition, adding meteorological and traffic covariates
leads to less precise PM2.5 NRI estimates, as indicated by
wider PIs but not higher empirical coverage of the
Bayesian data fusion models with additional covariates.
This suggests that for prediction purposes, a regression-
based Bayesian data fusion model for PM2.5 NRI concen-
tration with only PM2.5 RLINE output as predictor might

be preferable over a model that includes additional meteo-
rological and traffic covariates.

Multiple-Pollutant Models Given the large differences
in the importance of the RLINE output in predicting the
NOx and PM2.5 NRI, and the difference in the form of the
spatial covariance structure of the RLINE error, we did
not anticipate that jointly modeling these pollutants
would be beneficial. Given results for the single-pollutant
regression-based Bayesian data fusion models, we devel-
oped the multiple-pollutant regression-based Bayesian
data fusion model using the updated emissions inventory.
The predictive performance of various two-pollutant
regression-based Bayesian data fusion models is presented
in Table 12. Our expectations were confirmed by the
results, which again showed that while the RLINE output
was helpful for the PM2.5 NRI, it was not for the NOx NRI,
and that the best performance for PM2.5 was obtained
using a nonstationary model.

Table 10. Predictive Performance of the Two-Pollutant Regression-Based Bayesian Data Fusion Models, Including 
Meteorological and Traffic Covariates and Averaged Across Validation Sites and Time Periods, Using RLINE with 
2010 vs. 2012 Emissions Inventories for Fitting Both NOx and PM2.5 Near-Road Incrementsa,b

Criteria

Stationary Data Fusion 
(emissions)

Nonstationary Data Fusion 
(emissions)

2010 2012 2010 2012

NOx

MAPE (ppb) 6.64 6.18 6.61 6.46

RMSE (ppb) 8.66 8.02 8.90 8.51

Pearson correlation 0.76 0.80 0.72 0.75

Avg. length of 90% PI (ppb) 112.21 114.01 112.76 116.57

Emp. coverage of 90% PI (%) 69.70% 69.70% 69.70% 69.70%

PM2.5

MAPE (µg/m3) 0.71 0.71 0.52 0.51

RMSE (µg/m3) 1.07 1.07 0.84 0.82

Pearson correlation 0.26 0.24 0.54 0.56

Avg. length of 90% PI (µg/m3) 4.16 4.14 3.20 3.14

Emp. coverage of 90% PI (%) 73.33% 73.33% 86.67% 86.67%

a Shown are the mean absolute prediction error (MAPE), root mean squared error (RMSE), Pearson correlation with held-out data, and 
the average length and empirical coverage of 90% prediction intervals (PI). RLINE = Research LINE-source model.

b Meteorological and traffic covariates as indicated in equation 13.
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Table 11. Posterior Medians and 95% Credible Intervals of the RLINE Output Coefficients, Regression Coefficients of 
Meteorological and Traffic Covariates, and the Covariance Parameters Estimated by the Best-Fitting Regression-Based 
Bayesian Data Fusion Models with Additional Covariates to NOx and PM2.5a

Parameter

NOxb PM2.5c

Median 95% CI Median 95% CI

0.94 (0.22, 1.67) −1.00 (−1.56, −0.44)

0.38 (0.21, 0.55) 0.14 (−0.03, 0.31)

γ1 DW 0.33 (−0.55, 1.18) 0.33 (−0.34, 1.00)

γ2 Weekday 0.04 (−0.68, 0.81) 0.07 (−0.53, 0.67)

γ3 Morning 0.02 (−0.81, 0.88) 1.75 (1.00, 2.46)

γ4 Weekday*morning 0.01 (−1.06, 1.05) −1.30 (−2.24, −0.32)

γ5 (Traffic/WS) × 10−5 −1.87 (−12.1, 8.35) −1.10 (−9.20, 7.00)

γ6 (Traffic/WS)*DW × 10−5 4.91 (−8.50, 18.17) −4.00 (−13.42, 6.05)

γ7 Distance −0.003 (−0.005, −0.001) −0.0006 (−0.002, 0.0007)

γ8 Distance*DW 0.0003 (−0.002, 0.003) −0.0008 (−0.003, 0.001)

τ2 Nugget 1.33 (0.96, 1.81) 0.33 (0.19, 0.53)

Sill — DW — 1.06 (0.70, 1.61)

DW — 39.43 (36.99, 39.98)

DW, WS — 34.55 (33.75, 37.10)

Sill — UW — 0.95 (0.66, 1.40)

UW — 39.45 (37.21, 39.98)

UW, WS — 0.21 (0.16, 0.27)

Marginal variance (or sill) of the 
spatially varying additive bias 
of RLINE

0.99 (0.67, 1.49) —

Range parameter of the spatially 
varying additive bias of RLINE

39.46 (37.30, 39.98) —

a CI = credible interval; DW = downwind; RLINE = Research LINE-source model; UW = upwind; WS = wind speed. RLINE Output 

calibration coefficients are in the top part of the table , regression coefficients are in the middle part of the table, and 

covariance parameters are in the bottom part of the table. 

b NOx: the stationary model with 2012 emissions.

c PM2.5: the nonstationary model with 2012 emissions.
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DISCUSSION AND CONCLUSIONS

The following summarizes and discusses the main find-
ings pertaining to improving estimates of TRAP exposures,
particularly in the near-road zone. Given the limitations of
our data, we are cautious about interpreting and general-
izing the results of each aim. Still, these findings have a
number of implications for health studies and future
research that lead to recommendations for improving dis-
persion modeling and practice, as described later in
“Implications of the Findings.”

DISPERSION MODELING

Synthesis and Comparison with the Literature

The operational evaluation characterized dispersion
modeling performance for daily averages of NOx and CO at

multiple sites in Detroit over a four-year period. Overall,
performance metrics for NOx and CO met the criteria laid
out in evaluation guidelines (Chang and Hanna 2004;
Hanna and Chang 2012). The performance metrics often,
but not always, provided consistent information, although
some interpretations can be complex. For example, if RSP
is low, then comparisons of FB and VG across sites might
provide little information. Most downwind NOx and CO
predictions were within a factor of two of observations (F2
> 90%); correlation coefficients were moderate to high for
NOx (0.32 to 0.74) but were variable for CO (0 to 0.89),
which was limited by instrument sensitivity. Agreement
between observed and predicted concentrations improved
when monitors were downwind of major roads, but the
NOx concentration was overpredicted and correlation
decreased with low NOx observations and parallel winds.
While of significant interest, PM2.5 predictions were not
evaluated given the limited ability to detect PM2.5 emitted

Table 12. Predictive Performance of Various Two-Pollutant Regression-based Bayesian Data Fusion Models for Both NOx 
and PM2.5 Near-Road Incrementsa,b

Criteria

Nonstationary
Universal
Kriging

Stationary 
Data Fusion 2012

Emissions

Nonstationary
Data Fusion 2012

Emissions

NOx

MAPE (ppb) 8.55 9.36 9.34

RMSE (ppb) 15.94 17.74 17.24

Pearson correlation 0.55 0.47 0.52

Avg. length of 90% PI (ppb) 192.91 145.30 147.38

Emp. coverage of 90% PI (%) 90.0 90.0 90.0

PM2.5

MAPE (µg/m3) 0.78 0.82 0.77

RMSE (µg/m3) 1.42 1.50 1.41

Pearson correlation 0.17 −0.11 0.23

Avg. length of 90% PI (µg/m3) 4.23 3.90 3.76

Emp. coverage of 90% PI (%) 93.33 93.33 93.33

a The nonstationary universal kriging model is fitted to the two pollutants individually, the stationary data fusion model is defined 
using equations 14 and 15, but the two underlying spatial processes are assumed to have a stationary covariance function. The 
nonstationary data fusion model is defined using equations 14 and 15 and modeled as in equations 4, 5, and 6 (see section Multiple-
Pollutants, Regression-Based Bayesian Data Fusion Model).

b Shown are the mean absolute prediction error (MAPE), root mean squared error (RMSE), Pearson correlation with held-out data, and 
the average length and empirical coverage of 90% prediction intervals (PI).
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from local sources. This was due to the strength of back-
ground and regional sources of PM2.5, as well as to the lack
of spatially and temporally resolved emissions data for
area and non-road mobile emissions, which are substan-
tial, and the limited information regarding non-exhaust
emissions (i.e., brake, tire, and road-wear emissions).

Dispersion models like RLINE are expected to perform
best at sites that are close to roads without large obstruc-
tions, as nearby sources likely contribute a larger fraction
of observed concentrations. Also, air flow around build-
ings and other features is not explicitly modeled by
Gaussian plume models. (RLINE simulates near-source
dispersion using a general surface roughness parameter
and dispersion parameters.) For NOx and CO, which are
emitted primarily from traffic-related sources in urban
areas, performance improved with proximity to major
roads. The best performance in Detroit was attained at the
Eliza Howell near-road site, located close to the busy I-96
freeway. Model performance was also better on weekdays
as compared to weekends, which is consistent with higher
traffic volume and more regular traffic activity patterns on
weekdays that are more consistent with the assumed
diurnal traffic trends.

Our findings are largely consistent with prior RLINE
evaluations. For example, using downwind 3-hour aver-
ages of SF6 tracer gas at near-road sites in Sacramento, Cal-
ifornia, F2 > 80%, geometric mean (MG) =1.18 (Snyder et
al. 2013b). Using this same dataset, another study obtained
F2 > 78% (Heist et al. 2013). For downwind and hourly
SF6 gas data collected in rural Idaho, F2 = 73% (Heist et al.
2013), and F2 was 75% to 100% (Venkatram et al. 2013).
For downwind hourly near-road NO data, F2 = 93% and
MG = 1.12 (Snyder et al. 2013b); for Detroit all-direction
hourly NOx at the schools site, the mean bias was 30% and
F2 = 62% (Isakov et al. 2014); and for Detroit downwind
near-road NOx and CO, F2 = 100% (Chang et al. 2015a). We
found positive FB at the near-road site, similar to previous
work. Overprediction and increased scatter of NOx during
aggregated hours with low NOx measurements have also
been shown (Heist et al. 2013; Snyder et al. 2013b; Venka-
tram et al. 2013). Using near-road and downwind SF6 mea-
surements, FB = 0.05 and normalized mean standard error
was 0.34 (Heist et al. 2013), comparable to that found in
Detroit for NOx and CO. In contrast to earlier work, we did
not show significant overprediction reported for parallel
winds (Snyder et al. 2013b) or downwind peaks (Venka-
tram et al. 2013), and our NMSE estimates were consider-
ably smaller than values reported in a recent RLINE
evaluation (Heist et al. 2013). These differences likely
arose from our inclusion of background and point sources
(also performed in one other study [Isakov et al. 2014]), use

of daily averages, and differences in the estimated back-
ground.

Operational evaluations should be distinguished from
diagnostic, dynamic, and probabilistic types of model
evaluation. Comparisons to previous RLINE evaluations,
performed primarily for diagnostic purposes, are limited
by several factors. First, we examined daily concentra-
tions, which are relevant to many epidemiological applica-
tions, and we did not focus on performance as a function
of meteorological conditions. Lower performance and
overprediction have been reported during stable periods,
in other words, periods with low wind speeds (Heist et al.
2013; Snyder et al. 2013b; Venkatram et al. 2013). Second,
performance during upwind periods was not evaluated
(observations during these periods were used to estimate
background); prior studies show overprediction and
increased scatter at upwind receptors (Heist et al. 2013;
Snyder et al. 2013b). Third, our large-scale and multiyear
urban application used data from a sparse (though typical)
air quality monitoring network, so the ability to assess spa-
tial performance was limited. In comparison, other studies
have used tracer gases, a higher density of monitoring
sites, and a small study domain (<1 km2) containing few
sources.

Evaluation of Dispersion Modeling

Dispersion model predictions have been compared to
monitored observations using diagnostic and operational
evaluations, as well as sensitivity analyses, in this report
and elsewhere. Here we focused on operational evalua-
tions using daily average concentrations measured over a
four-year period at near-road monitoring sites across
Detroit. This evaluation is important due to its long record,
urban scale application, and presumed greater relevance
for health studies.

Overall, predictions of NOx and CO met performance
criteria laid out in evaluation guidelines (Chang and
Hanna 2004; Hanna and Chang 2012). For example, NOx
and CO predictions were mostly within a factor of two of
observations (F2 > 90%), and correlation coefficients were
moderately high for NOx (RSP = 0.32 to 0.74), but more
variable for CO (0 to 0.89). However, CO comparisons were
likely impaired by the monitor performance (many obser-
vations below the instrument’s detection limits). As noted,
performance improved when monitors were downwind of
major roads, at sites closer to major roads, on weekdays,
and during winter and spring seasons. The evaluation was
not informative for PM2.5 due to the scarcity of PM2.5 mon-
itors near major roads, the lack of spatially and temporally
resolved emissions inventory from non-road sources
(which appear significant), and the presence of high
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regional or background levels of PM2.5. Sensitivity anal-
yses showed scant changes from using updated emission
factors (2012 estimates from MOVES 2014 with link-match
traffic activity, compared to MOVES 2011 with default
traffic activity) or Detroit-specific temporal allocation fac-
tors for traffic activity (compared to national defaults), but
showed larger differences and improved performance when
using on-site (or local) meteorological data (compared to air-
port data). These findings generally were consistent across
most sites and with the literature. Overall, they suggest the
usefulness of dispersion modeling for estimating spatially
and temporally resolved exposure estimates.

Several issues are highlighted regarding the use of dis-
persion models in health studies. First, modeling can be
data intensive and computationally demanding, largely
due to the size and complexity of link-based emission
inventories, the temporal and spatial resolution needed,
and the use of numerical approaches for dispersion calcu-
lations (e.g., the default option in RLINE). Even after revi-
sions to facilitate input/output and other operations,
modeling remained computationally intensive given the
number of links (9,700) and receptors (often hundreds or
thousands) of interest in the NEXUS application. Second,
Gaussian plume models like RLINE cannot model calm
conditions. This means that calculations are not per-
formed if wind speeds fall below 0.5 or 1.0 m/s, thus, con-
centrations for these periods are unavailable or, if
multihour averages are computed, not used in computing
averages. Third, RLINE and most plume models have lim-
ited or no ability to address the evolution of aerosols,
vapors, and gases that can produce organic aerosols, NO to
NO2 conversion, and other secondary pollutants (Pant and
Harrison 2013).

Uncertainty and Limitations

Many factors affect comparisons between observed and
predicted pollutant concentrations. Our results show the
importance of selecting pollutants that are predominately
traffic based and measured with sufficient sensitivity. The
use of monitoring parameters more specific to TRAP, for
example, BC, and possibly ultrafine PM, would be valu-
able. While detailed, the mobile source inventory used
estimates of traffic volumes and time allocation factors
derived from mostly larger roads; the MOVES emission
factors for the greater Detroit area may not have fully
reflected local traffic volume, vehicle mix, and emissions.
Point sources were aggregated to the facility level and used
average emission rates. Temporal variability was not mod-
eled. Background estimates only partly accounted for
regional sources and may not have fully represented short-
term fluctuations and gradients. (Some studies have used

complex regional chemical models to estimate background
[Arunachalam et al. 2014].) The classification of down-
wind and parallel periods refers to only the nearest major
road. Handling secondary pollutants, including secondary
organic aerosols, is a gap that may increase in importance
as primary emissions continue to be reduced due to more
stringent emission controls. Finally, the fewer observa-
tions available on weekends may have influenced results.

Overall, results highlight the sensitivity of evaluation
results to monitor placement, instrument sensitivity, and
the ability to observe contributions from local sources.
Results for NOx appear most meaningful given the NOx
instrumentation’s greater sensitivity and ability to detect
traffic-related emissions. In contrast, the CO evaluation was
limited by low detection frequencies at some sites, a
product of high detection limits that reduced the number of
valid observations (especially important when analyses
were stratified by wind direction, day of week, and season).

Finally, to confirm and extend our results, other opera-
tional performance evaluations and sensitivity analysis
should be conducted across a range of urban settings.

Enhancements to Dispersion Modeling

We identified a number of opportunities to enhance
urban scale dispersion models and model inputs. Here we
focus on the emissions inventory and the meteorological
inputs to dispersion models.

The link-based on-road mobile source emissions inven-
tories used in RLINE and other dispersion models are
based on estimates of emission factors, traffic activity (e.g.,
vehicle volume, speed, and mix), and the representation of
the road network. These inventories can have large uncer-
tainties for many reasons, including the spatial and tem-
poral variability of many of the parameters and governing
processes and the limited nature and number of measure-
ments supporting traffic activity and emission factor esti-
mates. We examined differences between the inventory
originally used in NEXUS modeling and an updated
inventory that corrected some of the link geometry,
updated AADT and vehicle mix information, incorporated
site-specific temporal allocation factors, and used more
recent MOVES emission factors. These are intensive and
nontrivial revisions, in part due to the size of urban net-
works (9,700 links to represent the larger roads in Detroit
alone), the diversity of the datasets, and the complex and
many choices needed to match available data to require-
ments of MOVES and RLINE inputs. While some of the
revisions improved dispersion modeling performance,
often they did not appear to make substantial differences
as shown by sensitivity analyses (for NOx, CO, and PM2.5)
and operational evaluations (for NOx and CO), especially
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when daily average concentrations were examined. Effects
of the revisions may be masked or compensated by other
factors that affect pollutant levels in real-world urban-
scale settings.

For PM2.5, as noted earlier, we could not clearly distin-
guish the traffic-related component from other sources of
PM2.5 using routine observations collected at the AQS
monitoring sites in Detroit. This component could be
distinguished, however, in the evaluation of the Bayesian
fusion models, which utilized short-term PM2.5 measure-
ments collected on transects across major Detroit roads
during rush hours. In this case, RLINE provided useful,
though biased, information regarding PM2.5 concentra-
tions. While an important driver of health effects, the
PM2.5 emission estimates appear to have especially large
uncertainties. This includes sizable uncertainties from
urban non-road and area sources. While beyond the scope
of this report, contributions from these sources contribute
to urban PM levels and need appropriate quantification to
evaluate model performance in real-world settings. Pos-
sibly, uncertainties of PM2.5 emissions in urban settings
may not  be great ly  reducible  without  improved
approaches and data for characterizing these sources, as
well as exhaust and non-exhaust emissions of on-road
sources.

The analysis of meteorological inputs to RLINE demon-
strated the sensitivity of RLINE predictions to the choice of
meteorological inputs. In a limited diagnostic evaluation,
for example, downwind concentrations were overpre-
dicted and concentrations with winds parallel to the major
nearby road were underpredicted, as were concentrations
at low wind speeds (Appendix 10). Similar results were
seen in the operational evaluation that may be more perti-
nent to health study investigations. Typically, the best per-
formance was found using on-site (or local) meteorological
inputs, that is, surface data collected at or near the road
being modeled, as compared to airport data, which is the
dataset most commonly employed in dispersion modeling.
Meteorological inputs determine the stability conditions
that govern dispersion, and very large differences in con-
centrations can result from convective and neutral condi-
tions as compared to stable and very stable conditions
(Appendix 3). It is unsurprising but worth reiterating that
the selection of meteorological inputs is critical. Unfortu-
nately, few near-road monitoring sites (or other air quality
monitoring sites) have the full suite of instrumentation
required to generate input files for dispersion models.

APPLICATION OF SPATIOTEMPORAL MODELS

Several sets of spatiotemporal models were developed
and fitted to concentrations and near-road concentration

increments of traffic-related pollutants measured in tran-
sects around major roads. The first set, called nonsta-
tionary universal kriging models, leveraged information in
geographical and traffic covariates to capture the nonsta-
tionarity in concentrations observed upwind and down-
wind of the road. This nonstationarity was hypothesized
to result in concentration differences due to effects of the
spatial configuration of emissions (e.g., being upwind or
downwind) and meteorological factors (e.g., wind speed
and direction). To formalize such hypotheses, the concen-
tration field was modeled as a weighted spatiotemporal
mixture of two mutually independent spatiotemporal pro-
cesses, loosely interpretable as concentrations upwind and
downwind, with wind speed and wind direction influ-
encing the mixture weights and the dependence structure
of each latent process. This model specification is flexible
and admits simpler stationary and nonstationary models
as special cases. The application of this model to NO, NOx,
and BC confirmed that wind speed and direction are
important drivers of the observed nonstationarity in pol-
lutant concentrations. In particular, the analysis indicated
that concentrations at downwind sites disperse quickly
even at low wind speeds, and that concentrations at
upwind sites decay rather slowly and with increasing
wind speed. Accounting for such spatial dependencies
improved predictions of TRAP concentration at unsam-
pled locations compared to other stationary and nonsta-
tionary models, for example, resulting in a lower MAPE
and appropriate quantification of uncertainty in the pre-
diction.

While the general specification of the universal kriging
models can be applied to large spatial domains, our goal
was to model concentrations in the near-road environment.
This motivated our specification of concentrations as a
mixture of two underlying spatial processes, one receiving
larger weight at downwind sites and the other at upwind
sites. This particular specification is applicable only within
a small neighborhood around an urban highway. Modeling
on a larger scale is likely to encounter the presence of mul-
tiple roads, in other words, the same site can be downwind
of one road and upwind of another. In such cases, modeling
would require appropriate modifications.

We next assessed whether outputs from the RLINE dis-
persion model could improve predictions of NRI of TRAP
concentrations. Two sets of spatiotemporal Bayesian data
fusion models were developed and implemented: joint
models that provide a stochastic formulation of both the
observed NRI and the RLINE output, and regression-based
models that use the RLINE output as the only covariate in
spatiotemporal models for the observed NRI. This analysis
used essentially the same RLINE modeling considered in
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the operational evaluation. Building upon findings of the
nonstationary universal kriging modeling, we postulated
that the spatial dependence structure of the NRI field is
also nonstationary and used the same covariance function
with wind speed and direction as drivers of nonstation-
arity. Potential biases in the RLINE output were explored,
including whether the additive bias of the RLINE output
should be modeled as constant or spatially varying. Interest-
ingly, even though the two Bayesian data modeling
approaches used different data, the same conclusion was
reached: the RLINE model displays a spatially varying addi-
tive bias for both NOx and PM2.5. In addition, RLINE does
not provide much information for NOx beyond what is
already contained in traffic and GIS covariates, but for
PM2.5 the RLINE output is useful. While the RLINE output
accounts for some of the nonstationarity in the NOx NRI
field to the point that the residual spatial correlation could
be modeled as stationary, that is not the case for PM2.5.

Given the similarity in results of the two Bayesian data
fusion modeling approaches, in choosing between them
we opted for the regression-based approach, simply
because it is computationally less challenging. Using this
approach, we investigated whether the updated (2012)
emission inventory yielded a better RLINE output than the
original (2010) inventory. While the updated inventory
was more useful for NOx, there was not much difference
between the two for PM2.5. This implies that with
improvements in the emissions information (and possibly
with other enhancements in dispersion modeling), RLINE
could become more useful for deriving estimates of near-
road NOx concentrations. Somewhat similarly, the disper-
sion modeling evaluation showed only modest changes in
sensitivity analyses examining the emission inventory.

Lastly, we investigated whether modeling NOx and PM2.5
jointly led to predictive benefits. We found that leveraging
information on each pollutant’s NRI was not useful for pre-
dicting the other, as expected given that RLINE was helpful
in predicting concentrations of PM2.5 but not NOx, and
given the noted differences in the spatial dependence struc-
tures of the NRI fields for these pollutants.

Evaluation of Spatiotemporal Modeling

The spatiotemporal and Bayesian data fusion models
fitted to ambient concentrations and near-road concentra-
tion increments of TRAPs showed the ability to improve
predictions at unsampled locations by: (1) accounting for
characteristics of the spatiotemporal processes in the
observed monitoring data, and (2) exploiting information
in the RLINE output or in a small set of covariates plau-
sibly related to emissions and dispersion of pollutants
from on-road sources (e.g., wind speed, wind direction,

and traffic volume). The specification of these models can
be quite flexible and can incorporate a range of spatiotem-
poral structures (e.g., stationarity assumptions and covari-
ates). With appropriate formulation, these models can also
serve important diagnostic functions, indicating parame-
ters that may drive the variation in concentrations (e.g.,
nonstationarity such as differences found between upwind
and downwind conditions), and also importantly, showing
the existence and characteristics of errors in dispersion
model predictions overall and in model components. For
example, we found spatially varying additive bias in
RLINE predictions of NOx and PM2.5, but generally negli-
gible effects for using an updated emissions inventory.
(The latter also was shown in the operational evaluation
and sensitivity analysis).

We did not find benefits in jointly modeling NOx and
PM2.5. Our results are based on short-term measurements
on transects across a variety of major roads in Detroit col-
lected during a limited number of wintertime morning and
afternoon rush-hour periods. Additional evaluations using
other datasets are necessary for confirmation and general-
ization of this result.

Even though the class of spatiotemporal models pre-
sented in this report has been developed to accommodate
characteristics of the Detroit transect dataset, we believe
that the models could be adapted and utilized outside of
the Detroit study area. Adaptations to our model formula-
tion will be dictated by the study design used to collect the
data. For example, data might not be collected in different,
separate areas of a metropolitan region, or at different
times of day, as was the case in our transect dataset. The
characteristics of our dataset led us to formulate a model
with temporal independence across time periods and spa-
tial independence across areas, which might not be appro-
priate for a different dataset. Regardless of considerations
of potential temporal and spatial independence, the for-
mulations of the models shown as equations 2 through 12
are very general. They could be applied to datasets outside
of the Detroit area as long as information on traffic volume
(ideally, commercial and noncommercial), wind speed,
and wind direction are available over time and space.

Our dataset of observed TRAP concentrations was of
moderate size, which led to rather fast computation with
sophisticated and complex statistical spatiotemporal
models. In modeling applications utilizing large datasets,
it might be advisable to either incorporate some of the
newly proposed methods for large spatial datasets, such as
the nearest neighbor Gaussian process modeling approach
(Datta et al. 2016) or the multiresolution approximation
method (Katzfuss 2017). Alternatively, one could replace
estimation via a Markov chain Monte Carlo algorithm with
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the nested approximation approach of integrated nested
Laplace approximations (Rue et al. 2009).

Overall, we show that RLINE can provide useful infor-
mation when combined with observations that can be
exploited to derive improved spatiotemporal estimates of
TRAP concentrations for use in health studies. The Detroit
application suggests that this applies to PM2.5 and that
more work is needed to improve NOx predictions (e.g.,
potentially addressing the RLINE model itself, the emis-
sions inventory, and possibly other factors). Empirical
evaluation will suggest whether this is true for other
TRAPs not considered here. In addition, further effort is
warranted to ensure that RLINE correctly captures the non-
stationary behavior of near-road PM2.5 concentrations seen
in the Detroit data.

A key advantage of the spatiotemporal models is their
ability to provide appropriate quantification of uncertainty
in the prediction, information that is highly relevant to
improving estimates of TRAP exposures in epidemiological
studies given the nature of exposure measurement errors.

Uncertainties

Our results are based on short-term measurements on
transects across a variety of major roads in Detroit col-
lected during wintertime morning and afternoon rush-
hour periods. Transect locations were selected to represent
predominantly residential areas across the city, and the
selected roads differ significantly with respect to traffic
volume and fleet mix. In these ways, the collected data are
representative and relevant to health studies using cohorts
based on residence location. Areas with large industrial
emissions sources, which are common in the Detroit area,
were avoided. Still, PM2.5, NOx, and other pollutants in
TRAP are emitted from numerous sources in addition to
the roads studied, including point, non-road mobile, area,
and regional sources. Also, the traffic-related component
of PM2.5 is small, as discussed elsewhere in this report
(e.g., Appendix 4). The use of the NRI and multiple time
periods monitored for each transect clearly showed the
roadway influence and expected trends, for example,
higher concentration gradients during mornings. In addi-
tion, the RLINE modeling benefited from its detailed appli-
cation to Detroit and the many refinements described
previously.

The implementation and evaluation of spatiotemporal
models using additional datasets would be useful for
extending our findings. In particular, applications using
long-term (e.g., seasonal to annual average) observations
might be particularly revealing, especially since disper-
sion modeling performance at short averaging periods
often is not very good. Moreover, spatiotemporal models

require a sufficient number of sampling locations to esti-
mate parameters. Given the correlation scale found, some
pairs of monitoring sites should be quite close, for
example, within several hundred meters, as well as near
major roads. Unfortunately, few datasets provide the suffi-
cient spatial coverage needed to develop and assess long-
term urban-scale spatiotemporal models, and current mon-
itoring networks are not designed to capture the small-
scale gradients of TRAP pollutants. There may be applica-
tions using satellite data or possibly low-cost monitoring
sensors if sufficient spatial resolution, accuracy, sensi-
tivity, and selectivity for TRAPs is attainable.

As suggested above, results of our analyses should be
interpreted and generalized cautiously given the limited
spatiotemporal nature of the observational data. Future
statistical and scientific efforts directed toward predicting
TRAP concentrations at unsampled locations should be
cognizant of the importance and necessity of the extensive
data collection and monitoring efforts needed to obtain
valid and robust results.

IMPLICATIONS OF THE FINDINGS

IMPLICATIONS FOR EPIDEMIOLOGICAL STUDIES

Dispersion modeling to develop spatially and temporally
resolved exposure estimates of TRAP for epidemiological
studies has potentially significant advantages over other
approaches. However, it is important to account for model
performance and exposure measurement errors (or expo-
sure misclassification in the case of categorical exposure
variables). These errors may vary spatially or temporally,
and they may differentially affect groups of study partici-
pants, with the potential of affecting health study outcomes.

The operational evaluation and sensitivity analyses sug-
gested that dispersion model performance is best at near-
road sites (e.g., within 10 to 100 meters of the road) and
that uncertainty increases with distance from roadways.
RLINE represented much of the day-to-day variation
observed in daily average concentrations, suggesting that
dispersion modeling can provide near-road (and poten-
tially on-road) exposure predictions with good fidelity.
This is important since many people live or work near
roads where TRAP concentrations are highest (HEI Panel
on the Health Effects of Traffic-Related Air Pollution
2010). While these results may be driven by the ability to
discern contributions from local emission sources, disper-
sion model performance is likely to degrade with distance
in urban settings for several reasons (Jerrett et al. 2005), for
example, shifts in wind fields, the presence of unknown or
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unmodeled sources (including other local roads), and
atmospheric transformation and other unmodeled pro-
cesses. Thus, at farther distances, daily fluctuations in
concentrations may be less accurately estimated. This
increases the likelihood of errors from dispersion model-
based estimates if the study population is exposed over a
range of distances from major roads. Such studies might
benefit from weighting exposure estimates by their uncer-
tainties. In contrast, study designs using only participants
exposed near roads will have the advantages of higher con-
centrations of TRAP and potentially lower and more com-
parable exposure measurement error.

A second concern is the effect of wind direction relative
to the orientation of (major) roads and locations of study
participants. Dispersion models perform best at downwind
receptors, in other words, when winds are approximately
perpendicular to the road’s orientation. Correlation between
the prevailing wind direction(s), road alignment(s), and
study participant locations might lead to differential errors.
For example, in Detroit, prevailing winds come from the
west and southwest. Thus, models will perform best for
roads with north-south and northwest-southeast align-
ments with study participants on the downwind side; con-
versely, performance will be worse for roads that are
aligned with (or parallel to) the prevailing wind directions
or with participants in upwind locations. These errors
were investigated in Detroit by identifying the nearest
major road (within 150 meters; AADT > 10,000) for a
random sample of residences (n = 4,000). Most roads are
aligned on a north-south or east-west axis, and thus the
direction from a residence to the nearest major road is
mainly north and south. Based on prevailing winds and
the largest roads, individuals living downwind are east of
north-south roads (e.g., M-10, M-39, I-75), individuals
living upwind are on the west side of the same roads,
while individuals living south or north of east-west roads
(e.g., I-96, I-94) will often experience parallel winds. Even if
all individuals in a study lived at similar distances and/or
had similar TRAP exposure, there is an increased likelihood
of exposure measurement error for upwind and parallel
groups. In general, population patterns and the importance
of directional effects can depend on many factors, for
example: clustering of residences, schools, workplaces
(Cable 2013; Fessenden and Roberts 2011), geographic
boundaries (mountains, coastlines), economic factors (real
estate), and administrative factors (municipal boundaries).
Some concerns might be addressed by selecting appro-
priate areas, or by using weights to account for prediction
uncertainty.

Other implications for epidemiological studies arise
from the day-of-week variation in model performance and

the reliability of the time–activity information needed to
assign exposures. Consider a statistical model associating
health outcomes with the prior day’s exposure (e.g., out-
comes on Sundays and Mondays require exposure esti-
mates for Saturdays and Sundays). Many models use 3- to
5-day lags. With a 3-day lag, for example, the Sunday
through Wednesday outcomes require weekend exposure
data. Given lower performance of the dispersion model and
greater uncertainty (as well as variability) of weekend time–
activity information, exposure measurement errors may
increase from Saturday through Wednesday. Thus, a study
incorporating 3-day exposure lags might have the effect of
emphasizing health data for Thursdays, Fridays, and pos-
sibly Saturdays when exposure uncertainty is smaller.
Again, weights accounting for the greater uncertainty of
weekend exposure estimates (and possibly sensitivity anal-
yses) might help control for these effects. A related concern
is RLINE’s tendency to underpredict on weekdays, which
might: (1) bias concentration–outcome relationships if the
(estimated) exposure variability is compressed; (2) increase
uncertainty, since health models typically include both
weekday and weekend periods; and (3) falsely attribute
variation to day-of-week or weekday/weekend covariates,
if used. Such effects are hypothetical. Calibrating the dis-
persion model (i.e., mobile source inventory, TAFs) and
the exposure assumptions might help to resolve this issue.

Seasonal variation in dispersion model performance,
while less consistent than the day-of-week effects, raises
other concerns in epidemiological applications. This vari-
ation can be coupled to seasonal time–activity information
that affects exposure; for example, the summer school hol-
iday period for children can increase uncertainty since the
home-school-home pattern is absent or less consistent and
because of increased time spent outdoors. In addition,
summer traffic patterns can have greater variability, a result
of vacation and holiday travel and decreased commuting.

Model estimates are sensitive to input data, and our
applications highlighted the need for representative mete-
orological data to predict near-road exposures.

RECOMMENDATIONS

1. Quantify uncertainty in the exposure estimates. This
is a key advantage of and motivation for spatiotem-
poral statistical models, which have the ability to pro-
vide appropriate quantification of uncertainty in the
prediction. This information should be utilized in
health studies given the potentially deleterious effects
of exposure measurement errors.

2. Conduct operational performance evaluations across
a range of urban settings, thus developing an
ensemble of evaluations that can provide robust and
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representative results. Potentially utilize the online
CLINE application at each of the near-road sites for
this purpose.

3. Develop and evaluate spatiotemporal and Bayesian data
fusion models using additional datasets, specifically
those longer duration records with multiple daily,
seasonal, or annual averages.

4. Utilize instruments at air quality monitoring sites for
TRAPs that have appropriately low detection limits
(i.e., trace-level capability) to ensure high detection
frequencies. This applies to CO and other pollutants.

5. Harmonize traffic data types (e.g., vehicle classifica-
tions) collected by federal, state, and local authorities
with MOVES (emission factor model) vehicle categories.

6. Equip air quality monitoring sites, and especially the
near-road sites, with sufficient meteorological instru-
mentation to generate the AERMET meteorological
preprocesser files necessary to run dispersion models.

7. Utilize on-site or local meteorological inputs in dis-
persion modeling.

8. Develop guidance that defines appropriate and repre-
sentative meteorological data for dispersion modeling
of the complex near-road environment.

9. Undertake studies to better characterize the non-
exhaust component of PM2.5 emissions from on-road
sources, and more generally, improve the spatial and
temporal resolution of urban emission inventories.

10. Consider locations and time–activity factors of partici-
pants in health studies.

11. Improve the computational performance of dispersion
and spatiotemporal models to increase the feasibility
of application. For dispersion modeling, analytical
approaches, distance and concentration cut-offs, and
other changes might be made to speed algorithms and
data handling. For spatiotemporal models, we found
that regression-based Bayesian data fusion approaches
were not computationally burdensome and provided
results that were generally comparable to joint models.

12. Consider the development and support of a standard-
ized model package for spatiotemporal models, thus
minimizing or avoiding tailored formulation and
custom programming.

13. Develop databases appropriate for developing and
evaluating models for TRAP. For dispersion mod-
eling, consolidating data collected in the near-road
ambient monitoring network and extending this with
necessary meteorology, emission inventory, and mete-
orological information (recommendations 4–7) should
be considered. For spatiotemporal models, more

spatial coverage in the near-road environment is
required, and potentially a hybrid approach using con-
ventional fixed-site, mobile, and/or transportable mon-
itoring approaches could be used to estimate the 24-
hour concentrations most relevant to TRAP exposures.
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INTRODUCTION

Traffic emissions are an important source of urban air
pollution, and exposure to traffic-related air pollution has
been associated with various adverse health effects. In
2010, HEI published Special Report 17, Traffic-Related Air
Pollution: A Critical Review of the Literature on Emissions,
Exposure, and Health Effects. That report, developed by
the HEI Panel on the Health Effects of Traffic-Related Air
Pollution, summarized and synthesized research related to
the health effects from exposure to traffic emissions. The
Panel concluded that exposure to traffic-related air pollu-
tion was causally linked to worsening asthma symptoms.
It also found suggestive evidence of a causal relationship
with onset of childhood asthma, nonasthma respiratory
symptoms, impaired lung function, total and cardiovas-
cular mortality, and cardiovascular morbidity (HEI Panel
on the Health Effects of Traffic-Related Air Pollution
2010). Many additional studies have been published since
the earlier review, and therefore HEI is currently con-
ducting a new systematic review of the epidemiological
literature on the health effects of long-term exposure to
traffic-related air pollution.

Because traffic-related air pollution exposure is of
public health interest, it is important to understand where
and at what level people are exposed to air pollution from
traffic emissions. However, exposure assessment is chal-
lenging because traffic-related air pollution is a complex
mixture of many particulate and gaseous pollutants and is
characterized by high spatial and temporal variability (HEI
Panel on the Health Effects of Traffic-Related Air Pollution
2010). The highest levels of traffic-related air pollution
occur within a few hundred meters of major roads, with
the extent of the impact zone depending on the pollutant,
geographical and land-use characteristics, and meteorolog-
ical conditions (Karner et al. 2010; Zhou and Levy 2007).

Because it is difficult and labor intensive to measure
concentrations of traffic-related pollutants on a large scale,
scientists generally rely on modeling to assign exposures
to air pollution in health studies. However, developing
accurate models of traffic-related air pollution for use in
exposure assessment for epidemiological studies has been
challenging, in part because of the variation in air pollu-
tion levels on small  spatial scales within cities.
Approaches to assess exposure to traffic-related air pollu-
tion have included incorporating measurements made at
various distances from busy roads using fixed sites or
mobile platforms as well as employing various models
such as land-use regression and dispersion models. In
some cases, infiltration and time–activity patterns have
been included for more accurate estimates of personal
exposure to air pollution from traffic and other outdoor
sources. Each of these exposure estimation approaches has
limitations that have been discussed before (HEI Panel on
the Health Effects of Traffic-Related Air Pollution 2010).

In 2013, following the recommendation of the HEI
Traffic Review Panel to improve exposure assessment of
traffic-related air pollution for use in health studies, HEI
issued Request for Applications (RFA*) 13-1, Improving
Assessment of Near-Road Exposure to Traffic Related Pol-
lution. Since then, HEI has funded five studies under RFA
13-1 and nine other studies related to exposure assessment
or health effects of traffic-related air pollution under other
RFAs (see Preface). In response to RFA 13-1, Dr. Stuart Bat-
terman and colleagues from the University of Michigan,
the University of North Carolina, and the Cornell Institute
proposed a 2.5-year study, “Integrating enhanced models
and measurements of traffic related air pollutants for epi-
demiological and risk studies using Bayesian melding.”
They aimed to improve estimates of traffic-related air pol-
lution concentrations for use in health studies, with spe-
cific attention to air pollution dispersion models and
statistical approaches that combine measurements with
dispersion model outputs. The HEI Research Committee
recommended Dr. Batterman’s application for funding
because the study would apply and improve existing
models that could be employed in other settings. The
Bayesian approach in particular was considered novel.

Dr. Stuart Batterman’s 3-year study, “Integrating enhanced models and mea-
surements of traffic related air pollutants for epidemiological and risk stud-
ies using Bayesian melding,” began in January 2014. Total expenditures
were $647,606. The draft Investigators’ Report from Batterman and col-
leagues was received for review in September 2017. A revised report was
received and accepted for publication in February 2019. During the review
process, the HEI Review Committee and the investigators had the opportu-
nity to exchange comments and to clarify issues in both the Investigators’
Report and the Review Committee’s Critique. 

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views of these parties, and no endorsements by them
should be inferred. * A list of abbreviations and other terms appears at the end of this volume.
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This Critique provides the HEI Review Committee’s
evaluation of the study. It is intended to aid the sponsors of
HEI and the public by highlighting both the strengths and
limitations of the study and by placing the Investigators’
Report in scientific and regulatory context.

SUMMARY OF THE STUDY

SPECIFIC AIMS AND APPROACH

This report investigates ways to improve estimates of
traffic-related air pollution for potential use in exposure
assessment applications for health effect studies, with spe-
cific attention to dispersion modeling and data fusion
methods. The specific aims were to:

1. explore potential enhancements for dispersion
models, including alternative treatments of meteoro-
logical inputs, background levels, and traffic inputs;

2. assess the performance of dispersion models for pre-
dicting concentrations of traffic-related air pollutants
in a full-scale urban case study, including identifica-
tion of critical inputs and uncertainties; and

3. apply spatiotemporal and Bayesian data fusion statis-
tical techniques for combining dispersion model out-
puts and pollutant monitoring observations. 

Because the dispersion model predicted concentrations
at point locations as compared to Bayesian melding tech-
niques — which require model output representing an
average over a grid cell or other spatial unit — the investi-
gators opted to use data fusion techniques rather than
Bayesian melding as they had originally planned.

The study aimed to obtain improved exposure estimates
of traffic-related pollutants utilizing data collected as part
of NEXUS (Near-road EXposure and effects of Urban air
pollution Study), a large cohort study conducted in Detroit
focusing on the health effects of children with asthma
living near major roads (Vette et al. 2013). The NEXUS
study was a cooperative agreement between the United
States Environmental Protection Agency (U.S. EPA) and
the University of Michigan. In the current study, the inves-
tigators applied an existing U.S. EPA dispersion model
designed for modeling impacts of traffic emissions on air
pollution (called the Research LINE-source model
[RLINE]) to predict short- and long-term exposure from
number and types of motor vehicles, meteorology, and
other factors affecting how air pollution is spread after
being emitted by motor vehicles. They used or developed
models of different levels of computational complexity —
RLINE, universal kriging, and four types of joint Bayesian

data fusion — for particulate matter ≤ 2.5 µm in aerody-
namic diameter (PM2.5), nitrogen oxides (NOx), carbon
monoxide (CO), and black carbon (BC) (see Critique Table).
Then, they compared the models by evaluating their per-
formance relative to preexisting measurements at sta-
tionary central and near-road sites and along mobile
monitoring transects from busy roads.

METHODS

Measurements

All air pollution data used in this study were previously
collected in the Detroit area as part of the NEXUS study
(Critique Figure 1). For evaluation of the RLINE dispersion
model (Aim 1 and Aim 2), they used 24-hour average mea-
surements of NOx, CO, and PM2.5 from five U.S. EPA moni-
tors in Detroit from 2011–2014. For development and
evaluation of the statistical models (Aim 3), the investiga-
tors made use of a previous 1-week mobile monitoring cam-
paign in 2012 where they collected short-term (5-minute)
measurements while parked at 3–6 locations along nine
transects on one or both sides of major roads in Detroit.

RLINE Dispersion Model

To address Aims 1 and 2, air pollution concentrations
were modeled using RLINE, a Gaussian line-source disper-
sion model specifically designed for the near-road envi-
ronment (Snyder et al. 2013). Contributions of motor
vehicles to ambient NOx, CO, and PM2.5 concentrations
were modeled using RLINE, with background concentra-
tions estimated based on measurements expected to be
unaffected by nearby major roads. The investigators com-
pared the modeled 24-hour concentrations with those
measured at each U.S. EPA monitoring site and at two sets
of receptors (i.e., locations where concentrations were pre-
dicted). The first set of receptors was selected from all the
residences in Detroit; the second set of receptors was
selected from the home and school addresses of children
with asthma participating in the NEXUS study, in order to
represent a vulnerable population. The investigators
reported various statistical measures for model perfor-
mance, such as the percentage of modeled values within a
factor of two of observed values, Spearman rank correla-
tion coefficient, fractional bias, and geometric variance.
Several additional analyses were conducted testing the
sensitivity of the model to wind direction, season, day of
week, emission factors, and traffic inputs.

Spatiotemporal Models

For Aim 3, the investigators systematically applied and
evaluated the performance of a series of increasingly complex
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Bayesian spatiotemporal models (Critique Figure 2). First,
they developed universal kriging models of ambient con-
centrations for three traffic-related air pollutants (nitric
oxide [NO], NOx, and BC), accounting for covariates such
as day of week, upwind versus downwind of nearest road,
topographical features, meteorology, traffic activity, and
fleet composition features. Next, they combined mobile

monitoring data with RLINE model outputs in Bayesian
data fusion models of the increase in near-road concentra-
tions of two traffic-related air pollutants (NOx and PM2.5)
above ambient concentrations. They used two approaches
for fusing: combining RLINE output with the mobile moni-
toring data as a multivariate realization of the unmeasured
pollutant (joint Bayesian data fusion), and using RLINE

Critique Table. Summary of Model Types Evaluated by Batterman and Colleagues in the Investigators’ Report

Model
Class

Measurements to 
Develop and 

Evaluate Models

RLINE Model 
Receptorsa

Modeled 
Concentrations Pollutantsb

Performance 
Evaluationc Model Parameters Available

Dispersion 
model

Fixedd Sets 1 and 2 Ambient NOx, CO, 
PM2.5

IR Table 3 N/A, although Additional 
Materialsf include 
emissions (Table 2) and 
road links (Figure 3)

Universal kriging Mobilee Set 1 Ambient NO, 
NOx, BC

IR Table 4 Model 6 (IR Table 5)

JBDF Mobilee Set 1 Near-road 
increment

NOx, 
PM2.5

IR Table 6 Stationary (NOx) and non-
stationary (PM2.5) forms of 
Model 2 (IR Table 7)

Single-pollutant, 
regression-
based JBDF

Mobilee Set 1 Near-road 
increment

NOx, 
PM2.5

IR Table 8 Stationary (NOx) and 
nonstationary (PM2.5) 
models using 2012 
emissions (IR Table 9)

Single-pollutant, 
regression-
based JBDF 
with meteoro-
logy and traffic

Mobilee Set 1 Near-road 
increment

NOx, 
PM2.5

IR Table 10 Stationary (NOx) and 
nonstationary (PM2.5) data 
fusion using 2012 
emissions (IR Table 11)

Two-pollutant 
regression-
based JBDF

Mobilee Set 1 Near-road 
increment

NOx, 
PM2.5

IR Table 12 Not provided

Abbreviations: CO = carbon monoxide; BC = black carbon; JBDF = joint Bayesian data fusion model combining measurements and RLINE model output; IR 
= Investigators’ Report; NO = nitrogen oxide; NOx = oxides of nitrogen; PM2.5 = mass of particulate matter ≤ 2.5 µg/m3

a Receptor Set 1 was a dense network of 96 receptors in nine 2-km Detroit-area boxes (see Critique Figure 1). Receptor Set 2 included the location of 
NEXUS study homes and residences as a sensitivity analysis for a vulnerable population.

b Pollutants were modeled as natural logarithms of concentrations, except in the dispersion model, where they were modeled as actual concentrations. When 
incorporated into spatiotemporal models, RLINE output was also log-transformed.

c Performance of the dispersion model was evaluated based on daily average concentrations. All other models were assessed based on comparison of model 
predictions back-transformed to the original scale with measurements averaged across validation sites and time periods.

d Fixed-site measurements were reported for daily averages at five U.S. EPA air quality monitoring sites in the years 2011–2014. See Additional Materials, 
Appendix 5 (available on the HEI website) for information on U.S. EPA air quality monitoring data completeness.

e Mobile measurements were made for 5 minutes at a time at sites 50 m, 150 m, and 500 m from the edge of major roads in nine Detroit areas. 
Measurements were made on one side of the major road in eight areas and both sides of the road in one area. Monitoring was conducted in 2.5-hour 
morning and afternoon shifts on all days from December 14–20, except for December 14 (morning only) and December 16 (afternoon only), for a total of 
30 hours of measurements. See Critique Figure 1 for the mobile monitoring transect locations.

f Additional Materials are available on the HEI website.
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output instead of the covariates in the prediction model for
the mobile monitoring data (regression-based Bayesian
data fusion). Both types of data fusion models were tested
with different sets of assumptions of how the variables are
related to each other; the difference in the sets of assump-
tions was whether the relationships among variables in the
model stay the same (stationary) or change (nonstationary)
over time. For the regression-based data fusion approach,
they also developed a two-pollutant model that incorpo-
rated the near-road increments of both PM2.5 and NOx.

Samples of 10%–15% of the full dataset were excluded
from model development and used for model evaluation.
Model performance was first reported in terms of mean
absolute prediction error, average length of the 90%

prediction interval, and empirical coverage of the 90%
prediction interval. Additional performance statistics of
root mean square error and Pearson correlation were later
added. The investigators also examined several model
assumptions, including several different covariance func-
tions (i.e., the relationships among variables in the
models), the different methods of including RLINE output
in the statistical methods, and whether jointly modeling
two pollutants would improve the statistical models. They
also tested the influence of the emissions inventory used
in RLINE by comparing results using an updated emis-
sions inventory with detailed information from 2012, as
opposed to the standard emissions inventory from 2010.

Critique Figure 1. Map of Detroit showing air quality monitoring stations, airport weather stations, and near-road mobile monitoring
locations. (The map is based on Figure 1 of the Investigators’ Report and Figure 6 in the Additional Materials, with background layers
from Michigan GIS Open Data.)

Critique Figure 2. Steps followed to compare spatiotemporal Bayesian models of each class considered.
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RESULTS

RLINE Dispersion Model

The RLINE model generally performed better closer to
the major road; when the receptors were downwind rather
than parallel relative to the nearest major road; on weekdays
as opposed to weekends; and for winter rather than for other
seasons. It also performed better for emission inventories
using location-specific emission factors and temporal allo-
cation factors versus national defaults from 2010. Sensi-
tivity analyses showed that the results were more sensitive
to meteorology than to other inputs evaluated.

As interpreted by the investigators, comparison of errors
suggested that improvements in model inputs or parame-
terization could improve model performance for NOx, but
not for CO at the near-road sites. The models could not be
evaluated when concentrations were below the detection
limit of the instrumentation, which happened frequently
for CO. Performance evaluation of the PM2.5 modeled con-
centrations was not attempted because the predicted con-
tributions of PM2.5 from local sources were small relative
to contributions from more regional sources.

Spatiotemporal Models

Universal Kriging. The universal kriging models gener-
ally predicted high and low concentrations and gradients:
concentrations were higher immediately downwind rather
than upwind of the nearest major road and stayed elevated
at distances farther downwind. Key covariates in the
models included background concentrations, traffic
volume, location upwind or downwind of the nearest
major road, wind speed, and distance from the nearest
major road. The stationary model, with wind speed and
wind direction relative to the nearest major road, per-
formed similarly to the nonstationary model without those
variables. The best-performing universal kriging model
was the most computationally complex one, perhaps lim-
iting its practical utility.

Single-Pollutant Joint Bayesian Data Fusion Models.
The investigators reported that no single model per-

formed best for all evaluation performance criteria. Among
the data fusion models, stationary models containing
RLINE predictions as inputs performed better than nonsta-
tionary models for NOx, whereas the opposite was true for
PM2.5 (nonstationary covariance functions performed
better than stationary models).

For NOx, the data fusion approach was inferior to the
universal kriging model, suggesting that RLINE did not
add useful information to the model inputs. However, for

PM2.5, the RLINE output did improve the data fusion
models. The investigators commented that even though
the two Bayesian data modeling approaches (universal
kriging and data fusion) used different measurements as
inputs, the same conclusion was reached: the RLINE
model displayed biases that were additive but had values
that differed across locations for both NOx and PM2.5.

Additional traffic and meteorology variables did not
strongly affect the results from single-pollutant regression-
based models including RLINE output. For NOx, only dis-
tance from the edge of the nearest major road gave addi-
tional information on NOx near-road increments. The
PM2.5 models including these variables performed worse
than the simpler models without them.

Two-Pollutant Regression-Based Joint Bayesian Data 
Fusion Models. The investigators produced two-pollutant
models of near-road increments of NOx and PM2.5. How-
ever, they did not expect joint modeling to be particularly
useful because (1) RLINE improved the single-pollutant
model for PM2.5 near-road increments but did not improve
the model for the NOx near-road increments, and (2)
single-pollutant models with different sets of covariance
assumptions performed best for near-road increments of
NOx (stationary structure) and PM2.5 (nonstationary struc-
ture). As for the single-pollutant Bayesian models, the
best-performing two-pollutant model (with PM2.5 and
NOx) for PM2.5 used a nonstationary covariance structure.
Modeling NOx jointly with PM2.5 did not improve the NOx
models. Relative to single-pollutant models, the joint
Bayesian data fusion models had smaller prediction inter-
vals, increased computational complexity and runtime,
and might not have been able to find a single best-fitting
model. Overall, the investigators preferred the single-pol-
lutant models over the two-pollutant data fusion models
because they were less computationally challenging.

Summary

The investigators concluded that both dispersion and
spatiotemporal statistical models contribute useful infor-
mation to air pollution modeling for exposure assessment.
They stated that the ability of a dispersion model to accu-
rately predict near-road concentrations of a pollutant
depends on the pollutant as well as spatial and temporal
factors, such as the distance and direction of the receptor
from the nearest major road relative to wind direction, and
the temporal trends in traffic volume (i.e., time of day and
day of week). They reported that their analysis using
Bayesian data fusion models confirmed the presence of
spatially varying errors in dispersion model outputs and
allowed for quantification of both the magnitude and the
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spatial nature of these errors. To improve the models for
wider use in epidemiology, they recommended generating
additional air pollution and meteorology datasets for more
rigorous model testing. They also thought that improve-
ments in the computational efficiency and accessibility of
the models would be needed for wider adoption.

HEI REVIEW COMMITTEE’S EVALUATION

Batterman and colleagues conducted a study to evaluate
a dispersion model and sophisticated spatiotemporal sta-
tistical models. In its independent review of the study, the
HEI Review Committee thought that the report was well
written, that the discussion, conclusions, and recommen-
dations were generally appropriate, and generally agreed
with the investigators’ interpretation of the results.

EPIDEMIOLOGICAL APPLICATION OF 
SPATIOTEMPORAL AND BAYESIAN MODELS

The Review Committee thought the study was thorough
and interesting, and that the application of the spatiotem-
poral and Bayesian models was sophisticated, well exe-
cuted, and an important contribution. They were pleased
that the investigators evaluated the added value of RLINE
estimates in the regression-based Bayesian data fusion
models, based on an earlier suggestion by the Review Com-
mitee. The investigators observed that after adding RLINE
to the regression-based Bayesian models, none of the other
covariates was associated with the observed near-road
increment. The Committee thought this was worth noting,
because RLINE appears to add value that can’t be as
readily captured by information that is easier to collect.

While the overall goal of the study was to improve esti-
mates of traffic-related air pollution for use in health
studies, the Committee concluded that the report may
have overstated the usefulness of the models for epidemio-
logical studies, which was one of the main goals of this
RFA. For example, the models presented in this report
appeared to have limited use over a broad geographic area,
and it was not clear to the Committee how these narrowly
applied models would scale up. In particular, the lack of
long-term exposure data limited the possible insights to be
gained from the application of the spatiotemporal and
fusion models over longer time periods, as would be
needed for most epidemiological applications. This was
disappointing because the project’s goal had originally
been to improve long-term exposure estimates of traffic-
related air pollution. Specifically, the application in
NEXUS was limited to short-term exposures and did not
make optimal use of the longitudinal design of the study.

The Committee agreed with the investigators that the gen-
eralizability of the analyses is limited because the mea-
surements used for the statistical model development were
from only one winter month. Although appropriate to
evaluate traffic-related air pollution, the focus on residen-
tial areas in Detroit primarily affected by traffic sources
limits generalizability to evaluating air pollution from
other sources.

MODEL PERFORMANCE

A focus of the current study was evaluating the perfor-
mance of a large number of air pollution models (Critique
Table). The Committee was pleased that the authors
included several measures typically used for evaluation of
exposure-assessment models in epidemiological studies,
such as the root mean square error and the Pearson correla-
tion coefficient. They thought that some of the other statis-
tics were less informative (e.g., the fraction of predictions
within a factor of two of the measurements) and not typi-
cally used for evaluation of exposure models in epidemio-
logical studies, while recognizing that these measures have
been commonly used in evaluating dispersion models.

The Committee noted that the models may not have had
sufficiently high predictive performance to provide reli-
able estimates of exposure. They thought that there were
large uncertainties in the model predictions of air pol-
lutant concentrations — for example, root mean square
errors were as large as the mean for NOx, and there was
low variability in PM2.5. These uncertainties in concentra-
tions would result in large uncertainties in exposure
assignment and even larger uncertainties in the associa-
tions of health outcomes with exposures. At the same time,
differential measurement error in the RLINE predictions
because of better prediction near roads than farther away
may translate to biased health effect estimates when
applied to an epidemiological cohort because the exposure
predictions would be more accurate for the most highly
exposed people (with participants living at varying dis-
tances from major roads).

At the same time, to address the question of whether
inclusion of RLINE output improves predictive perfor-
mance of the regression-based fusion models, the investi-
gators emphasized statistical significance of coefficient
estimates rather than predictive model performance statis-
tics, which the Committee considered to be more useful. For
example, to compare the predictive performance of the
regression-based Bayesian models, the Committee observed
that the root mean square error was about 1 ppb lower for
the NOx model with additional covariates but around the
same for PM2.5, though not completely consistent across sta-
tionary and nonstationary models and emission years. They
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would have appreciated elaboration on why adding traffic
and meteorology to regression-based Bayesian data fusion
models improved predictive performance for NOx but
degraded predictive performance for PM2.5.

While comparisons within model classes were pre-
sented, the Committee thought it would have been useful
if the model performance evaluation had also been struc-
tured to compare model performance of the same pollutants
at the same model receptors across the various model
classes. For example, the Bayesian fusion models were ana-
lyzed on two different sets of model receptors, and the dis-
persion, universal kriging, and Bayesian data fusion models
predicted three different sets of ambient concentrations or
near-road increments in pollutant concentrations.

EXPOSURE TO A MULTIPOLLUTANT MIXTURE

Given increasing interest in assessing the health effects
of traffic-related air pollution as a multipollutant mixture,
the Review Committee appreciated that the investigators
explored joint modeling of PM2.5 and NOx. The investiga-
tors reported that the joint models introduced computa-
tional complexity, while not improving the predictions of
either pollutant, because the spatial structure differed
between pollutants. The Committee thought that it may
have been a missed opportunity for a more in-depth explo-
ration of the relationships among different traffic-related
air pollutants including an explanation of the two-pol-
lutant model and its implications. However, they thought
this was a reasonable interpretation of the joint PM2.5 and
NOx model, and that it was not necessary to go beyond
these two pollutants in this application.

SUMMARY AND CONCLUSIONS

Batterman and colleagues conducted a study to evaluate
a dispersion model and sophisticated spatiotemporal sta-
tistical models to estimate pollutant exposures. They eval-
uated the performance of a U.S. EPA dispersion model of
traffic-related air pollution (RLINE), as well as the perfor-
mance of universal kriging, and sophisticated statistical
models that combined RLINE and pollutant measure-
ments. The Committee agreed with the investigators that
both dispersion and statistical models contributed useful
information to the air pollutant concentration predictions.
The performance of the RLINE model depended on the
pollutant as well as on spatial and temporal factors, such
as distance from the major road. In addition, statistical

models with different sets of assumptions generally led to
the same conclusions and provided complementary infor-
mation on how the air pollutants were spatially distrib-
uted. Finally, adding RLINE to the statistical models or
jointly modeling NOx and PM2.5 improved predictions
only for PM2.5 and not for NOx.

The Committee thought the spatiotemporal and
Bayesian models were state of the science and well exe-
cuted, and that the application of the models was, in par-
ticular, novel and an important contribution. They
appreciated the systematic quantification of both the mag-
nitude and the spatial nature of model uncertainty,
although they thought the information was not complete,
given that the true underlying distribution of air pollutant
concentrations could not be measured. On the other hand,
they thought that the report may have overstated the use-
fulness of the models for epidemiological studies, because
the models appeared to have limited use over a broad geo-
graphic area. Also, the models performed better closer to
roads than farther away, which might translate to biased
health effect estimates because the exposure predictions
would be more accurate for the most highly exposed people
in an epidemiological cohort (with participants living at
varying distances from major roads). In addition, the uncer-
tainties in the predictions of air pollutant concentrations
remained large, even for the most refined models.

There remains a need to further refine the models and
distribute these new tools for wider use. In particular,
these and similar models will need to be rigorously tested
on large databases of measurements collected over long
periods before they are used on a large scale in epidemio-
logical studies.
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% Red percentage of errors that are reducible

AADT annual average daily traffic

AERMET a meteorological data preprocessor for 
AERMOD

AERMOD a dispersion model

AQS air quality system

BC black carbon

CAADT commercial annual average daily traffic

CI credible interval

CO carbon monoxide

CMAQ Community Multiscale Qir Quality model

CLINE Community LINE-source model

F2 percentage of modeled values within a 
factor of 2 of observed values

FB fractional bias

GIS geographical information system

IARC International Agency for Research on 
Cancer

ICHEM instrumental chemiluminescence

IGpCHEM instrumental gas-phase chemiluminescence

KDET Detroit City Airport

KDTW Detroit Metro Airport

MAPE mean absolute prediction error

MAPL Mobile Air Pollution Lab

MOVES Motor Vehicle Emission Simulator

NEXUS Near-road EXposures and effects of Urban 
air pollutants Study

NO nitric oxide

NOAA National Oceanic and Atmospheric Admin-
istration

NOx nitrogen oxides

NRI near-road increment

NWS National Weather Service

PI prediction interval

PM2.5 particulate matter ≤2.5 µm in aerodynamic 
diameter

RFA request for applications

RLINE Research LINE-source model

RMSE root mean square error

RSP Spearman rank correlation coefficient

SFC format for surface meteorological data

TAF temporal allocation factor

TEOMS tapered element oscillating microbalances

TRAP traffic-related air pollutant

U.S. EPA U.S. Environmental Protection Agency

VG geometric variance

WRF Weather Research and Forecasting model
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