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APPENDIX 1 - CHARACTERISTICS OF TRAFFIC-RELATED AIR POLLUTION 

COMPOSITION 

Traffic-related air pollution (TRAP) is a complex and dynamic mixture.  It includes engine exhaust 

emissions, which consists of particulate matter (PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), 

VOCs, e.g., benzene and formaldehyde, carbonaceous compounds (e.g., polycyclic aromatic hydrocarbons 

(PAHs) and elemental carbon), metals (e.g., copper and zinc), sulfate, and other components.  The 

composition and quantity of exhaust emissions depend upon the engine (e.g., type, age, and maintenance), 

emission control systems, fuel sulfur content and other fuel properties, engine power, load, temperature, 

and other factors.  These “primary” tailpipe exhaust emissions can undergo physical and chemical changes 

in the atmosphere to form “secondary” pollutants, three important examples of which are the oxidation of 

NO emissions to NO2 (Wang et al. 2011), the evolution of nanoparticle emissions by nucleation, 

coagulation, deposition and condensation processes into larger particles (Canagaratna et al. 2010; Kumar 

et al. 2011; Myung and Park 2011), and the reaction of gas-phase organic compounds into secondary organic 

aerosol (SOA) (Gentner et al. 2017).  Thus, “fresh” TRAP differs from “aged” TRAP.  TRAPs also includes 

emissions from the wear of tire, brake and pavement materials, and the resuspension of materials deposited 

or placed on the road, e.g., silt and salt (Grigoratos and Martini 2015; Pant and Harrison 2013; Thorpe and 

Harrison 2008).   

Concentrations of TRAPs vary spatially and temporally.  These variations are important because they 

provide the exposure contrasts needed to elucidate health effects in epidemiological studies.  Unfortunately, 

this variation makes the estimation of exposures challenging. 

TEMPORAL VARIABILITY 

Surprisingly few analyses apportion the sources of temporal variability of TRAPs.  Traffic volume may 

dominate the temporal variation of some TRAPs, e.g., particle number concentration (PNC), CO, NOx and 

black carbon;  regional sources and meteorological factors may dominate other pollutants, e.g., PM2.5 

(Kendrick et al. 2015; Padró-Martínez et al. 2012; Patel et al. 2009; Yu et al. 2016; Zhang and Batterman 

2010).  Interestingly, hourly, daily and seasonal variability may have comparable magnitude as spatial 

variability, e.g., as demonstrated for PNC measured near an urban arterial in Somerville, MA (Kendrick et 

al. 2015).   

SPATIAL VARATION 

Spatial patterns of ambient pollutant concentrations at the urban scale may vary from nearly homogeneous 

to quite heterogeneous; small-scale (or intra-urban) variation may be large for CO, NO, NO2, elemental 

carbon, and black carbon (Özkaynak et al. 2013; Sarnat et al. 2010; Turner and Allen 2008), but typically 

small for pollutants such as O3 and PM2.5.  Strong small scale variation implies that central monitoring sites 

may not accurately characterize spatial patterns (Wilson et al. 2005) due to “small-area” variation in 

concentrations (Jerrett et al. 2007) resulting in exposure measurement error.  For analysis and exposure 

purposes, the spatial variation may be characterized into compartments or zones, specifically “tailpipe-to-

road”, “on-road,” ”near-field” and “far-field” categories (S. Batterman et al. 2014b).  The tailpipe-to-road 

compartment represents the zone of elevated concentrations where chemical conversion may be rapid, e.g., 

NO  NO2.  On-road applies to commuters, pedestrians, cyclists, and workers such as police and truck 

drivers who travel and work on high traffic roads.  The near-field environment is the region lying from 

curbside to several hundred meters of major roads; this can include some commuting and outdoor 

exposures, but mainly applies to indoor exposures in homes, schools, and workplaces.  The far-field applies 

to areas more distant from major roads, where TRAP becomes part of the “urban plume” and spatial and 

temporal gradients may be present but blurred.  The physical and chemical changes undergone by TRAP, 

as well as the concentrations in these different zones, are important for understanding the ability to monitor 

and quantify exposure.  This report focuses on the near-field or near-road environment. 
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SPATIAL RESOLUTION 

Given that concentrations of TRAP can exhibit dramatic changes with modest changes in 

distance, especially in directions perpendicular to major roads (Figures 1 and 2, shown later), exposure 

metrics for TRAP are prone to spatial errors.  This section discusses several issues pertaining to spatial 

resolution and dispersion modeling. 

Figure 1. Predictions of maximum daily average PM2.5 due to on-road mobile sources in Detroit/Wayne 

County. Based on EPA MOVES, RLINE, 9701 road links, 2010 meteorology, and 150 m receptor grid (27,000 

receptors).  Also shows homes and schools in the NEXUS study.  From (S. Batterman et al. 2015b). 

First, link-based emission inventories involve simplification and potentially misalignment of the road 

network as discussed in Appendix 5.   

Second, dispersion model receptors must be appropriately placed to adequately represent gradients of TRAP 

and not compromise the accuracy of estimated concentrations.  We ran detailed simulations for the 

NEXUS study using receptor grids with spacing as fine as 10 m (rectangular grid on 10 m centers).  

Figure 1 depicts the nature of concentration gradients due to on-road emissions in Detroit.  The highest 

concentrations occur near major roads, e.g., I75, I96, I94, M10 and M39, especially at the intersections of 

major roads.  Several arterials also have relatively high concentrations, e.g., 8-Mile Road.  

Because HDDVs produce a disproportionate share of PM2.5, the highest concentrations tend to be near 

high diesel-traffic roads like I94 and I75.  Based on analyses investigating concentrations at NEXUS 

participant homes, we estimated that interpolations between receptors and locations of interest should not 

exceed about 40 m for locations near major roads (like those discussed), and 100 m at larger distances 

(S. Batterman et al. 2015b).  This is considerably smaller than earlier estimates of appropriate spatial 

scales, however, these used annual average concentrations and have not used line-source models like 

RLINE (Stroh et al. 2007). 
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Third, when estimating exposures at specific locations like homes or schools, dispersion model receptors 

may be placed at the location of interest, thus, localization is potentially exact.  However, automated 

geocoding methods widely used to estimate locations using street addresses can introduce additional spatial 

errors.  In NEXUS, we found average and maximum positional errors using automated geocoders were 35 

and 196 m, respectively, and errors in residence locations to highway edge house-to-highway distances 

averaged 23 m (Ganguly and Batterman 2014).  These errors were mostly attributable to errors in the 

geocoders, as well as in representing road curvature, road width, and the presence of ramps.  More broadly, 

in health studies using link-based inventories and automated geocoding of residence locations, 5% to 20% 

of residences are expected to have positional errors that exceeds 100 m.  Such errors can substantially alter 

exposure estimates for residences near roads, thus, confirmation of geocoordinates is recommended.  

Potentially, a “mini-grid” approach can be used in which a home or other location of interest is represented 

using a small receptor grid itself, providing a degree of local spatial averaging rather than a point estimate 

(Isakov et al. 2014).   

Fourth, health and dispersion modeling studies using standard geographical units like census tracts and 

blocks encounter can issues of exposure measurement error, including those called the modifiable areal 

unit problem and other issues related to the aggregation of receptor concentrations.  Use of the larger units 

can involve significant errors: average exposure estimates may be overestimated since few individuals live 

very near major roads; the range of concentrations among units will be compressed; and high concentrations 

near roads will be omitted as they are “averaged” out.  Smaller geographic units can reduce errors, but even 

block-level data can misclassify exposures of many individuals based on an analysis of Detroit data (S. 

Batterman et al. 2014b). 

APPENDIX 2 - EXPOSURE METRICS AND METHODS FOR TRAP 

The purpose of exposure metrics, in general, has been stated by a recent NAS panel: 

“Ideally, exposure metrics … will provide the information needed for evaluating the overall 

health and resilience of humans and ecosystems, identifying vulnerable populations, 

assessing the impact of cumulative exposures, and addressing exposure disparities. It could 

also be used to assess environmental improvements and to provide early warnings of 

emerging problems. More data on exposures will allow us to forecast, prevent, and mitigate 

the impacts of such major societal challenges as climate change, security threats, and 

urbanization” (Lippmann 2013).   

For TRAP, the basic challenge is that the true exposure cannot be measured at each location and time of 

interest, and that air pollution measurements collected at central monitoring sites may not reflect spatial and 

temporal variability of pollutants from local sources and their relationship to true personal exposures 

(Dionisio et al. 2016; Özkaynak et al. 2013).  Said differently, environmental epidemiological studies 

examining air pollution exposures suffer from spatial misalignment between the available monitor locations 

and the subjects’ locations.  Direct measurement of TRAP using personal, home or biomarker 

measurements in large scale health studies is rarely practicable due to cost and logistical issues (Rioux et 

al. 2010).  As recognized in many epidemiological studies, monitoring at central sites may not provide the 

spatial coverage needed to estimate neighborhood exposure, much less near-road exposures (Batterman 

2013).  While improved exposure estimates are needed for epidemiological, health impact, environmental 

justice and other applications described below (Brauer 2010; Dionisio et al. 2016; Health Effects Institute 

2010; Jerrett et al. 2005; Sheppard et al. 2012; U.S. Environmental Protection Agency 2013), exposure 

assessment remains a recognized weakness of many TRAP studies (S. Batterman et al. 2014a).  

The choice of an appropriate exposure metric for a study depends on the study design and the conceptual 

framework, including the spatial and temporal dimensions, biologic considerations, and available resources 
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(National Research et al. 1997).  Exposure assessments for epidemiological studies can be guided by five 

key issues:  the definition and characterization of the potentially exposed population; the collection of 

quantitative information on population exposure, temporal characteristics, and dose-response relations; the 

medium and the microenvironment of principal concern; the use of information collected in one population 

in assessing potential risk to others; and the biologic plausibility of any hypotheses based on mechanistic 

considerations (National Research et al. 1997).   

TRAP exposure estimates are needed for several types of health effect studies.  Epidemiological studies of 

TRAP, which are mostly observational in nature, use longitudinal (or time-series) designs that examine 

temporal variability of aggregated outcomes (often at the urban scale), cohort designs that examine 

individual-level data and spatial and/or temporal variability, and (sometimes) case-control designs that 

contrast groups on the basis of disease status using retrospective exposure estimates.  Spatially- and 

temporally-resolved exposures are especially needed for urban-scale cohort and panel studies (Dionisio et 

al. 2016).  Other types of health-related studies also needing exposure estimates include health risk, health 

impact, burden of disease, environmental justice, cumulative impact, regulatory impact assessment (RIA), 

integrated science assessments (ISA), and accountability studies (Chart-asa and Gibson 2015; Gurram et 

al. 2015; Health Effects Institute 2010; Isakov et al. 2009; Lobdell et al. 2011; Molitor et al. 2007).  Often, 

these studies emphasize the spatial variability in exposures, use long-term exposure estimates, and employ 

simplified dose-response or concentration-outcome relationships compiled from the epidemiological 

literature to explain or predict health outcomes at the population level.  However, short-term pollutant 

exposures are sometimes used, e.g., RIA, ISA, and some HIA applications have used 24-hr (daily) average 

pollutant concentrations.  For these study types, the form of exposure metrics ideally would correspond to 

those used in the underlying epidemiological studies.  While beyond the scope of this report, methods to 

estimate TRAP exposure also can be used to identify pollutant "hotspots", facilitate "project-level" analyses 

of transportation options, and identify vulnerable and susceptible populations (S. Batterman et al. 2015b).  

Table 1 summarizes several approaches for developing exposure measures; additional background on the 

most important approaches follows.  

AIR QUALITY MONITORING 

Potentially, health effect studies can use personal, in-vehicle cabin, mobile, indoor and ambient air quality 

monitoring to estimate TRAP exposure.  Ambient air quality monitoring data from central sites may be 

sufficient for air pollution epidemiology studies using time-series and case-crossover designs, especially 

for pollutants that tend to be fairly homogenous over broad areas, e.g., O3, but central site monitoring may 

not provide the spatial coverage needed to estimate near-road exposures and the small scale (or intra-urban) 

variation of TRAP, especially important in cohort and panel studies (Batterman 2013; S. Batterman et al. 

2014b; Dionisio et al. 2016; Özkaynak et al. 2013).  Personal or home measurements are rarely feasible in 

large-scale health studies due to cost and logistical issues (Rioux et al. 2010).  A potentially promising 

development is the recent evolution of miniature, low-cost and wireless sensors, which is improving the 

feasibility of personal and other types of air quality monitoring, although many data quality issues remain 

to be addressed 
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Table 1. Summary of metrics used for exposure to traffic-related air pollutants. From (S. Batterman et al. 2014a) 

Type 
Exposure Metric as 
defined for NEXUS 

Strengths Limitations Results in Detroit 

1. Distance to
major road

Distance from home to 
road edge, and distance 
from home to road 
centerline, using GPS 
home location. 

Simple to construct. 

Low data needs. 

Can potentially distinguish 
roads with varying traffic 
volume, vehicle mix, or 
other characteristics. 

Distance limit used as cutoffs 
for classifying 
homes/receptors is arbitrary.  

May not consider traffic 
volume, vehicle mix, and 
other factors.  

Sensitivity to distance 
calculation, e.g., using road 
edge or centerline. 

HDHT and LDHT roads 
had comparable distances 
to homes.  

LDLT distances 
considerably exceeded 
HDHT and LDHT groups, 
by design and recruitment 
approach. 

2. Total
traffic volume
on nearby
roads

AADT roads within 200 m 
of homes, using nearest 
road edge and GPS home 
location. 

Relatively simple to 
construct.  

Reasonably good volume 
estimates on major roads. 

Can select period of day, 
e.g., rush hour.

Traffic volume estimates 
needed.  

Distance criterion used to 
determine road is arbitrary.  

Does not provide metric for 
low traffic groups. 

HDHT and LDHT groups 
largely indistinguishable. 

HDHT group had 
considerable range. 

3. Diesel
(or truck or
commercial)
traffic volume
n nearby
roads

Roads within 200 m of 
homes using road edge and 
GPS home location. 

Relatively simple to 

construct.  

May relate to PM 
emissions from diesel 
traffic.  

Can select period of day. 

Difficult to estimate diesel 
traffic volume accurately. 

Does not account for type of 
diesel vehicles and emissions. 

Otherwise as 2 above. 

HDHT and LDHT groups 
were largely 
indistinguishable.  HDHT 
group had roughly 10%–
20% higher diesel volumes 
than LDHT group, but 
about 2/3 of the values 
overlapped. 

4. Local
traffic density

AADT on road segments 
with 300 m distance 
(buffer) around each 
home, based on distance to 
road centerline, GPS home 
location, and traffic-
demand model estimates 
of AADT. 

Includes local traffic 
emissions that might affect 
receptor.  

Result (VKT/day) is easily 
interpretable and possibly 
generalizable.  

Large range across sites.  

Can be applied to irregular 
shaped sources and 
receptors.  

Can select period of day. 
Relevant to traffic analysis 
zones used by planners. 

Moderately high data needs. 

Computationally intensive.  

Sensitive to distance criterion, 
which is somewhat arbitrary. 

Uncertainty of traffic 
estimates on all but major 
roads. 

Excludes smaller roads. 

LDHT group had slightly 
greater exposure than the 
HDHT group. 

All but a few LDLT homes 
had low values. 

5. Emissions
on local roads

As 4 above with addition 
of annual average road-
link emissions estimates 
for PM2.5, NOx and CO. 

Incorporates vehicle 
emissions of pollutants of 
interest.  

Reflects vehicle mix on 
roads.  

Also as 4 above. 

Results depend on pollutant, 
to an extent.  

High data needs. 

Computationally intensive. 

Difficult to estimate  
emissions accurately. 

For PM2.5 and NOx, 
HDHT had slightly higher 
exposure than LDLT. 

For CO, results are 
reversed but very similar 

All but a few LDLT 
homes had much lower 
values. 

6. Pollutant
concentration
predictions

PM2.5 predictions at 
homes used road-link 
emissions inventory and 
RLINE dispersion model; 
area and point sources 
using AERMOD and 
regional sources handled 
using CMAQ and kriging 
interpolations of 
monitoring data. 

Incorporates effects of 
emissions, meteorology, 
and location in physically 
based approach. 

Quantifies and apportions 
concentrations due to 

each sources, e.g., traffic.  

Can be derived for 
specific periods of day, 
season or year, e.g., daily 
predictions at rush hour 
periods.  

Inter-study comparisons 
are possible and 
meaningful. 

Results depend on pollutant, 
averaging time, and statistic. 

High data needs. 

Computationally intensive. 

Uncertainty not well 
characterized.  

Results potentially sensitive 
to many factors, including 
home placement. 

For PM2.5, HDHT and 
LDHT distributions were 
similar although some 
dependence on averaging 
time and statistic. 

PM2.5 contributions from 
local traffic at HDHT and 
LDHT homes were about 
twice those at LDLT 
homes.  

Regional sources provide 
much (80%) of total 
PM2.5, but smaller 
contributions of NOx and 
CO. 

Abbreviations: AADT: Annual average daily traffic; HDHT: high diesel/high traffic; LDHT: low diesel/high traffic;  LDLT: low 
diesel/low traffic; VKT: vehicle kilometers traveled 

Typical urban air quality monitoring have reasonable temporal coverage (e.g., observations are captured at 

hourly, daily, 1 in 3 day to 1 in 12 day schedules, depending on site and pollutant), but spatially, sites are 
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sparse and near-road sites are few.  For example, considering active PM2.5 monitors in cities in the U.S. and 

their surrounding suburbs, Los Angeles has 11 monitoring sites, Washington DC has 4, and Detroit has 9 

(U.S. Environmental Protection Agency 2017).  Considering near-road monitoring stations, these cities 

have only one or two sites each, and a total of only 72 near-road sites currently operate across the U.S.A. 

as of 2015 (U.S. Environmental Protection Agency).  Typical approaches to assign pollutant concentrations 

to participants in a health study includes using measurements from the nearest monitoring site or averages 

of measurements from the closest sites (Escamilla-Nuñez et al. 2008; Michelle and Beate 2005; Naeher et 

al. 1999), or applying interpolation techniques, e.g., inverse distance weighting, weighted averages of the 

monitoring results near homes and workplaces, and ordinary kriging (Hoek et al. 2002; Jerrett et al. 2009).  

Still, given the limited spatial coverage, urban networks do not represent local scale variation or intra-urban 

gradients of TRAP concentrations, and these techniques may provide little, if any, additional information 

regarding especially the spatial variation of TRAP exposure.   

SURROGATE MEASURES 

Surrogate exposure measures that correlate well with exposure can be used when there is insufficient 

exposure data; surrogates also can improve spatial-temporal models (Woodruff et al. 2009).  As noted, 

proximity to major roads and specifically the distance between a subject’s residence and the nearest major 

road has been extensively used as an exposure surrogate to reflect the elevated concentrations found near 

busy roads (Baldauf et al. 2008; Barzyk et al. 2009; English et al. 1999; Hagler et al. 2009; Health Effects 

Institute 2010; Hitchins et al. 2000; Hu et al. 2009; Karner et al. 2010; Reponen et al. 2003; Zhu et al. 2006).  

The use of such simple measures is encouraged by the availability of geocoded information and the 

widespread use of geographical information systems (GIS) in environmental and epidemiological 

applications.  Residence location reflects the portion of exposure received at home, an important and 

potentially dominant share since most individuals spend the majority of their time at home (YL Huang and 

S Batterman 2000).  Other surrogates include traffic intensity, traffic-use patterns and land-use patterns 

(English et al. 1999; Jerrett et al. 2005; Michelle and Beate 2005; Rémy et al. 2007; Woodruff et al. 2009).  

Surrogate measures have drawbacks.  These include the potential for exposure measurement error since 

effects of meteorology, vehicle emissions, time-activity patterns of the study subjects (e.g., time spent away) 

and other factors are not considered.  In addition, in most cases, surrogate measures do not portray short-or 

long-term temporal variation, quantify exposure in concentration or exposure units, account for geographic 

or regional differences, and appropriately account for small scale variation in pollutant concentrations (S. 

Batterman et al. 2014a; Y-L Huang and S Batterman 2000; Ward and Wartenberg 2006; Woodruff et al. 

2009).  

LAND USE REGRESSION 

Land use regression (LUR), which has become widely used in epidemiological studies, expresses a pollutant 

concentration at a given site as a function of local geographic information system (GIS) covariates, e.g., 

surrounding land use, traffic characteristics and other spatial data, through a multivariate regression 

framework, which then is used to predict pollutant concentrations at other sites (Aguilera et al. 2007; Allen 

et al. 2011; Beelen et al. 2007; Briggs et al. 2000; Brook et al. 2008; Dons et al. 2013; Gehring et al. 2002; 

Henderson et al. 2007; Hoek et al. 2008a; Hoek et al. 2008b; Jerrett et al. 2005; Jerrett et al. 2007; Jerrett et 

al. 2009; Madsen et al. 2007; Montagne et al. 2015; Morgenstern et al. 2007; Puett et al. 2009; Rémy et al. 

2007; Ryan and LeMasters 2007; Shi et al. 1999; Stedman et al. 1997; Wang et al. 2013; Wilton et al. 2010).  

The primary advantage of LUR models is their ability to characterize small-scale variations in urban settings 

without the need for detailed and accurate emission information.  However, LUR models are area-specific 

and cannot be reliably extrapolated to areas with different topography, land uses, emission types, etc.  In 

addition, since monitored pollutant levels are used as the dependent variable in the regression model, a 

network of air monitoring sites and historical data are required.  Typically, these models have been 

developed using 2-week integrated NO or NO2 measurements measured using passive samplers in seasonal 

field campaigns and “saturated” sampling designs (e.g., 40 or more locations measured simultaneously in 
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an urban setting);  recent developments include the use of satellite data and applications at national scales 

(Stieb et al. 2016).  Originally, LUR models estimate only long-term or seasonal concentrations, but 

temporal adjustments have been added to estimate temporal variability (Hannam et al. 2013).  Data quality 

and comparability issues for the satellite and various types of ground-based measurements can be important. 

Performance evaluations of LUR models include comparisons examining temporal stability (Wang et al. 

2013), and comparisons to dispersion models (using the URBIS system, and Calculation of Air pollution 

from Road/CAR traffic model), which indicated moderate to high correlations for NO2 but lower 

correlations for PM2.5 and PM10 in Dutch studies (Beelen et al. 2009; de Hoogh et al. 2014; Wang et al. 

2015).  While LUR has relative good ability to capture the mean pollution trend in an intra-urban setting, 

being based on a multivariate linear regression framework, it implicitly assumes that concentrations at 

different sites are independent.  This assumption might not be realistic, particularly in the near-road 

environment where typical land use covariates do not exhibit much variability.   

DISPERSION MODELING 

Dispersion models relevant to TRAPs have a long history, with the original line source formulations used 

to represent a road or road “link” dating back to the 1950s or possibly earlier.  These physically based 

simulation models utilize emission and dispersion components, the latter often based on a Gaussian plume 

formulation.  Samson (in (Kennedy and Bates 1987)) reviews the formulation and development of these 

models.  The U.S. Environmental Protection Agency supports the development of a number of dispersion 

models relevant to TRAPs, including the recently-developed Research LINE-source model (RLINE) (MG 

Snyder et al. 2013), which can predict near-road exposures with high spatial and temporal resolution.  (This 

model and others for near-road applications are detailed in Appendix 4).   

With appropriate input data, including detailed information regarding traffic activity and emissions 

(Lindhjem et al. 2012), dispersion models can predict short- and long-term air pollution concentrations at 

desired locations called “receptors,” including locations without monitors (Sheppard et al. 2012).  Spatial 

gradients at regional, urban and smaller scales can be represented using multiple receptors.  Source-oriented 

emission, dispersion and exposure models, which estimate near-road pollutant concentrations and 

individual exposures based on first principles, and in particular high fidelity models, provide great 

flexibility and theoretical strength, and can represent the spatial variability of TRAP concentrations that is 

not measured by conventional (and spatially sparse) air quality monitoring networks.  Dispersion models 

have been used to evaluate near-roadway impacts of TRAP in a number of regulatory and health studies (S. 

Batterman et al. 2015b; Beevers et al. 2012; S. D. Beevers et al. 2013; Sean D. Beevers et al. 2013; Bell et 

al. 2011; Isakov et al. 2009; Isakov et al. 2014; Lobdell et al. 2011; Pachón et al. 2016; Van Den Hooven 

et al. 2012; Vette et al. 2013; Wang et al. 2015[Beevers, 2012 #1708; Wu et al. 2011; Zhai et al. 2016).  

Urban scale applications of dispersion models require extensive input data, and computational demands can 

be high.   

So-called “hybrid models” combine several types of dispersion and/or exposure models.  For example, 

modeling of emissions from on-road vehicles, point (industrial) and area sources can be accomplished by 

combining a near-road model (e.g., RLINE or ADMS) with a longer range model, e.g., the Community 

Multi-scale Air Quality Model (CMAQ) or AERMOD (Beelen et al. 2010; Beevers et al. 2012; Chang et 

al. 2015a; Isakov et al. 2009).  A second type of hybrid model combines dispersion model predictions with 

space-time activity data to quantify exposures of individuals.  This approach has been used for NOx and 

PM in London with reasonable agreement to personal monitoring observations (Sean D. Beevers et al. 

2013).  Other recent applications of hybrid models for TRAPs (volatile organic compounds and NOx) have 

combined CALPUFF, CMAQ and travel survey data to model the Tampa area (Gurram et al. 2015; Yu and 

Stuart 2016).  

Another type of process-based modeling uses computational fluid dynamic (CFD) models (Wang and Zhang 

2009) [Yang, 2017 #2000].  Based on the Navier-Stokes equations, such models are useful for estimating 

short-term dispersion of plumes, especially in areas containing obstacles like large buildings and complex 
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terrain, and with calm or very light winds, situations when Gaussian plume models are not applicable or 

perform poorly.  CFD models have demanding data and computational requirements.  The CFD models, as 

well as models for street canyons and reactive pollutants, are beyond the scope of the present report.  

The ability of dispersion models to accurately predict concentrations is evaluated using a number of 

statistical performance metrics (Chang and Hanna 2004; Hanna and Chang 2012) in several types of 

evaluations (Dennis et al. 2010).  Operational evaluations include statistical and graphical analyses to 

determine whether model estimates agree with observations in an overall sense, and utilize routine 

observations of pollutant concentrations, emissions, meteorology and other variables with the goal of 

characterizing prediction uncertainties and limitations of models for particular applications.  Diagnostic 

evaluations test the ability to predict pollutant concentrations by correctly capturing physical and chemical 

processes.  Dynamic evaluations examine the ability to predict air quality changes in response to changes 

in source emissions and meteorological conditions.  Finally, the rare probabilistic evaluation looks at 

statistical properties of model performance, including uncertainty.  This report employs both operational 

and diagnostic evaluations.  Overall, prediction accuracy and uncertainty of dispersion models applied to 

urban settings are not well characterized (Jerrett et al. 2005).  However, approximately half of a small set 

of model applications did meet performance criteria suggested for model performance (Chang and Hanna 

2004; Hanna and Chang 2012).   

SPATIO-TEMPORAL MODELING 

The geostatistical method of universal kriging can address some limitations of LUR and spatial 

interpolation methods (Cressie 1993).  Universal kriging models pollutant concentrations as a spatial 

process whose mean trend is expressed as a function of covariates, for example, the same GIS covariates 

used in LUR, with a covariance function that accounts for the spatial dependence in concentrations at 

different sites (Calder 2008; De Iaco and Posa 2012; Fanshawe et al. 2008; Finkelstein et al. 2003; Künzli 

et al. 2005; Lindstrom et al. 2014; Paciorek et al. 2009; Pikhart et al. 2001; Sahu et al. 2006; Smith et al. 

2003; Son et al. 2010).  

Another strategy to estimate pollutant concentrations at unsampled locations uses data fusion approaches 

that leverage the information contained in the output of deterministic numerical models that estimate 

concentrations, e.g., dispersion models (Berrocal et al. 2010a, b; Choi et al. 2009; Crooks and Özkaynak 

2014; Fuentes and Raftery 2005; Gilani et al. 2016; Hystad et al. 2012; McMillan et al. 2010; Reich et al. 

2014; Rundel et al. 2015; Zidek et al. 2012).  While such models explicitly incorporate the physical and 

chemical processes related to pollutant emissions and transport with the ability to estimate concentrations 

at the desired spatial and temporal resolution, they often display systematic biases for several reasons, e.g., 

numerical approximations and uncertain model inputs.  Data fusion models have been developed and 

successfully applied to a number of pollutants, e.g., NO2 (Gilani et al. 2016), PM (Choi et al. 2009; Crooks 

and Özkaynak 2014; McMillan et al. 2010; Rundel et al. 2015), and ground-level O3 (Berrocal et al. 2010a, 

b; Fuentes and Raftery 2005; Reich et al. 2014; Zidek et al. 2012).  

Typically, both universal kriging models and data fusion approaches used for air pollutants in the literature 

have assumed that the spatial dependence in pollutant concentrations is stationary (Bliznyuk et al. 2014; 

Gryparis et al. 2007; Schmidt and Gelfand 2003), implying that the correlation between concentrations at 

two locations is only a function of their separation distance.  Although computationally convenient and 

widely used, the assumption of stationarity might be untenable for TRAP concentrations as characteristics 

of the locations might affect the covariance between pollution levels at any two sites.  

Non-stationary spatial modeling, and specifically non-stationary covariance functions, have been an active 

area of research in spatial statistics for the past 20 years.  The most used and cited methods include: the 

“deformation" approach (Sampson and Guttorp 1992) that was initially presented in a frequentist non-

parametric setting and later extended to a Bayesian framework by Damian (Damian et al. 2001) and Schmidt 

and O’Hagan (Schmidt and O'Hagan 2003); process convolution (Calder et al. 2002; Higdon 1998; Higdon 

et al. 1999; Paciorek and Schervish 2006); basis function expansions (Holland et al. 1999; Katzfuss 2013; 
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Matsuo et al. 2011; Nychka et al. 2002; Pintore and Holmes 2005); kernel mixing (Banerjee et al. 2004; 

Fuentes 2001; Fuentes and Smith 2001; Fuentes et al. 2005); Markov random field models using stochastic 

partial differential equations (Lindgren et al. 2011), and dimension expansion (Bornn et al. 2012).  More 

recently, in the past 10 years, efforts have increased to develop models for non-stationary covariance 

functions that incorporate spatial covariates in the covariance function to help identify the factors that drive 

the non-stationarity.  Working within the convolution approach framework of Higdon (Higdon 1998), 

Calder (Calder 2008) used covariate information to determine and fix the kernel parameters, Neto (Neto et 

al. 2014) proposed a method that included directional variables in spatially varying kernels, and Risser and 

Calder (Risser and Calder 2015) included covariates in the kernels through covariance regression-based 

methods.  On the other hand, starting with the kernel mixing approach of Fuentes (Fuentes 2001), Reich 

(Reich et al. 2011) showed how covariates could be included in the weights of the kernels, while building 

on the Bayesian deformation approach (Schmidt and O'Hagan 2003), Schmidt (Schmidt et al. 2011) 

included covariate information in the covariance function of the spatial process.  Finally, Ingebrigtsen 

(Ingebrigtsen et al. 2014) added covariates to the method proposed by Lindgren  (Lindgren et al. 2011).  

Applications of these methods for non-stationary covariance functions generally have been applied to 

environmental processes for which data are available over a large geographic region (Calder 2007; Fuentes 

and Smith 2001; Higdon 1998; Higdon 2002; Paciorek and Schervish 2006) that might include natural 

boundaries such as land and oceans (Fuentes et al. 2005).  However, non-stationary covariance functions 

may be needed for processes within a localized spatial domain, e.g., near-road exposures of TRAPs in urban 

settings.  For example, due to the configuration of emission sources, meteorological effects, and possibly 

other factors, concentration gradients of TRAPs are more prominent with distance from highways at 

downwind sites, and thus the covariance at these sites is expected to have a larger effective range as 

compared to the covariance between upwind sites.  These ideas are explored in this project. 

APPENDIX 3 – NEAR ROAD DISPERSION MODELS 

Dispersion models estimate near-road pollutant concentrations based on first principles and can offer great 

flexibility and theoretical strength.  Dispersion models relevant to TRAPs date using line source 

formulations to represent a road or road “link” date back to the 1950s or possibly earlier.  These physically 

based simulation models utilize emission and dispersion components, the latter often based on a Gaussian 

plume formulation.  Samson (in (Kennedy and Bates 1987)) reviews the formulation and development of 

these models.  The U.S. Environmental Protection Agency supports the development of a number of 

dispersion models relevant to TRAPs.  This appendix summarizes models widely used in the U.S.   

CALINE 

CALINE is a line-source Gaussian plume dispersion model originally developed by the California 

Department of Transportation in 1972 to predict 1- and 8-hr CO concentrations at pre-determined receptor 

positions near roadways (Benson 1989).  CALINE2 added the ability to model depressed (below-grade) 

roads and winds parallel to the road.  CALINE3 used new vertical and horizontal dispersion curves modified 

for the effects of surface roughness, averaging time and vehicle-induced turbulence, replaced the virtual 

point source formulation with a finite line source formulation, and added multiple link capabilities.  The 

latest version, CALINE4, used a different method to estimate dispersion parameters and improved 

input/output handling.  Historically, the CALINE series of models required relatively minimal input from 

the use.  Inputs include roadway geometry, hourly surface meteorology, traffic volume, and emission rates.  

Individual highway links are divided into a series of elements, each modeled as an “equivalent” finite line 

source, from which incremental concentrations are computed and summed to predict concentrations at 

designated receptors.  The CALINE4 documentation includes sensitivity analyses for several model inputs, 

including wind direction variability, surface roughness, deposition velocity, highway geometry (including 

width, height, length) (Benson 1989).  These models have been widely used. 
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EARLY EPA MODELS AND AERMOD 

HIWAY and HIWAY-2 were early models (1980s) developed by U.S. Environmental Protection Agency 

(EPA) for emissions associated with roads.  The Industrial Source Complex (ISC) models of the 1970s 

through 1990s and AERMOD in the 2000s also allowed modeling of road sources, which were represented 

as a “string” of volume sources or as elongated area sources.  U.S. EPA calculated performance statistics 

comparing CALINE, AERMOD, ADMS and RLINE (described below) to observations collected in two 

short-term field studies.  This evaluation concluded that AERMOD appeared to perform best, particularly 

for the highest concentrations relevant to “regulatory” models used to demonstrate compliance with the 

National Ambient Air Quality Standards, i.e., “hot-spot” modeling for mobile source conformity analyses 

of CO, PM10 and PM2.5 (D. Heist et al. 2013; U.S. Environmental Protection Agency 2015a).  AERMOD is 

being updated to incorporate line sources and newer algorithms.  

RLINE 

Due to growing concern about TRAP exposure and associated health effects, U.S. EPA initiated efforts to 

reexamine the dispersion of TRAP with the goal of developing a dispersion model that could capture the 

temporal and spatial variability of TRAP in the near-road environment (https://www.cmascenter.org/r-

line/).  Wind tunnel and field studies were undertaken to measure transport and dispersion of near-surface 

pollutant releases; these studies provided new datasets for the development and evaluation of improved line 

source algorithms.  RLINE, the initial product of this development program, is considered a research grade 

dispersion model primarily designed to support risk assessments and health studies related to near-road 

pollutants.  At present, U.S. EPA does not consider that RLINE is appropriate for regulatory applications 

because it has not undergone the extensive testing and comprehensive evaluation for such applications 

(https://www.cmascenter.org/r-line/).   

Like its predecessors, RLINE is based upon a steady-state Gaussian formulation that simulates line type 

emission sources (e.g., mobile sources on roadways) by numerically integrating point source emissions 

along the line source.  RLINE was designed to simulate impacts from line source emissions at receptors 

positioned very near the line source; i.e., in the road’s near-field environment.  It utilizes the AERMET 

meteorological data preprocessor surface to process meteorology.  RLINE requires hourly values of sensible 

heat flux, surface friction velocity, convective velocity, convective stable planetary boundary layer heights, 

Monin-Obukhov length, surface roughness, wind speed, and wind direction.  The current version (RLINE 

1.2) was formulated for near-surface releases in flat terrain (“simple” terrain without surrounding 

complexities), and it contains new formulations of vertical and lateral dispersion rates based on the field 

and wind tunnel studies noted earlier.  In addition, the model simulates low wind meander conditions, 

includes Monin-Obukhov similarity profiling of winds near the surface, and selects plume-weighted winds 

for transport and dispersion calculations (https://www.cmascenter.org/r-line/).  The current version includes 

beta-option algorithms for simulating several complex near-source effects, e.g., effects of noise and 

vegetative barriers and depressed roadways; these features have not been evaluated in the peer-reviewed 

literature.  RLINE version 1.2 also provides an analytical approximation (an option to the default numerical 

integration), which can dramatically speed calculations, although the current guidance notes that “this 

solution includes some simplifying assumptions that lead to slightly different results than the numerical 

solution, especially for receptors close to the source, or for sources and/or receptors significantly off the 

ground.”  

RLINE has been documented in a report, book chapters, and journal articles that describe its formulation 

(MG Snyder et al. 2013), plume spread (Venkatram et al. 2013) and upwind plume meander algorithms 

(David Heist et al. 2013).  RLINE has undergone several performance evaluations (Chang et al. 2015b; 

David Heist et al. 2013; MG Snyder et al. 2013; Venkatram et al. 2013), which show generally comparable 

results as other “line” source models that simulate dispersion from on-road traffic emissions (Ganguly and 

Broderick 2008; Levitin et al. 2005; Oettl et al. 2001; Patton et al. 2017; Rao et al. 1980).  RLINE has been 

used in a number of applications.  In a hybrid modeling application involving RLINE, AERMOD and 
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estimates of background concentrations provided by space-time ordinary kriging, RLINE was used to 

contrast indoor and outdoor community-scale exposures at the Census block level in North Carolina (Chang 

et al. 2015b).  Using a similar hybrid structure, TRAP exposures (daily and annual average PM2.5 

concentrations) were predicted at homes and schools of children in the NEXUS epidemiological study in 

Detroit, Michigan (Stuart Batterman et al. 2014; Vette et al. 2013).  RLINE has been applied to studies 

examining pollutant hotspots (S. Batterman et al. 2015b), effects of receptor grid resolution on prediction 

errors (S. Batterman et al. 2014b), and a novel “mini-grid” receptor placement scheme to characterize 

concentration gradients around receptors and anonymize residence locations (Isakov et al. 2014).  Recently, 

the model was incorporated into a C-PORT, a community-scale tool for modelling emissions related to 

port-related activities, including ships, trucks and cranes (Arunachalam et al. 2015; Isakov et al. 2016).   

(MG Snyder et al. 2013)illustrated effects of four distinct and representative meteorological conditions 

found in Detroit, namely, convective, neutral, stable and very stable conditions, using RLINE to simulate 

concentration gradients perpendicular to a road (also using winds perpendicular to the road). Figure 2 

reproduces the essential results, which shows the effect of upwind plume meander and the large 

differences in downwind concentrations under the four stability regimes.  Under convective and neutral 

conditions, downwind concentrations rapidly decrease with distance from the road; under stable and 

especially very stable conditions, downwind concentrations persist at much longer distances, beyond 

500 m.  Unstable conditions typically occur during the early morning and can last through the morning 

rush hour.  This simple sensitivity analysis indicates that the combination of a very stable atmosphere and 

high roadway emissions can produce high concentrations at extended downwind distances.  Further, 

differences in dispersion between stability conditions, particularly between stable and very stable 

conditions, are large, which highlights the importance of using accurate meteorological parameters in 

dispersion modeling.  This topic is explored in Appendix 9. 

Figure 2. Concentration gradients predicted by RLINE for four representative meteorological conditions in 

Detroit. Concentrations are normalized by the concentration closest to the roadway.  From (M Snyder et al. 2013). 

RLINE has undergone several performance evaluations (Chang et al. 2015b; David Heist et al. 2013; M 

Snyder et al. 2013; MG Snyder et al. 2013; Venkatram et al. 2013), with respect to health studies, however, 

these evaluations have several limitations: they lack evaluations of daily (and sometimes annual) average 

concentrations; tracers rather than TRAP are often used; and they rarely are performed at the urban scale 

corresponding to population-level observations of health outcomes.  Instead, most evaluations have 

examined hourly (sometimes sub-daily) average concentrations, used experimental tracer gases released at 

controlled rates (and which undergo only limited chemical and physical transformations at the scale of the 
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study), and examined small (<1 km2) and simplified domains that contain few sources (Chang et al. 2015b; 

David Heist et al. 2013; Isakov et al. 2014).  While providing valuable diagnostic information that can help 

improve models, these evaluations do not represent the complexity and scale of urban settings.  Studies 

comparing RLINE predictions to observations of TRAPs have additional limitations:  most have used short 

study periods and single pollutants (Patton et al. 2016; M Snyder et al. 2013) examined only annual average 

concentrations (Zhai et al. 2016), and provided only a limited discussion of model performance and study 

methodology (Pachón et al. 2016).  Finally, model performance has not been evaluated with respect to 

season, day-of-week and other potentially exposure-relevant factors that could alter results and lead to 

exposure measurement errors.    

CLINE 

Using a simplified modeling approach based on RLINE, U.S. EPA recently developed and currently 

supports CLINE (Community LINE Source Model), a model designed to inform the community user of 

local air quality impacts from mobile-sources, and to allow exploration of alterative scenarios, e.g., changes 

in traffic volume, fleet mix, or vehicle speed.  CLINE estimates emissions for road links by combining 

national database information on traffic volume providing an estimate of the annual average daily traffic 

(AADT) and the fleet mix with emissions factors from EPA's MOVES-2010b.  This web-based tool can 

model any region of the U.S. (Barzyk et al. 2015). 

COMPUTATIONAL FLUID DYNAMICS MODELING 

It is worth noting the potential of computational fluid dynamics (CFD) modeling to represent the chemical 

transformation of NO to NO2 in the on-road environment, including the very near-field of the “exhaust pipe 

to road” environment (Yang et al. 2017) as well as transformation in the near-road environment.  Both CFD 

and simpler (empirical) correlations (Valencia et al. 2018) appear promising in preliminary applications 

and may provide insight regarding the NO/NO2 relationship.     

APPENDIX 4 – MOBILE, POINT AND AREA EMISSION INVENTORIES 

This appendix provides some background on emission inventories but mainly describes the mobile, point 

and area source emission inventories developed for Detroit. 

A high-level view of the emissions data is presented in Table 2, which summarizes emissions in Wayne 

County, Michigan, which includes Detroit, based on 2011 National Emission Inventory data.   
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Table 2.  Summary of CO, NOX and PM2.5 emissions in Wayne Country in 2010. From the National 

Emission Inventory (2014) in short tons (to the nearest ton), and percent of total emissions in each category.  

Emission category CO % NOX  % PM2.5 % 

Non-point        7,316    3      6,307   10     1,930  38 

     Industrial processes  194    3    4  0        489  25 

     Miscellaneous area sources        < 1  0    7  0         27    1 

     Mobile sources†  107    1         872   14        689  36 

     Natural sources  642    9         167    3 - - 

     Stationary source fuel combustion        6,347  87      5,087   81        725  38 

     Waste disposal, treatment and recovery    27  0         170    3 - - 

Non-road mobile sources      65,491  27      6,847   11        493  10 

On-road mobile sources    129,647  54     29,767   48     1,098  21 

     Highway - Compressed Natural Gas    54    0  42    0  0    0 

     Highway - Diesel        6,260    5     15,740   53        748  68 

     Highway – Gasoline 123,332  95     13,985   47        349  32 

Point      36,335  15     19,489   31     1,610  31 

     External combustion    67  0         211    1         18    1 

     External combustion boilers        7,422  20     10,516   54        246  15 

     Industrial processes      20,230  56      3,082   16        904  56 

     Internal combustion engines        3,193    9      1,363    7        260  16 

     Mobile sources*        4,702  13      2,326   12         85    5 

     Petroleum and solvent evaporation    13  0  20  0         52    3 

     Waste disposal  708    2      1,972   10         46    3 

Grand Total    238,788     62,411     5,131 

† Railroad equipment and marine vessels; * Aircraft and airport support vehicles 

MOBILE SOURCE EMISSIONS 

We used a “link-level” inventory that provides information for individual road segments or “links,” which 

was assembled using a “bottom-up” approach.  As described below, this starts with the road network 

configuration (location, number of lanes, depth above/below grade), adds traffic activity information 

(vehicle volume, speed, acceleration and vehicle mix on each link), and then emission factors.  Such 

inventories consolidate data from multiple sources, e.g., GIS shape files representing roads, estimates of 

total vehicle-kilometers-traveled (VKT) from metropolitan planning organizations, historical traffic 

measurements and estimates, traffic demand model estimates of vehicle volumes, and other data types.   

As the preceding paragraph implies, emissions of TRAPs are determined by many factors and the 

development of mobile source emission inventories requires extensive data (Wang et al. 2008).  Similarly, 

uncertainty in link-level emissions inventories is contributed by many factors.  These include: (1) the 

representation of the road network geometry; (2) uncertainty in traffic activity, e.g., VKT, volume, vehicle 

type and age, speed, acceleration, and the number of cold starts;  and (3) uncertainty of emission factors, 

e.g., engine exhaust emissions depend strongly on operating temperature and vehicle operating modes,

while non-exhaust emissions depend on siltation loading and other factors (Fujita et al. 2012; Wang et al.

2008; Zheng et al. 2009).  Many of these factors vary temporally and spatially, and temporal adjustments

can contribute large uncertainties (Lindhjem et al. 2012).  Other important factors include a lack of on-road

traffic and emission measurements, and discrepancies between fleet classifications and VKT needed by

models and the available statistical summaries (Snyder et al. 2014; Zheng et al. 2009).  Several of these

items are discussed below for the Detroit application.

Road Network 

The road network for dispersion modeling is represented using a simplified configuration of straight 

segments or “links” for major roads (interstates, freeways, major arterials) and many lesser roads (minor 

arterials and collectors).  Typically, the smallest (local) roads are not represented.  Emissions (and other 

characteristics) are assumed uniform along the length of each link, and emissions are quantified in units of 

g m-1 s-1.  Curves in the road geometry can be represented using multiple links.  Larger roads may be 
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represented using parallel links, e.g., one for each direction.  Roads may be broken into several links if 

traffic volume or other road characteristics change.  Geometrical or spatial errors result from simplifications 

taken to represent curves and ramps; other errors can result from spatial misalignments or approximations 

(S. Batterman et al. 2015b; Ganguly and Batterman 2014).  For Detroit, we updated a road network 

consisting of 9,701 links (Figure 3) (Snyder et al. 2014).  The network was overlaid with Google 

Earth maps in specific areas, e.g., near ambient air quality monitoring sites.  Generally, links matched 

actual road configurations, although we noticed (and corrected) a number of geometrical errors.  

Figure 3. Map of link-based road network used in mobile source emissions inventory for Detroit.  Map shows study 

area, and locations of children residences and schools in NEXUS. Shaded area defines city of Detroit and population 

by Census Block group. Axis scales are Universal Traverse Mercator coordinates (m).  AADT is annual average daily 

traffic (vehicles/day). Highlighted roads are National Functional Class 11 and 12.  From (S. Batterman et al. 2014a). 

Traffic Activity and Variability 

Traffic activity encompasses the volume (number), mix, speed and acceleration of vehicles on roads.  In 

urban areas, volumes needed for link-based inventories usually are taken from traffic demand models 

(TDMs), which cover major roads (interstates, freeways, major arterials) and most lesser roads (minor 

arterials and collectors); the smallest roads (local roads) are typically excluded (Lindhjem et al. 2012).  

TDMs are typically validated or adjusted using data from traffic monitoring stations, e.g., permanent traffic 

recorders (PTRs), including data collected as part of the Federal Highway Administration (FHWA) 

Highway Performance Monitoring System (HPMS).  Traffic monitoring stations are spatially sparse, and 

few classify vehicle type (or weight, size, or number of axles), an important omission since a single heavy-

duty vehicle (HDDV) can represent many passenger car equivalents (PCEs) in terms on emissions. For 

example, one HDDV represents about 12 PCEs of NOx and 50 PCEs of PM2.5, based on the emission factor 

model MOVES 2010a and 2010 scenarios for Detroit, Michigan (Stuart Batterman et al. 2015; Lindhjem et 

al. 2012).  The regional VKT is allocated to the road network using spatial surrogates (e.g., population 

(Lindhjem et al. 2012)), travel demand models, empirical extrapolations (e.g., the U.S. Highway 

Performance Monitoring System that consolidates traffic count data (North American Research Strategy 

for Tropospheric Ozone 2005)), or other methods.  Estimated volumes are usually weekday averages.   
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In Detroit, we used annual average daily traffic (AADT) and commercial AADT (CAADT) volumes 

reported in the Michigan Trunkline Highway System (including interstates, US and state highways) 

(Michigan Department of Transportation) and a custom mapping/linking algorithm.  Fleet mix (by link) 

was derived using AADT and CAADT estimates, short-term counts (usually 2-3 days of data, excluding 

ramps and loop measurements), and PTRs in the Traffic Monitoring Information System (TMIS) (Michigan 

Department of Transportation 2016).  Because count data were sparse, especially on minor roads, fleet mix 

was estimated by National Function Class (NFC).  NFC 12 and 19 links (without traffic count data) were 

assigned to distributions for NFCs 14 and 17, respectively (Snyder et al. 2014).  Hourly data using the 13 

Federal Highway Administration (FHWA) classes were averaged across days, road direction and stations, 

and mapped to the 8 Highway Performance Monitoring System (HMPS) classes (Decker et al. 1996).  The 

average HMPS-by-NFC volume fractions were allocated to commercial and non-commercial traffic, 

normalized and weighted by average commercial traffic fractions by NFC from the final dataset.  Vehicle 

speeds were assigned to each link for four periods:  morning and evening rush hours, and afternoon and 

evening periods.  On major commuting routes, speeds dropped (5 to 20 mph) during rush hour periods, 

reflecting traffic congestion. 

The variability of traffic activity is one reason why on-road vehicle emissions are difficult to quantify 

(Parrish 2006).  Historically, estimates of the VMT mix at the metropolitan level are applied uniformly 

across all roadway types and hours of the day.  More recently, road-type specific VMT mixes have been 

used, important since HDDVs account for a larger share of VMT on freeways than on surface streets, and 

since small differences in the fraction or number of HDDVs can yield large changes in emissions, as noted 

earlier.  Locally monitored traffic counter and vehicle classification also can be used to derive temporally 

varying profiles of vehicle volume mix and volume, as performed for Detroit (Batterman 2015; Stuart 

Batterman et al. 2015).  While continuous and real-time traffic data have been used to estimate road 

emissions (Samaranayake et al. 2014; Zhang and Batterman 2010), the number and placement of traffic 

monitoring stations are rarely sufficient for this purpose.   

In Detroit, to improve the temporal allocation of vehicle activity, we derived annual, monthly, daily and 

hourly temporal allocation factors (TAFs) that apportion annual average estimates of traffic volume to 

hourly estimates, using historical data collected in the region.  This analysis used four years of hourly traffic 

activity data recorded at 14 continuous counting stations, including five stations that provided vehicle 

classification (Batterman 2015; Stuart Batterman et al. 2015).  We evaluated the sensitivity of model results 

to default and Detroit-specific TAFs.  

Examples of temporal allocation factors for Detroit are shown in Figures 4 and 5.  Passenger and 

commercial vehicle patterns differ significantly, and separate sets of allocation factors are needed for total 

and commercial vehicles, and for weekdays, Saturdays, Sundays and observed holidays.  It is also apparent 

that urban-wide TAFs can provide accurate predictions of traffic volume with a few exceptions, e.g., low 

volume due to adverse weather (Stuart Batterman et al. 2015).  This is important because TAFs often do 

not always separate vehicle types, despite large differences in especially hour-of-day and day-of-week 

patterns of light and heavy-duty vehicles.  In addition, some TAFs that may be used in lieu of site-specific 

data (including those in the SMOKE modeling system http://www.cmascenter.org/smoke/) can be old and 

can differ significantly from current traffic patterns.  The TAFs derived for Detroit were used to estimate 

hourly volumes of commercial and non-commercial volumes for each link.   
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Figure 4.  Normalized traffic volumes by year, month and day-of-week and holidays for volumes of total vehicles 

(A - C) and commercial vehicles (D - F).  Plots shows 5th, 25th, 50th (red bar), 75th and 95th percentile 

values.  Scales of panels A, B, D and E differ from plots C and F.  Panels C and F consider all 10 federal holidays.   

(Reprinted from Batterman et al. 2015 by permission of Elsevier.)
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Figure 5.  Diurnal trends of total volume for total vehicles across the 14 site and 4 years (panels A-D), and 

commercial vehicles for four weigh-in-motion sites and 4 years (E-H).  Hourly volume is normalized to daily 

traffic for the same day and site.  Weekday, Saturday and Sunday excludes ten holidays plus Friday after 

Thanksgiving.  Weekday Holiday includes six federal holidays plus Friday after Thanksgiving.  Plot shows 1st, 

5th, 25th, 50th (red bar), 75th, 95th and 99th percentiles.  (Reprinted from Batterman et al. 2015 by permission of 
Elsevier.)
Emission Factors 

Emission factors (in units of g vehicle-1 mile-1) are multiplied by traffic volumes of each vehicle type to 

obtain link-based emission rates.  Traffic related emissions include engine exhaust and non-exhaust 

emissions. 
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Engine exhaust emissions for a given pollutant depend on vehicle type, speed, age, engine power, engine 

configuration, after-treatment technology, fuel, maintenance, operating temperature, and other factors.  

Prior to 2010, U.S. EPA supported the MOBILE series of models giving emission factors for hydrocarbons, 

CO, NOx, CO2, PM, and toxics for cars, trucks, buses and motorcycles under various conditions (U.S. 

Environmental Protection Agency 2003).  This model (and the California Air Resources Board's EMission 

FACtors or EMFAC model) used cycle-average emissions corrected for average speed, derived from 

emission measurements using standard driving cycles designed to represent typical driving patterns along 

roads such as freeways, arterials, ramps and local roads.  This “macroscopic” approach was widely used in 

emission inventory and dispersion modeling applications.  In 2010, U.S. EPA released the Motor Vehicle 

Emissions Simulator (MOVES 2010) model, which was developed, in part, to address a National Research 

Council review that found that although the MOBILE model was suited for aggregate regional and national 

analyses, it could not be used at temporal and spatial scales relevant to specific transportation projects and 

control measures; further, the review noted model validation and evaluation issues, e.g., large 

underestimates of CO and hydrocarbons (Fujita et al. 2012).  MOVES provides great flexibility for vehicle 

operation cycle, and running exhaust emissions based on vehicle-specific power (instantaneous power 

demand/vehicle mass).  The current version, MOVES2014a, provides a number of updates, calculates on-

road and non-road emissions, and is considered by U.S. EPA as a state-of-science modeling system 

(https://www.epa.gov/moves/moves2014a-latest-version-motor-vehicle-emission-simulator-moves). 

Non-exhaust emissions arise from brake, tire and clutch wear, pavement surface abrasion, entrainment of 

re-suspended dust (silt), and certain vehicle “running losses” (primarily applicable to VOCs) (Fujita et al. 

2012; Wang et al. 2008; Zheng et al. 2009).  There is significant uncertainty regarding the characterization 

and quantification of non-exhaust emissions (Pant and Harrison 2013).  Both the MOBILE and MOVES 

models include tire and brake wear in their PM10 emission factors.  In urban environments, brake wear is 

estimated to account for 16 to 55% of total non-exhaust traffic-related PM10 emissions (11 to 21% of total 

traffic-related PM10 emissions), with the greatest contributions in high-density traffic with high braking 

frequency, and the lowest for freeways where braking frequency is low (Grigoratos and Martini 2015).  

Brake wear has a unimodal size distribution (maxima between 1 and 6 μm) and thus, a potentially significant 

fraction is PM2.5.  The contribution of “road dust,” which encompasses pavement surface abrasion and 

entrainment, is suggested by receptor modeling apportionments, although the “mineral” or “crustal” factor 

identified in such studies can include demolition, construction and road dust (Querol et al. 2004).  Road 

dust emissions vary greatly by location, vehicle speed, street maintenance, siltation, use of studded tires, 

climate, and sanding and salting of roads during the winter and spring periods (Milando et al. 2016; Pant 

and Harrison 2013; Querol et al. 2004).  

In Detroit, emission factors were generated using MOVES version 2014a (U.S. Environmental Protection 

Agency 2015b) and 2015 inputs for the Wayne, Macomb and Oakland Counties (the most populated local 

areas) provided by the Southeast Michigan Council of Governments (SEMCOG).  Other MOVES inputs 

included monthly average local temperatures in 11 bins (0 to 100 °F in 10 degree increments) (Snyder et 

al. 2014) and the default barometric pressure, which was similar to local conditions (Southeast Michigan 

Council of Governments (SEMCOG) 2011).  Following previous work(Snyder et al. 2014) ,  emission 

factors for running exhaust and running evaporative modes were calculated for CO, NOX, PM2.5 and PM2.5 

precursors (evaporative hydrocarbon emissions), and for PM2.5 tire-wear and brake-wear emissions, and 

crankcase and other emissions were omitted to reduce computational time (these emissions are small 

compared to exhaust emissions).  Finally, emission factors were consolidated by pollutant type (e.g., tire 

and brake wear for PM2.5), vehicle types mapped to the HPMS vehicle classes, and averages were weighted 

by vehicle type counts and VMT fraction on major roads and NFC 11 and 12 in the link network and minor 

roads (NFC 14, 16, 17 and 19), and the number of weekday and weekend days.  CO, NOX and PM2.5 

emission factors were calculated by vehicle type, speed and ambient temperature.  As in most areas, little 

information was available regarding non-exhaust traffic-related emissions of PM2.5. 
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Hourly commercial and non-commercial emission factors for each NFC and speed bin were calculated for 

each pollutant.  Finally, link emissions were calculated as the product of link-specific volume with the 

speed-, month-, temperature- and vehicle type-specific emission factor (described below). 

POINT SOURCE EMISSIONS INVENTORY 

We consolidated stack-level data in the National Emission Inventory (NEI) (2014) with facility and stack-

level data in the Michigan Air Emission Reporting System (MAERS) (Michigan Department of 

Environmental Quality 2014); emission data was available for 564 facilities.  Stacks were aggregated to the 

facility level by assigning emissions to the largest stack (normally the tallest with the greatest emissions 

and volumetric flow).  A subset of 179 facilities were selected based on the 100 highest emitting facilities 

for each pollutant).  Of these, 58 mostly smaller sources had incomplete information and were excluded.  

Quality checks included extensive comparisons between MAERS and the 2011 NEI data.  Facility-level 

emissions for CO and NOX were mostly within 5%.  However, the PM data, which included condensable 

PM, PM2.5 and PM10, showed larger discrepancies, e.g., MAERS and NEI emissions of PM2.5 differed by 

over 5% at 99 of 121 sources, and filterable PM2.5 emissions in MAERS exceeded primary PM2.5 emissions 

(sum of filterable and condensable PM2.5) in 23 cases.  These discrepancies were resolved following a 3-

step procedure (Dorn et al. 2013): quality checking available data; trivial gap filling using available data; 

and then ranked “best-guess” estimates using, in sequence, data in an NEI year, primary emissions data 

converted directly using facility-specific SCC conversion factors, the median PM2.5 emission estimate 

generated indirectly, and lastly the PM2.5 estimate created by trivial gap-filling of converted values.  The 

final point source inventory contained 121 sources that represented over 90% of countywide point source 

emissions.  Pollutant concentrations were predicted using this inventory, the AERMOD dispersion model 

(View v8.1.0; AERMOD.exe v12345) (Cimorelli et al. 2004), and the preprocessed 

meteorological data described later in Appendix 8. Sources in Detroit were classified as “urban” 

with a reference population of 106 and the default surface roughness (Michigan Department of 

Environmental Quality 2015). 

AREA SOURCE EMISSIONS INVENTORY 

Earlier work completed for NEXUS modeled local area sources in a 30 x 40 km domain over the Detroit 

area.  These sources include on-road emissions from (small) local roads, non-road mobile sources, 

area sources, port sources, and airport sources.  As noted, inventory data for area sources lack 

spatial and temporal resolution.  This effort extracted area source data from NEI data for 2008 (Version 

1.5 and 1.7) obtained from the U.S. EPA CHIEF website (http://www.epa.gov/ttn/chief/emch), which was 

processed for the NEXUS domain using the Sparse Matrix Operator Kernel Emissions (SMOKE) 

modeling system (Houyoux et al. 2000) to obtain model inputs that were sector-specific, speciated, time 

varying, and spatially allocated on a 1 km grid.  Each of the 1,200 cells was treated as an individual area 

source in AERMOD.  

APPENDIX 5 – AIR QUALITY MONITORING DATA IN DETROIT 

CO, NO, NO2, NOX and PM2.5 data collected at air quality monitoring sites in Wayne County were 

downloaded from U.S. Environmental Protection Agency (2015).  Locations of the five near-road sites 

emphasized in the present analysis, nearby roads and point sources in the emissions inventory are shown 

in Figure 6.  Periods when measurements were available and data capture rates are shown in Table 3.  

Quality checks on the monitoring data included screening for concentrations equal to or below zero, 

comparing measurements to detection limits (DLs), and comparing measurements to trip and field blanks.  

Modeled NOx values (in µg m-3) were compared to measured NOX levels (in ppb) using the measured 

NO2:NOX ratio.  PM2.5 blanks were collected only at Allen Park and Dearborn for the Chemical 

Speciation Network monitors, but not the TEOM monitors (Solomon et al.) used in the evaluation, thus, 

data were not blank-corrected.   
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Figure 6. Aerial photographs around six air quality monitoring sites showing roads, point sources, and other 
features.  Red lines are roads in the MDOT Trunkline system, red and green lines are in the Detroit mobile source 
inventory.  Point sources shown with yellow text and brown circles.  Map at lower right shows all sites as well as 

major point sources of NOx.   

HEI Research Report 202, Additional Materials, Available on the HEI Website



25 

Table 3.  Five near-road monitoring sites in Detroit area.  Starting month-year and percent of measurements 

above detection limit for hourly data shown.   EH is Eliza Howell.  

Site location / Name / AQS ID CO % NO % NO2 % NOX % PM2.5 % 

Allen Park / “Suburban” / 261630001 Jan-11 (8) Jan-11 (98) - - Jan-11 (100) 

East 7 Mile / “Schools” / 261630019 - Jan-11 9 Jan-11 95 Jan-11 (51) - 

Dearborn / “Industrial” / 261631008 Jan-12  (10) - - - Jan-14 (100) 

EH #1 (10 m) / “Near-road” / 261630093 Oct-11 (54) Oct-11 (63) Oct-11 (97) Oct-11 (89) - - 

EH #2 (100 m) / “Urban” / 261630094 Oct-11 (25) Oct-11 (18) Oct-11 (89) Oct-11 (62) - - 

BACKGROUND ESTIMATES 

For NOX, most hourly measurements exceeded DLs (51 to 100%, depending on site), and background 

estimates generated using the conditional selection method fell into a narrow range (15 to 18 ppb).  For CO, 

observations frequently fell below the DL for the less sensitive instruments (IGFC and INDiI), which 

yielded relatively high background estimates (averaging 519 to 671 ppb); background estimates were much 

lower (128 ppb) for the more sensitive instrument (EC9830T).  Because background estimates reflected 

DLs of the instrumentation used, datasets were not pooled across sites or instruments.  For PM2.5, 

background averaged 8.8 µg m-3 at the schools and suburban sites, equivalent to 88 to 92% of observed 

levels (9.5 and 10 µg m-3, respectively), and day-to-day variability was significant.  Predicted contributions 

from point and on-road mobile sources at the monitoring sites were small (averaging from 0.1 to 0.8 µg m-

3), and including these sources in the daily background estimates did not increase the correlation between 

observed and estimated background levels.  Thus, performance evaluations for PM2.5 were not attempted, 

a result of the dominance of regional sources and the small signal remaining from local sources, the gaps 

and uncertainties of the PM2.5 emission inventory, the absence of chemical transformations in RLINE, and 

the few near-road sites monitoring PM2.5. 

APPENDIX 6 – EXPLORATORY ANALYSIS OF NEAR-ROAD INCREMENTS 

This appendix presents an exploratory analysis of the ambient pollutant data collected using a Mobile Air 

Pollution Lab (MAPL), a recreational vehicle equipped with a variety of air quality monitoring instruments, 

along nine transects that crossed major roadways in Detroit, MI, on seven consecutive days (December 14 

- 20, 2012).  Further details are available elsewhere (Baldwin et al. 2015).

The analysis revealed considerable variability in concentrations of NO, NOx, and BC between the different 

areas.  Mean pollutant concentrations ranged from 9.9 to 40.7 ppb for NO (areas 7 and 1, respectively), 20.0 

to 58.5 ppb for NOx (again areas 7 and 1), and 0.8 to 2.2 μg m-3 for BC (areas 2 and 4).  Weekend 

concentrations tended to be higher than weekday levels:  average ± SD concentrations were 21.3 ± 18.9 

ppb for NO, 36.3 ±20.0 ppb for NOx, and 1.6 ± 1.1 μg m-3 for BC on weekends, compared to 17.6 ± 16.8 

ppb for NO, 31.1 ± 20.5 ppb for NOx, and 1.2 ± 0.8 μg m-3 for BC on weekdays.  Mornings had higher 

mean concentrations than evenings for all three pollutants: average concentrations were 22.8 ± 20.0 ppb for 

NO, 34.9 ± 23.6 ppb for NOx, and 1.4 ± 1.0 μg m-3 for BC in mornings, compared to 14.0 ± 12.7 ppb for 

NO, 29.8 ± 16.1 ppb for NOx, and 1.1 ± 0.7 μg m-3 for BC in evenings.  Finally, downwind sites experienced 

higher pollution levels than upwind sites for all three pollutants:  mean concentrations were 22.2 ± 19.4 ppb 

for NO, 36.6 ± 22.2 ppb for NOx, and 1.4 ± 1.0 μg m-3 for BC at downwind sites, compared to 15.1 ± 14.6 

ppb for NO, 28.5 ± 17.8 ppb for NOx, and 1.1 ± 0.7 μg m-3 for BC at upwind sites.  Histograms of pollutant 
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concentrations show right-skewed distributions for all three pollutants (Figure 7), which suggests that 

modeling these pollutant concentrations on the log-scale would be more appropriate.  

Figure 7.  Histograms of NO, NOx and BC concentrations observed at monitoring sites in the nine transect 

areas across major highways on December 14 - 20, 2012 in Detroit, Michigan. 

The NRI of NOx and PM2.5 concentrations also showed considerable variability between areas.  The mean 

NRI in concentrations of both pollutants was lowest at area 9 (9.6 ± 8.5 ppb for NOx and 0.5 ± 0.4 μg m-3 

for PM2.5).  This was expected since area 9 sites were sampled either just after the morning rush hour or 

before the afternoon rush hour period, while the other sites were monitored during morning and afternoon 

rush hour periods.  The highest mean NRI concentrations of NOx were recorded at area 5 (21.5 ± 18.7 ppb), 

and at area 1 for PM2.5 (2.2 ± 2.2 μg m-3).  Histograms of the NRI concentrations of both pollutants 

displayed right-skewed distributions (Figure 8), which suggests that also modeling the NRI in on the log-

scale would be more appropriate.  

Figure 8.  Histograms of (a) NOx and (b) PM2.5 near road increment concentrations, in ppb and μg m-3, 

respectively, measured at the sites in the 9 transect areas on December 14 – 20, 2012. 

APPENDIX 7 – FITTING AND EVALUATION OF SPATIO-TEMPORAL MODELS 

This appendix presents prior specification, fitting and evaluation of the non-stationary spatio-temporal 

statistical models developed for (1) universal kriging and spatial interpolation of observed concentrations 
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of TRAP and (2) data fusion of observations of near-road-increments of pollutant concentrations with 

dispersion model outputs.  Equation numbers refer to the core report. 

PRIOR SPECIFICATION AND MODEL FITTING 

Each of the models is specified within a Bayesian framework. Here, we detail the prior distributions used 

to fit the various models.  All models are fit by running an MCMC algorithm with Gibbs sampling for all 

regression coefficients and variance component parameters, and with Metropolis-Hastings steps to update 

the remaining spatial covariance parameters.  For each model, we developed the MCMC algorithm, writing 

the sampling functions to generate samples from the joint posterior distribution in R. All parameters were 

updated at each iteration, conditionally on other parameters, via Gibbs sampling (if the full conditional 

distribution was available in closed form) or via Metropolis-Hastings (if the full conditional distribution 

was not available in closed form). 

Code to fit the joint Bayesian data fusion model, and the univariate regression-based Bayesian data fusion 

model will be made available in a github repository. Convergence of each Markov chain and mixing of the 

sampler was assessed by running multiple MCMC chains with different initial values visually inspecting 

the trace plots and by computing convergence diagnostics such as Geweke’s diagnostic (Geweke, 1992). 

Non-Stationary Universal Kriging 

For each pollutant, the full non-stationary universal Kriging model contains 17 parameters:  10 regression 

coefficients β0, …, β9, one nugget effect, τ2, and six spatial covariance parameters, σ1
2, ϕ1, φ1, σ2

2, ϕ 2, and 

φ2.  For all of these parameters, we specify non-informative prior distributions.  Parameter ψ in the 

definition of the mixture weights w1,t(s) and w2,t(s) in (5) is kept constant and determined through

empirical considerations.  Specifically, ψ is chosen such that if a site s is the furthest downwind site 

during time period t, the mixture weight w2,t(s) is equal to about 0.05.  We assess the sensitivity of the 

results to the choice of ψ by using different values of ψ.  

Priors on the 17-pollutant specific model parameters are specified using an empirical Bayes approach.  

Specifically, on each of the βl, l = 0, …, 9, we place independent normal priors with large variances and 

means set equal to the estimates of the regression coefficients obtained by fitting a linear regression model 

on the monitoring data for the pollutant considered with the 10 variables in (2) as covariates.  For variance 

components parameters, τ2, σ1
2 and σ2

2, we place vague inverse Gamma priors with shape and scale 

parameters chosen so that the prior variance is infinite (achieved when the scale parameter is equal to 2), 

and the prior mean is equal to, respectively, 20%, 40% and 40% of the estimated residual variance from the 

linear regression model fit to get prior means for the regression coefficients β0, …, β9.  Finally, for 

parameters ϕ1, φ1, ϕ2, and φ2 controlling the roughness/smoothness of the covariance function of the 

underlying spatial processes η1,t and η2,t, t = 1,…, 𝒯  in the x - y and signed wind speed direction, 

respectively, we place Gamma priors with shape and scale parameters chosen so that the variance of the 

Gamma distribution is large while the prior mean gives a correlation of 0.05 at a distance equal to 3 times 

the prior mean.  This choice reflects that in an exponential correlation function with decay parameter ϕ, the 

effective range, that is, the distance at which the correlation decays to 0.05, is about 3ϕ.  Hence, the prior 

mean is set to approximately 1/3 of the maximum inter-monitoring site distance and 1/3 of the maximum 

signed wind-speed “distance”.  

Non-Stationary Joint Modeling Bayesian Data Fusion 

The model for the natural log NRI of each pollutant is completely specified when priors are provided on: 

the coefficients 𝛽̂
0

,  𝛽̂
1

, … , 𝛽̂
8
 of the large scale trend 𝜇

𝑡
(𝐬) of the unobserved, true log NRI field 𝑌̂𝑡 (𝐬),

the six covariance parameters 𝜎1
2, 𝜙1, 𝜑1, 𝜎2

2, 𝜙2, and 𝜑2 of the true log NRI field 𝑌̂𝑡 (𝐬), the nugget effects,

𝜏𝑒
2, 𝜏𝛿

2, and the additive and multiplicative bias terms, 𝑎0 and 𝑏, of the log NRI output, as well as the 

covariance parameters, 𝜎𝑎
2, 𝜙𝑎, of the spatial error of the log RLINE output.
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Priors are specified using the same strategy as for the non-stationary universal kriging model.  Thus, for 

each model, we use the same prior specifications for coefficients𝛽̂
0

, 𝛽̂
1

, … , 𝛽̂
8
, and inverse Gamma priors 

are specified for covariance parameters 𝜏2, 𝜎1
2, 𝜎2

2, 𝜎𝑎
2 with parameters determined as described earlier.

Similarly, for covariance parameters 𝜙1, 𝜑1, 𝜙2, 𝜑2 and 𝜙𝑎 controlling the rate of decay of the correlation 

as either the geographical distance or the distance in the signed wind speed space increase, we use Gamma 

priors analogously as described earlier.  Finally, for the overall additive and multiplicative bias terms of the 

log RLINE output, 𝑎0 and 𝑏, we use two vague independent, normal priors with means 0 and 1, respectively, 

assuming a priori no bias in the log RLINE output.  For both pollutants, the MCMC algorithm was run for 

70,000 iterations with the first 4,000 discarded for burn-in.  To reduce autocorrelation in the posterior 

samples, we used a thinning of 60, yielding 1,100 posterior samples for each model parameter that were 

used for posterior inference. 

Figures 9, 10, 11, 12, 13, and 14 present trace plots for the two best-performing joint data Bayesian fusion 

models for NOx and PM2.5 NRI, respectively Model 2-JBDF-S for NOx and Model 2-JBDF-NS for PM2.5. 
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Figure 9.  Trace plots for 𝜷𝟎, … , 𝜷𝟗, regression coefficients of the meteorological and traffic covariates in the joint 
Bayesian data fusion model Model 2-JBDF-S for NOx NRI concentration. 
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Figure 10.  Trace plots of the covariance parameters of the joint Bayesian data fusion model Model 2-JBDF-S for NOx 

NRI concentration. 
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Figure 11.  Trace plots of the multiplicative calibration term (b) of the RLINE output in the joint Bayesian data 

fusion model Model 2-JBDF-S for NOx NRI concentration. 

Figure 12.  Trace plots of the multiplicative calibration term (b) of the RLINE output in the joint Bayesian data 

fusion model Model 2-JBDF-NS for PM2.5 NRI concentration. 
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Figure 13.  Trace plots for 𝜷𝟎, … , 𝜷𝟗, regression coefficients of the meteorological and traffic covariates in the 
joint Bayesian data fusion model Model 2-JBDF-NS for PM2.5 NRI concentration. 
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Figure 14.  Trace plots of the covariance parameters of the joint Bayesian data fusion model Model 2-JBDF-NS for 

PM2.5 NRI concentration. 

Table 4 presents Geweke’s diagnostic values to assess convergence of the Markov chains (Geweke 1992). 

Geweke’s diagnostic is obtained by performing a two-sample z-test comparing whether the mean of the 
first 10% of the Markov chain post burn-in is equal to the mean of the last 50% of the Markov chain post 
burn-in, with variances adjusted for the lack of independence within the samples. Under the null 

assumption that the Markov chain has reached its stationary distribution, the mean of the two Markov 

chain sub-samples should be the same. As the table indicates, Geweke’s diagnostic values are indicative 

of the fact that the Markov chains for each model parameters have reached convergence. The one 

extremely large value obtained for the regression coefficient of distance in Model 2-JBDF-S for NOx and 

for the regression coefficient of the interaction of weekday and morning in Model-2-JBDF-NS for PM2.5 

could be explained as Type I error. 
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Table 4. Geweke’ diagnostics for the regression coefficients 𝜷𝟎, … , 𝜷𝟗 and covariance parameters of the best fitting 
models, Model 2-JBDF-S and Model 2-JBDF-NS, for NOx and PM2.5 NRI concentrations respectively.  

NOx PM2.5 

Parameter Geweke 

diagnostic 

p-value Geweke 

diagnostic 

p-value

β̂0  Intercept 1.02 0.31 -0.31 0.76 

β̂1  Downwind [DW] 0.73 0.47 0.21 0.83 

β̂2  Weekday 1.60 0.11 0.91 0.36 

β̂3  Morning -1.43 0.15 1.16 0.25 

β̂4  Weekday*Morning 0.47 0.63 -4.06 < 0.001 

β̂5 (Traffic/Wind Speed) x 10−5 0.34 0.73 -0.31 0.76 

β̂6 (Traffic/WS)*DW x 10−5 -0.88 0.38 -0.63 0.53 

β̂7  Distance -5.53 < 0.001 0.97 0.33 

β̂8  Distance*DW -0.44 0.66 0.16 0.87 

a – – 

b -0.40 0.69 0.34 0.74 

𝜏ℯ
2     Nugget -0.92 0.36 1.10 0.27 

𝜏𝛿
2 0.09 0.93 -1.77 0.08 

𝜎1
2
    Sill - Downwind – 1.22 0.22 

ϕ1  Downwind – 0.52 0.60 

φ1     Downwind, Wind speed – -1.22 0.22 

𝜎2
2    Sill - Upwind – -0.27 0.79 

𝜙2    Upwind – 0.21 0.83 

𝜑2    Upwind, Wind speed – 0.32 0.75 

𝜎𝛾̂
2 1.25 0.21 —

𝜙𝛶̂ 0.70 0.49 — 

𝜎𝛼
2 0.25 0.80 -0.21 0.83 

𝜙𝛼 0.67 0.50 1.71 0.09 

Non-Stationary Regression-Based Bayesian Data Fusion 

The prior specifications used for the regression-based Bayesian data fusion models are analogous to those 

used for the other two models.  The spatial covariance parameters τ2, σ1
2, σ2

2 and τ1
2, τ2

2, σ1
2 and σ2

2 in the 

individual and multiple pollutant data fusion models are provided with inverse Gamma priors with shape 

and scale parameters appropriately chosen.  Covariance parameters ϕ1, φ1, ϕ2 and φ2 in both the individual 

and multiple pollutant model are provided with Gamma priors, as are the two parameters ψ1 and ψ2 that 

control the weights of the spatially-varying mixture defining ηt
(1)(s) and η(2)(s).  Finally, as before, the 

overall additive and multiplicative bias parameters, α0 and α1, and α0
(1),α0

(2) and α1
(1),α1

(2), in the individual 

and multiple pollutant models, are provided with independent Normal priors with large variances and mean 

equal to 0 (additive bias, α0, and α0
(1), α0

(2)) and 1 (multiplicative bias, α1, and α(1), α1
(2)), respectively.  We 

perform posterior inference on each model parameter using samples from the joint posterior distribution. 

Samples are drawn using an MCMC algorithm, consisting of Gibbs sampling and Metropolis-Hasting steps.  

For each model and each pollutant, we update each parameter conditionally on the other model parameters 

and we run the MCMC algorithm for 100,000 iteration. We discard the first 50,000 iterations for burn-in 

and we use a thinning of 10 to reduce autocorrelation in the posterior samples. 

Figures 15, 16, 17 and 18 present trace plots of the RLINE calibration terms, and of the covariance 

parameters for the best-performing regression-based Bayesian data fusion models for NOx and PM2.5 NRI 
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concentration, e.g. the stationary Bayesian data fusion model with 2012 emissions for NOx and the non-

stationary Bayesian data fusion model with 2010 emissions for PM2.5. 

Figure 15.  Trace plots of the additive (𝛼0) and multiplicative calibration term (𝛼1) for the RLINE output in the 
regression-based stationary Bayesian data fusion model for NOx NRI concentration with 2012 emissions. 

Figure 16.  Trace plots of the covariance parameters of the regression-based stationary Bayesian data fusion 

model for NOx NRI concentration with 2012 emissions. 
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Figure 17.  Trace plots of the additive (𝛼0) and multiplicative calibration term (𝛼1) for the RLINE output in the

regression-based non-stationary Bayesian data fusion model for PM2.5 NRI concentration with 2010 emissions. 

Figure 18.  Trace plots of the covariance parameters of the regression-based non-stationary Bayesian data 

fusion model for PM2.5 NRI concentration with 2010 emissions. 
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Table 5. Geweke diagnostics for the additive and multiplicative bias of the RLINE output, α0 and α1, and 

covariance parameters for the best fitting regression-based Bayesian data fusion model to NOx and PM2.5. 

NOx PM2.5 

Parameter Geweke 

diagnostic 

p-value Geweke 

diagnostic 

p-value

𝛼0 0.50 0.62 0.21 0.83 

𝛼1 -1.43 0.15 -1.43 0.15 

𝜏2 Nugget 1.40 0.16 0.31 0.76 

𝜎1
2 Sill - Downwind – 0.19 0.85 

𝜙1 Downwind – -0.95 0.34 

𝜑1 Downwind, Wind speed – 0.24 0.81 

𝜎2
2 Sill - Upwind – -0.12 0.90 

𝜙2 Upwind – 1.47 0.14 

𝜑2 Upwind, Wind speed – 3.77  < 0.001 

𝜎𝑌
2 0.44 0.66 —

𝜙𝑌 -0.95 0.35 —

Analogously to the joint Bayesian data fusion models, Table 5 present Geweke’s diagnostics for each 

model parameters for the best fitting regression-based univariate Bayesian data fusion models for NOx 

and PM2.5 NRI concentration, respectively. As the table indicates, with the exception of one parameter 

all Geweke diagnostic are consistent with the null hypothesis that the Markov chains for each model 

parameter have reached their stationary distributions. The only parameter with a large Geweke 

diagnostic value refers to the range parameter corresponding to the decay of the spatial correlation for 

PM2.5 NRI as wind speed varies among upwind sites. We interpret the large Geweke diagnostic value for 

this parameter as an instance of a Type I error, that is, an incorrect rejection of the null hypothesis. 

MODEL COMPARISON AND EVALUATION 

We compare the predictive performance of the various models to that of other, simpler, counterpart models. 

Non-Stationary Universal Kriging 

Six models that differed only in the approach used to model the spatial dependence were considered in 

comparisons of the non-stationary universal kriging model.  Table 6 summarizes these models, the 

combination of weighting schemes, and their covariance functions.  The independent model, called model 

1, simply models the log concentration Yt(s) for each pollutant, site s and time period t as Y t(s) = μt(s) + 

ϵt(s), where μt(s) is given by (2) and 𝜖𝑡(𝐬) ∼
𝑖𝑖𝑑

𝑁(0, 𝜏2).  To determine whether it is necessary to model the

non-stationarity in the spatial dependence of the log concentrations, a stationary model or “model 2” is 

fitted for each pollutant with Yt(s) and μt(s) defined as in (1) and (2), respectively, but with ηt(s), t = 1,…, 𝒯  

modeled as independent realizations over time periods t, t = 1 ,…, 𝒯 , of a stationary mean-zero Gaussian 

process with an exponential covariance function.  The definition of the weights in (5) is such that neither 

w1,t(s) nor w2,t(s) is identically equal to 0 at any time period t or site s, implying that ηt(s) is a mixture of 

two spatial processes.  To determine whether the specification of ηt(s) as a mixture of two non-stationary 

spatial processes improved predictive performance compared to a model that employs two different spatial 

processes for log concentration, one defined on the upwind region, and the second defined on the downwind 

region, we consider an additional weighting scheme: w1,t(s) = 1 if site s is downwind at time period t and 0 

otherwise, and vice versa for w2,t(s).  Using this simple binary weighting scheme, two additional models are 

fitted for each pollutant.  “Model 3” uses the binary upwind-downwind weighting scheme and does not 

include the signed wind speed in the covariance functions of the two underlying spatial processes η1,t(s) and 

η2,t(s), hence these are modeled as mutually independent stationary spatial processes for each time period t 

with an exponential covariance function.  “Model 4” uses the binary upwind-downwind weighting scheme 
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and includes the covariate signed wind speed in the covariance functions of η1,t(s) and η2,t(s) defined in (6).  

The final two models are the full model introduced earlier, as well as a simplification of the full model that 

investigate whether the signed wind speed is needed to explain the non-stationarity of the covariance 

function.  “Model 5” uses (1), (2), (3) and (5), but the two underlying processes are modeled to be stationary 

with exponential covariance functions (i.e., without the covariate signed wind speed).  Lastly, “model 6” is 

the full model.  

Table 6. Description of the Kriging models.  For each model, the trend term μt(s) is modeled according to (2).  

For each model, we report the type of weighting scheme used in the mixture, and the covariance functions used 

for η1,t(s) and η2,t(s).  Models 1 and 2 do not express ηt(s) as a mixture, thus the covariance function in the table 

refers to the covariance function of ηt(s). 

Model name Weighting scheme Covariance function 

Model 1: Independence None Independence 

Model 2:  Stationary None Exponential covariance function 
Model 3 Binary upwind-

downwind

Exponential covariance function 
Model 4 Binary upwind-

downwind

Covariates in covariance function as in (6) 
Model 5 As in (5) Exponential covariance function 
Model 6 As in (5) Covariates in covariance function as in (6) 

𝑌̂

Joint-Modeling Bayesian Data Fusion Models 

The predictive performance of the Bayesian data fusion models was evaluated using six models (Table 7) 

that differ in the approach used to model the bias of the log RLINE output (e.g., constant in space and time 

versus not) and for the type of spatial dependence structure hypothesized for the two latent processes, 

η̂
1,t (𝐬) and η̂

2,t (𝐬).  Each model represents the large-scale spatial trend term μ̂
t 

(𝐬) according to (2).  The

simplest model, called “model 1-JBDF,” assumes that the error of the RLINE output in representing the 

true, unobserved field is constant in space, thus 𝑎𝑡(𝐬) is equal to 0.  “Model 2-JBDF” postulates that even 
though the RLINE output has a spatially additive error with mean 0, overall, the RLINE output does not 

have an additive bias, e.g., 𝑎0 ≡ 0.  “Model 3-JBDF” is the full model introduced (whether the small-scale 

spatial structure, 𝜂
𝑡 (𝐬), of the unobserved true pollution field, 𝑡 (𝐬), is stationary or not).  For each of 

these three models, we contrast two cases:  the first assumes that 𝜂
𝑡 (𝐬) is a Gaussian process independent

in time with mean 0 and with an exponential covariance function;  the second assumes 𝜂
𝑡 (𝐬) is equipped 

with the non-stationary covariance function described in (7).  These cases are distinguished by appending 

“S” or “NS.”   

Table 7.  Summary of the joint Bayesian data fusion models for log NRI of NOx and PM2.5. 
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Regression-based Bayesian Data Fusion models 

The second set of Bayesian data fusion models builds upon findings drawn after fitting the non-stationary 

universal kriging model.  Two sets of models are explored for each pollutant.  In the first model, the 

spatially-varying additive bias ηt(s) of RLINE, which also accounts for the small scale residual spatial 

structure of the observed NRI field Yt(s), is modeled as a spatially and temporally-varying mixture of two 

independent in time, stationary, spatio-temporal processes η1,t(s) and η2,t(s), each equipped with an 

exponential covariate structure.  The second model is the full model.  Each set of models is used with the 

RLINE output derived from the 2010 or 2012 emissions inventory.  The predictive performance of these 

regression-based Bayesian data fusion models is compared to that of the non-stationary universal kriging 

model.   

PREDICTIVE PERFORMANCE 

For each pollutant and for measurement type (concentration or NRI), the various models are compared with 

respect to their out of sample predictive performance.  For the non-stationary universal kriging models, of 

the 286 observed NO and NOx concentrations, we randomly selected 252 observations for model fitting, 

and held out 33 observations for model validation. The held-out sites were chosen so that at each time-

period about 10-15% of the data was withheld for predictive performance evaluation, leading to holdout 

samples made of 1-3 observations per time-period, randomly drawn from the original complete dataset.  

One extreme outlying observation was removed from the analysis.  Similarly, for BC, 245 observed 

concentrations were selected for model fitting, and 31 observations were held out for model validation.  

Again, one extreme observation was removed.  For the Bayesian data fusion models, 254 observations were 

available for the NOx NRI and 226 for PM2.5. Of these, we used 221 randomly chosen NRI NOx 

observations for fitting and held out 33 observations for validation; for PM2.5, 196 observations were used 

for fitting and 30 observations were held out for validation.  In each case, the held out observations were 

sampled so that 1-3 observations were held out per time period.  

Because the models were developed for log concentration, predictive performance was assessed by back 

transforming predictions to the original scale.  Using the median of the posterior predictive distribution as 

the predicted value at each site, the predictive performance of each model was evaluated in terms of mean 

absolute prediction error (MAPE), root mean squared error (RMSE), Pearson correlation between the 

predicted values and the held-out data, average length of the 90% prediction interval (PI), and empirical 

coverage of the 90% PI.  The latter statistic reveals whether the uncertainty in the prediction is correctly 

quantified: if empirical coverage is below the nominal level, assuming no bias in the predictions, the model 

is underestimating the variability/uncertainty in the predictions.  Vice-versa, empirical coverage of the 

prediction intervals above the nominal level signifies that the model overestimates the 

variability/uncertainty.  

APPENDIX 8 - EMISSION FACTORS 

SENSITIVITY TO TEMPERATURE AND TIME-OF-DAY 

Emission factors depend on operating temperature, vehicle-operating mode, and many other variables.  

Some broad trends can be generalized, e.g., PM2.5 emission factors for gasoline vehicles using MOVES 

increase at low ambient temperatures.  However, on-road (e.g., link-based) emission rates depend on 

variables that affect both emission factors and traffic activity, e.g., month, hour-of-day, speed, mix, vehicle 

mix, road type, and ambient temperature.  Here sensitivity analyses are employed to evaluate several 

features that can affect on-road emissions.  These analyses employ the models and data described earlier 

for Detroit, but use a simplified scenario and/or averaged results.   

Figure 19 demonstrates the variation in emission rates by hour-of-day associated with ambient temperatures 

and weekday/weekend periods.  This scenario considers an interstate highway (NFC 11) with an AADT of 

HEI Research Report 202, Additional Materials, Available on the HEI Website



40 

165,000 and vehicle speed averaging 60 mph, which approximates I-96 near the Eliza Howell monitoring 

stations in the Detroit area.  Emission rates are based on the models used for NEXUS and the 2010 calendar 

year (Snyder et al. 2014), which used TAFs from SMOKE and did not separate Saturday and 

Sunday periods.  With respect to hour-of-day, Figure 19 shows that PM2.5 and CO emissions are highest 

during the morning and evening rush hours on weekdays; emissions can be high during weekend midday 

periods.  NOx emissions follow similar trends, although the variation is smaller and levels tend to stay 

elevated during the midday.  With respect to temperature, the highest emissions of CO occur with 

hours when ambient temperatures are elevated, and the highest emissions of PM2.5 can occur on hours 

with low temperatures and high traffic volumes.  Overall, this analysis shows that hour-to-hour 

variability of emission rates is large, as expected from diurnal pattern of traffic activity.  It also shows 

that PM2.5 and CO emissions have significant day-to-day variability (as compared to NOx), which results 

from varying traffic activity as well as temperature and other effects.  

Figure 19.  Diurnal emission rates of PM2.5, NOx and CO emissions for the highway scenario described in the text, 

showing hour-of-day and ambient temperature trends. 

SENSITIVITY TO VEHICLE TYPE 

A sensitivity analysis examines effects of vehicle type by comparing the variation of emission factors 

using the ratio of emissions of heavy-duty diesel vehicles (HDDV) to light-duty gasoline vehicles 

(LDGV) (Table 8).  This ratio represents the passenger car equivalents (PCEs) for a HDDV, discussed 

earlier.  Relatively modest changes in vehicle speeds or ambient temperatures can significantly alter the 

PCEs, e.g., as speeds decrease to zero for HDDVs; also, temperature and speed have the opposite effect 

on PM2.5 as compared to CO and NOx.   

Overall, these examples demonstrate the uncertainty of emission rates used in dispersion modeling.  

Uncertainties in both emission factors and emission rates, among other factors, have been identified as 

important issues for mobile source inventories (Fujita et al. 2012; Huo et al. 2009; Wang et al. 2008; Zhang 

et al. 2010; Zhang et al. 2016; Zheng et al. 2009).  The full-scale evaluations of emission factors presented 

later in the core report (which compare model predictions to observed concentrations) show several impacts, 

although the operational evaluation contrasting 2010 and 2015 emission factors did not yield significant 

differences.   
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Table 8. Ratio between HDDV and LDGV emissions of CO, NOx and PM2.5 by ambient temperature and speed 

bin.  Averaged across months, based on 2015 MOVES with Wayne county parameters. 

Temperature  (oF)
Speed 0 10 20 30 40 50 60 70 80 90 100 
(mph) Carbon Monoxide (CO) 
2.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.0 0.8 0.7 
  5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.9 0.8 0.7 
10 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 0.8 0.6 0.6 
15 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.7 0.6 0.5 
20 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.7 0.5 0.5 
25 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.7 0.6 0.5 
30 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.6 0.5 0.5 
35 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.5 0.4 
40 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.5 0.4 0.4 
45 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.5 0.4 0.4 
50 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.5 0.4 0.4 
55 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.5 0.4 0.3 
60 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.5 0.4 0.3 
65 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.3 
70 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.3 0.3 
75 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.2 

Nitrogen Oxides (NOX) 
2.5 63 63 63 63 63 64 64 58 42 34 30 
  5 41 41 41 41 41 42 42 39 31 26 24 
10 29 29 29 29 29 29 30 29 24 22 20 
15 26 26 26 26 26 26 26 26 23 21 20 
20 24 24 24 24 24 24 24 24 22 20 19 
25 22 22 22 22 22 22 22 22 20 19 18 
30 22 22 22 22 22 22 22 22 20 19 18 
35 19 19 19 19 19 19 19 19 18 17 16 
40 18 18 18 18 18 18 18 18 17 16 15 
45 17 17 17 17 17 17 17 17 16 15 14 
50 16 16 16 16 16 16 16 16 15 14 13 
55 15 15 15 15 15 15 15 15 14 13 13 
60 14 14 14 14 14 15 15 15 13 13 12 
65 15 15 15 15 15 15 15 15 14 13 13 
70 15 15 15 15 15 15 15 15 14 13 12 
75 14 14 14 14 14 14 15 14 13 13 12 

Particulate Matter (PM2.5) 
2.5 18 23 27 32 37 42 46 50 51 51 51 
  5 15 19 23 28 33 38 42 46 47 47 47 
10 12 16 19 24 28 33 37 41 41 41 41 
15 12 15 19 23 27 32 36 40 41 41 41 
20 12 15 19 23 27 32 36 41 41 41 41 
25 12 15 19 23 28 33 38 42 43 43 43 
30 11 15 19 23 28 33 39 44 45 45 45 
35 9 11 15 19 23 28 33 38 39 39 39 
40 8 10 14 17 22 26 32 37 38 38 38 
45 7 10 13 16 20 25 31 36 37 37 37 
50 7 9 12 15 20 24 30 35 36 36 36 
55 7 9 12 15 19 24 29 35 36 36 36 
60 6 8 11 15 19 23 29 34 35 35 35 
65 7 9 11 15 19 24 29 35 37 37 37 
70 6 9 11 15 19 24 29 35 36 36 36 
75 6 8 11 14 18 22 28 33 34 34 34 

OPERATIONAL EVALUATION OF UPDATED EMISSION FACTORS 

The updated (2015) emission factors mostly did not change RSP for NOx, though FB and VG were lowered 

in three cases (at the near-road/ICHEM and urban sites; Table 9).  CO showed similar but less consistent 

effects.  Results for downwind and parallel winds at near-road and urban sites suggested improvements for 
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NOx using the updated emission factors, e.g., RSP increased and bias decreased at the near-road/ICHEM 

and urban sites, VG increased at the same sites, and % Red decreased at the near-road/IGpCHEM site.  For 

CO, the updated dataset did not change RSP for downwind and parallel winds, but % Red was lowered at 

the near-road/EC9830T site, and bias and VG were lowered at the other sites.   

Day-of-week analyses for NOx showed that the updated emission factors improved RSP, bias and VG on 

weekdays (all sites) and Saturdays and Sundays (most sites).  Day-of-week analysis for CO gave similar 

trends, e.g., the updated emission factors lowered bias and VG at the near-road/INDiI site across all day 

types.  Seasonal trends were less consistent.  For NOx, the updated emission factors improved RSP at the 

near-road and urban/IGpCHEM sites, and lowered bias and VG at the urban site in winter; effects in other 

seasons were less consistent.  For CO, investigations were hampered by missing data, but results with the 

updated inventory showed some improvements, e.g., in winter and fall, % Red decreased at the near-road 

site, and bias and VG were lowered in most cases, and in spring and summer, bias and VG were lowered at 

the near-road/INDiI and industrial sites. 

Table 9. Summary of sensitivity analysis for emission factor inputs, comparing results of performance evaluation 

for original (2010) and updated (2015) emission inventory.  
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RSP 2015 inventory highest? ~ ~ ~ ~ ~ ~ ~ ~ ○ 

FB 2015 inventory lowest? ~ ● ○ ● ● ~ ○ ● ~ 

VG 2015 inventory lowest? ~ ● ~ ● ● ~ ○ ● ~ 

% Red 2015 inventory lowest? ~ ○ ● ○ ○ ~ ● ○ ○ 

Acronyms: F2 = % of model + background within a factor of 2 of observed; FB = Fractional bias; ICHEM = 

Instrumental Chemiluminescence; IGpCHEM = Instrumental Gas-Phase Chemiluminescence; RSP = Spearman’s 

correlation coefficient; Red = reducible or random component of VG; VG = geometric variance. 

The performance analysis suggested that RLINE performed slightly better using the updated emission 

factors.  The updated inputs substantially changed emission factors for several vehicle classes, e.g., overall 

emissions from light duty gas vehicle (LDGV) and heavy-duty diesel vehicle (HDDV) classes increased by 

48 and 30% for NOx and CO respectively, and changes at certain speeds and temperatures could be larger.  

To help interpret these changes as well as traffic activity estimates, which are frequently reduced to vehicle 

counts (see next section), emission factor differences among vehicle classes can be expressed as passenger 

car equivalents (PCEs) (S. Batterman et al. 2015a; Watkins and Baldauf 2012).  As examples, using LDGV 

emissions as a base: NOx emissions from a single HDDV represent 12 to 63 PCEs; CO emissions 

represent only 0.2 to 1.3 PCEs; and both NOx and CO PCEs increase at lower speeds and colder 

temperatures (Table 8).  The large changes in NOx emission factors suggest that emission estimates can be 

very sensitive to the estimated traffic activity (e.g., commercial traffic counts), especially during cold 

weather and congestion when speeds are lower and the PCEs are high.  However, impacts of emission 

factor changes also depend on the fleet mix.  Our fleet mix estimates for commercial vehicles (which are 

mostly diesel) in Detroit range from 3 to 5% on most roads to 9% on portions of major roads like I-75 and 

I-94.  Considering a NOx PCE of 20 and 5% HDDVs, emissions from HDDVs and LDVs are equivalent, 

which shows the need to obtain accurate traffic activity data.   

HEI Research Report 202, Additional Materials, Available on the HEI Website



43 

Uncertainty in mobile source emission inventories can arise from many sources, e.g., the representation of 

the road network geometry, uncertainty in traffic activity (e.g., vehicle-kilometers traveled or VKT, volume, 

vehicle type and age, speed, acceleration, and the number of cold starts), uncertainty in emission factors 

estimates for engine exhaust noted above and, for PM, uncertainty in emission factors for non-exhaust 

emissions (Fujita et al. 2012; Wang et al. 2008; Zheng et al. 2009).  Other notable factors include a lack of 

traffic counts and on-road emission measurements, and discrepancies between fleet classifications and VKT 

needed by models and the available statistical summaries (Snyder et al. 2014; Zheng et al. 2009).  Because 

fleet mix and VKT data usually are collected and aggregated at the county level, data may not be 

representative of the city or the roads of interest.  As noted above, even modest changes in the commercial 

fraction of traffic may significantly affect emissions since one HDDV can emit the equivalent of many 

passenger cars for NOx and PM2.5 (PCE for PM ranged from 6 to 51, depending on temperature and speed).  

This may be especially important in Detroit given the considerable through traffic of commercial vehicles 

(mostly HDDVs) crossing the Ambassador Bridge to or from Canada via along I-75 and I-94, which may 

have the effect of increasing the HDDV fraction among these roads and boosting NOx emissions.  NOx also 

may have been underestimated since the simplified emission factors averaged out higher emissions from 

cold starts.  While these issues may be less important for mobile source inventories when aggregated to the 

annual average and city-wide level, these issues may be important for estimating spatially- and temporally 

resolved exposures.  

APPENDIX 9 – TEMPORAL ALLOCATION FACTORS 

SENSITIVITY ANALYSIS 

A sensitivity analysis compared RLINE results using the Detroit-specific TAFs to those in the original 

Detroit inventory, which were generated from SMOKE using a combination of vehicle and road types to 

allocate annual traffic activity.  The SMOKE TAFs also lumped Saturday and Sunday together into a single 

weekend profile, and did not treat holidays separately.  RLINE was used to predict NOx and PM2.5 

concentrations near an idealized road configuration with two road types (NFC 11 and 12) and 2010-2012 

Detroit City Airport meteorology.  The modeling used a receptor placed 10 m north of an east-west road 

(like the near-road Eliza Howell site).  We also evaluated the sensitivity of switching from NFC 11 

(interstate) to NFC 12 (limited access primary highway) which has a lower fraction of HDDVs.  As 

shown in Figure 20, the Detroit-based TAFs increase concentrations by approximately 20% (NFC 12) 

to 40% (NFC 11), which is consistent with a higher proportion of commercial traffic activity 

allocated to the overnight hours when meteorological conditions are more stable and unfavorable for 

dispersion.  The figure also shows that switching the road type from NFC 11 to NFC 12 significantly 

reduced concentrations, a result of fewer heavy-duty diesel vehicles.  These results suggest that 

differences in the treatment of commercial traffic activity can significantly affect emissions.  However, 

these differences also are affected by the classification of vehicle types, which is only approximated by 

the NFC categories and the TAFs, and a full-scale sensitivity analysis of TAFs presented below shows 

small and potentially negligible changes.  
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Figure 20.  Distribution of predicted NOx and PM2.5 concentrations at the Eliza Howell near-road site using 

NFC11 and NFC 12 road types and SMOKE and Detroit-based TAFs.  Outliers are omitted.  

OPERATIONAL VALIDATION 

The three sets of TAFs yielded few differences in either NOx and CO predictions that exceeded the 

significance thresholds.  Thus, the Detroit-specific TAFs that separated commercial and non-commercial 

traffic did not perform better than the simpler and default TAFs.  This result was unanticipated, especially 

for NOx, given the differences between commercial and non-commercial vehicles, and the differences seen 

in the simplified analyses (discussed previously).  The fairly large hour-to-hour differences in TAFs at the 

hourly level may be “washed out” at the daily level or just not observable given other errors and 

uncertainties.  In addition, the local TAFs were based on only the larger Detroit area roads equipped with 

permanent traffic monitoring recorders.  Smaller roads can account for a sizable fraction of TRAP 

emissions, e.g., based on the Detroit link-based inventory (Snyder et al. 2014), the smaller (non-trunkline) 

roads accounted for 60% of total VKT in 2010.  The use of local TAFs might improve modeling at the 

hourly level, which was beyond the present scope, as has been suggested elsewhere (Lindhjem et al. 2012). 

APPENDIX 10 - METEOROLOGY 

COMPARISON OF AIRPORT AND NEAR-ROAD DATASETS 

As of May 2015, 79 near-road sites in the U.S. monitored NO2 and often other pollutants 

(https://www3.epa.gov/ttnamti1/nearroad.html).  Of the 72 sites with listed latitude and longitude 

coordinates, the distance to the nearest NWS station averaged 18.5 km, and a NWS station was within 5 km 

of six of the sites, and within 10 km of 28 of the sites.  These distances suggest that the meteorological data 

inputs for dispersion modeling may not be representative of near-road settings.   

We compared the meteorological data collected at the five airport sites.  All sites have relatively good data 

completeness (at least 97% valid hours for the 2010-2012 period).  Several differences between sites are 

noted.  Hour-of-day average wind speeds varied by 0.5-1.0 m s-1 across the sites (annual average is ~ 4 m 

s-1), and the variation was greatest during nighttime hours.  The highest average wind speeds were observed

at Willow Run and the lowest at Ann Arbor.  Detroit Metro had the fewest calm hours (209 hours) and Ann

Arbor the most (653 hours).  Detroit City tended to have fewer least stable conditions, higher frictional

velocities (U*), higher roughness lengths (Zo), and larger positive values of Monin-Obukhov length (MO)
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during nighttime hours, which would indicate less stable conditions.  In contrast, Willow Run had the most 

stable conditions of the five sites.  This analysis, as well as that conducted by the U.S. Environmental 

Protection Agency for NEXUS (Isakov et al. 2014), indicated that the Detroit City Airport, which is fairly 

centrally located in the region, was likely the most representative site among the airport datasets for 

modeling TRAPs.   

We also confirmed that the SFC files generated using AERMET and the NWS data similar or identical to 

those distributed by the Michigan Department of Environmental Quality (MDEQ) for air quality modeling 

purposes (Michigan Department of Environmental Quality).   

SENSITIVITY TO WIND SPEED AND DIRECTION 

Wind speeds below 2 m s-1 are considered low wind conditions or “calms.”  The latest version of AERMET 

includes a minimum wind speed threshold; wind speeds below this threshold are labeled as “calm” and 

dispersion is not calculated for these hours.  (This threshold was introduced after 1-min data became 

available, which averaged multiple instantaneous measurements throughout the hour to determine hourly 

average wind speed and direction.  Previously, measurements were taken only once during the hour.)  

AERMOD documentation recommends a minimum wind speed threshold of 0.5 m s-1.  Using 2010 Detroit 

City Airport meteorology, 56 hours (<0.75%) would be labeled as “calm” and no dispersion would be 

calculated.  As noted above, the number of hours of calms varied three-fold at the five NWS sites (209 to 

653 hours for the 2010 to 2102 period).   

Because high concentrations can be produced under calm and low wind speed conditions, we undertook a 

diagnostic evaluation using RLINE modeling (Snyder et al. 2014) and data from the I-96 Federal Highways 

Administration (FHWA)/EPA field study campaign in Detroit.  This field study utilized four monitoring 

sites near Interstate 96, an east-west highway with 8 to 10 lanes at this location.  Sites were located 10, 

100, and 300 m north and 100 m south of the highway.  (Figure 6 shows aerial views of the study 

sites.)  Measurements of air pollutant concentrations, traffic counts, and meteorological parameters were 

collected from September 26, 2010 through June 20, 2011 (Kimbrough et al. 2013).   

Modeled and observed hourly data, matched in time, are shown in Figure 21.  The scatterplots show some 

overprediction at the 10 m roadside site, but underpredictions at the other sites; these results apply for both 

NOx and CO.  Stratification by wind speed showed that the highest overpredictions occur at the lower 

windspeeds (<2 m s-1).  However, underprediction also occurs at low wind speeds.  Figure 22 examines 

low wind speed conditions and shows that while the geometric means of both pollutants generally 

increased, changes were not significant.  The effect of wind direction is examined in Figure 23, which 

shows ratios of modeled to measured concentrations as a function of wind direction, again for the same 

low wind speed conditions.  Winds from the south tend to result in overpredictions at the (downwind) 10, 

100 and 300 m sites, and similarly, winds from the north tend to result in overpredictions at the 

(downwind) sites.  Winds from the east and west, which represent winds “parallel” to the road, typically 

resulted in underpredictions.  (Several obvious outliers, including both over and underestimation, at the 10 

m CO site appear related to a non-roadway related sources.)  The potential errors during downwind and 

parallel conditions are further explored in the operational validation and additional sensitivity analyses. 
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Figure 21. Scatterplots of measured and modeled hourly CO and NOx concentrations at the four near-road 

Eliza Howell monitoring sites for 2010. The solid line represents the 1:1 line, dashed lines represents the factor 

of two range.  Number inset is the geometric mean bias (MG Snyder et al. 2013) 

Figure 22. Scatterplots of measured and modeled hourly CO and NOx concentrations at low wind speeds (<2 m 

s-1).  Otherwise at Figure 21.  

Figure 23. Scatterplots of the ratio of modeled to measured hourly CO and NOx concentrations at the four 

near road monitring sites for low wind speeds (<2 m s-1) conditions versus wind direction. The solid 

horizontal line represents the 1:1 line, the horizontal dashed lines represents the factor of two range. 
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WRF METEOROLOGICAL DATA 

A potential source of meteorological inputs for dispersion modeling is the Weather Research and 

Forecasting (WRF) Model, a mesoscale numerical weather prediction system designed to serve both 

atmospheric research and operational forecasting needs (http://www.wrf-model.org/).  WRF data is 

continuous in space and time, and can serve as a diagnostic reference providing spatial information 

(typically at 12 km intervals).  The latest version (V3.0) of the Meteorological Model Interface tool 

(www.epa.gov/ttn/scram/models/relat/mmif/MMIFv3.1_Users_Manual.pdf) was used to extract the 

meteorological fields from WRF for the months of January and July 2010 for grid cell containing downtown 

Detroit files, and key meteorological variables were compared to AERMET-generated SFC files based on 

Detroit City (KDET) airport data for the same periods.  (This analysis was feasible given data availability 

of WRF data from other projects.)   

Diurnal hourly-averaged plots comparing these variables show several differences (Figure 24).  Wind 

speeds from MMIF-generated meteorology were lower during January, especially at night; wind speeds are 

more similar during July.  Frictional velocity (U*) had a more pronounced diurnal range in MMIF than in 

AERMET, e.g., MMIF frictional velocity was higher during daytime and lower during night hours.  Wind 

directions rotated up to 20 degrees, depending on season and time of day.  The surface heat flux was higher 

using MMIF, especially during January.  Finally, the MMIF surface roughness length (Zo ~ 0.8 m) is 

significantly higher than AERMET (Zo ~ 0.2 m).  Overall, these differences lead to more stable conditions 

for Detroit when using WRF/MMIF data as compared to AERMET, which would elevate near-road 

concentrations as shown earlier for representative conditions in Figure 2.   
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Figure 24. Comparison between hourly-averaged AERMET (KDET, pink) and WRF/MMIF (blue) meteorological 

parameters.  Plots show wind speed, friction velocity, wind direction, heat flux and surface roughness, for hour of 

day and months of January and July, 2010. 

OPERATIONAL EVALAUTION 

As expected, RLINE predictions were sensitive to the selection of the meteorological inputs (Table 10).  

Generally, the best match to monitored data was obtained using on-site/KDET meteorology.  For example, 
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for NOx at the near-road and urban sites, on-site/KDET meteorology gave the highest RSP (0.57 to 0.74) 

among the lowest bias, and the lowest VG (at these plus the other sites).  The best performing case (NOx at the 

near-road site using the IGpCHEM instrument) also had the lowest % Red with the on-site/KDET data.  

While the schools site performed better with the NWS data, RSP was low (0.32 to 0.43).  Comparing the 

NWS data both with and without the on-site data, KDET obtained better performance in most cases.  CO 

results were similar, e.g., on-site/KDET data attained among the highest RSP at near-road and urban sites, 

the best performing case (near-road site, EC9830T method) had the only improvement seen in % Red 

(although higher bias), and VG was generally lowered.  At sites more distant from roads, performance trends 

for CO were less clear and often comparable for the four meteorological datasets due to the variation and 

overlap of RSP and FB across the sites, while VG and % Red were very similar at most sites.  

Analyses by wind direction, weekday and season, while not definitive, again suggested that best 

performance for data subsets was attained using on-site/KDET meteorology.  For NOx, weekday results 

largely mirrored results discussed earlier, but Saturday and Sunday results were improved (e.g., higher RSP) 

at only the near-road site (IGpCHEM instrument).  By season, only the near-road site followed the overall 

trend.  Interestingly, results by wind direction show better performance using KDTW rather than KDET 

meteorology at the near-road site.  This site is at the western part of the study area and, unlike the other 

monitoring sites, is about the same distance to the two sites (20 km to KDTW, 22 km to KDET).  

Nevertheless, both NWS datasets gave relatively high RSP at this site (0.57 – 0.70; IGpCHEM monitor).  

For CO, missing data hampered analyses, but on-site/KDET sometimes improved performance, e.g., this 

dataset obtained the highest RSP at the near-road (EC9308T method) and urban sites during weekdays and 

during downwind conditions, and during winter at the near-road site (EC9830T) other site had lower bias 

and VG using on-site/KDET.  However, other CO results were inconsistent, e.g., on-site/KDET meteorology 

increased bias and VG during downwind conditions at the near-road and urban sites, and parallel winds 

lowered RSP at the urban site.  Changes at the suburban mostly fell below the significance threshold (e.g., 

0.05 for RSP).   

The sensitivity of RLINE results to meteorological inputs highlights the importance of appropriate input 

data.  Some results tended to differ by site.  For the sites nearest roads, on-site/KDET followed by KDET 

performed best, e.g., attaining the highest RSP.  At the suburban and urban sites, performance with KDET 

data also was better than with KDTW, but NWS data performed better than on-site.  These sites are farther 

from major roads, and monitored concentrations likely result from multiple emission sources and not just 

traffic on the nearby road.  In these cases, on-site meteorological measurements may be less representative 

for dispersion modeling than airport data, at least under some source and meteorological conditions, e.g., 

ground level emissions during calms, and NWS data may better represent the conditions affecting 

dispersion.  Prior dispersion modeling in Detroit has judged both NWS sites to be representative, e.g., 

modeling of SO2 emitted from mostly elevated point sources used KDTW (Michigan Department of 

Environmental Quality 2015), while TRAP modeling used KDET (Stuart Batterman et al. 2014).  As noted, 

individual meteorological parameters, e.g., wind speed or direction, typically are highly correlated between 

sites, although some differences were identified, especially at the suburban site (Allen Park).  However, the 

combined effect of different meteorological datasets is best determined by sensitivity analyses examining 

pollutant predictions.  

We next compared the impact of using KDET versus KDTW meteorology for receptor sets 2 (NEXUS) 

and 3 (Detroit residences).  These two sets of impact show high correlation (RSP > 0.85) on most days 

(Figure 25), although somewhat lower correlations on a few days (e.g., 3/1/2011 and 12/2/2011) occurred 

due to relatively large changes at a subset of receptors located across the area; otherwise no systematic 

spatial or other pattern was observed.  The most striking observation, however, of this comparison are the 

large day-to-day shifts in the bias between predictions using KDET and KDTW meteorology.  Of 

the 28 days modeled, predictions using KDTW meteorology were biased upwards on 16 days, 

downwards on 3 days (4/6/2011, 5/12/2011, 9/21/2011), and similar on the remaining 11 days.  These 

results, which include weekdays and weekends, are attributable solely to the meteorological inputs.  

(Stratification by season, day 
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type and other factors was not attempted due to the limited sample size.)  These changes appear to be driven 

by wind speed and stability effects, and receptors clustered within about 100 m of M-10 and I-94 were 

especially affected.  These large changes were unexpected since daily averages and meteorological 

parameters at the two NWS sites were highly correlated.   

Table 10. Summary of sensitivity analysis for meteorology inputs, showing results of performance evaluation for 

NOx and CO for three comparisons.  Symbols:  ● = improved/supporting, ○ = diminished/contrary, ~ = comparable, 

‘ ’ indeterminate (sets overlap by more than the minimum of 0.05 and 50% of the smaller within-set range). 
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RSP On-site/KDET highest? ○ ~ ● ~ ~ ○ ~ ~ ~ 

KDET > KDTW? ● ● ● ● ● ● ● ● 

On-site > NWS? ○ ● ● ○ 

FB |On-site/KDET| lowest? ○ ● ○ ● ● ~ ○ ● ● 

|KDET| < |KDTW|? 

|On-site| < |NWS|? ○ ○ ○ 

VG On-site/KDET lowest? ~ ● ~ ~ ~ ~ ○ ~ ~ 

KDET < KDTW? ● 

On-site < NWS? ○ ● ● ● ● ● ○ ● ● 

% Red On-site/KDET lowest? ○ ○ ● ○ ○ ○ ● ○ ○ 

KDET < KDTW? ● 

On-site < NWS? ● ○ ○ ○ ○ ● ○ ○ 

HEI Research Report 202, Additional Materials, Available on the HEI Website



51 

Figure 25. Scatterplots of NOX predicted using KDET or KDTW meteorology at NEXUS (n=346) and 

Detroit residences (n=543) by days.  Each plot shows the 1:1 line and is truncated at 100 µg m-3.   

Application to the NEXUS and Detroit residences receptor sets showed that meteorological datasets 

obtained at NWS stations 18 km or more apart can make large differences in daily concentration predictions 

on some days, which supports findings from comparisons at the monitoring sites.  Both NWS are at airports, 

and the surrounding terrain is flat and mostly urban, commercial, wooded, or agricultural.  The differences 

in predicted concentrations seem are likely to result mainly from changes in atmospheric stability that alters 

near-road concentration gradients, possibly due to very stable conditions which can cause the highest 

concentrations (MG Snyder et al. 2013).  This suggests the possibility of significant exposure measurement 

error if the meteorological data is not representative, e.g., as measured at a distant site.  Moreover, errors 

may be higher for more vulnerable populations, as portrayed by the NEXUS receptors for children who 

lived close to major roads. 

Due to siting and instrumentation limitations, relatively few air quality monitoring sites, including the near-

road sites, measure all of the meteorological parameters required for dispersion modeling.  Thus, local 

measurements were blended together with NWS (or other) observations.  While this approach is workable, 

incorporated in the AERMET processor, and generally obtained the best performance in the Detroit 

HEI Research Report 202, Additional Materials, Available on the HEI Website



52 

application, a full set of local measurements may be preferable for obtaining wind fields that are the most 

representative of near-road environments.  This option, which could not be fully tested in Detroit, leads to 

a recommendation to collect as full set of local meteorological measurements for dispersion modeling when 

practicable (including factors such as ground cover, surface roughness, and other factors that affect the 

spatial variation in wind fields).  This reinforces long standing model guidance that recognizes the increased 

heat flux and surface roughness in urban areas and the general need for multiple monitoring sites in large 

urban areas (Giambini et al. 2012; U.S. Environmental Protection Agency 2000).  However, no specific 

guidance is yet provided for near-road modeling.  For larger roads in urban settings, such modeling involves 

winds, emissions and pollutant dispersion transitioning from the road “microenvironment,” often large 

paved areas (e.g., portions of the right-of-way for I-96 in Detroit exceeds 150 m in width as each traffic 

direction includes three local and three express lanes, a two lane service road, multiple shoulders, and some 

vegetated buffers), to the adjacent populated “microenvironment,” which can be mostly suburban in nature, 

dominated by buildings and trees and with relatively little flat paved surfaces.  Guidance defining the most 

representative meteorological data for traffic-related emissions in such settings, which differs from the 

general urban environment, would helpful for improving near-road modeling. 

APPENDIX 11 – RECEPTOR SETS 

This Appendix describes three receptor sets used to evaluate RLINE and to show the sensitivity of exposure 

estimates produced by dispersion models to meteorological, emission and traffic allocation inputs.  

The modeling system described in Appendices 4 through 8 is used to predict daily average 

concentrations of CO and NOx.  The sensitivity of predictions is evaluated by comparing baseline 

(or “nominal”) and alternative inputs for meteorological, emission, and traffic allocation parameters.  

These comparisons include the use of four years of ambient monitoring data as well as exposure 

estimates predicted for both general and “vulnerable” populations in Detroit, MI.  The same 

performance metrics as used in the core report are used to examine downwind and parallel winds, and 

look at day-of-week effects and season effects. 

The sensitivity analyses used three sets of receptors.  The first placed receptors at the near-road 

monitoring sites in the study domain (n=5).  The second and third sets respectively represent location of a 

vulnerable school-age population and the general population (Figure 26).  The second set used 

receptors that represented locations of homes (n=218) and schools (n=146; total n = 364) of 

children with asthma participating in the NEXUS study (called “NEXUS” receptors) (Vette et al. 

2013).  Approximately two-thirds of these children lived within 175 m of major roads (AADT > 75,000) 

at the time of enrollment into NEXUS, thus, this set oversamples near-road locations.  The third set was 

designed to be representative of residence locations in Detroit.  This set, called “Detroit residences,” 

was created by randomly selecting (with weighting by block population) 1000 of the 2010 Census 

blocks in Detroit, which resulted in 543 unique blocks.  Receptors were placed at the building footprint 

centroid of the highest occupancy occupied parcels in each selected block (U.S. Census Bureau 2015; 

Urban 2014).   

Distances to the nearest road with AADT > 10,000 were calculated for receptors in sets 2 and 3.  For the 

NEXUS receptors, 61% were within 200 m, 20% within 200 – 400 m, and 19% beyond 400 m; for 

the Detroit residences, these three groups contained 57, 29 and 13% of the population-weighted 

receptors, respectively.  The differences between receptor sets 2 and 3 reflect the design of the NEXUS 

study which selected households that were near major roads (<200 m) as well as comparison 

households that were further away (>350 m), however, differences are somewhat diminished since many 

NEXUS children moved during the study period and since schools were not preferentially located.  We 

also calculated the number of large roads within 500 m of each receptor. 

HEI Research Report 202, Additional Materials, Available on the HEI Website



53 

Figure 26.  (Left) Locations of NEXUS receptors, representing homes and schools in the NEXUS cohort; 

(right) Location of Detroit residences receptors, representing a population-weighted sample in Detroit.  Maps show 

block groups within Detroit.  
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