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A B O U T  H E I

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent research 
organization to provide high-quality, impartial, and relevant science on the effects of air pollution on health. 
To accomplish its mission, the Institute

• Identifies the highest-priority areas for health effects research
• Competitively funds and oversees research projects
• Provides intensive independent review of HEI-supported studies and related research
• Integrates HEI’s research results with those of other institutions into broader evaluations
• Communicates the results of HEI’s research and analyses to public and private decision-makers.

HEI typically receives balanced funding from the U.S. Environmental Protection Agency and the worldwide 
motor vehicle industry. Frequently, other public and private organizations in the United States and around 
the world also support major projects or research programs. HEI has funded more than 380 research 
projects in North America, Europe, Asia, and Latin America, the results of which have informed decisions 
regarding carbon monoxide, air toxics, nitrogen oxides, diesel exhaust, ozone, particulate matter, and other 
pollutants. These results have appeared in more than 260 comprehensive reports published by HEI, as well 
as in more than 2,500 articles in the peer-reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are committed to 
fostering the public–private partnership that is central to the organization. The Research Committee solicits 
input from HEI sponsors and other stakeholders and works with scientific staff to develop a Five-Year 
Strategic Plan, select research projects for funding, and oversee their conduct. The Review Committee, which 
has no role in selecting or overseeing studies, works with staff to evaluate and interpret the results of funded 
studies and related research.

All project results and accompanying comments by the Review Committee are widely disseminated 
through HEI’s website (www.healtheffects.org), reports, newsletters and other publications, annual conferences, 
and presentations to legislative bodies and public agencies.

http://www.healtheffects.org


iv

C O N T R I B U TO R S

Hope Green  Editorial Project Manager

Mary Brennan  Consulting Editor

RESEARCH COMMITTEE

David A. Savitz, Chair  Professor of Epidemiology, School 
of Public Health, and Professor of Obstetrics and Gynecology 
and Pediatrics, Alpert Medical School, Brown University

David C. Dorman  Professor, Department of Molecular 
Biomedical Sciences, College of Veterinary Medicine, North 
Carolina State University

Christina H. Fuller  Associate Professor, School of 
Environmental, Civil, Agricultural and Mechanical Engineering, 
University of Georgia College of Engineering

Marianne Hatzopoulou  Professor, Civil and Mineral 
Engineering, University of Toronto, Canada, Research Chair in 
Transport Decarbonization and Air Quality

Amy H. Herring  Sara & Charles Ayres Distinguished 
Professor of Statistical Science, Global Health, Biostatistics, 
and Bioinformatics, Duke University

Heather A. Holmes  Associate Professor, Department of 
Chemical Engineering, University of Utah 

Neil Pearce  Professor of Epidemiology and Biostatistics, London 
School of Hygiene and Tropical Medicine, United Kingdom

Evangelia (Evi) Samoli  Professor of Epidemiology and Medical 
Statistics, Department of Hygiene, Epidemiology and Medical 
Statistics, School of Medicine, National and Kapodistrian 
University of Athens, Greece

Neeta Thakur  Associate Professor of Medicine, University of 
California, San Francisco

Gregory Wellenius  Professor, Department of Environmental 
Health, Boston University School of Public Health and Director, 
BUSPH Center for Climate and Health

REVIEW COMMITTEE

Melissa J. Perry, Chair  Dean, College of Public Health, 
George Mason University

Sara D. Adar  Associate Professor and Associate Chair, 
Department of Epidemiology, University of Michigan School 
of Public Health

Kiros T. Berhane  Cynthia and Robert Citron-Roslyn 
and Leslie Goldstein Professor and Chair, Department of 
Biostatistics, Mailman School of Public Health, Columbia 
University 

Ulrike Gehring  Associate Professor, Institute for Risk 
Assessment Sciences, Utrecht University

Michael Jerrett  Professor, Department of Environmental 
Health Sciences, Fielding School of Public Health, University 
of California, Los Angeles 

Frank Kelly  Henry Battcock Chair in Community Health 
and Policy and Director of the Environmental Research 
Group, Imperial College London School of Public Health, 
United Kingdom

Jana B. Milford  Professor Emerita, Department of Mechanical 
Engineering and Environmental Engineering Program, University 
of Colorado, Boulder

Jennifer L. Peel  Professor of Epidemiology, Department of 
Environmental and Radiological Health Sciences, Colorado State 
University, and the Colorado School of Public Health

Eric J. Tchetgen Tchetgen  University Professor and Professor 
of Biostatistics and Epidemiology, Perelman School of Medicine, 
and Professor of Statistics and Data Science, The Wharton 
School, University of Pennsylvania

John Volckens  Professor, Department of Mechanical 
Engineering, Walter Scott Jr. College of Engineering, Colorado 
State University

HEI PROJECT STAFF

Allison Patton Staff Scientist (Study Oversight)

Dan Crouse Staff Scientist (Report Review)

Kristin Eckles  Senior Editorial Manager



 1

H.C. Frey et al.

Health Effects Institute Research Report 216 © 2024                             

COMMENTARY 
Review Committee

Research Report 216, Scalable Multipollutant Exposure Assessment Using Routine 
Mobile Monitoring Platforms, J.S. Apte et al.

* A list of abbreviations and other terms appears at the end of this volume.

Commentary

Dr. Joshua S. Apte’s 3-year study, “Scalable Multipollutant Exposure 
Assessment Using Routine Mobile Monitoring Platforms,” began in Jan-
uary 2018. Total expenditures were $426,752. The draft Investigators’ 
Report from Apte and colleagues was received for review in October 2022. 
A revised report, received in May 2023, was accepted for publication in 
June 2023. During the review process, the HEI Review Committee and the 
investigators had the opportunity to exchange comments and clarify issues 
in both the Investigators’ Report and the Review Committee’s Commentary. 

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, 
it may not reflect the views of these parties, and no endorsements by them 
should be inferred.

INTRODUCTION

Accurately estimating people’s exposure to various pollut-
ants is essential for evaluating and understanding the health 
effects associated with the pollutants. Accurate estimates 
of exposure are also essential for identifying disparities in 
exposure so that policies can be developed to reduce such 
disparities if they exist. It is challenging, however, to esti-
mate exposures to outdoor air pollutants that vary highly 
in space and time. Most air pollution datasets tend to have 
adequate resolution and accuracy either over space or time, 
but not both. For example, researchers typically conduct 
targeted, short-term sampling campaigns used to develop 
land use regression (LUR*) models or acquire data from 
fixed-site monitoring networks or chemical transport models 
with hourly output, but typically resources are not available 
to obtain both. Fixed-site networks — even those in North 
America and Western Europe — still have relatively limited 
spatial coverage in many areas, particularly in suburban and 
rural locations, and insufficient density to capture small-scale 
(within-city) variations of pollution.

In recent years, researchers have increasingly used routine 
mobile monitoring by affixing monitoring devices to vehicles 
and making measurements while systematically and repeat-
edly traveling a road network. Such mobile monitoring can 
provide a very dense map of street-level exposure estimates 
across a given urban area (Apte et al. 2017; Klompmaker et al. 
2015; Messier et al. 2018; Patton et al. 2015; Weichenthal et 
al. 2016). Although the use of mobile monitoring for mapping 
local concentrations of traffic-related air pollution is becom-
ing more common, many questions remain. For example, how 
do on-road measurements compare to data from fixed sites, 
can the method be scaled up to larger areas, and in which 
contexts is the approach appropriate and feasible? Also, how 
much data need to be collected (in terms of spatial coverage 
and repeated samples) to develop satisfactory, robust maps of 
long-term patterns of air pollution concentrations?

To investigate and develop further the utility of mobile 
monitoring, Dr. Joshua Apte of the University of Texas at 
Austin, submitted an application to HEI titled “Scalable 
Multipollutant Exposure Assessment using Routine Mobile 
Monitoring Platforms” in response to HEI’s Request for 
Applications 16-1: Walter A. Rosenblith New Investigator 
Award. This award was established to provide support for an 
outstanding new investigator at the assistant professor level 
to conduct research in the area of air pollution and health; 
it is unrestricted with respect to the topic of research. Dr. 
Apte proposed to assess the utility of mobile monitoring data 
collected previously by fleet vehicles (i.e., Google Street View 
cars) equipped with instruments to routinely monitor air pol-
lution. His application focused on the utility of the data and 
the scalability of approaches, and it proposed several related 
analyses based in two cities: Oakland, California, USA, and 
Bangalore, India.

HEI’s Research Committee recommended funding Dr. 
Apte’s application because it thought that the work proposed 
was novel and could affect how air pollution health research 
is done in the future. They appreciated his proposed use of an 
existing large-scale mobile monitoring dataset along with new 
measurements to be collected in India that would allow him 
to evaluate approaches in two very different settings. They 
also liked the focus on traffic-related air pollutants, especially 
ultrafine (<0.1 μm) particles (UFPs) for which fixed-site mon-
itoring data are sparse. Additionally, they thought the large 
amount of data that he would analyze and collect had the 
potential to contribute significantly to exposure assessment 
for future epidemiological studies. The study started in 2018 
and continued when Dr. Apte moved to the University of 
California, Berkeley.

This Commentary provides the HEI Review Committee’s 
independent evaluation of the study. It is intended to aid 
the sponsors of HEI and the public by highlighting both the 
strengths and limitations of the study and by placing the 
results presented in the Investigators’ Report into a broader 
scientific and regulatory context.

SCIENTIFIC AND REGULATORY BACKGROUND

Patterns of air pollution around traffic sources are char-
acterized by high spatial and temporal variability related to 
meteorological conditions, varying emission rates, and other 
factors (HEI 2022; Park and Kwan 2017; Zhou and Levy 2007). 
UFPs, compared to some other air pollutants, have especially 
high spatial and temporal variability. UFPs originate from 
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anthropogenic sources — primarily industrial emissions and 
combustion of fossil fuels for transportation, energy produc-
tion, and heating — and from such natural sources as forest fires 
and marine aerosols, such as sea salt (Moreno-Ríos et al. 2022). 
They can also form in the atmosphere when combustion pro-
cesses emit hot, supersaturated vapors that undergo nucleation 
and condensation while being cooled to ambient temperatures 
and through chemical reactions in the atmosphere (Sioutas 
et al. 2005). Their dispersion, transport, and duration of sus-
pension in the atmosphere are affected by environmental and 
meteorological conditions, including topography, local wind 
direction and speed, temperature variations, and precipitation, 
among other factors.

Some of the major challenges in conducting epidemiolog-
ical studies of air pollution exposure and health include the 
difficulty of assigning exposures to study participants accu-
rately and quantifying the influence of exposure measurement 
error on estimated health risks. Those issues are especially 
challenging for some components of particulate matter (e.g., 
UFPs) and gaseous outdoor air pollutants, such as nitrogen 
dioxide (NO2) and ozone that vary highly in space and time 
(HEI Review Panel on Ultrafine Particles 2013).

In the past, many studies relied on data from a few fixed-
site monitors to assign exposure to study participants, partly 
because those were the only data available. To improve expo-
sure assessment resources, researchers have deployed addi-
tional fixed-site monitors in specific areas (e.g., busy streets). 
That approach is particularly needed for measuring UFPs for 
which fixed-site monitoring networks are lacking. Moreover, in 
many locations in low- and middle-income countries (LMICs), 
there are few to no permanent fixed-site regulatory air pollution 
monitors; thus, creative approaches are needed. More recently, 
researchers have started to use satellite data to cover regions 
where no monitors exist and mobile monitoring platforms with 
real-time instrumentation to measure highly resolved spatial 
trends in air pollution concentrations (e.g., Apte et al. 2017; 
Minet et al. 2018; Patton et al. 2014; Riley et al. 2014).  

Mobile monitoring strategies can involve on-road mobile 
measurements made while driving predefined strategic 
routes, or repeated short-term measurements made while in 
a parked vehicle at many locations. Data collected through 
mobile monitoring have been used to develop LUR models 
and other air pollution maps (Klompmaker et al. 2015; Mess-
ier et al. 2018; Patton et al. 2015; Weichenthal et al. 2016). 
Air pollution maps estimated from such monitoring are being 
increasingly applied in epidemiological studies (e.g., Alexeeff 
et al. 2018; Corlin et al. 2018). As noted above, however, 
questions remain about the scalability of mobile monitoring 
approaches and their applications in different contexts. The 
current study was designed to improve on these approaches 
and to test their applicability in a high-income country and 
an LMIC.

SUMMARY OF APPROACH AND METHODS

STUDY OBJECTIVES 

Dr. Apte and colleagues sought to evaluate and assess the 
utility of mobile monitoring for a range of air pollution expo-
sure assessment applications. The study builds on previous 
research by the investigators during which they collected a 
large amount of mobile monitoring data using Google Street 
View cars equipped with tools to measure nitric oxide (NO), 
NO2, black carbon (BC), UFPs, and fine particulate matter <2.5 
μg/m3 in diameter (PM2.5) in Oakland, California.

For this study, they specified the following overarching 
questions: Does large-scale mobile monitoring produce useful 
results? In what ways and for what exposure assessment appli-
cations is mobile monitoring effective? What complementary 
or additional insights can be revealed by mobile monitoring? 
What are the potential limitations of mobile monitoring? To 
address these overarching questions, the investigators pro-
posed the following aims:

1. Validate intensive mobile monitoring as an exposure 
assessment technique via comparison with observations 
from a network of fixed-site monitors.

2. Compare insights from mobile air pollution measurement 
campaigns with those derived from other approaches 
and data sources, including observations from regulatory 
networks, dense low-cost sensor networks, and statistical 
exposure models.

3. Investigate the potential for scaling of mobile monitoring 
techniques through both direct observation and model-
ing, to better understand how mobile monitoring could 
be applied to larger study domains while minimizing the 
amount of monitoring effort required.

4. Investigate whether mobile monitoring might be a viable 
option for collecting air pollution data in a low-resource 
setting that currently lacks robust air pollution monitor-
ing infrastructure.

5. Probe the rich multipollutant dataset with data mining 
techniques to understand how sources influence popu-
lation exposures.

Aims 1 through 3 were addressed by working with data 
collected previously from fixed-site stations and mobile 
monitoring campaigns for BC, NO, nitrogen oxides (NOx), 
NO2, and UFPs in Oakland, California. Aim 4 was addressed 
by conducting a new mobile monitoring campaign for BC, 
UFPs, PM2.5, and carbon dioxide (CO2) in Bangalore, India. 
Aim 5 was eventually dropped due to time constraints. The 
investigators organized their study into five interrelated 
analysis modules (M1–M5) that each contributed to multiple 
study aims. They are described below and summarized in the 
Commentary Table with key features and findings.
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Commentary Table. Key Details of the Five Analysis Modulesa

Analyses That Focus on Comparing Mobile Monitoring with Fixed-Site Monitoring Data

Analysis Module Research Aims Addressed Pollutants 
Examined

Period of  
Measurement

Geographic  
Location Key Findings

M1: Intensive com-
parison of mobile 
and fixed-site moni-
toring in Oakland

Validate intensive real-time 
mobile monitoring as an 
exposure assessment tech-
nique via comparison with 
fixed observation networks. 
Compare insights from 
mobile air pollution mea-
surement campaigns with 
those derived from other 
approaches and data 
sources.

BC May 2017 – 
August 2017

West Oakland Repeated mobile monitoring can repro-
duce time-averaged, fine-scale spatial 
patterns of BC with good fidelity, pre-
cision, and accuracy relative to a fixed-
site sensor network.

M2: Spatiotempo-
ral analysis of traffic- 
related air pollution 
dynamics using 
mobile and fixed 
sensors in the San 
Francisco Bay Area

Validate intensive real-time 
mobile monitoring as an 
exposure assessment tech-
nique via comparison with 
fixed observation networks. 
Compare insights from 
mobile air pollution mea-
surement campaigns with 
those derived from other 
approaches and data 
sources.

BC, CO, 
NOx, UFPs

Mobile mea-
surements: 
May 2015 – 
December 
2017 
Regulatory 
measure-
ments: Full 
year, 2015

Mobile mea-
surements: 
West Oakland 
and Down-
town Oakland 
Fixed sites: 
Sebastopol, 
Livermore, 
Redwood 
City, and 
Laney College

Data from mobile monitoring corrobo-
rates a surprising insight from regula-
tory data: patterns of UFPs and NOx are 
coupled in the winter months (indic-
ative of a common primary traffic 
source), but sharply decoupled in the 
summer. UFPs in the Bay Area appear 
to be substantially driven by secondary 
formation during the summer months. 

Analyses that focus on uses and applications of mobile monitoring data

M3b: Assessment of 
local- and region-
al-scale air pollution 
disparities in the 
San Francisco Bay 
Area using mobile 
monitoring

Validate intensive real-
time mobile monitoring as 
an exposure assessment 
technique.

BC, NO, 
NO2, UFPs

May 2015 – 
December 
2017

13 communi-
ties across the 
San Francisco 
Bay Area

Repeated mobile monitoring can cap-
ture exposure heterogeneity across a 
large urban region. 
Across the entire Bay Area region, 
within-neighborhood gradients account 
for a large to dominant fraction of the 
overall heterogeneity in the population- 
concentration distribution.
Substantial racial/ethnic disparities are 
driven mostly by intra-neighborhood 
segregation.

M4: Scaling air qual-
ity mapping of NO 
and BC through 
mobile monitoring 
and spatial modeling 
in Oakland

Investigate the potential 
for scaling of mobile mon-
itoring techniques through 
both direct observation and 
modeling.

BC, NO May 2015 – 
May 2017

West Oakland, 
Downtown 
Oakland, East 
Oakland 

With LUR-K modeling, it is possi-
ble to drive only a fraction of roads a 
few times and develop models that are 
nearly as good as the best models they 
developed.
Data-only maps from repeated driving 
are superior to LUR-K models in terms 
of detecting idiosyncratic or unex-
pected spatial features and hotspots.

M5: Mobile moni-
toring in Bangalore, 
India

Investigate whether mobile 
monitoring might be a via-
ble option for collecting air 
pollution data in a low- 
resource setting.

BC, CO2, 
UFPs 

July 2019 – 
March 2020

Residential 
neighborhood 
in Banga-
lore (Mallesh-
waram) and 
supplemental 
transects in 
surrounding 
areas

Mobile monitoring produced time-  
stable spatial patterns in Malleshwaram 
and elsewhere in the study domain. 
Observed a convergence to time- 
stable spatial patterns with fewer than 
20 repeated mobile monitoring runs 
over 1 year. 
Slow traffic speeds in Bangalore pres-
ent logistical challenges for mobile 
monitoring.

a Source: Investigators’ Report Table 2
b  As described below, this analysis was not part of the original study plan.
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METHODS

Analysis M1: Intensive comparison of mobile and fixed-
site monitoring of black carbon in Oakland, California

The purpose of analysis module M1 was to evaluate the 
capabilities of mobile monitoring for representing long-term 
spatial patterns of black carbon by comparing repeated mobile 
air pollution measurements with data from a large set of con-
tinuous fixed-site monitors. For this analysis, the investiga-
tors leveraged mobile-monitoring data that they had collected 
and described previously (see Apte et al. 2017 and sidebar) 
along with data from a dense network of low-cost, fixed-site 
BC monitors custom-built and deployed by colleagues at the 
University of California, Berkeley (Caubel et al. 2019).

The BC monitors deployed by Caubel and colleagues were 
installed at 100 sites in residential, industrial, and high- 
traffic microenvironments at an average density of 6.7 sites 
per km2 in West Oakland. The instruments were mounted at a 
height of 1.5 m on fences, porches, or street poles at a median 
distance of 15 m from the nearest road. Of these 100 sites, 97 
were located within 30 m of the road network covered by the 
mobile monitoring described in the sidebar, and three were 
located at upwind background sites along the San Francisco 
Bay. This network was in operation during a 100-day period 
between May and August 2017. Apte and colleagues computed 
the median daytime concentration at each site. They then 
calculated the ordinary Pearson R2 coefficient of determination 
between the median concentration of BC of all drive pass 
means within 95 meters of the 97 custom-built BC detectors 
with valid data. They chose a distance of 95 meters because the 
precision of the fixed-site detectors to estimate on-road concen-
trations decreased notably at distances greater than 95 meters. 
In total, the mobile monitoring vehicles sampled roads within 
95 meters of these fixed-site detectors for nearly 56 hours, with 
a median of 73 drives past each site. Each visit of a mobile 
monitoring vehicle to a fixed site lasted about 17 seconds for a 
median total time of 29.3 minutes at each site.

Analysis M2: Spatiotemporal analysis of traffic-related 
air pollution dynamics using mobile and fixed sensors in 
the San Francisco Bay Area

The purpose of this analysis module was to evaluate how the 
spatiotemporal patterns of UFPs compared with other traffic- 
related air pollutants that are monitored routinely. For this 
module, the investigators made use of the mobile monitoring 
data collected in 10 neighborhoods across the San Francisco 
Bay area, as described in the sidebar. For this analysis, the 
investigators compared particle number concentrations (as 
their proxy for UFPs) obtained through the mobile monitor-
ing with concentrations of NOx obtained at four regulatory 
fixed-site monitoring stations operated by the Bay Area Air 
Quality Management District. Specifically, they used hourly 
data from 2011 to 2018 from regulatory sites representative of 
a gradient in traffic influence, namely, near-highway, urban, 
suburban, and rural.

Analysis M3: Assessment of local- and regional-scale 
air pollution disparities in the San Francisco Bay Area 
using mobile monitoring

This analysis was not part of the original application and 
study plan but was included in the investigators' final report 
to present the totality of analyses that the investigators con-
ducted with mobile monitoring datasets. The purpose of this 
analysis was to describe how variability in concentrations of 
air pollution affected estimates of population exposure and 
environmental disparities in the San Francisco Bay Area. 
This analysis module also made use of the mobile monitoring 
datasets described earlier. Here, the investigators estimated 
long-term pollution concentrations of BC, NO, NO2, and UFPs 
for 6,362 census blocks in 13 communities around the San 
Francisco Bay Area. The communities ranged in size from 95 
to 930 census blocks (median: 447 blocks). The mean census 
block had an area of about 14,000 m2 (equivalent to 120 
meters × 120 meters) with a mean population of 70 people. 
The investigators estimated pollution concentrations for each 
block as the median of observations from roads within about 
100 meters of the block center point.

They used U.S. Census Bureau block-level population data 
for the year 2010, the most recent year for which block-level 
data were available, to describe the populations in the 13 com-
munities. Specifically, they used the racial and ethnic designa-
tions provided by the U.S. census to summarize proportions 
of populations described as Latino or Hispanic in one group 
(“Hispanic”) and then categorized non-Hispanic populations 
by race: Asian, Black, White, and “Other,” including those of 
Native American, Pacific Islander, multiracial, or other racial 
identity. In 2010, about 450,000 people lived in these areas.

The investigators used the pollution and population 
datasets together to describe distributions of the various pol-
lutants within each community and to describe the exposure 
distributions according to the racial and ethnic compositions 
of the population.

Analysis M4: Scaling air quality mapping of NO and BC 
through mobile monitoring and land use regression in 
Oakland, California

The purpose of analysis module M4 was to evaluate the 
advantages and tradeoffs of coupling mobile monitoring with 
LUR and Kriging approaches to estimate intraurban variation 
in air pollution in a data-efficient manner. This analysis 
module made use of the mobile monitoring datasets described 
earlier. Here, Apte and colleagues investigated approaches 
to reduce the intensity of field data collection required for 
producing high-resolution pollution maps of NO and BC from 
mobile monitoring data. For this analysis, they focused on 
West Oakland, Downtown Oakland, and East Oakland. They 
considered two broad approaches to data reduction for devel-
oping reliable estimates of spatial patterns, namely a “data 
only” approach and a “land use regression-Kriging model 
(LUR-K)” approach.
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For the data-only approach, they mapped concentrations 
of pollutants based exclusively on data from the mobile obser-
vations, with no support from spatial modeling techniques. 
Here, they attempted to minimize the number of repeated 
visits to each road at the cost of reducing the precision and 
accuracy of the resulting estimated concentrations. 

For the LUR-K approach, they applied their mobile- 
measured observations in a statistical model that combined 
LUR and Kriging. Briefly, LUR is a spatial modeling technique 
that uses observations of pollutant concentrations at given 
locations as the dependent variable and data describing such 
characteristics as road density and land use as the indepen-
dent variables, in a multivariate regression model to estimate 
pollutant concentrations at unsampled locations. Kriging, on 
the other hand, is a method of spatial interpolation whereby 
values are predicted at unsampled locations based on mea-
surements taken at nearby locations. As such, for the LUR-K 
approach, pollution concentrations can be estimated at 
unsampled locations and mobile observations are not needed 
from every road in the study domain.

The investigators simulated several variations of approaches 
to reducing data requirements for mobile sampling: 

• Data-only mapping based on mobile monitoring data 
from a reduced subset of drive days (i.e., sampling on 
all highway and nonhighway roads, but only 4 days of 
sampling on each segment).

• Data-only mapping based on mobile monitoring data 
from a reduced subset of roads sampled (i.e., sampling 
on all highways and on a random selection of 30% of the 
nonhighway roads, including all days of sampling).

• LUR-K modeling based on mobile monitoring data from 
the reduced subset of drive days.

• LUR-K modeling based on mobile monitoring data from 
the reduced subset of roads sampled.

• Joint scenario with LUR-K modeling where drive days 
and roads sampled were reduced simultaneously.

Ultimately, they used visual inspection and analyzed 
model residuals, coefficients of determination (R2), and nor-
malized root mean square errors (NRMSEs) to compare and 
evaluate the various approaches.

Analysis M5: Mobile monitoring in Bangalore, India

The purpose of analysis M5 was to investigate their mobile 
monitoring approach in a low-resource setting. This analysis 
was set in Bangalore, India, which is located in the southern 
state of Karnataka, and has a population greater than 12 mil-
lion people. For this analysis module, Apte and colleagues 
combined instruments for measuring BC, UFPs, PM2.5, CO2, 
meteorological parameters, and GPS into a mobile monitoring 
platform mounted in a compressed-natural gas-powered 
hatchback car. They used CO2 concentrations as an indicator 
of the degree to which their measurements were influenced 
by the fresh exhaust of traffic emissions.

The investigators conducted mobile monitoring in four 
regions, including streets in urban residential areas (Mallesh-
waram), the central business district, and in peri-urban areas. 
Drivers conducted shifts of about 4 hours long between 9 a.m. 
and 1 p.m. between July 2019 and March 2020, which covered 
all seasons except the hottest summer months. As such, results 
generally represent late morning conditions on weekdays.

 Prior to applying to this RFA, Apte and colleagues had al-
ready collected a large amount of mobile-monitoring data 
in the San Francisco Bay Area. Briefly, the investigators had 
equipped two Google Street View cars with instruments for 
measuring BC, NOx, and particle number concentrations (a 
strong proxy for UFPs). Drivers of the vehicles conducted 
6–8-hour long shifts between 8 a.m. and 6 p.m. between 
May 2015 and December 2017. They were assigned 1–5-
km2 areas to cover each day within which they were asked 
to drive each road in that area at least once, in any order. 
They conducted intensive monitoring in West Oakland, 
Downtown Oakland, and East Oakland (totaling over 1,300 
hours of monitoring) and added an additional 300 hours in 
West Oakland alone.  They also sampled 1,000 hours in 10 
other neighborhoods in the greater San Francisco Bay Area 
to cover locations with various land uses (e.g., industrial, 
commercial, dense residential, and light residential), at-
mospheric and climate conditions, share of open or green 
space, traffic density, and demographic composition.

SIDEBAR
 The investigators used the air pollution measurements to 

estimate long-term, average concentrations of the pollut-
ants along roadways that represented the weekday, day-
time conditions of the period sampled in these locations. 
For this task, they divided the measurement domains 
into 30-meter road segments (equivalent to about 3–10 
seconds of observation). For the core Oakland domain, 
this network included about 20,000 such segments. First, 
they calculated the mean of all measurements in each 
30-meter road segment for each individual drive pass 
(i.e., the mean of all observations taken during that single 
3–10-second period of a drive pass). Then, they computed 
the median of all repeated drive pass mean concentra-
tions to use as their core metric for analysis. These data-
sets were used in the various analysis modules described 
in the investigators’ report.
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Similar to the analysis process described in analysis 
M1, the investigators used the mobile air measurements to 
estimate long-term, average pollutant concentrations repre-
sentative of the period sampled. As was done in Oakland, 
they divided the measurement domains into 30-meter-long 
road segments, which in this case was about 5,000 segments. 
Again, they computed the median of the repeated drive pass 
mean concentrations to use as their core metric for analysis.

All modules described above were conducted at various 
times between May 2015 and March 2020. The key findings 
from the analyses are presented below.

SUMMARY OF KEY RESULTS  

ANALYSIS M1: INTENSIVE COMPARISON OF MOBILE 
AND FIXED-SITE MONITORING OF BLACK CARBON IN 
OAKLAND, CALIFORNIA

The investigators found that the spatial patterns of BC 
produced with their mobile monitoring data were similar 
to the daytime medians calculated with observations from 
the 97 fixed-site detectors. The correlation (R2) between the 
measurements at the fixed sites and the mobile measure-
ments sampled within 95 meters was 0.51. The correlations 
varied but were approximately 0.5 for measurements within 
distances of 50–90 meters and were in the range of 0.4 to 
0.3 for measurements within distances of 100 to 150 meters 
(Investigators’ Report [IR], Figure 5d). Although their results 
were influenced somewhat by the choice of days and seasons 
in which they sampled pollutants, they ultimately concluded 
that their mobile monitoring design was sufficiently robust for 
the purpose of characterizing spatial patterns of air pollution. 

Overall, the median concentration of BC measured along all 
nonhighway road segments within 95 meters (i.e., 0.44 µg/m3) 
matched closely the median concentration among the fixed sites 
of 0.48 µg/m3, suggesting that the data collected on-road were 
broadly representative of the near-road concentrations based 

on data from fixed sites. The mobile measurements had the 
advantage of detecting road-level variability not available from 
the fixed-site monitors, as well as estimates on highways, where 
placement of fixed-site monitors would likely be infeasible.

ANALYSIS M2: SPATIOTEMPORAL ANALYSIS OF 
TRAFFIC-RELATED AIR POLLUTION DYNAMICS 
USING MOBILE AND FIXED-SITE MONITORS IN THE 
SAN FRANCISCO BAY AREA

The investigators compared diurnal profiles of UFPs and 
NOx stratified by season and weekday or weekend at the four 
regulatory fixed-site locations. During winter conditions, they 
observed generally consistent diurnal (hour-of-day) patterns 
for UFPs and NOx (IR, Figure 6a). The summertime diurnal 
patterns for each pollutant, however, notably differed; obser-
vations for NOx were generally lower than those for UFPs. For 
example, there were daytime peaks in UFP concentrations 
at multiple sites during the warmer months that were not 
observed with NOx. Observations of NOx were also notably 
lower in summer than in winter and lowest on weekend days.

Overall, the investigators concluded that daytime UFP con-
centrations in this area, especially during summer, appeared 
to be influenced strongly by nontraffic sources of UFPs, 
including secondary new particle formation events. Given the 
differences in spatiotemporal patterns of NOx concentrations 
compared to those of UFPs, they suggested that using NOx (or 
other traffic-related air pollutants) as a proxy for UFPs could 
result in inaccuracies in estimating UFP exposure.

ANALYSIS M3: ASSESSMENT OF LOCAL- AND 
REGIONAL-SCALE AIR POLLUTION DISPARITIES 
IN THE SAN FRANCISCO BAY AREA USING MOBILE 
MONITORING

The population-weighted means of the measured pollut-
ants among the 13 communities were: 0.31 µg/m3 for BC, 4.6 
ppb for NO, 8.2 ppb for NO2, and 19,100 cm3 for UFPs. Gen-
erally, correlations between block-level concentrations of the 

Commentary Figure 1. Maps showing results of data reduction schemes for estimating daytime median concentrations of NO in Oakland, California, 
during 2015–2017 using a data-only approach. (a) Median of drive-pass mean concentrations using all available data (all roads, all drive passes). (b) Four 
randomly selected drive days per road segment (all roads, fewer drive passes). (c) All drive days but subsampled to represent 30% of the arterial and 
residential roads (fewer roads, all drive passes). Source: IR Figure 3.

a. 
  
    
b. 
  
       
c.

a.       b.          c.
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individual pollutants were variable, and they observed the 
lowest correlations between UFPs and the other pollutants 
(interquartile range Pearson’s r ranged from 0.4 to 0.7).

In this study area, based on data from the 2010 U.S. Cen-
sus, 33% of the population was Non-Hispanic White, 31% 
was Asian, 21% was Hispanic, and 14% was Black. The 
investigators found that Non-Hispanic White populations 
were exposed to lower concentrations of NO, NO2, and UFPs 
than other groups, with median exposures 16% to 27% below 
the total population median, while Black and Hispanic pop-
ulations were exposed to concentrations 8% to 30% higher 
than the total population medians (IR, Figure 8a).

This analysis found that differences in population expo-
sures to NO and BC were driven mostly by variability in 
concentrations within individual neighborhoods (i.e., very 
local-scale variability; within 1 km), whereas differences 
in exposures to NO2 and UFPs across the area were driven 
principally by differences in larger-scale, neighborhood-level 
mean concentrations.

ANALYSIS M4: SCALING AIR QUALITY MAPPING OF 
NO AND BC THROUGH MOBILE MONITORING AND 
LAND USE REGRESSION IN OAKLAND, CALIFORNIA

Apte and colleagues produced maps of pollutant concentra-
tions on sampled road segments using the various approaches 
described earlier. Visual inspection suggested that each approach 
had generally good face validity and captured key features of 
the long-term concentrations of NO and BC. For example, 
in all cases, concentrations appeared lowest on residential 
streets, and highest on highways and in the downtown area of 
Oakland. Commentary Figure 1 presents maps of NO patterns 
created with the data-only approach using all available data (left 
panel) and reduced datasets (middle and right panel). 

The map produced using the data-only approach with 
the full dataset (i.e., many dozen drive passes on all roads, 
with a total drive time of about 1,300 hours) contained many 
localized pollution hotspots at intersections and locations 
with industries or other emissions sources that were not 
apparent in the maps created with the reduced datasets. The 
data-only map produced with a dataset restricted to only four 
drive days of observation, but coverage of all streets (i.e., 6% 
of the full dataset; about 80 hours in total; middle panel of 
Commentary Figure 1), resulted in only a slight decrease in 
performance, but with a substantial drop in mobile-monitoring 
data requirements. The panel on the right of Commentary 
Figure 1 shows the estimated NO concentrations based on all 
available days of observation but limited to only 30% of the 
arterial and residential roads.

The LUR-K approaches developed using either a sampling 
of all roads, but from a reduced subset of drive days, or a sub-
set of roads, but sampled many times, both resulted in only 
negligible decreases in model predictions and performance. 

Finally, the LUR-K model based on a highly restricted 
dataset (i.e., 30% road coverage and only four days of 

observation) also reflected only a moderate reduction in 
model performance despite the substantial reduction in data 
requirements. More details can be found in IR Figures 3 and 
10 for maps created using the various alternative approaches.

Ultimately, the overarching conclusion from this analysis 
was that viable LUR-K models could be developed even 
with little mobile monitoring data. Although the data-only 
approach outperformed the LUR-K in precision with only a 
modest number of repeated samples (i.e., <10 repeated days), 
this was at the cost of having to sample every road for which 
exposure measurements are desired.

ANALYSIS M5: MOBILE MONITORING IN BANGA-
LORE, INDIA

Due to various logistical issues, the work in India was not 
as extensive as originally planned, and so the investigators 
focused on the results from Malleshwaram, a large, urban 
neighborhood of Bangalore. This area was the only one for 
which they were able to conduct complete block-by-block 
repeated monitoring comparable to that of their San Francisco 
Bay Area campaign. Their study design involved collecting 
one weekly sample of the entire Malleshwaram area over two 
consecutive days, resulting in 44 days of data collection and 
22 repeated drive days for each road segment. In total, they 
sampled about 150 km of roads across Bangalore, about 62 km 
of which were in Malleshwaram.

The spatial means (and medians) representing morning- 
time concentrations on the nonsummer weekdays for the road 
segments in the Malleshwaram study domain were about 26 
µg/m3 (15 µg/m3) for BC and about 81,000 cm³ (62,000 cm³) 
for UFPs. Similar to the maps for the San Francisco Bay Area, 
the maps produced here again had strong face validity with 
the highest observations observed along highways, lower 
observations on major arterial roads, and the lowest observa-
tions on smaller, residential streets (with similar patterns for 
all three pollutants). The observed concentrations of BC and 
UFPs in Malleshwaram were both much higher than those 
observed in the San Francisco Bay Area, with the observa-
tions for UFPs about four times higher in Malleshwaram than 
in the Bay Area and those for BC about 100 times higher. The 
investigators suggested that this finding is likely due to the 
high proportion of older diesel engines operating in India. 

As was done in analysis M4, the investigators examined 
how many repeated samples would be needed to capture the 
spatial patterns observed with the full dataset of 22 repeated 
drives. Here, they observed that including information from 
each additional drive pass increased rapidly until about 7 
sampling days, and then only minimally thereafter (Commen-
tary Figure 2).

As such, despite the differences in terms of fleet composi-
tion, population density, and mean pollutant concentrations 
between the two settings of Malleshwaram and the San Fran-
cisco Bay Area, the reduced sampling results in both locations 
suggested that mobile monitoring produced relatively stable 
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maps after about 10 drive days, with diminishing returns to 
precision with additional sampling beyond that. The finding 
from this analysis module, therefore, is consistent with those 
presented earlier for analysis M4 and from previous work by 
these investigators (Apte et al. 2017).

HEI REVIEW COMMITTEE’S EVALUATION

STUDY DESIGN, DATASETS, AND ANALYTICAL 
APPROACHES

In its independent evaluation of the study, the Review 
Committee noted that at the time of funding, in June 2017, 
this study proposed the largest, most extensive campaign to 
examine the potential applications, strengths, and limitations 
of mobile monitoring. Overall, the HEI Review Committee 
was impressed with the extent to which the investigators 
described, compared, and analyzed the data.

The Committee noted several strengths of the study design. 
For example, Apte and colleagues compiled a large amount of 
data from several sources, including mobile monitoring data 
in several locations (in two countries) and data from several 
fixed-site networks. In addition, the richness of the data 
allowed the investigators to explore many issues, including 
the comparability of long-term observations from fixed-site 
monitors with observations collected through mobile moni-
toring and the utility of mobile monitoring data for describing 
spatial gradients in pollution. Their application of these mea-
surements to estimate potential population-level exposures 
was also appreciated as an enhancement to our understanding 
of environmental inequities within the population. The data-
sets also allowed the investigators to evaluate the feasibility 
of applying these approaches in different settings. The wide 
spatial and temporal extent of data used here also allowed 
the investigators to conduct simulation studies to evaluate 
various logistical and study design considerations that can 
affect the potential benefits and costs associated with mobile 
monitoring. Another strength of the study is the examination 
of the performance of air quality models that integrate mobile 
monitoring data into LUR-K modeling.  

The rich datasets used by the investigators 
also allowed them to explore and identify the 
relative trade-offs between intensive repeated 
sampling and several alternative approaches to 
data reduction, including reducing the number 
of roads sampled and the number of repeated 
passes on given roads. The Committee agreed 
with the investigators that in both the San Fran-
cisco Bay Area and in Malleshwaram, mobile 
monitoring produced relatively reproducible 
maps for several traffic-related pollutants with 
data from relatively few repeated drive passes.

The Committee also noted some limitations 
to the approach. For example, one issue with the 

mobile monitoring is that the drivers drove some routes and 
areas always in the same order and at the same time of day. 
This pattern of data collection makes it difficult to disentan-
gle whether the pollution concentrations in a given location 
are indeed representative of the daytime typical average 
conditions, or if the concentrations for that location in fact 
represent temporal trends much higher than average levels 
occurring during rush hour or lower than average values 
during a low-traffic time of day.

The Committee also wondered whether the results are 
generalizable to other pollutants, longer periods, or to other loca-
tions (including to wider areas within the San Francisco Bay and 
Bangalore areas, as well as to other locations in the United States 
or elsewhere). For example, all the comparisons between mobile 
and fixed-site measurements from analysis M1 pertain to only 
one pollutant (BC), one study area (West Oakland), and cover a 
relatively short period (May-August 2017). Similar analyses of 
other pollutants would be useful in the future. It is also difficult 
to know the extent to which the observed correspondences 
between UFPs and NOx described in analysis M2 would apply 
to other locations with different geographies, mixes of vehicles, 
or kinds of point sources of air pollution. Finally, the monitored 
area in Bangalore (i.e., Malleshwaram) comprised only a few 
square kilometers so might not accurately capture variations that 
might have been observed elsewhere in the very large city or in 
the surrounding regions.

It is important to acknowledge that the limitations above, 
along with a few other issues, might affect the suitability of 
mobile measured air pollution data for use in epidemiological 
analyses when used as the only data source. For example, we 
would expect on-road measurements to be different from 
those observed at fixed-site stations because they are collected 
in the middle of the road rather than at roadsides or other 
locations that might be closer to where people live. This is in 
contrast to measurements from fixed-site monitors, and even 
satellite-based measurements, that can be collected in a vari-
ety of locations, including away from busy roads. The mobile 
monitoring was also performed only during daytime hours on 
weekdays and does not reflect concentrations during the times 
of day when people might be more likely to be at home (i.e., 
in the evenings, at night, and on weekends). Moreover, most 
cohort studies have information on the residential addresses 

Commentary Figure 2. Subsampling analysis for the Malleshwaram neighborhood in 
Bangalore. Source: IR Figure 13.
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of individuals for the purpose of estimating air pollution 
exposures. Given the intensiveness of mobile monitoring, 
there will often be a mismatch between the period captured 
by the mobile measurements and the window of exposure 
most relevant for epidemiological purposes, especially if the 
focus is on the health impacts of long-term exposures. 

Nonetheless, these measurements did provide additional 
spatial resolution that might not be captured by the limited 
fixed-site monitoring network or area-based satellite mea-
surements. Additionally, mobile measurements might be 
especially useful for estimating exposures for commuters, 
especially cyclists and pedestrians. Overall, the Committee 
agrees with the investigators that there are further opportu-
nities to explore these kinds of rich datasets, especially for 
combining the mobile measured data with fixed-site data to 
develop exposure models for use in epidemiological analyses 
and for identifying disparities in population exposures.

FINDINGS AND INTERPRETATION 

Generally, the Committee found that the report presented 
a comprehensive and thoughtful discussion of the findings 
from the numerous research modules and analyses. Results 
from this study answered important questions and contrib-
uted interesting insights about collecting and working with 
mobile-measured air pollution data. 

The descriptive analyses of BC, NOx, and UFPs provide 
valuable new insights about their spatial and temporal 
patterns, and particularly, how they compare with those 
of other traffic-related pollutants in different contexts. For 
example, the investigators were able to identify that patterns 
of UFPs and NOx shared similar spatial and hourly patterns 
during winter months in the San Francisco Bay Area, a result 
indicating a common primary traffic source during this 
season. However, during summer months the patterns were 
dissimilar, with the suggestion that summer concentrations 
of UFPs in this area were more strongly influenced by new 
secondary particle formation rather than primary emissions. 
The Committee agreed with this conclusion and felt that 
these data highlight nicely the value of combining detailed 
mobile mapping with at least a few fixed-site monitors that 
can provide long-term data. 

The Committee also agreed with the investigators that 
some pollutants appear to be better suited for mobile moni-
toring than others. Generally, pollutants with a high degree 
of spatial variation and a low degree of temporal variation, 
such as NOx, should be among the best suited to this kind 
of approach. In contrast, PM2.5 is likely less suited for this 
approach because it tends to have relatively low spatial 
variability within an urban area. Similar conclusions could 
be made about the kinds of locations that would benefit most 
from mobile monitoring. Specifically, locations with greater 
heterogeneity in local sources will benefit from the richer 
spatial information of a mobile monitoring campaign.

The Committee thought this report highlighted what we 
can learn about spatial patterns of traffic-related air pollution 
and population exposures when mobile monitoring data are 
leveraged. Importantly, mobile monitoring can provide mea-
surements directly on highways where fixed-site monitoring 
is infeasible. This has value for better capture of emissions 
from the vehicle fleet and for reflecting exposures to drivers on 
the road. Apte and colleagues also demonstrated clearly that 
mobile monitoring is able to detect localized pollution hot 
spots, such as at specific intersections and along designated 
truck routes, which would not be captured by measurements 
from fixed-site stations alone. 

The investigators estimated potential population exposures 
by averaging observations collected on surrounding streets to 
the centers of city blocks. Here, they found that across the 
San Francisco Bay Area, Non-Hispanic White populations 
were exposed to lower concentrations of NO, NO2, and UFPs 
than other groups, and Black and Hispanic populations were 
exposed to higher-than-average concentrations of those pol-
lutants. The Committee saw the value in using these data for 
characterizing environmental disparities and was generally 
satisfied with this approach though they acknowledge the 
potential challenge of disentangling differences in concentra-
tion due to time and space as discussed above.

An especially important aspect of this study was a detailed 
analysis to determine how much mobile monitoring data are 
needed to get relatively accurate maps of long-term patterns 
of traffic-related air pollution along roadways. The Committee 
noted that the investigators demonstrated that adequate pol-
lution maps were produced by models supported by LUR-K 
approaches that used relatively limited data from mobile 
monitoring. Importantly, this study showed that sampling on 
every road is not needed for the model output to be effective. 
The investigators also showed that maps produced with 
only mobile monitoring data (i.e., without support from the 
spatial modeling approaches) outperformed the LUR-K in 
precision with only a modest number of repeated samples 
(i.e., fewer than 10 repeated days), but at the cost of having 
to sample every road. Researchers using these methods for 
epidemiological studies will need to evaluate the extent to 
which the added cost of mobile monitoring yields sufficient 
improvements to exposure modeling and prediction.  

A novel aim of this study was the investigators’ efforts 
to implement mobile monitoring in a low-resource setting, 
namely Bangalore, India, with traffic patterns and pollution 
concentrations that are very different from those in the San 
Francisco Bay Area. The investigators demonstrated that with 
sufficient funding and expertise, mobile monitoring was a 
viable technique for estimating fine-scale concentrations of 
traffic-related air pollution in that area. They noted that key 
challenges of conducting mobile monitoring in this setting 
included the low traffic speeds (typically 10-15 km/h), which 
limited the area that could be covered in a given sampling ses-
sion, and that the instruments used required study personnel 
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to accompany the drivers at all times to ensure the instru-
ments were operating properly. Both of those issues limited 
the efficiency of the process, as compared to that undertaken 
in Oakland. The Review Committee perceived the work in 
India as a feasibility study given the small sampling area 
that was ultimately sampled. Therefore, although the Review 
Committee commends the investigators for undertaking this 
analysis, they note that more work is needed to know if this 
is a feasible approach in other LMICs, and perhaps in India 
more broadly. 

Another aim of this study was to investigate the potential 
for scaling mobile monitoring techniques to larger study 
domains (i.e., not just neighborhoods, but across entire cities 
and regions). The analyses with LUR-K modeling demon-
strated how the mobile monitoring data could be leveraged 
for creating spatial models to cover areas where not all roads 
are sampled. The leveraging of measurements collected previ-
ously using Google Street View cars was a unique opportunity 
that the investigators benefited from in their study. However, 
a potential limiting factor for scaling or replicating these 
analyses is that Google Street View cars are not available on 
demand to other researchers or in other locations. Other fleet 
vehicles that regularly drive around cities, such as taxis or 
delivery trucks, are an alternate possibility but might be less 
suitable options for this purpose because they are driven less 
systematically through communities and researchers would 
have no control over the routes covered. 

It is worth noting that mobile monitoring, in addition to 
being time-consuming and laborious, can be costly, especially 
in areas that do not have sufficient resources dedicated to air 
quality monitoring and research. The investigators estimated 
a cost of about $1 million per year (which would include 
vehicles, equipment, and salaries for drivers and analysts) to 
conduct mobile monitoring equivalent to what was done in 
Oakland in a large urban area in the United States. The inves-
tigators noted that costs to do this might be lower in LMICs 
settings where labor costs are generally lower, but personnel 
with the required training and expertise might not be readily 
available. Ultimately, these estimated costs are much higher 
than what might be expected for establishing or expanding 
a network of low-cost, fixed-site monitors to capture more 
detailed data on pollutant concentrations for epidemiolog-
ical or regulatory purposes. A related question, therefore, 
is whether mobile monitoring is really needed in some 
locations, such as in LMICs, or would time and resources 
be better spent in building the basic air quality monitoring 
infrastructure first? Certainly, the answer will depend on the 
pollutant, location, and question of interest.

CONCLUSIONS

In this pioneering study, Apte and colleagues conducted 
very thorough analyses of the various strengths, limitations, 
and potential uses of mobile monitored air pollution data. 
They showed that mobile monitoring data (which provide 
dense spatial coverage) coupled with observations from 

fixed-site stations (which provide long-term temporal cov-
erage) and spatial modeling approaches can produce robust 
maps of spatiotemporal patterns of traffic-related pollution 
that can capture highly localized hotspots of pollution. On 
their own, however, data from mobile monitoring can have 
important limitations and therefore careful consideration is 
needed before using them in exposure assessment or epide-
miological analyses. 
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Determinants of Near-Road Ambient Air Quality
ABBREVIATIONS AND OTHER ITEMS

 ABCD  aerosol black carbon detector

 BC  black carbon

 CACES  Center for Air, Climate and Energy  
   Solutions

 CO  carbon monoxide

 CO2  carbon dioxide

 GPS  global positioning system

 ICC  intra-class correlation

 IEG  integrated empirical geographic

 LMIC  low-middle income country

 LOD  limit of detection

 LUR  land use regression

 LUR-K  land use regression-kriging

 MAE  mean average error

 NO  nitric oxide

 NO2  nitrogen dioxide 

 NOx   nitrogen oxides

 NRMSE  normalized root-mean-square error

 PAX  photoacoustic extinctiometer 

 PM  particulate matter

 PM2.5  fine PM, particulate matter with  
   aerodynamic diameter ≤2.5 µm 

 ppb  parts per billion

 RMSE   root-mean-square error

 SSD   sum-of-square deviation

 UFPs   ultrafine particles 
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