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ABOUT HEI

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent
research organization to provide high-quality, impartial, and relevant science on the effects of air
pollution on health. To accomplish its mission, the Institute

e identifies the highest-priority areas for health effects research

e competitively funds and oversees research projects

e provides an intensive independent review of HEI-supported studies and related research
e integrates HEI's research results with those of other institutions into broader evaluations

e communicates the results of HEI's research and analyses to public and private decision-
makers.

HEI typically receives balanced funding from the US Environmental Protection Agency and the
worldwide motor vehicle industry. Frequently, other public and private organizations in the United
States and around the world also support major projects or research programs. HEI has funded
more than 390 research projects in North America, Europe, Asia, and Latin America, the results
of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, diesel
exhaust, ozone, particulate matter, and other pollutants. These results have appeared in more
than 275 comprehensive reports published by HEI, as well as in more than 2,500 articles in peer-
reviewed literature.

HEI's independent Board of Directors consists of leaders in science and policy who are
committed to fostering the public—private partnership that is central to the organization. The
Research Committee solicits input from HEI sponsors and other stakeholders and works with
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and oversee
their conduct. The Review Committee or Panel, which has no role in selecting or overseeing
studies, works with staff to evaluate and interpret the results of funded studies and related research.

All project results and accompanying comments by the Review Committee or Panel are widely
disseminated through HEl's website (www.healtheffects.org), reports, newsletters, annual conferences,
and presentations to legislative bodies and public agencies.


http://www.healtheffects.org




ABOUT THIS REPORT

Research Report 237, Early-Life Air Pollution Exposure Is Associated with the Infant Gut Microbiome
and Fecal Metabolome in the First Two Years of Life, presents a research project funded by the Health
Effects Institute and conducted by Dr. Tanya L. Alderete at Johns Hopkins Bloomberg School of
Public Health in Baltimore, Maryland. This research was funded under HEl's Walter A. Rosenblith
New Investigator Award Program, which provides support to promising scientists in the early
stages of their careers. The report contains three main sections:

e The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the
study and its findings; it also briefly describes the Review Committee’'s comments on the
study.

e The Investigators’ Report, prepared by Alderete and colleagues, describes the scientific
background, aims, methods, results, and conclusions of the study.

e The Commentary, prepared by members of the Review Committee with the assistance
of HEI staff, places the study in a broader scientific context, points out its strengths and
limitations, and discusses remaining uncertainties and implications of the study’s findings
for public health and future research.

This report has gone through HEI's rigorous review process. When an HEI-funded study is
completed, the investigators submit a draft final report presenting the background and results of
the study. Outside technical reviewers first examine this draft report. The report and the reviewers’
comments are then evaluated by members of the Review Committee, an independent panel of
distinguished scientists who are not involved in selecting or overseeing HEI studies. During the
review process, the investigators have an opportunity to exchange comments with the Review
Committee and, as necessary, to revise their report. The Commentary reflects the information
provided in the final version of the report.

Although this report was produced with partial funding by the United States Environmental
Protection Agency under Assistance Award CR-83998101 to the Health Effects Institute, it has
not been subjected to the Agency’s peer and administrative review and may not necessarily reflect
the views of the Agency; thus, no official endorsement by it should be inferred. The contents of
this report also have not been reviewed by private party institutions, including those that support
the Health Effects Institute, and may not reflect the views or policies of these parties; thus, no
endorsement by them should be inferred.
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HEI

STATEMENT

Synopsis of Research Report 237

Exploring the Link Between Early Life Air Pollution
Exposures and the Infant Microbiome and Metabolome

BACKGROUND

Several studies have linked early-life
environmental exposures, such as outdoor air
pollution, to body mass index and overweight
status in children, which are well-known
risk factors for long-term adverse health out-
comes, including heart disease and diabetes.
The biological mechanisms underlying this
relationship are not well understood, but
recent research has suggested that air pollution
exposures might contribute to obesity and
other adverse outcomes through changes in
the gut microbiome (the microbiota, including
bacteria, fungi, viruses, and their genes, found
in the human gastrointestinal tract) and their
byproducts in the fecal metabolome (the
collection of small molecules found in feces)
(Statement Figure).

In response to HEI's Request for Appli-
cations 18-2: Walter A. Rosenblith New
Investigator Award, Dr. Tanya Alderete of
Johns Hopkins University submitted an appli-
cation to HEI titled “Air Pollutants and the
Gut Microbiota and Metabolome During Early
Life: Implications for Childhood Obesity.”
Dr. Alderete proposed to examine whether
prenatal and postnatal outdoor air pollution
exposures, including traffic-related air pollu-
tion, can change infant gut bacteria and fecal
metabolites. Such changes might alter infant
growth trajectories in the first 2 years of life
— a finding that could potentially provide
new insights into the biological mechanisms
through which air pollution might contribute
to obesity.

APPROACH

Dr. Alderete aimed to determine whether
prenatal or postnatal exposure to air pollution
is associated with a) lower diversity and
altered relative abundances of gut bacteria and
b) levels of specific fecal metabolites. She mea-
sured these endpoints at 1, 6, 12, 18, and 24
months after birth (Aim 1) and averaged these
endpoints up to 24 months (Aim 2).

What This Study Adds

e This study examined whether prenatal or
postnatal exposures to air pollution were
associated with changes in the infant gut
microbiome and fecal metabolome during
the first 2 years of life.

e The team used a unique dataset of infant
gut microbiota and fecal metabolites from
a cohort of Hispanic mother—infant pairs
in Southern California.

e Prenatal and postnatal air pollution expo-
sures were associated with changes in the
abundances of gut bacteria and levels of
several fecal metabolites in infants during
the first 2 years of life.

e Among participants with higher air pol-
lution exposures, the team found some
evidence of fewer beneficial gut bacteria,
more potentially detrimental gut bacteria,
and higher levels of metabolites indicative
of oxidative stress and inflammation.

e This study provides a comprehensive set
of exploratory analyses that contribute
to our understanding of the relationships
between air pollution and the infant gut
microbiome and fecal metabolome.

Alderete and colleagues used a study cohort
of 219 Hispanic mother—infant pairs participat-
ing in the Southern California Mother’s Milk
Study. Participants were enrolled at 1 month
after birth and made several clinical visits up
to 24 months after birth. The cohort included
detailed information on the mother (such as
age and socioeconomic status) and the infant
(what their sex was, whether they were fed with
human milk or formula, and when they started
eating solid food). At each clinical visit, an
infant stool sample was collected. Gut micro-
biome data were obtained from 207 infants,
and fecal metabolome data were obtained from
a subset of 127 infants. Stool samples were
processed and analyzed using standard DNA
sequencing and chemical analysis techniques.

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted
by Dr. Tanya L. Alderete at Johns Hopkins Bloomberg School of Public Health in Baltimore, Maryland, and colleagues.
Research Report 237 contains the detailed Investigators’ Report and a Commentary on the study prepared by the HEI
Review Committee.

Health Effects Institute Research Report 237 © 2026


https://www.healtheffects.org/system/files/rfa18-2-rosenblith-award120718.pdf
https://www.healtheffects.org/system/files/rfa18-2-rosenblith-award120718.pdf

Research Report 237

Factors that affect
the developing infant gut
microbiome

A

Maternal
characteristics

Method of
delivery
Feeding
method
(@ Antibiotic
@‘ exposure
T2
:; ] Other
environmental
: : exposures

Gut microbiota

S
$i;q @
o \&®
Y

g

Fecal metabolites

Statement Figure. Overview of infant gut microbiome and fecal metabolome.

Based on the mothers’ residential address histories,
the team estimated prenatal and postnatal exposures
to coarse particulate matter, fine particulate matter,
nitrogen dioxide, ozone, and nitrogen oxides (a proxy
for traffic-related air pollution) for each mother—infant
pair. Prenatal exposure was based on the average of
monthly air pollution exposure for the 9 months before
birth. Postnatal exposure was based on air pollution
exposures over short-term and long-term periods.
Both prenatal and postnatal exposures were estimated
using monthly concentrations of outdoor air pollutants
derived from government monitoring data. Monthly
traffic-related air pollution levels (nitrogen oxides)
were estimated using an atmospheric dispersion model.

Alderete and colleagues used a combination of
statistical models to evaluate associations between air
pollution exposures and several outcomes of interest,
including abundance (relative proportion of different
types) and diversity (number of different types and
distribution) of gut bacteria, as well as the identity and
level of fecal metabolites.

KEY RESULTS

Gut Bacterial Abundance Alderete and colleagues
reported that prenatal and postnatal exposures to
several air pollutants were associated with short-term
and long-term changes in the abundances of different

gut bacteria. For instance, at various time points in
early life, higher levels of prenatal exposure to coarse
particulate matter, nitrogen dioxide, and nitrogen
oxides were associated with a lower abundance of the
beneficial gut bacterium Bifidobacterium. They also
found that higher levels of prenatal exposure to nitro-
gen oxides were associated with a higher abundance
of the potentially detrimental gut bacterium Lelliottia
amnigena. In general, however, there were no clear
trends or patterns across timepoints, specific gut bacte-
rial abundances, or pollutant exposures.

Gut Bacterial Diversity Some postnatal air pollution
exposures were associated with either increased or
decreased diversity of gut bacteria, depending on
infant age and the pollutant examined. For example,
higher postnatal coarse particulate matter exposure
was associated with greater gut bacterial diversity at 1
month after birth, whereas higher nitrogen oxide expo-
sure was associated with reduced diversity at 6 months
of age. More broadly, fewer associations were observed
for diversity compared with gut bacterial abundance.

Fecal Metabolites The investigators found that
exposures to coarse and fine particulate matter and
nitrogen dioxide were associated with levels of several
fecal metabolites at specific timepoints and altered
levels over time up to 2 years. For instance, higher
prenatal and postnatal exposures to fine particulate
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matter were associated with lower average levels of
metabolites involved in histidine metabolism during
the first 2 years of life — a finding that potentially indi-
cates gut inflammation. However, there was no overlap
in metabolite levels across pollutants.

INTERPRETATION AND CONCLUSIONS

In its independent review of the study, the HEI
Review Committee concluded that this research
provides a set of exploratory analyses investigating
potential mechanistic links between air pollution and
the gut microbiome and fecal metabolome in infants,
with possible implications for childhood obesity.

Alderete and colleagues found that estimated
prenatal and postnatal exposures to outdoor air pollu-
tion were associated with lower abundances of some
beneficial species of gut bacteria, higher abundances of
certain detrimental species of gut bacteria, and metabo-
lites that indicate oxidative stress or gut inflammation.
However, no clear patterns were evident across pollut-
ants, timepoints, or outcomes examined.

The Committee identified the collection of a unique
dataset on the infant gut microbiome and fecal metab-
olome, along with analyses at multiple timepoints
after birth, as key strengths of the study. However, the
Committee noted that the small size of the study cohort
limits statistical power and, thus, the reliability of
the results. Future studies could expand the scope by
analyzing the current dataset for other microbiota, such
as fungi and viruses, and by considering additional
functional characteristics of the gut microbiota.
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'Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore,
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ABSTRACT

Introduction Obesity is a major public health concern
because it increases the risk of numerous diseases, including
cardiovascular disease and type 2 diabetes. Ambient and
near-roadway air pollution has been associated with child-
hood obesity risk, independent of diet and physical activity.
However, the biological mechanisms underlying these
relationships remain unclear. Based on our previous work
and existing literature, we hypothesized that exposure to air
pollutants alters the developing infant gut microbiome and
fecal metabolome, with implications for childhood obesity
risk. In this study, we aimed to determine whether prenatal or
early-life exposure to ambient air pollution and near-roadway
air pollution is associated with the gut microbiome and fecal
metabolome during the first 2 years of life.

Methods Our analysis had two components, both of which
examined participants from the Southern California Mother’s
Milk Study, a Latino cohort in which we collected detailed
information regarding maternal and child health during the
first 24 months of life. Residential-based estimates of expo-
sure to ambient particulate matter (particulate matter <2.5
pm and <10 pm in aerodynamic diameter: PM, . and PM,,
respectively*), nitrogen dioxide (NO,), and ozone (O,), as
well as near-roadway air pollution (NO ), were modeled using
residential address histories. High-throughput metagenomics
and metabolomics were performed on stool samples collected

This Investigators’ Report is one part of Health Effects Institute Research
Report 237, which also includes a Commentary by the Review Committee
and an HEI Statement about the research project. Correspondence concern-
ing the Investigators’ Report may be addressed to Dr. Tanya L. Alderete,
Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street,
Baltimore, MD 21205; email: taldere1@jhu.edu. No potential conflict of in-
terest was reported by the authors.

Although this report was produced with partial funding by the United States
Environmental Protection Agency under Assistance Award CR-83998101
to the Health Effects Institute, it has not been subjected to the Agency’s peer
and administrative review and may not necessarily reflect the views of the
Agency; thus, no official endorsement by it should be inferred. This report
has also not been reviewed by private party institutions, including those
that support the Health Effects Institute, and may not reflect the views or
policies of these parties; thus, no endorsement by them should be inferred.

*A list of abbreviations and other terms appears at the end of this report.

Health Effects Institute Research Report 237 © 2026

at 1, 6, 12, 18, and 24 months of age. Overall, our sample
included 207 unique individuals with gut microbiome data
and 127 unique individuals with fecal metabolomics data. In
the first analysis component, we examined the cross-sectional
associations of pre- and postnatal exposure to ambient and
near-roadway pollutants with the infant gut microbiome and
fecal metabolome at 1, 6, 12, 18, and 24 months of age. In the
second analysis component, we examined the longitudinal
associations of pre- and postnatal exposure to air pollutants
with the trajectory of the developing infant gut microbiome
and fecal metabolome.

Results  Our findings indicate that exposure to air pollut-
ants during prenatal and postnatal periods is associated with
significant changes in the developing gut microbiome and its
metabolic output, as evidenced by perturbations in the fecal
metabolome. These molecular alterations were evident in
both cross-sectional and longitudinal analyses. The results
suggest that early-life exposure to air pollution can disrupt
the developmental trajectory of the gut microbiome, poten-
tially leading to changes with substantial health implications.
These findings underscore the importance of mitigating air
pollution exposure during critical developmental periods
to protect and promote gut health and overall well-being in
infants.

Conclusions  We identified gut microbes and fecal metabo-
lites associated with early-life exposure to air pollution. Many
of these markers of gut bacterial composition and function
have been linked to childhood obesity. These findings con-
tribute to our understanding of mechanisms underlying the
obesogenic effects of air pollutants in early life. Future work
in this cohort will include integrated mixture and multi-omics
analyses to explore the joint impact of air pollution exposure
on the gut microbiome and fecal metabolome.

INTRODUCTION

Over the past 30 years, the prevalence of overweight and
obesity has significantly increased in the United States.!
Obesity has critical health implications due to its associa-
tions with adverse cardiometabolic outcomes in children and
adults.?® Without effective prevention strategies, nearly 38%
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Summary of Cross-Sectional Findings
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Summary of Longitudinal Findings
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Overall Findings

Exposures were consistently associated with lower abundances of beneficial gut bacteria and higher levels of pathogenic or
opportunistic bacteria, as well as fecal metabolites indicative of inflammation, oxidative stress, and worse gut health.

These findings highlight consistent microbial and metabolic disruptions linked to early-life air pollutant exposure.

Source: Created in BioRender. Holzhausen EA and Alderete TL (2025). https://BioRender.com/m57g481.

of the US adult population is expected to remain overweight
or obese.* An understanding of factors that contribute to
obesity is crucial.

In addition to poor diet, reduced physical activity, and
lower socioeconomic status, increased exposure to ambi-
ent and near-roadway air pollution may independently
contribute to obesity.>® Prenatal ambient and near-roadway
exposures have been linked to low birth weight, which is
separately associated with increased infant weight gain and a

higher risk of childhood obesity.” For instance, children aged
5 to 11 years exposed to the highest levels of near-roadway
pollution experienced a 13.6% greater annual body mass
index (BMI) growth than those with the lowest exposure.®
Additionally, our previous longitudinal work demonstrated
that an increase in nitrogen dioxide (NO,) and fine particulate
matter (particulate matter <2.5 pm in aerodynamic diameter
[PM, ]} exposure was associated with higher BMI at age 18
years.® However, not all studies show that pre- and postnatal
exposures increase growth rates or childhood obesity.*
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Although the exact mechanisms are unclear, air pollutants
may adversely affect the gastrointestinal tract.""'* There is
increasing evidence that air pollution exposure can lead to
obesity, type 2 diabetes, and cardiovascular disease through
alterations in gut microbial profiles'*!® and gut bacteria—
derived circulating metabolites.*7-19

Our previous research in adolescents revealed a correla-
tion between increased near-roadway air pollution exposure
and the relative abundances of gut bacteria such as Bacteroi-
daceae and Coriobacteriaceae,"® which are linked to obesity
and altered metabolism.?* Animal model studies also support
a connection between air pollution exposure and the gut
microbiota, suggesting that ultrafine particles reach the intes-
tines through various pathways.!?! Increased exposure to air
pollutants not only alters gut microbiome composition but
also affects gut bacterial function, including the production of
metabolites related to obesity. For example, gut bacteria, fecal
lipid, and amino acid metabolites have been associated with
increased BMI and abdominal adiposity in adults.?? In mice,
ingestion of ultrafine particles has been shown to alter gut
microbiota and fecal cholesterol metabolites.’® Furthermore,
specific gut bacteria are involved in the metabolism of short-
chain fatty acids,* lipids,* amino acids,?*** bile acids,?**
and tryptophan®'#%; all of these processes have been linked to
gut barrier integrity, satiety, body weight, and adipose tissue
inflammation.

The first 1,000 days of life, including the pre- and postnatal
periods, are critical developmental windows that considerably
influence long-term health outcomes. During this time, expo-
sure to air pollutants can affect infant and childhood growth
trajectories.®® Studies have also shown that the composition
of the developing infant gut microbiome predicts rapid infant
growth and childhood BMI.*** However, human studies are
limited in their ability to determine whether changes in the
gut microbiome precede and contribute to increased BMI,
or whether obesity itself leads to alterations in microbiome
composition.***” Consistent with this limited ability, although
bacterial communities differ between lean and obese indi-
viduals, more than 95% of bacterial genetic material can be
assigned to functional groups with shared metabolic activities
observed in all individuals.* Nonetheless, emerging evidence
indicates that early-life perturbations in the gut microbiota3**
have extensive implications for postnatal growth and child-
hood obesity risk. This relationship is biologically plausible
given that the gut microbiome is involved in numerous meta-
bolic processes, producing various diffusible metabolites that
regulate gut barrier integrity, satiety, cell signaling, adiposity,
body weight, and adipose tissue inflammation. In mice, expo-
sure to ultrafine particulate matter increased circulating lipid
metabolites,” and our recent study in infants identified a
diverse array of metabolites linked with air pollution in fecal
samples.”® Our recent studies, and others, have shown that
exposure to traffic pollutants is associated with alterations in
circulating metabolites (e.g., histidine, tryptophan) produced
by gut bacteria,'*4#! which are linked to gut microbiome
dysbiosis and obesity.*** Consequently, air pollutant expo-

sure may disrupt the gut microbiome and fecal metabolome
through toxic effects on bacteria, potentially impacting infant
growth trajectories and increasing the risk of childhood obe-
sity.

The goal of this Walter A. Rosenblith New Investigator
Award is to determine whether prenatal or early-life exposure
to air pollutants affects the infant gut microbiome and fecal
metabolome. We performed parallel analyses of the gut micro-
biota and fecal metabolites to gain deeper insights into how
prenatal and early-life exposure to air pollutants affects the
composition and function of the gut microbiome. This study
was conducted in a cohort of Latino mother—infant pairs from
Southern California who were assessed at 1, 6, 12, 18, and 24
months of age. We hypothesized that increased exposure to
air pollutants during pregnancy and early life would result in
altered gut microbial profiles and fecal metabolites in infants.
We also hypothesized that bacteria and metabolites associated
with exposures would have known biological implications
related to infant growth and development.

SPECIFIC AIMS

In this study, we explored the potential impact of ear-
ly-life exposure to ambient and near-roadway air pollution
on the developing gut microbiome and fecal metabolome in
the first 2 years of life. Although exposure to air pollutants
has been linked to lower birth weight and increased risk of
childhood obesity, the biological mechanisms underlying
these relationships remain uncertain. We hypothesized that
elevated exposure to ambient and near-roadway air pollution
during the prenatal period and early life alters infant growth
trajectories via changes to the gut microbiome and fecal
metabolome. Therefore, we sought to address the following
two interrelated aims:

Aim 1. Determine whether prenatal and early-life exposure
to ambient and near-roadway air pollution is associated
with (1a) lower gut bacterial diversity and altered relative
abundances of gut microbial taxa and (1b) fecal metabo-
lites, separately at 1, 6, 12, 18, and 24 months of infant age.
The infant gut microbiome undergoes rapid development
in the first 2 to 3 years of life. Therefore, we first aimed to
examine the cross-sectional relationships between prena-
tal and postnatal exposure to air pollutants and the infant
gut microbiome and fecal metabolome.

Aim 2, Determine whether prenatal and early-life exposure
to ambient and near-roadway air pollution is associated
with the trajectory of (1a) the developing infant gut micro-
biome (lower diversity, altered relative abundance) and
(1b) fecal metabolites. Building on Aim 1, we conducted a
longitudinal analysis to track changes over time, providing
a more comprehensive understanding of how continuous
and cumulative exposure to air pollutants influences the
development and dynamics of the gut microbiome and
metabolome throughout early childhood.
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and

Aim 3 (not included in this final report). Determine
whether infant gut bacteria and fecal metabolites associated
with increased ambient and near-roadway exposure are
also associated with infant growth trajectories (e.g., weight-
for-length z-score, waist circumference) under a mediation
framework. This aim was not included in the final report
due to substantial delays and disruptions caused by the
COVID-19 pandemic. The pandemic greatly affected our
ability to collect and analyze data within the planned time
frame. Consequently, we were unable to fully explore the
mediation framework linking environmental exposures to
infant growth outcomes via gut microbiome and metabo-
lome alterations. However, we intend to pursue this analysis
in future studies outside of the final HEI report.

METHODS AND STUDY DESIGN

STUDY LOCATION AND OVERALL DESIGN

The longitudinal Mother’s Milk Study is an ongoing pro-
spective cohort study focusing on Latino mother—infant pairs
from Southern California, aimed at examining early-life growth
and development.?*#439404243 Participant recruitment began in
2016 at Los Angeles County maternity clinics associated with
the University of Southern California. The inclusion criteria for
mothers were being >18 years old at delivery; having a healthy,
term, singleton birth; enrolling by approximately 1 month
postpartum; self-identifying as Hispanic/Latino; intending to
breastfeed for at least 6 months postpartum; and having a lit-
eracy level of at least 5th grade in either English or Spanish to
comprehend study procedures. Exclusion criteria for mothers
were medical conditions or medications that could potentially
impact physical or mental health, nutritional status, or metab-
olism; tobacco use (defined as smoking more than one cigarette
in the past week); recreational drug use; preterm or low birth
weight; and clinically diagnosed fetal abnormalities. The
recruitment strategy aimed to achieve a balanced representa-
tion across prepregnancy BMI categories (normal weight [BMI:
18-24.9 kg/m?], overweight [BMI: 25-29.9 kg/m?], and obese
[BMI: >30 kg/m?]). The study protocols received approval from
the Institutional Review Boards at the Children’s Hospital of
Los Angeles and Johns Hopkins University. Participants pro-
vided written informed consent before enrollment in and any
study-related procedures.

CLINICAL ASSESSMENTS

Participants were enrolled around 1 month postpartum
and attended follow-up visits at 6, 12, 18, and 24 months post-
partum. Initially, 219 mother—infant dyads were enrolled in
the Mother’s Milk Study. Socioeconomic status was estimated
using a modified Hollingshead Index, as previously described.*
Questionnaires assessed infant feeding practices, including the
frequency of human milk and formula feeding and the age at
which solid foods were introduced. Infants were classified

as exclusively breastfed if parents reported no formula use;
otherwise, they were classified as not exclusively breastfed.
The Healthy Eating Index was calculated for infants after the
introduction of solid foods, serving as a composite measure to
assess dietary intake alignment with the Dietary Guidelines for
Americans. This HEI Walter A. Rosenblith New Investigator
Award supported the high-resolution metabolomics analysis
of approximately 600 fecal samples in the present cohort.
Specifically, a subset of 127 participants was selected for fecal
metabolomics analysis to maximize the number of repeated
samples within the first 2 years of life. Overall, 101 infants
completed fecal metabolomics sampling at all five timepoints;
the remaining 26 infants completed sampling at four of the five
timepoints (Supplemental Figure 1; see Additional Materials
on the HEI Website).*?

RESIDENTIAL ADDRESS HISTORIES

Residential address histories were obtained via question-
naire during the baseline study visit and at each subsequent
clinical research visit (1, 6, 12, 18, and 24 months). These
address histories included the prenatal period and incor-
porated move-in and move-out dates for each respective
residence, as well as multiple addresses, to ensure accurate
exposure assessment. Each address was geocoded at the
street level using the Texas A&M Geocoder,* which assigned
latitude and longitude coordinates for each participant’s
residence. The Google Earth geocoder was used to confirm or
correct locations with less accurate geocoding. Participants
provided a total of 1,037 residential addresses spanning
the pre- and postnatal periods. Of these, 91 addresses were
matched at the address-point level, 942 were matched to the
parcel level (using the parcel centroid), 26 were matched
to address-range interpolations, and two were geocoded as
ZIP Code Tabulation Areas; one address was classified as
unknown. The two addresses classified as ZIP Code Tabu-
lation Areas were excluded from further analysis. All other
addresses were successfully geocoded with high quality (i.e.,
with address range interpolation or better).

AMBIENT AIR POLLUTION EXPOSURES

Residential exposure to ambient air pollutants, includ-
ing particulate matter (PM,, and particulate matter <10
pm in aerodynamic diameter [PM, 1), NO,, and ozone (O,)
during the pre- and postnatal periods, was modeled for
all mother—infant pairs. PM,_ and PM,, were measured
in micrograms per cubic meter (ng/m?); NO, and O, were
assessed in parts per billion (ppb). Monthly averages of
ambient pollutant exposures were estimated using data
from the US Environmental Protection Agency’s Air
Quality System (https://www.epa.gov/aqs), which provides
hourly and daily air quality data from ambient monitoring
stations. To estimate air quality at unmeasured locations
and create a continuous layer, spatial interpolation of up
to four monitoring stations within 50 km of participants’
homes was performed using inverse distance-squared
weighting algorithm.**” Mother—infant pairs were evenly
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distributed across Southern California, with participants
largely clustered in urban centers of Los Angeles, includ-
ing South Central Los Angeles, where spatial coverage
of the air monitoring network is robust. Participants for
whom air pollution estimates could not be calculated for a
given exposure window or study visit were excluded from
analyses requiring those estimates; they were retained in
analyses for which air pollution estimates could be cal-
culated.

NEAR-ROADWAY AIR POLLUTION EXPOSURES

Near-roadway exposures were estimated using the Cal-
ifornia Line Source Dispersion Model (CALINE4) as point
estimates at each participant’s residential location.*® The
CALINE4 line-source dispersion model estimated concentra-
tions of nitrogen oxides (NO,) at the residence using traffic
emissions (calculated within a 5-km buffer of the residence),
traffic volume, roadway geometry, and meteorological condi-
tions. These meteorological conditions included wind speed
and direction, pollution mixing heights, and atmospheric
stability.”” Traffic volumes and speeds were obtained from
machine-learning models developed by Bentley Systems, Inc.
(2019), which provide more accurate and complete data for
moderate and smaller roads than conventional traffic data
sources. Vehicle emission factors were determined annually
for each roadway link using the California Air Resources
Board’s EMFAC2021 model, based on traffic volumes, speeds,
and the proportion of heavy-duty trucks. Meteorological
conditions were obtained from the National Oceanic and
Atmospheric Administration/National Centers for Environ-
mental Prediction Real-Time Mesoscale Analysis model, a
high-spatial (5 x 5 km) and high-temporal (1-hour) resolution
analysis/assimilation system for near-surface weather condi-
tions.**** NO, was used as a surrogate for the complex mixture
of gases and particles emitted by vehicles, commonly referred
to as traffic-related air pollution (TRAP).

EXPOSURE WINDOWS FOR AIM 1 (CROSS-SECTIONAL
ANALYSES)

In Aim 1, we sought to understand the relationships of air
pollution exposure with the gut microbiome and fecal metab-
olome at a single timepoint. Prenatal exposure was modeled
based on the cumulative 9-month average before the infant’s
birth. Monthly average exposure estimates for each pollutant
were available dating back 12 months from the 1-month
postpartum study visit. Cumulative postnatal air pollution
exposure was defined as the cumulative estimate of air pol-
lution exposure from the infant’s birth until the study visit
(i.e., at 1, 6, 12, 18, and 24 months). Short-term exposures
were defined as the estimated air pollution exposure during
the month before each clinical visit.

EXPOSURE WINDOWS FOR AIM 2 (LONGITUDINAL
ANALYSES)

In Aim 2, we sought to understand longitudinal associa-
tions of air pollution exposure with the gut microbiome or

fecal metabolome, allowing both exposure (i.e., air pollution)
and outcome (i.e., microbiome or metabolome) to vary over
time. Longitudinal analyses examined both long-term expo-
sures and fluctuations in exposure across the first 2 years of
life. Long-term exposure was defined as the grand mean of
prior-month air pollution exposures across all timepoints.
Fluctuations in exposure were calculated as the grand mean
minus the prior month’s air pollution exposure, enabling
examination of short-term deviations and their potential
impacts during the follow-up period. This approach was
selected to evaluate both the effects of chronic exposure and
fluctuations in exposure on the gut microbiome and fecal
metabolome.®*

The correlation structure between each of the exposure
windows used in this study is summarized in Supplemental
Figure 2.

INFANT GUT MICROBIOME

DNA isolation was performed on infant stool samples
collected at 1, 6, 12, 18, and 24 months of age, along with
control samples, using the ZymoBIOMICS DNA Miniprep
Kit (Zymo Research, Catalog #D4300) in accordance with the
manufacturer’s protocol. Control samples included water,
the ZymoBIOMICS Microbial Community Standard (Zymo
Research, Catalog #D6300), and the ZymoBIOMICS Microbial
Community Standard II Log Distribution (Zymo Research,
Catalog #D6310). Lysis steps in the manufacturer’s protocol
were carried out using 2-mL Bashing Bead Tubes (Zymo
Research) on a Vortex Genie 2 (Scientific Industries, Catalog
#SI-0236) with a Microtube Adaptor (Scientific Industries,
Catalog #S5001-7). DNA concentrations were measured using
a Qubit Fluorometer (Thermo Fisher Scientific).

Indexed libraries were prepared from stool DNA using the
[lumina Nextera XT DNA Library Prep Kit (Illumina, Catalog
#FC-131-1096) and Illumina IDT for DNA/RNA UD Indexes
Sets A, B, C, and D (Illumina, Catalog #20027213, #20027214,
#20042666, and #20042667), following the manufacturer’s
protocols. Library quality was assessed using an Agilent
Bioanalyzer 2100 (Agilent) with High Sensitivity DNA kits
(Agilent, Catalog #5067-4626). Libraries were then pooled,
and paired-end sequencing (2 x 150 bp) was performed using
the Illumina NovaSeq platform. To reduce the likelihood of
batch effects, samples were randomized before sequencing,
DNA isolation, and library preparation. All batches were
balanced with respect to participant characteristics, includ-
ing infant sex, weight-for-age z-score, and weight-for-length
z-score. Principal coordinates analysis was used to visualize
potential batch effects (Supplemental Figure 3). Permu-
tational multivariate analysis of variance (PERMANOVA)
showed that sequencing batch was significantly associated
with Bray—Curtis dissimilarity (P = 0.001). However, because
the batch was not associated with air pollution exposure, it
is unlikely to confound the exposure—outcome relationship.
Sensitivity analyses adjusting for batch (data not shown)
produced results similar to those of the primary models.
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Therefore, to avoid unnecessary loss of statistical power, the
batch was excluded from the final models.

Microbiome Data Processing

Trimmomatic® (v0.39) was used to validate pairs of paired-
end sequence reads, remove adaptors (maximum mismatches
= 2; palindrome clip threshold = 30; simple clip threshold =
10), trim reads (leading and trailing quality score >20; sliding
window trimming with window size = 4 and minimum qual-
ity score >20), and remove reads with a length less than 50
bp. Hostile®? (v1.0.0) was used to align trimmed reads against
the human genome (index = “human-t2t-hla-argos985”);
reads aligning to the human genome were removed. To assign
taxonomy, cleaned, trimmed reads were aligned to the Ref-
Seq database of bacterial, viral, plasmid, human, and vector
sequences via Kraken 2°° (v2.1.2; Standard Database, March
14, 2023). Species-level relative abundances of microbes
in the samples were predicted using Bracken® (v2.9) with
default settings. Taxa mapping to nonbacterial kingdoms were
removed from further analysis. The average number of reads
per sample was 17,625,883 (range: 6-131,105,466). After the
removal of samples with read depth below 1,000,000 (n =
2), the average number of reads per sample was 17,667,879
(range: 1,975,654-131,105,466) [Supplemental Figure 4]; in
the context of fecal metagenomics, this number of reads can
be considered a form of shallow sequencing. To reduce the
influence of outlying points, microbiome observations with
values greater than or equal to 3 standard deviations above
the population mean were considered missing.

Alpha- and Beta-Diversity Measures

Sample sequence read counts, which had previously been
assigned taxonomy, were rarefied to 1,000,000 reads per sam-
ple. Alpha-diversity metrics (i.e., species richness, Pielou’s
evenness, and Shannon diversity index) were calculated
using the rarefied data. Cameron et al. showed that repeated
rarefaction is robust against variation in diversity dependent
on library size while minimizing the data loss that occurs with
a single rarefaction.®® Accordingly, rarefaction was repeated
100 times, and the means of the alpha-diversity indices across
these iterations were used for subsequent analyses. The same
100 rarefaction iterations were used to calculate beta-diver-
sity among samples. Specifically, Bray—Curtis dissimilarity
matrices were calculated for each iteration and averaged
across the 100 iterations. The mean Bray—Curtis dissimilarity
matrix was then used to derive principal coordinate analysis
axes using the pcoa function within the vegan package in R
software.

INFANT FECAL METABOLOME

As previously described,***? OmniGene GUT kits were
used to collect infant stool samples at 1, 6, 12, 18, and 24
months of age. The Emory Clinical Biomarkers Laboratory
conducted untargeted high-resolution analysis using estab-
lished protocols, as detailed in our earlier studies.**#* Briefly,
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fecal samples were mixed with ice-cold acetonitrile to precip-
itate proteins, stored on ice for 30 minutes, and centrifuged
at 14,000 x g for 10 minutes. The supernatants were stored
at 4°C until analysis. Extracts were analyzed in triplicate via
liquid chromatography coupled with high-resolution mass
spectrometry using a Dionex Ultimate 3000 and Thermo
Scientific Orbitrap Fusion system.

Instrumentation and Analytical Conditions

Hydrophilic interaction liquid chromatography (HILIC)
was performed using a Waters XBridge BEH Amide XP HILIC
column (2.1 x 50 mm, 2.6 pm particle size) with positive
electrospray ionization (ESI); reverse-phase (C18) chromatog-
raphy was conducted using a Higgins Targa C18 column (2.1
x 50 mm, 3 pm particle size) with negative ESI to enhance
the detection of metabolic features. For HILIC, analyte sep-
aration involved mobile phases of water, acetonitrile, and
2% formic acid, following a gradient elution: 22.5% water,
75% acetonitrile, and 2.5% formic acid for the initial 1.5
minutes; increasing linearly to 75% water, 22.5% acetonitrile,
and 2.5% formic acid by 4 minutes; and finally holding for
1 minute. For C18 chromatography, analyte separation used
water, acetonitrile, and 10 mM ammonium acetate, with a gra-
dient elution starting at 60% water, 35% acetonitrile, and 5%
ammonium acetate for the first minute; increasing linearly to
0% water, 95% acetonitrile, and 5% ammonium acetate by 3
minutes; and finally holding for 2 minutes. The mobile phase
flow rate was 0.35 mL/min for the first minute, then increased
to 0.4 mL/min for the remaining 4 minutes for both HILIC
and C18 columns. Liquid chromatography coupled with
high-resolution mass spectrometry was operated in full scan
mode at 120k resolution, with a mass-to-charge ratio range of
85 to 1,275. Tuning parameters for sheath gas were set at 45
arbitrary units for positive ESI and 30 for negative ESI. For
positive ESI, auxiliary gas was set at 25 arbitrary units and
spray voltage at 3.5 kV; for negative ESI, auxiliary gas was set
at 5 and spray voltage at —3.0 kV. Internal standards included
pooled stool samples and standard reference materials for
human metabolites, added at the beginning and end of each
20-sample batch for quality control and standardization.

Metabolite Confidence and Identification

Data from HILIC positive ESI and C18 negative ESI were
analyzed separately. Raw files were converted to .mzXML
format; metabolomic signals (i.e., metabolic features) were
extracted and aligned using the R package apLCMS with
modifications from xMSanalyzer to ensure quality control
and mitigate batch effects after instrument analysis.®®*’
Briefly, a two-stage approach was used: each batch was ini-
tially processed individually, generating a batch-level feature
matrix. Across these batch-level matrices, a second round of
retention time and feature alignment was conducted. Meta-
bolic features with a coefficient of variation greater than 30
were excluded, and the intensities of metabolic features were
averaged across triplicates. Features detected in fewer than
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10% of samples were removed from the analysis. Metabolic
features were annotated and confirmed based on the Metab-
olomics Standards Initiative criteria. Level-1 confidence was
assigned to features whose mass-to-charge ratio and retention
time matched authentic standards analyzed with tandem
mass spectrometry under identical conditions (within 10
ppm and 50 seconds). Principal component analysis was used
to visually inspect the composition of the fecal metabolome
(Supplemental Figure 5).

DATA ANALYSIS

ANALYSIS AIM 1

Cross-Sectional Associations of Air Pollution (Pre- and
Postnatal) with the Infant Gut Microbiome and Fecal
Metabolome We conducted an extensive analysis of indi-
vidual cross-sectional associations of pre- and postnatal air
pollution exposure with the gut microbiome and fecal metab-
olome, each described in more detail below. All analyses
were conducted using R version 4.2.0. Figure 1 summarizes

the various data analyses and exposure windows utilized in
this project.

Gut Microbiome (Aim 1, Cross-Sectional Analyses) We used
negative binomial models to examine associations between air
pollutant exposure and the infant gut microbiome. To reduce
the potential influence of outliers, air pollution exposure
values greater than three standard deviations above the pop-
ulation mean were truncated to the mean plus three standard
deviations. We examined the cross-sectional associations of
(1) prenatal air pollution exposure, (2) long-term postnatal
exposure (cumulative exposure from the infant’s birth to the
study visit date), and (3) short-term postnatal exposure (prior
month) with gut bacterial diversity and abundances at each
clinical visit. At the 1-month visit, models were adjusted for
infant age, infant sex, socioeconomic status, season of visit,
mother’s age, breastfeedings per day, formula feedings per
day, mode of delivery, and maternal prepregnancy BMI. All
adjustment sets were determined using a directed acyclic graph
(Figure 2), where socioeconomic status, season, and mother’s
age were identified as conventional confounders; infant diet,
mode of delivery, and maternal prepregnancy BMI were
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Figure 2. Directed acyclic graph summarizing the data generation process. Based on this directed acyclic graph, we identified season of visit,
socioeconomic status, and maternal age as confounders. In addition to these confounders, all analyses were adjusted for infant age, infant
sex, infant diet, maternal prepregnancy BMI, and mode of delivery, given their known importance in the development of the infant gut
microbiome and fecal metabolome. Source: Created in BioRender. Holzhausen EA and Alderete TL (2025). https://BioRender.com/r18j290.

considered precision variables because they are important
predictors of the infant microbiome. We did not adjust for
infant antibiotic use because — as shown in Figure 2 — anti-
biotics were regarded as a precision variable, rather than a
confounder. Additionally, fewer than 10% of infants were
exposed to antibiotics, and our previous studies have shown
that adjustments for antibiotic use do not meaningfully affect
our findings.* We also assessed the overall associations of gut
microbiome composition with maternal and infant charac-
teristics via PERMANOVA (Supplemental Table 1). An offset
term was included to adjust for the log of the total number of
microbial counts for each sample. At the 6-month visit, mod-
els were additionally adjusted for whether infants had begun
eating solid foods. At all subsequent timepoints, models were
also adjusted for diet quality using the infant Healthy Eating
Index. The Benjamini—-Hochberg (BH) procedure was used to
adjust for multiple testing across all microbiome analyses.

Fecal Metabolomics (Aim 1, Cross-Sectional Analyses)  We
conducted three unique but complementary analyses using
multivariable linear models to examine associations of (1)
prenatal air pollution exposure, (2) long-term postnatal expo-
sure (cumulative exposure from birth to each respective visit
date), and (3) short-term postnatal exposure (defined as air
pollution exposure during the month before the study visit)
with fecal metabolite intensity at 1, 6, 12, 18, and 24 months.
All models were adjusted for infant age, infant sex, socioeco-
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nomic status, season of visit, mother’s age, and frequency of
breastfeeding and formula feedings per day. At the 1-month
timepoint, none of the infants had begun eating solid foods; at
subsequent timepoints, models were additionally adjusted for
whether infants had begun solid food intake. This adjustment
set was informed by our previous work in the cohort.*® The
BH procedure was used to adjust for multiple testing in all
metabolomics analyses.

ANALYSIS AIM 2

Longitudinal Associations of Air Pollution (Pre- and
Postnatal) with the Infant Gut Microbiome and Fecal
Metabolome We conducted a longitudinal analysis of the
associations of pre- and postnatal air pollution exposure with
the gut microbiome and fecal metabolome, each described
in more detail below. All analyses were performed using R
version 4.2.0.

Gut Microbiome (Aim 2, Longitudinal Analyses) To visu-
alize the overall composition of the microbiome samples, we
used principal coordinates analysis (Supplemental Figure 6).
Next, we utilized longitudinal negative binomial models to
assess the association between prenatal air pollution exposure
and the postnatal gut microbiome (i.e., taxonomic abundance).
These models included an offset for the log-transformed total
number of sequence counts and a random intercept to adjust
for repeated measures within infants. Models were also
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adjusted for infant age and sex, socioeconomic status, season,
mother’s age, human milk and formula feeding frequencies,
mode of delivery, maternal prepregnancy BMI, infant mean
Healthy Eating Index, and whether infants had begun eating
solid foods. Covariates were selected based on our previous
work and a review of the literature.’***?

We used linear mixed-effects models to assess the longi-
tudinal association between postnatal air pollution exposure
and gut microbiome alpha-diversity, incorporating a random
intercept to adjust for repeated measures within individuals.
We used negative binomial models to evaluate the association
between fluctuations in postnatal air pollution exposure
(i.e., the difference between the grand mean of prior-month
air pollution exposure from 1 month to 2 years of infant age
and the prior month’s exposure at each timepoint) and the
gut microbiome (i.e., taxonomic abundance), with an offset
for the log of total sequence counts and a random intercept
for repeated measures. To reduce the influence of outliers, air
pollution exposure values greater than three standard devia-
tions above the population mean were truncated to the mean
plus three standard deviations. Models were adjusted for
infant age and sex, socioeconomic status, season of the study
visit, mother’s age, frequency of human milk and formula
feedings per day, mode of delivery, maternal prepregnancy
BMI, whether infants had begun eating solid foods (yes/no),
and the mean Healthy Eating Index after introduction of solid
foods. Models were also adjusted for long-term air pollution
exposure (i.e., the grand mean of each participant’s pollutant
exposure across all study visits). Analyses included all tax-
onomic levels (i.e., phylum, class, order, family, genus, and
species).

Fecal Metabolome (Aim 2, Longitudinal Analyses) We used
linear mixed-effects models to assess whether prenatal air
pollution exposure was longitudinally associated with the
log-transformed intensity of fecal metabolic features, incor-
porating a random intercept to adjust for repeated measures.
Models were adjusted for infant age and sex, socioeconomic
status, season of study visit, mother’s age, frequency of human
milk and formula feedings per day, and whether infants had
begun eating solid foods.

Next, we used linear mixed-effects models to assess
whether fluctuations in postnatal air pollution exposure
(i.e., the difference between the grand mean of prior-month
air pollution exposure from 1 month to 2 years of infant
age and the prior month’s exposure at each timepoint) were
associated with postnatal fecal metabolite intensity. Because
we aimed to independently assess the associations of fluctu-
ations in air pollution exposure and long-term air pollution
exposure with fecal metabolites, we also adjusted models for
long-term mean air pollution exposure. Our adjustment set,
informed by previous analyses,*® included infant age and sex,
socioeconomic status, season of the study visit, mother’s age,
frequency of human milk and formula feedings per day, and
whether infants had begun eating solid foods.

RESULTS

AIM 1 GUT MICROBIOME

Population characteristics of participants included in
the microbiome analyses are described in Table 1. Briefly,
participants attended study visits at approximately 1, 6, 12,
18, and 24 months of infant age. At the 1-month study visit,
the average infant age was 33 + 5 days, 46% of infants were
male, and 25% had been born by cesarean section. Changes
in non-time-varying characteristics over time reflect missing
follow-up data for some participants. Overall, gut microbiome
data were available for 196 infants at 1 month of age, 157 at
6 months, 155 at 12 months, 143 at 18 months, and 171 at
24 months. At 1 month, parents reported an average of 6.7 +
2.2 breastfeedings per day. At 6 months, parents reported that
infants had begun eating solid foods at an average age of 6.0
+ 1.8 months.

Prenatal Air Pollution Exposure and the Gut Microbiome

We assessed whether prenatal air pollution exposure was
associated with abundances of taxa (i.e., phylum, class, order,
family, genus, and species) at 1 month of infant age (Figure 3).
We found that prenatal exposure to air pollution was associated
with differences in taxonomic abundance. Figure 3 summarizes
the observed associations: each concentric circle in the figure
represents a different taxonomic level, with the kingdom at the
center and the species at the outer edge. Statistically significant
associations (P, <0.2) are shown in red (negative associations)
and blue (positive associations), with darker shading indicat-
ing larger beta estimates. For example, we found that higher
prenatal PM,  exposure was associated with lower abundances
of beneficial microbes, including 10 species from the genus
Bifidobacterium. Similarly, higher prenatal NO, and NO_
exposures were both associated with lower abundances of
several Bifidobacterium species. Higher prenatal NO, exposure
was additionally associated with higher abundances of Lel-
liottia amnigena and Dorea longicatena. Plots illustrating the
observed statistically significant associations between prenatal
air pollution exposure and microbial species abundances can
be found in Supplemental File 1 [PM, ], Supplemental File 2
[PM, ], Supplemental File 3 [NO,], Supplemental File 4 [O],
and Supplemental File 5 [NO _].

Cumulative Air Pollution Exposure and the Gut
Microbiome

We next explored whether there were associations between
gut microbiome alpha-diversity (i.e., Shannon, richness,
evenness, and Simpson indices) and cumulative air pollution
exposure (PM, , PM, ,NO,, O,, O, + NO,, and total NO ), where
cumulative air pollution exposure was defined as the total
exposure from birth to the visit date (Table 2). We found that
PM, exposure was associated with higher Shannon diversity,
evenness, and Simpson diversity at 1 month (b = 0.02, 0.002,
0.005; P = 0.04, 0.02, 0.02, respectively). At 1 month, O,
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Table 1. Characteristics of Mother-Infant Dyads with Infant Microbiome Data from the Southern California Mother’s Milk Study,

Enrollment from 2016 to 2019®

Variable

1 Month
(N = 196)

6 Months
(N=157)

12 Months
(N = 155)

18 Months
(N =143)

24 Months
(N=171)

Maternal characteristics

Age (years)

Prepregnancy BMI (kg/m?)’

SESbe

Antibiotics since delivery (yes, no,
%yes)®

Infant characteristics

Age (days)

Sex® (male, female, %male)
Delivery mode® (CS, vaginal, %CS)
Breastfeedings per day

Formula feedings per day

Age at solid food introduction
(months)®

Healthy Eating Index
Antibiotics since birth? (yes, no,
%yes)

Season of visit! (warm, cool,

% warm)

Air pollution measures

Prenatal PM,  (ug/m*b

Prenatal PM, , (ng/m?)"

Prenatal NO, (ppb)®

Prenatal O, (ppb)°

Prenatal NO_ (ppb)®

Individual mean postnatal PM,  (ng/m®)
Individual mean postatal PM, , (ng/m?)"
Individual mean postnatal NO, (ppb)®

b

Individual mean postnatal O, (ppb)®
Individual mean postnatal NO, (ppb)®
Fluctuation in PM,  (ng/m?)
Fluctuation in PM, , (ng/m?)
Fluctuation in NO, (ppb)
Fluctuation in O, (ppb)

Fluctuation in NO_ (ppb)
Cumulative PM,  (ng/m?)
Cumulative PM, , (ng/m°)
Cumulative NO, (ppb)

Cumulative O, (ppb)

Cumulative NO, (ppb)

Prior-month PM,  (ng/m?)
Prior-month PM, _ (ng/m°)
Prior-month NO, (ppb)

Prior-month O, (ppb)

Prior-month NO, (ppb)

29.0+3.1

28.3 £5.7

26.8 +12.4
20,171, 10.5%

32.6 £4.7

90, 106, 45.9%
48, 148, 24.5%
6.7 £ 2.2
2.2+26

19, 176, 9.7%

98, 98, 50%

29.8 £4.1
11.9+1.3
179+ 2.8
42.6 £ 3.9
3.9+x21
28.9+3.9
11.8+1.9
16.3 £ 3.2
42.7 5.0
3.9+25
2.0+6.3
0.2+3.1
1.3+54
0.7 £6.5
-0.3+1.9
30.7 £6.9
11.7 £ 2.6
17.5+6.8
43.3+8.1
3.4+1.5
309+7.4
12.0+ 3.7
176 +7.1
43.4+8.4
3.5+1.7

29.4 +6.2
28.8 6.2
26.0 +11.9
14, 136, 9.3%

185.5 + 8.8
73, 84, 46.5%
40, 115, 25.8%
3.1+3.3
3.0£2.9
6.0+1.8

46.0 £ 6.7
14, 140, 9.1%

74, 83, 47.1%

30.4 +3.7
121 +1.3
18.0 £ 2.5
42.7 £ 3.9
3.9+2.1
28.5 + 3.8
11.8 1.7
16.6 + 2.4
424 +4.1
4.0+2.6
1.9+59
0.7+ 3.8
1.5+7.3
-0.5+£7.8
-0.5+1.6
30.9+5.2
12.3 £ 2.0
18.3 5.0
41.8+4.6
3.3+1.4
30.5+6.8
12.5+4.3
18.1+£6.9
42.0+8.1
3.5+1.7

29.8 + 6.2
28.5£5.7
26.2+11.9
15, 133, 10.1%

368.1 = 10.4
72,83, 46.5%
38, 116, 24.7%
21+£2.8
2.3+24

5.8+ 1.5

60.8 £ 9.2
15, 138, 9.8%

89, 66, 57.4%

29.8 +3.9
11.8 £ 1.1
18.0 = 2.8
428+ 3.4
4.0+2.2
29.4 +3.3
11.9+1.8
16.7 £ 2.7
42.4+45
3.5+1.8
1.1+5.2
0.1+29
-0.9+49
0.2+5.2
-0.1+0.5
31.8+3.6
12.5+1.3
18.2 £ 2.7
42.1+3.2
3.3+1.3
30.5+6.9
12.0+3.4
15.9+6.3
426 +7.7
3.3+1.5

30.3 6.2
28.3 £5.7
26.7 +12.6
14,124, 10.1%

551.5 + 18.3
65, 78, 45.5%
32,110, 22.5%
1.9+2.7
1.0+£1.7
59+1.6

67.2 9.9
14, 128, 9.9%

70, 73, 49.0%

30.2 =40.1
12.0+1.3
18.2 £ 2.6
43.0 3.8

4.0x22
29.2+3.0
11.8 £ 1.7
16.7 £ 2.5
41.8 +4.3
3.5+19
-3.4+5.1
-0.8 +2.8
-0.9+6.3
-0.7£8.1
0.1+0.8
30.7 £3.0
12.2+1.1
17.7 £ 2.6
41.4+29
3.2+1.3
25.9+4.9
11.0+ 2.6
15.7 £ 5.3
41.1+8.1
3.5+2.0

Mean = SD; n (%) Mean = SD; n (%) Mean + SD; n (%) Mean = SD; n (%) Mean + SD; n (%)

30.8 £6.3
28.5+5.8
27.2+12.1
15, 148, 9.2%

753.5 + 46.8
78, 93, 45.6%
39,129, 23.2%
1.7 +2.4
1.1+1.9

5.9+ 1.7

68.1 £ 9.5
18, 149, 10.8%

82, 89, 48.0%

29.5 +3.9
11.8 £ 1.2
17.8 2.7
42.5+3.8
3.9+2.1
28.7 + 3.8
11.9+1.7
16.5 + 2.7
42.6 +4.8
4.2 + 3.2
-3.4+5.6
-0.3+2.7
-1.3 +4.3
0.1+6.1
0.9+3.2
29.2 +3.4
12.2 £ 0.8
17.2 +2.1
41.9+2.8
3.3+1.3
25.7+£7.0
11.6 £3.4
15.2+£5.5
42,7+ 8.4
3.6+2.1

CS = cesarean section; ppb = parts per billion; SD = standard deviation; SES = socioeconomic status.

“Data are reported as mean and SD unless otherwise noted.
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Table 1. (continued)

"Non-time-varying (i.e., assessed at a single timepoint and not expected to change over time); differences across time are due to participant miss-
ingness at specific timepoints (P = 0.2).

°SES was estimated using a modified version of the Hollingshead Index. Range for study population: 3-63.

dStudy visits occurring between April 1 and September 30 were considered warm season; all other visits were considered cool season.

Prenatal PM,, Prenatal PM, 5
SN

See caption for annotation. A: Enterobacter roggenkampii.

Prenatal NO, Prenatal NO,

See caption for annotation. See caption for annotation.

Figure 3. Associations of prenatal PM, , PM, , NO,, and NO, exposures with gut microbial taxa at 1 month. Estimates were obtained using negative
binomial models where the exposure of interest was prenatal air pollution exposure, and the outcome was the abundance of each gut microbial taxon
at 1 month of infant age. Models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeeding frequency,
formula feeding frequency, mode of delivery, and maternal prepregnancy BMI. An offset was included to control for the log of the total number of
microbial counts in each sample.

Annotations for PM, species: A: Enterobacter roggenkampii, B: E. asburiae, C: E. mori, D: E. cloacae, E: E. cancerogenus, F: E. ludwigii, G: E. hormaechei, H: Citrobacter
freundii, I: C. sp. R56, J: Cronobacter sakazakii, K: Shigella flexneri, L: S. dysenteriae, M: Leclercia adecarboxylata, N: L. sp. Colony189, O:

Klebsiella aerogenes, P: K. grimontii, Q: Escherichia fergusonii, R: E. marmotae, S: E. coli, T: E. albertii, U: Cedecea neteri, V: Salmonella

enterica, W: Lelliottia amnigena, X: Streptococcus agalactiae, Y: S. vestibularis, Z: S. sp. HSISM1, a: S. anginosus, b: Enterococcus faecalis,

c: Clostridium perfringens, d: Blautia wexlerae, e: Mediterraneibacter gnavus, f: Bifidobacterium eulemuris, g: B. sp. TKU, h: B. longum, i: B.

thermophilum, j: B. lemurum, k: B. bifidum, I: B. saguini, m: B. choerinum, n: B. adolescentis, o: B. asteroides, p: Phocaeicola dorei.

Annotations for NO, species: A: Enterobacter asburiae, AA: Bifidobacterium adolescentis, AB: B. subtile, AC: B. asteroides, AD: Rothia mucilaginosa, AE: Segatella copri, B:
Enterobacter ludwigii, C: Citrobacter freundii, D: C. amalonaticus, E: C. portucalensis, F: C. sp. R56, G: C. braakii, H: Shigella flexneri, I: Leclercia sp. Colony189,

J: Klebsiella michiganensis, K: Escherichia fergusonii, L: E. marmotae, M: E. coli, N: E. albertii, O: Cedecea neteri, P: Salmonella enterica, Q: Lelliottia

amnigena, R: Streptococcus pneumoniae, S: S. sp. LPB0220, T: S. lactarius, U: S. constellatus, V: S. sp. A12, W: S. vestibularis, X: S. sp. HSISM1, Y: S. sp.

HSISS2, Z: S. sp. HSISS3, a: S. mitis, b: S. gordonii, c: S. parasanguinis, d: S. oralis, e: S. sp. oral taxon 431, f: S. ilei, g: S. suis, h: S. australis, i: Veillonella

parvula, j: Faecalibacterium prausnitzii, k: Blautia wexlerae, 1: Enterocloster bolteae, m: Bifidobacterium pullorum, n: B. pseudolongum, o: B. eulemuris,

p: B. sp. TKU, q: B. longum, r: B. catenulatum, s: B. angulatum, t: B. thermophilum, u: B. animalis, v: B. lemurum, w: B. bifidum, x: B. scardovii.

Annotations for NO_species: A: Enterobacter asburiae, B: Citrobacter portucalensis, C: C. sp. R56, D: C. braaki, E: Shigella flexneri, F: S. dysenteriae, G: Cedecea neteri, H:
Lelliottia amnigena, I: Clostridium perfringens, J: Dorea longicatena, K: Enterocloster bolteae, L: Thomasclavelia ramosa, M:
Bifidobacterium longum, N: Bacteroides thetaiotaomicron, O: B. uniformis, P: Parabacteroides distasonis.
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Table 2. Cross-Sectional Associations of Cumulative Air Pollution Exposure with Gut Microbiome Alpha-Diversity at 1,
6, 12, 18, and 24 Months of Infant Age®

1 Month 6 Months 12 Months 18 Months 24 Months
b (SE) P b (SE) P b (SE) P b (SE) P b (SE) P

Shannon

PM,, 0.02 (0.008) 0.04 -0.003 (0.01) 0.8 0.02 (0.01) 0.2 -0.006 (0.02) 0.7 —-0.02 (0.01) 0.1
PMZ.5 0.02 (0.02) 0.3 0.01 (0.03) 0.6 0.002 (0.04) 1.0 —-0.02 (0.04) 0.7 0.06 (0.04) 0.1
NO, 0.01 (0.01) 0.4 0.01 (0.01) 0.3 0.005 (0.02) 0.8 0.004 (0.02) 0.8 —0.001 (0.02) 1.0
03 0.01 (0.008) 0.1 —-0.01 (0.01) 0.3 0.01 (0.02) 0.5 —-0.02 (0.02) 0.7 -0.009 (0.01) 0.5
O3 + NO2 0.02 (0.009) 0.1 -0.008 (0.02) 0.6 0.01 (0.02) 0.5 —-0.02 (0.02) 0.4 —-0.01 (0.01) 0.5
Total NO, 0.02(0.04) 0.7  —0.08(0.04) 0.03 0.04(0.04) 0.3 0.02(0.04) 0.7 -0.03(0.03) 0.4
Richness

PM,, 6 (12.0) 0.5 -5.6 (19.3) 0.8 41 (31.9) 0.2 -21.2(39.23) 0.6 —36.63 (26.02) 0.2
PI\/IZ5 2 (31.3) 0.8 4 (48.8) 1.0 12.4 (83.5) 0.9 —46.9 (98.3) 0.6 86.66 (97.69) 0.4
NO2 10.0 (20.1) 0.6 11.9 (20.1) 0.6 33.8 (45.7) 0.5 19.3 (43.8) 0.7 12.85 (43.49) 0.8
0, 1(11.6) 0.5 -3.4(23.8) 09  40.2(38.9) 0.3 -35.3(42.4) 0.4 —12.07 (31.83) 0.7
0O, +NO, 11.6 (12.4) 0.4 5 (29.4) 0.8 40.7 (38.9) 0.3 —34.0 (48.3) 0.5 —11.56 (31.99) 0.7
Total NOX —-13.8 (54.8) 0.8 -108.5(71.8) 0.1 75.1 (87.0) 0.4 112.8 (93.1) 0.2 36.31(66.23) 0.6
Evenness

PM,, 0.002 (0.0009) 0.02 -0.0002 (0.001) 0.9 0.002 (0.001) 0.2 —0.0004 (0.002) 0.8 —0.002 (0.001) 0.1
PM,, 0.003 (0.002) 0.2 0.002 (0.003) 0.5 0.0004 (0.004) 0.9 —0.002 (0.004) 0.7 0.007 (0.004) 0.1
NOZ 0.001 (0.002) 0.4 0.002 (0.001) 0.2 0.001 (0.002) 0.9 0.0003 (0.002) 0.9 —0.0003 (0.002) 0.9
O3 0.002 (0.0009) 0.1 -0.002 (0.001) 0.2 0.001 (0.002) 0.5 —0.002 (0.002) 0.4 —0.001 (0.001) 0.5
0, + NO, 0.002 (0.001) 0.03 -0.001(0.002) 0.5 0.001(0.002) 0.5 —0.002 (0.002) 0.4 —0.001 (0.001) 0.5
Total NO_ 0.002 (0.004) 0.6 —0.009 (0.004) 0.03 0.004 (0.004) 0.4 0.0008 (0.004) 0.9 —0.004 (0.003) 0.2
Simpson

PM,, 0.005 (0.002) 0.02 0.001 (0.002) 0.6 0.003 (0.002) 0.1 0.0009 (0.002) 0.7 —0.001 (0.001) 0.3
PM, , 0.007 (0.005) 0.2  0.008 (0.006) 0.2 —0.001(0.006) 0.8 —0.003 (0.005) 0.6  0.01(0.004) 0.02
NO2 0.001 (0.003) 0.7 0.005(0.002) 0.06 0.001(0.003) 0.7 0.0006 (0.002) 0.8 0.001 (0.002) 0.6
0, 0.004 (0.002) 0.04 -0.005 (0.003) 0.1 0.005 (0.003) 0.1 —0.002 (0.002) 0.4 —0.002 (0.001) 0.2
O3 + NO2 0.004 (0.002) 0.02 -0.003 (0.003) 0.5 0.005 (0.003) 0.1 —0.002 (0.003) 0.4 —-0.002 (0.001) 0.2
Total NOx 0.003 (0.009) 0.8 —-0.02 (0.009) 0.02 0.006 (0.006) 0.3 0.003 (0.005) 0.6 —0.003 (0.003) 0.2

b = beta estimate; SE = standard error.

‘Estimates were generated using linear models in which the outcome of interest was alpha-diversity (i.e., Shannon, richness, evenness, and
Simpson indices) at the 1-, 6-, 12-, 18-, and 24-month study visits; the predictor of interest was cumulative air pollution exposure from birth
to each study visit. The 1-month models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breast-
feedings per day, formula feedings per day, mode of delivery, and maternal prepregnancy BMI. At the 6-month timepoint, models were addi-
tionally adjusted for the introduction of solid foods; at subsequent timepoints, models were also adjusted for the infant Healthy Eating Index.
Bolded cells indicate statistical significance (P < 0.05).
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Table 3. Cross-Sectional Associations of Quartile of Cumulative Air Pollution Exposure with Overall Microbiome

Composition (Estimated Via Bray—Curtis Dissimilarity)

1 Month 6 Months 12 Months 18 Months 24 Months

R% P R P R% P R® P R*® P
PMm 0.02 0.2 0.02 0.8 0.02 0.2 0.02 1.0 0.02 0.2
PI\/IZ5 0.02 0.4 0.02 0.3 0.02 0.3 0.02 0.9 0.02 0.5
NO2 0.02 0.5 0.01 1.0 0.02 0.2 0.02 0.9 0.03 0.005
O3 0.02 0.1 0.01 1.0 0.03 0.1 0.02 0.6 0.02 0.7
0O, +NO, 0.03 0.3 0.03 1.0 0.05 0.2 0.04 0.9 0.04 0.03
Total NOX 0.01 0.7 0.03 0.06 0.02 0.5 0.02 0.7 0.02 0.03

“R*represents the proportion of variance in Bray—Curtis dissimilarity explained by quartile of cumulative air pollution exposure (i.e., from birth
to each study visit) at 1, 6, 12, 18, and 24 months of infant age. Results were unadjusted, except for the O, + NO, model, in which cumulative

exposure to NO, was included as a covariate. Bolded cells indicate statistical significance (P < 0.05).

exposure was associated with higher Simpson diversity both
before and after adjustment for NO, (b, = 0.004, P, , < 0.04).
After adjustment for NO,, O, was also associated with higher
evenness (b = 0.002, P = 0.03). At 6 months, total NO_exposure
was associated with lower Shannon diversity, evenness, and
Simpson diversity (b = —0.08, —0.009, —0.02; P = 0.03, 0.03,
0.02, respectively). We did not observe statistically significant
associations between alpha-diversity measures and cumulative

air pollution exposure at 12, 18, or 24 months of infant age.

Next, we used PERMANOVA to estimate the proportion
of variability in overall gut microbiome composition (deter-
mined via Bray-Curtis dissimilarity) attributable to quartiles
of cumulative air pollution exposure at each timepoint (Table
3). We found that NO, exposure at 24 months of age explained
3% of the variability in Bray—Curtis dissimilarity (P = 0.005).
We also found that the model including both NO, and O, was
significant, explaining 4% of the variability in Bray—Curtis

dissimilarity (P =0.03). We did not observe statistically signif-
icant associations between overall microbiome composition
and cumulative air pollution exposure for other pollutants or
at other study visits.

We subsequently used negative binomial models to
assess whether the abundances of gut microbial species were
cross-sectionally associated with cumulative air pollution
exposure (Table 4). The greatest number of statistically signifi-
cant associations (i.e., P, < 0.2) was observed between cumu-
lative PM, | exposure and gut microbial species abundances at
1 month of infant age — there were 37 significant associations.

In Figure 4, we summarize the associations of cumulative
PM, . exposure with gut microbial taxa abundances at 1, 6,
18, and 24 months of infant age using dendrograms, where
each branch represents a different taxonomic level; anno-
tations are added at the species level. Although we did not

Table 4. Numbers of Statistically Significant Cross-Sectional Associations Between Cumulative Air Pollution Exposure
and Gut Microbial Species at 1, 6, 12, 18, and 24 Months of Infant Age®

1 Month 6 Months

12 Months 18 Months 24 Months

P,,<0.2 P,,<0.05 P,,<02 P,<005 P,;,<02 P,;;<0.05 P,;<02 P, <005 P, <02 P, <0.05

PM,, 37 3 6 1
PM, . 0 0 8 0
NO, 20 3 10 4
0, 17 3 3 1
0, + NO, 32 10 6 3
Total NO, 8 1 6 2

21 3 5 2 0 0

4 1 14 3 33 18
10 3 16 8 3 3
16 8 13 4 7 2
22 10 5 1 22 15
12 2 19 4 17 5

*Cumulative air pollution exposure was defined as the total exposure from birth to each timepoint (i.e., 1, 6, 12, 18, and 24 months). Cells indi-
cate numbers of statistically significant associations after correction for multiple testing using the BH method at thresholds of P, < 0.2 and P,
< 0.05. Results were generated using negative binomial models, in which the outcome was the abundance of each gut microbial species. The
1-month models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeedings per day, formula
feedings per day, mode of delivery, and maternal prepregnancy BMI; an offset was included to control for the log of total microbial counts in
each sample. At the 6-month timepoint, models were additionally adjusted for the introduction of solid foods; at subsequent timepoints, mod-
els were also adjusted for the infant Healthy Eating Index. The numbers of species analyzed were 132 at 1 month, 188 at 6 months, 370 at 12

months, 541 at 18 months, and 802 at 24 months.
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A: Blautia hansenii; B: Bifidobacterium sKkRGSERBCFTRI;
C: Bifidobacterium dentium; D: Lancefieldella parvula; E: Akkermansia
muciniphila; F: Phocaeicola dorei; G: Segatella copri

18-month 24-month
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See caption for annotation.

See caption for annotation.

Figure 4. Associations of cumulative PM, _ exposure from birth to study visit with gut microbial taxa at 1, 6, 18, and 24 months of infant age. Estimates were
obtained using negative binomial models in which the exposure of interest was cumulative PM2.5 exposure and the outcome was the abundance of each gut
microbial taxon. The 1-month models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeedings per day,
formula feedings per day, mode of delivery, and maternal prepregnancy BMI; an offset was included to control for the log of total microbial counts in each
sample. At the 6-month timepoint, models were additionally adjusted for the introduction of solid foods; at subsequent timepoints, models were also adjusted
for the infant Healthy Eating Index. Negative associations are shown in red and positive associations in blue; darker colors indicate stronger associations.
Annotations are provided at the species level.

Annotations for 18-month species: A: Bifidobacterium angulatum; B: Klebsiella quasipneumoniae; C: Klebsiella variicola; D: Klebsiella pneumoniae; E: Megamonas funiformis; F:
Phascolarctobacterium succinatutens; G: Lachnoclostridium sp. YL32; H: Enterocloster clostridioformis; I: Streptococcus anginosus; J: Streptococcus

lutetiensis; K: Bacteroides intestinalis; L: Paraprevotella xylaniphila; M: Butyricimonas virosa; N: Fusobacterium ulcerans.

Annotations for 24-month species: A: Acidaminococcus intestini; B: Phascolarctobacterium succinatutens; C: Clostridium baratii; D: Romboutsia sp. CE17; E: Streptococcus anginosus; F:
Streptococcus equinus; G: Streptococcus lactarius; H: Streptococcus sp. HSISS2; I: Streptococcus sp. HSISS3; J: Streptococcus thermophilus; K: Enterococcus avium; L: Enterococcus
faecalis; M: Finegoldia magna; N: Catenibacterium mitsuokai; O: Turicibacter sanguinis; P: Turicibacter bilis; Q: Bifidobacterium adolescentis; R: Eggerthella sp. YY7918; S: Berryella
intestinalis; T: Sutterella wadsworthensis; U: Klebsiella variicola; V: Citrobacter portucalensis; W: Enterobacter cloacae; X: Enterobacter hormaechei; Y: Enterobacter asburiae; Z:
Raoultella ornithinolytica; a: Bacteroides nordii; b: Bacteroides caccae; c: Alistipes dispar; d: Alistipes ihumii; e: Paraprevotella xylaniphila; f: Parabacteroides goldsteinii.

observe statistically significant associations between PM,
and species abundances at 1 month, we observed several
associations between PM, , exposure and gut microbial spe-
cies abundances at 6, 18, and 24 months of age. For example,
postnatal exposure to PM,, was inversely associated with
Akkermansia muciniphila abundance at 6 months. At 24
months, cumulative PM, , exposure was inversely associated
with the abundance of Romboutsia sp. CE17 and positively
associated with the abundances of Alistipes dispar and
Alistipes ithumii. Plots illustrating the observed statistically
significant associations between PM, , exposure and microbial
species abundances can be found in Supplemental File 6 [6

18

months], Supplemental File 7 [18 months], and Supplemental
File 8 [24 months].

Associations of cumulative NO,_ exposure with gut
microbial taxa at 1, 6, 18, and 24 months of infant age are
summarized in Figure 5. Each branch in the figure represents
a different taxonomic level, and species-level annotations are
displayed. For example, at 1 month of infant age, cumulative
NO, exposure was positively associated with the abundances
of Dorea longicatena and Enterobacter asburiae. At 6 months,
higher cumulative NO_ exposure was associated with lower
abundance of Coprococcus comes. At 18 months, higher
cumulative NO_ exposure was associated with higher abun-
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A. Enterobacter asburiae; B: Klebsiella quasipneumoniae; C: Blautia sSC05B48;
D: Blautie obeum; E: Dorea longicatena; F: Thomasclavelia ramose; G:
Bifidobacterium longum; H: Bacteroides caccae

18-month

A: Kluyvera ascorbata; B: Enterococcus faecium; C: Clostridium perfringens;
D: Sellimonas intestinalis; E: Coprococcus comes

24-month

See caption for annotation.

See caption for annotation.

Figure 5. Associations of cumulative NO_exposure from birth to study visit with gut microbial taxa at 1, 6, 18, and 24 months of infant age. Estimates were
obtained using negative binomial models in which the exposure of interest was cumulative NOx exposure, and the outcome was the abundance of each gut
microbial taxon. The 1-month models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeedings per day,
formula feedings per day, mode of delivery, and maternal prepregnancy BMI; an offset was included to adjust for the log of total microbial counts in each
sample. At the 6-month timepoint, models were additionally adjusted for whether solid foods had been introduced; at subsequent timepoints, models were
also adjusted for the infant Healthy Eating Index. Negative associations are shown in red and positive associations are shown in blue; darker colors indicate
stronger associations. Annotations are provided at the species level.

Annotations for 18-month species: A: Megasphaera massiliensis; B: Megasphaera elsdenii; C: Phascolarctobacterium succinatutens; D: Vescimonas coprocola; E: Clostridium neonatale;

F: Eubacterium limosum; G: Eubacterium callanderi; H: Blautia argi; I: Coprococcus sp. ART55/1; J: Streptococcus anginosus; K: Streptococcus
alactolyticus; L: Escherichia fergusonii; M: Escherichia coli; N: Salmonella enterica; O: Bacteroides ovatus; P: Parabacteroides sp. CT06.

Annotations for 24-month species: A: Megasphaera massiliensis; B: Megasphaera elsdenii; C: Megasphaera hexanoica; D: Acidaminococcus intestini; E: Ligilactobacillus ruminis; F:
Enterococcus faecalis; G: Bifidobacterium angulatum; H: Bifidobacterium animalis; I: Eggerthella lenta; J: Klebsiella pneumoniae; L: Citrobacter
freundii; M: Bacteroides caccae; N: Alistipes ihumii; O: Alistipes finegoldii; P: Odoribacter splanchnicus; Q: Desulfovibrio piger.

months of infant age (Figure 6). Overall, we detected minimal
overlap in associations according to infant age. For example,

dances of several pathogenic gut bacterial species, including
Clostridium neonatale, Escherichia fergusonii, Escherichia

coli, and Salmonella enterica. As observed with cumulative
PM, . exposure, cumulative NO, exposure at 24 months was
associated with higher abundances of Alistipes ihumii and
Alistipes finegoldii. Plots illustrating the observed statistically
significant associations between NO_exposure and microbial
species abundances can be found in Supplemental File 9 [1
month], Supplemental File 10 [6 months], Supplemental File
11 [18 months], and Supplemental File 12 [24 months].

In the next analysis, we explored possible overlap between
observed associations of cumulative air pollutant exposure
and gut microbial species abundances at 1, 6, 12, 18, and 24

we identified 33 microbial species uniquely associated with
cumulative PM, A exposure at 1 month, five at 6 months, 17 at
12 months, and four at 18 months. There were two overlap-
ping associations between the 1- and 6-month timepoints, two
between the 1- and 12-month timepoints, and one between
the 12- and 18-month timepoints.

Prior-Month Air Pollution Exposure and the Gut
Microbiome

We investigated whether short-term air pollution exposure
(i.e., prior-month exposure at each study visit) was associated
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Figure 6. Venn diagrams summarizing the numbers of statistically significant associations between cumulative air pollution exposure and
gut microbial species abundance across timepoints. These Venn diagrams summarize the number of statistically significant associations
across different timepoints. For example, in the top right diagram, there were 33 significant associations between gut microbial species

abundance and PM

10°

indicated by the green circle. The 1-month models were adjusted for infant age, infant sex, socioeconomic status, season

of visit, maternal age, breastfeedings per day, formula feedings per day, mode of delivery, and maternal prepregnancy BMI. An offset was
included to adjust for the log of the total number of microbial counts in each sample. At the 6-month timepoint, we additionally adjusted
for whether solid foods had been introduced; at subsequent timepoints, we also adjusted for the infant Healthy Eating Index. Findings were

considered statistically significant if PBH < 0.2.

with the gut microbiome. Table 5 presents the number of gut
microbial species significantly associated (P, < 0.2 or P, <
0.05) with prior-month exposure to each air pollutant. Among
the gut microbial species associated with prior-month PM,_,
NO,, and O, exposures at 1 month, all were also associated
with cumulative PM, exposure at 1 month. At 6 months,
Bifidobacterium dentium abundance was inversely associ-
ated with prior-month PM,  and PM, , exposures; this species
was also positively associated with cumulative PM, expo-
sure at 24 months. Similarly, Klebsiella michiganensis was
associated with both cumulative and prior-month NO, expo-
sures. At 18 months, there were 18 significant associations

20

between PM, , exposure and species abundance, only one of
which (Fusobacterium ulcerans) was also identified in the
cumulative analyses. Among the four significant associations
between PM, , exposure and species abundance at 18 months,
two — Klebsiella variicola and Bifidobacterium angulatum
— were also identified in the cumulative analyses. Of the
19 statistically significant associations between prior-month
NO, exposure and species abundance, only one (Bacteroides
intestinalis) overlapped with cumulative exposure findings.
In contrast, all species significantly associated with NO_
exposure were also identified in the cumulative analysis.
Among nine statistically significant associations between O,
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Table 5. Numbers of Statistically Significant Cross-Sectional Associations Between Prior-Month Air Pollution Exposure
and Gut Microbial Species at 1, 6, 12, 18, and 24 Months of Infant Age®

1 Month 6 Months

12 Months 18 Months 24 Months

P,,<02 P,,<005 P, ,<02 P, ,<005 P, <02 P, ,<0.05 P, ,<02 P, <005 P, <02 P, A <0.05

PM,, 9 5 6 0
PM, 4 4 3 3
NO, 6 4 8 5
0, 11 4 3 0
0, +NO, 27 4 1 0
NO, 7 1 10 3

1 1 18 6 27 12
8 0 4 2 20 13
8 4 19 2 18 8
14 6 9 7 22 7
15 2 6 6 13 6
29 2 9 4 20 12

*Prior-month air pollution exposure was defined as the exposure during the month preceding each study visit (i.e., at 1, 6, 12, 18, and 24
months). Cells indicate the number of statistically significant results after correction for multiple testing using the BH method at P, < 0.2 and
P, <0.05. Results were generated using negative binomial models in which the outcome was the abundance of each gut microbial species. The
1-month models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeedings per day, formula
feedings per day, mode of delivery, and maternal prepregnancy BMI; an offset was included to control for the log of total microbial counts in
each sample. At the 6-month timepoint, models were additionally adjusted for the introduction of solid foods; at subsequent timepoints, mod-
els were also adjusted for the infant Healthy Eating Index. The numbers of species analyzed were 132 at 1 month, 188 at 6 months, 370 at 12

months, 541 at 18 months, and 802 at 24 months.

exposure and species abundance, three were also observed
in the cumulative analyses. Overall, the 24-month findings
were similar to those at 18 months, showing limited overlap
between species associated with cumulative air pollution
exposure and those associated with prior-month exposure.

We also assessed the associations of prior-month air pollut-
ant exposure with alpha-diversity measures, including Shan-
non, richness, evenness, and Simpson indices (Table 6). At 1
month of age, O, exposure was associated with higher Simpson
diversity (adjusted for NO, exposure) (P = 0.04). At 6 months
of age, total NO_ exposure was associated with lower Shan-
non diversity, evenness, and Simpson diversity (P < 0.03).
Next, we assessed the associations of prior-month air pollu-
tion exposure with overall microbiome composition, using
the beta-diversity measure Bray—Curtis dissimilarity. We
found that quartiles of prior-month NO, exposure explained
5% of the variation in Bray—Curtis dissimilarity at 24 months
of infant age (P = 0.007) (Table 7).

AIM 1 FECAL METABOLOME

Population characteristics of participants included in the
fecal metabolomics analyses are shown in Table 8. Study
visits occurred at approximately 1, 6, 12, 18, and 24 months
of infant age. At the initial study visit, participants with fecal
metabolomics data were 46% male, and 73% had been born
vaginally. Participants were selected to maximize the number
of complete fecal samples across time. Changes in non-time-
varying characteristics over time reflect missing follow-up
data for some participants. At the 1-month timepoint, three
participants were missing fecal metabolomics data; at 6
months, 11 participants were missing these data; at 12 months,
seven participants were missing these data; at 18 months, four
participants were missing these data; and at 24 months, one
participant was missing these data (Supplemental Figure 1).
At 1 month of age, infants received an average of 6.6 human

milk feedings per day (range: 0-8); they were introduced to
solid foods at a mean age of 5.9 months (range: 2—12 months).

Prenatal Air Pollution Exposure and the Fecal
Metabolome at 1 Month

As previously described,* prenatal exposures to PM,,
PM, ., NO,, and NO_ were associated with the intensities
of 51 Level-1 metabolites (Figure 7). For instance, prenatal
PM, , exposure was positively associated with pyridoxamine
intensity; prenatal PMm, PMz,s’ and NOZ exposures were pos-
itively associated with 4-hydroxy-phenylglycine/pyridoxal
intensity. Pyridoxamine and 4-hydroxy-phenylglycine/pyri-
doxal are both involved in vitamin B6 metabolism.*® Prenatal
PM, and PM, exposures were both positively associated
with the intensities of thymidine and beta-alanine/sarcosine,
metabolites involved in pyrimidine metabolism.*® Finally,
prenatal PM, . and NO, exposures were inversely associated
with the intensities of 3-methoxy-4-hydromandelate/vanil-
lylmandelate and tyrosine, which are involved in tyrosine
metabolism.?® We also explored the associations of prenatal
NO, exposure with 1-month metabolite intensities, revealing
that arabinose/xylose/ribose intensities were inversely asso-
ciated with prenatal NO,_ exposure (P, = 0.001). Associations
of prenatal O, exposure with fecal metabolite intensity at 1
month were also assessed; no statistically significant asso-
ciations were detected, either before or after adjustment for
prenatal NO, exposure.

Cumulative Air Pollution Exposure and the Fecal
Metabolome

Linear multivariate models were used to assess whether
cumulative postnatal exposures to PM, , PM, ,, NO,, O,, and
NO, were associated with the intensities of Level-1 metab-
olites at 1, 6, 12, 18, and 24 months of age (Table 9, Table
10). At the 6-month study visit, PM, , exposure was positively
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Table 6. Cross-Sectional Associations of Prior-Month Air Pollution Exposure with Gut Microbiome Alpha-Diversity at 1,

6, 12, 18, and 24 Months of Infant Age®

1 Month 6 Months 12 Months 18 Months 24 Months
b (SE) P b (SE) P b (SE) P b (SE) P b (SE) P

Shannon
PM10 0.01 (0.008) 0.1 -0.008 (0.008) 0.3 0.002 (0.007) 0.8 -0.02 (0.01) 0.2 0.007 (0.007) 0.3
PMZ.5 0.008 (0.02) 0.6 -0.02 (0.01) 0.2 -0.01 (0.02) 0.5 -0.01 (0.02) 0.6 0.03 (0.01) 0.048
NO2 0.008 (0.01) 0.6 0.001 (0.01) 0.9 -0.02 (0.01) 0.1 0.02 (0.01) 0.2 —0.01 (0.009) 0.2
O3 0.01 (0.007) 0.2 0.0006 (0.008) 0.9 0.01 (0.007) 0.1 -0.0009 (0.007) 0.9 0.008 (0.005) 0.1
O3 + NOZ 0.01 (0.008) 0.1 0.002 (0.009) 0.9 0.008 (0.008) 0.3 0.003 (0.008) 0.7 0.006 (0.005) 0.3
Total NOX —-0.004 (0.03) 0.9 —0.07 (0.03) 0.03 0.03 (0.04) 04 0.007 (0.03) 0.8 —0.02 (0.02) 0.4

Richness
PM10 0(11.2) 0.8 -15.5(14.6) 0.3 11.9 (16.3) 0.5 -24.3 (25.1) 0.3 22.9 (15.5) 0.1
PM, —1.4(22.00 1.0  —24.2(23.0) 0.3 -6.1(33.9) 0.9 6.4 (47.2) 0.9 63.8 (28.5) 0.03
NO, 6(18.2) 0.8  -15.1(20.5) 0.5 —29.0(25.2) 0.2 36.7(30.8) 0.2  -16.8(19.9) 0.4
0, 6(10.8) 0.7 -2.3(14.5) 0.9 27.6 (16.2) 0.1 -8.2(16.1) 0.6 12.1(10.7) 0.3
0, +NO, 7(11.5) 0.6 -8.9(16.8) 0.6 24.4 (17.2) 0.2 8(17.6) 1.0 2(11.8) 0.4
Total NOX -28.2 (48.1) 0.6 -86.3 (58.5) 0.1 61.0 (78.8) 0.4 7 (61.4) 0.9 —0.08 (43.9) 1.0

Evenness
PMm 0.002 (0.0009) 0.08 -0.0008 (0.0008) 0.4 0.0001(0.0007) 0.9 -0.002 (0.001) 0.1 0.0006 (0.0007) 0.4
PMM 0.001 (0.002) 0.5 -0.002 (0.001) 0.2 -0.001(0.002) 0.4 -0.001(0.002) 0.5 0.002 (0.001) 0.1
NO2 0.0009 (0.001) 0.6 0.0004 (0.001) 0.7 -0.002 (0.001) 0.1 0.002 (0.001) 0.3 -0.001 (0.0009) 0.2
O3 0.001 (0.0009) 0.1 0.00002 (0.0008) 1.0 0.001 (0.0007) 0.2 -0.000003(0.0007) 1.0 0.0008 (0.0005) 0.1
O3 + NOZ 0.002 (0.0009) 0.09 0.0003 (0.001) 0.8 0.0007 (0.0008) 0.4 0.0004 (0.0008) 0.6 0.0006 (0.0005) 0.3
Total NOX —0.0001 (0.004) 1.0 —0.008 (0.003) 0.02 0.003 (0.004) 0.4 0.0008 (0.003) 0.8 —0.002 (0.002) 0.3

Simpson
PM10 0.003 (0.002) 0.1 -0.002 (0.002) 0.3 0.0005 (0.001) 0.7 -0.002(0.001) 0.1 0.0006 (0.0007) 0.4
PMZ.S 0.002 (0.004) 0.5 -0.004 (0.003) 0.2 -0.002(0.002) 0.4 -0.003(0.002) 0.2 0.002 (0.001) 0.1
NOZ 0.0004 (0.003) 0.9 0.0009 (0.002) 0.7 -0.002 (0.002) 0.2 0.001 (0.002) 0.4 -0.0006 (0.0009) 0.5
0, 0.003 (0.002) 0.1 —0.0006 (0.002) 0.7 0.002 (0.001) 0.1 0.00007 (0.0008) 0.9 0.0005(0.0005) 0.3
0, +NO, 0.004 (0.002) 0.04 —0.0003 (0.002) 0.9 0.002 (0.001) 0.2 0.0005(0.0009) 0.6 0.0003 (0.0005) 0.6
Total NO —0.004 (0.008) 0.7 —0.02 (0.007) 0.02 0.0003 (0.005) 1.0 0.0008 (0.003) 0.8 —-0.003(0.002) 0.2

b = beta estimate; SE = standard error.

*Estimates were generated using linear models in which the outcome of interest was alpha-diversity (i.e., Shannon, richness, evenness, and
Simpson indices) at the 1-, 6-, 12-, 18-, and 24-month study visits; the predictor of interest was air pollution exposure during the month pre-
ceding the visit. The 1-month models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeed-
ings per day, formula feedings per day, mode of delivery, and maternal prepregnancy BMI. At the 6-month timepoint, models were additionally
adjusted for the introduction of solid foods; at subsequent timepoints, models were also adjusted for the infant Healthy Eating Index. Bolded

cells indicate statistical significance (P < 0.05).

associated with the intensities of glycerate, alpha-aminoadi-
pate/methyl-glutamate, acetyl-glutamic acid, omega-hydroxy-
dodecanoic acid, and hexyl-glutathione. At the 12-month
study visit, PM,, exposure was positively associated with the
intensity of trans-cinnamaldehyde. At 6 months, cumulative
NO, exposure was positively associated with the intensities of
butyrate/isobutyrate, glycerate, glutamic acid/methyl-aspar-
tic acid, acetyl-glutamic acid, and anserine; it was inversely
associated with monoglyceride(14:0/0:0/0:0). At 18 months,
cumulative O, exposure was inversely associated with the
intensity of omega-hydroxydodecanoic acid. At 24 months,
cumulative O, exposure was positively associated with the
intensities of butyrate/isobutyrate, succinate/methylmalonic
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acid, and dihydroxymandelic acid, both before and after
adjustment for cumulative NO, exposure. At the 1-month
study visit, NO_ exposure was inversely associated with
the intensity of arabinose/xylose/ribose. At 6 months, NO_
exposure was inversely associated with the intensities of 17
metabolites, including hypoxanthine, indole-3-acetic acid,
and hexanoylcarnitine. At 24 months, NO_ exposure was
inversely associated with the intensity of acetylputrescine.

Prior-Month Air Pollution Exposure and the Fecal
Metabolome

We also explored whether prior-month exposures to PM
PM,,, NO,, O,,

2.5°

10°
and NO_ were associated with metabolite
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Table 7. Associations of Quartile of Prior-Month Air Pollution Exposure with Overall Microbiome Composition

(Estimated Via Bray—Curtis Dissimilarity) at 1, 6, 12, 18, and 24 Months

1 Month 6 Months 12 Months 18 Months 24 Months

R P R* P R* P R P R* P
PI\/I10 0.04 0.051 0.02 0.5 0.02 0.3 0.02 0.3 0.03 0.7
PM&5 0.009 0.7 0.02 0.6 0.02 0.7 0.02 1.0 0.03 0.7
NOZ 0.01 0.7 0.03 0.1 0.02 0.7 0.03 0.1 0.05 0.007
0, 0.009 0.7 0.02 0.5 0.02 0.2 0.03 0.2 0.03 0.8
O3 + NO2 0.01 0.9 0.05 0.2 0.04 0.5 0.05 0.2 0.07 0.06
Total NOx 0.001 0.8 0.02 0.3 0.02 0.7 0.02 0.8 0.02 0.9

*R’represents the proportion of variance in Bray—Curtis dissimilarity explained by quartile of exposure to air pollution during the month prior
to each study visit at 1, 6, 12, 18, and 24 months of infant age. Results were unadjusted, except for the O, + NO, model, in which cumulative

exposure to NO, was included as a covariate. Bolded cells indicate statistical significance (P < 0.05).
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Figure 7. Prenatal PM, , PM, , NO,,
and NO_ exposures were associated
with level-1 metabolites at 1 month
of infant age. Plus (+) denotes
metabolites that were positively
associated with air pollution
exposure. All other metabolites were
inversely associated. Results were
generated using multivariable linear
models adjusted for infant age, infant
sex, socioeconomic status, season of
visit (warm vs. cold), maternal age,
and breastmilk and formula feedings
per day. Only results significant at
PBH < 0.2 are shown. The association
between prenatal O, exposure

and fecal metabolite intensity was
also assessed, but no statistically
significant associations were
identified regardless of adjustment
for prenatal NO, exposure. (Source:
Adapted with permission from
Holzhausen et al. 2024; Creative
Commons license CC BY-NC-ND 4.0.)
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Table 8. Characteristics of Mother—Infant Dyads with Fecal Metabolomics Data from the Southern California Mother’s
Milk Study, Enrollment from 2016 to 2019°

1 Month 6 Months 12 Months 18 Months 24 Months
Variable (N =124) (N =116) (N =120) (N =123) (N =126)
Maternal characteristics Mean = SD; n (%) Mean = SD; n (%) Mean = SD; n (%) Mean = SD; n (%) Mean = SD; n (%)
Age (years) 29.0+£6.3 29.4+6.3 29.8 +6.4 30.4+6.4 30.7 £ 6.2
Prepregnancy BMI (kg/m?)® 28.6 +5.8 28.4+5.7 28.6+5.9 28.7+5.8 28.6 +5.7
SESPe 26.6 +12.1 26.4+11.9 27.1+12.1 26.8 +12.0 26.6 +12.0
Infant characteristics
Age (days) 32.6 +3.3 186.0 £ 8.9 367.8 £ 10.6 551.5 +19.2 751.9 + 46.6
Sex"(male, female, %male) 57,67, 46% 55, 61, 47% 60, 60, 50% 59, 64, 48% 59, 67, 47%
Delivery mode® (CS, vaginal, %CS) 33, 91, 27% 31, 85, 27% 30, 90, 25% 32,91, 26% 32,94, 25%
Breastfeedings per day 6.6 24 3.1+3.4 22+238 20x27 1.6 +2.4
Formula feedings per day 2427 3.1+29 22+24 0917 09+1.8
Age at solid food introduction - 59+ 1.6 5.8+1.6 59+ 1.6 59+ 1.6
(months)®
Season of visit! (warm, cool, %warm) 55, 69, 44% 54, 62, 47% 65, 55, 54% 61, 62, 50% 58, 68, 46%
Air pollution measures
Prenatal PMlO (ng/md)° 30.3+4.0 31.7 £6.9 309+7.1 30.5+4.0 30.3 +4.0
Prenatal PM, ; (ug/m®)° 12.0 1.2 11.9 + 1.2 11.8 +1.2 12.0 £ 1.2 11.9 + 1.2
Prenatal NO, (ppb)® 18.2 2.5 18.1+2.5 18.0 £ 2.5 18.1+2.5 18.1+ 2.5
Prenatal O, (ppb)® 43.0+3.7 43.0+3.7 43.0+3.7 43.1+3.7 43.0+3.6
Prenatal NO_(ppb) 4.2+2.4 4.2+2.4 4.2+2.4 4.2+2.4 4.2+2.4
Individual mean PM,  (pg/m?)° 29.6 + 3.2 29.6 + 3.2 29.7 + 3.2 29.5 + 3.2 29.6 + 3.2
Individual mean PM, , (ng/m?)® 11.9+1.6 11.8+1.6 11.8 + 1.7 11.8+1.6 11.8+1.6
Individual mean NO, (ppb)® 17.1+24 16.9+2.2 17.1+£2.3 17.0+ 2.4 17.0+ 2.4
Individual mean O, (ppb) 41.8 +4.1 42.0 +4.0 41.9+4.1 41.9+4.1 41.9+4.1
Individual mean NO_(ppb)® 3.6+1.8 3.6+1.8 3.6+1.9 3.6+1.8 3.6+1.8
Fluctuation in PM,  (ng/m?) 2.8 +6.8 2.2 + 6.4 1.2+5.4 -3.9+5.2 -3.7+£5.7
Fluctuation in PM, , (png/m°) 0.6 +3.5 0.7+ 3.6 0.2+2.8 -1.0+2.8 -0.5+2.4
Fluctuation in NO, (ppb) 1.9+ 6.1 1.5+7.6 -0.9+4.9 -1.1+6.2 -1.2+4.5
Fluctuation in O, (ppb) 09+73 01+7.9 0.0+5.6 -0.7 £8.2 -0.3+£6.3
Fluctuation in NO, (ppb) 0.1+0.9 -0.06 £ 0.9 -0.1+ 0.6 0.1+0.9 0.0+0.8
Cumulative PM,  (png/m?) 32.3x7.1 32.3+4.9 32.2+3.6 31.0+3.1 30.0+2.7
Cumulative PM, . (ng/m°) 12.4 + 3.9 12.5+ 2.0 12.6 £ 1.4 12.3+1.1 12.1+0.9
Cumulative NO, (ppb) 18.9+7.2 19.0£5.1 18.4 £ 2.6 17.9+2.7 17.4£2.1
Cumulative O, (ppb) 42.7 £ 8.5 41.8+4.9 41.9+3.0 41.2+2.8 41.4+2.2
Cumulative NO_(ppb) 36+1.9 3.6+1.8 3.5+1.8 3.5+1.8 3.5+1.8
Prior-month PM,  (ng/m?) 324+7.6 31.7£6.9 30.9+7.0 25.8 +5.0 26.4 £ 6.9
Prior-month PM, | (ng/m?) 12.5 +4.2 12.4+4.1 12.0+ 3.2 10.8 £ 2.6 11.4 £ 3.0
Prior-month NO, (ppb) 18.9+7.5 18.4+7.1 16.2 £ 6.1 15.9+5.3 15.8 £5.6
Prior-month O3 (ppb) 42.7 £ 8.7 42.1+8.4 41.9+7.9 41.2+8.0 41.5+8.1
Prior-month NO_ (ppb) 3.7+2.0 3.5+£2.0 3.5+1.9 3.6+1.9 3.5+1.7

“Data are reported as mean and SD unless otherwise noted. (Source: Adapted with permission from Holzhausen et al. 2024; Creative Commons
license CC BY-NC-ND 4.0.)

"Non-time-varying (i.e., assessed at a single timepoint and not expected to change over time); differences across time are due to participant miss-
ingness at specific timepoints (P_; > 0.2).

°SES was estimated using a modified version of the Hollingshead Index. Range for study population: 3—-63.

dStudy visits occurring between April 1 and September 30 were considered warm season; all other visits were considered cool season.

°Grand mean of prior month air pollution for each participant visit.
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Table 9. Cross-Sectional Associations of Cumulative Postnatal PM, , NO,, and O, Exposures with Metabolite Intensities

at 6, 12, 18, and 24 Months of Infant Age®

6 Months 12 Months 18 Months 24 Months
Metab. P, Metab. P, Metab. P, Metab. P,
Glycerate 10.07| Trans- 10.07
- - cinnamaldehyde
Alpha-aminoadipate/ 10.15
methyl-glutamate
PM,, | Acetyl-glutamic acid 10.15
Omega- 10.15
hydroxydodecanoic acid
Hexyl-glutathione 10.15
Butyrate/isobutyrate 10.08
Glycerate 10.08
Glutamic acid/ 10.08
methyl-aspartic acid
NO, yl-aspartic aci
Acetyl-glutamic acid 10.08
Anserine 10.08
Monoglycer- 1 0.18
ide(14:0/0:0/0:0)
Omega- } 0.11 | Butyrate/isobu- 1 0.09
hydroxydodeca- tyrate
noic acid -
o Succinate/methyl- 1 0.09
3 malonic acid
Dihydroxyman- 1 0.09
delic acid
Butyrate/isobu- 1 0.09
tyrate
0
+3 Succinate/methyl- 1 0.09
malonic acid
NO, :
Dihydroxyman- 1 0.09
delic acid

Metab. = metabolite.

“Results were generated from multivariable linear models in which the outcome of interest was log-transformed metabolite intensity and the pri-

mary predictor was cumulative air pollution exposure (from birth to the timepoint of interest). Models were adjusted for infant age (in days),
infant sex, socioeconomic status, season of visit, maternal age, formula and breastfeeding frequency, and whether the infant had begun to eat
solid foods. Arrows represent the direction of association. Shaded cells indicate no statistically significant associations for that exposure and
timepoint. No statistically significant results were observed for PM, ; or any exposure at 1 month of infant age. Results shown were significant
after multiple testing correction using the BH procedure (P, < 0.2). Results from both HILIC and C18 columns are included.

intensities at 1, 6, 12, 18, and 24 months of age (Table 11). At
6 months, PM  exposure was inversely associated with the
intensities of two metabolites, including 4-hydroxy-phenyl-
glycine/pyridoxal. PM, . exposure at 6 months was also
inversely associated with the intensities of 4-hydroxy-phenyl-
glycine/pyridoxal and five other metabolites. At 18 months,
prior-month PM, , exposure was inversely associated with the
intensities of beta-alanine/sarcosine/alanine and melatonin.
Prior-month NO, exposure was inversely associated with the
intensities of two metabolites at 6 months and six metabolites

at the 12-month study visit. Before adjustment for NO, expo-
sure, O, exposure was positively associated with histidine
intensity at 12 months. After adjustment for NO, exposure,
O, exposure was inversely associated with the intensities of
arabinose/xylose/ribose (6 months) and 2,6-dihydroxypyri-
dine (24 months); it was positively associated with cadaverine
and carnitine intensities at 24 months. Similar to cumulative
NO, exposure, we found that prior-month NO, exposure was
inversely associated with the intensities of 19 metabolites
(Table 12).
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Table 10. Cross-Sectional Associations of Cumulative Postnatal NO_Exposure with Metabolite Intensities at 1, 6, and 24

Months of Infant Age®

1 Month 6 Months 24 Months
Metab. P, Metab. P, Metab. P,
Arabinose/xylose/ribose | 0.003 Aminophenol (2, 3, or 4) 1 0.18 Acetylputrescine 10.18

Indole 10.18
Imidazoleacetate 10.18
Asparagine® 10.18
Hypoxanthine 10.18
Urocanate 10.18
Glutamic acid/aspartate 1 0.18
Methionine 10.18

NO, Alpha-aminoadipate/ 1 0.18
methyl-glutamate
Pyridoxine/noradrenaline 1 0.18
Indole-3-acetic acid 10.18
Methylhippurate 1 0.18
Succinyl-homoserine 10.18
Hexanoylcarnitine 10.18
Linoleate 10.18
Glutamic acid/methyl-
aspartic acid 1 0.12
Dethiobiotin 10.12

Metab. = metabolite.

aResults were generated from multivariable linear models in which the outcome of interest was log-transformed metabolite intensity and the pri-
mary predictor was cumulative air pollution exposure (from birth to the timepoint of interest). Models were adjusted for infant age (in days),
infant sex, socioeconomic status, season of visit, maternal age, formula and breastfeeding frequency, and whether the infant had begun to eat
solid foods. Arrows represent the direction of association. No statistically significant associations were identified at 12 or 18 months of infant
age. Results shown were significant after correction for multiple testing using the BH procedure (P, < 0.2). Results from both HILIC and C18

columns are included.
"Consistent with previous publications.

AIM 2 GUT MICROBIOME

Prenatal Air Pollution Exposure and the Longitudinal
Gut Microbiome

We first assessed whether associations existed between
prenatal air pollution exposure and the longitudinal
abundances of gut microbial taxa via longitudinal negative
binomial models; we incorporated an offset for the log of total
bacterial counts and a random intercept to adjust for repeated
measures among infants. We found that prenatal exposures to
PM, , PM, , NO,, O,, and NO_were associated with longitu-
dinal changes in the abundances of several microbial species
(Figure 8). For instance, higher prenatal PM, exposure was
associated with lower abundance of Finegoldia magna and
higher abundances of three Enterobacter species. Higher pre-
natal PM, , exposure was associated with lower abundances of
three Megasphaera species and two Roseburia species. Higher
prenatal NO, exposure was associated with lower abundances
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of Akkermansia muciniphila and three Megasphaera species,
as well as increased abundances of three Klebsiella species.
Finally, higher prenatal O, exposure was associated with
lower abundances of several Bifidobacterium species.

Postnatal Air Pollution Exposure and the Longitudinal
Gut Microbiome

We next assessed whether postnatal fluctuations in air
pollution exposure were associated with alpha-diversity
(i.e., Shannon diversity, richness, evenness, and Simpson
diversity) using linear mixed-effects models. In these models,
the outcome of interest was alpha-diversity, and the predictor
of interest was the deviation in prior-month exposure from
the individual’s long-term mean (i.e., the grand mean of
prior-month air pollution exposure). Overall, we did not find
statistically significant associations (P, > 0.05) between pri-
or-month deviations in air pollution exposure and alpha-di-
versity (Table 13).
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Table 11. Cross-Sectional Associations of Prior-Month PM
6, 12, 18, and 24 Months of Infant Age®

PM

10’

NO,, and O, Exposures with Metabolite Intensities at

2.5°

6 Months 12 Months 18 Months 24 Months
Metabolite P, Metab. . Metab. P, Metab. P,
4-Hydroxy-phenyl- | 0.08
lycine/pyridoxal
PM,, gly Py
2-,4-Quinolinecar- | 0.08
boxylic acid
4-Hydroxy-phenyl- | 0.11 Beta-alanine/ 1 0.14
glycine/pyridoxal sarcosine/alanine
Indole-3-acetic acid | 0.11
Gamma-linolenic 10.15
PM, . acid
Aminophenol (2,3, |0.18 Melatonin 10,11
or 4)
Methylvanillate 10.18
Phosphocholine 1 0.18
Pantothenic acid 1 0.06| Methoxytyramine | 0.14
(B5) Salsolinol 10.14
NO Linoleate 1 0.06 | Maleamate 10.198
: Valine/norvaline 10.198
Pyridoxate 10.198
Methoxytyrosine 10.198
0, Histidine 10.19
Arabinose/xylose/ | 0.17 Cadaverine 10.12
o) ib
. : rbose 2,6-Dihydroxy-  10.12
NO pyridine
’ Carnitine 10.19

Metab. = metabolite.

“Results were generated from multivariable linear models in which the outcome of interest was log-transformed metabolite intensity and the pri-
mary predictor was cumulative air pollution exposure (from birth to the timepoint of interest). Models were adjusted for infant age (in days),
infant sex, socioeconomic status, season of visit, maternal age, formula and breastfeeding frequency, and whether the infant had begun to eat
solid foods. Arrows represent the direction of association. Shaded cells indicate no statistically significant associations for that exposure and
timepoint. No statistically significant associations were identified at 1 month of infant age. Results shown were significant after correction for
multiple testing using the BH procedure (P, < 0.2). Results from both HILIC and C18 columns are included.

Next, we assessed the relationships of postnatal fluc-
tuations in air pollution exposure and gut microbial taxa
abundances via longitudinal negative binomial models (Table
14). After correction for multiple testing using the BH proce-
dure, we found the greatest number of statistically significant
associations at the species level. Specifically, each pollutant
examined was associated with gut bacterial species abun-
dances (P, < 0.05), including PM, (n = 18 species), PM, , (n
= 6 species), NO, (n = 9 species), O, (n = 2 species, without
adjustment for NO,), O, (n = 8 species, with adjustment for
NO,), and NO_(n = 6 species).

In Figure 9, we summarize the longitudinal associations
of fluctuations in postnatal air pollution exposure with the
abundances of infant gut microbial taxa during the first 2

years of life for selected air pollutants. Overall, we observed
statistically significant associations between fluctuations in
PM ,PM, ,NO,, O,, and NO_exposures and the abundances
of several gut microbial taxa. For example, PM, j exposure was
inversely associated with the abundances of Akkermansia
muciniphila and Dysosmobacter welbionis; it was positively
associated with the abundance of Clostridium neonatale.
Fluctuations in NO, exposure were positively associated with
the abundances of Klebsiella michiganensis and Raoultella
ornithinolytica. O, exposure fluctuations were positively asso-
ciated with Klebsiella pneumoniae and Klebsiella variicola
abundances; they were inversely associated with Lactococcus
lactis abundance, both before and after adjustment for NO,.
Finally, NO, exposure fluctuations were positively associated
with the abundance of Raoultella ornithinolytica.
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Table 12. Cross-Sectional Associations of Prior-Month NO_Exposure with Metabolite Intensities at 1, 6, 12, and 18

Months of Infant Age®

1 Month 6 Months 12 Months 18 Months
Metab. P, Metab. P, Metab. P, Metab. P,
Arabinose/ 10.001  Aminophenol (2, 10.09 Tyrosine 1 0.14  Indole-3-acetic 1 0.10
xylose/ribose 3, or 4) acid
Hypoxanthine 10.09
Indole-3-acetic 1 0.09
acid
Pyridoxine/ 10.10
noradrenaline
Succinyl- 10.15
homoserine
4-Hydroxy- 10.17
phenylglycine/
pyridoxal
Methyl-ecgonine 10.17
NO, Indole 10.19
Phenethylamine 1 0.19
4-Pyridoxate 10.19
Hexanoyl carnitine | 0.19
Guanosine 10.19
5’-diphosphoman-
nose
Dihydrouracil (5,6) | 0.19
Glutamic acid/ 1 0.09
methyl-aspartic
acid
Dethiobiotin 1 0.09
Glycerate 10.09

Metab. = metabolite.

“Results were generated from multivariable linear models in which the outcome of interest was log-transformed metabolite intensity and the pri-
mary predictor was cumulative air pollution exposure (from birth to the timepoint of interest). Models were adjusted for infant age (in days),
infant sex, socioeconomic status, season of visit, maternal age, formula and breastfeeding frequency, and whether the infant had begun to eat
solid foods. Arrows represent the direction of association. No statistically significant associations were identified at 24 months of infant age.
Results shown were significant after correction for multiple testing using the BH procedure (P, < 0.2). Results from both HILIC and C18 col-

umns are included.

AIM 2 FECAL METABOLOME

Prenatal Air Pollution Exposure and the Longitudinal
Fecal Metabolome

We subsequently assessed the associations of prenatal
exposures to PM, , PM, , NO,, O,, and total NO_with longitu-
dinal postnatal fecal metabolite intensity (Figure 10). Overall,
we observed that prenatal exposures to PM,, and NO, were
longitudinally associated with fecal metabolite intensities.
However, there were no statistically significant associations
(P, < 0.2) between prenatal PM, , NO, or O, exposures and
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fecal metabolite intensity. Higher prenatal exposures to NO,
and PM, _ were each associated with lower intensities of phe-
nylalanine, histidine, and tyrosine. Higher NO, exposure was
additionally associated with lower intensity of methionine.

Postnatal Air Pollution Exposure and the Longitudinal
Fecal Metabolome

Finally, we explored whether fluctuations in air pollution
exposure (i.e., PM, , PM, ,NO,, O,,and NO ) were associated
with fecal metabolite intensities from 1 to 24 months of
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Prenatal PM,, Prenatal PM, 5

A: Enterobacter roggenkampii, B: E. cloacae, C: E. kobei, D: Klebsiella variicola,
E: Serratia marcescens, F: Veillonella nakazawae G: V. rogosae, H: Clostridium
butyricum, I: Coprococcus eutactus, J: Finegoldia magna, K: Catenibacterium

mitsuokai, L: Alistipes finegoldii, M: Bifidobacterium dentium.
Prenatal NO, Prenatal O;
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See caption for annotation. See caption for annotation.

Figure 8. Prenatal air pollution was longitudinally associated with the abundances of infant gut microbial taxa. Estimates were obtained using longitudinal
negative binomial models where the exposure of interest was prenatal air pollution exposure, and the outcome was the abundance of each gut microbial taxon.
Models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeeding frequency, formula feeding frequency, mode of
delivery, maternal prepregnancy BMI, infant mean Healthy Eating Index, and whether the infant had begun solid foods. An offset was included to control for the
log-transformed total number of sequence counts.

Annotations for PM, ;: A: Enterobacter roggenkampii, B: E. cloacae, C: E. kobei, D: E. ludwigii, E: Klebsiella aerogenes, F: K. quasipneumoniae, G: K. variicola, H: Streptococcus pyogenes, I:
S. equinus, J: S. pasteurianus, K: S. gallolyticus, L: S. lutetiensis, M: Lactobacillus johnsonii, N: Listeria monocytogenes, O: Paenibacillus polymyxa, P: Megasphaera hexanoica,

Q: M. elsdenii, R: M. stantonii, S: Vescimonas coprocola, T: Clostridium estertheticum, U: C. sporogenes, V: Butyrivibrio fibrosolvens, W: Lachnoanaerobaculum umeaense, X:

Blautia obeum, Y: B. wexlerae, Z: B. pseudococcoides, a: B. argi, b: Anaerocolumna sedimenticola, c¢: Anaerostipes rhamnosivorans, d: Novisyntrophococcus fermenticellae,

e: Roseburia intestinalis, f: R. hominis, g: Dorea formicigenerans, h: Anaeromicrophila herbilytica, i: Coprococcus catus, j: C. eutactus, k: Enterocloster asparagiformis, 1:

Pseudobutyrivibrio xylanivorans, m: Faecalitalea cylindroides, n: Thomasclavelia spiroformis, o: Faecalibacillus intestinalis, p: Bacteroides intestinalis, q: B. sp. DH3716P,

12 B. stercoris, s: Phocaeicola dorei, t: Parabacteroides merdae, u: P. goldsteinii, v: Alistipes finegoldii, w: Bifidobacterium sp. FKU, x: Campylobacter jejuni.

Annotations for NO,: A. Enterobacter roggenkampii, AA: Bifidobacterium catenulatum, AB: B. bifidum, AC: B. breve, AD: B. adolescentis, AE: B. dentium, AF: Rothia mucilaginosa, AG:
Gordonibacter pamelaeae, AH: Akkermansia muciniphila, B: Enterobacter cloacae, C: E. ludwigii, D: Citrobacter freundii, E: C. portucalensis, F: Cronobacter sakazakii,

G: Klebsiella aerogenes, H: K. pneumoniae, I: K. quasipneumoniae, J: K. variicola, K: Lelliottia amnigena, L: Raoultella ornithinolytica, M: Streptococcus constellatus,

N: S. sp. A12, O: S. cristatus, P: S. acidominimus, Q: S. sp. oral taxon 061, R: S. sp. HSISM1, S: S. anginosus, T: S. pasteurianus, U: S. gallolyticus, V: S. oralis, W: S. sp.

oral taxon 431, X: S. parasanguinis, Y: S. lutetiensis, Z: S. sp. LPB0220, a: S. sanguinis, b: Lactococcus lactis, c: Lactobacillus johnsonii, d: Ligilactobacillus ruminis,

e: Enterococcus raffinosus, f: Granulicatella adiacens, g: Listeria monocytogenes, h: Veillonella parvula, i: Megasphaera hexanoica, j: M. elsdenii, k: M. stantonii, I:

Flavonifractor plautii, m: Pusillibacter faecalis, n: Roseburia intestinalis, o: Coprococcus sp. ART55/1, p: C. catus, q: C. eutactus, r: Enterocloster asparagiformis, s: Finegoldia

magna, t: Faecalibacillus intestinalis, u: Bacteroides caccae, v: B. stercoris, w: Phocaeicola dorei, x: Parabacteroides merdae, y: Alistipes shahii, z: A. finegoldii.

Annotations for O,: A: Shigella flexneri, B: Klebsiella quasipneumoniae, C: Escherichia fergusonii, D: E. coli, E: E. marmotae, F: E. albertii, G: Lelliottia amnigena, H: Pseudomonas
aeruginosa, I: Stenotrophomonas maltophilia, J: Streptococcus maltophilia, J: S. acidominimus, K: S. thermophilus, L: S. infantis, M: Lactococcus cremoris, N: L. lactis,

O: Ligilactobacillus ruminis, P: Enterococcus casseliflavus, Q: E. faecalis, R: E. raffinosus, S: Veillonella nakazawae, T: V. dispar, U: V. rogosae, V: Megasphaera elsdenii,

W: Faecalibacterium prausnitzii, X: Flintibacter sp. KGMB00164, Y: Clostridium butyricum, Z: C. cadaveris, a: C. sp. C1, b: C. sporogenes, c: Eubacterium ventriosum,

d: Blautia sp. SC05B48, e: B. parvula, f: B. sp. KLE 1732 HM 1032, g: Anaerostipes caccae, h: Dorea longicatena, i: Coprococcus comes, j: C. sp. ARG55/1, k: C. catus, I:
Enterocloster clostridioformis, m: Longicatena caecimuris, n: Thomasclavelia ramosa, o: T. spiroformis, p: Catenibacterium mitsuokai, q: Bacteroides sp. D2, r: B. caccae,

s: B. sp. M10, t: B. fragilis, u: Prevotella melaninogenica, v: Bifidobacterium sp. FKU, w: B. longum, x: B. catenulatum, y: B. imperatoris, z: Eggerthella guodeyinii.

infant age (Figure 11). Higher PM,  exposure was associated
with lower intensities of urocanate, beta-alanine/sarcosine/
alanine, histamine, and histidinol. Higher PM,_ exposure
was also associated with lower urocanate intensity. These
metabolites are all involved in histidine metabolism.? Higher
exposures to PM, and NO, were additionally associated with

lower intensities of 3-methoxytyramine and 4-pyridoxate,
involved in tyrosine metabolism and vitamin B6 metabolism,
respectively.®® Higher O, exposure was associated with lower
hypoxanthine intensity; fluctuations in NO,_ exposure were
not associated with statistically significant changes in the
intensities of any fecal metabolites.
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Table 13. Longitudinal Associations of Prior-Month
Fluctuations in Air Pollution Exposure with Gut
Microbiome Alpha-Diversity from 1 to 24 Months of
Infant Age®

Beta (SE) P
Shannon
PM,, ~0.002 (0.004) 0.6
PM, . —0.0005 (0.007) 1.0
NO, —0.003 (0.005) 0.6
O3 0.005 (0.004) 0.2
0, + NO, 0.004 (0.004) 0.3
Total NO, 0.01 (0.01) 0.3
Richness
PM, -7.5(7.4) 0.3
PM, -2.8 (13.4) 0.8
NO2 —7.2 (10 1) 0.5
0, 2 (6.8) 0.5
0, +NO, 3(7.6) 0.8
Total NO_ (20 9) 0.8
Evenness
PMm —0.0001 (0.0004) 0.8
PM, . 0.00002 (0.0008) 1.0
NO, —0.0002 (0.0006) 0.7
O3 0.0005 (0.0004) 0.2
O3 + NO2 0.0005 (0.0004) 0.3
Total NO_ 0.002 (0.001) 0.2
Simpson
PM,, ~0.0002 (0.0008) 0.8
PM, ~0.0004 (0.001) 0.8
NO, —0.0005 (0.001) 0.7
0, 0.0006 (0.0007) 0.4
0, +NO, 0.0005 (0.0008) 0.6
Total NOX 0.002 (0.002) 0.4

“Estimates were generated using linear mixed-effects models in which
the outcome of interest was alpha-diversity (i.e., Shannon, richness,
evenness, and Simpson indices) at each study visit; the predictor
of interest was the prior-month deviation in air pollution exposure
from the long-term mean (i.e., grand mean of individual prior-month
air pollution exposure). Models were adjusted for long-term air pol-
lution exposure, infant age, infant sex, socioeconomic status, sea-
son of visit, maternal age, breastfeedings per day, formula feedings
per day, mode of delivery, whether solid foods had been introduced,
infant mean Healthy Eating Index, and maternal prepregnancy BMI.
Random intercepts were included to control for repeated measures
among participants.
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DISCUSSION AND CONCLUSIONS

SUMMARY

This study provides a comprehensive examination of the
associations of pre- and postnatal exposure to air pollutants
with the composition and function of the infant gut micro-
biome. Utilizing a multi-omics approach, our analysis incor-
porates microbiome profiling and fecal metabolomics data to
offer novel insights into how air pollution exposure might
influence gut health from early life stages. These dual omics
layers enable a detailed understanding of the bacterial compo-
sition of the gut microbiome and its functional implications,
as reflected in fecal metabolite profiles. Overall, our findings
indicate that exposure to common air pollutants during both
the prenatal and postnatal periods is associated with sub-
stantial alterations in the gut microbiome and its metabolic
output. These alterations were evident in both cross-sectional
and longitudinal analyses, underscoring the persistent and
potentially cumulative impact of air pollution over time. We
found that air pollution exposure was consistently associated
with lower abundances of beneficial species such as Akker-
mansia muciniphila and higher abundances of pathogenic or
opportunistic bacteria, as well as fecal metabolites indicative
of inflammation, oxidative stress, and disrupted gut health.
Our results highlight how early-life exposure to air pollutants
can disrupt the delicate balance of the gut microbiome, lead-
ing to changes that may have long-term health implications.
These findings emphasize the importance of mitigating air
pollution exposure during critical developmental periods
to protect and promote gut health and overall well-being in
infants.

GUT BACTERIA ASSOCIATED WITH AIR POLLUTANT
EXPOSURE

Air pollutant exposures were associated with several gut
bacteria that may impact infant health. Notably, the genus
Bifidobacterium, a core constituent of the infant gut, plays a
critical role in newborn and infant development.®** In our
study, Bifidobacterium abundance was inversely associated
with prior-month PM,; and PM, , exposures, suggesting that
higher levels of these pollutants negatlvely affect the presence
of this beneficial bacterium in the infant gut. Conversely,
PM, . exposure was inversely associated with the abundances
of several Klebsiella species, indicating a possible decrease
in colonization or proliferation of these pathogenic species
in the infant gut microbiome.® Particulate matter exposures
were also inversely associated with the genus Alistipes, con-
sistent with our previous work in this cohort involving 16S
rRNA amplicon sequencing.** Moreover, higher prenatal PM,
exposure was associated with lower levels of the genus Rom-
boutsia, which is involved in fermentation processes and the
production of short-chain fatty acids.®*% Additionally, higher
pre- and postnatal exposures to particulate matter were asso-
ciated with a lower abundance of Akkermansia muciniphila,
a species with known anti-inflammatory properties.®*
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Table 14. Numbers of Statistically Significant Longitudinal Associations Between Fluctuations in Prior-Month Air
Pollution Exposure and Gut Microbial Species from 1 to 24 Months of Infant Age

P, <0.05

P, <0.2

Phylum
PM

10

PM

2.5

NO,
0

3
0, +NQO,
Total NO_
Class

PM

10

PM

2.5

NO,
0

3
0, +NO,
Total NO_
Order

PM

10

PM

2.5

NO,

03

0, +NO,
Total NO_
Family

PM

10

PM

2.5
NO,
03

0, +NO,
Total NO_

Genus
PM

10

PM

2.5

NO,

03

0, +NQO,
Total NO_
Species

PM

10

PM

2.5
NO,
03

0, +NO,
Total NO_
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37
23
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12
15
13

2Cells indicate the number of statistically significant results after cor-
rection for multiple testing using the BH method at P,, < 0.2 and P,
< 0.05. Results were generated using negative binomial models in
which the outcome was the abundance of each gut microbial species.
Models were adjusted for infant age, infant sex, socioeconomic sta-
tus, season of visit, maternal age, breastfeedings per day, formula feed-
ings per day, mode of delivery, whether solid foods had been intro-
duced, infant mean Healthy Eating Index, and maternal prepregnancy
BMI. An offset was included to adjust for the log of the total num-
ber of microbial counts in each sample, and random intercepts were
included to control for repeated measures among participants. In total,
290 species, 220 genera, 135 families, 74 orders, and 21 phyla were
included in these analyses.

In the context of NO_exposure, several identified bacteria
have been linked to human health. For example, at 1 month
of infant age, we found that postnatal NO,_ exposure was
associated with higher abundances of Dorea longicatena and
Enterobacter asburiae. Higher Dorea longicatena abundance
has been observed in individuals with overweight or obesity®
and has been positively correlated with fasting blood glucose
levels in children with diabetes.®® Additionally, Enterobacter
asburiae is an opportunistic pathogen previously isolated
from infant formula.” We found that higher cumulative post-
natal NO,_exposure was associated with lower abundance of
the beneficial species Coprococcus comes.”” Longitudinal
models also revealed that beneficial bacteria such as Akker-
mansia muciniphila and Ligilactobacillus ruminis were more
abundant among infants with lower PM, j exposure.’”®

FECAL METABOLITES ASSOCIATED WITH AIR
POLLUTANT EXPOSURE

Prenatal PM, exposure was positively associated with
the fecal metabolite pyridoxamine, suggesting an impact on
vitamin B6 metabolism.**7778 Another metabolite involved in
vitamin B6 metabolism, 4-hydroxy-phenylglycine/pyridoxal,
was positively associated with prenatal PM, , PM, ;, and NO,
exposures. These findings suggest disruption of essential
nutrient pathways due to early-life air pollution exposure.
Prenatal PM,  and PM, , exposures were positively associated
with the intensities of thymidine and beta-alanine/sarcosine,
which are involved in pyrimidine metabolism,*’® highlight-
ing a potential impact on nucleic acid damage and repair
mechanisms. Conversely, prenatal PM, , and NO, exposures
were inversely associated with tyrosine and 3-methoxy-4-hy-
dromandelate/vanillylmandelate, supporting prior findings
that dysregulated tyrosine metabolism is linked to fetal
growth restriction and preeclampsia.’**® Several metabolites
showed significant associations with postnatal air pollution
exposures. Postnatal PM,  and NO, exposures were positively
associated with glycerate, an endogenous metabolite that
we previously linked to formula feeding in this cohort.*!
Postnatal PM,  and NO, exposures were also positively asso-
ciated with butyrate and isobutyrate, both of which are vital
immune regulators.®*® Postnatal NO_exposure was inversely
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See caption for annotation.

A: Citrobacter braakii, B: Klebsiella pneumoniae, C: K. variicola, D: Serratia
marcescens, E: Streptococcus acidominimus, F: S. lutetiensis, G: Lactococcus lactis,
H: Ligilactobacillus ruminis, |I: Vescimonas coprocola, J: Anaerostipes caccae, K:
Faecalibacillus intestinalis, L: Bacteroides eggerthii, M: B. intestinalis, N: B. stercoris,
O: Alistipes shahii.

A: Enterobacter kobei, B: Klebsiella michiganensis, C: Raoultella ornithinolytica, D:
Serratia marcescens, E: Streptococcus anginosus, F: S. lutetiensis, G:
Lactiplantibacillus plantarum, H: Enterococcus faecalis, I: E. raffinosus, J: Clostridium
sC1, K: C. neonatale, L: Anaerostipes caccae, M: Simiaoa sunii, N: Catenibacterium
mitsuokai, O: Bacteroides eggerthii, P: B. Intestinalis, Q: B. caccae, R: Prevotella
melaninogenica, S: Segatella copri, T: Rothia mucilaginosa, U: Akkermansia
muciniphila.

A: Enterobacter kobei, B: Raoultella ornithinolytica, C: Streptococcus faecalis, D:
Enterococcus faecalis, E: Megasphaera elsdenii, F: Dysmobacter welbionis, G:
Solibaculum mannosilyticum, H: Bacteroides eggerthii, I: B. intestinalis, J: B.
cellulosilyticus, K: Alistipes onderdonkii, L: Bifidobacterium dentium.

Figure 9. Fluctuations in postnatal air pollution exposure were associated with the longitudinal abundances of infant gut microbial taxa in
the first 2 years of life. Estimates were obtained using longitudinal negative binomial models, in which the exposure of interest was postnatal
fluctuations in air pollution exposure and the outcome was the abundance of each gut microbial taxon. Models were adjusted for infant

age, infant sex, socioeconomic status, season, maternal age, human milk and formula feeding frequencies, mode of delivery, maternal
prepregnancy BMI, infant mean Healthy Eating Index, and whether the infant had begun solid foods. Models also included an offset to control

for the log-transformed total number of sequence counts.

Annotations for PM, : A. Enterobacter cloacae, B: Enterobacter kobei, C: Leclercia adecarboxylata, D: Klebsiella aerogenes, E: K. pneumoniae, F: Streptococcus
pasteurianus, G: S. lutetiensis, H: Ligilactobacillus ruminis, I: Listeria monocytogenes, J: Faecalibacterium prausnitzii, K: F. duncaniae, L: Vescimonas
coprocola, M: Dysosmobacter welbionis, N: Pusillibacter faecalis, O: Clostridium neonatale, P: Blautia sp. SC05B48, Q: Anaerobutyricum hallii, R:
Anaerostipes hadrus, S: Coprococcus sp. ART55/1, T: Lachnospira eligens, U: Pseudobutyrivibrio xylanivorans, V: Thomasclavelia ramosa, W: Faecalibacillus
intestinalis, X: Bacteroides eggerthii, Y: B. caccae, Z: B. fragilis, a: Alistipes finegoldii, b: Schaalia turicensis, c: Akkermansia muciniphila.

associated with indole-3-acetic acid, which is thought to be
microbially derived®; it has been shown to attenuate oxida-
tive stress and inflammation and improve nonalcoholic fatty
liver disease.®*® Furthermore, postnatal NO, exposure was
inversely associated with pantothenic acid (vitamin B5) and
linoleate — both essential nutrients that may contribute to
brain development and infant growth.®®® Finally, prenatal
exposures to PM, and PM, _ were inversely associated with
fecal histidine and positively associated with phosphocho-
line, which are important for metabolism and brain function,
respectively.2
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STRENGTHS AND LIMITATIONS

Air pollution exposures were assessed based on resi-
dential address histories, which present both strengths and
limitations. A key strength of this method is that it includes
the prenatal period and early life — critical windows for
developmental exposure assessment. The database of air
quality observations for PM, NO,, and O, in Southern Cali-
fornia is among the best in the United States. This approach
leverages multiple data sources to enhance the accuracy of
exposure estimation. Additionally, exposure to the mixture
of near-roadway air pollution was characterized using the
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Figure 10. Prenatal air pollution exposure
was longitudinally associated with the
postnatal intensities of fecal metabolites.
All associations were inverse, indicating that
higher prenatal air pollution exposure was
associated with lower metabolite intensity.

Phenylalanine Results were generated using linear mixed-

Isoleucine/norleucine effects models with a random participant-level
Trans-cinnamate/cinnamic acid intercept to control for repeated measures
I No Histidine PM and adjusted for study visit (i.e., 1, 6, 12, 18,
2 Tyrosine 2.5 and 24 months), infant sex, socioeconomic

status, season of visit (warm vs. cold),
maternal age, introduction of solid foods,

and breastmilk and formula feedings per day.
Results shown were significant at PBH < 0.2.
We also assessed whether prenatal PM, , NO,
0,, and O, exposures — adjusted for prenatal
NO, exposure — were associated with fecal
metabolite intensities, but no associations met
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CALINE4 air quality dispersion model, which incorporates
detailed parameters such as roadway geometry, vehicle
counts, emission rates, and atmospheric conditions.*” This
comprehensive approach provides a more robust exposure
assessment. Despite these strengths, there are potential lim-
itations. One notable concern is the possibility of exposure
misclassification based on the amount of time participants
spent away from their residences. Previous studies suggest
that such misclassification bias tends to skew results toward
the null hypothesis,” potentially underestimating the true
exposure effect. Furthermore, the reliance on ambient data
does not consider exposure to indoor-origin pollutants or
other microenvironments, such as environmental tobacco
smoke. Although mothers who smoked were excluded from
the study, smoking by other household members could not be
assessed, potentially leading to residual confounding.

The study cohort exclusively consisted of Latino partic-
ipants, limiting the generalizability of the findings to other
ethnic and racial groups. This lack of diversity may affect the
applicability of the results to broader populations. However,
there is no reason to believe that the biological mechanisms
at play would differ according to race or ethnicity. A strength
of this population is their relatively high exposure to air
pollution and elevated rates of obesity, already observed
by 2 years of age. Furthermore, many of our findings were
consistent with studies involving more representative pop-

the threshold of PBH < 0.2.

ulations.” Therefore, although specific exposure levels and
outcomes might vary, the underlying biological responses to
air pollution are likely to be similar across different groups.
The relatively small sample size across all aims of the study
may have limited the statistical power, potentially affecting
the ability to detect significant associations, especially
those of small magnitude. Additionally, this study involved
high-dimensional data that are strongly correlated, resulting
in numerous statistical tests. Management and interpretation
of such data is challenging because it increases the risk of
false discoveries due to multiple comparisons. To address this
risk, we adjusted for multiple hypothesis testing via the BH
false discovery rate. However, this adjustment method may be
overly conservative given the correlations among microbiome
and metabolomic data. Thus, the small sample sizes and the
correction method may each have increased the risk of Type II
errors, where true associations could have been missed.

The study design incorporated both cross-sectional
and longitudinal analyses, each with inherent limitations.
Cross-sectional analyses can only determine associations,
rather than causality. Longitudinal analyses, although stron-
ger in suggesting temporal relationships, cannot definitively
establish causation. Additionally, untargeted metabolomics
was used in the study, leading to some uncertainty regarding
the exact identity of many metabolic features beyond Level
1. This ambiguity is compounded by the fact that fecal
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Figure 11. Fluctuations in prior-
month PM, , PM, , and NO,
exposures were associated with
level-1 metabolites in the first 2 years
of life. Plus (+) denotes metabolites
that were positively associated

with air pollution exposure. All
other metabolites were inversely
associated. Results were generated
using linear mixed-effects models
with a random participant-level
intercept to control for repeated
measures and adjusted for long-
term air pollutant exposure (i.e.,
individual mean exposure to PM,,
PM, ., or NO,, respectively), infant
age, infant sex, socioeconomic status,
season of visit (warm vs. cold),
maternal age, introduction of solid
foods, and breastmilk and formula
feedings per day. Results shown
were significant at PBH < 0.2. We
also assessed whether fluctuations
in NO_ exposure were associated
with fecal metabolite intensity, but
no associations met the threshold of
PBH < 0.2. (Source: Adapted with
permission from Holzhausen et al.
2024; Creative Commons license CC
BY-NC-ND 4.0.)
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metabolites could originate from gut bacteria or dietary
sources, complicating the interpretation of the findings.
Whereas untargeted approaches are comprehensive, they
pose challenges in pinpointing precise biological pathways
and metabolite sources, which may be addressed with future
advances in metabolite annotation.

IMPLICATIONS OF THE FINDINGS

Disparities in exposures to ambient and near-roadway
air pollution are prominent concerns, particularly for com-
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munities of color.** These communities often reside in
areas with higher levels of pollution due to historical and
socioeconomic factors.” Our findings highlight the critical
need to address these environmental inequities — they are
not only matters of environmental justice but also public
health. Children in these communities are disproportionately
exposed to harmful pollutants,*®” potentially influencing the
composition and functional potential of their gut microbiome
in the first 2 years of life. This early-life exposure can set the
stage for various adverse health outcomes, underscoring the
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importance of targeted interventions to mitigate exposure in
these vulnerable populations.

Environmental exposures, particularly air pollution, have
substantial effects on human health.®® Our research provides
evidence that exposures to ambient and near-roadway air
pollution during critical developmental windows can alter
the gut microbiome, which is crucial for various bodily
functions, including digestion, immune response, and neu-
rocognitive development.” The composition and function of
the gut microbiome are essential for maintaining health, and
early-life disruptions can have long-term consequences.!®1

Potential mechanisms linking air pollution to changes in
the gut microbiome are multifaceted. Pollutant inhalation
can lead to systemic inflammation, oxidative stress, and
immune system modulation, which subsequently influence
gut microbial composition.!®*® Pollutants may also be
directly ingested, further impacting the gut environment.!*
The biological plausibility of these associations is supported
by existing literature (both animal and human studies),
demonstrating that inhaled pollutants can affect the gut
microbiome and fecal metabolome.'**% Qur findings add to
this body of knowledge by providing specific evidence that
early-life exposure to air pollution can alter gut microbiome
development, potentially leading to adverse health outcomes.

In the context of multiple hypothesis testing, it is essential
to balance the risk of false positives with the potential for
generating new hypotheses. Although our study presents
numerous associations, we acknowledge the possibility of
false positives, particularly because we selected a relatively
lenient false discovery rate of 20% after correction for multi-
ple testing. Therefore, future studies with targeted hypotheses
are needed to validate our findings. Nevertheless, the present
hypothesis-generating study provides a foundation for further
investigation. Such studies are critical for the discovery and
identification of new pathways and mechanisms that can be
explored in subsequent research, ultimately contributing to a
more comprehensive understanding of the interplay between
environmental exposures and health. The presentation of raw
and adjusted P-values supports a nuanced interpretation of
our results.

SUMMARY AND FUTURE DIRECTIONS

The present results have important public health implica-
tions. Air pollution exposure is a modifiable risk factor, and
interventions during critical developmental windows — such as
the prenatal and postpartum periods — may reduce the burden
of diseases, including obesity. By characterizing the impacts of
air pollution on the gut microbiome and infant fecal metabo-
lome, our research underscores the need for policies and prac-
tices aimed at reducing pollution exposure, particularly among
vulnerable populations. This approach addresses environmen-
tal justice while promoting long-term health and well-being in
children, paving the way for healthier future generations.

Several future studies will build on this rich dataset and
extend the current analyses. Our next steps include investigat-
ing whether the impacts of air pollution exposure on the gut
microbiome and fecal metabolome mediate the associations of
higher air pollution exposure with infant growth trajectories
and risk of childhood obesity. Additionally, we plan to utilize
more sophisticated multi-omics approaches to better integrate
our assessments of gut bacterial composition with fecal metab-
olites. This comprehensive strategy will enhance our under-
standing of the complex interactions between environmental
exposures and health outcomes, ultimately informing more
effective intervention strategies. Although this study focused
on gut microbiome composition, metagenomic sequencing
also allows predictions of microbial function based on genes
and gene pathways, along with information regarding viruses
and fungi that comprise the gut microbiome. Our future work
will aim to fully utilize existing comprehensive data by incor-
porating these additional measures. For example, we plan to
integrate the multi-omics layers available in this cohort by
combining predicted microbial function based on genes and
gene pathways with fecal metabolomics data.
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listed below.

Date: May 2025 — September 2025

Remarks: The Alderete et al. study underwent an indepen-
dent quality assurance (QA) audit by five Westat auditors with
quality assurance oversight experience and expertise relevant
to exposure assessment, OMICs, maternal and child health,
epidemiological methods, geospatial analysis, and statistical
analysis. The Westat QA audit of the final Alderete et al.
report focused on adherence to the study protocol, appropri-
ateness of the documentation of the study methods (e.g., data
processing, exposure modeling, and statistical modeling),
whether study assumptions and limitations were adequately
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evaluated whether the report was easy to understand.

The Westat QA audit team provided a written report to
HEI and the study investigators. The Westat QA auditors
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concluded that the study was well conducted in accordance
with the study protocol and that the report was well written.
The auditors also provided HEI and the investigator team
with specific recommendations for improvement. Recom-
mendations included clarifications between text descriptions
and table annotations, adding text to clarify figures, and
enhancing descriptions of statistical methodologies.

Alderete et al. responded to the QA recommendations and
incorporated the feedback from the QA auditors in a final
report that HEI provided to Westat. The Westat QA audit team
attests that the final report appears to be representative of the
study conducted.
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INTRODUCTION

In 2021, over 40% of the United States population was esti-
mated to be overweight or obese."* This statistic highlights a
critical public health issue because being overweight or obese
is a well-known risk factor for multiple diseases, such as car-
diovascular disease and type 2 diabetes.® Understanding the
factors that might contribute to the risks of having overweight
and obesity is therefore important, particularly in children,
where combined rates of these health statuses have increased
linearly since 1990.?

Some studies have demonstrated associations between
ambient and traffic-related air pollution and body mass index
(BMI) in children and adolescents.*® However, the biolog-
ical mechanisms underlying these associations are not well
understood. Recent research has suggested that ambient air
pollution exposures might contribute to obesity and other
adverse health outcomes through alterations in the gut micro-
biome (microorganisms, including bacteria, fungi, viruses,
and their genes, within the gastrointestinal tract) and asso-
ciated bacteria-derived metabolites in the fecal metabolome
(the collection of small molecules produced by gut bacteria
and found in feces).®®

To evaluate the potential effects of early-life exposures to
ambient and traffic-related air pollution on the developing
gut microbiome and fecal metabolome, Dr. Tanya L. Alderete
of Johns Hopkins University submitted an application to HEI
titled “Air Pollutants and the Gut Microbiota and Metabo-
lome During Early Life: Implications for Childhood Obesity”
in response to HEI's Request for Applications 18-2: Walter
A. Rosenblith New Investigator Award. This award was
established to support an outstanding new investigator at the
assistant professor level in conducting research on air pollu-
tion and health; it is unrestricted with respect to the specific
research topic. Dr. Alderete proposed to examine whether
prenatal and postnatal exposures to ambient air pollution,

Dr. Tanya L. Aldrete’s 3-year study, “Air Pollutants and the Gut Microbiota
and Metabolome During Early Life: Implications for Childhood Obesity,”
began in May 2020. Total expenditures were $500,000. The draft Investi-
gators’ Report was received for review in October 2024. A revised report,
received in March 2025, was accepted for publication in April 2025. During
the review process, the HEI Review Committee and the investigators had
the opportunity to exchange comments and clarify issues in the Investiga-
tors’ Report and its Commentary. Review Committee member Kiros Ber-
hane did not partake in the review of the report due to a conflict of interest.

This report has not been reviewed by public or private party institutions,
including those that support the Health Effects Institute, and may not re-
flect the views of these parties; thus, no endorsements by them should be
inferred.

*A list of abbreviations and other terms appears at the end of this report.
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including traffic-related air pollution, affect the infant gut
microbiota and fecal metabolome, potentially altering infant
growth trajectories in the first 2 years of life. HEI's Research
Committee recommended funding Dr. Alderete’s application
because the study had the potential to provide new insights
into the mechanisms through which air pollution might con-
tribute to obesity, with potential implications for precision
prevention and treatment. The study began in 2020.

This Commentary provides the HEI Review Committee’s
independent evaluation of the study. It is intended to aid
the sponsors of HEI and the public by highlighting both the
strengths and limitations of the study and by placing the
results presented in the Investigators’ Report into a broader
scientific and regulatory context.

SCIENTIFIC AND REGULATORY BACKGROUND

Several studies have shown that exposure to ambient air
pollutants emitted by traffic and other sources — such as
particulate matter <2.5 pm in aerodynamic diameter (PM, ),
particulate matter <10 pm in aerodynamic diameter (PM, ),
nitrogen dioxide (NO,), and nitrogen oxides (NO,) — is
associated with higher BMI and increased risk of obesity in
children.**'* However, other studies have demonstrated no
association between ambient or traffic-related air pollution
exposures and childhood obesity,''* and the overall evidence
for this relationship remains mixed.”* Studies have also
shown that ambient air pollution is associated with low birth
weight,'®'® and infant birth weight is closely linked to the
composition of the infant gut microbiome.'” This connection
between weight and the gut microbiome might help explain
the mixed evidence regarding the relationship between early-
life air pollution exposures and obesity.

The mechanisms and risk factors linking air pollution
exposures and obesity — both generally and specifically in
children — are not well understood. Potential mechanisms
include the effects of air pollution on changes in gene
expression that occur without altering DNA sequences (i.e.,
epigenetic modulation), oxidative stress and inflammation,
and disruption of neuroendocrine pathways, which can alter
metabolic processes and appetite regulation.’®'® Additionally,
recent work has suggested that ambient air pollution expo-
sures might contribute to obesity by affecting metabolic health
through changes in the gut microbiome and fecal metabolome
(Box 1), due to alterations in gut bacteria composition and
function.”® For example, a study in adolescents demonstrated
correlations between higher exposures to traffic-related air
pollution and the abundances of gut bacteria previously
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linked to changes in metabolism and obesity.® Other research
has shown associations between ambient air pollution and
changes in gut bacteria during early life with childhood BMI
and obesity risk.'** Nonetheless, at the time Dr. Alderete’s
study began, few studies had examined mechanisms linking
prenatal and postnatal ambient air pollution exposures with
the gut microbiome and microbiome-derived metabolites
among infants in the context of providing potential insights
for childhood obesity.

In the United States, regulatory efforts have sought to
moderate the health effects of PM, , and NO,. The National
Ambient Air Quality Standards, established by the United
States Environmental Protection Agency (US EPA), limit the
3-year annual average PM, , concentration to 9 pg/m?® and the
annual average NO, concentration to 53 parts per billion.*"**
In the most recent integrated science assessments for both
particulate matter and oxides of nitrogen, obesity was consid-
ered a risk factor for air pollution-related health outcomes.?*
In those assessments, the US EPA concluded that existing
evidence suggests an increased risk for PM, -related health
effects among individuals with obesity compared with non-
obese individuals, and that evidence remains inadequate to
determine NO,-related health effects.

STUDY OBJECTIVES

The overall objective of Dr. Alderete’s study was to eval-
uate whether prenatal or postnatal exposures to ambient air
pollution, including traffic-related air pollution, affect the
infant gut microbiome and fecal metabolome during the first
2 years of life. Using stool samples collected longitudinally
from infants aged 1, 6, 12, 18, and 24 months, the team sought
to explore two specific aims:

Aim 1. Determine whether prenatal or postnatal exposure
to air pollution is associated with a) lower gut bacterial diver-
sity and altered abundances of gut bacteria and b) levels of
fecal metabolites, at each timepoint (cross-sectional analyses).

Aim 2. Determine whether prenatal or postnatal exposure
to air pollution is associated with a) the developmental trajec-
tory of the infant gut microbiota (i.e., lower average bacterial
diversity or altered average relative abundances of gut bac-
teria) and b) changes in average fecal metabolite levels over
time during the first 2 years of life (longitudinal analyses).

For ease of comprehension, various terms used throughout
this Commentary that refer to the outcomes and exposures
assessed in the study are defined in Box 2.

Box 1: An Introduction to the Infant Gut Microbiome and Fecal Metabolome

The infant gut microbiome consists of the microbiota, including bac-
teria, fungi, and viruses, found in the infant gastrointestinal tract. The
infant fecal metabolome refers to the collection of metabolites, or
small molecules, that reflect diet and metabolism, as well as metab-
olites produced by gut bacteria and fungi, or influenced by viral
activity, as part of metabolic processes. It thus can partly provide a
functional readout of the infant gut microbiome?” (Commentary
Figure 1).

Studies of the infant gut microbiome and fecal metabolome are
important because the first 1,000 days after birth represent a criti-
cal period for the growth and development of the gut microbiome,
with broad effects on the infant’s immune system, metabolism, and
neurodevelopment.’? An array of factors influences this develop-
ment, including maternal characteristics (such as diet, weight, and
age) and, more importantly, the type of birth (vaginal delivery or
cesarean section), the feeding method (human milk or formula),
antibiotic exposure, and infant diet after the introduction of solid
foods.?% Additionally, other early-life exposures, such as exposures
to air pollution, pets, metals, and chemicals, have been linked to
alterations in the infant gut microbiota 23"

Metagenomics and metabolomics are common methods used to
study the gut microbiome and fecal metabolome, respectively. Gen-
erally, both approaches rely on stool samples, which are processed
and analyzed using sequencing and mass spectrometry techniques,
respectively.2
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Metagenomics provides an overview of the composition, diversity,
and function of the entire genomes of bacterial, fungal, and viral
members of the microbiome by randomly sequencing DNA
fragments within a sample. Metagenomic sequencing can provide
phylogenetic information about the gut microbiota in a sample,
including the abundance and diversity of various microbes, and
information related to the functional potential of the microbiome
based on the presence of genes with specific known functions.®
Abundance refers to the amount of a given type of microbe within
a sample, whereas diversity refers to both the number of species
(richness) and their distribution or relative abundance (evenness).
Microbial diversity can be measured using alpha-diversity and
beta-diversity metrics. Alpha-diversity focuses on microbial rich-
ness and evenness within a given sample.** Examples of alpha-
diversity measures used in this study include the Shannon and
Simpson indices. Beta-diversity focuses on differences in microbial
composition between samples and was measured in this study
using the Bray—Curtis dissimilarity metric.®®

Fecal metabolomics provides insight into the metabolic processes
occurring in the distal gut, which are partly driven by microbial
metabolism. This approach involves identifying and quantifying
metabolites within a sample using mass spectrometry. Fecal met-
abolic intensity reflects the relative levels of metabolites in a stool
sample. The identification and quantification of metabolites can be
either targeted (focusing on specific classes of compounds such

as amino acids or fatty acids) or untargeted (aiming to identify as
many metabolites as possible).”
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Box 2: Defining Terms Used
Throughout This Commentary

Gut bacterial abundance: The amount of a specific gut
bacterium within a sample.

Gut bacterial diversity: A measure of the richness
(number of unique bacterial types) or evenness of their
distribution within a sample.

Identity and levels of fecal metabolites: The type and
quantity of small molecules detected in fecal samples,
potentially produced by gut bacteria as byproducts of
metabolism (referred to as “fecal metabolite intensity” in
the Investigators’ Report).

Prenatal air pollution exposure: The average of monthly
air pollutant concentrations for the 9 months before an
infant’s birth.

Postnatal air pollution exposures: This study assessed
three measures:

¢ Short-term air pollution exposure: The average air
pollutant concentration in the month before an
infant’s clinical visit.

¢ Cumulative air pollution exposure: The average of
monthly air pollutant concentrations from birth to a
clinical visit.
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Commentary Figure 1. Schematic of the infant gut microbiome and fecal metabolome.

¢ Fluctuation from long-term air pollution exposure:
The difference between the average of short-term
air pollutant concentrations across all clinical visits
and the monthly average concentration in the month
before a clinical visit.

To address the study aims, Alderete and colleagues used
a cohort of more than 200 Hispanic mother—infant pairs
participating in the Southern California Mother’s Milk Study.
Pairs were enrolled at 1 month postpartum and attended
subsequent clinical visits at various timepoints up to 24
months postpartum. Participants were all located in Southern
California, and most resided in the Los Angeles area. Detailed
information was available regarding both the mother and
infant (such as age, sex, and socioeconomic status), as well
as infant feeding practices. At each clinical visit, an infant
stool sample was collected. All data were processed using
metagenomic and metabolomic analysis techniques.

Based on the mothers’ residential address histories, the
team assigned estimates of prenatal and postnatal exposures
to PM,, PM, _, NO,, ozone (O,), and NO_ (used as a proxy for
traffic-related air pollution) for each mother—infant pair. A
cumulative 9-month average of air pollutant concentrations
before birth was used to estimate prenatal exposure. Post-
natal exposures in cross-sectional analyses included both
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short-term (i.e., prior-month) and cumulative estimates of
air pollution concentrations, whereas postnatal exposures in
longitudinal analyses were based on fluctuations from long-
term air pollution concentrations during the first 2 years of
life. All exposure estimates were calculated using monthly
concentrations of ambient air pollutants (PM,, PM, , NO,,
0,) derived from US Environmental Protection Agency (US
EPA) monitoring data and were spatially interpolated between
central monitors. Monthly concentrations of traffic-related air
pollutants (NO ) were estimated using an air quality disper-
sion model.

Alderete and colleagues used a combination of negative
binomial models and linear mixed-effects models to evaluate
associations between air pollution exposure estimates and
several outcomes of interest, including the abundances and
diversity of gut bacteria in the infant gut microbiome and the
identities and levels of fecal metabolites in the infant fecal
metabolome.

The study also originally included a third aim to use medi-
ation analysis to determine whether infant gut microbiota or
fecal metabolites associated with higher estimated ambient
or traffic-related air pollution exposures mediated changes in
infant growth trajectories over time. However, this analysis
could not be conducted due to substantial delays in the study
related to the COVID-19 pandemic.

SUMMARY OF METHODS AND STUDY DESIGN

MOTHER’S MILK STUDY POPULATION

The study cohort was drawn from the Southern California
Mother’s Milk Study, a prospective cohort study of 219 His-
panic mother—infant pairs designed to examine the effects of
human milk feeding on early-life growth and development.
Eligible individuals were self-identifying Hispanic mothers
who were at least 18 years old at the time of delivery; had
a healthy, term (=37 weeks) singleton birth; and intended to
breastfeed for at least 6 months. Mother-infant pairs were
enrolled at 1 month postpartum and attended follow-up visits
at 6, 12, 18, and 24 months postpartum. Each visit included
infant stool sample collection and completion of question-
naires on infant feeding practices (e.g., frequency of human
milk feeding and age at which solid foods were introduced).
Overall, the study sample included 207 infants with gut
microbiome data; 127 of these infants were included in the
high-resolution fecal metabolomics analysis.

The outcomes of interest for Dr. Alderete’s study were 1)
abundances of gut bacteria, 2) diversity of gut bacteria, and 3)
identities and levels of fecal metabolites.

EXPOSURE ASSESSMENT

The investigators estimated monthly concentrations of
PM, (ng/m’), PM, , (ng/m?), NO, (ppb), and O, (ppb) through
spatial interpolation of monitoring data from the US EPA Air
Quality System,’® based on participants’ residential address
histories. NO_was used as a proxy for traffic-related air pol-
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lution, and monthly concentrations of NO_ within 5 km of
participants’ homes were estimated using the California Line
Source Dispersion Model (CALINE4),% an air quality model
that integrates information regarding traffic emissions, traffic
volume, roadway geometry, and meteorology to estimate
pollutant concentrations near roadways.

Alderete and colleagues computed several measures of air
pollutant exposure for each mother—infant pair, broadly cate-
gorized into prenatal and postnatal exposures, as previously
defined in Textbox 1.

STOOL SAMPLE ANALYSIS AND DATA PROCESSING

For the gut microbiome analysis, the investigators
performed DNA extraction and sequencing on infant stool
samples. DNA sequence reads were taxonomically classified
using the RefSeq database of bacterial, viral, plasmid, human,
and vector sequences®; these reads were used to identify the
relative abundances of gut bacterial taxa (categories used to
classify bacteria based on shared biological characteristics) at
the species level. The average number of reads per sample
was about 17 million, which is considered relatively low in
the context of fecal metagenomics. Shallow sequencing, in
which a smaller amount of DNA is sequenced, provides a
less detailed analysis of the microbiome compared with deep
sequencing methods but is often more cost-effective. Gut bac-
terial diversity was assessed by calculating “alpha-diversity
measures” to quantify species diversity within each sample
(Shannon index, species richness, species evenness, and
Simpson index) and “beta-diversity measures” to quantify
differences in microbiome composition between samples
(Bray—Curtis dissimilarity).

For the fecal metabolome analysis, stool samples were
analyzed using liquid chromatography-high-resolution mass
spectrometry (LC-HRMS). Fecal metabolites were profiled
and analyzed using an untargeted approach (i.e., as many
metabolites as possible were identified and quantified with-
out prior knowledge of their identity or profile).

MAIN STATISTICAL ANALYSES

Alderete and colleagues conducted multiple statistical
analyses to address their study aims. For brevity, see Com-
mentary Table 1 for a summary of the study population,
exposure assessment, and statistical methods used.

Aim 1. Associations of Air Pollution Exposures with the
Infant Gut Microbiome and Fecal Metabolome at Each
Timepoint (Cross-Sectional Analyses)

The investigators used negative binomial and linear
models and a variance test to evaluate associations between
estimated prenatal and postnatal air pollution exposures and
the infant gut microbiome. In these analyses, associations of
estimated prenatal, cumulative, and short-term exposures to
all air pollutants with gut bacterial abundances and diversity
were examined for each infant follow-up visit. For the fecal
metabolome analysis, associations of estimated prenatal,



Commentary Table 1. Summary of Main Statistical Analyses Conducted in This Study

Aim 1. Cross-Sectional Analyses
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Analysis Study Population Estimated Exposures Method Outcome
Infant gut N =207 infants with gut  Prenatal, cumulative, 1. Negative binomial 1. Abundances of gut
microbiome microbiome data  and short-term models® bacterial taxa at each

Infant fecal

1-month visit (N = 196)
6-month visit (N = 157)
12-month visit (N = 155)
18-month visit (N = 143)
24-month visit (N = 171)

N =127 infants with fecal

estimates of PM
PM
NO

10°
NO,, O,, and

2.5’

X

Prenatal, cumulative,

2. Linear models®

3. Permutational
multivariate
analysis of variance
(PERMANOVA)

Linear models®

timepoint

2. Alpha-diversity of gut
bacterial taxa at each
timepoint

3. Beta-diversity of gut
bacterial taxa at each
timepoint

Identity and levels of

metabolome metabolite data  and short-term fecal metabolites at each
1-month visit (N = 124) estimates of PM, , timepoint
. PM, ,NO,, O,, and
6-month visit (N = 116) N 25 28
12-month visit (N = 120)
18-month visit (N = 123)
24-month visit (N = 126)
Aim 2. Longitudinal Analyses
Analysis Study Population Estimated Exposures Method Outcome
Infant gut N = 207 infants with gut Prenatal estimates of =~ Negative binomial Average abundances of
microbiome microbiome data PM, ,PM, ,NO,,O,,  models® gut bacterial taxa across
and NO, timepoints

Infant fecal
metabolome

N =127 infants with fecal
metabolite data

Fluctuations from

long-term early-life
estimates of PM
PM

10°
NO,, O,, and

2.5°

X

Prenatal and
fluctuations from
long-term early-life
estimates of PM, ,
PM, ,NO,, O,, and
NO,

1. Negative binomial
models®

2. Linear mixed-
effects models®

Linear mixed-effects
models®

1. Average abundances of
gut bacterial taxa across
timepoints

2. Alpha-diversity of

gut bacterial taxa across
timepoints

Average levels of fecal
metabolites across
timepoints

2All models were adjusted for infant age and sex, maternal age, maternal prepregnancy BMI, socioeconomic status, human milk feedings per
day, formula feedings per day, type of delivery, whether solid foods had been introduced (6-month timepoint and after), and diet quality (12-
month timepoint and after).

bAll models were adjusted for infant age and sex, maternal age, maternal prepregnancy BMI, socioeconomic status, human milk or formula feed-
ings per day, type of delivery, whether solid foods had been introduced, diet quality, and long-term early-life air pollution exposure.

cumulative, and short-term air pollution exposures with the
identities and levels of fecal metabolites were assessed using
multivariable linear models.

All models were adjusted for factors such as maternal and
infant demographic characteristics, infant diet, and maternal
BMI. All models also included adjustment for multiple testing
using the Benjamini-Hochberg procedure to control the false
discovery rate.

Aim 2. Associations of Air Pollution Exposures with the
Infant Gut Microbiome and Fecal Metabolome Across All
Timepoints (Longitudinal Analyses)

In longitudinal analyses of the infant gut microbiome,
Alderete and colleagues used negative binomial models to
evaluate associations between estimated prenatal exposure
and fluctuations from long-term early-life air pollution expo-
sures with the average abundances of gut bacterial taxa across
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all timepoints. Linear mixed-effects models were used to
assess associations between fluctuations from long-term ear-
ly-life air pollution exposures and the average diversity of gut
bacterial taxa, as well as the average level of fecal metabolites
across all timepoints.

All models were adjusted for a suite of characteristics,
such as maternal and infant demographic characteristics,
infant diet, maternal BMI, and average long-term early-life air
pollution concentrations. A random intercept was included
in all models to adjust for repeated measures within infants.

SUMMARY OF KEY RESULTS

POPULATION CHARACTERISTICS AND EXPOSURE
ASSESSMENT

The study included 207 infants with gut microbiome data
and a subset of 127 infants with fecal metabolomics data
from the Southern California Mother’s Milk cohort. Sample
sizes varied across timepoints because some participants
missed follow-up visits (Commentary Table 1). The average
prepregnancy BMI of the mothers was 28.3 kg/m? and the
average maternal age at the 1-month follow-up visit was 29
years. About 55% of infants in the cohort were female, and
about 25% had been delivered by cesarean section — both
percentages are similar to rates in the overall US population.

Average estimated prenatal and postnatal exposures to
air pollutant concentrations among participants across all
timepoints are summarized in Commentary Table 2. Average
estimated prenatal exposures were broadly consistent with
average estimated cumulative and short-term exposures.

PRENATAL AND POSTNATAL AIR POLLUTION
EXPOSURES AND THE INFANT GUT MICROBIOME
AND FECAL METABOLOME: MAIN STATISTICAL
ANALYSES

Overall, Alderete and colleagues found that both estimated
prenatal and postnatal exposures to PM, , PM, ., NO,, O,, and
NO, demonstrated some associations with short-term and

longer-term changes in the abundances of gut bacterial taxa
in the infant gut microbiome. Similarly, they found that PM,,
PM, _, and NO, demonstrated some associations with changes
in the level of specific fecal metabolites in the infant fecal
metabolome. Commentary Figure 2 provides an overview of
the study’s main findings.

Aim 1. Associations Between Air Pollution Exposures
and the Infant Gut Microbiome and Fecal Metabolome at
Each Timepoint (Cross-Sectional Analyses)

Gut Bacterial Abundance The team conducted cross-
sectional analyses to evaluate associations between estimated
prenatal exposures to all ambient and traffic-related air pollut-
ants and gut bacterial abundance. They observed a mix of pos-
itive and inverse associations with the abundances of various
gut bacterial taxa, potentially indicating a shift toward fewer
beneficial bacteria. For example, increased PM,, NO,, and
NO, exposures were all associated with a lower abundance
of Bifidobacterium, which is typically considered to promote
gut health. Increased NO_ exposure was associated with a
higher abundance of the potentially detrimental gut bacte-
rium Lelliottia amnigena. Associations between estimated
short-term (i.e., prior-month) and cumulative exposures to all
air pollutants examined with gut bacterial abundances varied
in both direction and magnitude; there were no clear patterns
across timepoints, specific taxa, or pollutants.

Gut Bacterial Diversity The investigators reported statisti-
cally significant associations between estimated short-term
and cumulative exposures to PM,, O, (with and without
adjustment for NO,), and NO_ with various measures of
alpha-diversity, such as the Shannon and Simpson indi-
ces. These findings indicated both greater and lesser fecal
alpha-diversity, depending on the exposure metric and
pollutant examined. Such associations were observed only
at the 1-month and/or 6-month timepoints (see Investigators’
Report Tables 2 and 6 for additional details). Only estimated
short-term and cumulative NO, exposures were significantly
associated with beta-diversity (i.e., Bray—Curtis dissimilarity),
indicating differences in overall microbiome composition
linked to NO, exposure.

Commentary Table 2. Average Estimated Exposures to Ambient Air Pollutants Across Cohort Participants for Each

Exposure Measure Across the Study Period®

Short-Term (Prior Fluctuations from

Ambient Air Prenatal Exposure Cumulative Exposure Month) Exposure Long-Term Exposure
Pollutant Concentrations Concentrations Concentrations Concentrations
PM, . (ng/m?) 11.9 12.2 11.8 0

PM, , (ng/m?) 29.9 30.7 28.7 -0.4

NO, (ppb) 18.0 17.8 16.5 -0.1

0, (ppb) 42.7 42.1 42.4 0

NO_ (ppb) 3.9 3.3 3.5 0

*Adapted from Investigators’ Report Table 1.
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Summary of Cross-Sectional Findings

PP
.

Prenatal Exposure

Gut Bacteria
Lower abundance: Bifidobacterium spp
Higher abundance: Dorea longicatena

Fecal Metabolites

Gut Bacteria
Lower abundance: Akkermansia muciniphila
Higher abundance: Escherichia coli

Fecal Metabolites
Higher abundance related to inflammation and

Gut Bacteria
Lower abundance: Lactobacillus spp.
Higher abundance: Enterobacter spp.
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Higher abundance related to microbial
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Summary of Longitudinal Findings
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Commentary Figure 2. Overview of main study findings. Source: Adapted from Holzhausen EA and Alderete TL (2025): https://

BioRender.com/m57g481.

Fecal Metabolites In analyses of prenatal exposures
and fecal metabolites, Alderete and colleagues found
that increased exposures to PM,, PM, ., and NO, were all
associated with higher relative levels of fecal metabolites
involved in vitamin B6 metabolism and brain function.
Higher estimated prenatal NO,_ exposures were associated
with lower levels of metabolites linked to the breakdown of
dietary sugars. No associations were observed for estimated
prenatal O, exposures. The majority of statistically significant
associations between short-term exposures (PM,,, PM, , O,
[adjusted for NO,], and NO ) or cumulative exposures (PM,,
NO,, and NO ) and levels of fecal metabolites were observed
at the 6-month timepoint, although there was no apparent
pattern in metabolite identity across pollutants.

Aim 2. Associations Between Air Pollution Exposures
and the Infant Gut Microbiome and Fecal Metabolome
Across All Timepoints (Longitudinal Analyses)

Gut Bacterial Abundance In longitudinal analyses, Alderete
and colleagues evaluated estimated prenatal exposures to all
ambient and traffic-related air pollutants and average gut bac-
terial abundances during the first 2 years of life. They observed
that PM,, PM,,, NO,, O,, and NO_ were associated with
changes in the average abundances of gut bacterial taxa over
time. Generally, associations among air pollutants and specific
gut bacterial taxa varied, except for estimated prenatal PM,
and NO, exposures, which were both associated with lower

abundances of gut bacteria from the genus Megasphaera.
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Similar to the cross-sectional analyses, some ambient air
pollutants were associated with higher abundances of poten-
tially detrimental gut bacteria. For instance, higher estimated
NO, concentrations were associated with a higher abundance
of Klebsiella in fecal samples. Estimated postnatal fluctua-
tions from long-term early-life exposures to NO, and O, (with
and without adjustment for NO,) were also associated with
higher abundances of certain Klebsiella species. In general,
estimated postnatal exposures for all air pollutants showed
statistically significant associations with changes in the
average abundances of several gut bacterial taxa, again with-
out an apparent trend according to pollutant or taxon. The
investigators did not observe associations between estimated
postnatal fluctuations from long-term early-life exposures
and gut bacterial diversity (assessed using alpha-diversity
measures) in longitudinal analyses.

Fecal Metabolites In longitudinal analyses of estimated
prenatal exposures and average fecal metabolite levels over
time, only PM, . and NO, were associated with levels of fecal
metabolites, specifically those involved in histidine and tyro-
sine metabolism. Regarding estimated postnatal fluctuations
from long-term early-life exposures, statistically significant
associations were observed for all pollutants examined except
NO,. For example, higher postnatal PM,, and PM,  expo-
sures were both associated with lower levels of metabolites
involved in histidine metabolism. Overall, there were no
obvious patterns in the associations between average levels of
specific fecal metabolites and pollutant exposures.

HEI REVIEW COMMITTEE’S EVALUATION

This study leveraged a unique dataset from a southern
California Hispanic mother—infant cohort to evaluate poten-
tial associations between prenatal and early-life air pollution
exposures and infant gut bacteria and fecal metabolites.
Alderete and colleagues observed that, in both cross-sectional
and longitudinal analyses, estimated prenatal and postnatal
exposures to ambient and traffic-related air pollution demon-
strated some associations with changes in the abundances
and diversity of infant gut bacteria and the identities and
levels of infant fecal metabolites, with some indication of a
shift toward fewer beneficial gut bacteria.

In its independent evaluation, the HEI Review Committee
concluded that this study provides a detailed set of exploratory
analyses that contribute to understanding potential mecha-
nistic links between air pollution and the gut microbiome in
infants, with a possible connection to childhood obesity. The
Committee also emphasized that the dataset collected for this
study is highly valuable and has strong potential for use in
future research. Details on the strengths and limitations of the
study are discussed below.

STUDY DESIGN, DATASETS, AND ANALYTICAL
APPROACHES

The Committee identified the collection of a novel dataset
on the infant gut microbiome and fecal metabolome as a key
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strength of the study. They also appreciated the thorough
initial analyses, which considered both cross-sectional and
longitudinal associations.

Several limitations were highlighted by the Committee.
First, the sample size for the study cohort was relatively
small (207 mother—infant pairs), and only 127 infants were
included in the fecal metabolomics analysis, thus limiting
the statistical power of the cross-sectional analyses. Sec-
ond, given the number of variables in the dataset, multiple
statistical tests were conducted, which greatly increased the
potential for false positives. Alderete and colleagues appro-
priately acknowledged these limitations and applied the
Benjamini—Hochberg procedure to adjust for multiple testing.

Third, the Committee noted that the investigators con-
ducted shallow sequencing (millions of reads per sample)
rather than deep sequencing (tens to hundreds of millions
of reads per sample) and therefore did not leverage the full
potential of the dataset. Fourth, the outcomes selected for this
study primarily focused on phylogeny, emphasizing the com-
position of different species or taxa in the microbiome. The
Committee suggested that the inclusion of outcomes related
to gut microbial function would have provided additional
insights into the relationship between early-life air pollution
exposures and gut health.* Finally, the Committee stated that
future research would benefit from consideration of the viral
and fungal microbiomes, rather than focusing solely on the
bacterial microbiome.

FINDINGS AND INTERPRETATION

In the cross-sectional and longitudinal analyses, Alderete
and colleagues observed that estimated prenatal and early-life
exposures to ambient and traffic-related air pollution demon-
strated some associations with lower abundances of poten-
tially beneficial gut bacterial species and higher abundances
of detrimental gut bacterial species. However, no single eco-
logical or molecular mechanism or pattern was evident across
pollutants, outcomes, or timepoints during the first 2 years of
life. The investigators also found that increased prenatal or
early-life exposures to PM,, PM, ., and NO, were generally
associated with higher levels of several fecal metabolites,
some of which might indicate oxidative stress or gut inflam-
mation (e.g., histidine). However, similar to the metagenomic
findings, the fecal metabolome analyses did not reveal clear
patterns across pollutants, outcomes, or timepoints.

Given the varied findings and study design limitations, the
Committee determined that this work represents a compre-
hensive set of exploratory analyses and a valuable contribu-
tion, but it emphasized that further research is needed. The
Committee appreciated that the investigators appropriately
characterized this study as hypothesis-generating, with
potential for further exploration in future research.

The Committee also recognized that the investigators
thoughtfully outlined several future directions, including
evaluation of the potential mediating effects of the gut
microbiome and fecal metabolome on associations between



ambient air pollution exposure and infant growth trajectories,
as well as the use of more advanced multi-omics analytical
approaches to explore gut bacterial function based on genes
and gene pathways. Finally, the Committee highlighted that
the dataset collected for this study represents an excellent
resource for other researchers to conduct additional studies.

CONCLUSIONS

In summary, Alderete and colleagues examined whether
prenatal or early-life exposures to ambient and traffic-related
air pollution were associated with changes in the infant gut
microbiome and fecal metabolome during the first 2 years of
life. They found that both prenatal and early-life air pollution
exposures demonstrated some associations with alterations in
the abundances of gut bacteria in the infant microbiome and
in the identities and levels of fecal metabolites in the infant
metabolome. Although no substantial or conclusive patterns
emerged, some associations indicated lower abundances
of beneficial gut bacteria, higher abundances of potentially
detrimental gut bacteria, and higher levels of metabolites that
might indicate oxidative stress and inflammation. Ultimately,
this study represents an extensive set of exploratory analyses
that can be used in future research aimed at understanding
the links between air pollution and the infant gut microbiome
and fecal metabolome. Moreover, future research can benefit
from this study’s unique dataset, which can serve as a valu-
able resource for additional studies in this field.
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