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A B O U T  H E I

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the Institute 

•	 identifies the highest-priority areas for health effects research 

•	 competitively funds and oversees research projects 

•	 provides an intensive independent review of HEI-supported studies and related research 

•	 integrates HEI’s research results with those of other institutions into broader evaluations 

•	 communicates the results of HEI’s research and analyses to public and private decision-
makers. 

HEI typically receives balanced funding from the US Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the United 
States and around the world also support major projects or research programs. HEI has funded 
more than 390 research projects in North America, Europe, Asia, and Latin America, the results 
of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, diesel 
exhaust, ozone, particulate matter, and other pollutants. These results have appeared in more 
than 275 comprehensive reports published by HEI, as well as in more than 2,500 articles in peer-
reviewed literature. 

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Research Committee solicits input from HEI sponsors and other stakeholders and works with 
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and oversee 
their conduct. The Review Committee or Panel, which has no role in selecting or overseeing 
studies, works with staff to evaluate and interpret the results of funded studies and related research. 

All project results and accompanying comments by the Review Committee or Panel are widely 
disseminated through HEI’s website (www.healtheffects.org), reports, newsletters, annual conferences, 
and presentations to legislative bodies and public agencies. 

http://www.healtheffects.org
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A B O U T  T H I S  R E P O RT

Research Report 237, Early-Life Air Pollution Exposure Is Associated with the Infant Gut Microbiome 
and Fecal Metabolome in the First Two Years of Life, presents a research project funded by the Health 
Effects Institute and conducted by Dr. Tanya L. Alderete at Johns Hopkins Bloomberg School of 
Public Health in Baltimore, Maryland. This research was funded under HEI’s Walter A. Rosenblith 
New Investigator Award Program, which provides support to promising scientists in the early 
stages of their careers. The report contains three main sections: 

•	 The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the 
study and its findings; it also briefly describes the Review Committee’s comments on the 
study.

•	 The Investigators’ Report, prepared by Alderete and colleagues, describes the scientific 
background, aims, methods, results, and conclusions of the study.

•	 The Commentary, prepared by members of the Review Committee with the assistance 
of HEI staff, places the study in a broader scientific context, points out its strengths and 
limitations, and discusses remaining uncertainties and implications of the study’s findings 
for public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. Outside technical reviewers first examine this draft report. The report and the reviewers’ 
comments are then evaluated by members of the Review Committee, an independent panel of 
distinguished scientists who are not involved in selecting or overseeing HEI studies. During the 
review process, the investigators have an opportunity to exchange comments with the Review 
Committee and, as necessary, to revise their report. The Commentary reflects the information 
provided in the final version of the report. 

Although this report was produced with partial funding by the United States Environmental 
Protection Agency under Assistance Award CR–83998101 to the Health Effects Institute, it has 
not been subjected to the Agency’s peer and administrative review and may not necessarily reflect 
the views of the Agency; thus, no official endorsement by it should be inferred. The contents of 
this report also have not been reviewed by private party institutions, including those that support 
the Health Effects Institute, and may not reflect the views or policies of these parties; thus, no 
endorsement by them should be inferred.
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H E I  S TAT E M E N T
Synopsis of Research Report 237

Exploring the Link Between Early Life Air Pollution 
Exposures and the Infant Microbiome and Metabolome 

1

What This Study Adds
•	 This study examined whether prenatal or 

postnatal exposures to air pollution were 
associated with changes in the infant gut 
microbiome and fecal metabolome during 
the first 2 years of life.

•	 The team used a unique dataset of infant 
gut microbiota and fecal metabolites from 
a cohort of Hispanic mother–infant pairs 
in Southern California.

•	 Prenatal and postnatal air pollution expo-
sures were associated with changes in the 
abundances of gut bacteria and levels of 
several fecal metabolites in infants during 
the first 2 years of life. 

•	 Among participants with higher air pol-
lution exposures, the team found some 
evidence of fewer beneficial gut bacteria, 
more potentially detrimental gut bacteria, 
and higher levels of metabolites indicative 
of oxidative stress and inflammation.

•	 This study provides a comprehensive set 
of exploratory analyses that contribute 
to our understanding of the relationships 
between air pollution and the infant gut 
microbiome and fecal metabolome.

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted 
by Dr. Tanya L. Alderete at Johns Hopkins Bloomberg School of Public Health in Baltimore, Maryland, and colleagues.  
Research Report 237 contains the detailed Investigators’ Report and a Commentary on the study prepared by the HEI 
Review Committee.

Health Effects Institute Research Report 237 © 2026

BACKGROUND

Several studies have linked early-life 
environmental exposures, such as outdoor air 
pollution, to body mass index and overweight 
status in children, which are well-known 
risk factors for long-term adverse health out-
comes, including heart disease and diabetes. 
The biological mechanisms underlying this 
relationship are not well understood, but 
recent research has suggested that air pollution 
exposures might contribute to obesity and 
other adverse outcomes through changes in 
the gut microbiome (the microbiota, including 
bacteria, fungi, viruses, and their genes, found 
in the human gastrointestinal tract) and their 
byproducts in the fecal metabolome (the 
collection of small molecules found in feces) 
(Statement Figure). 

In response to HEI’s Request for Appli-
cations 18-2: Walter A. Rosenblith New 
Investigator Award, Dr. Tanya Alderete of 
Johns Hopkins University submitted an appli-
cation to HEI titled “Air Pollutants and the 
Gut Microbiota and Metabolome During Early 
Life: Implications for Childhood Obesity.” 
Dr. Alderete proposed to examine whether 
prenatal and postnatal outdoor air pollution 
exposures, including traffic-related air pollu-
tion, can change infant gut bacteria and fecal 
metabolites. Such changes might alter infant 
growth trajectories in the first 2 years of life 
— a finding that could potentially provide 
new insights into the biological mechanisms 
through which air pollution might contribute 
to obesity.  

APPROACH 

Dr. Alderete aimed to determine whether 
prenatal or postnatal exposure to air pollution 
is associated with a) lower diversity and 
altered relative abundances of gut bacteria and 
b) levels of specific fecal metabolites. She mea-
sured these endpoints at 1, 6, 12, 18, and 24 
months after birth (Aim 1) and averaged these 
endpoints up to 24 months (Aim 2).

Alderete and colleagues used a study cohort 
of 219 Hispanic mother–infant pairs participat-
ing in the Southern California Mother’s Milk 
Study. Participants were enrolled at 1 month 
after birth and made several clinical visits up 
to 24 months after birth. The cohort included 
detailed information on the mother (such as 
age and socioeconomic status) and the infant 
(what their sex was, whether they were fed with 
human milk or formula, and when they started 
eating solid food). At each clinical visit, an 
infant stool sample was collected. Gut micro-
biome data were obtained from 207 infants, 
and fecal metabolome data were obtained from 
a subset of 127 infants. Stool samples were 
processed and analyzed using standard DNA 
sequencing and chemical analysis techniques.

https://www.healtheffects.org/system/files/rfa18-2-rosenblith-award120718.pdf
https://www.healtheffects.org/system/files/rfa18-2-rosenblith-award120718.pdf
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Based on the mothers’ residential address histories, 
the team estimated prenatal and postnatal exposures 
to coarse particulate matter, fine particulate matter, 
nitrogen dioxide, ozone, and nitrogen oxides (a proxy 
for traffic-related air pollution) for each mother–infant 
pair. Prenatal exposure was based on the average of 
monthly air pollution exposure for the 9 months before 
birth. Postnatal exposure was based on air pollution 
exposures over short-term and long-term periods. 
Both prenatal and postnatal exposures were estimated 
using monthly concentrations of outdoor air pollutants 
derived from government monitoring data. Monthly 
traffic-related air pollution levels (nitrogen oxides) 
were estimated using an atmospheric dispersion model. 

Alderete and colleagues used a combination of 
statistical models to evaluate associations between air 
pollution exposures and several outcomes of interest, 
including abundance (relative proportion of different 
types) and diversity (number of different types and 
distribution) of gut bacteria, as well as the identity and 
level of fecal metabolites.

KEY RESULTS

Gut Bacterial Abundance	  Alderete and colleagues 
reported that prenatal and postnatal exposures to 
several air pollutants were associated with short-term 
and long-term changes in the abundances of different 

gut bacteria. For instance, at various time points in 
early life, higher levels of prenatal exposure to coarse 
particulate matter, nitrogen dioxide, and nitrogen 
oxides were associated with a lower abundance of the 
beneficial gut bacterium Bifidobacterium. They also 
found that higher levels of prenatal exposure to nitro-
gen oxides were associated with a higher abundance 
of the potentially detrimental gut bacterium Lelliottia 
amnigena. In general, however, there were no clear 
trends or patterns across timepoints, specific gut bacte-
rial abundances, or pollutant exposures.

Gut Bacterial Diversity	  Some postnatal air pollution 
exposures were associated with either increased or 
decreased diversity of gut bacteria, depending on 
infant age and the pollutant examined. For example, 
higher postnatal coarse particulate matter exposure 
was associated with greater gut bacterial diversity at 1 
month after birth, whereas higher nitrogen oxide expo-
sure was associated with reduced diversity at 6 months 
of age. More broadly, fewer associations were observed 
for diversity compared with gut bacterial abundance. 

Fecal Metabolites	 The investigators found that 
exposures to coarse and fine particulate matter and 
nitrogen dioxide were associated with levels of several 
fecal metabolites at specific timepoints and altered 
levels over time up to 2 years. For instance, higher 
prenatal and postnatal exposures to fine particulate 

Statement Figure. Overview of infant gut microbiome and fecal metabolome.
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matter were associated with lower average levels of 
metabolites involved in histidine metabolism during 
the first 2 years of life — a finding that potentially indi-
cates gut inflammation. However, there was no overlap 
in metabolite levels across pollutants. 

INTERPRETATION AND CONCLUSIONS 

In its independent review of the study, the HEI 
Review Committee concluded that this research 
provides a set of exploratory analyses investigating 
potential mechanistic links between air pollution and 
the gut microbiome and fecal metabolome in infants, 
with possible implications for childhood obesity.  

Alderete and colleagues found that estimated 
prenatal and postnatal exposures to outdoor air pollu-
tion were associated with lower abundances of some 
beneficial species of gut bacteria, higher abundances of 
certain detrimental species of gut bacteria, and metabo-
lites that indicate oxidative stress or gut inflammation. 
However, no clear patterns were evident across pollut-
ants, timepoints, or outcomes examined. 

The Committee identified the collection of a unique 
dataset on the infant gut microbiome and fecal metab-
olome, along with analyses at multiple timepoints 
after birth, as key strengths of the study. However, the 
Committee noted that the small size of the study cohort 
limits statistical power and, thus, the reliability of 
the results. Future studies could expand the scope by 
analyzing the current dataset for other microbiota, such 
as fungi and viruses, and by considering additional 
functional characteristics of the gut microbiota. 
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has also not been reviewed by private party institutions, including those 
that support the Health Effects Institute, and may not reflect the views or 
policies of these parties; thus, no endorsement by them should be inferred. 

*A list of abbreviations and other terms appears at the end of this report.

 ABSTRACT

Introduction	 Obesity is a major public health concern 
because it increases the risk of numerous diseases, including 
cardiovascular disease and type 2 diabetes. Ambient and 
near-roadway air pollution has been associated with child-
hood obesity risk, independent of diet and physical activity. 
However, the biological mechanisms underlying these 
relationships remain unclear. Based on our previous work 
and existing literature, we hypothesized that exposure to air 
pollutants alters the developing infant gut microbiome and 
fecal metabolome, with implications for childhood obesity 
risk. In this study, we aimed to determine whether prenatal or 
early-life exposure to ambient air pollution and near-roadway 
air pollution is associated with the gut microbiome and fecal 
metabolome during the first 2 years of life.  

Methods	    Our analysis had two components, both of which 
examined participants from the Southern California Mother’s 
Milk Study, a Latino cohort in which we collected detailed 
information regarding maternal and child health during the 
first 24 months of life. Residential-based estimates of expo-
sure to ambient particulate matter (particulate matter ≤2.5 
µm and ≤10 µm in aerodynamic diameter: PM2.5 and PM10, 
respectively*), nitrogen dioxide (NO2), and ozone (O3), as 
well as near-roadway air pollution (NOx), were modeled using 
residential address histories. High-throughput metagenomics 
and metabolomics were performed on stool samples collected 

at 1, 6, 12, 18, and 24 months of age. Overall, our sample 
included 207 unique individuals with gut microbiome data 
and 127 unique individuals with fecal metabolomics data. In 
the first analysis component, we examined the cross-sectional 
associations of pre- and postnatal exposure to ambient and 
near-roadway pollutants with the infant gut microbiome and 
fecal metabolome at 1, 6, 12, 18, and 24 months of age. In the 
second analysis component, we examined the longitudinal 
associations of pre- and postnatal exposure to air pollutants 
with the trajectory of the developing infant gut microbiome 
and fecal metabolome. 

Results	   Our findings indicate that exposure to air pollut-
ants during prenatal and postnatal periods is associated with 
significant changes in the developing gut microbiome and its 
metabolic output, as evidenced by perturbations in the fecal 
metabolome. These molecular alterations were evident in 
both cross-sectional and longitudinal analyses. The results 
suggest that early-life exposure to air pollution can disrupt 
the developmental trajectory of the gut microbiome, poten-
tially leading to changes with substantial health implications. 
These findings underscore the importance of mitigating air 
pollution exposure during critical developmental periods 
to protect and promote gut health and overall well-being in 
infants.

Conclusions	  We identified gut microbes and fecal metabo-
lites associated with early-life exposure to air pollution. Many 
of these markers of gut bacterial composition and function 
have been linked to childhood obesity. These findings con-
tribute to our understanding of mechanisms underlying the 
obesogenic effects of air pollutants in early life. Future work 
in this cohort will include integrated mixture and multi-omics 
analyses to explore the joint impact of air pollution exposure 
on the gut microbiome and fecal metabolome. 

INTRODUCTION

Over the past 30 years, the prevalence of overweight and 
obesity has significantly increased in the United States.1 
Obesity has critical health implications due to its associa-
tions with adverse cardiometabolic outcomes in children and 
adults.2,3 Without effective prevention strategies, nearly 38% 

mailto:taldere1%40jhu.edu?subject=
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of the US adult population is expected to remain overweight 
or obese.4 An understanding of factors that contribute to 
obesity is crucial.

In addition to poor diet, reduced physical activity, and 
lower socioeconomic status, increased exposure to ambi-
ent and near-roadway air pollution may independently 
contribute to obesity.5,6 Prenatal ambient and near-roadway 
exposures have been linked to low birth weight, which is 
separately associated with increased infant weight gain and a 

higher risk of childhood obesity.7 For instance, children aged 
5 to 11 years exposed to the highest levels of near-roadway 
pollution experienced a 13.6% greater annual body mass 
index (BMI) growth than those with the lowest exposure.5 
Additionally, our previous longitudinal work demonstrated 
that an increase in nitrogen dioxide (NO2) and fine particulate 
matter (particulate matter ≤2.5 µm in aerodynamic diameter 
[PM2.5]) exposure was associated with higher BMI at age 18 
years.6 However, not all studies show that pre- and postnatal 
exposures increase growth rates or childhood obesity.8-10 

Source: Created in BioRender. Holzhausen EA and Alderete TL (2025). https://BioRender.com/m57g481.

https://BioRender.com/m57g481
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Although the exact mechanisms are unclear, air pollutants 
may adversely affect the gastrointestinal tract.11-14 There is 
increasing evidence that air pollution exposure can lead to 
obesity, type 2 diabetes, and cardiovascular disease through 
alterations in gut microbial profiles13-16 and gut bacteria–
derived circulating metabolites.15,17-19

Our previous research in adolescents revealed a correla-
tion between increased near-roadway air pollution exposure 
and the relative abundances of gut bacteria such as Bacteroi-
daceae and Coriobacteriaceae,13 which are linked to obesity 
and altered metabolism.20 Animal model studies also support 
a connection between air pollution exposure and the gut 
microbiota, suggesting that ultrafine particles reach the intes-
tines through various pathways.11,21 Increased exposure to air 
pollutants not only alters gut microbiome composition but 
also affects gut bacterial function, including the production of 
metabolites related to obesity. For example, gut bacteria, fecal 
lipid, and amino acid metabolites have been associated with 
increased BMI and abdominal adiposity in adults.22 In mice, 
ingestion of ultrafine particles has been shown to alter gut 
microbiota and fecal cholesterol metabolites.15 Furthermore, 
specific gut bacteria are involved in the metabolism of short-
chain fatty acids,23 lipids,24 amino acids,22,25-28 bile acids,29,30 
and tryptophan31,32; all of these processes have been linked to 
gut barrier integrity, satiety, body weight, and adipose tissue 
inflammation.

The first 1,000 days of life, including the pre- and postnatal 
periods, are critical developmental windows that considerably 
influence long-term health outcomes. During this time, expo-
sure to air pollutants can affect infant and childhood growth 
trajectories.33 Studies have also shown that the composition 
of the developing infant gut microbiome predicts rapid infant 
growth and childhood BMI.34,35 However, human studies are 
limited in their ability to determine whether changes in the 
gut microbiome precede and contribute to increased BMI, 
or whether obesity itself leads to alterations in microbiome 
composition.36,37 Consistent with this limited ability, although 
bacterial communities differ between lean and obese indi-
viduals, more than 95% of bacterial genetic material can be 
assigned to functional groups with shared metabolic activities 
observed in all individuals.38 Nonetheless, emerging evidence 
indicates that early-life perturbations in the gut microbiota34,35 
have extensive implications for postnatal growth and child-
hood obesity risk. This relationship is biologically plausible 
given that the gut microbiome is involved in numerous meta-
bolic processes, producing various diffusible metabolites that 
regulate gut barrier integrity, satiety, cell signaling, adiposity, 
body weight, and adipose tissue inflammation. In mice, expo-
sure to ultrafine particulate matter increased circulating lipid 
metabolites,15 and our recent study in infants identified a 
diverse array of metabolites linked with air pollution in fecal 
samples.39 Our recent studies, and others, have shown that 
exposure to traffic pollutants is associated with alterations in 
circulating metabolites (e.g., histidine, tryptophan) produced 
by gut bacteria,19,40,41 which are linked to gut microbiome 
dysbiosis and obesity.34,35 Consequently, air pollutant expo-

sure may disrupt the gut microbiome and fecal metabolome 
through toxic effects on bacteria, potentially impacting infant 
growth trajectories and increasing the risk of childhood obe-
sity.

The goal of this Walter A. Rosenblith New Investigator 
Award is to determine whether prenatal or early-life exposure 
to air pollutants affects the infant gut microbiome and fecal 
metabolome. We performed parallel analyses of the gut micro-
biota and fecal metabolites to gain deeper insights into how 
prenatal and early-life exposure to air pollutants affects the 
composition and function of the gut microbiome. This study 
was conducted in a cohort of Latino mother–infant pairs from 
Southern California who were assessed at 1, 6, 12, 18, and 24 
months of age. We hypothesized that increased exposure to 
air pollutants during pregnancy and early life would result in 
altered gut microbial profiles and fecal metabolites in infants. 
We also hypothesized that bacteria and metabolites associated 
with exposures would have known biological implications 
related to infant growth and development. 

SPECIFIC AIMS

In this study, we explored the potential impact of ear-
ly-life exposure to ambient and near-roadway air pollution 
on the developing gut microbiome and fecal metabolome in 
the first 2 years of life. Although exposure to air pollutants 
has been linked to lower birth weight and increased risk of 
childhood obesity, the biological mechanisms underlying 
these relationships remain uncertain. We hypothesized that 
elevated exposure to ambient and near-roadway air pollution 
during the prenatal period and early life alters infant growth 
trajectories via changes to the gut microbiome and fecal 
metabolome. Therefore, we sought to address the following 
two interrelated aims:

	 Aim 1. Determine whether prenatal and early-life exposure 
to ambient and near-roadway air pollution is associated 
with (1a) lower gut bacterial diversity and altered relative 
abundances of gut microbial taxa and (1b) fecal metabo-
lites, separately at 1, 6, 12, 18, and 24 months of infant age. 
The infant gut microbiome undergoes rapid development 
in the first 2 to 3 years of life. Therefore, we first aimed to 
examine the cross-sectional relationships between prena-
tal and postnatal exposure to air pollutants and the infant 
gut microbiome and fecal metabolome.

	 Aim 2. Determine whether prenatal and early-life exposure 
to ambient and near-roadway air pollution is associated 
with the trajectory of (1a) the developing infant gut micro-
biome (lower diversity, altered relative abundance) and 
(1b) fecal metabolites. Building on Aim 1, we conducted a 
longitudinal analysis to track changes over time, providing 
a more comprehensive understanding of how continuous 
and cumulative exposure to air pollutants influences the 
development and dynamics of the gut microbiome and 
metabolome throughout early childhood.
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	 and

	 Aim 3 (not included in this final report). Determine 
whether infant gut bacteria and fecal metabolites associated 
with increased ambient and near-roadway exposure are 
also associated with infant growth trajectories (e.g., weight-
for-length z-score, waist circumference) under a mediation 
framework. This aim was not included in the final report 
due to substantial delays and disruptions caused by the 
COVID-19 pandemic. The pandemic greatly affected our 
ability to collect and analyze data within the planned time 
frame. Consequently, we were unable to fully explore the 
mediation framework linking environmental exposures to 
infant growth outcomes via gut microbiome and metabo-
lome alterations. However, we intend to pursue this analysis 
in future studies outside of the final HEI report.

METHODS AND STUDY DESIGN

STUDY LOCATION AND OVERALL DESIGN

The longitudinal Mother’s Milk Study is an ongoing pro-
spective cohort study focusing on Latino mother–infant pairs 
from Southern California, aimed at examining early-life growth 
and development.33,34,39,40,42,43 Participant recruitment began in 
2016 at Los Angeles County maternity clinics associated with 
the University of Southern California. The inclusion criteria for 
mothers were being ≥18 years old at delivery; having a healthy, 
term, singleton birth; enrolling by approximately 1 month 
postpartum; self-identifying as Hispanic/Latino; intending to 
breastfeed for at least 6 months postpartum; and having a lit-
eracy level of at least 5th grade in either English or Spanish to 
comprehend study procedures. Exclusion criteria for mothers 
were medical conditions or medications that could potentially 
impact physical or mental health, nutritional status, or metab-
olism; tobacco use (defined as smoking more than one cigarette 
in the past week); recreational drug use; preterm or low birth 
weight; and clinically diagnosed fetal abnormalities. The 
recruitment strategy aimed to achieve a balanced representa-
tion across prepregnancy BMI categories (normal weight [BMI: 
18–24.9 kg/m2], overweight [BMI: 25–29.9 kg/m2], and obese 
[BMI: >30 kg/m2]). The study protocols received approval from 
the Institutional Review Boards at the Children’s Hospital of 
Los Angeles and Johns Hopkins University. Participants pro-
vided written informed consent before enrollment in and any 
study-related procedures.

CLINICAL ASSESSMENTS

Participants were enrolled around 1 month postpartum 
and attended follow-up visits at 6, 12, 18, and 24 months post-
partum. Initially, 219 mother–infant dyads were enrolled in 
the Mother’s Milk Study. Socioeconomic status was estimated 
using a modified Hollingshead Index, as previously described.33 
Questionnaires assessed infant feeding practices, including the 
frequency of human milk and formula feeding and the age at 
which solid foods were introduced. Infants were classified 

as exclusively breastfed if parents reported no formula use; 
otherwise, they were classified as not exclusively breastfed. 
The Healthy Eating Index was calculated for infants after the 
introduction of solid foods, serving as a composite measure to 
assess dietary intake alignment with the Dietary Guidelines for 
Americans. This HEI Walter A. Rosenblith New Investigator 
Award supported the high-resolution metabolomics analysis 
of approximately 600 fecal samples in the present cohort. 
Specifically, a subset of 127 participants was selected for fecal 
metabolomics analysis to maximize the number of repeated 
samples within the first 2 years of life. Overall, 101 infants 
completed fecal metabolomics sampling at all five timepoints; 
the remaining 26 infants completed sampling at four of the five 
timepoints (Supplemental Figure 1; see Additional Materials 
on the HEI Website).42

RESIDENTIAL ADDRESS HISTORIES

Residential address histories were obtained via question-
naire during the baseline study visit and at each subsequent 
clinical research visit (1, 6, 12, 18, and 24 months). These 
address histories included the prenatal period and incor-
porated move-in and move-out dates for each respective 
residence, as well as multiple addresses, to ensure accurate 
exposure assessment. Each address was geocoded at the 
street level using the Texas A&M Geocoder,44 which assigned 
latitude and longitude coordinates for each participant’s 
residence. The Google Earth geocoder was used to confirm or 
correct locations with less accurate geocoding. Participants 
provided a total of 1,037 residential addresses spanning 
the pre- and postnatal periods. Of these, 91 addresses were 
matched at the address-point level, 942 were matched to the 
parcel level (using the parcel centroid), 26 were matched 
to address-range interpolations, and two were geocoded as 
ZIP Code Tabulation Areas; one address was classified as 
unknown. The two addresses classified as ZIP Code Tabu-
lation Areas were excluded from further analysis. All other 
addresses were successfully geocoded with high quality (i.e., 
with address range interpolation or better). 

AMBIENT AIR POLLUTION EXPOSURES 

Residential exposure to ambient air pollutants, includ-
ing particulate matter (PM2.5 and particulate matter ≤10 
µm in aerodynamic diameter [PM10]), NO2, and ozone (O3) 
during the pre- and postnatal periods, was modeled for 
all mother–infant pairs. PM2.5 and PM10 were measured 
in micrograms per cubic meter (μg/m3); NO2 and O3 were 
assessed in parts per billion (ppb). Monthly averages of 
ambient pollutant exposures were estimated using data 
from the US Environmental Protection Agency’s Air 
Quality System (https://www.epa.gov/aqs), which provides 
hourly and daily air quality data from ambient monitoring 
stations. To estimate air quality at unmeasured locations 
and create a continuous layer, spatial interpolation of up 
to four monitoring stations within 50 km of participants’ 
homes was performed using inverse distance-squared 
weighting algorithm.45,47 Mother–infant pairs were evenly 

https://www.healtheffects.org/publication/early-life-air-pollution-exposure-associated-infant-gut-microbiome-and-fecal-metabolome
https://www.epa.gov/aqs
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distributed across Southern California, with participants 
largely clustered in urban centers of Los Angeles, includ-
ing South Central Los Angeles, where spatial coverage 
of the air monitoring network is robust. Participants for 
whom air pollution estimates could not be calculated for a 
given exposure window or study visit were excluded from 
analyses requiring those estimates; they were retained in 
analyses for which air pollution estimates could be cal-
culated. 

NEAR-ROADWAY AIR POLLUTION EXPOSURES

Near-roadway exposures were estimated using the Cal-
ifornia Line Source Dispersion Model (CALINE4) as point 
estimates at each participant’s residential location.46 The 
CALINE4 line-source dispersion model estimated concentra-
tions of nitrogen oxides (NOx) at the residence using traffic 
emissions (calculated within a 5-km buffer of the residence), 
traffic volume, roadway geometry, and meteorological condi-
tions. These meteorological conditions included wind speed 
and direction, pollution mixing heights, and atmospheric 
stability.47 Traffic volumes and speeds were obtained from 
machine-learning models developed by Bentley Systems, Inc. 
(2019), which provide more accurate and complete data for 
moderate and smaller roads than conventional traffic data 
sources. Vehicle emission factors were determined annually 
for each roadway link using the California Air Resources 
Board’s EMFAC2021 model, based on traffic volumes, speeds, 
and the proportion of heavy-duty trucks. Meteorological 
conditions were obtained from the National Oceanic and 
Atmospheric Administration/National Centers for Environ-
mental Prediction Real-Time Mesoscale Analysis model, a 
high-spatial (5 × 5 km) and high-temporal (1-hour) resolution 
analysis/assimilation system for near-surface weather condi-
tions.48,49 NOx was used as a surrogate for the complex mixture 
of gases and particles emitted by vehicles, commonly referred 
to as traffic-related air pollution (TRAP).

EXPOSURE WINDOWS FOR AIM 1 (CROSS-SECTIONAL 
ANALYSES)

In Aim 1, we sought to understand the relationships of air 
pollution exposure with the gut microbiome and fecal metab-
olome at a single timepoint. Prenatal exposure was modeled 
based on the cumulative 9-month average before the infant’s 
birth. Monthly average exposure estimates for each pollutant 
were available dating back 12 months from the 1-month 
postpartum study visit. Cumulative postnatal air pollution 
exposure was defined as the cumulative estimate of air pol-
lution exposure from the infant’s birth until the study visit 
(i.e., at 1, 6, 12, 18, and 24 months). Short-term exposures 
were defined as the estimated air pollution exposure during 
the month before each clinical visit. 

EXPOSURE WINDOWS FOR AIM 2 (LONGITUDINAL 
ANALYSES)

In Aim 2, we sought to understand longitudinal associa-
tions of air pollution exposure with the gut microbiome or 

fecal metabolome, allowing both exposure (i.e., air pollution) 
and outcome (i.e., microbiome or metabolome) to vary over 
time. Longitudinal analyses examined both long-term expo-
sures and fluctuations in exposure across the first 2 years of 
life. Long-term exposure was defined as the grand mean of 
prior-month air pollution exposures across all timepoints. 
Fluctuations in exposure were calculated as the grand mean 
minus the prior month’s air pollution exposure, enabling 
examination of short-term deviations and their potential 
impacts during the follow-up period. This approach was 
selected to evaluate both the effects of chronic exposure and 
fluctuations in exposure on the gut microbiome and fecal 
metabolome.6,50

The correlation structure between each of the exposure 
windows used in this study is summarized in Supplemental 
Figure 2. 

INFANT GUT MICROBIOME

DNA isolation was performed on infant stool samples 
collected at 1, 6, 12, 18, and 24 months of age, along with 
control samples, using the ZymoBIOMICS DNA Miniprep 
Kit (Zymo Research, Catalog #D4300) in accordance with the 
manufacturer’s protocol. Control samples included water, 
the ZymoBIOMICS Microbial Community Standard (Zymo 
Research, Catalog #D6300), and the ZymoBIOMICS Microbial 
Community Standard II Log Distribution (Zymo Research, 
Catalog #D6310). Lysis steps in the manufacturer’s protocol 
were carried out using 2-mL Bashing Bead Tubes (Zymo 
Research) on a Vortex Genie 2 (Scientific Industries, Catalog 
#SI-0236) with a Microtube Adaptor (Scientific Industries, 
Catalog #S5001-7). DNA concentrations were measured using 
a Qubit Fluorometer (Thermo Fisher Scientific).

Indexed libraries were prepared from stool DNA using the 
Illumina Nextera XT DNA Library Prep Kit (Illumina, Catalog 
#FC-131-1096) and Illumina IDT for DNA/RNA UD Indexes 
Sets A, B, C, and D (Illumina, Catalog #20027213, #20027214, 
#20042666, and #20042667), following the manufacturer’s 
protocols. Library quality was assessed using an Agilent 
Bioanalyzer 2100 (Agilent) with High Sensitivity DNA kits 
(Agilent, Catalog #5067-4626). Libraries were then pooled, 
and paired-end sequencing (2 × 150 bp) was performed using 
the Illumina NovaSeq platform. To reduce the likelihood of 
batch effects, samples were randomized before sequencing, 
DNA isolation, and library preparation. All batches were 
balanced with respect to participant characteristics, includ-
ing infant sex, weight-for-age z-score, and weight-for-length 
z-score. Principal coordinates analysis was used to visualize 
potential batch effects (Supplemental Figure 3). Permu-
tational multivariate analysis of variance (PERMANOVA) 
showed that sequencing batch was significantly associated 
with Bray–Curtis dissimilarity (P = 0.001). However, because 
the batch was not associated with air pollution exposure, it 
is unlikely to confound the exposure–outcome relationship. 
Sensitivity analyses adjusting for batch (data not shown) 
produced results similar to those of the primary models. 
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Therefore, to avoid unnecessary loss of statistical power, the 
batch was excluded from the final models.

Microbiome Data Processing

Trimmomatic51 (v0.39) was used to validate pairs of paired-
end sequence reads, remove adaptors (maximum mismatches 
= 2; palindrome clip threshold = 30; simple clip threshold = 
10), trim reads (leading and trailing quality score ≥20; sliding 
window trimming with window size = 4 and minimum qual-
ity score ≥20), and remove reads with a length less than 50 
bp. Hostile52 (v1.0.0) was used to align trimmed reads against 
the human genome (index = “human-t2t-hla-argos985”); 
reads aligning to the human genome were removed. To assign 
taxonomy, cleaned, trimmed reads were aligned to the Ref-
Seq database of bacterial, viral, plasmid, human, and vector 
sequences via Kraken 253 (v2.1.2; Standard Database, March 
14, 2023). Species-level relative abundances of microbes 
in the samples were predicted using Bracken54 (v2.9) with 
default settings. Taxa mapping to nonbacterial kingdoms were 
removed from further analysis. The average number of reads 
per sample was 17,625,883 (range: 6–131,105,466). After the 
removal of samples with read depth below 1,000,000 (n = 
2), the average number of reads per sample was 17,667,879 
(range: 1,975,654–131,105,466) [Supplemental Figure 4]; in 
the context of fecal metagenomics, this number of reads can 
be considered a form of shallow sequencing. To reduce the 
influence of outlying points, microbiome observations with 
values greater than or equal to 3 standard deviations above 
the population mean were considered missing.

Alpha- and Beta-Diversity Measures

Sample sequence read counts, which had previously been 
assigned taxonomy, were rarefied to 1,000,000 reads per sam-
ple. Alpha-diversity metrics (i.e., species richness, Pielou’s 
evenness, and Shannon diversity index) were calculated 
using the rarefied data. Cameron et al. showed that repeated 
rarefaction is robust against variation in diversity dependent 
on library size while minimizing the data loss that occurs with 
a single rarefaction.55 Accordingly, rarefaction was repeated 
100 times, and the means of the alpha-diversity indices across 
these iterations were used for subsequent analyses. The same 
100 rarefaction iterations were used to calculate beta-diver-
sity among samples. Specifically, Bray–Curtis dissimilarity 
matrices were calculated for each iteration and averaged 
across the 100 iterations. The mean Bray–Curtis dissimilarity 
matrix was then used to derive principal coordinate analysis 
axes using the pcoa function within the vegan package in R 
software. 

INFANT FECAL METABOLOME

As previously described,39,42 OmniGene GUT kits were 
used to collect infant stool samples at 1, 6, 12, 18, and 24 
months of age. The Emory Clinical Biomarkers Laboratory 
conducted untargeted high-resolution analysis using estab-
lished protocols, as detailed in our earlier studies.39,42 Briefly, 

fecal samples were mixed with ice-cold acetonitrile to precip-
itate proteins, stored on ice for 30 minutes, and centrifuged 
at 14,000 × g for 10 minutes. The supernatants were stored 
at 4°C until analysis. Extracts were analyzed in triplicate via 
liquid chromatography coupled with high-resolution mass 
spectrometry using a Dionex Ultimate 3000 and Thermo 
Scientific Orbitrap Fusion system.

Instrumentation and Analytical Conditions

Hydrophilic interaction liquid chromatography (HILIC) 
was performed using a Waters XBridge BEH Amide XP HILIC 
column (2.1 × 50 mm, 2.6 μm particle size) with positive 
electrospray ionization (ESI); reverse-phase (C18) chromatog-
raphy was conducted using a Higgins Targa C18 column (2.1 
× 50 mm, 3 μm particle size) with negative ESI to enhance 
the detection of metabolic features. For HILIC, analyte sep-
aration involved mobile phases of water, acetonitrile, and 
2% formic acid, following a gradient elution: 22.5% water, 
75% acetonitrile, and 2.5% formic acid for the initial 1.5 
minutes; increasing linearly to 75% water, 22.5% acetonitrile, 
and 2.5% formic acid by 4 minutes; and finally holding for 
1 minute. For C18 chromatography, analyte separation used 
water, acetonitrile, and 10 mM ammonium acetate, with a gra-
dient elution starting at 60% water, 35% acetonitrile, and 5% 
ammonium acetate for the first minute; increasing linearly to 
0% water, 95% acetonitrile, and 5% ammonium acetate by 3 
minutes; and finally holding for 2 minutes. The mobile phase 
flow rate was 0.35 mL/min for the first minute, then increased 
to 0.4 mL/min for the remaining 4 minutes for both HILIC 
and C18 columns. Liquid chromatography coupled with 
high-resolution mass spectrometry was operated in full scan 
mode at 120k resolution, with a mass-to-charge ratio range of 
85 to 1,275. Tuning parameters for sheath gas were set at 45 
arbitrary units for positive ESI and 30 for negative ESI. For 
positive ESI, auxiliary gas was set at 25 arbitrary units and 
spray voltage at 3.5 kV; for negative ESI, auxiliary gas was set 
at 5 and spray voltage at –3.0 kV. Internal standards included 
pooled stool samples and standard reference materials for 
human metabolites, added at the beginning and end of each 
20-sample batch for quality control and standardization.

Metabolite Confidence and Identification

Data from HILIC positive ESI and C18 negative ESI were 
analyzed separately. Raw files were converted to .mzXML 
format; metabolomic signals (i.e., metabolic features) were 
extracted and aligned using the R package apLCMS with 
modifications from xMSanalyzer to ensure quality control 
and mitigate batch effects after instrument analysis.56,57 
Briefly, a two-stage approach was used: each batch was ini-
tially processed individually, generating a batch-level feature 
matrix. Across these batch-level matrices, a second round of 
retention time and feature alignment was conducted. Meta-
bolic features with a coefficient of variation greater than 30 
were excluded, and the intensities of metabolic features were 
averaged across triplicates. Features detected in fewer than 
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10% of samples were removed from the analysis. Metabolic 
features were annotated and confirmed based on the Metab-
olomics Standards Initiative criteria. Level-1 confidence was 
assigned to features whose mass-to-charge ratio and retention 
time matched authentic standards analyzed with tandem 
mass spectrometry under identical conditions (within 10 
ppm and 50 seconds). Principal component analysis was used 
to visually inspect the composition of the fecal metabolome 
(Supplemental Figure 5). 

DATA ANALYSIS

ANALYSIS AIM 1 

Cross-Sectional Associations of Air Pollution (Pre- and 
Postnatal) with the Infant Gut Microbiome and Fecal 
Metabolome	  We conducted an extensive analysis of indi-
vidual cross-sectional associations of pre- and postnatal air 
pollution exposure with the gut microbiome and fecal metab-
olome, each described in more detail below. All analyses 
were conducted using R version 4.2.0. Figure 1 summarizes 

the various data analyses and exposure windows utilized in 
this project. 

Gut Microbiome (Aim 1, Cross-Sectional Analyses) 	  We used 
negative binomial models to examine associations between air 
pollutant exposure and the infant gut microbiome. To reduce 
the potential influence of outliers, air pollution exposure 
values greater than three standard deviations above the pop-
ulation mean were truncated to the mean plus three standard 
deviations. We examined the cross-sectional associations of 
(1) prenatal air pollution exposure, (2) long-term postnatal 
exposure (cumulative exposure from the infant’s birth to the 
study visit date), and (3) short-term postnatal exposure (prior 
month) with gut bacterial diversity and abundances at each 
clinical visit. At the 1-month visit, models were adjusted for 
infant age, infant sex, socioeconomic status, season of visit, 
mother’s age, breastfeedings per day, formula feedings per 
day, mode of delivery, and maternal prepregnancy BMI. All 
adjustment sets were determined using a directed acyclic graph 
(Figure 2), where socioeconomic status, season, and mother’s 
age were identified as conventional confounders; infant diet, 
mode of delivery, and maternal prepregnancy BMI were 

Figure 1. Summary of statistical analyses. Source: Created in BioRender. Holzhausen EA and Alderete TL (2025). https://BioRender.com/
m57g481.

https://BioRender.com/m57g481
https://BioRender.com/m57g481
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considered precision variables because they are important  
predictors of the infant microbiome. We did not adjust for 
infant antibiotic use because — as shown in Figure 2 — anti-
biotics were regarded as a precision variable, rather than a 
confounder. Additionally, fewer than 10% of infants were 
exposed to antibiotics, and our previous studies have shown 
that adjustments for antibiotic use do not meaningfully affect 
our findings.34 We also assessed the overall associations of gut 
microbiome composition with maternal and infant charac-
teristics via PERMANOVA (Supplemental Table 1). An offset 
term was included to adjust for the log of the total number of 
microbial counts for each sample. At the 6-month visit, mod-
els were additionally adjusted for whether infants had begun 
eating solid foods. At all subsequent timepoints, models were 
also adjusted for diet quality using the infant Healthy Eating 
Index. The Benjamini–Hochberg (BH) procedure was used to 
adjust for multiple testing across all microbiome analyses.

Fecal Metabolomics (Aim 1, Cross-Sectional Analyses) 	 We 
conducted three unique but complementary analyses using 
multivariable linear models to examine associations of (1) 
prenatal air pollution exposure, (2) long-term postnatal expo-
sure (cumulative exposure from birth to each respective visit 
date), and (3) short-term postnatal exposure (defined as air 
pollution exposure during the month before the study visit) 
with fecal metabolite intensity at 1, 6, 12, 18, and 24 months. 
All models were adjusted for infant age, infant sex, socioeco-

nomic status, season of visit, mother’s age, and frequency of 
breastfeeding and formula feedings per day. At the 1-month 
timepoint, none of the infants had begun eating solid foods; at 
subsequent timepoints, models were additionally adjusted for 
whether infants had begun solid food intake. This adjustment 
set was informed by our previous work in the cohort.39 The 
BH procedure was used to adjust for multiple testing in all 
metabolomics analyses.

ANALYSIS AIM 2

Longitudinal Associations of Air Pollution (Pre- and 
Postnatal) with the Infant Gut Microbiome and Fecal 
Metabolome	 We conducted a longitudinal analysis of the 
associations of pre- and postnatal air pollution exposure with 
the gut microbiome and fecal metabolome, each described 
in more detail below. All analyses were performed using R 
version 4.2.0. 

Gut Microbiome (Aim 2, Longitudinal Analyses)	  To visu-
alize the overall composition of the microbiome samples, we 
used principal coordinates analysis (Supplemental Figure 6). 
Next, we utilized longitudinal negative binomial models to 
assess the association between prenatal air pollution exposure 
and the postnatal gut microbiome (i.e., taxonomic abundance). 
These models included an offset for the log-transformed total 
number of sequence counts and a random intercept to adjust 
for repeated measures within infants. Models were also 

Figure 2. Directed acyclic graph summarizing the data generation process. Based on this directed acyclic graph, we identified season of visit, 
socioeconomic status, and maternal age as confounders. In addition to these confounders, all analyses were adjusted for infant age, infant 
sex, infant diet, maternal prepregnancy BMI, and mode of delivery, given their known importance in the development of the infant gut 
microbiome and fecal metabolome. Source: Created in BioRender. Holzhausen EA and Alderete TL (2025). https://BioRender.com/r18j290.

https://BioRender.com/r18j290
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adjusted for infant age and sex, socioeconomic status, season, 
mother’s age, human milk and formula feeding frequencies, 
mode of delivery, maternal prepregnancy BMI, infant mean 
Healthy Eating Index, and whether infants had begun eating 
solid foods. Covariates were selected based on our previous 
work and a review of the literature.34,43 

We used linear mixed-effects models to assess the longi-
tudinal association between postnatal air pollution exposure 
and gut microbiome alpha-diversity, incorporating a random 
intercept to adjust for repeated measures within individuals. 
We used negative binomial models to evaluate the association 
between fluctuations in postnatal air pollution exposure 
(i.e., the difference between the grand mean of prior-month 
air pollution exposure from 1 month to 2 years of infant age 
and the prior month’s exposure at each timepoint) and the 
gut microbiome (i.e., taxonomic abundance), with an offset 
for the log of total sequence counts and a random intercept 
for repeated measures. To reduce the influence of outliers, air 
pollution exposure values greater than three standard devia-
tions above the population mean were truncated to the mean 
plus three standard deviations. Models were adjusted for 
infant age and sex, socioeconomic status, season of the study 
visit, mother’s age, frequency of human milk and formula 
feedings per day, mode of delivery, maternal prepregnancy 
BMI, whether infants had begun eating solid foods (yes/no), 
and the mean Healthy Eating Index after introduction of solid 
foods. Models were also adjusted for long-term air pollution 
exposure (i.e., the grand mean of each participant’s pollutant 
exposure across all study visits). Analyses included all tax-
onomic levels (i.e., phylum, class, order, family, genus, and 
species). 

Fecal Metabolome (Aim 2, Longitudinal Analyses)	 We used 
linear mixed-effects models to assess whether prenatal air 
pollution exposure was longitudinally associated with the 
log-transformed intensity of fecal metabolic features, incor-
porating a random intercept to adjust for repeated measures. 
Models were adjusted for infant age and sex, socioeconomic 
status, season of study visit, mother’s age, frequency of human 
milk and formula feedings per day, and whether infants had 
begun eating solid foods. 

Next, we used linear mixed-effects models to assess 
whether fluctuations in postnatal air pollution exposure 
(i.e., the difference between the grand mean of prior-month 
air pollution exposure from 1 month to 2 years of infant 
age and the prior month’s exposure at each timepoint) were 
associated with postnatal fecal metabolite intensity. Because 
we aimed to independently assess the associations of fluctu-
ations in air pollution exposure and long-term air pollution 
exposure with fecal metabolites, we also adjusted models for 
long-term mean air pollution exposure. Our adjustment set, 
informed by previous analyses,39 included infant age and sex, 
socioeconomic status, season of the study visit, mother’s age, 
frequency of human milk and formula feedings per day, and 
whether infants had begun eating solid foods. 

RESULTS

AIM 1 GUT MICROBIOME

Population characteristics of participants included in 
the microbiome analyses are described in Table 1. Briefly, 
participants attended study visits at approximately 1, 6, 12, 
18, and 24 months of infant age. At the 1-month study visit, 
the average infant age was 33 ± 5 days, 46% of infants were 
male, and 25% had been born by cesarean section. Changes 
in non-time-varying characteristics over time reflect missing 
follow-up data for some participants. Overall, gut microbiome 
data were available for 196 infants at 1 month of age, 157 at 
6 months, 155 at 12 months, 143 at 18 months, and 171 at 
24 months. At 1 month, parents reported an average of 6.7 ± 
2.2 breastfeedings per day. At 6 months, parents reported that 
infants had begun eating solid foods at an average age of 6.0 
± 1.8 months. 

Prenatal Air Pollution Exposure and the Gut Microbiome

We assessed whether prenatal air pollution exposure was 
associated with abundances of taxa (i.e., phylum, class, order, 
family, genus, and species) at 1 month of infant age (Figure 3). 
We found that prenatal exposure to air pollution was associated 
with differences in taxonomic abundance. Figure 3 summarizes 
the observed associations: each concentric circle in the figure 
represents a different taxonomic level, with the kingdom at the 
center and the species at the outer edge. Statistically significant 
associations (PBH <0.2) are shown in red (negative associations) 
and blue (positive associations), with darker shading indicat-
ing larger beta estimates. For example, we found that higher 
prenatal PM10 exposure was associated with lower abundances 
of beneficial microbes, including 10 species from the genus 
Bifidobacterium. Similarly, higher prenatal NO2 and NOx 
exposures were both associated with lower abundances of 
several Bifidobacterium species. Higher prenatal NOx exposure 
was additionally associated with higher abundances of Lel-
liottia amnigena and Dorea longicatena. Plots illustrating the 
observed statistically significant associations between prenatal 
air pollution exposure and microbial species abundances can 
be found in Supplemental File 1 [PM10], Supplemental File 2 
[PM2.5], Supplemental File 3 [NO2], Supplemental File 4 [O3], 
and Supplemental File 5 [NOx].

Cumulative Air Pollution Exposure and the Gut 
Microbiome

We next explored whether there were associations between 
gut microbiome alpha-diversity (i.e., Shannon, richness, 
evenness, and Simpson indices) and cumulative air pollution 
exposure (PM10, PM2.5, NO2, O3, O3 + NO2, and total NOx), where 
cumulative air pollution exposure was defined as the total 
exposure from birth to the visit date (Table 2). We found that 
PM10 exposure was associated with higher Shannon diversity, 
evenness, and Simpson diversity at 1 month (b = 0.02, 0.002, 
0.005; P = 0.04, 0.02, 0.02, respectively). At 1 month, O3 
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Table 1. Characteristics of Mother–Infant Dyads with Infant Microbiome Data from the Southern California Mother’s Milk Study, 
Enrollment from 2016 to 2019a

Variable
1 Month 
(N = 196)

6 Months 
(N = 157)

12 Months
 (N = 155)

18 Months 
(N = 143)

24 Months 
(N = 171)

Maternal characteristics Mean ± SD; n (%) Mean ± SD; n (%) Mean ± SD; n (%) Mean ± SD; n (%) Mean ± SD; n (%)

Age (years) 29.0 ± 3.1 29.4 ± 6.2 29.8 ± 6.2 30.3 ± 6.2 30.8 ± 6.3
Prepregnancy BMI (kg/m2)b 28.3 ± 5.7 28.8 ± 6.2 28.5 ± 5.7 28.3 ± 5.7 28.5 ± 5.8
SESb,c 26.8 ± 12.4 26.0 ± 11.9 26.2 ± 11.9 26.7 ± 12.6 27.2 ± 12.1
Antibiotics since delivery (yes, no, 
%yes)b

20, 171, 10.5% 14, 136, 9.3% 15, 133, 10.1% 14, 124, 10.1% 15, 148, 9.2%

Infant characteristics

Age (days) 32.6 ± 4.7 185.5 ± 8.8 368.1 ± 10.4 551.5 ± 18.3 753.5 ± 46.8
Sexb (male, female, %male) 90, 106, 45.9% 73, 84, 46.5% 72, 83, 46.5% 65, 78, 45.5% 78, 93, 45.6%
Delivery modeb (CS, vaginal, %CS) 48, 148, 24.5% 40, 115, 25.8% 38, 116, 24.7% 32, 110, 22.5% 39, 129, 23.2% 
Breastfeedings per day 6.7 ± 2.2 3.1 ± 3.3 2.1 ± 2.8 1.9 ± 2.7 1.7 ± 2.4
Formula feedings per day 2.2 ± 2.6 3.0 ± 2.9 2.3 ± 2.4 1.0 ± 1.7 1.1 ± 1.9
Age at solid food introduction 
(months)b

-- 6.0 ± 1.8 5.8 ± 1.5 5.9 ± 1.6 5.9 ± 1.7

Healthy Eating Index -- 46.0 ± 6.7 60.8 ± 9.2 67.2 ± 9.9 68.1 ± 9.5
Antibiotics since birthb (yes, no, 
%yes)

19, 176, 9.7% 14, 140, 9.1% 15, 138, 9.8% 14, 128, 9.9% 18, 149, 10.8%

Season of visitd (warm, cool, 
%warm)

98, 98, 50% 74, 83, 47.1% 89, 66, 57.4% 70, 73, 49.0% 82, 89, 48.0%

Air pollution measures

Prenatal PM10 (µg/m3)b 29.8 ± 4.1 30.4 ± 3.7 29.8 ± 3.9 30.2 ± 40.1 29.5 ± 3.9
Prenatal PM2.5 (µg/m3)b 11.9 ± 1.3 12.1 ± 1.3 11.8 ± 1.1 12.0 ± 1.3 11.8 ± 1.2
Prenatal NO2 (ppb)b 17.9 ± 2.8 18.0 ± 2.5 18.0 ± 2.8 18.2 ± 2.6 17.8 ± 2.7
Prenatal O3 (ppb)b 42.6 ± 3.9 42.7 ± 3.9 42.8 ± 3.4 43.0 ± 3.8 42.5 ± 3.8
Prenatal NOx (ppb)b 3.9 ± 2.1 3.9 ± 2.1 4.0 ± 2.2 4.0 ± 2.2 3.9 ± 2.1
Individual mean postnatal PM10 (µg/m3)b 28.9 ± 3.9 28.5 ± 3.8 29.4 ± 3.3 29.2 ± 3.0 28.7 ± 3.8
Individual mean postnatal PM2.5 (µg/m3)b 11.8 ± 1.9 11.8 ± 1.7 11.9 ± 1.8 11.8 ± 1.7 11.9 ± 1.7
Individual mean postnatal NO2 (ppb)b 16.3 ± 3.2 16.6 ± 2.4 16.7 ± 2.7 16.7 ± 2.5 16.5 ± 2.7
Individual mean postnatal O3 (ppb)b 42.7 ± 5.0 42.4 ± 4.1 42.4 ± 4.5 41.8 ± 4.3 42.6 ± 4.8
Individual mean postnatal NOx (ppb)b 3.9 ± 2.5 4.0 ± 2.6 3.5 ± 1.8 3.5 ± 1.9 4.2 ± 3.2
Fluctuation in PM10 (µg/m3) 2.0 ± 6.3 1.9 ± 5.9 1.1 ± 5.2 -3.4 ± 5.1 -3.4 ± 5.6
Fluctuation in PM2.5 (µg/m3) 0.2 ± 3.1 0.7 ± 3.8 0.1 ± 2.9 -0.8 ± 2.8 -0.3 ± 2.7
Fluctuation in NO2 (ppb) 1.3 ± 5.4 1.5 ± 7.3 -0.9 ± 4.9 -0.9 ± 6.3 -1.3 ± 4.3
Fluctuation in O3 (ppb) 0.7 ± 6.5 -0.5 ± 7.8 0.2 ± 5.2 -0.7 ± 8.1 0.1 ± 6.1
Fluctuation in NOx (ppb) -0.3 ± 1.9 -0.5 ± 1.6 -0.1 ± 0.5 0.1 ± 0.8 0.9 ± 3.2
Cumulative PM10 (µg/m3) 30.7 ± 6.9 30.9 ± 5.2 31.8 ± 3.6 30.7 ± 3.0 29.2 ± 3.4
Cumulative PM2.5 (µg/m3) 11.7 ± 2.6 12.3 ± 2.0 12.5 ± 1.3 12.2 ± 1.1 12.2 ± 0.8
Cumulative NO2 (ppb) 17.5 ± 6.8 18.3 ± 5.0 18.2 ± 2.7 17.7 ± 2.6 17.2 ± 2.1
Cumulative O3 (ppb) 43.3 ± 8.1 41.8 ± 4.6 42.1 ± 3.2 41.4 ± 2.9 41.9 ± 2.8
Cumulative NOx (ppb) 3.4 ± 1.5 3.3 ± 1.4 3.3 ± 1.3 3.2 ± 1.3 3.3 ± 1.3
Prior-month PM10 (µg/m3) 30.9 ± 7.4 30.5 ± 6.8 30.5 ± 6.9 25.9 ± 4.9 25.7 ± 7.0
Prior-month PM2.5 (µg/m3) 12.0 ± 3.7 12.5 ± 4.3 12.0 ± 3.4 11.0 ± 2.6 11.6 ± 3.4
Prior-month NO2 (ppb) 17.6 ± 7.1 18.1 ± 6.9 15.9 ± 6.3 15.7 ± 5.3 15.2 ± 5.5
Prior-month O3 (ppb) 43.4 ± 8.4 42.0 ± 8.1 42.6 ± 7.7 41.1 ± 8.1 42.7 ± 8.4
Prior-month NOx (ppb) 3.5 ± 1.7 3.5 ± 1.7 3.3 ± 1.5 3.5 ± 2.0 3.6 ± 2.1

CS = cesarean section; ppb = parts per billion; SD = standard deviation; SES = socioeconomic status.
aData are reported as mean and SD unless otherwise noted.
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bNon-time-varying (i.e., assessed at a single timepoint and not expected to change over time); differences across time are due to participant miss-
ingness at specific timepoints (Pall ≥ 0.2).

cSES was estimated using a modified version of the Hollingshead Index. Range for study population: 3–63.
dStudy visits occurring between April 1 and September 30 were considered warm season; all other visits were considered cool season.

Table 1. (continued)

Figure 3. Associations of prenatal PM10, PM2.5, NO2, and NOx exposures with gut microbial taxa at 1 month. Estimates were obtained using negative 
binomial models where the exposure of interest was prenatal air pollution exposure, and the outcome was the abundance of each gut microbial taxon 
at 1 month of infant age. Models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeeding frequency, 
formula feeding frequency, mode of delivery, and maternal prepregnancy BMI. An offset was included to control for the log of the total number of 
microbial counts in each sample.
Annotations for PM10 species:	A: Enterobacter roggenkampii, B: E. asburiae, C: E. mori, D: E. cloacae, E: E. cancerogenus, F: E. ludwigii, G: E. hormaechei, H: Citrobacter 
freundii, I: C. sp. R56, J: Cronobacter sakazakii, K: Shigella flexneri, L: S. dysenteriae, M: Leclercia adecarboxylata, N: L. sp. Colony189, O: 
Klebsiella aerogenes, P: K. grimontii, Q: Escherichia fergusonii, R: E. marmotae, S: E. coli, T: E. albertii, U: Cedecea neteri, V: Salmonella 
enterica, W: Lelliottia amnigena, X: Streptococcus agalactiae, Y: S. vestibularis, Z: S. sp. HSISM1, a: S. anginosus, b: Enterococcus faecalis, 
c: Clostridium perfringens, d: Blautia wexlerae, e: Mediterraneibacter gnavus, f: Bifidobacterium eulemuris, g: B. sp. TKU, h: B. longum, i: B. 
thermophilum, j: B. lemurum, k: B. bifidum, l: B. saguini, m: B. choerinum, n: B. adolescentis, o: B. asteroides, p: Phocaeicola dorei. 

Annotations for NO2 species:	 A: Enterobacter asburiae, AA: Bifidobacterium adolescentis, AB: B. subtile, AC: B. asteroides, AD: Rothia mucilaginosa, AE: Segatella copri, B: 
Enterobacter ludwigii, C: Citrobacter freundii, D: C. amalonaticus, E: C. portucalensis, F: C. sp. R56, G: C. braakii, H: Shigella flexneri, I: Leclercia sp. Colony189, 
J: Klebsiella michiganensis, K: Escherichia fergusonii, L: E. marmotae, M: E. coli, N: E. albertii, O: Cedecea neteri, P: Salmonella enterica, Q: Lelliottia 
amnigena, R: Streptococcus pneumoniae, S: S. sp. LPB0220, T: S. lactarius, U: S. constellatus, V: S. sp. A12, W: S. vestibularis, X: S. sp. HSISM1, Y: S. sp. 
HSISS2, Z: S. sp. HSISS3, a: S. mitis, b: S. gordonii, c: S. parasanguinis, d: S. oralis, e: S. sp. oral taxon 431, f: S. ilei, g: S. suis, h: S. australis, i: Veillonella 
parvula, j: Faecalibacterium prausnitzii, k: Blautia wexlerae, l: Enterocloster bolteae, m: Bifidobacterium pullorum, n: B. pseudolongum, o: B. eulemuris, 
p: B. sp. TKU, q: B. longum, r: B. catenulatum, s: B. angulatum, t: B. thermophilum, u: B. animalis, v: B. lemurum, w: B. bifidum, x: B. scardovii. 

Annotations for NOx species:	 A: Enterobacter asburiae, B: Citrobacter portucalensis, C: C. sp. R56, D: C. braaki, E: Shigella flexneri, F: S. dysenteriae, G: Cedecea neteri, H: 
Lelliottia amnigena, I: Clostridium perfringens, J: Dorea longicatena, K: Enterocloster bolteae, L: Thomasclavelia ramosa, M: 
Bifidobacterium longum, N: Bacteroides thetaiotaomicron, O: B. uniformis, P: Parabacteroides distasonis.
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Table 2. Cross-Sectional Associations of Cumulative Air Pollution Exposure with Gut Microbiome Alpha-Diversity at 1, 
6, 12, 18, and 24 Months of Infant Agea

1 Month 6 Months 12 Months 18 Months 24 Months

b (SE) P b (SE) P b (SE) P b (SE) P b (SE) P

Shannon

PM10 0.02 (0.008) 0.04 –0.003 (0.01) 0.8 0.02 (0.01) 0.2 –0.006 (0.02) 0.7 –0.02 (0.01) 0.1

PM2.5 0.02 (0.02) 0.3 0.01 (0.03) 0.6 0.002 (0.04) 1.0 –0.02 (0.04) 0.7 0.06 (0.04) 0.1

NO2 0.01 (0.01) 0.4 0.01 (0.01) 0.3 0.005 (0.02) 0.8 0.004 (0.02) 0.8 –0.001 (0.02) 1.0

O3 0.01 (0.008) 0.1 –0.01 (0.01) 0.3 0.01 (0.02) 0.5 –0.02 (0.02) 0.7 –0.009 (0.01) 0.5

O3 + NO2 0.02 (0.009) 0.1 –0.008 (0.02) 0.6 0.01 (0.02) 0.5 –0.02 (0.02) 0.4 –0.01 (0.01) 0.5

Total NOx 0.02 (0.04) 0.7 –0.08 (0.04) 0.03 0.04 (0.04) 0.3 0.02 (0.04) 0.7 –0.03 (0.03) 0.4

Richness

PM10 7.6 (12.0) 0.5 –5.6 (19.3) 0.8 41 (31.9) 0.2 –21.2 (39.23) 0.6 –36.63 (26.02) 0.2

PM2.5 9.2 (31.3) 0.8 2.4 (48.8) 1.0 12.4 (83.5) 0.9 –46.9 (98.3) 0.6 86.66 (97.69) 0.4

NO2 10.0 (20.1) 0.6 11.9 (20.1) 0.6 33.8 (45.7) 0.5 19.3 (43.8) 0.7 12.85 (43.49) 0.8

O3 8.1 (11.6) 0.5 –3.4 (23.8) 0.9 40.2 (38.9) 0.3 –35.3 (42.4) 0.4 –12.07 (31.83) 0.7

O3 + NO2 11.6 (12.4) 0.4 7.5 (29.4) 0.8 40.7 (38.9) 0.3 –34.0 (48.3) 0.5 –11.56 (31.99) 0.7

Total NOx –13.8 (54.8) 0.8 –108.5 (71.8) 0.1 75.1 (87.0) 0.4 112.8 (93.1) 0.2 36.31 (66.23) 0.6

Evenness

PM10 0.002 (0.0009) 0.02 –0.0002 (0.001) 0.9 0.002 (0.001) 0.2 –0.0004 (0.002) 0.8 –0.002 (0.001) 0.1

PM2.5 0.003 (0.002) 0.2 0.002 (0.003) 0.5 0.0004 (0.004) 0.9 –0.002 (0.004) 0.7 0.007 (0.004) 0.1

NO2 0.001 (0.002) 0.4 0.002 (0.001) 0.2 0.001 (0.002) 0.9 0.0003 (0.002) 0.9 –0.0003 (0.002) 0.9

O3 0.002 (0.0009) 0.1 –0.002 (0.001) 0.2 0.001 (0.002) 0.5 –0.002 (0.002) 0.4 –0.001 (0.001) 0.5

O3 + NO2 0.002 (0.001) 0.03 –0.001 (0.002) 0.5 0.001 (0.002) 0.5 –0.002 (0.002) 0.4 –0.001 (0.001) 0.5

Total NOx 0.002 (0.004) 0.6 –0.009 (0.004) 0.03 0.004 (0.004) 0.4 0.0008 (0.004) 0.9 –0.004 (0.003) 0.2

Simpson

PM10
0.005 (0.002) 0.02 0.001 (0.002) 0.6 0.003 (0.002) 0.1 0.0009 (0.002) 0.7 –0.001 (0.001) 0.3

PM2.5
0.007 (0.005) 0.2 0.008 (0.006) 0.2 –0.001 (0.006) 0.8 –0.003 (0.005) 0.6 0.01 (0.004) 0.02

NO2
0.001 (0.003) 0.7 0.005 (0.002) 0.06 0.001 (0.003) 0.7 0.0006 (0.002) 0.8 0.001 (0.002) 0.6

O3
0.004 (0.002) 0.04 –0.005 (0.003) 0.1 0.005 (0.003) 0.1 –0.002 (0.002) 0.4 –0.002 (0.001) 0.2

O3 + NO2
0.004 (0.002) 0.02 –0.003 (0.003) 0.5 0.005 (0.003) 0.1 –0.002 (0.003) 0.4 –0.002 (0.001) 0.2

Total NOx 0.003 (0.009) 0.8 –0.02 (0.009) 0.02 0.006 (0.006) 0.3 0.003 (0.005) 0.6 –0.003 (0.003) 0.2

b = beta estimate; SE = standard error.
aEstimates were generated using linear models in which the outcome of interest was alpha-diversity (i.e., Shannon, richness, evenness, and 
Simpson indices) at the 1-, 6-, 12-, 18-, and 24-month study visits; the predictor of interest was cumulative air pollution exposure from birth 
to each study visit. The 1-month models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breast-
feedings per day, formula feedings per day, mode of delivery, and maternal prepregnancy BMI. At the 6-month timepoint, models were addi-
tionally adjusted for the introduction of solid foods; at subsequent timepoints, models were also adjusted for the infant Healthy Eating Index. 
Bolded cells indicate statistical significance (P < 0.05). 
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exposure was associated with higher Simpson diversity both 
before and after adjustment for NO2 (bboth = 0.004, Pboth < 0.04). 
After adjustment for NO2, O3 was also associated with higher 
evenness (b = 0.002, P = 0.03). At 6 months, total NOx exposure 
was associated with lower Shannon diversity, evenness, and 
Simpson diversity (b = –0.08, –0.009, –0.02; P = 0.03, 0.03, 
0.02, respectively). We did not observe statistically significant 
associations between alpha-diversity measures and cumulative 
air pollution exposure at 12, 18, or 24 months of infant age.

Next, we used PERMANOVA to estimate the proportion 
of variability in overall gut microbiome composition (deter-
mined via Bray–Curtis dissimilarity) attributable to quartiles 
of cumulative air pollution exposure at each timepoint (Table 
3). We found that NO2 exposure at 24 months of age explained 
3% of the variability in Bray–Curtis dissimilarity (P = 0.005). 
We also found that the model including both NO2 and O3 was 
significant, explaining 4% of the variability in Bray–Curtis 

dissimilarity (P = 0.03). We did not observe statistically signif-
icant associations between overall microbiome composition 
and cumulative air pollution exposure for other pollutants or 
at other study visits. 

We subsequently used negative binomial models to 
assess whether the abundances of gut microbial species were 
cross-sectionally associated with cumulative air pollution 
exposure (Table 4). The greatest number of statistically signifi-
cant associations (i.e., PBH < 0.2) was observed between cumu-
lative PM10 exposure and gut microbial species abundances at 
1 month of infant age — there were 37 significant associations. 

In Figure 4, we summarize the associations of cumulative 
PM2.5 exposure with gut microbial taxa abundances at 1, 6, 
18, and 24 months of infant age using dendrograms, where 
each branch represents a different taxonomic level; anno-
tations are added at the species level. Although we did not 

Table 3. Cross-Sectional Associations of Quartile of Cumulative Air Pollution Exposure with Overall Microbiome 
Composition (Estimated Via Bray–Curtis Dissimilarity)

1 Month 6 Months 12 Months 18 Months 24 Months

R2a P R2a P R2a P R2a P R2a P

PM10 0.02 0.2 0.02 0.8 0.02 0.2 0.02 1.0 0.02 0.2

PM2.5 0.02 0.4 0.02 0.3 0.02 0.3 0.02 0.9 0.02 0.5

NO2 0.02 0.5 0.01 1.0 0.02 0.2 0.02 0.9 0.03 0.005

O3 0.02 0.1 0.01 1.0 0.03 0.1 0.02 0.6 0.02 0.7

O3 + NO2 0.03 0.3 0.03 1.0 0.05 0.2 0.04 0.9 0.04 0.03

Total NOx 0.01 0.7 0.03 0.06 0.02 0.5 0.02 0.7 0.02 0.03

aR2 represents the proportion of variance in Bray–Curtis dissimilarity explained by quartile of cumulative air pollution exposure (i.e., from birth 
to each study visit) at 1, 6, 12, 18, and 24 months of infant age. Results were unadjusted, except for the O3 + NO2 model, in which cumulative 
exposure to NO2 was included as a covariate. Bolded cells indicate statistical significance (P < 0.05).

Table 4. Numbers of Statistically Significant Cross-Sectional Associations Between Cumulative Air Pollution Exposure 
and Gut Microbial Species at 1, 6, 12, 18, and 24 Months of Infant Agea 

1 Month 6 Months 12 Months 18 Months 24 Months

PBH < 0.2 PBH < 0.05 PBH < 0.2 PBH < 0.05 PBH < 0.2 PBH < 0.05 PBH < 0.2 PBH < 0.05 PBH < 0.2 PBH < 0.05

PM10 37 3 6 1 21 3 5 2 0 0

PM2.5 0 0 8 0 4 1 14 3 33 18

NO2 20 3 10 4 10 3 16 8 3 3

O3 17 3 3 1 16 8 13 4 7 2

O3 + NO2 32 10 6 3 22 10 5 1 22 15

Total NOx 8 1 6 2 12 2 19 4 17 5

a Cumulative air pollution exposure was defined as the total exposure from birth to each timepoint (i.e., 1, 6, 12, 18, and 24 months). Cells indi-
cate numbers of statistically significant associations after correction for multiple testing using the BH method at thresholds of PBH < 0.2 and PBH 
< 0.05. Results were generated using negative binomial models, in which the outcome was the abundance of each gut microbial species. The 
1-month models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeedings per day, formula 
feedings per day, mode of delivery, and maternal prepregnancy BMI; an offset was included to control for the log of total microbial counts in 
each sample. At the 6-month timepoint, models were additionally adjusted for the introduction of solid foods; at subsequent timepoints, mod-
els were also adjusted for the infant Healthy Eating Index. The numbers of species analyzed were 132 at 1 month, 188 at 6 months, 370 at 12 
months, 541 at 18 months, and 802 at 24 months.
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observe statistically significant associations between PM2.5 

and species abundances at 1 month, we observed several 
associations between PM2.5 exposure and gut microbial spe-
cies abundances at 6, 18, and 24 months of age. For example, 
postnatal exposure to PM2.5 was inversely associated with 
Akkermansia muciniphila abundance at 6 months. At 24 
months, cumulative PM2.5 exposure was inversely associated 
with the abundance of Romboutsia sp. CE17 and positively 
associated with the abundances of Alistipes dispar and 
Alistipes ihumii. Plots illustrating the observed statistically 
significant associations between PM2.5 exposure and microbial 
species abundances can be found in Supplemental File 6 [6 

months], Supplemental File 7 [18 months], and Supplemental 
File 8 [24 months].

Associations of cumulative NOx exposure with gut 
microbial taxa at 1, 6, 18, and 24 months of infant age are 
summarized in Figure 5. Each branch in the figure represents 
a different taxonomic level, and species-level annotations are 
displayed. For example, at 1 month of infant age, cumulative 
NOx exposure was positively associated with the abundances 
of Dorea longicatena and Enterobacter asburiae. At 6 months, 
higher cumulative NOx exposure was associated with lower 
abundance of Coprococcus comes. At 18 months, higher 
cumulative NOx exposure was associated with higher abun-

Figure 4. Associations of cumulative PM2.5 exposure from birth to study visit with gut microbial taxa at 1, 6, 18, and 24 months of infant age. Estimates were 
obtained using negative binomial models in which the exposure of interest was cumulative PM2.5 exposure and the outcome was the abundance of each gut 
microbial taxon. The 1-month models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeedings per day, 
formula feedings per day, mode of delivery, and maternal prepregnancy BMI; an offset was included to control for the log of total microbial counts in each 
sample. At the 6-month timepoint, models were additionally adjusted for the introduction of solid foods; at subsequent timepoints, models were also adjusted 
for the infant Healthy Eating Index. Negative associations are shown in red and positive associations in blue; darker colors indicate stronger associations. 
Annotations are provided at the species level.
Annotations for 18-month species:	 A: Bifidobacterium angulatum; B: Klebsiella quasipneumoniae; C: Klebsiella variicola; D: Klebsiella pneumoniae; E: Megamonas funiformis; F: 
Phascolarctobacterium succinatutens; G: Lachnoclostridium sp. YL32; H: Enterocloster clostridioformis; I: Streptococcus anginosus; J: Streptococcus 
lutetiensis; K: Bacteroides intestinalis; L: Paraprevotella xylaniphila; M: Butyricimonas virosa; N: Fusobacterium ulcerans.

Annotations for 24-month species:	 A: Acidaminococcus intestini; B: Phascolarctobacterium succinatutens; C: Clostridium baratii; D: Romboutsia sp. CE17; E: Streptococcus anginosus; F: 
Streptococcus equinus; G: Streptococcus lactarius; H: Streptococcus sp. HSISS2; I: Streptococcus sp. HSISS3; J: Streptococcus thermophilus; K: Enterococcus avium; L: Enterococcus 
faecalis; M: Finegoldia magna; N: Catenibacterium mitsuokai; O: Turicibacter sanguinis; P: Turicibacter bilis; Q: Bifidobacterium adolescentis; R: Eggerthella sp. YY7918; S: Berryella 
intestinalis; T: Sutterella wadsworthensis; U: Klebsiella variicola; V: Citrobacter portucalensis; W: Enterobacter cloacae; X: Enterobacter hormaechei; Y: Enterobacter asburiae; Z: 
Raoultella ornithinolytica; a: Bacteroides nordii; b: Bacteroides caccae; c: Alistipes dispar; d: Alistipes ihumii; e: Paraprevotella xylaniphila; f: Parabacteroides goldsteinii.
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dances of several pathogenic gut bacterial species, including 
Clostridium neonatale, Escherichia fergusonii, Escherichia 
coli, and Salmonella enterica. As observed with cumulative 
PM2.5 exposure, cumulative NOx exposure at 24 months was 
associated with higher abundances of Alistipes ihumii and 
Alistipes finegoldii. Plots illustrating the observed statistically 
significant associations between NOx exposure and microbial 
species abundances can be found in Supplemental File 9 [1 
month], Supplemental File 10 [6 months], Supplemental File 
11 [18 months], and Supplemental File 12 [24 months].

In the next analysis, we explored possible overlap between 
observed associations of cumulative air pollutant exposure 
and gut microbial species abundances at 1, 6, 12, 18, and 24 

months of infant age (Figure 6). Overall, we detected minimal 
overlap in associations according to infant age. For example, 
we identified 33 microbial species uniquely associated with 
cumulative PM10 exposure at 1 month, five at 6 months, 17 at 
12 months, and four at 18 months. There were two overlap-
ping associations between the 1- and 6-month timepoints, two 
between the 1- and 12-month timepoints, and one between 
the 12- and 18-month timepoints.

Prior-Month Air Pollution Exposure and the Gut 
Microbiome

We investigated whether short-term air pollution exposure 
(i.e., prior-month exposure at each study visit) was associated 

Figure 5. Associations of cumulative NOx exposure from birth to study visit with gut microbial taxa at 1, 6, 18, and 24 months of infant age. Estimates were 
obtained using negative binomial models in which the exposure of interest was cumulative NOx exposure, and the outcome was the abundance of each gut 
microbial taxon. The 1-month models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeedings per day, 
formula feedings per day, mode of delivery, and maternal prepregnancy BMI; an offset was included to adjust for the log of total microbial counts in each 
sample. At the 6-month timepoint, models were additionally adjusted for whether solid foods had been introduced; at subsequent timepoints, models were 
also adjusted for the infant Healthy Eating Index. Negative associations are shown in red and positive associations are shown in blue; darker colors indicate 
stronger associations. Annotations are provided at the species level.
Annotations for 18-month species:	 A: Megasphaera massiliensis; B: Megasphaera elsdenii; C: Phascolarctobacterium succinatutens; D: Vescimonas coprocola; E: Clostridium neonatale; 
F: Eubacterium limosum; G: Eubacterium callanderi; H: Blautia argi; I: Coprococcus sp. ART55/1; J: Streptococcus anginosus; K: Streptococcus 
alactolyticus; L: Escherichia fergusonii; M: Escherichia coli; N: Salmonella enterica; O: Bacteroides ovatus; P: Parabacteroides sp. CT06.

Annotations for 24-month species:	 A: Megasphaera massiliensis; B: Megasphaera elsdenii; C: Megasphaera hexanoica; D: Acidaminococcus intestini; E: Ligilactobacillus ruminis; F: 
Enterococcus faecalis; G: Bifidobacterium angulatum; H: Bifidobacterium animalis; I: Eggerthella lenta; J: Klebsiella pneumoniae; L: Citrobacter 
freundii; M: Bacteroides caccae; N: Alistipes ihumii; O: Alistipes finegoldii; P: Odoribacter splanchnicus; Q: Desulfovibrio piger.
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with the gut microbiome. Table 5 presents the number of gut 
microbial species significantly associated (PBH < 0.2 or PBH < 
0.05) with prior-month exposure to each air pollutant. Among 
the gut microbial species associated with prior-month PM10, 
NO2, and O3 exposures at 1 month, all were also associated 
with cumulative PM10 exposure at 1 month. At 6 months, 
Bifidobacterium dentium abundance was inversely associ-
ated with prior-month PM10 and PM2.5 exposures; this species 
was also positively associated with cumulative PM10 expo-
sure at 24 months. Similarly, Klebsiella michiganensis was 
associated with both cumulative and prior-month NO2 expo-
sures. At 18 months, there were 18 significant associations 

between PM10 exposure and species abundance, only one of 
which (Fusobacterium ulcerans) was also identified in the 
cumulative analyses. Among the four significant associations 
between PM2.5 exposure and species abundance at 18 months, 
two — Klebsiella variicola and Bifidobacterium angulatum 
— were also identified in the cumulative analyses. Of the 
19 statistically significant associations between prior-month 
NO2 exposure and species abundance, only one (Bacteroides 
intestinalis) overlapped with cumulative exposure findings. 
In contrast, all species significantly associated with NOx 
exposure were also identified in the cumulative analysis. 
Among nine statistically significant associations between O3 

Figure 6. Venn diagrams summarizing the numbers of statistically significant associations between cumulative air pollution exposure and 
gut microbial species abundance across timepoints. These Venn diagrams summarize the number of statistically significant associations 
across different timepoints. For example, in the top right diagram, there were 33 significant associations between gut microbial species 
abundance and PM10, indicated by the green circle. The 1-month models were adjusted for infant age, infant sex, socioeconomic status, season 
of visit, maternal age, breastfeedings per day, formula feedings per day, mode of delivery, and maternal prepregnancy BMI. An offset was 
included to adjust for the log of the total number of microbial counts in each sample. At the 6-month timepoint, we additionally adjusted 
for whether solid foods had been introduced; at subsequent timepoints, we also adjusted for the infant Healthy Eating Index. Findings were 
considered statistically significant if PBH < 0.2.
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Table 5. Numbers of Statistically Significant Cross-Sectional Associations Between Prior-Month Air Pollution Exposure 
and Gut Microbial Species at 1, 6, 12, 18, and 24 Months of Infant Agea 

1 Month 6 Months 12 Months 18 Months 24 Months

PBH < 0.2 PBH < 0.05 PBH < 0.2 PBH < 0.05 PBH < 0.2 PBH < 0.05 PBH < 0.2 PBH < 0.05 PBH < 0.2 PBH < 0.05

PM10 9 5 6 0 1 1 18 6 27 12

PM2.5 4 4 3 3 8 0 4 2 20 13

NO2 6 4 8 5 8 4 19 2 18 8

O3 11 4 3 0 14 6 9 7 22 7

O3 + NO2 27 4 1 0 15 2 6 6 13 6

NOx 7 1 10 3 29 2 9 4 20 12

a Prior-month air pollution exposure was defined as the exposure during the month preceding each study visit (i.e., at 1, 6, 12, 18, and 24 
months). Cells indicate the number of statistically significant results after correction for multiple testing using the BH method at PBH < 0.2 and 
PBH < 0.05. Results were generated using negative binomial models in which the outcome was the abundance of each gut microbial species. The 
1-month models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeedings per day, formula 
feedings per day, mode of delivery, and maternal prepregnancy BMI; an offset was included to control for the log of total microbial counts in 
each sample. At the 6-month timepoint, models were additionally adjusted for the introduction of solid foods; at subsequent timepoints, mod-
els were also adjusted for the infant Healthy Eating Index. The numbers of species analyzed were 132 at 1 month, 188 at 6 months, 370 at 12 
months, 541 at 18 months, and 802 at 24 months.

exposure and species abundance, three were also observed 
in the cumulative analyses. Overall, the 24-month findings 
were similar to those at 18 months, showing limited overlap 
between species associated with cumulative air pollution 
exposure and those associated with prior-month exposure. 

We also assessed the associations of prior-month air pollut-
ant exposure with alpha-diversity measures, including Shan-
non, richness, evenness, and Simpson indices (Table 6). At 1 
month of age, O3 exposure was associated with higher Simpson 
diversity (adjusted for NO2 exposure) (P = 0.04). At 6 months 
of age, total NOx exposure was associated with lower Shan-
non diversity, evenness, and Simpson diversity (Pall ≤ 0.03).  
Next, we assessed the associations of prior-month air pollu-
tion exposure with overall microbiome composition, using 
the beta-diversity measure Bray–Curtis dissimilarity. We 
found that quartiles of prior-month NO2 exposure explained 
5% of the variation in Bray–Curtis dissimilarity at 24 months 
of infant age (P = 0.007) (Table 7).

AIM 1 FECAL METABOLOME

Population characteristics of participants included in the 
fecal metabolomics analyses are shown in Table 8. Study 
visits occurred at approximately 1, 6, 12, 18, and 24 months 
of infant age. At the initial study visit, participants with fecal 
metabolomics data were 46% male, and 73% had been born 
vaginally. Participants were selected to maximize the number 
of complete fecal samples across time. Changes in non-time-
varying characteristics over time reflect missing follow-up 
data for some participants. At the 1-month timepoint, three 
participants were missing fecal metabolomics data; at 6 
months, 11 participants were missing these data; at 12 months, 
seven participants were missing these data; at 18 months, four 
participants were missing these data; and at 24 months, one 
participant was missing these data (Supplemental Figure 1). 
At 1 month of age, infants received an average of 6.6 human 

milk feedings per day (range: 0–8); they were introduced to 
solid foods at a mean age of 5.9 months (range: 2–12 months). 

Prenatal Air Pollution Exposure and the Fecal 
Metabolome at 1 Month

As previously described,39 prenatal exposures to PM10, 
PM2.5, NO2, and NOx were associated with the intensities 
of 51 Level-1 metabolites (Figure 7). For instance, prenatal 
PM10 exposure was positively associated with pyridoxamine 
intensity; prenatal PM10, PM2.5, and NO2 exposures were pos-
itively associated with 4-hydroxy-phenylglycine/pyridoxal 
intensity. Pyridoxamine and 4-hydroxy-phenylglycine/pyri-
doxal are both involved in vitamin B6 metabolism.58 Prenatal 
PM10 and PM2.5 exposures were both positively associated 
with the intensities of thymidine and beta-alanine/sarcosine, 
metabolites involved in pyrimidine metabolism.58 Finally, 
prenatal PM2.5 and NO2 exposures were inversely associated 
with the intensities of 3-methoxy-4-hydromandelate/vanil-
lylmandelate and tyrosine, which are involved in tyrosine 
metabolism.58 We also explored the associations of prenatal 
NOx exposure with 1-month metabolite intensities, revealing 
that arabinose/xylose/ribose intensities were inversely asso-
ciated with prenatal NOx exposure (PBH = 0.001). Associations 
of prenatal O3 exposure with fecal metabolite intensity at 1 
month were also assessed; no statistically significant asso-
ciations were detected, either before or after adjustment for 
prenatal NO2 exposure. 

Cumulative Air Pollution Exposure and the Fecal 
Metabolome

Linear multivariate models were used to assess whether 
cumulative postnatal exposures to PM10, PM2.5, NO2, O3, and 
NOx were associated with the intensities of Level-1 metab-
olites at 1, 6, 12, 18, and 24 months of age (Table 9, Table 
10). At the 6-month study visit, PM10 exposure was positively 
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Table 6. Cross-Sectional Associations of Prior-Month Air Pollution Exposure with Gut Microbiome Alpha-Diversity at 1, 
6, 12, 18, and 24 Months of Infant Agea 

1 Month 6 Months 12 Months 18 Months 24 Months
b (SE) P b (SE) P b (SE) P b (SE) P b (SE) P

Shannon

PM10 0.01 (0.008) 0.1 –0.008 (0.008) 0.3 0.002 (0.007) 0.8 –0.02 (0.01) 0.2 0.007 (0.007) 0.3
PM2.5 0.008 (0.02) 0.6 –0.02 (0.01) 0.2 –0.01 (0.02) 0.5 –0.01 (0.02) 0.6 0.03 (0.01) 0.048
NO2 0.008 (0.01) 0.6 0.001 (0.01) 0.9 –0.02 (0.01) 0.1 0.02 (0.01) 0.2 –0.01 (0.009) 0.2
O3 0.01 (0.007) 0.2 0.0006 (0.008) 0.9 0.01 (0.007) 0.1 –0.0009 (0.007) 0.9 0.008 (0.005) 0.1
O3 + NO2 0.01 (0.008) 0.1 0.002 (0.009) 0.9 0.008 (0.008) 0.3 0.003 (0.008) 0.7 0.006 (0.005) 0.3
Total NOx –0.004 (0.03) 0.9 –0.07 (0.03) 0.03 0.03 (0.04) 0.4 0.007 (0.03) 0.8 –0.02 (0.02) 0.4

Richness

PM10 3.0 (11.2) 0.8 –15.5 (14. 6) 0.3 11.9 (16.3) 0.5 –24.3 (25.1) 0.3 22.9 (15.5) 0.1
PM2.5 –1.4 (22.0) 1.0 –24.2 (23.0) 0.3 –6.1 (33.9) 0.9 –6.4 (47.2) 0.9 63.8 (28.5) 0.03
NO2 5.6 (18.2) 0.8 –15.1 (20.5) 0.5 –29.0 (25.2) 0.2 36.7 (30.8) 0.2 –16.8 (19.9) 0.4
O3 4.6 (10.8) 0.7 –2.3 (14.5) 0.9 27.6 (16.2) 0.1 –8.2 (16.1) 0.6 12.1 (10.7) 0.3
O3 + NO2 5.7 (11.5) 0.6 –8.9 (16.8) 0.6 24.4 (17.2) 0.2 0.8 (17.6) 1.0 9.2 (11.8) 0.4
Total NOx –28.2 (48.1) 0.6 –86.3 (58.5) 0.1 61.0 (78.8) 0.4 4.7 (61.4) 0.9 –0.08 (43.9) 1.0

Evenness

PM10 0.002 (0.0009) 0.08 –0.0008 (0.0008) 0.4 0.0001 (0.0007) 0.9 –0.002 (0.001) 0.1 0.0006 (0.0007) 0.4
PM2.5 0.001 (0.002) 0.5 –0.002 (0.001) 0.2 –0.001 (0.002) 0.4 –0.001 (0.002) 0.5 0.002 (0.001) 0.1
NO2 0.0009 (0.001) 0.6 0.0004 (0.001) 0.7 –0.002 (0.001) 0.1 0.002 (0.001) 0.3 –0.001 (0.0009) 0.2
O3 0.001 (0.0009) 0.1 0.00002 (0.0008) 1.0 0.001 (0.0007) 0.2 –0.000003 (0.0007) 1.0 0.0008 (0.0005) 0.1
O3 + NO2 0.002 (0.0009) 0.09 0.0003 (0.001) 0.8 0.0007 (0.0008) 0.4 0.0004 (0.0008) 0.6 0.0006 (0.0005) 0.3
Total NOx –0.0001 (0.004) 1.0 –0.008 (0.003) 0.02 0.003 (0.004) 0.4 0.0008 (0.003) 0.8 –0.002 (0.002) 0.3

Simpson

PM10 0.003 (0.002) 0.1 –0.002 (0.002) 0.3 0.0005 (0.001) 0.7 –0.002 (0.001) 0.1 0.0006 (0.0007) 0.4
PM2.5 0.002 (0.004) 0.5 –0.004 (0.003) 0.2 –0.002 (0.002) 0.4 –0.003 (0.002) 0.2 0.002 (0.001) 0.1
NO2 0.0004 (0.003) 0.9 0.0009 (0.002) 0.7 –0.002 (0.002) 0.2 0.001 (0.002) 0.4 –0.0006 (0.0009) 0.5
O3 0.003 (0.002) 0.1 –0.0006 (0.002) 0.7 0.002 (0.001) 0.1 0.00007 (0.0008) 0.9 0.0005 (0.0005) 0.3
O3 + NO2 0.004 (0.002) 0.04 –0.0003 (0.002) 0.9 0.002 (0.001) 0.2 0.0005 (0.0009) 0.6 0.0003 (0.0005) 0.6
Total NOx –0.004 (0.008) 0.7 –0.02 (0.007) 0.02 0.0003 (0.005) 1.0 0.0008 (0.003) 0.8 –0.003 (0.002) 0.2

b = beta estimate; SE = standard error.
a Estimates were generated using linear models in which the outcome of interest was alpha-diversity (i.e., Shannon, richness, evenness, and 
Simpson indices) at the 1-, 6-, 12-, 18-, and 24-month study visits; the predictor of interest was air pollution exposure during the month pre-
ceding the visit. The 1-month models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeed-
ings per day, formula feedings per day, mode of delivery, and maternal prepregnancy BMI. At the 6-month timepoint, models were additionally 
adjusted for the introduction of solid foods; at subsequent timepoints, models were also adjusted for the infant Healthy Eating Index. Bolded 
cells indicate statistical significance (P < 0.05).

associated with the intensities of glycerate, alpha-aminoadi-
pate/methyl-glutamate, acetyl-glutamic acid, omega-hydroxy-
dodecanoic acid, and hexyl-glutathione. At the 12-month 
study visit, PM10 exposure was positively associated with the 
intensity of trans-cinnamaldehyde. At 6 months, cumulative 
NO2 exposure was positively associated with the intensities of 
butyrate/isobutyrate, glycerate, glutamic acid/methyl-aspar-
tic acid, acetyl-glutamic acid, and anserine; it was inversely 
associated with monoglyceride(14:0/0:0/0:0). At 18 months, 
cumulative O3 exposure was inversely associated with the 
intensity of omega-hydroxydodecanoic acid. At 24 months, 
cumulative O3 exposure was positively associated with the 
intensities of butyrate/isobutyrate, succinate/methylmalonic 

acid, and dihydroxymandelic acid, both before and after 
adjustment for cumulative NO2 exposure. At the 1-month 
study visit, NOx exposure was inversely associated with 
the intensity of arabinose/xylose/ribose. At 6 months, NOx 
exposure was inversely associated with the intensities of 17 
metabolites, including hypoxanthine, indole-3-acetic acid, 
and hexanoylcarnitine. At 24 months, NOx exposure was 
inversely associated with the intensity of acetylputrescine. 

Prior-Month Air Pollution Exposure and the Fecal 
Metabolome

We also explored whether prior-month exposures to PM10, 
PM2.5, NO2, O3, and NOx were associated with metabolite 
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Table 7. Associations of Quartile of Prior-Month Air Pollution Exposure with Overall Microbiome Composition 
(Estimated Via Bray–Curtis Dissimilarity) at 1, 6, 12, 18, and 24 Months

1 Month 6 Months 12 Months 18 Months 24 Months

R2a P R2a P R2a P R2a P R2a P

PM10 0.04 0.051 0.02 0.5 0.02 0.3 0.02 0.3 0.03 0.7

PM2.5 0.009 0.7 0.02 0.6 0.02 0.7 0.02 1.0 0.03 0.7

NO2 0.01 0.7 0.03 0.1 0.02 0.7 0.03 0.1 0.05 0.007

O3 0.009 0.7 0.02 0.5 0.02 0.2 0.03 0.2 0.03 0.8

O3 + NO2 0.01 0.9 0.05 0.2 0.04 0.5 0.05 0.2 0.07 0.06

Total NOx 0.001 0.8 0.02 0.3 0.02 0.7 0.02 0.8 0.02 0.9

a R2 represents the proportion of variance in Bray–Curtis dissimilarity explained by quartile of exposure to air pollution during the month prior 
to each study visit at 1, 6, 12, 18, and 24 months of infant age. Results were unadjusted, except for the O3 + NO2 model, in which cumulative 
exposure to NO2 was included as a covariate. Bolded cells indicate statistical significance (P < 0.05).

Figure 7. Prenatal PM10, PM2.5, NO2, 
and NOx exposures were associated 
with level-1 metabolites at 1 month 
of infant age. Plus (+) denotes 
metabolites that were positively 
associated with air pollution 
exposure. All other metabolites were 
inversely associated. Results were 
generated using multivariable linear 
models adjusted for infant age, infant 
sex, socioeconomic status, season of 
visit (warm vs. cold), maternal age, 
and breastmilk and formula feedings 
per day. Only results significant at 
PBH < 0.2 are shown. The association 
between prenatal O3 exposure 
and fecal metabolite intensity was 
also assessed, but no statistically 
significant associations were 
identified regardless of adjustment 
for prenatal NO2 exposure. (Source: 
Adapted with permission from 
Holzhausen et al. 2024; Creative 
Commons license CC BY-NC-ND 4.0.)

https://pubs.acs.org/doi/10.1021/acs.est.4c02929
https://pubs.acs.org/doi/10.1021/acs.est.4c02929
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
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Table 8. Characteristics of Mother–Infant Dyads with Fecal Metabolomics Data from the Southern California Mother’s 
Milk Study, Enrollment from 2016 to 2019a

Variable
1 Month 
(N = 124)

6 Months 
(N = 116)

12 Months
 (N = 120)

18 Months 
(N = 123)

24 Months 
(N = 126)

Maternal characteristics Mean ± SD; n (%) Mean ± SD; n (%) Mean ± SD; n (%) Mean ± SD; n (%) Mean ± SD; n (%)

Age (years) 29.0 ± 6.3 29.4 ± 6.3 29.8 ± 6.4 30.4 ± 6.4 30.7 ± 6.2
Prepregnancy BMI (kg/m2)b 28.6 ± 5.8 28.4 ± 5.7 28.6 ± 5.9 28.7 ± 5.8 28.6 ± 5.7
SESb,c 26.6 ± 12.1 26.4 ± 11.9 27.1 ± 12.1 26.8 ± 12.0 26.6 ± 12.0

Infant characteristics

Age (days) 32.6 ± 3.3 186.0 ± 8.9 367.8 ± 10.6 551.5 ± 19.2 751.9 ± 46.6
Sexb (male, female, %male) 57, 67, 46% 55, 61, 47% 60, 60, 50% 59, 64, 48% 59, 67, 47%
Delivery modeb (CS, vaginal, %CS) 33, 91, 27% 31, 85, 27% 30, 90, 25% 32, 91, 26% 32, 94, 25%
Breastfeedings per day 6.6 ± 2.4 3.1 ± 3.4 2.2 ± 2.8 2.0 ± 2.7 1.6 ± 2.4
Formula feedings per day 2.4 ± 2.7 3.1 ± 2.9 2.2 ± 2.4 0.9 ± 1.7 0.9 ± 1.8
Age at solid food introduction 
(months)b

-- 5.9 ± 1.6 5.8 ± 1.6 5.9 ± 1.6 5.9 ± 1.6

Season of visitd (warm, cool, %warm) 55, 69, 44% 54, 62, 47% 65, 55, 54% 61, 62, 50% 58, 68, 46%

Air pollution measures

Prenatal PM10 (µg/m3)e 30.3 ± 4.0 31.7 ± 6.9 30.9 ± 7.1 30.5 ± 4.0 30.3 ± 4.0
Prenatal PM2.5 (µg/m3)e 12.0 ± 1.2 11.9 ± 1.2 11.8 ±1.2 12.0 ± 1.2 11.9 ± 1.2
Prenatal NO2 (ppb)e 18.2 ± 2.5 18.1 ± 2.5 18.0 ± 2.5 18.1 ± 2.5 18.1 ± 2.5
Prenatal O3 (ppb)e 43.0 ± 3.7 43.0 ± 3.7 43.0 ± 3.7 43.1 ± 3.7 43.0 ± 3.6
Prenatal NOx (ppb) 4.2 ± 2.4 4.2 ± 2.4 4.2 ± 2.4 4.2 ± 2.4 4.2 ± 2.4
Individual mean PM10 (µg/m3)b 29.6 ± 3.2 29.6 ± 3.2 29.7 ± 3.2 29.5 ± 3.2 29.6 ± 3.2
Individual mean PM2.5 (µg/m3)b 11.9 ± 1.6 11.8 ± 1.6 11.8 ± 1.7 11.8 ± 1.6 11.8 ± 1.6
Individual mean NO2 (ppb)b 17.1 ± 2.4 16.9 ± 2.2 17.1 ± 2.3 17.0 ± 2.4 17.0 ± 2.4
Individual mean O3 (ppb)b 41.8 ± 4.1 42.0 ± 4.0 41.9 ± 4.1 41.9 ± 4.1 41.9 ± 4.1
Individual mean NOx (ppb)b 3.6 ± 1.8 3.6 ± 1.8 3.6 ± 1.9 3.6 ± 1.8 3.6 ± 1.8
Fluctuation in PM10 (µg/m3) 2.8 ± 6.8 2.2 ± 6.4 1.2 ± 5.4 -3.9 ± 5.2 -3.7 ± 5.7
Fluctuation in PM2.5 (µg/m3) 0.6 ± 3.5 0.7 ± 3.6 0.2 ± 2.8 -1.0 ± 2.8 -0.5 ± 2.4
Fluctuation in NO2 (ppb) 1.9 ± 6.1 1.5 ± 7.6 -0.9 ± 4.9 -1.1 ± 6.2 -1.2 ± 4.5
Fluctuation in O3 (ppb) 0.9 ± 7.3 01 ± 7.9 0.0 ± 5.6 -0.7 ± 8.2 -0.3 ± 6.3
Fluctuation in NOx (ppb) 0.1 ± 0.9 -0.06 ± 0.9 -0.1 ± 0.6 0.1 ± 0.9 0.0 ± 0.8
Cumulative PM10 (µg/m3) 32.3 ± 7.1 32.3 ± 4.9 32.2 ± 3.6 31.0 ± 3.1 30.0 ± 2.7
Cumulative PM2.5 (µg/m3) 12.4 ± 3.9 12.5 ± 2.0 12.6 ± 1.4 12.3 ± 1.1 12.1 ± 0.9
Cumulative NO2 (ppb) 18.9 ± 7.2 19.0 ± 5.1 18.4 ± 2.6 17.9 ± 2.7 17.4 ± 2.1
Cumulative O3 (ppb) 42.7 ± 8.5 41.8 ± 4.9 41.9 ± 3.0 41.2 ± 2.8 41.4 ± 2.2
Cumulative NOx (ppb) 3.6 ± 1.9 3.6 ± 1.8 3.5 ± 1.8 3.5 ± 1.8 3.5 ± 1.8
Prior-month PM10 (µg/m3) 32.4 ± 7.6 31.7 ± 6.9 30.9 ± 7.0 25.8 ± 5.0 26.4 ± 6.9
Prior-month PM2.5 (µg/m3) 12.5 ± 4.2 12.4 ± 4.1 12.0 ± 3.2 10.8 ± 2.6 11.4 ± 3.0
Prior-month NO2 (ppb) 18.9 ± 7.5 18.4 ± 7.1 16.2 ± 6.1 15.9 ± 5.3 15.8 ± 5.6
Prior-month O3 (ppb) 42.7 ± 8.7 42.1 ± 8.4 41.9 ± 7.9 41.2 ± 8.0 41.5 ± 8.1
Prior-month NOx (ppb) 3.7 ± 2.0 3.5 ± 2.0 3.5 ± 1.9 3.6 ± 1.9 3.5 ± 1.7

aData are reported as mean and SD unless otherwise noted. (Source: Adapted with permission from Holzhausen et al. 2024; Creative Commons 
license CC BY-NC-ND 4.0.)

bNon-time-varying (i.e., assessed at a single timepoint and not expected to change over time); differences across time are due to participant miss-
ingness at specific timepoints (Pall ≥ 0.2).

cSES was estimated using a modified version of the Hollingshead Index. Range for study population: 3–63.
dStudy visits occurring between April 1 and September 30 were considered warm season; all other visits were considered cool season.
eGrand mean of prior month air pollution for each participant visit.

https://pubs.acs.org/doi/10.1021/acs.est.4c02929
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
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Table 9. Cross-Sectional Associations of Cumulative Postnatal PM10, NO2, and O3 Exposures with Metabolite Intensities 
at 6, 12, 18, and 24 Months of Infant Age a

6 Months 12 Months 18 Months 24 Months
Metab.                              PBH Metab.                   PBH Metab.                  PBH    Metab. PBH

PM10

Glycerate ↑ 0.07 Trans- 
cinnamaldehyde

↑ 0.07

Alpha-aminoadipate/
methyl-glutamate

↑ 0.15

Acetyl-glutamic acid ↑ 0.15

Omega- 
hydroxydodecanoic acid

↑ 0.15

Hexyl-glutathione ↑ 0.15

NO2

Butyrate/isobutyrate ↑ 0.08

Glycerate ↑ 0.08

Glutamic acid/
methyl-aspartic acid

↑ 0.08

Acetyl-glutamic acid ↑ 0.08

Anserine ↑ 0.08

Monoglycer-
ide(14:0/0:0/0:0)

↓ 0.18

O3

Omega- 
hydroxydodeca-
noic acid

↓ 0.11 Butyrate/isobu-
tyrate

↑ 0.09

Succinate/methyl-
malonic acid

↑ 0.09

Dihydroxyman-
delic acid

↑  0.09

O3

+
NO2

Butyrate/isobu-
tyrate

↑ 0.09

Succinate/methyl-
malonic acid

↑ 0.09

Dihydroxyman-
delic acid

↑ 0.09 

Metab. = metabolite.
 aResults were generated from multivariable linear models in which the outcome of interest was log-transformed metabolite intensity and the pri-
mary predictor was cumulative air pollution exposure (from birth to the timepoint of interest). Models were adjusted for infant age (in days), 
infant sex, socioeconomic status, season of visit, maternal age, formula and breastfeeding frequency, and whether the infant had begun to eat 
solid foods. Arrows represent the direction of association. Shaded cells indicate no statistically significant associations for that exposure and 
timepoint. No statistically significant results were observed for PM2.5 or any exposure at 1 month of infant age. Results shown were significant 
after multiple testing correction using the BH procedure (PBH < 0.2). Results from both HILIC and C18 columns are included. 

intensities at 1, 6, 12, 18, and 24 months of age (Table 11). At 
6 months, PM10 exposure was inversely associated with the 
intensities of two metabolites, including 4-hydroxy-phenyl-
glycine/pyridoxal. PM2.5 exposure at 6 months was also 
inversely associated with the intensities of 4-hydroxy-phenyl-
glycine/pyridoxal and five other metabolites. At 18 months, 
prior-month PM2.5 exposure was inversely associated with the 
intensities of beta-alanine/sarcosine/alanine and melatonin. 
Prior-month NO2 exposure was inversely associated with the 
intensities of two metabolites at 6 months and six metabolites 

at the 12-month study visit. Before adjustment for NO2 expo-
sure, O3 exposure was positively associated with histidine 
intensity at 12 months. After adjustment for NO2 exposure, 
O3 exposure was inversely associated with the intensities of 
arabinose/xylose/ribose (6 months) and 2,6-dihydroxypyri-
dine (24 months); it was positively associated with cadaverine 
and carnitine intensities at 24 months. Similar to cumulative 
NOx exposure, we found that prior-month NOx exposure was 
inversely associated with the intensities of 19 metabolites 
(Table 12).
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Table 10. Cross-Sectional Associations of Cumulative Postnatal NOx Exposure with Metabolite Intensities at 1, 6, and 24 
Months of Infant Agea

NOx

1 Month 6 Months 24 Months
Metab.                                        PBH Metab.                                  PBH Metab.                                 PBH

Arabinose/xylose/ribose ↓  0.003 Aminophenol (2, 3, or 4)          ↓ 0.18

Indole                                        ↓ 0.18

Imidazoleacetate                       ↓ 0.18

Asparagineb                                                     ↓ 0.18

Hypoxanthine                           ↓ 0.18

Urocanate                                  ↓ 0.18

Glutamic acid/aspartate            ↓ 0.18

Methionine                               ↓ 0.18

Alpha-aminoadipate/               ↓ 0.18 
methyl-glutamate

Pyridoxine/noradrenaline        ↓ 0.18

Indole-3-acetic acid                  ↓ 0.18

Methylhippurate                       ↓ 0.18     

Succinyl-homoserine               ↓ 0.18

Hexanoylcarnitine                    ↓ 0.18

Linoleate                                   ↓ 0.18

Glutamic acid/methyl- 
aspartic acid                              ↓ 0.12

Dethiobiotin                              ↓ 0.12 

Acetylputrescine ↓ 0.18

Metab. = metabolite.
 aResults were generated from multivariable linear models in which the outcome of interest was log-transformed metabolite intensity and the pri-
mary predictor was cumulative air pollution exposure (from birth to the timepoint of interest). Models were adjusted for infant age (in days), 
infant sex, socioeconomic status, season of visit, maternal age, formula and breastfeeding frequency, and whether the infant had begun to eat 
solid foods. Arrows represent the direction of association. No statistically significant associations were identified at 12 or 18 months of infant 
age. Results shown were significant after correction for multiple testing using the BH procedure (PBH < 0.2). Results from both HILIC and C18 
columns are included. 

bConsistent with previous publications.

AIM 2 GUT MICROBIOME

Prenatal Air Pollution Exposure and the Longitudinal 
Gut Microbiome

We first assessed whether associations existed between 
prenatal air pollution exposure and the longitudinal 
abundances of gut microbial taxa via longitudinal negative 
binomial models; we incorporated an offset for the log of total 
bacterial counts and a random intercept to adjust for repeated 
measures among infants. We found that prenatal exposures to 
PM10, PM2.5, NO2, O3, and NOx were associated with longitu-
dinal changes in the abundances of several microbial species 
(Figure 8). For instance, higher prenatal PM10 exposure was 
associated with lower abundance of Finegoldia magna and 
higher abundances of three Enterobacter species. Higher pre-
natal PM2.5 exposure was associated with lower abundances of 
three Megasphaera species and two Roseburia species. Higher 
prenatal NO2 exposure was associated with lower abundances 

of Akkermansia muciniphila and three Megasphaera species, 
as well as increased abundances of three Klebsiella species. 
Finally, higher prenatal O3 exposure was associated with 
lower abundances of several Bifidobacterium species.

Postnatal Air Pollution Exposure and the Longitudinal 
Gut Microbiome

We next assessed whether postnatal fluctuations in air 
pollution exposure were associated with alpha-diversity 
(i.e., Shannon diversity, richness, evenness, and Simpson 
diversity) using linear mixed-effects models. In these models, 
the outcome of interest was alpha-diversity, and the predictor 
of interest was the deviation in prior-month exposure from 
the individual’s long-term mean (i.e., the grand mean of 
prior-month air pollution exposure). Overall, we did not find 
statistically significant associations (Pall > 0.05) between pri-
or-month deviations in air pollution exposure and alpha-di-
versity (Table 13).
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Table 11. Cross-Sectional Associations of Prior-Month PM10, PM2.5, NO2, and O3 Exposures with Metabolite Intensities at 
6, 12, 18, and 24 Months of Infant Age a

6 Months 12 Months 18 Months 24 Months

Metabolite               PBH Metab.                       PBH Metab.                      PBH Metab.                       PBH

PM10

4-Hydroxy-phenyl-
glycine/pyridoxal

↓ 0.08

2-,4-Quinolinecar-
boxylic acid

↓ 0.08

PM2.5

4-Hydroxy-phenyl-
glycine/pyridoxal

↓ 0.11 Beta-alanine/ 
sarcosine/alanine

↓ 0.14

Indole-3-acetic acid ↓ 0.11

Gamma-linolenic 
acid

↓ 0.15

Aminophenol (2, 3, 
or 4)

↓ 0.18 Melatonin ↓ 0,11

Methylvanillate ↓ 0.18

Phosphocholine ↓ 0.18

NO2

Pantothenic acid 
(B5)

↓ 0.06 Methoxytyramine
Salsolinol

↓ 0.14
↓ 0.14

Linoleate ↓ 0.06 Maleamate
Valine/norvaline
Pyridoxate
Methoxytyrosine

↓ 0.198
↓ 0.198
↓ 0.198
↓ 0.198

O3 Histidine ↑ 0.19

O3

+
NO2

Arabinose/xylose/
ribose

↓ 0.17 Cadaverine ↑ 0.12

2,6-Dihydroxy-
pyridine

↑ 0.12

Carnitine ↑ 0.19

 Metab. = metabolite.
aResults were generated from multivariable linear models in which the outcome of interest was log-transformed metabolite intensity and the pri-
mary predictor was cumulative air pollution exposure (from birth to the timepoint of interest). Models were adjusted for infant age (in days), 
infant sex, socioeconomic status, season of visit, maternal age, formula and breastfeeding frequency, and whether the infant had begun to eat 
solid foods. Arrows represent the direction of association. Shaded cells indicate no statistically significant associations for that exposure and 
timepoint. No statistically significant associations were identified at 1 month of infant age. Results shown were significant after correction for 
multiple testing using the BH procedure (PBH < 0.2). Results from both HILIC and C18 columns are included.

Next, we assessed the relationships of postnatal fluc-
tuations in air pollution exposure and gut microbial taxa 
abundances via longitudinal negative binomial models (Table 
14). After correction for multiple testing using the BH proce-
dure, we found the greatest number of statistically significant 
associations at the species level. Specifically, each pollutant 
examined was associated with gut bacterial species abun-
dances (PBH < 0.05), including PM10 (n = 18 species), PM2.5 (n 
= 6 species), NO2 (n = 9 species), O3 (n = 2 species, without 
adjustment for NO2), O3 (n = 8 species, with adjustment for 
NO2), and NOx (n = 6 species).

In Figure 9, we summarize the longitudinal associations 
of fluctuations in postnatal air pollution exposure with the 
abundances of infant gut microbial taxa during the first 2 

years of life for selected air pollutants. Overall, we observed 
statistically significant associations between fluctuations in 
PM10, PM2.5, NO2, O3, and NOx exposures and the abundances 
of several gut microbial taxa. For example, PM10 exposure was 
inversely associated with the abundances of Akkermansia 
muciniphila and Dysosmobacter welbionis; it was positively 
associated with the abundance of Clostridium neonatale. 
Fluctuations in NO2 exposure were positively associated with 
the abundances of Klebsiella michiganensis and Raoultella 
ornithinolytica. O3 exposure fluctuations were positively asso-
ciated with Klebsiella pneumoniae and Klebsiella variicola 
abundances; they were inversely associated with Lactococcus 
lactis abundance, both before and after adjustment for NO2. 
Finally, NOx exposure fluctuations were positively associated 
with the abundance of Raoultella ornithinolytica. 
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Table 12. Cross-Sectional Associations of Prior-Month NOx Exposure with Metabolite Intensities at 1, 6, 12, and 18 
Months of Infant Agea

1 Month 6 Months 12 Months 18 Months

Metab.                    PBH Metab.                     PBH Metab.                     PBH Metab.                      PBH

NOx

Arabinose/
xylose/ribose

↓ 0.001 Aminophenol (2, 
3, or 4)

↓ 0.09 Tyrosine  ↓ 0.14 Indole-3-acetic 
acid

   ↓ 0.10

Hypoxanthine ↓ 0.09

Indole-3-acetic 
acid

↓ 0.09

Pyridoxine/ 
noradrenaline

↓ 0.10

Succinyl- 
homoserine

↓ 0.15

4-Hydroxy-
phenylglycine/
pyridoxal

↓ 0.17

Methyl-ecgonine ↓ 0.17

Indole ↓ 0.19

Phenethylamine ↓ 0.19

4-Pyridoxate ↓ 0.19

Hexanoyl carnitine ↓ 0.19

Guanosine 
5’-diphosphoman-
nose

↑ 0.19

Dihydrouracil (5, 6) ↓ 0.19

Glutamic acid/
methyl-aspartic 
acid 

↓ 0.09

Dethiobiotin ↓ 0.09

Glycerate ↓ 0.09

Metab. = metabolite.
aResults were generated from multivariable linear models in which the outcome of interest was log-transformed metabolite intensity and the pri-
mary predictor was cumulative air pollution exposure (from birth to the timepoint of interest). Models were adjusted for infant age (in days), 
infant sex, socioeconomic status, season of visit, maternal age, formula and breastfeeding frequency, and whether the infant had begun to eat 
solid foods. Arrows represent the direction of association. No statistically significant associations were identified at 24 months of infant age. 
Results shown were significant after correction for multiple testing using the BH procedure (PBH < 0.2). Results from both HILIC and C18 col-
umns are included.

AIM 2 FECAL METABOLOME

Prenatal Air Pollution Exposure and the Longitudinal 
Fecal Metabolome

We subsequently assessed the associations of prenatal 
exposures to PM10, PM2.5, NO2, O3, and total NOx with longitu-
dinal postnatal fecal metabolite intensity (Figure 10). Overall, 
we observed that prenatal exposures to PM2.5 and NO2 were 
longitudinally associated with fecal metabolite intensities. 
However, there were no statistically significant associations 
(PBH < 0.2) between prenatal PM10, NOx, or O3 exposures and 

fecal metabolite intensity. Higher prenatal exposures to NO2 
and PM2.5 were each associated with lower intensities of phe-
nylalanine, histidine, and tyrosine. Higher NO2 exposure was 
additionally associated with lower intensity of methionine.

Postnatal Air Pollution Exposure and the Longitudinal 
Fecal Metabolome

Finally, we explored whether fluctuations in air pollution 
exposure (i.e., PM10, PM2.5, NO2, O3, and NOx) were associated 
with fecal metabolite intensities from 1 to 24 months of 
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Figure 8. Prenatal air pollution was longitudinally associated with the abundances of infant gut microbial taxa. Estimates were obtained using longitudinal 
negative binomial models where the exposure of interest was prenatal air pollution exposure, and the outcome was the abundance of each gut microbial taxon. 
Models were adjusted for infant age, infant sex, socioeconomic status, season of visit, maternal age, breastfeeding frequency, formula feeding frequency, mode of 
delivery, maternal prepregnancy BMI, infant mean Healthy Eating Index, and whether the infant had begun solid foods. An offset was included to control for the 
log-transformed total number of sequence counts.
Annotations for PM2.5:	 A: Enterobacter roggenkampii, B: E. cloacae, C: E. kobei, D: E. ludwigii, E: Klebsiella aerogenes, F: K. quasipneumoniae, G: K. variicola, H: Streptococcus pyogenes, I: 
S. equinus, J: S. pasteurianus, K: S. gallolyticus, L: S. lutetiensis, M: Lactobacillus johnsonii, N: Listeria monocytogenes, O: Paenibacillus polymyxa, P: Megasphaera hexanoica, 
Q: M. elsdenii, R: M. stantonii, S: Vescimonas coprocola, T: Clostridium estertheticum, U: C. sporogenes, V: Butyrivibrio fibrosolvens, W: Lachnoanaerobaculum umeaense, X: 
Blautia obeum, Y: B. wexlerae, Z: B. pseudococcoides, a: B. argi, b: Anaerocolumna sedimenticola, c: Anaerostipes rhamnosivorans, d: Novisyntrophococcus fermenticellae, 
e: Roseburia intestinalis, f: R. hominis, g: Dorea formicigenerans, h: Anaeromicrophila herbilytica, i: Coprococcus catus, j: C. eutactus, k: Enterocloster asparagiformis, l: 
Pseudobutyrivibrio xylanivorans, m: Faecalitalea cylindroides, n: Thomasclavelia spiroformis, o: Faecalibacillus intestinalis, p: Bacteroides intestinalis, q: B. sp. DH3716P, 
r: B. stercoris, s: Phocaeicola dorei, t: Parabacteroides merdae, u: P. goldsteinii, v: Alistipes finegoldii, w: Bifidobacterium sp. FKU, x: Campylobacter jejuni. 

Annotations for NO2:	 A. Enterobacter roggenkampii, AA: Bifidobacterium catenulatum, AB: B. bifidum, AC: B. breve, AD: B. adolescentis, AE: B. dentium, AF: Rothia mucilaginosa, AG: 
Gordonibacter pamelaeae, AH: Akkermansia muciniphila, B: Enterobacter cloacae, C: E. ludwigii, D: Citrobacter freundii, E: C. portucalensis, F: Cronobacter sakazakii, 
G: Klebsiella aerogenes, H: K. pneumoniae, I: K. quasipneumoniae, J: K. variicola, K: Lelliottia amnigena, L: Raoultella ornithinolytica, M: Streptococcus constellatus, 
N: S. sp. A12, O: S. cristatus, P: S. acidominimus, Q: S. sp. oral taxon 061, R: S. sp. HSISM1, S: S. anginosus, T: S. pasteurianus, U: S. gallolyticus, V: S. oralis, W: S. sp. 
oral taxon 431, X: S. parasanguinis, Y: S. lutetiensis, Z: S. sp. LPB0220, a: S. sanguinis, b: Lactococcus lactis, c: Lactobacillus johnsonii, d: Ligilactobacillus ruminis, 
e: Enterococcus raffinosus, f: Granulicatella adiacens, g: Listeria monocytogenes, h: Veillonella parvula, i: Megasphaera hexanoica, j: M. elsdenii, k: M. stantonii, l: 
Flavonifractor plautii, m: Pusillibacter faecalis, n: Roseburia intestinalis, o: Coprococcus sp. ART55/1, p: C. catus, q: C. eutactus, r: Enterocloster asparagiformis, s: Finegoldia 
magna, t: Faecalibacillus intestinalis, u: Bacteroides caccae, v: B. stercoris, w: Phocaeicola dorei, x: Parabacteroides merdae, y: Alistipes shahii, z: A. finegoldii.

Annotations for O3:	 A: Shigella flexneri, B: Klebsiella quasipneumoniae, C: Escherichia fergusonii, D: E. coli, E: E. marmotae, F: E. albertii, G: Lelliottia amnigena, H: Pseudomonas 
aeruginosa, I: Stenotrophomonas maltophilia, J: Streptococcus maltophilia, J: S. acidominimus, K: S. thermophilus, L: S. infantis, M: Lactococcus cremoris, N: L. lactis, 
O: Ligilactobacillus ruminis, P: Enterococcus casseliflavus, Q: E. faecalis, R: E. raffinosus, S: Veillonella nakazawae, T: V. dispar, U: V. rogosae, V: Megasphaera elsdenii, 
W: Faecalibacterium prausnitzii, X: Flintibacter sp. KGMB00164, Y: Clostridium butyricum, Z: C. cadaveris, a: C. sp. C1, b: C. sporogenes, c: Eubacterium ventriosum, 
d: Blautia sp. SC05B48, e: B. parvula, f: B. sp. KLE 1732 HM 1032, g: Anaerostipes caccae, h: Dorea longicatena, i: Coprococcus comes, j: C. sp. ARG55/1, k: C. catus, l: 
Enterocloster clostridioformis, m: Longicatena caecimuris, n: Thomasclavelia ramosa, o: T. spiroformis, p: Catenibacterium mitsuokai, q: Bacteroides sp. D2, r: B. caccae, 
s: B. sp. M10, t: B. fragilis, u: Prevotella melaninogenica, v: Bifidobacterium sp. FKU, w: B. longum, x: B. catenulatum, y: B. imperatoris, z: Eggerthella guodeyinii.

infant age (Figure 11). Higher PM10 exposure was associated 
with lower intensities of urocanate, beta-alanine/sarcosine/
alanine, histamine, and histidinol. Higher PM2.5 exposure 
was also associated with lower urocanate intensity. These 
metabolites are all involved in histidine metabolism.58 Higher 
exposures to PM10 and NO2 were additionally associated with 

lower intensities of 3-methoxytyramine and 4-pyridoxate, 
involved in tyrosine metabolism and vitamin B6 metabolism, 
respectively.58 Higher O3 exposure was associated with lower 
hypoxanthine intensity; fluctuations in NOx exposure were 
not associated with statistically significant changes in the 
intensities of any fecal metabolites.
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DISCUSSION AND CONCLUSIONS

SUMMARY

This study provides a comprehensive examination of the 
associations of pre- and postnatal exposure to air pollutants 
with the composition and function of the infant gut micro-
biome. Utilizing a multi-omics approach, our analysis incor-
porates microbiome profiling and fecal metabolomics data to 
offer novel insights into how air pollution exposure might 
influence gut health from early life stages. These dual omics 
layers enable a detailed understanding of the bacterial compo-
sition of the gut microbiome and its functional implications, 
as reflected in fecal metabolite profiles. Overall, our findings 
indicate that exposure to common air pollutants during both 
the prenatal and postnatal periods is associated with sub-
stantial alterations in the gut microbiome and its metabolic 
output. These alterations were evident in both cross-sectional 
and longitudinal analyses, underscoring the persistent and 
potentially cumulative impact of air pollution over time. We 
found that air pollution exposure was consistently associated 
with lower abundances of beneficial species such as Akker-
mansia muciniphila and higher abundances of pathogenic or 
opportunistic bacteria, as well as fecal metabolites indicative 
of inflammation, oxidative stress, and disrupted gut health. 
Our results highlight how early-life exposure to air pollutants 
can disrupt the delicate balance of the gut microbiome, lead-
ing to changes that may have long-term health implications. 
These findings emphasize the importance of mitigating air 
pollution exposure during critical developmental periods 
to protect and promote gut health and overall well-being in 
infants.

GUT BACTERIA ASSOCIATED WITH AIR POLLUTANT 
EXPOSURE

Air pollutant exposures were associated with several gut 
bacteria that may impact infant health. Notably, the genus 
Bifidobacterium, a core constituent of the infant gut, plays a 
critical role in newborn and infant development.59,60 In our 
study, Bifidobacterium abundance was inversely associated 
with prior-month PM10 and PM2.5 exposures, suggesting that 
higher levels of these pollutants negatively affect the presence 
of this beneficial bacterium in the infant gut. Conversely, 
PM2.5 exposure was inversely associated with the abundances 
of several Klebsiella species, indicating a possible decrease 
in colonization or proliferation of these pathogenic species 
in the infant gut microbiome.61 Particulate matter exposures 
were also inversely associated with the genus Alistipes, con-
sistent with our previous work in this cohort involving 16S 
rRNA amplicon sequencing.43 Moreover, higher prenatal PM2.5 
exposure was associated with lower levels of the genus Rom-
boutsia, which is involved in fermentation processes and the 
production of short-chain fatty acids.62-64 Additionally, higher 
pre- and postnatal exposures to particulate matter were asso-
ciated with a lower abundance of Akkermansia muciniphila, 
a species with known anti-inflammatory properties.65-67 

Table 13. Longitudinal Associations of Prior-Month 
Fluctuations in Air Pollution Exposure with Gut 
Microbiome Alpha-Diversity from 1 to 24 Months of 
Infant Agea

Beta (SE) P

Shannon

PM10 –0.002 (0.004) 0.6

PM2.5 –0.0005 (0.007) 1.0

NO2 –0.003 (0.005) 0.6

O3 0.005 (0.004) 0.2

O3 + NO2 0.004 (0.004) 0.3

Total NOx 0.01 (0.01) 0.3

Richness

PM10 –7.5 (7.4) 0.3

PM2.5 –2.8 (13.4) 0.8

NO2 –7.2 (10.1) 0.5

O3 4.2 (6.8) 0.5

O3 + NO2 2.3 (7.6) 0.8

Total NOx 4.2 (20.9) 0.8

Evenness

PM10 –0.0001 (0.0004) 0.8

PM2.5 0.00002 (0.0008) 1.0

NO2 –0.0002 (0.0006) 0.7

O3 0.0005 (0.0004) 0.2

O3 + NO2 0.0005 (0.0004) 0.3

Total NOx 0.002 (0.001) 0.2

Simpson

PM10 –0.0002 (0.0008) 0.8

PM2.5 –0.0004 (0.001) 0.8

NO2 –0.0005 (0.001) 0.7

O3 0.0006 (0.0007) 0.4

O3 + NO2 0.0005 (0.0008) 0.6

Total NOx 0.002 (0.002) 0.4

aEstimates were generated using linear mixed-effects models in which 
the outcome of interest was alpha-diversity (i.e., Shannon, richness, 
evenness, and Simpson indices) at each study visit; the predictor 
of interest was the prior-month deviation in air pollution exposure 
from the long-term mean (i.e., grand mean of individual prior-month 
air pollution exposure). Models were adjusted for long-term air pol-
lution exposure, infant age, infant sex, socioeconomic status, sea-
son of visit, maternal age, breastfeedings per day, formula feedings 
per day, mode of delivery, whether solid foods had been introduced, 
infant mean Healthy Eating Index, and maternal prepregnancy BMI. 
Random intercepts were included to control for repeated measures 
among participants.
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Table 14. Numbers of Statistically Significant Longitudinal Associations Between Fluctuations in Prior-Month Air 
Pollution Exposure and Gut Microbial Species from 1 to 24 Months of Infant Age

PBH < 0.05 PBH < 0.2

Phylum

PM10 1 1
PM2.5 1 1
NO2 1 1
O3 1 1
O3 + NO2 1 1
Total NOx 0 0

Class

PM10 1 1
PM2.5 2 2
NO2 1 1
O3 1 1
O3 + NO2 0 1
Total NOx 0 0

Order

PM10 0 3
PM2.5 3 3
NO2 2 2
O3 0 0
O3 + NO2 0 0
Total NOx 0 1

Family

PM10 1 3
PM2.5 2 3
NO2 4 4
O3 0 0
O3 + NO2 0 0
Total NOx 0 1

Genus

PM10 2 14
PM2.5 2 6
NO2 5 6
O3 2 2
O3 + NO2 2 5
Total NOx 2 3

Species

PM10 18 37
PM2.5 6 23
NO2 9 22
O3 2 12
O3 + NO2 8 15
Total NOx 6 13

a Cells indicate the number of statistically significant results after cor-
rection for multiple testing using the BH method at PBH < 0.2 and PBH 
< 0.05. Results were generated using negative binomial models in 
which the outcome was the abundance of each gut microbial species. 
Models were adjusted for infant age, infant sex, socioeconomic sta-
tus, season of visit, maternal age, breastfeedings per day, formula feed-
ings per day, mode of delivery, whether solid foods had been intro-
duced, infant mean Healthy Eating Index, and maternal prepregnancy 
BMI. An offset was included to adjust for the log of the total num-
ber of microbial counts in each sample, and random intercepts were 
included to control for repeated measures among participants. In total, 
290 species, 220 genera, 135 families, 74 orders, and 21 phyla were 
included in these analyses.

In the context of NOx exposure, several identified bacteria 
have been linked to human health. For example, at 1 month 
of infant age, we found that postnatal NOx exposure was 
associated with higher abundances of Dorea longicatena and 
Enterobacter asburiae. Higher Dorea longicatena abundance 
has been observed in individuals with overweight or obesity68 
and has been positively correlated with fasting blood glucose 
levels in children with diabetes.69 Additionally, Enterobacter 
asburiae is an opportunistic pathogen previously isolated 
from infant formula.70 We found that higher cumulative post-
natal NOx exposure was associated with lower abundance of 
the beneficial species Coprococcus comes.71-73 Longitudinal 
models also revealed that beneficial bacteria such as Akker-
mansia muciniphila and Ligilactobacillus ruminis were more 
abundant among infants with lower PM10 exposure.74-76 

FECAL METABOLITES ASSOCIATED WITH AIR 
POLLUTANT EXPOSURE

Prenatal PM10 exposure was positively associated with 
the fecal metabolite pyridoxamine, suggesting an impact on 
vitamin B6 metabolism.39,77,78 Another metabolite involved in 
vitamin B6 metabolism, 4-hydroxy-phenylglycine/pyridoxal, 
was positively associated with prenatal PM10, PM2.5, and NO2 
exposures. These findings suggest disruption of essential 
nutrient pathways due to early-life air pollution exposure. 
Prenatal PM10 and PM2.5 exposures were positively associated 
with the intensities of thymidine and beta-alanine/sarcosine, 
which are involved in pyrimidine metabolism,39,79 highlight-
ing a potential impact on nucleic acid damage and repair 
mechanisms. Conversely, prenatal PM2.5 and NO2 exposures 
were inversely associated with tyrosine and 3-methoxy-4-hy-
dromandelate/vanillylmandelate, supporting prior findings 
that dysregulated tyrosine metabolism is linked to fetal 
growth restriction and preeclampsia.39,80 Several metabolites 
showed significant associations with postnatal air pollution 
exposures. Postnatal PM10 and NO2 exposures were positively 
associated with glycerate, an endogenous metabolite that 
we previously linked to formula feeding in this cohort.81 
Postnatal PM10 and NO2 exposures were also positively asso-
ciated with butyrate and isobutyrate, both of which are vital 
immune regulators.82-84 Postnatal NOx exposure was inversely 
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Figure 9. Fluctuations in postnatal air pollution exposure were associated with the longitudinal abundances of infant gut microbial taxa in 
the first 2 years of life. Estimates were obtained using longitudinal negative binomial models, in which the exposure of interest was postnatal 
fluctuations in air pollution exposure and the outcome was the abundance of each gut microbial taxon. Models were adjusted for infant 
age, infant sex, socioeconomic status, season, maternal age, human milk and formula feeding frequencies, mode of delivery, maternal 
prepregnancy BMI, infant mean Healthy Eating Index, and whether the infant had begun solid foods. Models also included an offset to control 
for the log-transformed total number of sequence counts.
Annotations for PM10:	 A. Enterobacter cloacae, B: Enterobacter kobei, C: Leclercia adecarboxylata, D: Klebsiella aerogenes, E: K. pneumoniae, F: Streptococcus 
pasteurianus, G: S. lutetiensis, H: Ligilactobacillus ruminis, I: Listeria monocytogenes, J: Faecalibacterium prausnitzii, K: F. duncaniae, L: Vescimonas 
coprocola, M: Dysosmobacter welbionis, N: Pusillibacter faecalis, O: Clostridium neonatale, P: Blautia sp. SC05B48, Q: Anaerobutyricum hallii, R: 
Anaerostipes hadrus, S: Coprococcus sp. ART55/1, T: Lachnospira eligens, U: Pseudobutyrivibrio xylanivorans, V: Thomasclavelia ramosa, W: Faecalibacillus 
intestinalis, X: Bacteroides eggerthii, Y: B. caccae, Z: B. fragilis, a: Alistipes finegoldii, b: Schaalia turicensis, c: Akkermansia muciniphila. 

associated with indole-3-acetic acid, which is thought to be 
microbially derived85; it has been shown to attenuate oxida-
tive stress and inflammation and improve nonalcoholic fatty 
liver disease.86,87 Furthermore, postnatal NO2 exposure was 
inversely associated with pantothenic acid (vitamin B5) and 
linoleate — both essential nutrients that may contribute to 
brain development and infant growth.88,89 Finally, prenatal 
exposures to PM10 and PM2.5 were inversely associated with 
fecal histidine and positively associated with phosphocho-
line, which are important for metabolism and brain function, 
respectively.90,91  

STRENGTHS AND LIMITATIONS

Air pollution exposures were assessed based on resi-
dential address histories, which present both strengths and 
limitations. A key strength of this method is that it includes 
the prenatal period and early life — critical windows for 
developmental exposure assessment. The database of air 
quality observations for PM, NO2, and O3 in Southern Cali-
fornia is among the best in the United States. This approach 
leverages multiple data sources to enhance the accuracy of 
exposure estimation. Additionally, exposure to the mixture 
of near-roadway air pollution was characterized using the 
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Figure 10. Prenatal air pollution exposure 
was longitudinally associated with the 
postnatal intensities of fecal metabolites. 
All associations were inverse, indicating that 
higher prenatal air pollution exposure was 
associated with lower metabolite intensity. 
Results were generated using linear mixed-
effects models with a random participant-level 
intercept to control for repeated measures 
and adjusted for study visit (i.e., 1, 6, 12, 18, 
and 24 months), infant sex, socioeconomic 
status, season of visit (warm vs. cold), 
maternal age, introduction of solid foods, 
and breastmilk and formula feedings per day. 
Results shown were significant at PBH < 0.2. 
We also assessed whether prenatal PM10, NOx, 
O3, and O3 exposures — adjusted for prenatal 
NO2 exposure — were associated with fecal 
metabolite intensities, but no associations met 
the threshold of PBH < 0.2. 

CALINE4 air quality dispersion model, which incorporates 
detailed parameters such as roadway geometry, vehicle 
counts, emission rates, and atmospheric conditions.47 This 
comprehensive approach provides a more robust exposure 
assessment. Despite these strengths, there are potential lim-
itations. One notable concern is the possibility of exposure 
misclassification based on the amount of time participants 
spent away from their residences. Previous studies suggest 
that such misclassification bias tends to skew results toward 
the null hypothesis,92 potentially underestimating the true 
exposure effect. Furthermore, the reliance on ambient data 
does not consider exposure to indoor-origin pollutants or 
other microenvironments, such as environmental tobacco 
smoke. Although mothers who smoked were excluded from 
the study, smoking by other household members could not be 
assessed, potentially leading to residual confounding. 

The study cohort exclusively consisted of Latino partic-
ipants, limiting the generalizability of the findings to other 
ethnic and racial groups. This lack of diversity may affect the 
applicability of the results to broader populations. However, 
there is no reason to believe that the biological mechanisms 
at play would differ according to race or ethnicity. A strength 
of this population is their relatively high exposure to air 
pollution and elevated rates of obesity, already observed 
by 2 years of age. Furthermore, many of our findings were 
consistent with studies involving more representative pop-

ulations.93 Therefore, although specific exposure levels and 
outcomes might vary, the underlying biological responses to 
air pollution are likely to be similar across different groups. 
The relatively small sample size across all aims of the study 
may have limited the statistical power, potentially affecting 
the ability to detect significant associations, especially 
those of small magnitude. Additionally, this study involved 
high-dimensional data that are strongly correlated, resulting 
in numerous statistical tests. Management and interpretation 
of such data is challenging because it increases the risk of 
false discoveries due to multiple comparisons. To address this 
risk, we adjusted for multiple hypothesis testing via the BH 
false discovery rate. However, this adjustment method may be 
overly conservative given the correlations among microbiome 
and metabolomic data. Thus, the small sample sizes and the 
correction method may each have increased the risk of Type II 
errors, where true associations could have been missed.

The study design incorporated both cross-sectional 
and longitudinal analyses, each with inherent limitations. 
Cross-sectional analyses can only determine associations, 
rather than causality. Longitudinal analyses, although stron-
ger in suggesting temporal relationships, cannot definitively 
establish causation. Additionally, untargeted metabolomics 
was used in the study, leading to some uncertainty regarding 
the exact identity of many metabolic features beyond Level 
1. This ambiguity is compounded by the fact that fecal 
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metabolites could originate from gut bacteria or dietary 
sources, complicating the interpretation of the findings. 
Whereas untargeted approaches are comprehensive, they 
pose challenges in pinpointing precise biological pathways 
and metabolite sources, which may be addressed with future 
advances in metabolite annotation.

IMPLICATIONS OF THE FINDINGS

Disparities in exposures to ambient and near-roadway 
air pollution are prominent concerns, particularly for com-

munities of color.94,95 These communities often reside in 
areas with higher levels of pollution due to historical and 
socioeconomic factors.94,96 Our findings highlight the critical 
need to address these environmental inequities — they are 
not only matters of environmental justice but also public 
health. Children in these communities are disproportionately 
exposed to harmful pollutants,94,97 potentially influencing the 
composition and functional potential of their gut microbiome 
in the first 2 years of life. This early-life exposure can set the 
stage for various adverse health outcomes, underscoring the 

Figure 11.  Fluctuations in prior-
month PM10, PM2.5, and NO2 
exposures were associated with 
level-1 metabolites in the first 2 years 
of life. Plus (+) denotes metabolites 
that were positively associated 
with air pollution exposure. All 
other metabolites were inversely 
associated. Results were generated 
using linear mixed-effects models 
with a random participant-level 
intercept to control for repeated 
measures and adjusted for long-
term air pollutant exposure (i.e., 
individual mean exposure to PM10, 
PM2.5, or NO2, respectively), infant 
age, infant sex, socioeconomic status, 
season of visit (warm vs. cold), 
maternal age, introduction of solid 
foods, and breastmilk and formula 
feedings per day. Results shown 
were significant at PBH < 0.2. We 
also assessed whether fluctuations 
in NOx exposure were associated 
with fecal metabolite intensity, but 
no associations met the threshold of 
PBH < 0.2.  (Source: Adapted with 
permission from Holzhausen et al. 
2024; Creative Commons license CC 
BY-NC-ND 4.0.)

https://pubs.acs.org/doi/10.1021/acs.est.4c02929
https://pubs.acs.org/doi/10.1021/acs.est.4c02929
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
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importance of targeted interventions to mitigate exposure in 
these vulnerable populations.

Environmental exposures, particularly air pollution, have 
substantial effects on human health.98 Our research provides 
evidence that exposures to ambient and near-roadway air 
pollution during critical developmental windows can alter 
the gut microbiome, which is crucial for various bodily 
functions, including digestion, immune response, and neu-
rocognitive development.99 The composition and function of 
the gut microbiome are essential for maintaining health, and 
early-life disruptions can have long-term consequences.100,101

Potential mechanisms linking air pollution to changes in 
the gut microbiome are multifaceted. Pollutant inhalation 
can lead to systemic inflammation, oxidative stress, and 
immune system modulation, which subsequently influence 
gut microbial composition.102,103 Pollutants may also be 
directly ingested, further impacting the gut environment.104 
The biological plausibility of these associations is supported 
by existing literature (both animal and human studies), 
demonstrating that inhaled pollutants can affect the gut 
microbiome and fecal metabolome.103-105 Our findings add to 
this body of knowledge by providing specific evidence that 
early-life exposure to air pollution can alter gut microbiome 
development, potentially leading to adverse health outcomes.

In the context of multiple hypothesis testing, it is essential 
to balance the risk of false positives with the potential for 
generating new hypotheses. Although our study presents 
numerous associations, we acknowledge the possibility of 
false positives, particularly because we selected a relatively 
lenient false discovery rate of 20% after correction for multi-
ple testing. Therefore, future studies with targeted hypotheses 
are needed to validate our findings. Nevertheless, the present 
hypothesis-generating study provides a foundation for further 
investigation. Such studies are critical for the discovery and 
identification of new pathways and mechanisms that can be 
explored in subsequent research, ultimately contributing to a 
more comprehensive understanding of the interplay between 
environmental exposures and health. The presentation of raw 
and adjusted P-values supports a nuanced interpretation of 
our results. 

SUMMARY AND FUTURE DIRECTIONS

The present results have important public health implica-
tions. Air pollution exposure is a modifiable risk factor, and 
interventions during critical developmental windows — such as 
the prenatal and postpartum periods — may reduce the burden 
of diseases, including obesity. By characterizing the impacts of 
air pollution on the gut microbiome and infant fecal metabo-
lome, our research underscores the need for policies and prac-
tices aimed at reducing pollution exposure, particularly among 
vulnerable populations. This approach addresses environmen-
tal justice while promoting long-term health and well-being in 
children, paving the way for healthier future generations. 

Several future studies will build on this rich dataset and 
extend the current analyses. Our next steps include investigat-
ing whether the impacts of air pollution exposure on the gut 
microbiome and fecal metabolome mediate the associations of 
higher air pollution exposure with infant growth trajectories 
and risk of childhood obesity. Additionally, we plan to utilize 
more sophisticated multi-omics approaches to better integrate 
our assessments of gut bacterial composition with fecal metab-
olites. This comprehensive strategy will enhance our under-
standing of the complex interactions between environmental 
exposures and health outcomes, ultimately informing more 
effective intervention strategies. Although this study focused 
on gut microbiome composition, metagenomic sequencing 
also allows predictions of microbial function based on genes 
and gene pathways, along with information regarding viruses 
and fungi that comprise the gut microbiome. Our future work 
will aim to fully utilize existing comprehensive data by incor-
porating these additional measures. For example, we plan to 
integrate the multi-omics layers available in this cohort by 
combining predicted microbial function based on genes and 
gene pathways with fecal metabolomics data. 
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Dr. Tanya L. Aldrete’s 3-year study, “Air Pollutants and the Gut Microbiota 
and Metabolome During Early Life: Implications for Childhood Obesity,” 
began in May 2020. Total expenditures were $500,000. The draft Investi-
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the review process, the HEI Review Committee and the investigators had 
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INTRODUCTION

In 2021, over 40% of the United States population was esti-
mated to be overweight or obese.1,2 This statistic highlights a 
critical public health issue because being overweight or obese 
is a well-known risk factor for multiple diseases, such as car-
diovascular disease and type 2 diabetes.3 Understanding the 
factors that might contribute to the risks of having overweight 
and obesity is therefore important, particularly in children, 
where combined rates of these health statuses have increased 
linearly since 1990.2

Some studies have demonstrated associations between 
ambient and traffic-related air pollution and body mass index 
(BMI) in children and adolescents.4,5 However, the biolog-
ical mechanisms underlying these associations are not well 
understood. Recent research has suggested that ambient air 
pollution exposures might contribute to obesity and other 
adverse health outcomes through alterations in the gut micro-
biome (microorganisms, including bacteria, fungi, viruses, 
and their genes, within the gastrointestinal tract) and asso-
ciated bacteria-derived metabolites in the fecal metabolome 
(the collection of small molecules produced by gut bacteria 
and found in feces).6–9

To evaluate the potential effects of early-life exposures to 
ambient and traffic-related air pollution on the developing 
gut microbiome and fecal metabolome, Dr. Tanya L. Alderete 
of Johns Hopkins University submitted an application to HEI 
titled “Air Pollutants and the Gut Microbiota and Metabo-
lome During Early Life: Implications for Childhood Obesity” 
in response to HEI’s Request for Applications 18-2: Walter 
A. Rosenblith New Investigator Award. This award was 
established to support an outstanding new investigator at the 
assistant professor level in conducting research on air pollu-
tion and health; it is unrestricted with respect to the specific 
research topic. Dr. Alderete proposed to examine whether 
prenatal and postnatal exposures to ambient air pollution, 

including traffic-related air pollution, affect the infant gut 
microbiota and fecal metabolome, potentially altering infant 
growth trajectories in the first 2 years of life. HEI’s Research 
Committee recommended funding Dr. Alderete’s application 
because the study had the potential to provide new insights 
into the mechanisms through which air pollution might con-
tribute to obesity, with potential implications for precision 
prevention and treatment. The study began in 2020.

This Commentary provides the HEI Review Committee’s 
independent evaluation of the study. It is intended to aid 
the sponsors of HEI and the public by highlighting both the 
strengths and limitations of the study and by placing the 
results presented in the Investigators’ Report into a broader 
scientific and regulatory context.

SCIENTIFIC AND REGULATORY BACKGROUND

Several studies have shown that exposure to ambient air 
pollutants emitted by traffic and other sources — such as 
particulate matter ≤2.5 μm in aerodynamic diameter (PM2.5), 
particulate matter ≤10 μm in aerodynamic diameter (PM10), 
nitrogen dioxide (NO2), and nitrogen oxides (NOx) — is 
associated with higher BMI and increased risk of obesity in 
children.4,5,10 However, other studies have demonstrated no 
association between ambient or traffic-related air pollution 
exposures and childhood obesity,11,12 and the overall evidence 
for this relationship remains mixed.13,14 Studies have also 
shown that ambient air pollution is associated with low birth 
weight,15,16 and infant birth weight is closely linked to the 
composition of the infant gut microbiome.17 This connection 
between weight and the gut microbiome might help explain 
the mixed evidence regarding the relationship between early- 
life air pollution exposures and obesity. 

The mechanisms and risk factors linking air pollution 
exposures and obesity — both generally and specifically in 
children — are not well understood. Potential mechanisms 
include the effects of air pollution on changes in gene 
expression that occur without altering DNA sequences (i.e., 
epigenetic modulation), oxidative stress and inflammation, 
and disruption of neuroendocrine pathways, which can alter 
metabolic processes and appetite regulation.13,18 Additionally, 
recent work has suggested that ambient air pollution expo-
sures might contribute to obesity by affecting metabolic health 
through changes in the gut microbiome and fecal metabolome 
(Box 1), due to alterations in gut bacteria composition and 
function.7,9 For example, a study in adolescents demonstrated 
correlations between higher exposures to traffic-related air 
pollution and the abundances of gut bacteria previously 

*A list of abbreviations and other terms appears at the end of this report.

https://www.healtheffects.org/system/files/rfa18-2-rosenblith-award120718.pdf
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The infant gut microbiome consists of the microbiota, including bac-
teria, fungi, and viruses, found in the infant gastrointestinal tract. The 
infant fecal metabolome refers to the collection of metabolites, or 
small molecules, that reflect diet and metabolism, as well as metab-
olites produced by gut bacteria and fungi, or influenced by viral 
activity, as part of metabolic processes. It thus can partly provide a 
functional readout of the infant gut microbiome25 (Commentary 
Figure 1). 

Studies of the infant gut microbiome and fecal metabolome are 
important because the first 1,000 days after birth represent a criti-
cal period for the growth and development of the gut microbiome, 
with broad effects on the infant’s immune system, metabolism, and 
neurodevelopment.26,27 An array of factors influences this develop-
ment, including maternal characteristics (such as diet, weight, and 
age) and, more importantly, the type of birth (vaginal delivery or 
cesarean section), the feeding method (human milk or formula), 
antibiotic exposure, and infant diet after the introduction of solid 
foods.26–28 Additionally, other early-life exposures, such as exposures 
to air pollution, pets, metals, and chemicals, have been linked to 
alterations in the infant gut microbiota.29–31 

Metagenomics and metabolomics are common methods used to 
study the gut microbiome and fecal metabolome, respectively. Gen-
erally, both approaches rely on stool samples, which are processed 
and analyzed using sequencing and mass spectrometry techniques, 
respectively.32 

linked to changes in metabolism and obesity.6 Other research 
has shown associations between ambient air pollution and 
changes in gut bacteria during early life with childhood BMI 
and obesity risk.19,20 Nonetheless, at the time Dr. Alderete’s 
study began, few studies had examined mechanisms linking 
prenatal and postnatal ambient air pollution exposures with 
the gut microbiome and microbiome-derived metabolites 
among infants in the context of providing potential insights 
for childhood obesity. 

In the United States, regulatory efforts have sought to 
moderate the health effects of PM2.5 and NO2. The National 
Ambient Air Quality Standards, established by the United 
States Environmental Protection Agency (US EPA), limit the 
3-year annual average PM2.5 concentration to 9 µg/m3 and the 
annual average NO2 concentration to 53 parts per billion.21,22 
In the most recent integrated science assessments for both 
particulate matter and oxides of nitrogen, obesity was consid-
ered a risk factor for air pollution-related health outcomes.23,24 
In those assessments, the US EPA concluded that existing 
evidence suggests an increased risk for PM2.5-related health 
effects among individuals with obesity compared with non-
obese individuals, and that evidence remains inadequate to 
determine NO2-related health effects. 

STUDY OBJECTIVES

The overall objective of Dr. Alderete’s study was to eval-
uate whether prenatal or postnatal exposures to ambient air 
pollution, including traffic-related air pollution, affect the 
infant gut microbiome and fecal metabolome during the first 
2 years of life. Using stool samples collected longitudinally 
from infants aged 1, 6, 12, 18, and 24 months, the team sought 
to explore two specific aims: 

Aim 1. Determine whether prenatal or postnatal exposure 
to air pollution is associated with a) lower gut bacterial diver-
sity and altered abundances of gut bacteria and b) levels of 
fecal metabolites, at each timepoint (cross-sectional analyses).

Aim 2. Determine whether prenatal or postnatal exposure 
to air pollution is associated with a) the developmental trajec-
tory of the infant gut microbiota (i.e., lower average bacterial 
diversity or altered average relative abundances of gut bac-
teria) and b) changes in average fecal metabolite levels over 
time during the first 2 years of life (longitudinal analyses).

For ease of comprehension, various terms used throughout 
this Commentary that refer to the outcomes and exposures 
assessed in the study are defined in Box 2.

Box 1: An Introduction to the Infant Gut Microbiome and Fecal Metabolome

Metagenomics provides an overview of the composition, diversity, 
and function of the entire genomes of bacterial, fungal, and viral 
members of the microbiome by randomly sequencing DNA 
fragments within a sample. Metagenomic sequencing can provide 
phylogenetic information about the gut microbiota in a sample, 
including the abundance and diversity of various microbes,25 and 
information related to the functional potential of the microbiome 
based on the presence of genes with specific known functions.33 
Abundance refers to the amount of a given type of microbe within 
a sample, whereas diversity refers to both the number of species 
(richness) and their distribution or relative abundance (evenness). 
Microbial diversity can be measured using alpha-diversity and 
beta-diversity metrics. Alpha-diversity focuses on microbial rich-
ness and evenness within a given sample.34 Examples of alpha- 
diversity measures used in this study include the Shannon and 
Simpson indices. Beta-diversity focuses on differences in microbial 
composition between samples and was measured in this study 
using the Bray–Curtis dissimilarity metric.35 

Fecal metabolomics provides insight into the metabolic processes 
occurring in the distal gut, which are partly driven by microbial 
metabolism. This approach involves identifying and quantifying 
metabolites within a sample using mass spectrometry. Fecal met-
abolic intensity reflects the relative levels of metabolites in a stool 
sample. The identification and quantification of metabolites can be 
either targeted (focusing on specific classes of compounds such 
as amino acids or fatty acids) or untargeted (aiming to identify as 
many metabolites as possible).25
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Box 2: Defining Terms Used  
Throughout This Commentary

•	 Gut bacterial abundance: The amount of a specific gut 
bacterium within a sample.

•	 Gut bacterial diversity: A measure of the richness 
(number of unique bacterial types) or evenness of their 
distribution within a sample.

•	 Identity and levels of fecal metabolites: The type and 
quantity of small molecules detected in fecal samples, 
potentially produced by gut bacteria as byproducts of 
metabolism (referred to as “fecal metabolite intensity” in 
the Investigators’ Report).

•	 Prenatal air pollution exposure: The average of monthly 
air pollutant concentrations for the 9 months before an 
infant’s birth.

•	 Postnatal air pollution exposures: This study assessed 
three measures:

	♦ Short-term air pollution exposure: The average air 
pollutant concentration in the month before an 
infant’s clinical visit.

	♦ Cumulative air pollution exposure: The average of 
monthly air pollutant concentrations from birth to a 
clinical visit.

	♦ Fluctuation from long-term air pollution exposure: 
The difference between the average of short-term 
air pollutant concentrations across all clinical visits 
and the monthly average concentration in the month 
before a clinical visit.

To address the study aims, Alderete and colleagues used 
a cohort of more than 200 Hispanic mother–infant pairs 
participating in the Southern California Mother’s Milk Study. 
Pairs were enrolled at 1 month postpartum and attended 
subsequent clinical visits at various timepoints up to 24 
months postpartum. Participants were all located in Southern 
California, and most resided in the Los Angeles area. Detailed 
information was available regarding both the mother and 
infant (such as age, sex, and socioeconomic status), as well 
as infant feeding practices. At each clinical visit, an infant 
stool sample was collected. All data were processed using 
metagenomic and metabolomic analysis techniques. 

Based on the mothers’ residential address histories, the 
team assigned estimates of prenatal and postnatal exposures 
to PM10, PM2.5, NO2, ozone (O3), and NOx (used as a proxy for 
traffic-related air pollution) for each mother–infant pair. A 
cumulative 9-month average of air pollutant concentrations 
before birth was used to estimate prenatal exposure. Post-
natal exposures in cross-sectional analyses included both 

Commentary Figure 1. Schematic of the infant gut microbiome and fecal metabolome.
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short-term (i.e., prior-month) and cumulative estimates of 
air pollution concentrations, whereas postnatal exposures in 
longitudinal analyses were based on fluctuations from long-
term air pollution concentrations during the first 2 years of 
life. All exposure estimates were calculated using monthly 
concentrations of ambient air pollutants (PM10, PM2.5, NO2, 
O3) derived from US Environmental Protection Agency (US 
EPA) monitoring data and were spatially interpolated between 
central monitors. Monthly concentrations of traffic-related air 
pollutants (NOx) were estimated using an air quality disper-
sion model. 

Alderete and colleagues used a combination of negative 
binomial models and linear mixed-effects models to evaluate 
associations between air pollution exposure estimates and 
several outcomes of interest, including the abundances and 
diversity of gut bacteria in the infant gut microbiome and the 
identities and levels of fecal metabolites in the infant fecal 
metabolome. 

The study also originally included a third aim to use medi-
ation analysis to determine whether infant gut microbiota or 
fecal metabolites associated with higher estimated ambient 
or traffic-related air pollution exposures mediated changes in 
infant growth trajectories over time. However, this analysis 
could not be conducted due to substantial delays in the study 
related to the COVID-19 pandemic.

SUMMARY OF METHODS AND STUDY DESIGN 

MOTHER’S MILK STUDY POPULATION 

The study cohort was drawn from the Southern California 
Mother’s Milk Study, a prospective cohort study of 219 His-
panic mother–infant pairs designed to examine the effects of 
human milk feeding on early-life growth and development. 
Eligible individuals were self-identifying Hispanic mothers 
who were at least 18 years old at the time of delivery; had 
a healthy, term (≥37 weeks) singleton birth; and intended to 
breastfeed for at least 6 months. Mother–infant pairs were 
enrolled at 1 month postpartum and attended follow-up visits 
at 6, 12, 18, and 24 months postpartum. Each visit included 
infant stool sample collection and completion of question-
naires on infant feeding practices (e.g., frequency of human 
milk feeding and age at which solid foods were introduced). 
Overall, the study sample included 207 infants with gut 
microbiome data; 127 of these infants were included in the 
high-resolution fecal metabolomics analysis.

 The outcomes of interest for Dr. Alderete’s study were 1) 
abundances of gut bacteria, 2) diversity of gut bacteria, and 3) 
identities and levels of fecal metabolites. 

EXPOSURE ASSESSMENT

The investigators estimated monthly concentrations of 
PM10 (µg/m3), PM2.5 (µg/m3), NO2 (ppb), and O3 (ppb) through 
spatial interpolation of monitoring data from the US EPA Air 
Quality System,36 based on participants’ residential address 
histories. NOx was used as a proxy for traffic-related air pol-

lution, and monthly concentrations of NOx within 5 km of 
participants’ homes were estimated using the California Line 
Source Dispersion Model (CALINE4),37 an air quality model 
that integrates information regarding traffic emissions, traffic 
volume, roadway geometry, and meteorology to estimate 
pollutant concentrations near roadways.

Alderete and colleagues computed several measures of air 
pollutant exposure for each mother–infant pair, broadly cate-
gorized into prenatal and postnatal exposures, as previously 
defined in Textbox 1. 

STOOL SAMPLE ANALYSIS AND DATA PROCESSING

For the gut microbiome analysis, the investigators 
performed DNA extraction and sequencing on infant stool 
samples. DNA sequence reads were taxonomically classified 
using the RefSeq database of bacterial, viral, plasmid, human, 
and vector sequences38; these reads were used to identify the 
relative abundances of gut bacterial taxa (categories used to 
classify bacteria based on shared biological characteristics) at 
the species level. The average number of reads per sample 
was about 17 million, which is considered relatively low in 
the context of fecal metagenomics. Shallow sequencing, in 
which a smaller amount of DNA is sequenced, provides a 
less detailed analysis of the microbiome compared with deep 
sequencing methods but is often more cost-effective. Gut bac-
terial diversity was assessed by calculating “alpha-diversity 
measures” to quantify species diversity within each sample 
(Shannon index, species richness, species evenness, and 
Simpson index) and “beta-diversity measures” to quantify 
differences in microbiome composition between samples 
(Bray–Curtis dissimilarity). 

For the fecal metabolome analysis, stool samples were 
analyzed using liquid chromatography–high-resolution mass 
spectrometry (LC-HRMS). Fecal metabolites were profiled 
and analyzed using an untargeted approach (i.e., as many 
metabolites as possible were identified and quantified with-
out prior knowledge of their identity or profile). 

MAIN STATISTICAL ANALYSES

Alderete and colleagues conducted multiple statistical 
analyses to address their study aims. For brevity, see Com-
mentary Table 1 for a summary of the study population, 
exposure assessment, and statistical methods used.

Aim 1. Associations of Air Pollution Exposures with the 
Infant Gut Microbiome and Fecal Metabolome at Each 
Timepoint (Cross-Sectional Analyses)

The investigators used negative binomial and linear 
models and a variance test to evaluate associations between 
estimated prenatal and postnatal air pollution exposures and 
the infant gut microbiome. In these analyses, associations of 
estimated prenatal, cumulative, and short-term exposures to 
all air pollutants with gut bacterial abundances and diversity 
were examined for each infant follow-up visit. For the fecal 
metabolome analysis, associations of estimated prenatal, 
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cumulative, and short-term air pollution exposures with the 
identities and levels of fecal metabolites were assessed using 
multivariable linear models.  

All models were adjusted for factors such as maternal and 
infant demographic characteristics, infant diet, and maternal 
BMI. All models also included adjustment for multiple testing 
using the Benjamini–Hochberg procedure to control the false 
discovery rate. 

Aim 2. Associations of Air Pollution Exposures with the 
Infant Gut Microbiome and Fecal Metabolome Across All 
Timepoints (Longitudinal Analyses)

In longitudinal analyses of the infant gut microbiome, 
Alderete and colleagues used negative binomial models to 
evaluate associations between estimated prenatal exposure 
and fluctuations from long-term early-life air pollution expo-
sures with the average abundances of gut bacterial taxa across 

Commentary Table 1. Summary of Main Statistical Analyses Conducted in This Study 

Aim 1. Cross-Sectional Analyses

Analysis Study Population Estimated Exposures Method Outcome

Infant gut 
microbiome

N = 207 infants with gut 
microbiome data

1-month visit (N = 196)
6-month visit (N  = 157)

12-month visit (N  = 155)
18-month visit (N  = 143)
24-month visit (N  = 171)

Prenatal, cumulative, 
and short-term 
estimates of PM10, 
PM2.5, NO2, O3, and 
NOx

1. Negative binomial 
modelsa

2. Linear modelsa

3. Permutational 
multivariate 
analysis of variance 
(PERMANOVA)

1. Abundances of gut 
bacterial taxa at each 
timepoint
2. Alpha-diversity of gut 
bacterial taxa at each 
timepoint
3. Beta-diversity of gut 
bacterial taxa at each 
timepoint

Infant fecal 
metabolome

N = 127 infants with fecal 
metabolite data

1-month visit (N = 124)
6-month visit (N = 116)

12-month visit (N = 120)
18-month visit (N = 123)
24-month visit (N = 126)

Prenatal, cumulative, 
and short-term 
estimates of PM10, 
PM2.5, NO2, O3, and 
NOx

Linear modelsa Identity and levels of 
fecal metabolites at each 
timepoint 

Aim 2. Longitudinal Analyses

Analysis Study Population Estimated Exposures Method Outcome

Infant gut 
microbiome

N = 207 infants with gut 
microbiome data

Prenatal estimates of 
PM10, PM2.5, NO2, O3, 
and NOx

Negative binomial 
modelsa

Average abundances of 
gut bacterial taxa across 
timepoints

Fluctuations from 
long-term early-life 
estimates of PM10, 
PM2.5, NO2, O3, and 
NOx

1. Negative binomial 
modelsb

2. Linear mixed-
effects modelsb

1. Average abundances of 
gut bacterial taxa across 
timepoints
2. Alpha-diversity of 
gut bacterial taxa across 
timepoints

Infant fecal 
metabolome

N = 127 infants with fecal 
metabolite data

Prenatal and 
fluctuations from 
long-term early-life 
estimates of PM10, 
PM2.5, NO2, O3, and 
NOx

Linear mixed-effects 
modelsb

Average levels of fecal 
metabolites across 
timepoints

aAll models were adjusted for infant age and sex, maternal age, maternal prepregnancy BMI, socioeconomic status, human milk feedings per 
day, formula feedings per day, type of delivery, whether solid foods had been introduced (6-month timepoint and after), and diet quality (12-
month timepoint and after). 

bAll models were adjusted for infant age and sex, maternal age, maternal prepregnancy BMI, socioeconomic status, human milk or formula feed-
ings per day, type of delivery, whether solid foods had been introduced, diet quality, and long-term early-life air pollution exposure.
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all timepoints. Linear mixed-effects models were used to 
assess associations between fluctuations from long-term ear-
ly-life air pollution exposures and the average diversity of gut 
bacterial taxa, as well as the average level of fecal metabolites 
across all timepoints.  

All models were adjusted for a suite of characteristics, 
such as maternal and infant demographic characteristics, 
infant diet, maternal BMI, and average long-term early-life air 
pollution concentrations. A random intercept was included 
in all models to adjust for repeated measures within infants.

SUMMARY OF KEY RESULTS 

POPULATION CHARACTERISTICS AND EXPOSURE 
ASSESSMENT

The study included 207 infants with gut microbiome data 
and a subset of 127 infants with fecal metabolomics data 
from the Southern California Mother’s Milk cohort. Sample 
sizes varied across timepoints because some participants 
missed follow-up visits (Commentary Table 1). The average 
prepregnancy BMI of the mothers was 28.3 kg/m2, and the 
average maternal age at the 1-month follow-up visit was 29 
years. About 55% of infants in the cohort were female, and 
about 25% had been delivered by cesarean section — both 
percentages are similar to rates in the overall US population. 

Average estimated prenatal and postnatal exposures to 
air pollutant concentrations among participants across all 
timepoints are summarized in Commentary Table 2. Average 
estimated prenatal exposures were broadly consistent with 
average estimated cumulative and short-term exposures.  

PRENATAL AND POSTNATAL AIR POLLUTION 
EXPOSURES AND THE INFANT GUT MICROBIOME 
AND FECAL METABOLOME: MAIN STATISTICAL 
ANALYSES

Overall, Alderete and colleagues found that both estimated 
prenatal and postnatal exposures to PM10, PM2.5, NO2, O3, and 
NOx demonstrated some associations with short-term and 

longer-term changes in the abundances of gut bacterial taxa 
in the infant gut microbiome. Similarly, they found that PM10, 
PM2.5, and NO2 demonstrated some associations with changes 
in the level of specific fecal metabolites in the infant fecal 
metabolome. Commentary Figure 2 provides an overview of 
the study’s main findings. 

Aim 1. Associations Between Air Pollution Exposures 
and the Infant Gut Microbiome and Fecal Metabolome at 
Each Timepoint (Cross-Sectional Analyses)

Gut Bacterial Abundance	  The team conducted cross- 
sectional analyses to evaluate associations between estimated 
prenatal exposures to all ambient and traffic-related air pollut-
ants and gut bacterial abundance. They observed a mix of pos-
itive and inverse associations with the abundances of various 
gut bacterial taxa, potentially indicating a shift toward fewer 
beneficial bacteria. For example, increased PM10, NO2, and 
NOx exposures were all associated with a lower abundance 
of Bifidobacterium, which is typically considered to promote 
gut health. Increased NOx exposure was associated with a 
higher abundance of the potentially detrimental gut bacte-
rium Lelliottia amnigena. Associations between estimated 
short-term (i.e., prior-month) and cumulative exposures to all 
air pollutants examined with gut bacterial abundances varied 
in both direction and magnitude; there were no clear patterns 
across timepoints, specific taxa, or pollutants. 

Gut Bacterial Diversity	  The investigators reported statisti-
cally significant associations between estimated short-term 
and cumulative exposures to PM10, O3 (with and without 
adjustment for NO2), and NOx with various measures of 
alpha-diversity, such as the Shannon and Simpson indi-
ces. These findings indicated both greater and lesser fecal 
alpha-diversity, depending on the exposure metric and 
pollutant examined. Such associations were observed only 
at the 1-month and/or 6-month timepoints (see Investigators’ 
Report Tables 2 and 6 for additional details). Only estimated 
short-term and cumulative NO2 exposures were significantly 
associated with beta-diversity (i.e., Bray–Curtis dissimilarity), 
indicating differences in overall microbiome composition 
linked to NO2 exposure. 

Commentary Table 2. Average Estimated Exposures to Ambient Air Pollutants Across Cohort Participants for Each 
Exposure Measure Across the Study Perioda

Ambient Air 
Pollutant

Prenatal Exposure 
Concentrations

Cumulative Exposure 
Concentrations

Short-Term (Prior 
Month) Exposure 
Concentrations

Fluctuations from 
Long-Term Exposure 

Concentrations

PM2.5 (µg/m3) 11.9 12.2 11.8 0

PM10 (µg/m3) 29.9 30.7 28.7 −0.4

NO2 (ppb) 18.0 17.8 16.5 −0.1

O3 (ppb) 42.7 42.1 42.4 0

NOx (ppb) 3.9 3.3 3.5 0

aAdapted from Investigators’ Report Table 1. 
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Fecal Metabolites	 In analyses of prenatal exposures 
and fecal metabolites, Alderete and colleagues found 
that increased exposures to PM10, PM2.5, and NO2 were all 
associated with higher relative levels of fecal metabolites 
involved in vitamin B6 metabolism and brain function. 
Higher estimated prenatal NOx exposures were associated 
with lower levels of metabolites linked to the breakdown of 
dietary sugars. No associations were observed for estimated 
prenatal O3 exposures. The majority of statistically significant 
associations between short-term exposures (PM10, PM2.5, O3 
[adjusted for NO2], and NOx) or cumulative exposures (PM10, 
NO2, and NOx) and levels of fecal metabolites were observed 
at the 6-month timepoint, although there was no apparent 
pattern in metabolite identity across pollutants. 

Aim 2. Associations Between Air Pollution Exposures 
and the Infant Gut Microbiome and Fecal Metabolome 
Across All Timepoints (Longitudinal Analyses)

Gut Bacterial Abundance	  In longitudinal analyses, Alderete 
and colleagues evaluated estimated prenatal exposures to all 
ambient and traffic-related air pollutants and average gut bac-
terial abundances during the first 2 years of life. They observed 
that PM10, PM2.5, NO2, O3, and NOx were associated with 
changes in the average abundances of gut bacterial taxa over 
time. Generally, associations among air pollutants and specific 
gut bacterial taxa varied, except for estimated prenatal PM2.5 

and NO2 exposures, which were both associated with lower 
abundances of gut bacteria from the genus Megasphaera. 

Commentary Figure 2. Overview of main study findings. Source: Adapted from Holzhausen EA and Alderete TL (2025): https://
BioRender.com/m57g481.

https://BioRender.com/m57g481
https://BioRender.com/m57g481
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Similar to the cross-sectional analyses, some ambient air 

pollutants were associated with higher abundances of poten-
tially detrimental gut bacteria. For instance, higher estimated 
NO2 concentrations were associated with a higher abundance 
of Klebsiella in fecal samples. Estimated postnatal fluctua-
tions from long-term early-life exposures to NO2 and O3 (with 
and without adjustment for NO2) were also associated with 
higher abundances of certain Klebsiella species. In general, 
estimated postnatal exposures for all air pollutants showed 
statistically significant associations with changes in the 
average abundances of several gut bacterial taxa, again with-
out an apparent trend according to pollutant or taxon. The 
investigators did not observe associations between estimated 
postnatal fluctuations from long-term early-life exposures 
and gut bacterial diversity (assessed using alpha-diversity 
measures) in longitudinal analyses.

Fecal Metabolites	 In longitudinal analyses of estimated 
prenatal exposures and average fecal metabolite levels over 
time, only PM2.5 and NO2 were associated with levels of fecal 
metabolites, specifically those involved in histidine and tyro-
sine metabolism. Regarding estimated postnatal fluctuations 
from long-term early-life exposures, statistically significant 
associations were observed for all pollutants examined except 
NOx. For example, higher postnatal PM2.5 and PM10 expo-
sures were both associated with lower levels of metabolites 
involved in histidine metabolism. Overall, there were no 
obvious patterns in the associations between average levels of 
specific fecal metabolites and pollutant exposures. 

HEI REVIEW COMMITTEE’S EVALUATION 

This study leveraged a unique dataset from a southern 
California Hispanic mother–infant cohort to evaluate poten-
tial associations between prenatal and early-life air pollution 
exposures and infant gut bacteria and fecal metabolites. 
Alderete and colleagues observed that, in both cross-sectional 
and longitudinal analyses, estimated prenatal and postnatal 
exposures to ambient and traffic-related air pollution demon-
strated some associations with changes in the abundances 
and diversity of infant gut bacteria and the identities and 
levels of infant fecal metabolites, with some indication of a 
shift toward fewer beneficial gut bacteria. 

In its independent evaluation, the HEI Review Committee 
concluded that this study provides a detailed set of exploratory 
analyses that contribute to understanding potential mecha-
nistic links between air pollution and the gut microbiome in 
infants, with a possible connection to childhood obesity. The 
Committee also emphasized that the dataset collected for this 
study is highly valuable and has strong potential for use in 
future research. Details on the strengths and limitations of the 
study are discussed below.

STUDY DESIGN, DATASETS, AND ANALYTICAL 
APPROACHES

The Committee identified the collection of a novel dataset 
on the infant gut microbiome and fecal metabolome as a key 

strength of the study. They also appreciated the thorough 
initial analyses, which considered both cross-sectional and 
longitudinal associations. 

Several limitations were highlighted by the Committee. 
First, the sample size for the study cohort was relatively 
small (207 mother–infant pairs), and only 127 infants were 
included in the fecal metabolomics analysis, thus limiting 
the statistical power of the cross-sectional analyses. Sec-
ond, given the number of variables in the dataset, multiple 
statistical tests were conducted, which greatly increased the 
potential for false positives. Alderete and colleagues appro-
priately acknowledged these limitations and applied the 
Benjamini–Hochberg procedure to adjust for multiple testing.

Third, the Committee noted that the investigators con-
ducted shallow sequencing (millions of reads per sample) 
rather than deep sequencing (tens to hundreds of millions 
of reads per sample) and therefore did not leverage the full 
potential of the dataset. Fourth, the outcomes selected for this 
study primarily focused on phylogeny, emphasizing the com-
position of different species or taxa in the microbiome. The 
Committee suggested that the inclusion of outcomes related 
to gut microbial function would have provided additional 
insights into the relationship between early-life air pollution 
exposures and gut health.39 Finally, the Committee stated that 
future research would benefit from consideration of the viral 
and fungal microbiomes, rather than focusing solely on the 
bacterial microbiome. 

FINDINGS AND INTERPRETATION 

In the cross-sectional and longitudinal analyses, Alderete 
and colleagues observed that estimated prenatal and early-life 
exposures to ambient and traffic-related air pollution demon-
strated some associations with lower abundances of poten-
tially beneficial gut bacterial species and higher abundances 
of detrimental gut bacterial species. However, no single eco-
logical or molecular mechanism or pattern was evident across 
pollutants, outcomes, or timepoints during the first 2 years of 
life. The investigators also found that increased prenatal or 
early-life exposures to PM10, PM2.5, and NO2 were generally 
associated with higher levels of several fecal metabolites, 
some of which might indicate oxidative stress or gut inflam-
mation (e.g., histidine). However, similar to the metagenomic 
findings, the fecal metabolome analyses did not reveal clear 
patterns across pollutants, outcomes, or timepoints.  

Given the varied findings and study design limitations, the 
Committee determined that this work represents a compre-
hensive set of exploratory analyses and a valuable contribu-
tion, but it emphasized that further research is needed. The 
Committee appreciated that the investigators appropriately 
characterized this study as hypothesis-generating, with 
potential for further exploration in future research.  

The Committee also recognized that the investigators 
thoughtfully outlined several future directions, including 
evaluation of the potential mediating effects of the gut 
microbiome and fecal metabolome on associations between 
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ambient air pollution exposure and infant growth trajectories, 
as well as the use of more advanced multi-omics analytical 
approaches to explore gut bacterial function based on genes 
and gene pathways. Finally, the Committee highlighted that 
the dataset collected for this study represents an excellent 
resource for other researchers to conduct additional studies. 

CONCLUSIONS

In summary, Alderete and colleagues examined whether 
prenatal or early-life exposures to ambient and traffic-related 
air pollution were associated with changes in the infant gut 
microbiome and fecal metabolome during the first 2 years of 
life. They found that both prenatal and early-life air pollution 
exposures demonstrated some associations with alterations in 
the abundances of gut bacteria in the infant microbiome and 
in the identities and levels of fecal metabolites in the infant 
metabolome. Although no substantial or conclusive patterns 
emerged, some associations indicated lower abundances 
of beneficial gut bacteria, higher abundances of potentially 
detrimental gut bacteria, and higher levels of metabolites that 
might indicate oxidative stress and inflammation. Ultimately, 
this study represents an extensive set of exploratory analyses 
that can be used in future research aimed at understanding 
the links between air pollution and the infant gut microbiome 
and fecal metabolome. Moreover, future research can benefit 
from this study’s unique dataset, which can serve as a valu-
able resource for additional studies in this field. 
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RELATED HEI PUBLICATIONSABBREVIATIONS AND OTHER TERMS

	 b	 beta estimate

	 BH 	 Benjamini–Hochberg

	 BMI 	 body mass index

	 C18	 reverse-phase chromatography

	 CS	 cesarean section

	 ESI 	 electrospray ionization

	 HILIC 	 hydrophilic interaction liquid 
chromatography 

	 Metab.	 metabolite

	 NO2 	 nitrogen dioxide 

	 NOx 	 nitrogen oxides 

	 O3 	 ozone 

	PERMANOVA	 permutational multivariate analysis of 
variance 

	 PM 	 particulate matter 

	 PM2.5	 particulate matter ≤2.5 μm in aerodynamic 
diameter 

	 PM10 	 particulate matter ≤10 μm in aerodynamic 
diameter 	

	 SD	 standard deviation

	 SE	 standard error

	 SES	 socioeconomic status

	 US EPA 	 United States Environmental Protection 
Agency 
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PDFs are available for free downloading at www.healtheffects.org/publications.

		

Number	 Title 	 Principal Investigator 	 Date

Research Reports

223	 Impacts of Vehicle Emission Regulations and Local Congestion Policies on 	 P. Hystad	 2025 
	 Birth Outcomes Associated with Traffic Air Pollution

219	 Birth Cohort Studies of Long-Term Exposure to Ambient Air Pollution in Early	 M. Pedersen	 2024 
	 Life and Development of Asthma in Children and Adolescents from Denmark

189 	 Ambient Air Pollution and Adverse Pregnancy Outcomes in Wuhan, China 	 Z. Qian 	 2016 

188 	 Adverse Reproductive Health Outcomes and Exposure to Gaseous and Particulate-Matter 	 J. Wu 	 2016 	
	 Air Pollution in Pregnant Women 

183 	 Development of Statistical Methods for Multipollutant Research 

Part 3. Modeling of Multipollutant Profiles and Spatially Varying Health Effects with 	 J. Molitor 	 2016 
Applications to Indicators of Adverse Birth Outcomes 

Special Reports

23 	 Systematic Review and Meta-Analysis of Selected Health Effects of Long-Term 	 HEI Traffic-Related 	 2022 	
	 Exposure to Traffic-Related Air Pollution 	 Air Pollution Panel 
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