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Appendix A. Technical Details for Case Study 1: PM10 Nonattainment 
Designations

A.1 Missing Covariate Data in the Analysis of Case Study 1

Rather than exclude observations with missing covariate data, we employ spatial hierarchical model to impute 

the missing 1990 ambient PM10 measurements and use these imputations in our analysis. Specifically, we fit the 

same type of spatial hierarchical model as detailed below, with the outcome specified as the log-transformed 

PM10 concentration during the year 1990. Covariates included in this model were the same as those in the 

model of the main text (See Table 1 of the main text), with the addition of a covariate denoting whether a location 

lies in an attainment or nonattainment area. In total, ambient average PM10 during 1990 was imputed for 131 

nonattainment and 153 attainment locations in the entire (non-pruned) sample using posterior-predictive means 

from this model and treated as fixed covariates in the analysis.

A.2 Locations of Discarded Monitoring Locations

As discussed in the main text, the propensity score strategy identified 52 locations that did not “overlap” with 

locations in the opposite treatment group. These locations were discarded for the analysis. Figure A.1 depicts 

the locations of all monitoring locations, the locations retained for the analysis, and the locations of those 

excluded due to lack of overlap.
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Figure A.1: Locations of all 547 PM10 monitoring locations available for analysis and for the 495 locations 
retained after propensity score pruning

(a) Entire Monitor Set

Attainment
Nonattainment

n=547 Monitors

(b) Pruned Monitor Set

Attainment
Nonattainment

n=495 Monitors

(c) Excluded Monitor Set

Attainment
Nonattainment

n=52 Monitors
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n

A.3 Models for Air Pollution and Medicare Health Outcomes

A.3.1 Notation and Ignorability Assumption

For any hypothetical allocation of nonattainment designations to the n = 495 pruned locations, let A ≡ [A(si)]i=1

be the vector of indicators denoting whether each of n = 495 monitoring locations would fall in a nonattainment 

county, with A(si) = 1 denoting nonattainment for the ith location, and A(si) = 1 denoting attainment. We refer to 

the entire vector A as a regulation program. We denote a specific regulation program with A = a, and the observed 

program representing the actual allocation of nonattainment designations with A = aobs.

Let Ya(s) denote health outcome in 2001 (either all-cause mortality, CVD hospitalizations, or respiratory 

hospitalizations) at location s that would potentially occur under regulation program A = a. Let Xa(s) denote 

the average ambient PM10 concentration that would potentially be observed during 1999-2001 under regulation 

program A = a. Note that the only observed potential outcomes are (Xaobs (s),Yaobs (s)); all others are considered 

missing data. Let Z(s) denote the vector of covariate values for location s (i.e., those listed in Table 1 of the main 

text), and also assume that Z(s) contains, in addition to those covariates, indicators of propensity score subclass 

membership.

We confine attention to the regulation programs A = 0 and A = aobs and define the monitor-level causal effect 

of A on ambient PM10 as the comparison between the potential pollution concentration of that pollutant under 

the observed nonattainment designations, Xaobs (s), and the potential concentration under the setting with no 

nonattainment regulations, X0(s), among the nonattainment areas in the pruned data set. We similarly define the 

causal effect of nonattainment designations on a given health outcome for location s as the comparison between 

Yaobs (s) and Y0(s).

We assume that assignment to the initial nonattaiment designations is strongly ignorable conditional on co-

variates. In other words, there is no unmeasured confounding in the sense that Z(s) contains all factors that tend 

to differ between nonattainment and attainment locations and that also impact potential pollution and Medicare 

health outcomes.
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A.3.2 Spatial Hierarchical Model for Air Pollution

For f (X0(s),Xaobs(s)|Z(s)), we propose the following spatial hierarchical model:

X(s) = ZT (s)β+W (s)+ ε(s), (1)

∣
∣

where X(s) = (X0(s),Xaobs (s))T is the vector of potential pollution concentrations under each possible nonattain-

ment status, W (s) is a vector of spatially-varying random intercepts, and ε(s) represents nonspatial “nugget” error

(e.g., measurement error). We assume ε(s) ∼ MV N(0,Ψ), and Ψ diagonal. ZT (s) is a 2 × p matrix of time-

invariant covariates, where p is the number of covariates (including indicators of propensity score subclass) used

to adjust for confounding. The analysis presented here assumes that, conditional on Z(s), potential pollution con-

centrations under A = aobs and A = 0 are conditionally independent. Details of the spatial correlation structure

can be found in Zigler et al. (2012) and Banerjee et al. (2008).

A.3.3 Log-linear Model for Mortality

For f (Y0(s),Yaobs (s)|X0(s),Xaobs (s),Z(s)), we make use of two additional assumptions. We assume conditional in-

dependence of potential health outcomes, conditional on covariates and air pollution: Y0(s) ⊥⊥Yaobs (s)∣X0(s),Xaobs (s),Z(s).

We also assume that under a given designation, after conditioning on pollution under that designation (and covari-

ates), health outcomes are independent of pollution under the opposite designation: f (Ya(s)∣X0(s),Xaobs (s),Z(s)) =

f (Ya(s)
∣∣Xa(s),Z(s)), for a= 0,aobs. This assumption reflects a belief that knowledge of both (X0(s),Xaobs(s)) does

not contribute any information pertaining to Ya(s) above and beyond that contained in Xa(s) alone. As a result

of these assumptions, we write f (Y0(s),Yaobs(s)|X0(s),Xaobs(s),Z(s)) = ∏ f (Ya(s)|Xa(s),Z(s)) for a = 0,aobs, and

model the terms of this product with the following log-linear models:

log(E[Ya(s)]) = α
a
0 +ZT (s)αa

1 +Xa(s)αa
2 + log(N(s)), (2)
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where a = 0,aobs, N(s) is the total number of Medicare beneficiaries (for the mortality outcome) or person-years

(for the hospitalization outcomes) living near location s , αa
1 captures relative risks associated with differences

in Z(s) under nonattainment program A = a, and αa
2 captures relative risks associated with differences in post-

regulation ambient pollution concentrations under regulation program A = a.

A.4 Bayesian Estimation

Recall that X(s) = (X0(s),Xaobs(s))T and let Y (s) = (Y0(s),Yaobs(s))T . The full joint density of the data can be

written as:

f (X,Y,Z) =
∫ n

∏
i=1

f (Z(si),X(si),Y (si)
∣∣θ)p(θ)dθ, (3)

where θ is a generic parameter with prior distribution p(θ). Distinguishing between the missing (mis) and ob-

served (obs) quantities in X(s) and Y (s), the posterior distribution of θ is proportional to:

p(θ) f (Z)
∫ ∫ n

∏
i=1

f (Xmis(si),Xobs(si),Y mis(si),Y obs(si)
∣∣Z(si),θ)dY mis(si)dXmis(si). (4)

Inference from (4) is difficult because of the integration over missing potential outcomes, leading us to focus

instead on the following joint posterior distribution:

p(θ,Xmis,Ymis∣∣Xobs,Yobs,Z) ∝ p(θ)
n

∏
i=1

f (Xmis(si),Xobs(si),Y mis(si),Y obs(si)|Z(si),θ), (5)

which is convenient for its proportionality to the standard posterior distribution of θ had all of the potential out-

comes been observed (Jin and Rubin, 2008). Thus, our computational strategy will consist of a Markov chain

Monte Carlo (MCMC) data augmentation algorithm that iteratively samples missing potential outcomes condi-

tional on observed data and parameters, then samples parameters and calculates causal effect estimates conditional

on “complete” data with identified principal strata.
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W̃ W̃ n
W̃ K̃ n

n

A.4.1 Prior Distributions and Outline of MCMC Strategy

The mechanics of model (1) rely on two key features: the relationship among potential pollution concentrations 

within a location, and the decay of their correlations across space. For the relationship among pollutants within 

a location, note that the cross covariance within a location, K(s,s), is in fact a covariance matrix of the 2 random 

effects corresponding to potential pollution concentrations at a common location. We write K(s,s) = LLT , where 

L is the lower-triangular Cholesky square root of this covariance matrix, and assume that K(s,s) is the same for 

all s, that is, that the process is stationary.

For the spatial decay, we define a simpler MVGP, W̃ (s), such that Var(W̃k(s)) = 1 and the cross covariance is 

diagonal: K̃ (si,s j;ν) = diag{ρk(si,s j;νk)}, where ρk(si,s j;νk) represents a function for the spatial decay of the 

correlation between the kth element of W̃ (s) across space. We assume isotropic exponential covariance functions 

that depend only on the Euclidean distance between locations si and s j (||si − s j||), with ρk(si,s j) = e−νk||si−s j||. 

The covariance matrix of = [ (si)]i=1 can be written as Σ = [ (si,s j)]i, j=1.

Rather than model K(si,s j;ν) directly, we separately specify K̃ (si,s j;ν) and LLT , and define W (s) = LW̃ (s), 

which implies that the spatial random effects in (1) are a linear transformation of the simpler MVGP, with trans-

formation defined by the relationships among the pollutants. With this specification, K(si,s j;ν) = LK̃ (si,s j;ν)LT .

Let XT = [(X0(si)
T ,X1(si)

T )]i=1 be the 2n × 1 pollution vector and Z be the 2n × p matrix of regressors. The 

above model can, after marginalization over W̃ , be equivalently stated as

X∼MV N(Zβ,LΣW̃ LT + In⊗Ψ) (6)

where L = In⊗L, and ⊗ is the Kronecker product. Details for this model formulation as well as generalizations

can be found in Zigler et al. (2012), Wackernagel (2003), Finley et al. (2007), and Banerjee et al. (2008).

For the MCMC, K(s,s) is updated via updates of La, which are the lower-triangular Cholesky roots of the

q× q diagonal blocks of K(s,s) that are informed by the observed data. The off-diagonal blocks of K(s,s) are

updated according to the pre-specified value of a sensitivity parameter, ω, and the values of La, subject to a

positive-definiteness constraint. For this analysis, we fix ω = 0. Under the prior specification detailed below,

8
HEI Research Report 187 Appendices A-E (online only)



the posterior distribution for β is multivariate normal, with samples drawn using a fully conditional Gibbs step.

All other parameters and missing data are updated with a Metropolis step using normal proposal distributions,

with appropriate transformations for all variables having restricted support. Each diagonal element of Ψ, each

ν, and each missing quantity are updated individually, with block updating carried out for β, α0 = (α0
0,α

0
1,α

0
2),

α1 = (α1
0,α

1
1,α

1
2), and (L0,L1). For each model, MCMC chains are run for 32,000 iterations. After discarding

the first 5,000 iterations as burn in, inference is based on every 10th posterior sample.

As pointed out in Finley et al. (2007), values of ν are only weakly identifiable and require reasonably infor-

mative priors for satisfactory MCMC behavior, but the model decomposition described above entails adequate

structure to identify ΣW̃ ,L,ΣW , and Ψ. We treat the parameters β,Ψ,L0,L1,ν,α
0, and α1, as a priori independent.

We specify flat priors for β, 0, and  For the diagonal elements of Ψ, we specify independent inverse-gamma

distributions with shape parameters set to 2 and scale parameters set to 0.5. For νk, we specify uniform prior

distributions on the interval (0.45,3.38). Parameters for the prior distributions of Ψ and ν are meant to reflect

diffuse prior information within the range of plausible parameter values. For each diagonal element of K(s,s), we

specify an inverse-gamma prior distribution with shape parameter set to 2 and scale parameter set to 0.5.

A.5 Assumption about Interference between Locations

Mortality outcomes and pollution levels are only observed under the program A = aobs. Therefore, we require

assumptions to relate observed potential outcomes to those that would have been observed under the hypothetical

scenario with no nonattainment designations, which we denote with A = 0. Typically, this would be achieved with

the assumption of no interference between observational units (or the Stable Unit Treatment Value Assumption,

Rubin [1980]), which states that potential outcomes for a given location are unrelated to designations of all

other locations. This assumption implies that there are exactly two sets of potential outcomes for each location:

pollution and mortality if that location is regulated, and pollution and mortality if that location is unregulated.

Thus, with no interference, potential outcomes under any hypothetical program A = a could be considered on a

location-by-location basis, with (Xa(s),Ya(s)) = (Xaobs(s),Yaobs(s)) as long as a and aobs entail the same regulation
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status for location s.

In studies of air pollution, however, the assumption of no interference does not likely hold because regulations 

at a given location likely impact air quality at nearby locations. Thus, knowing the observed potential outcomes 

at location s under A = aobs does not imply knowledge of the potential outcomes under any other A = a because 

potential outcomes for s can differ when regulations are allocated differently to other locations. In fact, with no 

assumptions regarding interference, potential outcomes for each location are distinctly defined for each different 

possible regulation program because changing the regulation designation of any location could impact potential 

outcomes at all other locations.

We liken investigation of the nonattainment designations to previously-considered problems of “partial inter-

ference” (Sobel, 2006) where observations within a clearly-defined group (e.g., residents of a particular neighbor-

hood) interfere with one another, but observations in different groups (e.g., residents of distant neighborhoods) 

do not. Unlike previously considered partial-interference settings, there are no clearly defined interference sets 

for analyzing the PM10 nonattainment designations (e.g., assuming no interference between locations in different 

counties might be too restrictive, especially for observations near county borders). We argue that a unique feature 

of the present context is that nonattainment designations were “assigned” with some implicit regard to interfer-

ence because one criterion for a nonattainment designation was contribution to a NAAQS violation in a nearby 

area. That is, if weather patterns or mere proximity led pollution in one location to affect pollution in another 

location, the EPA ensured that these two locations shared the same regulation designation.

Let R aobs 
and Uaobs 

respectively denote the set of 219 nonattainment (i.e., “regulated”) and 276 attainment 

(i.e., “unregulated”) locations under the program A = aobs. We adopt what we term the assignment group inter-

ference assumption (AGIA) to reflect the notion that locations within R a obs 
do not interfere with those in Uaobs 

. 

Thus, changing the regulation designation of any location in Uaobs 
would not change the potential outcomes of 

locations in R aobs 
(and vice versa). A consequence of this assumption is that (X1(s),Y1(s)) = (Xaobs (s),Yaobs (s))

for s ∈ R aobs 
and (X0(s),Y0(s)) = (Xaobs (s),Yaobs (s)) for s ∈ Uaobs 

. Figure A.2 graphically depicts the implication

of AGIA. In practice, this assumption implies that, in all attainment areas (Uaobs 
), observed potential outcomes 

are the same as those that would have occurred if the EPA had not designated any other area (i.e., if there were no
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nonattainment designations). The AGIA is discussed further in Zigler et al. (2012).

Figure A.2: Structure of potential outcomes for different regulation programs under the Assignment Group 
Interfer-ence Assumption. Points represent monitor locations in counties contained in portions of California and 
Arizona.

(a) A = aobs. All pollution and mortal-
ity outcomes are observed under this pro-
gram.
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(b) A = 0. Pollution and mortality out-
comes are observed for locations in Uaobs

and unobserved for those in R aobs
.
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(c) A = 1. Pollution and mortality out-
comes are observed for locations in R aobs

and unobserved for those in Uaobs
.
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Appendix B. Sensitivity Analysis to the Pruning of Observations in Case 
Study 1

As a sensitivity analysis to the analysis of PM10 nonattainment designations presented in the Case Study 1: Ac-

countability Assessment of PM10 Nonattainment Designations in the Western US of the main text, we conduct an 

analogous analysis but without pruning observations based on estimated propensity scores. That is, we estimate 

average causal effects of PM10 nonattainment designations on average annual ambient PM10 during 1999-2001 

and on Medicare health outcomes using data on all 547 monitoring locations (268 of which are located in nonat-

tainment areas).
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Table B.1: Causal Effect Estimates for overall, associative, and dissociative effects in the sensitivity analysis 
of PM10 nonattainment designations carried out among all 547 monitoring locations, without pruning based on 
the estimated propensity score.

Overall Average Causal Effect Average Dissociative Effect Average Associative Effect
Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

Ambient PM10 -3.27 -15.76 5.38
All-Cause Mortality -5.26 -7.94 -2.24 -4.22 -8.5 0.02 -5.85 -9.91 -1.81
CVD Hospitalization 4.61 -1.7 10.06 5.48 -3.05 14.25 -0.92 -8.8 6.11
Respiratory Hospitalization -0.63 -4.43 2.58 0.58 -3.3 4.29 -3.19 -8.68 1.45

Table B.1 presents point estimates and 95% posterior intervals of the overall average causal effects of the 

nonattainment designations, as well as estimates of average dissociative and associative effects. The estimates 

of average causal effects on Medicare health outcomes (overall ATT, average dissociative effects, and average 

associative effects) are depicted in Figure B.1, which is analogous to Figure 9 of the main text. In comparison 

with the results in the main text, the analysis without propensity score pruning estimates more pronounced effects 

on mortality and CVD-related hospitalizations, and similar results for respiratory-related hospitalizations. 

However, the results of the analysis without propensity score pruning necessarily extrapolate inferences 

beyond the observed data, as the analysis entails inferences for nonattainment locations that have no 

comparable attainment location in the data.
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Figure B.1: Posterior mean point estimates and 95% posterior probability intervals for overall, associative, 
and dissociative effects in the sensitivity analysis of PM10 nonattainment designations carried out among all 
547 monitoring locations, without pruning based on the estimated propensity score.
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Appendix C. Technical Details for Case Study 2: Power Plant Emissions 

Controls 

C.1 Defining the Treatment: Scrubber Installations on Power Plants

Figure C.1 shows the distribution of the % of each power plant’s total heat input among EGUs with a scrubber. 

Note that the vast majority of power plants have scrubbers on all or none of their EGUs.
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Figure C.1:  Histogram of the % of heat input generated from an EGU with a scrubber for each power-
generating facility.
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C.2 Bayesian Nonparametric Models for Observed Distributions of Mediators and Out-

come

We try to minimize parametric assumptions in our specification of the models for the observed data. In particular, 

we specify Dirichlet process mixtures of multivariate normals (Escobar and West, 1995; Mller et al., 1996; 

Jara et al., 2011) for the distribution of each mediator (emission). For each intervention z = 0,1 and baseline 

covariates XXX = xxx, the conditional distribution of the k-th observed mediator is specified as

Mk,i|Z = z,XXX = xxx ∼ N(βz
k0,i + xxx>βββ

z
k1, τ

z
k,i), k = 1,2,3; i = 1, · · · ,nz

β
z
k0,i,τ

z
k,i ∼ Fz

k ,

Fz
k ∼ DP(λz

k, F z
k ),

where subscript k indicates the k-th mediator and i indicates the i-th observation and superscript z indicates the

intervention received such that β
z
k0,i and τ

z
k,i denote the intercept and precision parameters for the i-th observation

of the k-th mediator, respectively. Here, DP denotes the Dirichlet process with two parameters, a mass parameter

(λz
k) and a base measure (F z

k ) for each mediator k and intervention z. To not overly complicate the model we

only ‘mixed’ over the intercept parameters and precisions in the conditional distributions, β
z
k0,i and τ

z
k,i. The

base distribution F z
k is taken to be the conjugate normal-Gamma distribution, N(µz

k,S
z
k)G(az

k,b
z
k), where Sz

k is

the precision parameters and the Gamma is parametrized as the mean to be az
k/bz

k and we set a Gamma prior

G(1,1) on λ
z
k, the inverse of the mass parameter λ

z
k (Rasmussen, 1999). For the hyper-priors, we follow the

specification from Taddy (2008) such that µz
k ∼ (µz?

k ,Sz?
k ),Sz

k ∼ G(az?
k ,bz?

k ) and az
k ∼ Unif(0.1,10),bz

k = az
k× Σ̂

z
k/2

where Σ̂
z
k is the MLE of the variance of Mk(z). Sz?

k is set to 2/Σ̂
z
k and µz?

k is set to the mean of the data. And az?
k ∼

Unif(0.1,10),bz?
k = az

k× Σ̂
z
k/2. From these specifications, E(τz

k,i) = E(Sz
k) = E(Sz?

k ) = Σ̂
z
k/2 (i.e., the expected

variance components are an attenuated value of the MLE of the variance of the data) in order to avoid fitting only

one global distribution over the whole data points.

Similarly, we can specify Dirichlet process mixtures of multivariate normals for the distribution of each out-

15
HEI Research Report 187 Appendices A-E (online only)



come. For each intervention z = 0,1, the conditional distribution of the observed outcome (ambient PM2.5) is 

specified as

Yi|Z = z,XXX = xxx ∼ N(γz
0,i + xxx>γγγ

z
1, ω

z
i ), i = 1, · · · ,nz

γ
z
0,i,ω

z
i ∼ Gz,

Gz ∼ DP(ηz, G z),

where all details follow in the same manner as the specification of the mediator models.

These observation models can be represented as the stick-breaking construction (Sethuraman, 1994) which

can be approximated by a finite mixture of normals such that, for example, the conditional distribution of M1

under intervention z = 1 can be represented as

fM1(m|z = 1,xxx) =
N

∑
n=1

θnN(m ; β
z=1
10,n + xxx>βββ

z=1
11 ,τz=1

1,n ),

where θn = θ′n ∏h<n(1−θ′h),θ
′
h ∼ Beta(1,λ1), and (βz=1

10,n,τ
z=1
1,n )

iid∼ F z=1
1 and N is a maximum number of clusters.

With the marginal distributions specified as above, we can specify the joint distribution of the outcome and

the mediators under the same intervention via a Gaussian copula model (Nelsen, 1999) and each conditional

distribution of the mediator and the outcome above. Specifically, it has the following form for each intervention

Z = 0,1:

FM1,M2,M3,Y (m1,m2,m3,y |Z = z,XXX = xxx) =

Φ4[Φ
−1
1 {FM1(m1|Z = z,xxx)},Φ−1

1 {FM2(m2|Z = z,xxx)},Φ−1
1 {FM3(m3|Z = z,xxx)},Φ−1

1 {FY (y|Z = z,xxx)}],

where Φ1 is the univariate standard normal CDF and Φ4 is the multivariate normal CDF with mean 0 and a

correlation matrix R. Since the outcome and the mediators under the same intervention are observed by the data,

the correlation matrix R can be identified by the observed data.
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C.3 Assumptions for Identification of Principal Causal Effects and Mediation Effects

The models in Section C.2 are for the mediator and outcome values that are actually observed. Identification 

of causal effects requires estimation of both observed and unobserved potential outcomes for each power plant. 

This requires assumptions related to the unobserved but observable outcomes for the principal causal effects, and 

additional assumptions related to unobserved and unobservable outcomes for the mediation effects.

The conditional distribution [Y (z;M(z1,z2,z3)) |M(0,0,0) = m0,0,0,M(1,1,1) = m1,1,1,XXX = xxx] is denoted by 

fz,M(z1,z2,z3)(y |m0,0,0,m1,1,1,xxx) where mz1,z2,z3 is a vector of realized values of SO2, NOx and CO2 under the 

interventions z1,z2,z3. The conditional distribution [M(z1,z2,z3)|XXX = xxx] is denoted by fM(z1,z2,z3)(mz1,z2,z3 |xxx). 

Other conditional distributions are defined using similar notation.

C.3.1 Assumptions for the Principal Causal Effects

Assumption 1. (Ignorability of treatment)

{Y (z;M(z,z,z)),M(z,z,z)} ⊥⊥ Z|XXX = xxx,

for z = 0,1, which assumes that SO2 scrubber installation status is “randomized” conditional on XXX = xxx. With 

this assumption, we can identify the conditional distributions of potential PM2.5 outcomes and the conditional 

distributions of emissions outcomes under each intervention based on observed data using the models from Section

C.2 denoted with fz,M(z,z,z)(y|xxx) and fMk(z)(m|xxx).

Assumption 2. The joint distribution of potential mediators and outcomes conditional on covariates follows a 

Gaussian copula model (Nelsen, 1999):

FM(0,0,0),M(1,1,1),(0,M(0,0,0)),(1,M(1,1,1))(m0,0,0,m1,1,1,y0,y1) =

Φ8[Φ
−1
1 {FM1(0)(m1)},Φ−1

1 {FM2(0)(m2)},Φ−1
1 {FM3(0)(m3)},Φ−1

1 {FM1(1)(m1)},

Φ
−1
1 {FM2(1)(m2)},Φ−1

1 {FM3(1)(m3)},Φ−1
1 {F(0,M(0,0,0))(y0)},Φ−1

1 {F(1,M(1,1,1))(y1)}]
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where yz indicates a value of potential outcome under intervention Z = z and Φ1 is the univariate standard normal

CDF and Φ8 is the multivariate normal CDF with mean 0 and a correlation matrix R.

Here, for notational simplicity, we omit covariates, XXX , when noting conditional distributions of mediators and

outcomes. In Section C.2, the joint distribution of the observed data (outcome and mediators under the same

scrubber status) was specified as a separate Gaussian copula model for each intervention Z = z, and we are now

assuming the joint distribution of potential outcomes and mediators under both interventions Z = 0,1. Through

this model, we have a benefit of flexibility in the marginal distributions (which we modeled earlier using Bayesian

nonparametric methods). Since any pair of M j(0) and [Mk(1),Y (1;M(1,1,1))] or any pair of Y (0;M(0,0,0))

and [Mk(1),Y (1;M(1,1,1))] given covariates XXX = xxx cannot be observed at the same time, we cannot identify

part of the correlation structure of the joint distribution from the observed data. To identify these nonidentifiable

pieces, we first adopt strategy from Zigler et al. (2012) to specification of the correlations between mediators

under different interventions. Specifically, we set

(1) cor(M j(0),Mk(1)) =
cor(M j(0),Mk(0))+cor(M j(1),Mk(1))

2 ×ρ1, for j,k = 1,2,3,

where ρ1 is a sensitivity parameter. This strategy implies that (a) the correlation between the same mediator ( j = k)

under opposite interventions is ρ1, and (b) the correlation between different mediators ( j 6= k) under opposite

interventions is attenuated version of the correlation observed separately under each intervention. Furthermore, it

is reasonable to assume that magnitude of correlations (b) do not exceed the observed correlations between two

mediators under the same intervention. Thus, we set a constraint |ρ1| ≤ 2× min{|cor(M j(0),Mk(0))|, |cor(M j(1),Mk(1))|}
|cor(M j(0),Mk(0))+cor(M j(1),Mk(1))|

for all j 6= k combinations. We use one sensitivity parameter to specify these correlations, but a different parameter

could be specified for each mediator separately. For the analysis presented in the main text, we specify a uniform

prior distribution over (0,0.75) for ρ1.

We also need to specify correlations between Y (0;M(0,0,0)) and Mk(1) and between Y (1;M(1,1,1)) and

Mk(0) for all k = 1,2,3. This can be done by the same strategy from the above specification for k = 1,2,3

(2) cor(Mk(z′),Y (z;M(z,z,z))) = cor(Mk(0),Y (0;M(0,0,0)))+cor(Mk(1),Y (1;M(1,1,1)))
2 ×ρ2,
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where z′= 1−z for z∈{0,1} and ρ2 is another sensitivity parameter. This specification implies that the correlation

between mediators under intervention z = 1 (z = 0) and the outcome under intervention z = 0 (z = 1) is attenuated

version of the correlations between the mediators and the outcome under the same interventions. We also restrict a

range of possible values as |ρ2| ≤ 2× min{|cor(Mk(0),Y (0;M(0,0,0)))|, |cor(Mk(1),Y (1;M(1,1,1)))|}
|cor(Mk(0),Y (0,M(0,0,0)))+cor(Mk(1),Y (1,M(1,1,1))) . For the analysis presented

in the main text, we specify a uniform prior distribution over (0,0.15) for ρ2.

Note that we do not need to specify a third sensitivity parameter for the nonidentifiable association between

(Y (0;M(0,0,0),Y (1;M(1,1,1)). Although this would be required to construct the full joint distribution of all

observable potential outcomes, the estimands we consider do not depend on this correlation. This is due in part to

the following assumption:

Assumption 3. (Conditional independence I) Y (0;M(0,0,0)) and Y (1;M(1,1,1)) are conditionally indepen-

dent given all potential mediators under z = 0 and z = 1 and covariates XXX.

This assumption states that the potential values of PM2.5 under both interventions are independent of each other

conditional on all potential values of SO2, NOx and CO2 under both interventions and baseline covariates. This

is not necessary to estimate the posterior means of the principal causal effects but necessary to estimate other

features of the posterior distribution of the principal causal effects such as bounds for posterior variances. In this

paper, the mean differences are our primary causal estimands and, therefore, this assumption is not needed.

C.3.2 Assumptions for the mediation effects

Assumptions 1-3 pertain exclusively to observed outcomes and unobserved but observable outcomes of ambient

PM2.5 and emissions. As noted in the main text, identification of natural indirect effects requires assumptions that

relate observed outcomes to unobservable potential outcomes of PM2.5 and emissions that are simultaneously

subject to different scrubber statuses. We specify such assumptions here.

Assumption 3F. (Conditional Independence II) {Y (z;M(z1,z2,z3)) : (z,z1,z2,z3)∈ {0,1}⊗4} are conditionally

independent given all potential mediators and covariates XXX.

It is important to note that Assumption 3 is a specific case of Assumption 3F. Again, this assumption is not
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necessary to estimate posterior means of NDE, JNIEs and other indirect effects but necessary to estimate other 

features of the posterior distribution of mediation effects such as an upper bound on the posterior variance of the 

indirect effect assuming a non-negative correlation between potential outcomes.

Assumption 4. For a given intervention Z = 1, the conditional distribution of the potential outcome given all 

potential mediators and covariates is the same whether corresponding mediators were induced by Z = 1 or Z = 0.

This assumption implies that the unobservable potential outcomes Y (1;M(0,0,0)) and the observed potential 

outcomes Y (1;M(1,1,1)) have the same conditional distribution,

f1,M(0,0,0)(y |M(0,0,0) = m,M(1,1,1),xxx)

= f1,M(1,1,1)(y |M(0,0,0),M(1,1,1) = m,xxx), (7)

where the conditional distribution of the RHS has m as a vector of realized values of when an SO2 scrubber is

installed. That is, the conditional distribution of the unobservable potential PM2.5 concentration when a scrubber is

installed but emissions are set to the value m that they would have been absent the scrubber is equal to the observed

distribution of PM2.5 observed around power plants that had scrubbers and were observed to have emissions m.

This assumption is also defined for cases of any two mediators or single pollutant(s) emitted under different

interventions. For instance, the potential outcomes of PM2.5 Y (1;M(0,1,0)) and Y (1;M(1,1,1)) have the same

conditional distribution regardless of whether corresponding emissions values arose under a scrubber (Z = 1) or

absent a scrubber (Z = 0),

f1,M(0,1,0)(y |M(0,1,0) = m,M(1,0,1),xxx)

= f1,M(1,1,1)(y |M(0,0,0),M(1,1,1) = m,xxx).
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Effects Assumptions Note
Principal Causal Effect A1, A2, A3

Mediation Effect A1, A2, A3F, A4 A3F implies A3

Table C.1: Assumptions needed for identifying each effect. ‘A’ indicates assumption.

Similarly, the potential outcomes Y (1;M(1,1,0)) and Y (1;M(1,1,1)) have the same conditional distribution,

f1,M(1,1,0)(y |M(1,1,0) = m,M(0,0,1),xxx)

= f1,M(1,1,1)(y |M(0,0,0),M(1,1,1) = m,xxx).

The key point is that unobservable PM2.5 concentrations under a certain hypothetical emissions amount (m)

are assumed to have the same distribution as that of the PM2.5 concentrations among power plants that had, in

reality, emissions of m observed, regardless of observed scrubber status.

It is worth noting that this Assumption 4 induces the following property

Y (1;M(1,1,1))⊥⊥M(0,0,0)|M(1,1,1) = m,XXX = xxx (8)

for all m and xxx values since Equality (7) holds regardless of M(0,0,0) in the conditioning part of the RHS for all 

realized values of M(1,1,1) and XXX . This property simplifies posterior computation.

Also, note that Assumption 4 is consistent with Assumption 2 (the joint distribution of outcomes and medi-

ators) since Assumption 2 only impacts on the conditional distribution of Y (1;M(1,1,1)) which is the RHS of 

Assumption 4.

We summarize assumptions proposed in the previous section and this section with Table C.1. Assumption 

1-3 are sufficient to identify the principal causal effects. To identify the mediation effects, we replace

Assumption 3 with stronger assumption, Assumption 3F and propose an additional assumption, Assumption 4. It

is again worth noting that Assumption 1-3 only contain the observable outcomes while Assumption 3F-4

additionally contain the unobservable outcomes. Thus, we modularize assumptions so that estimation of

principal causal effects rely on Assumptions 1, 2, and 3, while estimation of mediation effects relies on
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Assumptions 1, 2, 3F, and 4.

C.3.3 Proofs of Identification

In the following, we will prove that Assumptions 1-3 are sufficient to identify the distribution of the principal 

causal effects and Assumption 1,2,3F and 4 are sufficient to identify the distributions of NDE, JNIEs and NIEs. 

Here, we proceed with 3 mediators, SO2, NOx, and CO2, but it is straightforward to extend this to K ≥ 3 cases.

Theorem 1. The posterior distributions of the principal causal effects (associative effect and dissociative effect) 

are identified under Assumption 1-4.

Proof :

To obtain the posterior distribution of the principal causal effect, it is sufficient to identify the conditional joint 

distribution of the potential outcomes and mediators [Y (0;M(0,0,0)) = y0,Y (1;M(1,1,1)) = y1,M(0,0,0) = 

m0,0,0,M(1,1,1) = m1,1,1],           

f(y0,y1,m0,0,0,m1,1,1) (9)

=
∫

f(0,M(0,0,0)),(1,M(1,1,1))(y0,y1|m0,0,0,m1,1,1,xxx) fM(0,0,0),M(1,1,1)(m0,0,0,m1,1,1|xxx)dFXXX(xxx)

=
∫ {

f0,M(0,0,0)(y0|m0,0,0,m1,1,1,xxx) f1,M(1,1,1)(y1|m0,0,0,m1,1,1,xxx)
}

fM(0,0,0),M(1,1,1)(m0,0,0,m1,1,1|xxx)dFXXX (xxx   )

where the equality in (9) from Assumption 3 all terms are identified by Assumption 1  and 2  with the observed 

data model. Then, the posterior distribution of the principal causal effect is a function of (9).

Theorem 2. The posterior distributions of NDE, JNIE123, JNIE jk, and NIEk are identified under Assumptions 

1, 2, 3F and 4.

Proof :

To obtain the posterior distributions of NDE, JNIE’s and NIE’s, it is sufficient to identify the joint distribution 

of the potential outcomes [Y (1;M(1,1,1)) = y1,Y (0;M(0,0,0)) = y2,Y (1;M(0,0,0)) = y3,Y (1;M(1,0,0)) =
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y4,Y (1;M(0,1,0)) = y5,Y (1;M(0,0,1)) = y6,Y (1;M(1,1,0)) = y7,Y (1;M(1,0,1)) = y8,Y (1;M(0,1,1)) = y9],

f (y1,y2,y3,y4,y5,y6,y7,y8,y9) =∫ {
f (y1,y2,y3,y4,y5,y6,y7,y8,y9 |m0,0,0,m1,1,1,xxx)

× fM(0,0,0),M(1,1,1)(m0,0,0,m1,1,1 |xxx)
}

dm0,0,0 dm1,1,1 dFXXX(x),

where mz1,z2,z3 denotes a vector of realized values of the mediators {M(z1),M(z2),M(z3)}. With omitting xxx for

notation simplicity, the second term in the RHS can be identified by Assumption 2. The first term in the RHS can

be factored as

f (y1,y2,y3,y4,y5,y6,y7,y8,y9|m0,0,0,m1,1,1)

= f1,M(1,1,1)(y1|m0,0,0,m1,1,1) f0,M(0,0,0)(y2|m0,0,0,m1,1,1)

× f1,M(0,0,0)(y3|m0,0,0,m1,1,1) f1,M(1,0,0)(y4|m0,0,0,m1,1,1)

× f1,M(0,1,0)(y5|m0,0,0,m1,1,1) f1,M(0,0,1)(y6|m0,0,0,m1,1,1)

× f1,M(1,1,0)(y7|m0,0,0,m1,1,1) f1,M(1,0,1)(y8|m0,0,0,m1,1,1)

× f1,M(0,1,1)(y9|m0,0,0,m1,1,1) (10)

= f1,M(1,1,1)(y1|M(1,1,1) = m1,1,1) f0,M(0,0,0)(y2|m0,0,0,m1,1,1)

× f1,M(1,1,1)(y3|M(1,1,1) = m0,0,0) f1,M(1,1,1)(y4|M(1,1,1) = m1,0,0)

× f1,M(1,1,1)(y5|M(1,1,1) = m0,1,0) f1,M(1,1,1)(y6|M(1,1,1) = m0,0,1)

× f1,M(1,1,1)(y7|M(1,1,1) = m1,1,0) f1,M(1,1,1)(y8|M(1,1,1) = m1,0,1)

× f1,M(1,1,1)(y9|M(1,1,1) = m0,1,1) (11)

where the first equality (10) follows from Assumption 3F and the second equality (11) follows from 

Assumption 4. All terms in (11) are identified by Assumption 2. Note that, in (11), all conditional distributions 

for potential outcomes except one for Y (0,M(0,0,0)) are independent of M(0,0,0) which simplify the posterior 

computation and result in efficient estimates. Then, the posterior distributions of NDE, JNIEs and NIEs are 

functions of (11).
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C.4 Posterior Computation

In this section, we provide the MCMC computational algorithm for estimating principal causal effects and the

mediation effects. To compute the posterior distribution of the principal causal effects, for example the associative

effect defined on all three pollutants (SO2, NOx, CO2), we obtain N posterior samples of the parameters in

the observation models via Stan (Guo et al., 2015). Then, for each set of sampled parameters with sensitivity

parameters ρ1 and ρ2, we do the following steps.

1. Generate S samples of [y0,y1,m0,m1] from the distribution of [Y (0,M(0,0,0)),Y (1,M(1,1,1)),M(0,0,0),M(1,1,1)|XXX =

xxx] where y0, y1, m0,0,0 and m1,1,1 are realized samples of Y (0,M(0,0,0)), Y (1,M(1,1,1)), M(0,0,0) and M(1,1,1),

respectively.

2. Compute E[Y (1;M(1,1,1))
∣∣ |M(1,1,1)−M(0,0,0)|K >CA

K ,XXX = xxx] as follows,

E[Y (1;M(1,1,1))
∣∣ |M(1,1,1)−M(0,0,0)|K >CA

K ,XXX = xxx] =
1
S

S

∑
i=1

y1i I(|m1,1,1,i−m0,0,0,i|K >CA
K ),

where I() is an indicator function and y1i, m0,0,0,i, and m1,1,1,i indicate the i-th sample of the outcome under inter-

vention z = 1 and sets of the mediators under intervention z = 0 and intervention z = 1, respectively. Analogously,

compute E[Y (0;M(0,0,0))
∣∣ |M(1,1,1)−M(0,0,0)|K >CA

K ,XXX = xxx].

3. Compute the associative effect,

AE =
∫

E[Y (1;M(1,1,1))−Y (0;M(0,0,0))
∣∣ |(M(1,1,1)−M(0,0,0))|K >CA

K , xxx]dFXXX(xxx)

Then, we iterate steps 1-3 N times and estimate posterior means and standard deviations of the associative effects.

The dissociative effect is computed in the exact same way with some threshold CK
D .

To compute the posterior distribution of the JNIE’s, NDE and all mediator-specific indirect effects, using the 

same N sets of parameters in the observation models from the above step, for each set of sampled parameters and
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either fixed values for sensitivity parameters ρ1 and ρ2, we do the following steps.

1. Generate S sets of samples (m0,0,0,m1,1,1) from the joint distribution [M(0,0,0),M(1,1,1)|XXX = xxx] where m0,0,0 and

m1,1,1 are realized samples of M(0,0,0) and M(1,1,1), respectively.

2. Compute f1,M(0,0,0)(y|xxx) via Monte Carlo integration using S sets of (m0,0,0,m1,1,1) as follows,

f1,M(0,0,0)(y|xxx)

=
∫ {

f1,M(0,0,0)(y|M(0,0,0) = m0,0,0,M(1,1,1) = m1,1,1,xxx) fM(0,0,0),M(1,1,1)|XXX=xxx(m0,0,0,m1,1,1)
}

dm0,0,0 dm1,1,1

=
∫ {

f1,M(1,1,1)(y|M(1,1,1) = m0,0,0,xxx) fM(0,0,0),M(1,1,1)|XXX=xxx(m0,0,0,m1,1,1)
}

dm0,0,0 dm1,1,1 (A4)

≈ 1
S

S

∑
i=1

f1,M(1,1,1)(y|M(1,1,1) = m0,0,0,i,xxx),

where m0,0,0,i indicates the i-th sample of mediators, M(0,0,0), and ‘A4’ denotes Assumption 4. To compute

f1,M(1,1,1)(y|M(1,1,1) = m0,0,0,xxx), we note that this conditional distribution is equivalent to

f (Y (1;M(1,1,1)) = y,M(1,1,1) = m0,0,0,xxx)
f (M(1,1,1) = m0,0,0,xxx)

,

where all the terms are identifiable by Assumption 2 and the model specifications in Section C.2. All other distribu-

tions of unobservable outcomes such as f1,M(1,1,0)(y|xxx), f1,M(1,0,1)(y|xxx), f1,M(0,1,1)(y|xxx), f1,M(1,0,0)(y|xxx), f1,M(0,1,0)(y|xxx)

and f1,M(0,0,1)(y|xxx) can be computed in the same manner.

3. Compute NDE, JNIEs, NIEs,

NDE = E[Y (1,M(1,1,1))−Y (0,M(0,0,0))] =
∫

y
{

f1,M(0,0,0)(y|xxx)− f0,M(0,0,0)(y|xxx)
}

dydFXXX(xxx),

JNIE123 = E[Y (1,M(1,1,1))−Y (1,M(0,0,0))] =
∫

y
{

f1,M(1,1,1)(y|xxx)− f1,M(0,0,0)(y|xxx)
}

dydFXXX(xxx),

JNIE12 = E[Y (1,M(1,1,1))−Y (1,M(0,0,1))] =
∫

y
{

f1,M(1,1,1)(y|xxx)− f1,M(0,0,1)(y|xxx)
}

dydFXXX(xxx),

and

NIE1 = E[Y (1,M(1,1,1))−Y (1,M(0,1,1))] =
∫

y
{

f1,M(1,1,1)(y|xxx)− f1,M(0,1,1)(y|xxx)
}

dydFXXX(xxx).
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Other mediator specific effects, NIE2,NIE3, and joint natural indirect effects of other pairs of mediators, JNIE13,JNIE23,

are computed similarly.

We iterate steps 1-3 N times and estimate posterior means and standard deviations of the effects.

C.5 Assessment of Overlap of Natural Indirect Effects

A key benefit of our proposed methods relative to other approaches for multiple mediators is that we allow possible overlap-

ping between NIEs such that one can examine whether there is actually overlap between NIEs or additivity of NIEs holds.

We evaluate the relationship between the joint effects JNIE jk and the mediator-specific effects NIE1, NIE2, NIE3 through

(NIE1 +NIE2)− JNIE12 = 0.000(−0.002,0.003),

(NIE1 +NIE3)− JNIE13 = 0.000(−0.001,−0.003),

(NIE2 +NIE3)− JNIE23 = 0.000(−0.003,0.001)

which give no evidence of overlap between NIEs. That is, it appears as though the causal effect of an SO2 scrubber on 

ambient PM2.5 that is mediated through a given emission does not depend on the value of other emissions, i.e., there is no 

evidence of synergistic effects of joint reductions in multiple emissions.

Appendix D. Results from the Power-Plant Case Study with 75-km Data  
Linkage

As a sensitivity analysis to the analysis of the 150km radius used to link power plants to ambient monitors in the analysis 

of the Case Study 2: Accountability Assessment of Power Plant Emissions Controls Section of the main text, we conduct 

the same analysis but with power plants linked to ambient monitors within a 75km radius. Table D.1 shows the 

characteristics of the 53 power plants with scrubbers and 181 power plants without scrubbers in this analysis. Table D.2  

presents posterior estimates of causal effects of scrubbers on emissions. Table D.3 presents posterior mean (and 95% 

interval) estimates of principal causal effects, and Figure D.1 depicts point estimates of principal effects analogous 

to Figure 13 of the main text. Table D.4 contains posterior estimates of natural direct and indirect effects, and Figure D.2 

depicts boxplots of the posterior distributions of these mediation effects. Overall, the results of this sensitivity analysis are 
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very similar to those of the main analysis, but exhibit wider uncertainty intervals (due to the inclusion of fewer power 

plants).

Table D.1: Summary statistics for covariates and outcomes available for the analysis of SO2 controls when 
power plants are linked to monitors within a 75km radius.

Plants with scrubbers (n=53) Plants w/o scrubbers (n=181)
Mean SD Mean SD

Monitor Data
Average Ambient PM2.5 2005 12.10 4.00 13.30 2.50
Average Temperature 2004 12.80 4.50 13.10 3.70
Average Barometric Pressure 2004 725.80 47.90 744.70 20.60

Power Plant Level Data
Total SO2 Emission 2005 1390.00 1922.90 2173.80 2542.40
Total NOx Emission 2005 936.30 796.90 588.10 558.20
Total CO2 Emission 2005 560497.50 469587.80 369568.10 369898.60

Unit Level Data
Selective Catalytic or

Selective Non Catalytic Reduction Jan. 2004 0.30 0.40 0.20 0.40
Number of NOx Controls Jan. 2004 1.20 0.60 1.00 0.60
Average Heat Input 2004 4578925.40 3602538.60 3605378.20
Average Percent Operating Capacity 20.50 11.60 17.90 10.30
Phase II Indicator 2004 0.80 0.40 0.80 0.40
Total Operating Time 2004 7636.90 715.30 7347.10 1042.50
Sulfur Content in Coal 2004 1.50 1.10 0.80 0.60

Table D.2: Posterior mean and 95% probability intervals for causal effects of SO2 controls on emissions when 
power plants are linked to monitors within a 75km radius.

SO2 NOx CO2
Mean -0.925 0.118 0.066

95% C.I. (-1.289, -0.572) (-0.151, 0.418) (-0.152, 0.256)
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Table D.3: Posterior mean and 95% probability intervals for expected associative and dissociative effects of 
SO2 controls when power plants are linked to monitors within a 75km radius.

SO2 NOx CO2 SO2 & NOx SO2 & CO2 NOx & CO2 SO2 & NOx & CO2

EAE1
Mean -0.518 -0.180 -0.373 -0.224 -0.438 -0.200 -0.231

95% P.I. (-1.683, 0.662) (-1.447, 1.018) (-1.432, 0.818) (-1.524, 0.893) (-1.633, 0.753) (-1.385, 0.921) (-1.507, 0.932)

EDE
Mean -0.386 -0.522 -0.420 -0.407 -0.352 -0.522 -0.401

95% P.I. (-1.572, 0.990) (-1.676, 0.650) (-1.564, 0.930) (-1.663, 1.043) (-1.515, 1.089) (-1.739, 0.667) (-1.660, 1.077)

EAE2
Mean -0.075 -0.502 -0.499 -0.107 -0.191 -0.589 -0.236

95% P.I. (-1.522, 1.730) (-1.891, 1.051) (-1.690, 0.892) (-1.649, 1.903) (-1.595, 1.612) ( -1.967, 1.018) (-1.686,1.659)
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Figure D.1: Posterior mean estimates of average associative and dissociative effects of SO2 controls when power 
plants are linked to monitors within a 75km radius. Size of circle is proportional to the percent of observations 
estimated to belong in the corresponding strata, and number listed is posterior mean proportion.
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Figure D.2: Posterior distributions of direct and indirect effects in the analysis of SO2 controls when power plants 
are linked to monitors within a 75 km radius.

Table D.4: Posterior mean and 95% probability intervals for total, direct, and indirect effects of SO2 scrubbers 
when power plants are linked to monitors within a 75km radius.

TE JNIE123 NDE
Mean -0.413 -0.264 -0.149

95% C.I. (-1.428, 0.696) (-0.387, -0.139) 1.153,(- 0.981)
NIE1 NIE2 NIE3

Mean -0.228 -0.021 -0.015
95% C.I. (-0.331, -0.136) ( -0.069, 0.023) (-0.073, 0.040)

JNIE12 JNIE23 JNIE13
Mean -0.249 -0.035 -0.243

95% C.I. (-0.358, -0.140) (-0.117, 0.036) ( -0.365, -0.133)
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E.1 Power-Plant Centered Data Linkage

The first data linkage strategy we employ for a health outcomes analysis, which we call “power-plant centered linkage,” 

is a straightforward analog to data linkage in the analysis in the Case Study 2: Accountability Assessment of Power Plant 

Emissions Controls Section of the main text to include Medicare health outcomes. Considering each coal-fired power plant 

as the unit of analysis, we link ambient monitoring locations and Medicare health outcomes as follows. For a given coal-

fired p ower p lant, w e d raw a  c ircle w ith a  1 50 k m r adius a nd fi nd al l PM 2. 5 mo nitoring st ations lo cated wi thin th e circle.

Here, if a monitoring station belongs to more than one 150km radius circle, we uniquely assign it to the closest power 

plant. Next, for these monitoring stations located within the circle, we draw 6 mile radius circle around each monitoring 

station and find all zip code centroids contained in these circles. Zip codes with centroids that are within 6 miles of 

more than one monitor are assigned to the closest monitoring location. Medicare outcomes among these zip codes are 

aggregated to represent health outcomes among Medicare beneficiaries residing within 6 miles of a monitoring location 

that is at most 150 km from a power plant. This power-plant centered linkage is illustrated in Figure E.1. In this linkage, 

we assume a coal-fired power plant is treated if all its EGUs have installed SO2 scrubbers and otherwise consider it 

untreated. Also note that, for the health-outcomes analysis, we include data on possible confounders from the U.S. 

Census. These data are available at the zip code level, and are linked to monitoring locations in the same way as the zip 

codes of Medicare beneficiaries; characteristics are aggregated to represent population demographics of the general 

population of zip codes within 6 miles of a monitoring location that is at most 150 km from a power plant. A summary of the 

data for the power-plant centered linkage appears in Table E.1.

E.2 Monitor-Centered Data Linkage

An alternative to the power-plant centered analysis above is the “monitor-centered” linkage, where the monitoring 

location (not the power plant) is the unit of analysis. Rather than link monitors to power plants based on an arbitrary 

distance radius, the monitor-centered linkage calculates, for a given monitoring location, the distance between that location 

and every power plant in the data. Power plant characteristics are then aggregated to the level of the ambient monitor

Appendix E. Preliminary Extension of the Power-Plant Case Study to
Health Outcomes
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Figure E.1: Power plant-centered linkage

by calculating a weighted average of all the power plants in the data, weighted by 1/di
3
j, where di j is the distance between the 

ith monitor and the jth power plant. This allows every power plant to contribute information to every monitor, with the closest 

power plants contributing the most and very distant power plants contributing virtually no information. After aggregating 

power-plant information to the monitor level, we then link monitors with Medicare and census data by enumerating all zip 

code centroids within a 6 mile radius of the monitoring location. Zip codes that are within 6 miles of more than one monitor 

are uniquely linked to the closest monitor. The final monitor-centered data set contains a  record for each ambient monitor 

containing ambient PM2.5 measures, distance-weighted averages of power plant characteristics, and aggregated population 

demographics and Medicare health outcomes among all zip codes within a 6 mile radius. Figure E.2 depicts this 

linkage schematically.

While the monitor-centered linkage permits every power plant to contribute information to every monitoring location, 

it presents an added complication in defining the accountability question and the causal effect of interest. Monitors are, of 

course, not “treated” with scrubbers, which complicates definition of an intervention and subsequent potential outcomes. 

For the monitor-centered analysis, we take a monitoring location to be “treated” with a scrubber if the distance-weighted 

average of SO2 scrubber installation statuses among all power plants is larger than 0.5 and "untreated" if the distance-

weighted average of SO2 scrubber installation statuses is less than 0.05. The causal effects are then defined as the effect 

of having distance-weighted average of scrubber presence of greater than 0.50 versus having a distance-weighted average of 

scrubber presence of less than 0.05. The monitor-centered data set is described in Table E.2.

HEI Research Report 187 Appendices A-E (online only)



32

(a) Weight Power Plants to Monitors by
Distance

(b) Link Medicare and Census to Monitors

Figure E.2: Monitor-centered linkage

Table E.1: Summary statistics for covariates and outcomes from the power plant-centered dataset

Plants with scrubbers (n=39)
Mean SD

Plants w/o scrubbers (n=198)
Mean SD

Total Beneficiary 38728.90 63939.70 39935.70 87548.60
Person-Year 27768.10 45070.30 33462.50 68771.50

All CVD 2825.40 4779.60 3567.40 7271.60
Respiratory 872.40 1308.00 1105.90 2105.20
Total Death 2484.70 4166.00 2525.80 5082.50

11.60 4.10 13.30 2.50
14.00 4.60 13.90 3.40

717.40 53.90 741.30 24.10
0.90 0.20 0.80 0.40
0.20 0.40 0.20 0.40
1.50 1.10 0.80 0.60

436.60 335.80 289.10 269.70

PM2.5
Temperature

Barometric Pressure
NOx Scrub Indicator

Phase 1 Indicator
Coal Sulfur Content

NOx (tons)
SO2 (tons) 383.00 392.20 947.50 919.50
CO2 (tons) 253869.10 176101.10 171834.60 140856.80

0.30 0.00 0.30 0.00
75.00 1.30 75.20 0.80

0.60 0.10 0.60 0.00
11.50 13.90 13.30 13.40
61.50 5.20 62.50 4.00
75.80 25.80 73.00 27.60

Smoking Rate
Mean Age

Female Rate
Black Rate

Age18-64 Rate
Urban Rate

No College Rate 52.00 11.90 51.50 10.90
Median Household Income 38702.60 10464.80 39450.70 10462.20

English Only Rate 87.50 14.10 91.00 8.00
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Table E.2: Summary statistics for covariates and outcomes from the monitor-centered data set

Plants with scrubbers (n=97)
Mean SD

Plants w/o scrubbers (n=256)
Mean SD

Total Beneficiary 19306.80 18727.10 13990.20 12805.90
Person-Year 13585.00 12259.00 11818.40 10679.40

All CVD 1396.10 1363.10 1250.30 1181.20
Respiratory 414.20 348.20 400.50 352.10
Total Death 1235.00 1208.30 891.20 812.40

10.90 3.80 13.80 2.60
15.00 5.30 13.40 3.10

724.90 48.50 744.20 14.70
0.90 0.10 0.70 0.40
0.20 0.30 0.20 0.30
1.40 0.80 0.80 0.50

417.00 182.60 199.60 160.20

PM2.5
Temperature 

Barometric Pressure 
NOx Scrub Indicator 

Phase1 Indicator 
Coal Sulfur Content 

NOx (tons)
SO2 (tons) 539.30 358.40 691.90 585.40

CO2 (tons) 239852.90 103860.90 124332.20 90499.50
0.30 0.00 0.30 0.00

75.30 1.10 75.30 0.90
0.60 0.00 0.60 0.00
9.90 13.30 14.60 16.60

61.40 4.20 62.80 4.70
84.70 22.90 79.60 28.90

Smoking Rate
Mean Age

Female Rate
Black Rate

Age18-64 Rate
Urban Rate

No College Rate 49.10 11.20 49.90 12.40
Median Household Income 39514.90 8996.30 41530.50 12973.40

English Only Rate 85.50 14.90 89.70 8.90
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