HE

ADDITIONAL MATERIALS AVAILABLE ON THE HEI WEBSITE

Research Report 198

Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants

Surratt et al.

Appendix A. Quality Assurance and Calibrations for DTT Assay Appendix B. Additional Characterization Results of Exposure Conditions Appendix C. Additional Results from the DTT Assay Appendix D. Cytotoxicity Measurements of Exposure Conditions Appendix E. Genes Analyzed and Additional Gene Expression Data for Exposures

These Additional Materials were not formatted or edited by HEI. This document was part of the HEI Review Committee's review process.

Correspondence may be addressed to Dr. Jason D. Surratt, 135 Dauer Drive, 164 Rosenau Hall, Campus Box #7431; e-mail: surratt@unc.edu.

Although this document was produced with partial funding by the United States Environmental Protection Agency under Assistance Award CR-83467701 to the Health Effects Institute, it has not been subjected to the Agency's peer and administrative review and therefore may not necessarily reflect the views of the Agency, and no official endorsement by it should be inferred. The contents of this document also have not been reviewed by private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views or policies of these parties, and no endorsement by them should be inferred.

© 2019 Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110-1817

Appendix A

Quality assurance and calibrations for DTT Assay

Figure A.1. To test if there are significant differences regarding the order of solution additions under our experimental conditions, we used 1,4-NQ standards to test this order when using the DTT assay. We tested this with the 1,4-NQ standards when adding buffer, then DTT, and then samples versus when adding buffer, then sample, then DTT. No significant difference was observed likely due to agents (solutions) made fresh each time the DTT assay was conducted and also because agents were added within a few minutes in order to prevent DTT from being oxidized in air.

Figure A.2. Calibration curves for the measured absorbance versus (A) nmol of DTT consumed and (B) various amount of 1,4-NQ reacted with 25 nmol DTT.

Figure A.3. DMSO consuming DTT was negligible up to a spiking volume of 30 μ L. However, with a larger spiking volume (i.e., 50 μ L), a slightly decreasing absorbance at 412 nm (by 2%) was observed.

Figure A.4. To examine the effects of aerosol acidity and the presence of Mg^{2+} on DTT responses, H_2SO_4 and $MgSO_4$ aerosols were atomized separately into the chamber and collected filter samples (n=3) to compare with the responses from acidified sulfate aerosols (1:1 MgSO₄:H₂SO₄). No significant difference was observed compared to the blank filter samples.

APPENDIX B

Figure B.1. (a) GC/EI-MS total ion chromatograms (TICs) and (b) UPLC/ESI-HR-QTOFMS base peak chromatograms (BPCs) from a (1) dark control chamber experiment, (2) isoprenederived SOA exposure chamber experiment, and (3) PM_{2.5} sample collected from Yorkville, GA during summer 2010.

Figure B.2. Time profiles of measured aerosol mass concentrations during the reactive uptake of 166 (A) *trans*-β-IEPOX, and (B) MAE by acidified sulfate aerosols in chamber experiments.

Figure B.3. GC/MS total ion current chromatograms (TICs) of TMS-derivatized particle-phase reaction products from reactive uptake of (A) *trans*- β -IEPOX and (B) MAE onto acidified sulfate seed aerosol in chamber experiments, and (C) PM_{2.5} field sample from Yorkville, GA. Mixtures of isomeric SOA products are grouped as one peak.

Figure B.4. UPLC/ESI-HR-QTOFMS total ion current chromatograms (TICs) of particle-phase 176 reaction products from reactive uptake of (A) *trans*- β -IEPOX and (B) MAE onto acidified 177 sulfate seed aerosol in chamber experiments, and (C) a PM_{2.5} field sample from Yorkville, GA. 178

Figure B.5. Experimental time profile of measured aerosol mass concentrations during ISOPOOH oxidation experiments.

Appendix C

Additional Results from the DTT Assay

Table C.1. DTT activity of PM constituents measured in this study. Results in this study are expressed as mean \pm standard error of the mean (SEM), n=3 for each sample.

Samula	DTT activity
Sample	(nmol of DTT consumed/min/µg sample)
Pure Compounds	
IEPOX	7.00±1.39 ×10 ⁻⁵
2-MT	4.44±0.92 ×10 ⁻⁵
2-MT_OS	5.77±2.07 ×10 ⁻⁵
MAE	9.84±0.97 ×10 ⁻⁵
2-MG	2.51±0.37 ×10 ⁻⁴
2-MG_OS	7.58±1.14 ×10 ⁻⁵
ISOPOOH	4.90±2.20 ×10 ⁻¹
Outdoor Chamber Samples	
Isoprene SOA	2.10±0.22 ×10 ⁻³
MACR SOA	2.30±0.27 ×10 ⁻³
Indoor Chamber Samples	
IEPOX-derived SOA	1.79±0.16 ×10 ⁻³
MAE-derived SOA	3.13±0.30 ×10 ⁻³

Table C.2. Means Comparison (Fisher Test) of Isoprene SOA Types

Comparisons of Aerosol Type	MeanDiff	SEM	t Value	Prob	Alpha	Sig	LCL	UCL
MACR SOA vs. isoprene SOA	1.64E-04	2.58E-04	0.6381	0.5413	0.05	0	-4.30E-04	7.59E-04
IEPOX SOA vs. isoprene SOA	-4.93E-04	2.58E-04	-1.9133	0.0921	0.05	0	-1.09E-03	1.01E-04
IEPOX SOA vs. MACR SOA	-6.58E-04	2.58E-04	-2.5514	0.0341	0.05	1	-1.25E-03	-6.32E-05
MAE SOA vs. isoprene SOA	4.30E-04	2.58E-04	1.6694	0.1336	0.05	0	-1.64E-04	1.02E-03
MAE SOA vs. MACR SOA	2.66E-04	2.58E-04	1.0313	0.3326	0.05	0	-3.29E-04	8.60E-04
MAE SOA vs. IEPOX SOA	9.23E-04	2.58E-04	3.5827	0.0072	0.05	1	3.29E-04	1.52E-03

Figure C.1 NIOG of isoprene-derived epoxides (IEPOX and MAE), their hydrolysis products (2-MT and 2-MG), their organosulfate derivatives (2-MT_OS and 2-MG_OS), and the isoprene-derived hydroxyhydroperoxide (ISOPOOH) that are known to contribute to ambient SOA.

APPENDIX D

Figure D.1. LDH release for (a) clean air controls, (b) EAVES exposures, normalized to incubator control, and (c) resuspension exposures, normalized to KBM only control. **p<0.005 and ***p<0.0005.

Figure D.2. Cytotoxicity for each exposure type for the ISOPOOH-derived SOA system represented as % cell death determined by LDH assay.

Appendix E

Full Lists of Genes Analyzed and Additional Gene Expression Data of Exposures

Table E.1. Gene symbols and full names of 84 oxidative stress-associated genes and housekeeping genes included in RT² Profiler[™] PCR Array Human Oxidative Stress Pathway Plus (PAHS-065Y).

#	Gene Symbol	Full Name
1	ALB	Albumin
2	ALOX12	Arachidonate 12-lipoxygenase
3	AOXI	Aldehyde oxidase 1
4	APOE	Apolipoprotein E
5	ATOXI	ATX1 antioxidant protein 1 homolog (yeast)
6	BNIP3	BCL2/adenovirus E1B 19kDa interacting protein 3
7	CAT	Catalase
8	CCL5	Chemokine (C-C motif) ligand 5
9	CCS	Copper chaperone for superoxide dismutase
10	СҮВВ	Cytochrome b-245, beta polypeptide
11	CYGB	Cytoglobin
12	DHCR24	24-dehydrocholesterol reductase
13	DUOX1	Dual oxidase 1
14	DUOX2	Dual oxidase 2
15	DUSP1	Dual specificity phosphatase 1
16	EPHX2	Epoxide hydrolase 2, cytoplasmic
17	EPX	Eosinophil peroxidase
18	FOXM1	Forkhead box M1
19	FTH1	Ferritin, heavy polypeptide 1
20	GCLC	Glutamate-cysteine ligase, catalytic subunit
21	GPX1	Glutathione peroxidase 1
22	GPX2	Glutathione peroxidase 2 (gastrointestinal)
23	GPX3	Glutathione peroxidase 3 (plasma)
24	GPX4	Glutathione peroxidase 4 (phospholipid
		hydroperoxidase)
25	GPX5	Glutathione peroxidase 5 (epididymal androgen-related
		protein)
26	GSR	Glutathione reductase
27	GSS	Glutathione synthetase
28	GSTP1	Glutathione S-transferase pi 1
29	GSTZ1	Glutathione transferase zeta 1
30	HSPA1A	Heat shock 70kDa protein 1A
31	KRT1	Keratin 1

32	LPO	Lactoperoxidase
33	MB	Myoglobin
34	MBL2	Mannose-binding lectin (protein C) 2, soluble
35	MPO	Myeloperoxidase
36	MPV17	MpV17 mitochondrial inner membrane protein
37	MSRA	Methionine sulfoxide reductase A
38	MT3	Metallothionein 3
39	NCF1	Neutrophil cytosolic factor 1
40	NCF2	Neutrophil cytosolic factor 2
41	NOS2	Nitric oxide synthase 2, inducible
42	NOX4	NADPH oxidase 4
43	NOX5	NADPH oxidase, EF-hand calcium binding domain 5
44	NUDTI	Nudix (nucleoside diphosphate linked moiety X)-type
		motif 1
45	PDLIM1	PDZ and LIM domain 1
46	PRDX1	Peroxiredoxin 1
47	PRDX2	Peroxiredoxin 2
48	PRDX3	Peroxiredoxin 3
49	PRDX4	Peroxiredoxin 4
50	PRDX5	Peroxiredoxin 5
51	PRDX6	Peroxiredoxin 6
52	PRNP	Prion protein
53	PTGS1	Prostaglandin-endoperoxide synthase 1 (prostaglandin
		G/H synthase and cyclooxygenase)
54	PTGS2	Prostaglandin-endoperoxide synthase 2 (prostaglandin
		G/H synthase and cyclooxygenase)
55	RNF7	Ring finger protein 7
56	VIMP	Selenoprotein S
57	SEPP1	Selenoprotein P, plasma, 1
58	SFTPD	Surfactant protein D
59	SIRT2	Sirtuin 2
60	SOD1	Superoxide dismutase 1, soluble
61	SOD2	Superoxide dismutase 2, mitochondrial
62	SOD3	Superoxide dismutase 3, extracellular
63	SQSTMI	Sequestosome 1
64	SRXNI	Sulfiredoxin I
65	TPO	Thyroid peroxidase
66	TTN	Titin
67	TXNRD2	Thioredoxin reductase 2
68	UCP2	Uncoupling protein 2 (mitochondrial, proton carrier)
69	AKRIC2	Aldo-keto reductase family 1, member C2 (dihydrodiol
		dehydrogenase 2; bile acid binding protein; 3-alpha
	D (C)	nyaroxysteroid denydrogenase, type III)
70	BAG2	BCL2-associated athanogene 2
71	FHL2	Four and a half LIM domains 2

72	GCLM	Glutamate-cysteine ligase, modifier subunit
73	GLA	Galactosidase, alpha
74	HMOX1	Heme oxygenase (decycling) 1
75	HSP90AA1	Heat shock protein 90kDa alpha (cytosolic), class A
		member 1
76	LHPP	Phospholysine phosphohistidine inorganic
		pyrophosphate phosphatase
77	NCOA7	Nuclear receptor coactivator 7
78	NQO1	NAD(P)H dehydrogenase, quinone 1
79	PTGR1	Prostaglandin reductase 1
80		Solute carrier family 7 (anionic amino acid transporter
	SLC7A11	light chain, xc- system), member 11
81	SPINK1	Serine peptidase inhibitor, Kazal type 1
82	TRAPPC6A	Trafficking protein particle complex 6A
83	TXN	Thioredoxin
84	TXNRD1	Thioredoxin reductase 1
	ACTB	Actin, beta
Housekeeping	B2M	Beta-2-microglobulin
	GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
Genes	HPRT1	Hypoxanthine phosphoribosyltransferase 1
	RPLP0	Ribosomal protein, large, P0

#	Gene Symbol	Full Name
1	AGER	advanced glycosylation end product-specific receptor
2	ALOX12	arachidonate 12-lipoxygenase
3	ALOX15	arachidonate 15-lipoxygenase
4	ALOX5	arachidonate 5-lipoxygenase
5	AREG	amphiregulin
6	ARG1	arginase, liver
7	ATF2	activating transcription factor 2
8	BCL2L1	BCL2-like 1
9	BCL6	B-cell CLL/lymphoma 6
10	BIRC2	baculoviral IAP repeat containing 2
11	CIQA	complement component 1, q subcomponent, A chain
12	CIQB	complement component 1, q subcomponent, B chain
13	CIR	complement component 1, r subcomponent
14	CIS	complement component 1, s subcomponent
15	<i>C2</i>	complement component 2
16	C3	complement component 3
17	C3AR1	complement component 3a receptor 1
18	C4A	complement component 4A (Rodgers blood group)
19	C5	complement component 5
20	<i>C6</i>	complement component 6
21	<i>C7</i>	complement component 7
22	C8A	complement component 8, alpha polypeptide
23	C8B	complement component 8, beta polypeptide
24	С9	complement component 9
25	CCL11	chemokine (C-C motif) ligand 11
26	CCL13	chemokine (C-C motif) ligand 13
27	CCL16	chemokine (C-C motif) ligand 16
28	CCL17	chemokine (C-C motif) ligand 17
29	CCL19	chemokine (C-C motif) ligand 19
30	CCL2	chemokine (C-C motif) ligand 2
31	CCL20	chemokine (C-C motif) ligand 20
32	CCL21	chemokine (C-C motif) ligand 21
33	CCL22	chemokine (C-C motif) ligand 22
34	CCL23	chemokine (C-C motif) ligand 23
35	CCL24	chemokine (C-C motif) ligand 24
36	CCL3	chemokine (C-C motif) ligand 3

 Table E.2. Gene symbols and full names of 249 Inflammation associated genes and housekeeping genes included in nCounter® GX Human Inflammation Kit.

37	CCL4	chemokine (C-C motif) ligand 4
38	CCL5	chemokine (C-C motif) ligand 5
39	CCL7	chemokine (C-C motif) ligand 7
40	CCL8	chemokine (C-C motif) ligand 8
41	CCR1	chemokine (C-C motif) receptor 1
42	CCR2	chemokine (C-C motif) receptor 2
43	CCR3	chemokine (C-C motif) receptor 3
44	CCR4	chemokine (C-C motif) receptor 4
45	CCR7	chemokine (C-C motif) receptor 7
46	CD163	CD163 molecule
47	CD4	CD4 molecule
48	CD40	CD40 molecule, TNF receptor superfamily member 5
49	CD40LG	CD40 ligand
		CD55 molecule, decay accelerating factor for complement
50	CD55	(Cromer blood group)
51	CD86	CD86 molecule
52	CDC42	cell division cycle 42 (GTP binding protein, 25kDa)
53	CEBPB	CCAAT/enhancer binding protein (C/EBP), beta
54	CFB	complement factor B
55	CFD	complement factor D (adipsin)
56	CFL1	cofilin 1 (non-muscle)
57	CREB1	cAMP responsive element binding protein 1
58	CRP	C-reactive protein, pentraxin-related
59	CSF1	colony stimulating factor 1 (macrophage)
60	CSF2	colony stimulating factor 2 (granulocyte-macrophage)
61	CSF3	colony stimulating factor 3 (granulocyte)
62	CXCL1	chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha)
63	CXCL10	chemokine (C-X-C motif) ligand 10
64	CXCL2	chemokine (C-X-C motif) ligand 2
65	CXCL3	chemokine (C-X-C motif) ligand 3
66	CXCL5	chemokine (C-X-C motif) ligand 5
		chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic
67	CXCL6	protein 2)
68	CXCL9	chemokine (C-X-C motif) ligand 9
69	CXCR1	chemokine (C-X-C motif) receptor 1
70	CXCR2	chemokine (C-X-C motif) receptor 2
71	CXCR4	chemokine (C-X-C motif) receptor 4
72	CYSLTR1	cysteinyl leukotriene receptor 1
73	CYSLTR2	cysteinyl leukotriene receptor 2

74	DAXX	death-domain associated protein
75	DDIT3	DNA-damage-inducible transcript 3
76	DEFA1	defensin, alpha 1
77	ELK1	ELK1, member of ETS oncogene family
78	FASLG	Fas ligand (TNF superfamily, member 6)
		fms-related tyrosine kinase 1 (vascular endothelial growth
79	FLT1	factor/vascular permeability factor receptor)
80	FOS	FBJ murine osteosarcoma viral oncogene homolog
81	FXYD2	FXYD domain containing ion transport regulator 2
82	GNAQ	guanine nucleotide binding protein (G protein), q polypeptide
83	GNAS	GNAS complex locus
84	GNB1	guanine nucleotide binding protein (G protein), beta polypeptide 1
		guanine nucleotide binding protein (G protein), gamma
85	GNGT1	transducing activity polypeptide 1
86	GRB2	growth factor receptor-bound protein 2
87	HDAC4	histone deacetylase 4
		hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix
88	HIF1A	transcription factor)
89	HLA-DRA	major histocompatibility complex, class II, DR alpha
90	HLA-DRB1	major histocompatibility complex, class II, DR beta 1
91	HMGB1	high mobility group box 1
92	HMGB2	high mobility group box 2
93	HMGN1	high mobility group nucleosome binding domain 1
94	HRAS	v-Ha-ras Harvey rat sarcoma viral oncogene homolog
95	HSH2D	hematopoietic SH2 domain containing
96	HSPB1	heat shock 27kDa protein 1
97	HSPB2	heat shock 27kDa protein 2
98	IFI44	interferon-induced protein 44
99	IFIT1	interferon-induced protein with tetratricopeptide repeats 1
100	IFIT2	interferon-induced protein with tetratricopeptide repeats 2
101	IFIT3	interferon-induced protein with tetratricopeptide repeats 3
102	IFNA1	interferon, alpha 1
103	IFNB1	interferon, beta 1, fibroblast
104	IFNG	interferon, gamma
105	IL10	interleukin 10
106	IL10RB	interleukin 10 receptor, beta
107	IL11	interleukin 11
		interleukin 12A (natural killer cell stimulatory factor 1, cytotoxic
108	IL12A	lymphocyte maturation factor 1, p35)
109	IL12B	interleukin 12B (natural killer cell stimulatory factor 2, cytotoxic

		lymphocyte maturation factor 2, p40)
110	IL13	interleukin 13
111	IL15	interleukin 15
112	IL17A	interleukin 17A
113	IL18	interleukin 18 (interferon-gamma-inducing factor)
114	IL18RAP	interleukin 18 receptor accessory protein
115	IL1A	interleukin 1, alpha
116	IL1B	interleukin 1, beta
117	IL1R1	interleukin 1 receptor, type I
118	ILIRAP	interleukin 1 receptor accessory protein
119	ILIRN	interleukin 1 receptor antagonist
120	IL2	interleukin 2
121	IL21	interleukin 21
122	IL22	interleukin 22
123	IL22RA2	interleukin 22 receptor, alpha 2
124	IL23A	interleukin 23, alpha subunit p19
125	IL23R	interleukin 23 receptor
126	IL3	interleukin 3 (colony-stimulating factor, multiple)
127	IL4	interleukin 4
128	IL5	interleukin 5 (colony-stimulating factor, eosinophil)
129	IL6	interleukin 6 (interferon, beta 2)
130	IL6R	interleukin 6 receptor
131	IL7	interleukin 7
132	IL8	interleukin 8
133	IL9	interleukin 9
134	IRF1	interferon regulatory factor 1
135	IRF3	interferon regulatory factor 3
136	IRF5	interferon regulatory factor 5
137	IRF7	interferon regulatory factor 7
		integrin, beta 2 (complement component 3 receptor 3 and 4
138	ITGB2	subunit)
139	JUN	jun proto-oncogene
140	KEAP1	kelch-like ECH-associated protein 1
141	KNG1	kininogen 1
142	LIMK1	LIM domain kinase 1
143	LTA	lymphotoxin alpha (TNF superfamily, member 1)
144	LTB	lymphotoxin beta (TNF superfamily, member 3)
145	LTB4R	leukotriene B4 receptor
146	LTB4R2	leukotriene B4 receptor 2
147	LY96	lymphocyte antigen 96

		v-maf musculoaponeurotic fibrosarcoma oncogene homolog F
148	MAFF	(avian)
		v-maf musculoaponeurotic fibrosarcoma oncogene homolog G
149	MAFG	(avian)
1.50		v-maf musculoaponeurotic fibrosarcoma oncogene homolog K
150	MAFK	(avian)
151	MAP2K1	mitogen-activated protein kinase kinase 1
152	MAP2K4	mitogen-activated protein kinase kinase 4
153	MAP2K6	mitogen-activated protein kinase kinase 6
154	MAP3K1	mitogen-activated protein kinase kinase kinase 1, E3 ubiquitin protein ligase
155	MAP3K5	mitogen-activated protein kinase kinase kinase 5
156	MAP3K7	mitogen-activated protein kinase kinase kinase 7
157	MAP3K9	mitogen-activated protein kinase kinase kinase 9
158	MAPK1	mitogen-activated protein kinase 1
159	MAPK14	mitogen-activated protein kinase 14
160	MAPK3	mitogen-activated protein kinase 3
161	MAPK8	mitogen-activated protein kinase 8
162	MAPKAPK2	mitogen-activated protein kinase-activated protein kinase 2
163	MAPKAPK5	mitogen-activated protein kinase-activated protein kinase 5
102		mannan-binding lectin serine peptidase 1 (C4/C2 activating
164	MASP1	component of Ra-reactive factor)
165	MASP2	mannan-binding lectin serine peptidase 2
166	MAX	MYC associated factor X
167	MBL2	mannose-binding lectin (protein C) 2, soluble
168	MEF2A	myocyte enhancer factor 2A
	MEF2BNB-	
169	MEF2B	MEF2BNB-MEF2B readthrough
170	MEF2C	myocyte enhancer factor 2C
171	MEF2D	myocyte enhancer factor 2D
172	MKNK1	MAP kinase interacting serine/threonine kinase 1
173	MMP3	matrix metallopeptidase 3 (stromelysin 1, progelatinase)
		matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa
174	MMP9	type IV collagenase)
175	MRC1	mannose receptor, C type 1
1		myxovirus (influenza virus) resistance 1, interferon-inducible
176	MXI	protein p/8 (mouse)
177	MX2	myxovirus (influenza virus) resistance 2 (mouse)
178	MYC	v-myc myelocytomatosis viral oncogene homolog (avian)
179	MYD88	myeloid differentiation primary response gene (88)
180	MYL2	myosin, light chain 2, regulatory, cardiac, slow

101		nuclear factor of activated T-cells, cytoplasmic, calcineurin-
181	NFAIC3	dependent 3
182	NFE2L2	nuclear factor (erythroid-derived 2)-like 2
183	NFKB1	1
184	NLRP3	NLR family, pyrin domain containing 3
185	NOD1	nucleotide-binding oligomerization domain containing 1
186	NOD2	nucleotide-binding oligomerization domain containing 2
187	NOS2	nitric oxide synthase 2, inducible
188	NOX1	NADPH oxidase 1
189	NR3C1	nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)
190	OAS2	2'-5'-oligoadenylate synthetase 2, 69/71kDa
191	OASL	2'-5'-oligoadenylate synthetase-like
192	OXER1	oxoeicosanoid (OXE) receptor 1
193	PDGFA	platelet-derived growth factor alpha polypeptide
194	PIK3C2G	phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 gamma
195	PLA2G4A	phospholipase A2, group IVA (cytosolic, calcium-dependent)
196	PLCB1	phospholipase C, beta 1 (phosphoinositide-specific)
197	PPP1R12B	protein phosphatase 1, regulatory subunit 12B
198	PRKCA	protein kinase C, alpha
199	PRKCB	protein kinase C, beta
200	PTGDR2	prostaglandin D2 receptor 2
201	PTGER1	prostaglandin E receptor 1 (subtype EP1), 42kDa
202	PTGER2	prostaglandin E receptor 2 (subtype EP2), 53kDa
203	PTGER3	prostaglandin E receptor 3 (subtype EP3)
204	PTGER4	prostaglandin E receptor 4 (subtype EP4)
205	PTGFR	prostaglandin F receptor (FP)
206	PTGIR	prostaglandin I2 (prostacyclin) receptor (IP)
207	PTGS1	prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)
208	PTGS2	prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)
209	PTK2	PTK2 protein tyrosine kinase 2
		ras-related C3 botulinum toxin substrate 1 (rho family, small GTP
210	RAC1	binding protein Rac1)
211	RAF1	v-raf-1 murine leukemia viral oncogene homolog 1
212	RAPGEF2	Rap guanine nucleotide exchange factor (GEF) 2
213	RELA	v-rel reticuloendotheliosis viral oncogene homolog A (avian)
214	RELB	v-rel reticuloendotheliosis viral oncogene homolog B

215	RHOA	ras homolog family member A
216	RIPK1	receptor (TNFRSF)-interacting serine-threonine kinase 1
217	RIPK2	receptor-interacting serine-threonine kinase 2
218	ROCK2	Rho-associated, coiled-coil containing protein kinase 2
219	RPS6KA5	ribosomal protein S6 kinase, 90kDa, polypeptide 5
220	SHC1	SHC (Src homology 2 domain containing) transforming protein 1
221	SMAD7	SMAD family member 7
222	STATI	signal transducer and activator of transcription 1, 91kDa
223	STAT2	signal transducer and activator of transcription 2, 113kDa
		signal transducer and activator of transcription 3 (acute-phase
224	STAT3	response factor)
225	TBXA2R	thromboxane A2 receptor
226	TCF4	transcription factor 4
227	TGFB1	transforming growth factor, beta 1
228	TGFB2	transforming growth factor, beta 2
229	TGFB3	transforming growth factor, beta 3
230	TGFBR1	transforming growth factor, beta receptor 1
231	TLR1	toll-like receptor 1
232	TLR2	toll-like receptor 2
233	TLR3	toll-like receptor 3
234	TLR4	toll-like receptor 4
235	TLR5	toll-like receptor 5
236	TLR6	toll-like receptor 6
237	TLR7	toll-like receptor 7
238	TLR8	toll-like receptor 8
239	TLR9	toll-like receptor 9
240	TNF	tumor necrosis factor
241	TNFAIP3	tumor necrosis factor, alpha-induced protein 3
242	TNFSF14	tumor necrosis factor (ligand) superfamily, member 14
243	TOLLIP	toll interacting protein
244	TRADD	TNFRSF1A-associated via death domain
245	TRAF2	TNF receptor-associated factor 2
246	TREM2	triggering receptor expressed on myeloid cells 2
247	TSLP	thymic stromal lymphopoietin
248	TWIST2	twist homolog 2 (Drosophila)
249	TYROBP	TYRO protein tyrosine kinase binding protein
T , 1	CLTC	clathrin, heavy chain (Hc)
Internal Reference	GAPDH	glyceraldehyde-3-phosphate dehydrogenase
Genes	GUSB	glucuronidase, beta
	HPRT1	hypoxanthine phosphoribosyltransferase 1

PGK1	phosphoglycerate kinase 1
TUBB	tubulin, beta class I

#	pathway name	set size	candidates contained	members_input_overlap	p- value	q- value	pathway source
1	Photodynamic therapy- induced NFE2L2 (NRF2) survival signaling	23	6 (26.1%)	GCLM; FOS; HMOX1; JUN; GCLC; SRXN1	1.30E- 12	2.96E- 10	Wikipathways
2	Oxidative Stress	30	6 (20.0%)	FOS; HMOX1; GCLC; CAT; NOX4; TXNRD1	7.58E- 12	8.64E- 10	Wikipathways
3	NRF2 pathway	142	8 (5.6%)	SQSTM1; GCLM; HMOX1; GCLC; HSPA1A; MAFG; MAFF; TXNRD1	5.77E- 11	4.39E- 09	Wikipathways
4	oxidative stress induced gene expression via nrf2	19	5 (26.3%)	JUN; FOS; HMOX1; MAFF; MAFG	1.12E- 10	6.36E- 09	BioCarta
5	Nuclear Receptors Meta-Pathway	316	9 (2.8%)	SQSTM1; GCLM; JUN; HMOX1; GCLC; HSPA1A; TXNRD1; MAFF; MAFG	1.26E- 09	5.74E- 08	Wikipathways
6	Tacrolimus/Cyclosporine Pathway, Pharmacodynamics	44	4 (9.1%)	FOS; JUN; MAFF; MAFG	8.88E- 07	3.38E- 05	PharmGKB
7	Transcriptional activation by NRF2	15	3 (20.0%)	GCLM; HMOX1; GCLC	2.05E- 06	5.83E- 05	Wikipathways
8	Quercetin and Nf-kB- AP-1 Induced Cell Apoptosis	15	3 (20.0%)	FOS; JUN; MAFG	2.05E- 06	5.83E- 05	Wikipathways
9	Cellular responses to stress	393	7 (1.8%)	BAG2; FOS; JUN; CAT; HSPA1A; NOX4; TXNRD1	2.91E- 06	7.37E- 05	Reactome
10	glutathione biosynthesis	3	2 (66.7%)	GCLM; GCLC	8.65E- 06	1.97E- 04	HumanCyc
11	MAPK targets/ Nuclear events mediated by MAP kinases	31	3 (9.7%)	MEF2C; JUN; FOS	1.99E- 05	4.12E- 04	Reactome
12	Detoxification of Reactive Oxygen Species	36	3 (8.6%)	TXNRD1; NOX4; CAT	2.88E- 05	5.05E- 04	Reactome
13	anglotensin il mediated activation of jnk pathway via pyk2 dependent signaling	35	3 (8.6%)	MEF2C; JUN; FOS	2.88E- 05	5.05E- 04	BioCarta
14	Selenium Metabolism and Selenoproteins	38	3 (7.9%)	FOS; JUN; TXNRD1	3.70E- 05	6.02E- 04	Wikipathways
15	Glutathione conjugation	40	3 (7.7%)	GCLM; GSTZ1; GCLC	4.00E- 05	6.08E- 04	Reactome
16	γ-glutamyl cycle	6	2 (33.3%)	GCLM; GCLC	4.31E- 05	6.14E- 04	HumanCyc
17	tsp-1 induced apoptosis in microvascular	7	2 (28.6%)	JUN; FOS	6.03E- 05	7.63E- 04	BioCarta

Table E.3. Pathways associated with isoprene SOA exposure.

endothelial cell

	Oxidative Stress				6 03F-	7 63E-	
18	Regulatory Pathway (Erythrocyte)	7	2 (28.6%)	CAT; TXNRD1	0.03E- 05	7.03E- 04	PharmGKB
19	IL6-mediated signaling events Brain-Derived	48	3 (6.2%)	IL6R; JUN; FOS	7.50E- 05	9.00E- 04	PID
20	Neurotrophic Factor (BDNF) signaling	144	4 (2.8%)	MEF2C; SQSTM1; JUN; FOS	1.00E- 04	1.02E- 03	Wikipathways
21	Beta-mercaptolactate- cysteine disulfiduria	9	2 (22.2%)	GCLM; GCLC	1.03E- 04	1.02E- 03	SMPDB
22	Cysteine Metabolism	9	2 (22.2%)	GCLM; GCLC	1.03E- 04	1.02E- 03	SMPDB
23	Cystinosis, ocular nonnephropathic BANKI-BANK (Becentor	9	2 (22.2%)	GCLM; GCLC	1.03E- 04	1.02E- 03	SMPDB
24	activator of NFKB (ligand)) Signaling Pathway	55	3 (5.5%)	SQSTM1; JUN; FOS	1.13E- 04	1.07E- 03	Wikipathways
25	mapkinase signaling pathway	57	3 (5.3%)	MEF2C; JUN; FOS	1.26E- 04	1.08E- 03	BioCarta
26	Activation of the AP-1 family of transcription factors	10	2 (20.0%)	JUN; FOS	1.29E- 04	1.08E- 03	Reactome
27	Gamma-glutamyl- transpeptidase deficiency	11	2 (18.2%)	GCLM; GCLC	1.57E- 04	1.08E- 03	SMPDB
28	5-oxoprolinase deficiency	11	2 (18.2%)	GCLM; GCLC	1.57E- 04	1.08E- 03	SMPDB
29	Gamma- Glutamyltransferase Deficiency	11	2 (18.2%)	GCLM; GCLC	1.57E- 04	1.08E- 03	SMPDB
30	Glutathione Metabolism	11	2 (18.2%)	GCLM; GCLC	1.57E- 04	1.08E- 03	SMPDB
31	Glutathione Synthetase Deficiency	11	2 (18.2%)	GCLM; GCLC	1.57E- 04	1.08E- 03	SMPDB
32	5-Oxoprolinuria	11	2 (18.2%)	GCLM; GCLC	1.57E- 04	1.08E- 03	SMPDB
33	pertussis toxin- insensitive ccr5 signaling in macrophage	11	2 (18.2%)	JUN; FOS	1.57E- 04	1.08E- 03	BioCarta
34	MAP kinase activation in TLR cascade	62	3 (4.8%)	MEF2C; JUN; FOS	1.61E- 04	1.08E- 03	Reactome
35	MAPK Signaling Pathway	168	4 (2.4%)	MEF2C; HSPA1A; JUN; FOS	1.82E- 04	1.18E- 03	Wikipathways

36	HIF-1-alpha transcription factor network	67	3 (4.5%)	HMOX1; JUN; FOS	2.03E- 04	1.29E- 03	PID
37	AP-1 transcription factor network	71	3 (4.2%)	MAFG; JUN; FOS	2.41E- 04	1.49E- 03	PID
38	Prostate Cancer	72	3 (4.2%)	JUN; SPINK1; FOS	2.52E- 04	1.51E- 03	Wikipathways
39	TRAF6 Mediated Induction of proinflammatory cytokines	74	3 (4.1%)	MEF2C; JUN; FOS	2.73E- 04	1.60E- 03	Reactome
40	Glutathione synthesis and recycling	16	2 (13.3%)	GCLM; GCLC	2.99E- 04	1.66E- 03	Reactome
41	sensation by the transcriptional regulator dream	15	2 (13.3%)	JUN; FOS	2.99E- 04	1.66E- 03	BioCarta
42	IL6	77	3 (3.9%)	IL6R; JUN; FOS	3.07E- 04	1.67E- 03	NetPath
43	Regulation of nuclear SMAD2/3 signaling	79	3 (3.8%)	MEF2C; JUN; FOS	3.19E- 04	1.69E- 03	PID
44	cadmium induces dna synthesis and proliferation in macrophages	16	2 (12.5%)	JUN; FOS	3.41E- 04	1.73E- 03	BioCarta
45	calcium signaling by hbx of hepatitis b virus	16	2 (12.5%)	JUN; FOS	3.41E- 04	1.73E- 03	BioCarta
46	MyD88 cascade initiated on plasma membrane	82	3 (3.7%)	MEF2C; JUN; FOS	3.69E- 04	1.75E- 03	Reactome
47	Toll Like Receptor 10 (TLR10) Cascade	82	3 (3.7%)	MEF2C; JUN; FOS	3.69E- 04	1.75E- 03	Reactome
48	Toll Like Receptor 5 (TLR5) Cascade	82	3 (3.7%)	MEF2C; JUN; FOS	3.69E- 04	1.75E- 03	Reactome
49	induction of NFkB and MAP kinases upon TLR7/8 or 9 activation	83	3 (3.6%)	MEF2C; JUN; FOS	3.83E- 04	1.78E- 03	Reactome
50	MyD88 dependent cascade initiated on endosome	85	3 (3.5%)	MEF2C; JUN; FOS	4.11E- 04	1.84E- 03	Reactome
51	Toll Like Receptor 7/8 (TLR7/8) Cascade	85	3 (3.5%)	MEF2C; JUN; FOS	4.11E- 04	1.84E- 03	Reactome
52	nerve growth factor pathway (ngf)	18	2 (11.1%)	JUN; FOS	4.34E- 04	1.87E- 03	BioCarta
53	mets attect on macrophage differentiation	18	2 (11.1%)	JUN; FOS	4.34E- 04	1.87E- 03	BioCarta
54	Toll Like Receptor 9	89	3 (3.4%)	MEF2C; JUN; FOS	4.70E-	1.98E-	Reactome

	(TLR9) Cascade				04	03	
55	Apoptosis Modulation and Signaling	92	3 (3.3%)	HSPA1A; JUN; FOS	5.18E- 04	1.98E- 03	Wikipathways
56	Apoptosis Modulation and Signaling	92	3 (3.3%)	HSPA1A; JUN; FOS	5.18E- 04	1.98E- 03	Wikipathways
57	Apoptosis Modulation and Signaling	92	3 (3.3%)	HSPA1A; JUN; FOS	5.18E- 04	1.98E- 03	Wikipathways
58	MyD88:Mal cascade initiated on plasma membrane	93	3 (3.2%)	MEF2C; JUN; FOS	5.35E- 04	1.98E- 03	Reactome
59	Toll Like Receptor TLR1:TLR2 Cascade	93	3 (3.2%)	MEF2C; JUN; FOS	5.35E- 04	1.98E- 03	Reactome
60	Toll Like Receptor TLR6:TLR2 Cascade	93	3 (3.2%)	MEF2C; JUN; FOS	5.35E- 04	1.98E- 03	Reactome
61	Toll Like Receptor 2 (TLR2) Cascade	93	3 (3.2%)	MEF2C; JUN; FOS	5.35E- 04	1.98E- 03	Reactome
62	Glutathione metabolism	20	2 (10.0%)	GCLM; GCLC	5.38E- 04	1.98E- 03	Wikipathways
63	igf-1 signaling pathway	21	2 (9.5%)	JUN; FOS	5.94E- 04	2.14E- 03	BioCarta
64	inhibition of cellular proliferation by gleevec	22	2 (9.1%)	JUN; FOS	6.53E- 04	2.14E- 03	BioCarta
65	PDGFR-alpha signaling pathway	22	2 (9.1%)	JUN; FOS	6.53E- 04	2.14E- 03	PID
66	Estrogen signaling pathway - Homo sapiens (human)	100	3 (3.0%)	HSPA1A; JUN; FOS	6.61E- 04	2.14E- 03	KEGG
67	TRIF-mediated TLR3/TLR4 signaling	101	3 (3.0%)	MEF2C; JUN; FOS	6.81E- 04	2.14E- 03	Reactome
68	MyD88-independent TLR3/TLR4 cascade	101	3 (3.0%)	MEF2C; JUN; FOS	6.81E- 04	2.14E- 03	Reactome
69	Toll Like Receptor 3 (TLR3) Cascade	101	3 (3.0%)	MEF2C; JUN; FOS	6.81E- 04	2.14E- 03	Reactome
70	2-Hydroxyglutric Aciduria (D And L Form)	23	2 (8.7%)	GCLM; GCLC	7.14E- 04	2.14E- 03	SMPDB
71	Homocarnosinosis	23	2 (8.7%)	GCLM; GCLC	7.14E- 04	2.14E- 03	SMPDB
72	Hyperinsulinism- Hyperammonemia Syndrome	23	2 (8.7%)	GCLM; GCLC	7.14E- 04	2.14E- 03	SMPDB
73	Succinic semialdehyde dehydrogenase deficiency	23	2 (8.7%)	GCLM; GCLC	7.14E- 04	2.14E- 03	SMPDB
74	4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency	23	2 (8.7%)	GCLM; GCLC	7.14E- 04	2.14E- 03	SMPDB

75	Glutamate Metabolism	23	2 (8.7%)	GCLM; GCLC	7.14E- 04	2.14E- 03	SMPDB
76	Estrogen signaling pathway Urea cycle and	23	2 (8.7%)	JUN; FOS	7.14E- 04	2.14E- 03	Wikipathways
77	metabolism of arginine, proline, glutamate, aspartate and asparagine	105	3 (2.9%)	GCLM; GSTZ1; GCLC	7.41E- 04	2.19E- 03	EHMN
78	EGF-Core	105	3 (2.9%)	MEF2C; JUN; FOS	7.62E- 04	2.20E- 03	Signalink
79	Senescence and Autophagy in Cancer Physiological and	105	3 (2.9%)	SQSTM1; JUN; IL6R	7.62E- 04	2.20E- 03	Wikipathways
80	Pathological Hypertrophy of the Heart	24	2 (8.3%)	JUN; FOS	7.78E- 04	2.21E- 03	Wikipathways
81	ErbB1 downstream signaling	107	3 (2.8%)	MEF2C; JUN; FOS	7.83E- 04	2.21E- 03	PID
82	Th17 cell differentiation - Homo sapiens (human)	107	3 (2.8%)	IL6R; JUN; FOS	8.05E- 04	2.24E- 03	KEGG
83	Phase II conjugation	112	3 (2.8%)	GCLM; GSTZ1; GCLC	8.27E- 04	2.27E- 03	Reactome
84	Disulfiram Action Pathway	25	2 (8.0%)	GSTZ1; CAT	8.45E- 04	2.27E- 03	SMPDB
85	tpo signaling pathway	25	2 (8.0%)	JUN; FOS	8.45E- 04	2.27E- 03	BioCarta
86	MAPK signaling pathway - Homo sapiens (human)	255	4 (1.6%)	MEF2C; HSPA1A; JUN; FOS	8.85E- 04	2.35E- 03	KEGG
87	Sulfur amino acid metabolism	27	2 (7.7%)	GCLM; GCLC	9.14E- 04	2.40E- 03	Reactome
88	S1P2 pathway	27	2 (7.4%)	JUN; FOS	9.86E- 04	2.53E- 03	PID
89	pdgf signaling pathway	27	2 (7.4%)	JUN; FOS	9.86E- 04	2.53E- 03	BioCarta
90	Activated TLR4 signalling	117	3 (2.6%)	MEF2C; JUN; FOS	1.04E- 03	2.64E- 03	Reactome
91	Glutamate Glutamine metabolism	28	2 (7.1%)	GCLM; GCLC	1.06E- 03	2.66E- 03	INOH
92	fc epsilon receptor i signaling in mast cells	29	2 (6.9%)	JUN; FOS	1.14E- 03	2.82E- 03	BioCarta
93	Calcium signaling in the CD4+ TCR pathway	30	2 (6.7%)	JUN; FOS	1.22E- 03	2.99E- 03	PID
94	Trans-sulfuration and one carbon metabolism	31	2 (6.5%)	GCLM; GCLC	1.30E- 03	3.16E- 03	Wikipathways
95	Toll Like Receptor 4 (TLR4) Cascade	128	3 (2.3%)	MEF2C; JUN; FOS	1.35E- 03	3.23E- 03	Reactome

96	IL12 signaling mediated by STAT4	32	2 (6.2%)	JUN; FOS	1.39E- 03	3.23E- 03	PID
97	Osteopontin-mediated events	32	2 (6.2%)	JUN; FOS	1.39E- 03	3.23E- 03	PID
98	bcr signaling pathway	32	2 (6.2%)	JUN; FOS	1.39E- 03	3.23E- 03	BioCarta
99	Osteoclast differentiation - Homo sapiens (human)	132	3 (2.3%)	SQSTM1; JUN; FOS	1.45E- 03	3.30E- 03	KEGG
100	role of egf receptor transactivation by gpcrs in cardiac hypertrophy	33	2 (6.1%)	JUN; FOS	1.47E- 03	3.30E- 03	BioCarta
101	Trk receptor signaling mediated by the MAPK pathway	33	2 (6.1%)	MEF2C; FOS	1.47E- 03	3.30E- 03	PID
102	TGF-beta Signaling Pathway	132	3 (2.3%)	MEF2C; JUN; FOS	1.48E- 03	3.30E- 03	Wikipathways
103	Signaling of Hepatocyte Growth Factor Receptor	34	2 (5.9%)	JUN; FOS	1.56E- 03	3.46E- 03	Wikipathways
104	Signaling mediated by p38-alpha and p38-beta	35	2 (5.7%)	MEF2C; JUN	1.66E- 03	3.63E- 03	PID
105	toll-like receptor pathway	36	2 (5.6%)	JUN; FOS	1.75E- 03	3.81E- 03	BioCarta
106	Regulation of toll-like receptor signaling pathway	143	3 (2.1%)	SQSTM1; JUN; FOS	1.86E- 03	4.00E- 03	Wikipathways
107	Validated transcriptional targets of AP1 family members Fra1 and Fra2	38	2 (5.3%)	HMOX1; JUN	1.95E- 03	4.12E- 03	PID
108	IL1-mediated signaling events	38	2 (5.3%)	SQSTM1; JUN	1.95E- 03	4.12E- 03	PID
109	signal transduction through il1r	39	2 (5.1%)	JUN; FOS	2.06E- 03	4.30E- 03	BioCarta
110	ErbB2/ErbB3 signaling events	40	2 (5.0%)	JUN; FOS	2.16E- 03	4.37E- 03	PID
111	Integrated Lung Cancer Pathway	40	2 (5.0%)	JUN; FOS	2.16E- 03	4.37E- 03	Wikipathways
112	IL-5 Signaling Pathway	40	2 (5.0%)	JUN; FOS	2.16E- 03	4.37E- 03	Wikipathways
113	Metabolism of amino acids and derivatives	328	4 (1.2%)	GCLM; GSTZ1; GCLC; TXNRD1	2.17E- 03	4.37E- 03	Reactome
114	Toll-Like Receptors Cascades	155	3 (1.9%)	MEF2C; JUN; FOS	2.34E- 03	4.64E- 03	Reactome
115	and Contraction	155	3 (1.9%)	JUN; MAFF; FOS	2.34E- 03	4.64E- 03	Wikipathways
116	IL-2 Signaling Pathway	42	2 (4.8%)	JUN; FOS	2.38E-	4.68E-	Wikipathways

					03	03	
117	Oxytocin signaling pathway - Homo sapiens	159	3 (1.9%)	MEF2C; JUN; FOS	2.47E- 03	4.81E- 03	KEGG
118	(human) FOXM1 transcription factor network	43	2 (4.7%)	HSPA1A; FOS	2.50E- 03	4.82E- 03	PID
119	Sudden Infant Death Syndrome (SIDS)	159	3 (1.9%)	MEF2C; JUN; IL6R	2.51E- 03	4.82E- 03	Wikipathways
120	EGF-EGFR Signaling Pathway	162	3 (1.9%)	MEF2C; JUN; FOS	2.65E- 03	5.04E- 03	Wikipathways
121	Cysteine and methionine metabolism - Homo sapiens (human)	45	2 (4.4%)	GCLM; GCLC	2.73E- 03	5.14E- 03	KEGG
122	FOXA1 transcription factor network	46	2 (4.3%)	JUN; FOS	2.85E- 03	5.33E- 03	PID
123	RhoA signaling pathway	47	2 (4.3%)	JUN; FOS	2.97E- 03	5.47E- 03	PID
124	Presenilin action in Notch and Wnt signaling	47	2 (4.3%)	JUN; FOS	2.97E- 03	5.47E- 03	PID
125	One carbon metabolism and related pathways	49	2 (4.1%)	GCLM; GCLC	3.23E- 03	5.80E- 03	Wikipathways
126	IL-3 Signaling Pathway	49	2 (4.1%)	JUN; FOS	3.23E- 03	5.80E- 03	Wikipathways
127	Calcineurin-regulated NFAT-dependent transcription in lymphocytes	49	2 (4.1%)	JUN; FOS	3.23E- 03	5.80E- 03	PID
128	TGF_beta_Receptor	176	3 (1.7%)	MEF2C; JUN; FOS	3.30E- 03	5.87E- 03	NetPath
129	Photodynamic therapy- induced AP-1 survival signaling.	50	2 (4.0%)	JUN; FOS	3.36E- 03	5.87E- 03	Wikipathways
130	Hepatitis C and Hepatocellular Carcinoma	50	2 (4.0%)	JUN; IL6R	3.36E- 03	5.87E- 03	Wikipathways
131	Immune System	1950	9 (0.5%)	SQSTM1; EPX; FOS; GLA; JUN; CAT; MEF2C; HSPA1A; IL6R	3.37E- 03	5.87E- 03	Reactome
132	Apoptosis-related network due to altered Notch3 in ovarian cancer	53	2 (3.8%)	SQSTM1; GCLC	3.77E- 03	6.36E- 03	Wikipathways
133	keratinocyte differentiation	53	2 (3.8%)	JUN; FOS	3.77E- 03	6.36E- 03	BioCarta
134	CD4 T cell receptor signaling-JNK cascade	53	2 (3.8%)	JUN; FOS	3.77E- 03	6.36E- 03	INOH

	mechanism of gene						
135	regulation by peroxisome proliferators via ppara	53	2 (3.8%)	HSPA1A; JUN	3.77E- 03	6.36E- 03	BioCarta
136	Glutathione metabolism - Homo sapiens (human)	54	2 (3.7%)	GCLM; GCLC	3.91E- 03	6.50E- 03	KEGG
137	IL2-mediated signaling events	54	2 (3.7%)	JUN; FOS	3.91E- 03	6.50E- 03	PID
138	Arginine Proline metabolism	55	2 (3.6%)	GCLM; GCLC	4.05E- 03	6.55E- 03	INOH
139	t cell receptor signaling pathway	55	2 (3.6%)	JUN; FOS	4.05E- 03	6.55E- 03	BioCarta
140	TGF-beta Receptor Signaling	55	2 (3.6%)	JUN; FOS	4.05E- 03	6.55E- 03	Wikipathways
141	IL-1 signaling pathway	55	2 (3.6%)	SQSTM1; JUN	4.05E- 03	6.55E- 03	Wikipathways
142	FGF signaling pathway	56	2 (3.6%)	JUN; FOS	4.20E- 03	6.69E- 03	PID
143	IL1	56	2 (3.6%)	SQSTM1; JUN	4.20E- 03	6.69E- 03	NetPath
144	ATF-2 transcription factor network	61	2 (3.3%)	JUN; FOS	4.96E- 03	7.85E- 03	PID
145	Innate Immune System	1309	7 (0.5%)	EPX; FOS; GLA; JUN; CAT; MEF2C; HSPA1A	4.99E- 03	7.85E- 03	Reactome
146	Fc-epsilon receptor I signaling in mast cells	62	2 (3.2%)	JUN; FOS	5.12E- 03	7.94E- 03	PID
147	Colorectal cancer - Homo sapiens (human)	62	2 (3.2%)	JUN; FOS	5.12E- 03	7.94E- 03	KEGG
148	(TCR) pathway during Staphylococcus aureus infection	63	2 (3.2%)	JUN; FOS	5.28E- 03	8.14E- 03	Wikipathways
149	Longevity regulating pathway - multiple species - Homo sapiens (human)	64	2 (3.1%)	HSPA1A; CAT	5.45E- 03	8.28E- 03	KEGG
150	LPA receptor mediated events	65	2 (3.1%)	JUN; FOS	5.45E- 03	8.28E- 03	PID
151	Regulation of retinoblastoma protein	65	2 (3.1%)	MEF2C; JUN	5.62E- 03	8.48E- 03	PID
152	Endothelins	66	2 (3.0%)	JUN; FOS	5.79E- 03	8.62E- 03	PID
153	Human Thyroid Stimulating Hormone (TSH) signaling pathwav	66	2 (3.0%)	JUN; FOS	5.79E- 03	8.62E- 03	Wikipathways
154	EGFR Inhibitor Pathway, Pharmacodynamics	67	2 (3.0%)	JUN; FOS	5.96E- 03	8.82E- 03	PharmGKB

155	Amphetamine addiction - Homo sapiens (human)	68	2 (2.9%)	JUN; FOS	6.13E- 03	8.96E- 03	KEGG
156	Downstream signaling in naïve CD8+ T cells	68	2 (2.9%)	JUN; FOS	6.13E- 03	8.96E- 03	PID
157	BCR signaling pathway	69	2 (2.9%)	JUN; FOS	6.31E- 03	9.10E- 03	PID
158	Regulation of Telomerase	69	2 (2.9%)	JUN; FOS	6.31E- 03	9.10E- 03	PID
159	Prolactin	70	2 (2.9%)	JUN; FOS	6.49E- 03	9.19E- 03	NetPath
160	TP53 Regulates Transcription of DNA Repair Genes	72	2 (2.9%)	JUN; FOS	6.49E- 03	9.19E- 03	Reactome
161	Biological oxidations	229	3 (1.3%)	GCLM; GSTZ1; GCLC	6.49E- 03	9.19E- 03	Reactome
162	Leishmaniasis - Homo sapiens (human)	73	2 (2.8%)	JUN; FOS	6.85E- 03	9.58E- 03	KEGG
163	B cell receptor signaling pathway - Homo sapiens (human)	73	2 (2.8%)	JUN; FOS	6.85E- 03	9.58E- 03	KEGG
164	Alpha6Beta4Integrin	74	2 (2.7%)	JUN; FOS	7.22E- 03	1.00E- 02	NetPath
165	VEGFA-VEGFR2 Signaling Pathway	236	3 (1.3%)	MEF2C; HSPA1A; JUN	7.59E- 03	1.04E- 02	Wikipathways
166	Prolactin Signaling Pathway	76	2 (2.6%)	JUN; FOS	7.61E- 03	1.04E- 02	Wikipathways
167	Pertussis - Homo sapiens (human)	76	2 (2.6%)	JUN; FOS	7.61E- 03	1.04E- 02	KEGG
168	Regulation of HSF1- mediated heat shock	81	2 (2.5%)	BAG2; HSPA1A	8.60E- 03	1.16E- 02	Reactome
169	Glucocorticoid receptor regulatory network	81	2 (2.5%)	JUN; FOS	8.60E- 03	1.16E- 02	PID
170	Selenium Micronutrient Network	83	2 (2.4%)	CAT; TXNRD1	9.02E- 03	1.21E- 02	Wikipathways
171	Neutrophil degranulation	497	4 (0.8%)	GLA; HSPA1A; EPX; CAT	9.46E- 03	1.26E- 02	Reactome
172	Salmonella infection - Homo sapiens (human)	86	2 (2.3%)	JUN; FOS	9.65E- 03	1.28E- 02	KEGG

Table E.4. List of genes identified with significant expression fold-changes (p<0.05) upon exposure to IEPOX or MAE-derived SOA constituents. False Discovery Rate (FDR) adjusted p-value: 0.05/84=0.0005. Full names of gene symbols can be found in Appendix E, Table E.1.

SOA Precursor	Gene Name	Fold Change	p-value	NRF2-associated Genes	<fdr< th=""></fdr<>
IEPOX	ALOX12	1.75	0.019612		
	CYGB	1.55	0.000313		*
	DUOX2	1.80	0.012251		
	LHPP	1.63	0.004871		
	NQO1	1.59	0.002976	+	
	PTGS2	2.85	0.000080		*
MAE	AKR1C2	13.61	0.002067		
	ALB	1.60	0.008062		
	ALOX12	1.97	0.024048		
	APOE	2.07	0.004920		
	ATOX1	2.08	0.000666		*
	B2M	1.93	0.005968		
	BNIP3	2.68	0.000278		*
	CCL5	23.64	0.000160		*
	CYGB	1.91	0.000004		*
	FTH1	2.56	0.000144	+	*
	GCLC	1.84	0.006009	+	
	GCLM	1.64	0.009746	+	
	GLA	2.10	0.002010		
	GPX2	3.47	0.019059	+	
	GSTP1	1.71	0.001398	+	
	HMOX1	6.03	0.001071	+	
	HSPA1A	1.69	0.015415		
	MB	1.70	0.039873		
	NCF1	1.64	0.005790		
	NCF2	9.94	0.000523		
	NCOA7	2.36	0.000064		*
	NOX5	1.56	0.002049		
	NQO1	2.36	0.001263	+	
	PRDX1	1.67	0.001969	+	
	PRDX4	1.59	0.000644		*
	PRDX5	1.57	0.007514		
	PRNP	2.35	0.003207		
	PTGR1	1.99	0.001422	+	
	PTGS2	5.04	0.000355		*
	SEPP1	1.50	0.000177		*

5	SOD2	5.98	0.000230	+	*
	SPINK1	1.87	0.038476		
	SQSTM1	4.57	0.000017	+	*
-	TXN	2.11	0.000451	+	*
-	TXNRD1	2.98	0.000169	+	*
	VIMP	2.04	0.000516		

			NRF2-associated	
Gene Name	Fold Regulation	p-value	Genes	<fdr< th=""></fdr<>
AKR1C2	2.2038	0.013377		
ATOX1	1.5619	0.024189		
BAG2	2	0.00763		
CAT	1.5801	0.006833	+	
DHCR24	1.5837	0.001557		
FTH1	2.2763	0.008796	+	
GCLC	2.5907	0.003719	+	
GCLM	2.8945	0.001271	+	
GLA	1.7371	0.034903		
GPX1	1.544	0.014517		
GPX2	5.9518	0.000725	+	
GPX3	1.8747	0.000538		
GSR	1.6857	0.027743	+	
GSTP1	1.6283	0.041316	+	
HMOX1	2	0.016293	+	
HSP90AA1	2.0946	0.000988		
HSPA1A	1.5948	0.001239		
NQO1	4.9588	0.003367	+	
PRDX1	2.1886	0.007017	+	
PRDX3	1.6133	0.047334		
PRDX6	1.5018	0.023451		
PTGS1	2.0186	0.025923		
RNF7	1.7818	0.040105		
SIRT2	1.6396	0.000194		*
SLC7A11	3.4343	0.000005		*
SQSTM1	2.3565	0.000085	+	*
SRXN1	2.7195	0.000015		*
TXN	2.2294	0.016836	+	
TXNRD1	4.8793	0.003985	+	
TXNRD2	1.7859	0.000992		
VIMP	1.5619	0.001192		
DUOX1	-2.0139	0.011647		

Table E.5. List of genes identified with significant expression fold-changes (p<0.05) uponexposure to ISOPOOH-derived SOA constituents. False Discovery Rate (FDR) adjusted p-value:0.05/84=0.0005. Full names of gene symbols can be found in Table E.1.

Figure E.1. Time course analysis conducted using filter resuspension to show that COX-2 and IL-8 were maximized at 9 hours. In addition to be consistent with prior studies at UNC-Chapel Hill (Lichtveld et al., 2012), this data further guided us in selecting 9-hour post exposure conditions for our genomic analyses.

Figure E.2. Raw data corresponding to Figure 5 in the main text. The means of the fold changes are as follows: 1.01 and 1.09 for the EAVES COX-2 dark and EAVES IL-8 dark, respectively, where as 2.18 and 7.34 for EAVES COX-2 light and EAVES IL-8 light, respectively. N=6 (3 experiemntal replicates, 2 PCR replicates) for these data.

Figure E.3. Raw data corresponding to Figure 6 in the main text. The means of the fold changes are as follows: 1.01, 1.49, 3.54 for the COX-2 control, COX-2 0.01 mg/ml, and COX-2 0.1 mg/ml resuspension exposures, respectively, where as 1.02, 1.54, and 8.19 for the IL-8 control, IL-8 0.01 mg/ml, and IL-8 0.1 mg/ml resuspension exposures, respectively. N=3 (3 well replicates) for these data.

Figure E.4. Venn diagram of two gene expression platforms profiled in this study. There are 6 genes overlapping in two platforms (*ALOX12*, *MBL2*, *PTGS1*, *PTGS2*, *NOS2*, *CCL5*), but none of these genes was found significant with the threshold of $FC \ge |1.5|$ and p < 0.05. Complete lists of genes included in each platform are provided in Appendix E, Table E.1 and E.2.

Figure E.5. Total 29 genes were found differentially expressed (FC \ge |1.5|, p < 0.05), with 22 genes passing a FDR threshold of 0.3, and 4 genes passing a stringent FDR threshold of 0.05.

Figure E.6. Quality check of *PTGS2* gene expression changes induced by (a) IEPOX- and (b) MAE-derived SOA through qRT-PCR.

Figure E.7. Volcano plot of differentially expressed genes in BEAS-2B cells upon exposure to ISOPOOH-derived SOA for 24 hours. A full list of differentially expressed genes can be found in Table 3.2.

ISOPOOH exposures

Figure E.8. *PTGS2 and HMOX1* mRNA expression induced by exposure to 0.1 mg/mL ISOPOOH-derived SOA all normalized to non-acidified $(NH_4)_2SO_4$ seed and against housekeeping gene, β -actin. *p<0.05 and **p<0.005