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APPENDIX C. BAYESIAN HIERARCHICAL MODELING  

The framework of Bayesian hierarchical modeling (BHM) refers to a generic model-building 
strategy in which unobserved quantities (e.g., statistical parameters, missing or mismeasured data, 
random effects, etc.) are organized into a small number of discrete levels with logically distinct and 
scientifically interpretable functions and probabilistic relationships between them that capture 
inherent features of the data. It has proved to be successful for analyzing many types of complex 
epidemiologic, biomedical, environmental, and other data, as illustrated by the varied case studies in 
Gilks et al. (1996) and Green et al. (2003). When specifying a hierarchical model, it is often 
convenient to start with a graphic representation of the structural assumptions that relate to the 
quantities in the model. Such models are commonly referred to as “Bayesian graphical models” and 
have become increasingly popular as “building blocks” for construction of complex statistical models 
(Spiegelhalter 1998). In the study of the health effects of air pollution, Bayesian hierarchical models 
have been used for a variety of purposes, foremost by Dominici and co-investigators in a series of 
papers, starting with Dominici, et al. (2000), that present combined analyses of time-series data in 
U.S. cities and use the BHM framework to summarize the information. These models also have been 
used in the context of exposure models, for example, to carry out a synthesis of pollution 
measurements and model-based estimates (Fuentes and Raftery 2005) or to model jointly multivariate 
pollutants at different sites (Shaddick and Wakefield 2002). The general applicability of BHM has 
been enhanced by advances in computational algorithms, notably those belonging to the family of 
stochastic algorithms based on Markov chain Monte Carlo (MCMC) techniques that have enabled the 
estimation of custom-specified models (for a review of recent algorithmic developments, see  Green et 
al 2003).  

We note that BHM encompasses structures that are generally referred to as multilevel models, 
where the data have a nested structure, for example, subject, school, community, as well as a time 
indexing. Multilevel structures typically are specified with random effects models, and those — as 
well as much more general structures — can be accommodated within the BHM framework with the 
use of efficient MCMC algorithms to simulate the full posterior distributions of all unknown 
parameters (Gelman et al 2003), without recourse to approximation and without imposing restricted 
assumptions like Gaussian distributions for the random effects. A key difference between Bayesian 
and likelihood-based mixed-model estimation of multilevel data is the treatment of uncertainty of key 
quantities such as random effects variances. 

The main quantities that are involved in modeling relationships between environmental 
exposures to air pollution (e.g., those related to traffic) and health are the health outcome, Y, the true 
exposure, X, and the surrogate measure(s), Z. The quantities Y, X and Z can be measured either at the 
individual level or associated with a group — for example, a geographical unit. Broadly speaking, 
statistical modeling is used to specify a “disease model” that links Y and a latent X and a 
“measurement model” that links X and Z. In a Bayesian framework, a prior model of the variability of 
the latent X needs also to be specified. Three main designs, which we refer to as individual, semi-
ecological, and ecological (or aggregate) designs, have been employed in environmental epidemiology 
dependent on the type and resolution of the available data. The analysis of each of these designs can 
gain from several key features of BHM that make this model-building strategy attractive in the field of 
environmental health.  

In general terms, the benefits of BHM can be broken down under a number of headings, with 
obvious overlap between some of these:  
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(i) Modular model elaboration 
(ii) Integration of different sources of information 
(iii) Coherent propagation of uncertainty 
(iv) Borrowing of strength 
(v) Integrated treatment of information at different levels. 

We will refer to these headings in the discussion of study designs and of some of the key issues 
faced by the statistical modeler in the air-pollution and health field. 

The individual design, the simplest, is appropriate if both determinants of exposure and health 
outcome data are measured at the individual level on the same set of subjects. Apart from clinical 
studies of a limited number of voluntary subjects exposed to a controlled air-pollution environment, 
this design is not commonly used but can constitute part of the data, e.g., a validation sample, 
collected in an epidemiologic study. Standard application of Bayesian hierarchical modeling can be 
used to propagate uncertainty in the measurement of X, by linking one or several individual surrogate 
measures to the unknown individual exposure, X, treated as an unmeasured random variable 
(Richardson and Gilks 1993). An interesting variant of this design is the case where one is interested 
in combining individual level data with different levels of covariate details, for example, routinely 
collected national register data containing limited information on confounders and a detailed cohort 
study. Bayesian graphical models can be used to synthesize data sets with different sets of covariates 
to improve inference. In a recent study, Jackson et al. (2008b) evaluated the link between NO2 and 
low birth weight based on a combination of register and cohort data in the U.K. 

Reproduced from Molitor et al. 2006, with permission 
of Oxford University Press. 

Semi-ecological designs arise when health outcome data are measured at the individual level, but 
measurements of exposure involve some form of group-level data (for example, time and spatially 
averaged ambient pollution concentrations, or modeled exposure to traffic). This design has also been 
referred to as semi-individual (Künzli and Tager 1997). Semi-ecological designs are commonly used, 

in particular in cohort studies that investigate the 
link between air pollution and disease risk. In 
this case, hierarchical modeling is useful to 
elaborate a suitable — often complex — 
measurement model that links different sources 
of exposure data measured, both at the individual 
and the ecological level. Individual level 
determinants could consist, for example, of geo-
coded housing location, residential history, time-
activity diaries, indoor measurements, or records 
from personal badges. To accommodate such 
diverse sources of individual-level exposure data 
as well as group-level environmental data from 
monitoring stations and/or modeled traffic data, a 
series of submodels or “modules” that link all 
these sources of data with the latent variable of 
interest, e.g., the personal exposure to traffic, 
have to be built. By using BHM techniques where 
each new type of data is treated in a modular 
fashion to form part of a comprehensive 

exposure, the analyst ensures that all relevant data will contribute to the assessment of “true” 
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exposure in a flexible fashion. Such a comprehensive exposure model typically will be a combination 
of Berkson and classical error structures that would be difficult to analyze with standard 
non−Bayesian techniques. A recent example of the power of using such a combination of 
measurement error models treated in a fully Bayesian way is the study of Molitor et al. (2006) in 
which the long-term effect of NO2 exposure on lung function of children was analyzed. The graph 
reproduced from Molitor et al. (2006) shows the complex measurement error structure, which is 
partly Berkson (link between Xci and Wci) and partly classical (link between Zcij, Pcj and Xci). 

Another framework that is useful for semi-ecological designs is that of point process models. In 
environmental epidemiology, one might consider that the location of the individuals at risk is being 
modeled by a baseline demographic process, on which is super-imposed a disease process that 
“picks”out the cases with a probability that is dependent both on individual-level risk factors and 
area-level variables measuring exposure (Richardson and Best 2003). In a study of the effect of traffic 
pollution on respiratory disorders of children carried out by Best et al. (2000), a point process is 
incorporated in a hierarchical model, to account both for individual risk factors of the children and 
for environmental levels of air pollution.  

Ecological designs are appropriate when both the health outcome data and exposure data are only 
available at the group level. Most time-series studies use this design with the group being composed 
of inhabitants of a city or a small geographic area. Daily or weekly disease counts are then linked by 
standard Poisson regression to averaged air pollution recorded during the same time intervals or 
shifted by short time lags. It is well known that the shape of the exposure-effect relationship is 
different at the group level from that at the individual level, a phenomenon known as ecological bias 
and much debated (Greenland 1992; Richardson and Montfort 2000; Richardson et al 1987); despite 
this, most ecological designs rely on empirically specified relationships between aggregated counts 
and mean group exposure, which are difficult to interpret. Alternatively, it is possible in many cases 
to work out how to integrate individual-level exposure effect relationships to the group level and use 
these integrated forms for specification of relationships in ecological models (Richardson and Best 
2003). This approach retains the interpretability of the individual-level coefficients, independent of 
the scale of aggregation. Building on this, hierarchical models can be used to go further and ensure a 
better control of ecological bias by construction of a joint analysis of individual- and group-level data, 
linked by shared individual-level coefficients (Jackson et al 2008a). 

The modularity discussed previously renders possible the simultaneous integration of different 
sources of information at the personal and group level. Moreover, by building a joint model of all the 
relevant variables that can include any number of different modules, all sources of information are 
integrated coherently to contribute to the estimation of the exposure-effect relationships of interest, 
thus maximizing the use of all relevant information. In parallel, the joint hierarchical model leads 
automatically to a correct propagation of all sources of uncertainty captured in each “module” onto 
the estimation of the health effect parameters of interest. We stress that this is not the case for 
methods that proceed by substitution and plug-in, for instance by replacing an unknown individual 
exposure X by an estimated one, based on a regression-calibration approach. In the BHM framework, 
unknown exposures are treated as random variables, their distribution is informed by the different 
substudies to which they are related, and the associated uncertainty is then propagated on the 
distribution of the health-related regression coefficients of interest. It is important to note that both 
the surrogate measures Z and the disease information Y will contribute to posterior distribution of X 
and that this dual link is key to insure that the measurement error correction leads to unbiased 
estimators of the health effects and a realistic assessment of uncertainty. A recent study by Gryparis 
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et al. (2008) exemplifies this and shows that averaging over Monte Carlo simulations of the variability 
of X based only on surrogate information will lead to biased estimates of effects. 

While the general principles of Bayesian measurement error modeling are certainly relevant here, 
the specificity of the measurement of air pollution adds additional interesting features, in particular 
with regards to the need to account for the spatial structure of the pollution field. A typical situation 
is that of spatial misalignment, i.e., a need to allocate exposure measures to geo-coded residential 
locations where no monitoring data are available. To construct exposure assessment, a spatial model 
of the pollution field can be built with data from monitoring networks in a larger area that 
encompasses the locations of interest and, subsequently, used to predict relevant air pollutants at 
locations of interest. Plugging in smoothed predicted values in a cohort-based analysis is commonly 
done (Hoek et al 2001) and corresponds in effect to a regression-calibration approach. While 
corrections can be built for compensation of the oversmoothing of the predictive values and the 
underestimation of the variability of the health effects estimates given by the regression-calibration 
approach, a full Bayesian treatment requires carrying out spatial modeling of the pollution field and 
disease model estimation jointly. By integrating the posterior distribution of pollution prediction at 
the required locations within the disease model, the uncertainty of exposure assessment and the 
spatial correlation of the errors are, thus, fully propagated onto the health effect estimate. Such a joint 
model implementation can be computationally demanding for a large area, and recent work has 
investigated alternative two-stage Bayesian approaches (Gryparis et al 2008). 

So far, we have discussed how to propagate exposure measurement uncertainty in a coherent 
manner. However, propagation of uncertainty has to be considered at every level of the analysis; and 
principled Bayesian approaches should include a component of uncertainty linked to model choice. 
Model choice issues and how to account for these by use of Bayesian model averaging (BMA) have 
been discussed extensively in the statistical literature (Draper 1995; Hoeting et al 1999) and, in 
particular, in epidemiology (Viallefont et al 2001). Basically, posterior model probabilities are used to 
reweight the estimate of the quantities of interest. For time-series air-pollution studies, a specific 
aspect of this problem concerns the uncertainty of adjustment for unobserved time varying 
confounders, an adjustment which is typically carried out by incorporation of functions of calendar 
time and temperature with varied degree of smoothing (Peng et al 2006). The degree of smoothing is 
clearly influential on the effect estimate, and there is currently a lively debate on how to choose a 
suitable degree of smoothing. In this context, a blind application of BMA that treats symmetrically 
the exposure and confounders is not appropriate, since models without confounder adjustment are 
not epidemiologically interpretable. Simple modification of BMA that forces a set of confounders in 
the regression models can be used, if the confounders are known (Raftery and Richardson 1995). In 
other cases, suitable modifications of BMA have been proposed recently that account for adjustment 
uncertainty in effect estimation (Crainiceanu et al 2008), and this is a promising area for future 
research. 

One important aspect of hierarchical models that has been highlighted so far is the integration of 
different sources of data. A related and complementary aspect is the borrowing of strength between 
different but related analyses of similar data sets that leads to improved and more stable estimates of 
the parameters of interest. We refer here to the use of Bayesian hierarchical models to perform a meta-
analysis of a group of studies that are comparable with respect to the measurement of exposure and 
health outcomes. The key principles behind the use of BMH for meta-analysis have been discussed in 
broad terms by Sutton and Abrams (2001) and used abundantly in air-pollution epidemiology by 
Dominici and colleagues. BHM attempts to go beyond a standard random effects model by allowing 
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more flexibility of specification, the inclusion of prior information on sources of heterogeneity, and 
the computation of probabilistic statements on key quantities. As illustrated by Dominici et al. (2000) 
in their combined analysis of NMMAPS data, the crucial step in meta-analysis is the specification of 
a between-study model of variability, which, in turn, allows borrowing strength between the studies. 
Given first level estimates of effects  that are derived in each study i, the second level model, 
represented here as p( | η), makes assumptions on the mean, variability, and distributional form p ( 
) which govern the  in terms of a number of hyperparameters η (parameters of the prior 
distribution). These in turn will be given a prior distribution. 

iβ̂
iβ̂

iβ̂

The simplest assumption for borrowing strength is the exchangeable model, which hypothesizes 
that all the parameters of interest, for example, the coefficients that quantify the association of PM10 
on mortality, come from a common distribution, usually Gaussian: p( | η) = N( μ, σ2), 
independently for all i, (1). Interest is centered on the global mean μ and the estimation of the 
variance parameter σ2 that quantified the heterogeneity of the effects. In the Bayesian version, this 
variance (or its inverse, the precision) is itself given a prior distribution at a higher level of the 
hierarchy. At this point, two related and important aspects of model specification need to be 
scrutinized carefully, namely, the investigation of whether the exchangeability assumption is 
reasonable and, given this, whether the choice of the functional parametric form p( ) at the second 
level and whether the prior distribution for the hyperparameters η could be unduly influential.  

iβ̂

The straightforward exchangeability assumption is questionable in many cases, although often it 
is used as a baseline model (see  Dominici et al 2006). A common modification is to account for 
known sources of heterogeneity in the specification of the mean of the combined model, i.e., replace 
μ above by a regression equation where Zk are known study specific covariates. For example, 
in an examination of the effect of PM10 on mortality in 20 of the largest cities, Dominici et al. (2000) 
adjust for city-specific covariates Zk, such as the percentage of people in poverty, the percentage of 
people older than 65 years, and the average daily level of other pollutants. In their recent analysis of 
hospital admissions for cardiovascular and respiratory diseases in 108 counties, Peng et al. (2008) 
include the percentage of population living in an urban area in the second stage model to investigate 
potential effect modification by the chemical composition of PM10-2.5. Beyond these elaborations of the 
mean model, other sources of heterogeneity related to important qualitative characteristics of the 
group of studies also can be accounted for by imposing some restriction on exchangeability. In other 
words, full exchangeability is replaced by an assumption of partial exchangeability within known 
subgroups, indexing the distribution p( ) and the hyperparameters η by the subgroup to which study i 
belong and replacing equation (1) by: p( | ηg) = N( μg, σg

2) independently for all i in group g. Regions 
have been often used to define such groupings, like eastern and western regions in the U.S. Of course, 
this presupposes that relevant subgroups have been identified based on a priori epidemiologic and 
environmental knowledge. Between full exchangeability of the first level estimates and partial 
exchangeability of for prespecified subgroups of studies, an interesting alternative is to model the 
collection of { } as a joint multivariate distribution MVN(Μ ,Σ). This extends the simple mode (1) by 
allowing dependence between the , thus replacing σ2 by a variance-covariance matrix Σ. A spatially 
structured Σ comes naturally to mind as a good candidate, when the meta-analysis concerns different 
areas or cities, and dependence between the city-specific estimates might be created by long-range 
components of pollution; such a spatial specification was used by Dominici et al. (2000). 

kk Z∑α

iβ̂

iβ̂
iβ̂

iβ̂
iβ̂

Sensitivity to the functional assumptions of the second level model has been less discussed but is 
nevertheless important. Indeed, when there is substantial heterogeneity in the first level estimates 
and when these estimates have large uncertainty, one can suspect that there is interplay between the 
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specification of the between-study distribution and the posterior estimates of the overall effect and its 
variability. Instead of assuming necessarily a Gaussian distribution as in equation (1), it would be 
important to include in a sensitivity analysis alternatives such as heavier tail distributions, e.g., the t-
distribution, mixture of Gaussians (cf. Richardson in the discussion of Dominici et al. 2000) or a 
flexible semi-parametric model of heterogeneity using Dirichlet process, as advocated by Ohlssen et 
al. (2007) for institutional comparisons. There is much work to be pursued in exploring and modeling 
heterogeneity, uncovering latent group structure, and building suitable dependent structures when 
combining information across studies. 

In summary, in this brief and necessarily selective review, we have outlined the key benefits of 
using Bayesian hierarchical models in air-pollution and health studies, tried to highlight important 
issues of sensitivity, and pointed out areas for further research. 
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