

Mobile-Source Air Toxics: A Critical Review of the Literature on Exposure and Health Effects

Appendices B, C, D, and E

This document is a section of HEI Special Report 16. The entire report can be accessed or ordered in print on the HEI Web site at *www.healtheffects.org*.

Citation for the whole document:

HEI Air Toxics Review Panel. 2007. Mobile-Source Air Toxics: A Critical Review of the Literature on Exposure and Health Effects. HEI Special Report 16. Health Effects Institute, Boston, Mass.

When specifying a section of this report, cite it as a chapter of the whole document.

For further information please contact the Health Effects Institute: +1-617-886-9330 pubs@healtheffects.org www.healtheffects.org

Introductioniv

Appendix B. Ambient and Outdo	or Expo	sure Tables	1
Table P 1			
IdDIE D.I. Ambient and Outdoor Exposure	Data Source	S	2
Table B.2. Ambient and Outdoor Exposure	Data Source	s for Each MSAT	10
Tables B.3–B.23. Ambient and Outdoor	Exposure D	ata Summaries	
B.3. Acetaldehyde	12	B.16. Mercury Compounds	94
B.4. Acrolein	18	B.17. MTBE	
B.5. Arsenic Compounds	20	B.18. Naphthalene	102
B.6. Benzene	26	B.19. Nickel Compounds	104
B.7. 1,3-Butadiene		B.20a. POM: Total PAH as Surrogate	112
B.8a. Chromium Compounds	42	B.20b. POM: Benz[a]anthracene	116
B.8b. Hexavalent Chromium	50	B.20c. POM: Benzo[b,k]fluoranthene	120
B.9. Dioxins-Furans	52	B.20d. POM: Benzo[a]pyrene	128
B.10. DPM + DEOG (EC + BC as Surrogates	;)54	B.20e. POM: Chrysene	134
B.11. Ethylbenzene	62	B.20f. POM: 7,12-Dimethylbenz[a]anthra	<i>cene</i> 138
B.12. Formaldehyde	70	B.20g. POM: Indeno[1,2,3-cd]pyrene	140
B.13. n-Hexane	76	B.21. Styrene	146
B.14. Lead Compounds	78	B.22. Toluene	152
B.15. Manganese Compounds	86	B.23. Xylene	
Appendix B. References			177

(Continued on next page)

Appendix C. Toxicity and Human I	Health	Tables	180					
Table C.1. Chronic Noncancer Toxicity Criteria (Table entries link to Table C.3.)	and Sourc	e Materials for Each MSAT	182					
Table C.2. Chronic Cancer Toxicity Criteria and Source Materials for Each MSAT (Table entries link to Table C.4.) 189								
Table C.3. Summary of Chronic Noncancer. Toxicity Data for Each MSAT								
Table C.4. Summary of Chronic Cancer Toxici	ty Data for	Each MSAT	241					
Table C.5. Acute Toxicity Criteria for Each MS.	AT (Table e	ntries link to Table C.6.)	284					
Table C.6. Summary of Acute Toxicity Data for	Each MSA	λΤ	287					
Appendix C. References			304					
Appendix D. Indoor Exposure Tab	les		319					
Table D.1. Indoor Exposure Data Sources			320					
Table D.2. Indoor Exposure Data Sources for	Selected M	SATs	324					
Tables D.3–D.8g. Indoor Exposure Data S	Summaries							
D.3. Acetaldehyde	326	D.8b. POM: Benz[a]anthracene	346					
D.4. Acrolein	330	D.8c. POM: Benzo[b,k]fluoranthene	352					
D.5. Benzene	332	D.8d. POM: Benzo[a]pyrene	360					
D.6. 1,3-Butadiene	338	D.8e. POM: Chrysene	368					
D.7. Formaldehyde	340	D.8f. POM: 7,12-Dimethylbenz[a]anthracene	374					
D.8a. POM: Total PAH as Surrogate	344	D.8g. POM: Indeno[1,2,3-cd]pyrene	376					
Appendix D. References			382					

Appendix E. Abbreviations and Other Terms 385

Appendices B, C, D, and E contain supplemental material not included in the printed report. These appendices are available on the HEI Web site (*www. healtheffects.org*) and on a compact disk (CD) that accompanies the printed version of the main text and Appendix A.

In beginning its review of mobile-source air toxics (MSATs), the HEI Air Toxics Review Panel sought to identify the MSATs likely to pose the greatest risk to humans at ambient exposure concentrations. The panel elected to focus on the following 21 MSATs listed by the U.S. Environmental Protection Agency (EPA) in its 2001 rule: acetaldehyde, acrolein, arsenic compounds, benzene, 1,3-butadiene, chromium compounds, diesel exhaust (particulate matter and organic gases), dioxin and furan compounds, ethylbenzene, formaldehyde, *n*-hexane, lead compounds, manganese compounds, mercury compounds, methyl *tert*-butyl ether, naphthalene, nickel compounds, polycyclic organic matter (POM), styrene, toluene compounds, and xylene.

Gradient Corporation of Cambridge, Mass., was engaged to conduct a literature survey to identify and summarize published information on exposure and toxicity for these 21 MSATs. The information resulting from this survey (undertaken the winter of 2004–2005) was used by the panel in its evaluation of MSATs and is presented in Appendices B and C of this report. Appendix B consists of the tables summarizing information on exposure to the MSATs, and Appendix C the tables summarizing information on toxicity and health effects.

Further information was collected for six of the seven priority MSATs identified by the panel as meriting special attention (acetaldehyde, acrolein, benzene, 1,3butadiene, formaldehyde, and POM). Additional information both on toxicity and health and on indoor exposures was collected. The toxicity and health information was incorporated into the tables in Appendix C; the information on indoor air concentrations is presented in Appendix D. Abbreviations and other terms used in the tables that make up Appendices B, C, and D are defined in Appendix E.

In preparing the tables for publication, HEI merged and reformatted information from Gradient Corporation's original literature searches. HEI also corrected typographical errors, updated expired hyperlinks, and made minor editorial changes. In addition, shortly before publication of the report, Tables C.1 and C.2 were updated by HEI to reflect changes in regulatory values. However, HEI has not attempted to verify the accuracy of all the information in the tables or their corresponding reference lists. Although the hyperlinks from the tables to Web sites were active shortly before publication, HEI cannot be responsible for any subsequent changes in the Web sites referred to.

APPENDIX B. AMBIENT AND OUTDOOR EXPOSURE TABLES

Table B.1 is a summary of key information on the exposure studies for each MSAT, including brief descriptions of each study and details of time periods, locations, and types of location (i.e., urban, suburban, rural, in-vehicle, roadside, and tunnel).

Table B.2 is a matrix of data sources for exposure studies, showing the MSATs investigated in each study.

Tables B.3 through B.23 summarize the data for exposure information on each of the MSATs. Certain MSATs are represented by one or more surrogate compounds. POM, for example, is represented by data both for all polycyclic aromatic hydrocarbons (PAHs) combined and for the seven specific PAHs identified by the EPA as probable human carcinogens—benz[*a*]anthracene, benzo[*b*]fluoranthene, benzo[*k*]fluoranthene, benzo[*a*]pyrene, chrysene, 7,12-dimethylbenz[*a*]-anthracene, and indeno[1,2,3-*cd*]pyrene.

APPENDIX C. TOXICITY AND HEALTH EFFECTS TABLES

In the toxicity and health portions of the literature survey, information on acute, chronic, and subchronic health effects (including cancer and noncancer endpoints) was collected from peer-reviewed secondary sources, such as the EPA's Health Assessment Documents, U.S. Agency for Toxic Substances and Disease Registry (ATSDR) reports, and the International Agency for Research on Cancer (IARC) monographs. The primary sources that served as the basis for key toxicity criteria were also obtained. For the seven priority MSATs (acetaldehyde, acrolein, benzene, 1,3butadiene, formaldehyde, naphthalene, and POM), the survey was augmented with recent information from primary sources. The survey was also augmented for the nonpriority MSATs in cases in which the secondary sources were out of date (i.e., 2001 or earlier).

Tables C.1 and C.2 summarize the toxicity criteria that were readily available in the secondary sources and online, showing whether a given MSAT is considered a carcinogen, how toxic or potent it is, and the date of the most recent evaluation. The principal focus is on inhalation, because this is the predominant route of exposure to MSATs. To facilitate the comparison of criteria, all cancer and noncancer toxicity criteria are expressed in units per μ g/m³ for the inhalation route and mg/kg-day for the oral route. These tables were updated shortly before publication to reflect changes in regulatory values.

Table C.3 provides information on chronic noncancer health effects at the time the literature survey was completed (winter 2004–2005). For each MSAT, the details of the key chronic-toxicology studies that formed the basis of the toxicity criteria are summarized, starting with the Integrated Risk Information System (IRIS) and adding other sources if they were more recent. In addition, the studies on which the toxicity criteria were based are listed in the last column of the table. Criteria based on oral-route studies are included in the table only when no toxicity criteria were identified for the inhalation route.

Table C.4 provides information on chronic cancer health effects at the time the literature survey was completed. In addition, the studies on which the toxicity criteria were based are listed in the last column of the table. Criteria based on oral-route studies are included in the table only when the inhalation unit risk was not provided and the compound was classified as a carcinogen when inhaled; in these cases, the oral unit risk and associated critical study are provided.

For classes of compounds (e.g., POM and dioxins), information on the individual compounds is provided in the summary table (Table C.1), but detailed information is provided only for those that are the most toxic or the most studied. For POM, for example, detailed information was provided for benzo[*a*]pyrene; for dioxins, detailed information was provided for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin.

Table C.5 summarizes the acute-toxicity criteria available for each MSAT at the time the literature survey was completed. This report does not include level 3 (in the acute exposure guideline levels and the *Emergency Response Planning Guidelines*), which pertains to life-threatening effects, because it was deemed too extreme to be useful in the report.

Table C.6 summarizes the studies that served as the basis for the acute-toxicity criteria for each MSAT at the time the literature survey was completed. The literature searches in this table were updated, like the literature searches in Tables C.3 and C.4, although to a lesser extent, because most of the exposure guidelines were of recent origin.

APPENDIX D. INDOOR EXPOSURE TABLES

The tables in Appendix D summarize information on indoor air concentrations for six of the seven priority MSATs (not including naphthalene).

Table D.1 is a summary of the sources of data on indoor air concentrations for each MSAT, including brief descriptions of each study and details of study time periods, locations, and types of location (e.g., residences, office buildings, and schools), as well as a description of each location and notes.

Table D.2 is a matrix of data sources showing the MSATs investigated in each study used for indoor air concentration information.

Tables D.3 through D.8 are data summaries for each MSAT. Certain MSATs are represented by one or more surrogate compounds.

APPENDIX E. ABBREVIATIONS AND OTHER TERMS

This appendix defines abbreviations and other terms used in the tables in Appendices B, C, and D.

Appendix B. Ambient and Outdoor Exposure Tables

Introduction			1
Table B.1. Ambient and Outdoor Exposure	Data Source	es	2
Table B.2. Ambient and Outdoor Exposure	Data Source	es for Each MSAT	10
Tables B.3–B.23. Ambient and Outdoor	Exposure [Data Summaries	
B.3. Acetaldehyde	12	B.16. Mercury Compounds	
B.4. Acrolein		B.17. MTBE	98
B.5. Arsenic Compounds	20	B.18. Naphthalene	102
B.6. Benzene	26	B.19. Nickel Compounds	104
B.7. 1,3-Butadiene		B.20a. POM: Total PAH as Surrogate	112
B.8a. Chromium Compounds	42	B.20b. POM: Benz[a]anthracene	116
B.8b. Hexavalent Chromium	50	B.20c. POM: Benzo[b,k]fluoranthene	120
B.9. Dioxins-Furans	52	B.20d. POM: Benzo[a]pyrene	128
B.10. DPM + DEOG (EC + BC as Surrogates)	54	B.20e. POM: Chrysene	134
B.11. Ethylbenzene	62	B.20f. POM: 7,12-Dimethylbenz[a]anthracene	138
B.12. Formaldehyde	70	B.20g. POM: Indeno[1,2,3-cd]pyrene	140
<i>B.13.</i> n- <i>Hexane</i>	76	B.21. Styrene	146
B.14. Lead Compounds	78	B.22. Toluene	152
B.15. Manganese Compounds	86	B.23. Xylene	160
Appendix B. References			

INTRODUCTION

Table B.1 is a summary of key information on the exposure studies for each MSAT, including brief descriptions of each study and details of time periods, locations, and types of location (i.e., urban, suburban, rural, in-vehicle, roadside, and tunnel).

Table B.2 is a matrix of data sources for exposure studies, showing the MSATs investigated in each study.

Tables B.3 through B.23 summarize the data for exposure information on each of the MSATs. Certain MSATs are represented by one or more surrogate compounds. POM, for example, is represented by data both for all polycyclic aro-

matic hydrocarbons (PAHs) combined and for the seven specific PAHs identified by the EPA as probable human carcinogens—benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, chrysene, 7,12-dimethylbenz[a]anthracene, and indeno[1,2,3-cd]pyrene.

Although the hyperlinks from the tables to Web sites were active shortly before publication, HEI cannot be responsible for any subsequent changes in the Web sites referred to.

For more information about this appendix, see <u>Introduc-</u> tion to Appendices B, C, D, and E.

Table B.1. Ambient and Outdoor Exposure Data Sources						
Reference	Reference Description	Study Time Period	Study Locations	Locations Type	Locations Description	Notes
EPA Ambient Air Quality	Databases or Monitoring Progr	ams				
Cleverly et al. (2002)	Journal article summarizing calendar year 2000 ambient air data from EPA National Dioxin Air Monitoring Net- work (NDAMN)	2000	Washington DC and San Francisco CA	Suburban	Considered by authors to be the two NDAMN stations of more urban character that can serve as indicator of dioxin/furan levels in more populated areas	Data compilation excludes data from majority of NDAMN sites that are located in rural and remote locations (additional 19 nationwide sites in 2000).
Eastern Research Group (ERG 2004) <u>www.epa.gov/ttn/amtic/</u> <u>airtxfil.html</u>	Final report submitted to EPA summarizing ambient air monitoring conducted as part of the 2003 Urban Air Toxics Monitoring Program (UATMP)	2003	53 monitoring sites nationwide in or near 32 urban and rural locations	Urban, subur- ban, rural	Includes sites in or near urban cen- ters within 18 states, and Puerto Rico	Data also available in electronic form from EPA AirData web site, although data appear to be incomplete for some sites when compared to UATMP data tables.
McCarty et al. (2004) <u>www.epa.gov/glnpo/lm</u> <u>mb/results/mercury/ind</u> <u>ex.html</u>	Final report submitted to EPA summarizing ambient air mercury data collected dur- ing Lake Michigan Mass Bal- ance Study	June 1994– Oct 1995	WI, MI, IL, and IN, with 4 locations along Lake Michigan and a fifth at an inland location	Mix with urban, urban-influ- enced, and rural locations	Included urban Chicago station	Additional site in Chicago excluded from the data compilation due to the collection of only 1 gaseous and 2 par- ticulate Hg samples at this site.
EPA Air Quality System (AQS) Database (via AIR Data website) <u>www.epa.gov/air/data/i</u> <u>ndex.html</u>	Comprehensive EPA database - of ambient air monitoring data; 2003 data query	2003	Multiple locations nationwide	Urban, subur- ban, rural	Comprehensive database covers variety of national, state, and local monitoring networks	Includes UATMP data (see note above). Majority of data are for 24-hr samples, although 1-hr and 3-hr data available for many MSATs.
Recent In-Vehicle Roadw	ay Measurement Studies					
Batterman et al. (2002)	Journal article summarizing VOC samples collected from ambient air near cars and in bus interiors during 40 trips along Detroit commuting routes for 4 days in Oct and Nov 1999	10/20/99– 11/10/99 (1 day/week for 4 weeks)	Detroit MI	In-vehicle, urban	Primarily along 3 bus routes selected to include residential, commercial, and heavily industri- alized areas	Samples collected outside of cars on only 1 of the 4 sampling days—major- ity of samples thus collected from bus interiors.
Borak et al. (2003)	Journal article summarizing series of ambient and occupa- tional diesel PM exposure measurements that included school bus survey of three diesel school buses	Not provided	Not provided	In-vehicle	Inside 3 buses, windows primarily closed	
Chellam et al. (2005)	Journal article summarizing fine PM samples collected in highway tunnel in Houston TX	8/29/00– 9/1/00	Washburn Tunnel in Houston TX	Tunnel, urban	Tunnel runs under highly industri- alized eastern Harris County and is only vehicular tunnel currently in operation in TX	
						Table continues on next page

Table B.1. (Continued).	Table B.1. (Continued). Ambient and Outdoor Exposure Data Sources							
Reference	Reference Description	Study Time Period	Study Locations	Locations Type	Locations Description	Notes		
Recent In-Vehicle Roadw	yay Measurement Studies (<i>Conti</i>	nued)						
Destaillats et al. (2002)	Journal article summarizing carbonyl measurements made at San Francisco Bay Bridge toll plaza during rush hour traffic	4/23/01– 4/24/01	Oakland-SF Bay Bridge Toll Plaza CA	Roadside, urban	Bay Bridge characterized by busiest commuter traffic in northern CA with nearly a quarter million vehi- cles traveling across bridge/day	Samples collected during three periods of rush hour traffic.		
Fedoruk and Kerger (2003)	Journal article summarizing in- vehicle measurement study conducted to examine the pattern and magnitude of VOC exposures in a survey of selected "new" and "used" vehicles under different con- ditions.	June– July 1997	Los Angeles CA and Foxboro MA	In-vehicle, urban and suburban	Included sampling inside five dif- ferent passenger sedan vehicles from three different manufactur- ers under variable conditions (i.e., static vs. driving, in-cabin temp., ventilation mode, traffic condi- tions)			
Fitz et al. (2003) <u>www.arb.ca.gov/researc</u> <u>h/schoolbus/schoolbus.</u> <u>htm</u>	Final report submitted to Cali- fornia Air Resources Board (ARB) summarizing compre- hensive in-vehicle bus mea- surement study conducted as part of Children's School Bus Exposure Study	4/22/02– 6/12/02	Los Angeles CA	In-vehicle, primarily urban	Included 3 different routes: an urban route from S Central LA to W Side of LA with freeway travel, a different urban route exclusively on surface streets, and a rural/sub- urban route	Study included measurements on 5 conventional diesel school buses, manufactured from 1975 to 1998, and a 1998 diesel bus outfitted with a par- ticulate trap, all operating on low sul- fur "green" diesel fuel.		
Gertler et al. (1996, 1998)	Journal article (1998) and final report (1996) summarizing 10 24-hour day/day or night/night sampling periods conducted in Oct and Nov 1995 where dioxin/furan air concentrations were mea- sured at inlets, vents, and out- lets at Baltimore's Fort McHenry Tunnel	Oct–Nov 1995	Baltimore MD	Tunnel, urban	Fort McHenry Tunnel with four bores, two lanes/bore, carrying Interstate 95 east-west under Bal- timore Harbor	Sampling occurred in two eastbound bores with exhaust fans shut off: Bore 3, consisting of primarily light-duty vehicles (<2% heavy-duty diesel vehi- cles); and Bore 4, where trucks are directed (on average 24–25% heavy- duty diesel vehicles during sampling runs).		
Grosjean and Grosjean (2002) <u>www.pubs.healtheffects. org/view.php?id=107</u>	Final report submitted to Health Effects Institute sum- marizing carbonyl (i.e., alde- hyde) air sampling at the inlet and outlet of two large high- way tunnels	5/18/99– 5/21/99 and 7/20/99– 8/5/99	Tuscarora Mountain Tunnel in PA (on Pennsylvania Turn- pike), and Caldecott Tunnel in CA (near San Francisco)	Tunnel, urban	Ventilation systems turned off in both tunnels; Tuscarora Mountain Tunnel with characteristic fleet of both light-duty vehicles and heavy-duty diesel trucks, and Cal- decott Tunnel fleet consisting pri- marily of light-duty vehicles using California Phase 2 reformulated gasoline			
Hunt et al. (1997)	Journal article summarizing one week of ambient dioxin/furan measurements at metropolitan Phoenix AZ site in Dec 1994	12/15/94– 12/20/94	Phoenix AZ	Roadside, urban	Sampling site situated near a heavily traveled road in order to assess the influences of motor vehicle emissions			

Table B.1 (Continued). Ambient and Outdoor Exposure Data Sources						
Reference	Reference Description	Study Time Period	Study Locations	Locations Type	Locations Description	Notes
Recent In-Vehicle Road	way Measurement Studies (<i>Conti</i>	nued)				
Kinney et al. (2000)	Journal article summarizing PM _{2.5} and elemental carbon air sampling conducted for five days in July 1996 along Harlem sidewalks	July 1996 (5 week days within 13-day period)	Harlem, New York City	Roadside, urban	3 sites at high-traffic intersections and 1 in quiet residential area (control site)	
Lena et al. (2002)	Journal article summarizing sidewalk measurements of PM _{2.5} and EC in Hunts Point, a section of the South Bronx, New York City that serves as a regional hub for the freight transportation system	July–Aug 1999: 9 week days over 3-week period	Hunts Point Section of the South Bronx, New York City	Roadside, urban	6 sites near high-traffic intersec- tions, and 1 in no-truck-traffic zone (control)	
Levy et al. (2003)	Journal article summarizing continuous PM _{2.5} , ultrafine particle, and particle-bound PAH measurements made in Summer 2001 at several sites in Roxbury, a section of Bos- ton MA with high traffic lev- els	12 days in July– Aug 2001	Roxbury neighborhood of Boston MA	Roadside, urban	9 sites within high-traffic urban neighborhood with multiple bus routes and bus and truck depots	
Marr et al. (1999)	Journal article summarizing comprehensive study charac- terizing PAHs in motor vehi- cle fuels and exhaust emissions that included fine particle-phase PAH measure- ments in two bores of a road- way tunnel.	7/21/97– 8/5/97	Caldecott Tunnel in Northern CA (near San Francisco)	Tunnel, urban	Sampling in both truck-influenced bore and light-duty bore	Sampling occurred from 12:30–3:30 PM in Bore 1 when heavy-duty truck fraction was high, and from 3:30 to 6:30 PM in Bore 2 when light-duty traffic volumes peaked.
Martuzevicius et al. (2004)	Journal article summarizing PM _{2.5} concentration and composition measurements made at 11 locations in Cin- cinnati metropolitan area dur- ing 1-year measurement campaign	Dec 2001– Nov 2002	Cincinnati OH	Roadside, urban	Many sites adjacent to freeways	Sampling conducted during 9 measure- ment cycles, with durations ranging from 5-23 days, where typically 2-4 sites were operated simultaneously.
Riediker et al. (2003)	Journal article summarizing suite of in-vehicle, roadside, and fixed ambient site mea- surements collected over 25 days in Autumn 2001 as part of occupational exposure study of NC State Highway Patrol Troopers	8/13/01– 10/11/01	Wake County NC	In-vehicle and roadside, urban	Included sampling inside highway patrol vehicles, at roadside loca- tions near major traffic routes, and at fixed ambient site in northern Raleigh	Two patrol cars studied each day for a total of 50 sampled late-shift patrols (3 PM to midnight).

Mobile-Source Air Toxics, Appendix Table B.1. Ambient and Outdoor Exposure Data Sources

Table B.1. (Continued). Ambient and Outdoor Exposure Data Sources						
Reference	Reference Description	Study Time Period	Study Locations	Locations Type	Locations Description	Notes
Recent In-Vehicle Roadw	yay Measurement Studies (<i>Conti</i>	nued)				
Rodes et al. (1998) <u>www.arb.ca.gov/researc</u> <u>h/abstracts/95-339.htm</u>	Final report submitted to Cali- fornia Air Resources Board (ARB) summarizing compre- hensive suite of measure- ments made during 32 driving trips in Los Angeles and Sacramento	Sept–Oct 1997	Los Angeles and Sacramento CA	In-vehicle and roadside, urban	Samples collected concurrently inside 2 vehicles, just outside vehicles, along roadway, and at ambient monitoring sites during driving trips	Commute types listed to include arte- rial rush, arterial non-rush, freeway rush, freeway non-rush, rural, school bus, freeway rush carpool, and maxi- mum commute.
Sapkota and Buckley (2003)	Journal article summarizing 1,3-butadiene, benzene, and particle-bound PAH measure- ments made at Baltimore Har- bor Tunnel tollbooth	6/18/01 – 6/28/01	Baltimore MD	Roadside, urban	Baltimore Harbor Tunnel tollbooth	Samples collected on seven weekdays.
Recent Large-Scale Mode	eling Analyses					
Seigneur et al. (2003)	Journal article summarizing modeling study conducted to simulate atmospheric fate and transport of benzene and die- sel PM for one-week period in July 1995 in northeastern US	7/11/95– 7/15/95	Regional modeling domain encompassing northeastern US	Varied, including urban, subur- ban, rural, and remote locations.	Finer modeling grid (4 km versus 12 km for remainder of domain) employed over part of northeast- ern US including New York City and Washington DC	Modeled time period noted to have high ozone pollution and low mixing height.
EPA National Air Toxics Assessment (NATA) (EPA 2002a) <u>www.epa.gov/ttn/atw/n</u> <u>ata/</u>	EPA website summarizing comprehensive modeling analysis conducted as part of nation-scale assessment of 33 air pollutants	1996	Counties nationwide	Varied, inclu- ding urban and rural counties	Annual average ambient concentra- tions reported on nationwide basis, statewide basis, individual- county basis, and for all rural and all urban counties combined	Only modeled ambient concentrations reported for this data compilation, although analysis also yielded mod- eled human exposure concentrations that account for movement of people outdoors and indoors.
Recent, Peer-Reviewed U	rban Air Monitoring Studies					
Adgate et al. (2004a)	Journal article summarizing screening-phase indoor mea- surements collected in 284 households and intensive- phase personal, indoor, and outdoor measurements for 10 VOCs collected in a probabil- ity sample of 72 households as part of the Minnesota Chil- dren's Pesticide Exposure Study (MNCPES)	May–Sept 1997	Multiple locations, MN	Urban and non-urban	Households recruited from cities of Minneapolis and St Paul (desig- nated urban households) and Rice and Goodhue Counties (south of Minneapolis-St Paul metropoli- tan area and designated nonurban households)	Weighted distributions from intensive- phase sampling stated to be represen- tative of more than 58,000 urban and 4,000 nonurban households. Only outdoor data compiled in data tables.

Table B.1. (Continued).	Table B.1. (Continued). Ambient and Outdoor Exposure Data Sources							
Reference	Reference Description	Study Time Period	Study Locations	Locations Type	Locations Description	Notes		
Recent, Peer-Reviewed U	Jrban Air Monitoring Studies (C	ontinued)						
Adgate et al. (2004b)	Journal article summarizing exposure measurements for 15 VOCs conducted in multi- ple locations (outdoors, indoors at school, indoors at home, and personal samples) among a study population of 113 children attending two inner-city schools in Minne- apolis	Winter (1/24/00– 2/18/00) and Spring (4/9/00– 5/12/00)	Minneapolis MN	Urban	Two inner-city Minneapolis schools serving predominantly low-income households	Children were participants in School Health Initiative: Environment, Learn- ing, and Disease (SHIELD) study, which consisted of a randomly- selected ethnically and racially diverse sample of inner-city children in Minneapolis. Only outdoor data compiled in data tables.		
Carpi and Chen (2002)	Journal article summarizing ambient elemental Hg moni- toring at six locations in New York City for approximately weeklong periods from June to Nov 2000	June– Nov 2000	New York City NY	Urban	6 locations in city, with 4 in Man- hattan and 1 each in Queens and Brooklyn	Authors describe data as background mercury concentrations in New York City.		
Chen et al. (2004)	Journal article summarizing ambient total gaseous mer- cury (TGM) monitoring con- ducted as part of a three-year study of atmospheric mercury levels in state of Connecticut between 1997 to 1999	Jan 1997– Dec 1999	8 locations in CT	Urban and rural	Includes 4 urban and 4 rural sites representing both coastal and inte- rior locations			
Dachs et al. (2002)	Journal article summarizing PAH measurement study con- ducted in Baltimore and adja- cent Chesapeake Bay in 1997 to evaluate processes driving the short-term variability of PAHs in these areas.	Feb 1997 and July 1997	Baltimore and adjacent Chesapeake Bay site, MD	Urban and coastal	One site in urban Baltimore and second site about 15 km east of Baltimore in Chesapeake Bay	Only Chesapeake Bay site sampled in Feb 1997, while both sites sampled in July 1997.		
Eiguren-Fernandez et al. (2004)	Journal article summarizing PAHs in vapor-phase and PM _{2.5} samples for one year of sampling in Southern Califor- nia urban and rural commu- nities	May 2001– July 2002	6 locations in Southern California	Urban and rural	Includes 2 rural communities (Atascadero and Lompoc) and 4 urban communities (San Dimas, Upland, Mira Loma, and River- side)	Authors conclude that data suggest that in Southern California vehicular exhaust emissions are major contribu- tor to particle-phase PAHs.		
Gigliotti et al. (2000)	Journal article summarizing PAH measurement study con- ducted at a suburban site near New Brunswick NJ and a coastal site at Sandy Hook NJ	Oct 1997– Oct 1998	New Brunswick and Sandy Hook NJ	Suburban / coastal	New Brunswick site in close prox- imity to major traffic arteries, while Sandy Hook located at tip of peninsula extending into Lower Hudson River Estuary/Atlantic Ocean	Authors note that seasonal trends of particulate PAH concentrations are likely indicative of PAH sources such as fuel consumption for domestic heating and vehicular traffic.		

Table B.1. (Continued).	Table B.1. (Continued). Ambient and Outdoor Exposure Data Sources							
Reference	Reference Description	Study Time Period	Study Locations	Locations Type	Locations Description	Notes		
Recent, Peer-Reviewed U	Jrban Air Monitoring Studies (C	ontinued)						
Kinney et al. (2002)	Journal article summarizing personal, indoor, and outdoor sampling conducted in 1999 as part of the Toxic Exposure Assessment, a Columbia/ Harvard (TEACH) study, an urban air toxics study of inner-city New York City neighborhoods	Winter and summer 1999, 8 weeks per season	New York City	Urban	Inner-city neighborhoods prima- rily in northern Manhattan and the South Bronx, but also includ- ing the boroughs of Queens and Brooklyn.	Only outdoor data compiled in data tables		
Manchester-Neesvig et al. (2003)	Journal article summarizing distribution of particle-phase organic compounds in atmo- spheric particulate matter (PM_{10}) samples collected from 12 sites in southern Cali- fornia in 1995 as part of the Southern California Chil- dren's Health Study (SCCHS)	1995	12 Southern California communities	Urban and rural	Includes 5 urban sites, 3 rural coastal sites, 1 rural inland site, 1 desert site, and 2 mountainous sites.			
Mohamed et al. (2002)	Journal article summarizing ambient VOC data collected from 13 urban US locations as part of 1996 EPA Urban Air Toxics Monitoring Program (UATMP)	Sept 1996– Aug 1997	Multiple locations in LA, TX, VT, and NJ (13 in all)	Urban, near- urban	Baton Rouge LA; Brownsville TX; Brattleboro VT; Burlington VT; Camden NJ; El Paso TX; Garyville LA; Galveston TX; Hahnville LA; Port Neches TX; Rutland VT; Underhill VT; Winooski VT.			
Naumova et al. (2002)	Journal article summarizing indoor and outdoor PAH mea- surements collected in 55 nonsmoking residences in three urban areas during June 1999–May 2000 as part of Relationship of Indoor, Out- door, and Personal Air study (RIOPA)	June 1999– May 2000	Los Angeles CA, Houston TX, and Elizabeth NJ	Urban	Nonsmoking residences in urban areas near dominant emission sources, with LA and Elizabeth homes near high-traffic roadways.	Only outdoor data compiled in data tables.		
Odabasi et al. (1999)	Journal article summarizing ambient air sampling con- ducted in Chicago between June and Oct 1995 as part of study to investigate the dry deposition and air-water exchange of PAHs	June–Oct 1995	Chicago IL	Urban	Sampling site in mixed institu- tional, residential, and commer- cial area			

 \mathbf{n}

Table B.1. (Continued).	Table B.1. (Continued). Ambient and Outdoor Exposure Data Sources						
Reference	Reference Description	Study Time Period	Study Locations	Locations Type	Locations Description	Notes	
Recent, Peer-Reviewed U	rban Air Monitoring Studies (C	ontinued)					
Payne-Sturges et al. (2004)	Journal article summarizing personal, indoor, and outdoor sampling of 33 nonsmoking adult residents conducted as part of a community-based exposure assessment con- ducted in Baltimore.	Jan 2000– June 2001	Baltimore MD	Urban	South Baltimore communities in close proximity to large chemical industries as well as nearby inter- state highways and local truck traffic servicing industry	Only outdoor data compiled in data tables.	
Pratt et al. (2000)	Journal article summarizing comprehensive air toxics assessment conducted for the state of Minnesota using mon- itoring data collected at 25 sites throughout the state for varying periods of time	1991–1999, with up to 9 years of data/site	25 sites throughout MN	Varied, including urban, rural, small town, and industrial sites	Some monitoring sites established to measure concentrations in vicinity of specific point sources, others to collect baseline data in Minneapolis-St Paul metropoli- tan area, and others as part of ran- domly selected statewide monitoring network.	Article also summarizes Minnesota results from EPA Cumulative Expo- sure Project, a modeling analysis based on 1990 data that was a prede- cessor to the NATA study.	
Sexton et al. (2004)	Journal article summarizing personal, indoor, and outdoor sampling for 15 VOCs con- ducted over 3 seasons in 1999 among population of 71 non- smoking adults in three Min- neapolis-St Paul urban neighborhoods	Apr–Nov 1999	Minneapolis- St Paul MN	Urban	3 urban neighborhoods (Phillips, East St Paul, Battle Creek) with different outdoor VOC concentra- tion profiles, including large man- ufacturing plant located near East St Paul neighborhood	Only outdoor data compiled in data tables.	
Zielinska et al. (1998)	Journal article summarizing hazardous air pollutants mon- itoring program conducted in 1994–1996 in several repre- sentative urban and rural areas of Arizona.	Apr 1994– Apr 1996	Multiple locations in AZ, including Phoenix and Tucson	Urban and rural	4 permanent sites selected to repre- sent typical communities in AZ; 4 temporary sites selected in areas impacted by particular emission source types	Temporary sites included a motor-vehi- cle-impacted site in Phoenix, a site in Phoenix in vicinity of the Interna- tional airport, and 2 sites in Tuscon near bus yards, garages, railroad tracks.	
Special Purpose Californi	ia State Monitoring Programs						
California Ambient Dioxin Air Monitoring Program (CADAMP) <u>www.arb.ca.gov/aaqm/q</u> <u>mosopas/dioxins/dioxi</u> <u>ns.htm</u>	California Air Resources Board (ARB) ambient air monitoring program implemented to pro- vide information on ambient levels of dioxins and dioxin- like compounds in urban, populated areas, with moni- toring to continue for approx- imately three years (2002– 2004) at ten sites	2002– 2004	California urban centers	Urban	10 sampling sites with 5 in San Francisco Bay Area, 4 in Los Angeles basin, and 1 in Sacra- mento (added for 2003 sampling)	Several of dioxin monitors operated in parallel with new monitoring stations installed as part of ARB Children's Environmental Health Protection Pro- gram.	

Mobile-Source Air Toxics, Appendix Table B.1. Ambient and Outdoor Exposure Data Sources

Table B.1. (Continued). Ambient and Outdoor Exposure Data Sources						
Reference	Reference Description	Study Time Period	Study Locations	Locations Type	Locations Description	Notes
Special Purpose Califo	ornia State Monitoring Progr	ams (<i>Continue</i>	ed)			
Children's Environmen- tal Health Protection Program (SB 25) State- wide Air Monitoring Network <u>www.arb.ca.gov/ch/prog</u> <u>rams/sb25/sb25.htm</u>	California special monitoring program that expanded exist- ing ambient air toxics moni- toring program in six communities around the state, with locations selected where children are typically present (i.e., schools, daycare centers) and near sources of air pollution, including busy highways and industry	Approx. one year periods within 2000– 2003	California urban centers	Urban	Barrio Logan (San Diego), Boyle Heights (Los Angeles), Crockett (Contra Costa), Fresno, Fruitvale (Oakland), Wilmington (Los Ange- les)	
South Coast Air Quality Management District (AQMD) 2000 <u>www.aqmd.gov/matesii</u> <u>df/matestoc.htm</u>	California-based comprehen- sive urban air toxic modeling and monitoring study that included fixed-site "neighbor- hood scale" and microscale "local conditions" monitoring programs and regional air modeling analysis for 30+ air pollutants	Apr 1998– Mar 1999	Multiple locations in South Coast Air Basin, CA	Urban	7 fixed monitoring sites in LA County, and one each in the other three counties in the Basin	Only sampling data for 10 fixed moni- toring locations have been compiled due to unavailability of microscale site data in final report. EPA's Urban Airshed Model (UAM) model used in modeling analysis of emissions from on-road mobile, area and off-road mobile, and major point sources. Reports concludes that mobile sources are dominant source types.
Recent EPA Comprehe	nsive Review Documents					
EPA 2002b http://cfpub2.epa.gov/n cea/cfm/recordisplay.cf m?deid=29060&CFID=1 048605&CFTOKEN=133 95006	Comprehensive EPA review document summarizing the state of the science regarding the possible health hazards associated with exposure to diesel engine exhaust (DE).	1990s	Multiple US urban and suburban locations	Urban and suburban	Among studies considered by EPA are those conducted in Phoenix AZ; Welby and Brighton CO; Bos- ton MA; New York City NY (Man- hattan bus stop); Washington DC; and Southern California	EPA provides "typical range" for ambi- ent DPM averaged over at least a sea- son that is based on post-1990 chemical mass balance (CMB) studies and EC measurements for urban and suburban areas.
EPA 2003 <u>www.epa.gov/ncea/pdfs</u> <u>/dioxin/nas-review/</u>	Latest draft of EPA review doc- ument summarizing EPA's comprehensive reassessment of dioxin exposure and human health effects	1988– 1995	Multiple US urban locations	Urban	EPA summary statistics based on measurements in CT, CA, OH, and NY	Table 3-9 in Part I, Volume 2 contains summary statistics of TEQ_{DF} -WHO ₉₈ concentrations for studies considered by EPA to be representative of urban background.
EPA 2004 <u>http://cfpub.epa.gov/nc</u> <u>ea/cfm/recordisplay.cf</u> <u>m?deid=87903</u> Part I <u>http://oaspub.epa.gov/e</u> <u>ims/eimscomm.getfile?p</u> <u>download id=435945</u> Part II <u>http://oaspub.epa.gov/e</u> <u>ims/eimscomm.getfile?p</u> <u>download id=435946</u>	EPA Criteria Document (CD) summarizing the latest avail- able scientific information on nature and effects of ambient exposure to particulate matter (PM). Appendix 3B provides initial ambient PM _{2.5} specia- tion data from pilot method evaluation study for the national speciation network	Oct 2001– Sept 2002	Multiple US urban locations (13 in all summarized in PM CD)	Urban	Burlington VT; Philadelphia PA; Atlanta GA; Detroit MI; Chicago IL; St. Louis MO; Houston TX; Minne- apolis MN; Boulder CO; Phoenix AZ; Seattle WA; Sacramento CA; Riverside-Rubidoux CA	For the time period 10/01 to 9/02, 51 sites have complete data for this time period. Thirteen sites were selected for summary in PM CD, and are "included for various reasons and representing a cross section of the country."

9

Table B.2. Ambient and Outdoor Exposure Data Sources for Each MSAT ^a																					
	Acetaldehyde	Acrolein	Arsenic Compounds	Benzene	1,3-Butadiene	Chromium Compounds	Dioxins/Furans	DPM + DEOG (diesel) ^b	Ethylbenzene	Formaldehyde	<i>n</i> -Hexane	Lead Compounds	Manganese Compounds	Mercury Compounds	MTBE	Naphthalene	Nickel Compounds	POM ^c	Styrene	Toluene	Xylene
EPA Ambient Air Quality Databases or Monitoring Programs																					
National Dioxin Air Monitoring Network (NDAMN)—Cleverly et al. (2002) 2003 Urban Air Toxics Monitoring Program (UATMP)—Eastern Research Group (ERG 2004) ^{d,e} Lake Michigan Mass Balance Study—McCarty et al. (2004)	✓			*	~		~		1	✓				✓	1				✓	1	1
EPA Air Quality System (AQS) Database (via AIRData website)	✓	✓	1	✓	✓	1			1	√	✓	1	✓	✓	1	✓	✓		✓	✓	✓
Recent In-Vehicle, Roadway Measurement Studies Batterman et al. (2002)				✓					✓		~					~			✓	✓	✓
Borak et al. (2003) Chellam et al. (2005) Destaillats et al. (2002)		✓	✓					~				1	1				~	1			
Fedoruk and Kerger (2003) Fitz et al. (2003)	✓	~		√ √	✓		,	✓	√ √	✓	✓				1			✓	•	✓ ✓	✓ ✓
Gertler et al. (1996, 1998) Grosjean and Grosjean (2002)	~	~					•			✓											
Hunt et al. (1997) Kinney et al. (2000) Lena et al. (2002) Levy et al. (2003)							•	√ √										√			
Martuzevicius et al. (2004) Riediker et al. (2003) Rodes et al. (1998) Sapkota and Buckley (2003)	✓ f	√ f	•	√ √ √	✓ f ✓	√ √		√ √	√ √	✓ f ✓	✔ f	* * *	√ √ √	~	•		✓ ✓ ✓	✓ ✓ ✓		√ √	√ √
Recent Large-Scale Modeling Analyses																					
Seigneur et al. (2003) EPA National Air Toxics Assessment (NATA) ^g	✓	~	✓	√ √	✓	✓		√ √		✓		✓	✓	~			✓	~			
Recent, Peer-Reviewed Urban Air Monitoring Studies Adgate et al. (2004b) Adgate et al. (2004a) Carpi and Chen (2002)				√ √					1					✓					√ √	✓ ✓	√ √
															Tab	le co	ontin	ues d	on n	ext j	Jage

^a See end of table all for footnotes.

Mobile-Source Air Toxics, Appendix Table B.2. Ambient and Outdoor Exposure Data Sources for Each MSAT

Table B.2. (Continued). Ambient and Outdoor Exposure Data Sources for Each MS	SAT ^a																				
	Acetaldehyde	Acrolein	Arsenic Compounds	Benzene	1,3-Butadiene	Chromium Compounds	Dioxins/Furans	DPM + DEOG (diesel) ^b	Ethylbenzene	Formaldehyde	<i>n</i> -Hexane	Lead Compounds	Manganese Compounds	Mercury Compounds	MTBE	Naphthalene	Nickel Compounds	POM ^c	Styrene	Toluene	Xylene
Recent, Peer-Reviewed Urban Air Monitoring Studies (Continued)																					
Chen et al. (2004) Dachs et al. (2002) Eiguren-Fernandez et al. (2004)														~		✓		√ √			
Gigliotti et al. (2000) Kinney et al. (2002) Manchester-Neesvig et al. (2003)	1		1	✓	1	1		✓	1	1		1	✓		1		1	✓ ✓	✓	✓	1
Mohamed et al. (2002)				~					1										1	~	✓
Naumova et al. (2002) Odabasi et al. (1999) Payne-Sturges et al. (2004)				✓					✓						√			√	✓	✓	✓
Pratt et al. (2000) Sexton et al. (2004)	•		•	√ √		•			✓ ✓	~		✓	~	✓			~		√ √	✓ ✓	✓ ✓
Zielinska et al. (1998)	✓			✓	✓				✓	✓	✓					✓		✓	✓	✓	_ ✓
Special Purpose California State Monitoring Programs																					
California Ambient Dioxin Air Monitoring Program (CADAMP)							✓.														
Children's Environmental Health Protection Program (SB 25) South Coast Air Quality Management District (AQMD) MATES-II (2000) (Also included modeling analysis)	√ √		√ √	√ √	√ √	√ √	✓ h ✓ f	√ √	✓ ✓ f	√ √		√ √	✓ ✓ f	~	~	√ ^f	√ √	✓ ✓ f	√ √	✓ ✓	✓ ✓ f
Recent EPA Comprehensive Review Documents																					
Diesel HAD (2002) Dioxin Reassessment (2003) PM Criteria Document (2004)			1			•	1	√ √				1	√				1				

^b Data sources include studies measuring black carbon and elemental carbon, two commonly used surrogates for diesel PM.

^c Surrogates used for POM include total polycylic aromatic hydrocarbons (Total PAHs) as well as seven PAHs identified by EPA as probable human carcinogens and used as surrogates for the larger group of POM compounds in EPA air toxics evaluations.

^d TSP samples were also analyzed for metals at selected UATMP sites; these data are not reported in data compilation tables due to availability of PM_{2.5} metals data from numerous other sources.

^e PAH data available for one UATMP site (Sault Sainte Marie MI) are not reported in data compilation tables due to discrepancies in the data provided in the UATMP report.

^f Included within sampling program, but data not provided in final report.

^g Based on 1996 emissions data.

^h Some sites included in CADAMP; data are reported by CADAMP and are thus attributed to CADAMP in data compilation tables.

Table B.3. Ambient and Outdoor Exposure Data Summaries. Acetaldehyde (Columns continue on next page)

		Study Loca	ation(s)			N. I				Individua Measureme	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Min	Max
Eastern Research Group (ERG) (2004)	2003 UATMP data summary	Nation- wide	US	Urban, subur- ban, rural	2003	24 hrs	1,875	70%	μg/m³ (converted from ppb)	Directly from reference	7.2×10^{-2}	$1.7 imes 10^1$
EPA Air Quality System (AQS) Database (via AIRData web- site)	HAP monitor values report data summary	Nation- wide	US	Urban, subur- ban, rural	2003	Primarily 24 hrs, some 1 hr and 3 hrs	10,515		µg/m³ (converted from ppbC)	Calculated from annual summary report		$1.8 imes 10^2$
Children's Environmental Health Protec- tion Program	Barrio Logan monitoring data summary	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	68	100%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	$2.7 imes 10^{-1}$	3.8
	Boyle Heights monitoring data summary	Los Angeles	CA	Urban	Mar 2001– May 2002	24 hrs	73	97%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	< 1.8 × 10 ⁻¹	8.5
	Crockett monitoring data summary	Crockett	CA	Urban	Oct 2001– May 2003	24 hrs	82	98%	µg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	$< 1.8 \times 10^{-1}$	2.7
	Fresno monitoring data summary	Fresno	CA	Urban	July 2002– Aug 2003	24 hrs	67	100%	µg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	$6.7 imes 10^{-1}$	$1.0 imes 10^1$
	Fruitvale monitoring data summary	Fruitvale area of Oakland	CA	Urban	Nov 2001– Apr 2003	24 hrs	76	97%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	< 1.8 × 10 ⁻¹	3.6

Table B.3. Ambie	ent and Outdoor	Exposure 1	Data Summ	aries (<i>Contin</i>	ued). Aceta	aldehyde (<i>Co</i>	olumns con	tinued from previous page)
		Overa and/	ll Arithmeti or Range of I	c Mean Means	C and/o	Overall Medi r Range of N	ian Iedians	_
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Eastern Research Group (ERG) (2004)	Typically 1 yr (annual average)	2.5			2.0			Samples typically collected on a 6-day or 12-day schedule.
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	2.7	0	$2.5 imes 10^1$				Overall mean is the mean of all site average concen- trations. Minimum and maximum average concentrations represent range in average concen- trations across all sites (i.e., the lowest and high- est site averages). Maximum individual sample concentration is for 24-hr sampling period.
Children's Environmental Health Protection Program	17 months	1.5						
	~ 15 months	2.8						
	~ 1.5 yrs	7.2×10^{-1}	L					
	1 yr	2.9						
	6 months	1.2						

		Study Loca	ation(s)								Individua Measurem	al Sample lent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Children's Envi- ronmental Health Protec- tion Program (<i>Continued</i>)	Wilmington Monitoring data summary	Wilming- ton	CA	Urban	May 2001– July 2002	24 hrs	71	100%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	3.2×10^{-1}	6.1
Fitz et al. (2003)	In-vehicle data summary for school bus study	ı Los Angeles	CA	In-vehi- cle, urban	4/22/02- a 6/12/02	1–1.5 hrs	20 bus commute runs		μg/m³	Directly from reference		
Riediker et al. (2003)	In-vehicle data summary for NC state police patrol cars	u Wake County 9	NC	In-vehi- cle, urban	8/13/01– 10/11/01	7.75–14.7 hrs (average 9.1)	50		μg/m³	Provided by author in email	0.0	$3.1 imes 10^1$
Grosjean and Grosjean (2002)	Caldecott) Tunnel Measurements	Near San Francisco	CA	Road- side, urban	7/20/99– 8/5/99	2 hrs	8 at both inlet and outlet		μg/m³	Directly from reference		
	Tuscarora Mountain Tunnel measurements	Pennsyl- vania Turnpike	PA	Road- side, urban	5/18/99– 5/21/99	1 hr	10 at inlet, 9 at outlet		μg/m³	Directly from reference		
Kinney et al. (2002)	Summary of summer residential outdoor sampling data	New York	NY	Urban	Summer 1999 (over 8 wks)	2 days	36		μg/m³	Directly from reference		
	Summary of winter residential outdoor sampling data	New York	NY	Urban	Winter 1999 (over 8 wks)	2 days	36		µg/m³	Directly from reference		

 Table B.3. Ambient and Outdoor Exposure Data Summaries (Continued).
 Acetaldehyde (Columns continue on next page)

	-	Overa and/	ll Arithmeti or Range of I	c Mean Means	C and/o	Overall Medi r Range of M	an Iedians	_
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Children's Environmental Health Protec- tion Program (<i>Continued</i>)	~ 15 months	1.8						
Fitz et al. (2003)	over all expo- sure runs grouped by route and win- dow position		$2.8 imes 10^1$	$6.3 imes 10^1$				Range in mean concentrations reflects the mean concentrations provided in the report for two groups of urban routes: one exposure ran with windows closed (morning) and with windows open (afternoon).
Riediker et al. (2003)	50 late-shift patrols (3 PM to midnight) over 25 days	9.0						Acetaldehyde data not reported in journal article; data obtained through email communication with Ron Williams of EPA, with minimum concentra- tion of 0 as reported in email correspondence.
Grosjean and Grosjean (2002)	8 2-hr measure-) ments		1.5	5.5				Fleet consisted primarily of light-duty vehicles using California Phase 2 reformulated gasoline; average concentration range presented is average concentrations across inlet (minimum) and outlet (maximum) measurements.
	9–10 hrly mea- surements		1.1	2.3				Fleet included both light-duty vehicles and heavy- duty diesel trucks; average concentration range presented is average concentrations across inlet (minimum) and outlet (maximum) measurements.
Kinney et al. (2002)	8 wks	4.2						
	8 wks	2.8						

		Study Loca	ation(s)							Individua Measurem	al Sample lent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Pratt et al. (2000)	Minnesota statewide monitoring data summary	Statewide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 yrs per site	Typically 24 hrs	2479	100%	µg/m³	Directly from reference		8.8
South Coast Air Quality Management District (AQMD) (2000)	Fixed site sampling data summary	Southern California South Coast Air Basin	CA	Primarily urban, includ- ing Los Angeles	Apr 1998– Mar 1999	24 hrs	One 24-hr sample every six days		μg/m³	Directly from reference		
	Regional modeling analysis summary	Southern California South Coast Air Basin	CA	Primarily urban, includ- ing Los Angeles	Apr 1998– Mar 1999				μg/m³	Directly from reference		
EPA National Air Toxics Assessment (NATA)	Summary of rural modeling results	Nation- wide	USA	Rural	1996				µg/m³	Directly from reference		
	Summary of urban modeling results	Nation- wide	USA	Urban	1996				μg/m³	Directly from reference		
Zielinska et al. (1998)	Summary of AZ HAPs program fixed site monitoring data	Multiple (5) locations	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 yr at each site)	24 hrs	~ 60 per site		μg/m³ (con- verted from ppb)	Directly from reference	$2.0 imes 10^{-1}$	$1.5 imes 10^1$
	Summary of AZ HAPs program temporary site monitoring data	Multiple (4) locations	AZ	Urban	June 1994– Mar 1996 (~ 1 wk to 2 months at each site)	24 hrs	4–17 per site		μg/m³ (con- verted from ppb)	Directly from reference	1.2	1.2×10^1

Table B.3. Ambient and Outdoor Exposure Data Summaries Data Summaries (Continued). Acetaldehyde (Columns continue on next page)

Table B.3. Ambie	ent and Outdoor	Exposure I)ata Summa	aries (<i>Contin</i>	ued). Aceta	ldehyde (<i>Co</i>	olumns com	tinued from previous page)
		Overal and/c	l Arithmetio r Range of I	c Mean Means	C and/or	verall Medi r Range of M	an Iedians	
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Pratt et al. (2000)	1–9 yrs	1.1			$9.9 imes 10^{-1}$			
South Coast Air Quality Management District (AQMD) (2000)	1 yr	3.2						Report concluded that mobile sources were domi- nant pollutant sources.
	1 yr	5.2						Modeling included emissions for on-road mobile, area and off-road mobile, and major point sources.
EPA National Air Toxics Assess- ment (NATA)	• 1 yr (annual average)	1.7×10^{-1}			1.3×10^{-1}			Mobile sources estimated to account for 73% of nationwide mean.
	1 yr (annual average)	$9.7 imes 10^{-1}$			$7.4 imes 10^{-1}$			Mobile sources estimated to account for 91% of nationwide mean.
Zielinska et al. (1998)	1 yr		1.3	5.0				
	~ 1 wk to 2 months		1.9	5.4				

		Study Locatior	n(s)								Individua Measurem	ll Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA Air Quality System (AQS) Database (via AIRData website)	HAP Monitor Values Report Data Summary	Nation- wide	US	Urban, sub-urban, rural	2003	Both 24 hrs and 3 hrs	2,574		µg/m³ (con- verted from ppbC)	Calculated by Gradient Corp. from annual sum- mary report		5.7
Fitz et al. (2003)	In-vehicle data summary for school bus study	Los Angeles	CA	In-vehi- cle, urban	4/22/02 – 6/12/02	1–1.5 hrs	31 bus commute runs	0%	µg/m³ (con- verted from ppb)	Directly from reference	< ~ 0.5	< ~ 0.5
Destaillats et al. (2002)	SF Bay Bridge toll plaza air sampling data summary	Oakland	CA	Roadside, urban	4/23/01- 4/24/01	4 hrs	6 (replicate samples for 3 sampling events)	100%	µg/m³	Directly from reference	3.1×10^{-2}	$1.4 imes 10^{-1}$
Riediker et al. (2003)	In-vehicle data summary for NC state police patrol cars	Wake County	NC	In-vehi- cle, urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50	< 25%	μg/m³	Provided by author in email	< 5.0 × 10 ⁻¹	9.9×10^{-1}
Grosjean and Grosjean (2002)	Caldecott Tunnel data summary	Near San Francisco	CA	Tunnel, urban	7/20/99– 8/5/99	2 hrs	8 at both inlet and outlet		µg/m³	Directly from reference		
	Tuscarora Mountain Tunnel data summary	Pennsylva- nia Turn-pike	PA	Tunnel, urban	5/18/99– 5/21/99	1 hr	10 at inlet, 9 at outlet		µg/m³	Directly from reference		
EPA National Air Toxics Assessment (NATA)	Summary of rural model- ing results	Nation- wide—all rural coun- ties	US	Rural	1996				µg/m³	Directly from reference		
	Summary of urban model- ing results	Nation- wide—all urban counties	US	Urban	1996				µg/m³	Directly from reference		
											Table continue	s on next page

Table B.4. Ambient and Outdoor Exposure Data Summaries Data Summaries. Acrolein (Columns continue on next page)

		Overa and/o	ll Arithmetic or Range of M	Mean Ieans	(and/c	Overall Media r Range of M	an Iedians	
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	- Notes
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	$7.6 imes 10^{-1}$	0.0	2.3				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site aver- ages). Maximum individual sample con- centration is for 24-hr sampling period.
Fitz et al. (2003)								All measurements were below the detection limit, which is reported to be 0.03 μ /sample (approx. 0.5 μ g/m ³).
Destaillats et al. (2002)								
Riediker et al. (2003)	50 Late-shift patrols (3 PM to midnight) over 25 days	$3.8 imes 10^{-2}$						Summary statistics obtained through email communication with Ron Williams of EPA who indicated that large number of non-detects was related to failure of methodology for this pollutant.
Grosjean and Grosjean (2002)	8 2-hr measure- ments		8.0×10^{-2}	$6.0 imes 10^{-1}$				Fleet consisted primarily of light-duty vehicles using California Phase 2 refor- mulated gasoline; average concentration range presented is average concentrations across inlet (minimum) and outlet (maxi- mum) measurements.
	9–10 hrly mea- surements		$1.0 imes 10^{-1}$	3.2×10^{-1}				Fleet included both light-duty vehicles and heavy-duty diesel trucks; average concentration range presented is average concentrations across inlet (minimum) and outlet (maximum) measurements.
EPA National Air Toxics Assess- ment (NATA)	1 yr (annual average)	4.4×10^{-2}			$3.7 imes 10^{-2}$			Mobile sources estimated to account for 38% of nationwide mean.
	1 yr (annual average)	$1.4 imes 10^{-1}$			$1.0 imes 10^{-1}$			Mobile sources estimated to account for 79% of nationwide mean.

Table B.4. Ambient and Outdoor Exposure Data Summaries (Continued). Acrolein (Columns continued from previous page)

		Study Locat	ion(s)								Individual Samp Rai	le Measurement 1ge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA Air Quality System (AQS) Database (via AIRData website)	HAP Monitor Values Report data summary— PM _{2.5} As	Nationwide	US	Urban, suburban, rural	2003	24 hrs	13,927		μg/m³	Calculated by Gradient Corp. from annual sum- mary report		4.7×10^{-2}
Children's Environmen- tal Health Protection Program	Barrio Logan Monitoring data summary— TSP As	San Diego	CA	Urban	Oct–Nov 1999, Mar–Aug 2000	24 hrs	19	26%	µg/m³	Calculated by Gradient Corp. from study data set	$< 1.4 \times 10^{-3} - 4.7 \times 10^{-3}$	$3.6 imes 10^{-3}$
	Boyle Heights Monitoring data summary— TSP As	Los Angeles	CA	Urban	Mar 2001– May 2002	24 hrs	68	7%	µg/m³	Calculated by Gradient Corp. from study data set	< 3.0 × 10 ⁻³	$5.2 imes 10^{-3}$
	Crockett Monitoring data summary— TSP As	Crockett	CA	Urban	Oct 2001– Feb 2003	24 hrs	60	2%	µg/m³	Calculated by Gradient Corp. from study data set	< 3.0 × 10 ⁻³	$3.7 imes 10^{-3}$
	Fresno Monitoring data summary— PM ₁₀ As	Fresno	CA	Urban	Aug 2002– Feb 2003	24 hrs	34	47%	µg/m³	Calculated by Gradient Corp. from study data set	< 2.0 × 10 ⁻³	$1.0 imes 10^{-2}$
	Fruitvale Monitoring data summary— TSP As	Fruitvale area of Oakland	CA	Urban	Nov 2001– Feb 2003	24 hrs	53	4%	μg/m³	Calculated by Gradient Corp. from study data set	< 3.0 × 10 ⁻³	$6.0 imes 10^{-3}$
	Wilmington Monitoring data summary— TSP As	Wilmington	CA	Urban	May 2001– July 2002	24 hrs	68	4%	µg/m³	Calculated by Gradient Corp. from study data set	< 3.0 × 10 ⁻³	4.2×10^{-3}
EPA (2004)	Atlanta GA— PM _{2.5} As	Atlanta	GA	Urban	Oct 2001– Sept 2002	24 hrs	183		μg/m³	Directly from reference	$< 1 \times 10^{-3}$	$1.4 imes 10^{-2}$
											Table continu	ues on next page

Table B.5. Ambie	ent and Outdoor I	Exposure Da	ta Summario	es (Continued).	Arsenic Con	pounds (<i>Col</i>	umns contin	ued from previous page)
		Overall Arit	hmetic Mear of Means	1 and/or Range	Overall	Median and/o Medians	or Range of	_
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
EPA Air Quality System (AQS) Database (via AIRData web- site)	typically 1 yr (annual average)	$1.7 imes 10^{-3}$	$5.0 imes 10^{-4}$	$8.7 imes 10^{-3}$				Overall mean is the mean of all site aver- age concentrations. Minimum and maximum average concentrations rep- resent range in average concentrations across all sites (i.e., the lowest and highest site averages).
Children's Environmental Health Protection Program	8 months	$1.7 imes 10^{-3}$						
	~ 15 months	1.7×10^{-3}						
	~ 1.5 yrs	$1.3 imes 10^{-3}$						
	6 months	2.4×10^{-3}						
	6 months	$1.4 imes 10^{-3}$						
	~ 15 months	$1.6 imes 10^{-3}$						
EPA (2004)	1 yr	$1.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
								Table continues on next page

		Study Locat	ion(s)								Individual Samp Ra	ole Measurement nge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA (2004) (Continued)	Boulder CO— PM _{2.5} As	Boulder	CO	Urban	Oct 2001– Sept 2002	24 hrs	161		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$5.0 imes 10^{-3}$
	Burlington VT— PM _{2.5} As	- Burlington	VT	Urban	Oct 2001– Sept 2002	24 hrs	201		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$5.0 imes 10^{-3}$
	Chicago IL— PM _{2.5} As	Chicago	IL	Urban	Oct 2001– Sept 2002	24 hrs	139		µg/m³	Directly from reference	$1.0 imes 10^{-3}$	$6.0 imes 10^{-3}$
	Detroit MI— PM _{2.5} As	Detroit	MI	Urban	Oct 2001– Sept 2002	24 hrs	189		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$1.0 imes 10^{-2}$
	Houston TX— PM _{2.5} As	Houston	ТΧ	Urban	Oct 2001– Sept 2002	24 hrs	229		μg/m³	Directly from reference	$1.0 imes 10^{-3}$	$6.0 imes 10^{-3}$
	Minneapolis MN—PM _{2.5} As	Minnea- polis	MN	Urban	Oct 2001– Sept 2002	24 hrs	163		µg/m³	Directly from reference	< 2 × 10 ⁻³	1.2×10^{-2}
	Philadelphia, PA—PM _{2.5} As	Philadel- phia	PA	Urban	Oct 2001– Sept 2002	24 hrs	262		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$6.0 imes 10^{-3}$
	Phoenix AZ— PM _{2.5} As	Phoenix	AZ	Urban	Oct 2001– Sept 2002	24 hrs	275		µg/m³	Directly from reference	< 2 × 10 ⁻³	$9.0 imes 10^{-3}$
	Riverside- Rubidoux CA—PM _{2.5} As	Riverside- Rubidoux	CA	Urban	Oct 2001– Sept 2002	24 hrs	161		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$6.0 imes 10^{-3}$
	Sacramento CA—PM _{2.5} As	Sacramento	СА	Urban	Oct 2001– Sept 2002	24 hrs	265		µg/m³	Directly from reference	< 2 × 10 ⁻³	$6.0 imes 10^{-3}$
	Seattle WA— PM _{2.5} As	Seattle	WA	Urban	Oct 2001– Sept 2002	24 hrs	314		µg/m³	Directly from reference	$1.0 imes 10^{-3}$	$7.0 imes 10^{-3}$
	St Louis MO— PM _{2.5} As	St Louis	МО	Urban	Oct 2001– Sept 2002	24 hrs	324		µg/m³	Directly from reference	$1.0 imes 10^{-3}$	1.1×10^{-2}
											Table contin	ues on next page

Health Effects Institute Special Report 16 $\ensuremath{\mathbb{C}}$ 2007

		Overall Arit	hmetic Mean of Means	and/or Range	Overall	Median and/o Medians	or Range of		
Source Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	– Notes	
PA (2004) (Continued)	1 yr	Not provided						1 of 13 sites featured in PM CD to represent cross-section of US.	
	1 yr	Not provided						1 of 13 sites featured in PM CD to represent cross-section of US.	
	1 yr	$1.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.	
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.	
	1 yr	$1.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.	
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.	
	1 yr	Not provided						1 of 13 sites featured in PM CD to represent cross-section of US.	
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.	
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.	
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.	
	1 yr	$1.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.	
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.	
								Table continues on next	

		Study Locat	ion(s)								Individual Samı Ra	ole Measurement nge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Riediker et al. (2003)	Ambient air data summary— PM _{2.5} As	Wake County	NC	Urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		µg/m³	Directly from reference	0.0	$5.0 imes 10^{-3}$
	In-vehicle data summary for NC State police patrol cars— PM _{2.5} As	Wake County	NC	In-vehi- cle, urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		µg/m³	Directly from reference	0.0	$4.4 imes 10^{-3}$
	Roadside sample data summary— PM _{2.5} As	Wake County	NC	Roadside, urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		g/m³	Directly from reference	0.0	4.4×10^{-3}
Chellam et al. (2005)	Tunnel data summary— PM _{2.5} As	Houston	TX	Tunnel, urban	8/29/00– 9/1/00	2 hrs	6	0%	µg/m³	Directly from reference	$< 3.12 \times 10^{-3}$	$< 3.12 \times 10^{-3}$
Kinney et al. (2002)	Summary of summer residential outdoor data— PM _{2.5} As	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	36		μg/m³	Directly from reference		
Pratt et al. (2000)	Minnesota statewide monitoring data summary— PM ₁₀ As	Statewide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 yrs per site	Typically 24 hrs	717	4%	μg/m³	Directly from reference	$< 5 \times 10^{-3}$	$1.5 imes 10^{-2}$
South Coast Air Quality Management District (AQMD) (2000)	Fixed site sampling data summary— TSP As	Southern California South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999	24 hrs	One 24-hr sample every six days		μg/m³	Directly from reference		
	Regional modeling analysis summary— simulated As	Southern California South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999				µg/m³	Directly from reference		
EPA National Air Toxics Assessment (NATA)	Summary of rural modeling results— arsenic compounds	Nationwide	US	Rural	1996				μg/m³	Directly from reference		
	Summary of urban modeling results— arsenic compounds	Nationwide	US	Urban	1996				µg/m³	Directly from reference		

Table B.5. Ambie	nt and Outdoor 1	Exposure Dat	ta Summaries	s (Continued).	Arsenic Com	pounds (<i>Col</i>	umns contin	ued from previous page)
		Overall Arit	hmetic Mean of Means	and/or Range	Overall N	Median and/o Medians	or Range of	_
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Riediker et al. (2003)	50 late-shift patrols (3 PM to midnight) over 25 days	$1.5 imes 10^{-3}$						Minimum concentration of 0.0 is as reported in publication.
	50 late-shift patrols (3 PM to midnight) over 25 days	$1.0 imes 10^{-3}$						Minimum concentration of 0.0 is as reported in publication.
	50 late-shift patrols (3 PM to midnight) over 25 days	1.2×10^{-3}						Minimum concentration of 0.0 is as reported in publication.
Chellam et al. (2005)								
Kinney et al. (2002)	8 weeks	3.7×10^{-4}						
Pratt et al. (2000)	1–9 yrs	$2.0 imes 10^{-3}$			$1.0 imes 10^{-3}$			
South Coast Air Quality Manage ment District (AQMD) (2000)	1 yr	1.6						Concentration extremely elevated com- pared to other data sources, possibly reflecting typo in Table 5-1 in report; report concluded that mobile sources were dominant pollutant sources.
	1 yr	1.7						Concentration extremely elevated com- pared to other data sources, possibly reflecting typo in Table 5-1 in report; report concluded that mobile sources were dominant pollutant sources.
EPA National Air Toxics Assess- ment (NATA)	1 yr (annual average)	5.8×10^{-5}			$1.3 imes 10^{-5}$			Mobile sources estimated to account for 1% of nationwide mean.
	1 yr (annual average)	$1.7 imes 10^{-4}$			8.1×10^{-5}			Mobile sources estimated to account for 6% of nationwide mean.

Table B.6. Ambie	nt and Outdoor	Exposure 1	Data S	Summaries	. Benzene (Columns c	ontinue on i	next page)				
		Study Location	y n(s)								Individua Measureme	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Eastern Research Group (ERG) (2004)	2003 UATMP data summary	Nation- wide	US	Urban, suburban, rural	2003	24 hrs	1,550	75%	μg/m ³ (con- verted from ppb)	Directly from reference	1.3×10^{-1}	8.8
EPA Air Quality System (AQS) Database (via AIRData web- site)	HAP Monitor Values Report data summary	Nation- wide	US	Urban, suburban, rural	2003	Primarily 24 hrs, some 1 hr and 3 hrs	113,343		μg/m³ (con- verted from ppbC)	Calculated by Gradient Corp. from annual summary report		$2.3 imes 10^2$
Children's Environmental Health Protection Program	Barrio Logan Monitoring data summary	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	69	90%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	$< 6.5 \times 10^{-1}$	$1.0 imes 10^1$
	Boyle Heights Monitoring data summary	Los Angeles	СА	Urban	Feb 2001– May 2002	24 hrs	74	100%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	$9.5 imes 10^{-1}$	$2.2 imes 10^1$
	Crockett Monitoring data summary	Crockett	CA	Urban	Oct 2001– May 2003	24 hrs	81	100%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	2.7×10^{-1}	1.9
	Fresno Monitoring data summary	Fresno	CA	Urban	July 2002- Aug 2003	- 24 hrs	65	100%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	$3.3 imes 10^{-1}$	8.2
	Fruitvale Monitoring data summary	Fruitvale area of Oakland	СА	Urban	Nov 2001- Apr 2003	- 24 hrs	83	100%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	$2.6 imes 10^{-1}$	7.5
	Wilmington Monitoring data summary	Wilming- ton	CA	Urban	July 2001– July 2002	- 24 hrs	60	100%	μg/m ³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	$3.6 imes 10^{-1}$	9.5
											Table continues	s on next page

Table B.6. Ambient and	Outdoor Expo	osure Data S	ummaries (C	ontinued). Ber	nzene (<i>Colun</i>	nns continued	from previo	us page)
	Dete	Overa and/	ll Arithmetic or Range of M	Mean Ieans	and/o	Overall Media or Range of M	in edians	_
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Eastern Research Group (ERG) (2004)	Typically 1 yr (annual average)	1.5			1.1			Samples typically collected on a 6-day or 12-day schedule.
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	1.4	$1.3 imes 10^{-1}$	8.6				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentra- tions represent range in average concentrations across all sites (i.e., the lowest and highest site aver- ages). Maximum individual sample concentration is for 1-hr sampling period.
Children's Environmental Health Protection Program	17 months	3.2						
	16 months	3.9						
	~ 1.5 yrs	$7.8 imes 10^{-1}$						
	1 yr	1.8						
	~ 1.5 yrs	2.0						
	~ 1 yr	2.2						
								Table continues on next page

		Study Location	/ n(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Fitz et al. (2003)	In-vehicle data summary for school bus study	Los Angeles	CA	In-vehi- cle, urban	4/22/02- 6/12/02	1–1.5 hrs	20 bus commute runs		μg/m³ (con- verted from ppb)	Directly from reference		
Payne-Sturges et al. (2004)	Baltimore Outdoor Air data summary	Baltimore	MD	Urban	Jan 2000– June 2001	3 days	33		μg/m³	Directly from reference		3.1 (P90)
Riediker et al. (2003)	Ambient Air data summary	Wake County	NC	Urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		μg/m ³ (con- verted from ppb)	Directly from reference	0.0	2.0
	In-vehicle data summary for NC state police patrol cars	Wake County	NC	In-vehi- cle, urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	46 (4 excluded by authors)		μg/m³ (con- verted from ppb)	Directly from reference	1.3	$4.4 imes 10^1$
	Roadside Sample data summary	Wake County	NC	Roadside, urban	8/13/01– 10/11/01	7.75–14.7 hrs (average 9.1)	50		μg/m³ (con- verted from ppb)	Directly from reference	0.0	2.6
Sapkota and Buckley (2003)	Baltimore Harbor Tunnel Tollbooth data summary	Baltimore	MD	Roadside, urban	7 week- days between 6/18/01– 6/28/01	3 hrs	8 samples per day on 7 week- days (56)		µg/m³	Directly from reference	$7.0 imes 10^{-1}$	$3.3 imes10^1$
Adgate et al. (2004b)	Minneapolis Spring Outdoor School data summary	Minn- eapolis	MN	Urban	4/9/00– 5/12/00	5 days	10	100%	µg/m³	Directly from reference		1.6 (P90)
	Minneapolis Winter Outdoor School data summary	Minn- eapolis	MN	Urban	1/24/00– 2/18/00	5 days	8	100%	µg/m³	Directly from reference		2.2 (P90)
Batterman et al. (2002)	Across study roadway and in-bus mea- surement data summary	Detroit	MI	In-vehi- cle, urban	10/20/99– 11/10/99 (1 day per week for 4 weeks)	3–4 hrs	74	100%	µg/m³	Directly from reference		$1.1 imes 10^1$
											Table continue	s on next p

Table B.6. Ambient and	Outdoor Exp	osure Data S	ummaries (C	ontinued). Be	nzene (<i>Colum</i>	ns continued	from previo	us page)
		Overa and/	ll Arithmetic or Range of M	: Mean Ieans	(and/c	Overall Media or Range of M	n edians	_
Source (Continued)	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Fitz et al. (2003)	Over all exposure runs grouped by route and window position		2.9	9.5				Range in mean concentrations reflects the mean concentrations provided in the report for two groups of urban routes: one expo- sure ran with windows closed (morning) and with windows open (afternoon).
Payne-Sturges et al. (2004)	18 months	1.8			1.8			
Riediker et al. (2003)	50 late-shift patrols (3 PM to midnight) over 25 days	3.3×10^{-1}						Minimum concentration of 0.0 is as reported in publication.
	50 late-shift patrols (3 PM to midnight) over 25 days	$1.3 imes 10^1$						Four excluded samples were from one car that had extreme values, which increased from shift to shift.
	50 late-shift patrols (3 PM to midnight) over 25 days	$6.5 imes 10^{-1}$						Minimum concentration of 0.0 is as reported in publication.
Sapkota and Buckley (2003)	7 days of 3-hr integrated samples					2.7	$2.2 imes 10^1$	Range in median concentrations rep- resent daily 3-hr time blocks over the week of sampling with mini- mum and maximum median con- centrations.
Adgate et al. (2004b)	5 weeks				1.1			
	4 weeks				1.3			
Batterman et al. (2002)	4 days (over 4 weeks)	4.5						
								Table continues on next page

		Study Locatior	n(s)								Individual Measureme	Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Kinney et al. (2002)	Summary of summer residential outdoor data	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	35		µg/m³	Directly from reference		
	Summary of winter residential outdoor data	New York	NY	Urban	Winter 1999 (over 8 weeks)	2 days	36		μg/m³	Directly from reference		
Pratt et al. (2000)	Minnesota statewide monitoring data summary	Statewide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 yrs per site	Typically 24 hrs	3650	99%	μg/m³	Directly from reference	$< 2.5 \times 10^{-1}$	$2.6 imes10^1$
Sexton et al. (2004)	Minneapolis- St Paul outdoor air data summary	Minnea- polis-St Paul	MN	Urban	Apr–Nov 1999	2 days	132	100%	μg/m³	Directly from reference		3.3 (P90)
South Coast Air Quality Man- agement Dis- trict (AQMD) (2000)	Fixed site sampling data summary	Southern California South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999	24 hrs	One 24 hr sam- ple every six days		µg/m³	Directly from reference		
	Regional modeling analysis summary	Southern California South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999				µg/m³	Directly from reference		
Adgate et al. (2004a)	Minnesota residential outdoor air data summary	Statewide	MN	Urban, nonurban	May–Sept 1997	6 days	100	100%	μg/m³	Directly from reference	$5.0 imes 10^{-1}$	4.6 (P95)
Fedoruk and Kerger (2003)	Data summary for in-vehicle measurements during 90 minute drive	Los Angeles	CA	In-vehi- cle, urban and suburban	June–July 1997	90 min- utes	1	100%	μg/m³	Directly from reference	2.4	2.4
Table B.6. Ambient and	Outdoor Expo	sure Data S	ummaries (C	ontinued). Be	nzene (<i>Colum</i>	ens continued	from previou	us page)				
---	-----------------------------	---------------	---------------------------------	---------------	----------------------	--------------------------------	--------------	--				
		Overa and/	all Arithmetic or Range of M	Mean Ieans	(and/c	Overall Media or Range of M	in edians					
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes				
Kinney et al. (2002)	8 weeks	1.3										
	8 weeks	2.6										
Pratt et al. (2000)	1-9 yrs	1.8			1.3							
Sexton et al. (2004)	7 months	1.6				1.3		Authors note that manufacturing plant located near East St Paul neighborhood.				
South Coast Air Quality Management District (AQMD) (2000)	1 yr	3.5						Report concluded that mobile sources were dominant pollutant sources.				
	1 yr	3.1						Modeling included emissions for on-road mobile, area and off-road mobile, and major point sources.				
Adgate et al. (2004a)	5 months	3.3										
Fedoruk and Kerger (2003)	90 minutes	2.4						Testing conducted for used 1993 Toyota Camry.				

		Stud Locatio	y n(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Fedoruk and Kerger (2003) (<i>Continued</i>)	Data summary for in-vehicle measurements during extreme heat/ static conditions	Foxboro	MA	In-vehi- cle, urban and suburban	June–July 1997	90 min- utes	3	100%	µg/m³	Directly from reference	1.7	$1.4 imes 10^1$
	Data summary for in-vehicle measurements during moder- ate heat/static conditions	Foxboro	MA	In-vehi- cle, urban and suburban	June–July 1997	90 min- utes	3	33%	µg/m³	Directly from reference	< 9 × 10 ⁻¹	1.9
Mohamed et al. (2002)	1996 UATMP data summary	Nation- wide	US	Urban, near-urban	Sept 1996–Aug 1997	24 hrs	Samples collected every 12 days		μg/m³ (con- verted from ppb)	Directly from reference		
Rodes et al. (1998)	Ambient air station data summary, Los Angeles	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	16	100%	µg/m³	Directly from reference		
	Ambient air station data summary, Sacramento	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	12	79%>MDL reported for all Sacra- mento samples	µg/m³	Directly from reference		
	In-vehicle data summary, Los Angeles	Los Angeles	CA	In-vehi- cle, urban	9/25/97– 10/3/97	2 hrs	16 com- mutes in 2 cars (32 total)	100%	µg/m³	Directly from reference	9.8	$2.2 imes 10^1$
	In-vehicle data summary, Sacramento	Sacra- mento	CA	In-vehi- cle, urban	9/9/97– 9/16/97	2 hrs	13 com- mutes in 2 cars (26 total)	79%>MDL reported for all Sacra- mento samples	µg/m³	Directly from reference	2.0	$1.6 imes 10^1$
	Roadside sampling data summary, Los Angeles	Los Angeles	CA	Roadside, urban	9/25/97– 10/3/97	2 hrs	12 of the 16 com- mutes at 2 locations (24 total)	100%	μg/m³	Directly from reference	< 1.1	$2.0 imes 10^1$

Table B.6. Ambient and	l Outdoor Expo	osure Data S	ummaries (C	ontinued). Be	nzene (<i>Colun</i>	nns continued	from previo	us page)
		Overa and/	all Arithmetic or Range of M	Mean Ieans	and/o	Overall Media or Range of M	n edians	_
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Fedoruk and Kerger (2003) (<i>Continued</i>)	3 90-minute tests	$1.0 imes 10^1$						Three vehicles tested: new 1997 Ford Taurus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.
	3 90-minute tests							Three vehicles tested: new 1997 Ford Taurus, new 1997 Chevy Lumina, and used 1993 Toyota Camry. Benzene detected only dur- ing testing of used 1993 Toyota Camry.
Mohamed et al. (2002)	1 yr		$7.8 imes 10^{-1}$	4.1				Samples collected every 12 days.
Rodes et al. (1998)	2–4 commutes		3.0	6.6				Ambient samples were collected simultaneously during commutes for in-vehicle measurements. Range in average concentrations represents averages over different commute types.
	1–4 commutes		1.1	2.9				Ambient samples were collected simultaneously during commutes for in-vehicle measurements. Range in average concentrations represents averages over different commute types.
	2–4 commutes		$1.3 imes 10^1$	$1.7 imes 10^1$				Range in average concentrations rep- resents averages reported by com- mute type and car.
	1–4 commutes		2.0	$1.4 imes 10^1$				Range in average concentrations rep- resents averages reported by com- mute type and car.
	2–4 commutes		5.2	$1.2 imes 10^1$				Roadside samples were collected simultaneously during commutes for in-vehicle measurements. Range in average concentrations represents averages over different commute types.
								Table continues on next page

	Study Location	/ n(s)								Individua Measurem	l Sample ent Range
Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Roadside sampling data summary, Sacramento	Sacra- mento	CA	Roadside, urban	9/9/97– 9/16/97	2 hrs	9 of the 13 commutes at 2 loca- tions (18 total)	79%>MDL reported for all Sacramento samples	µg/m³	Directly from reference	$6.0 imes 10^{-1}$	5.9
Summary of rural modeling results	Nation- wide—all rural coun- ties	US	Rural	1996				µg/m³	Directly from reference		
Summary of urban modeling results	Nation- wide—all urban counties	US	Urban	1996				μg/m³	Directly from reference		
Summary of AZ HAPs program fixed site monitoring data	Multiple (5) loca- tions	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 yr at each site)	24 hrs	~ 60 per site		μg/m³ (con- verted from ppb)	Directly from reference	0.0	$2.4 imes 10^1$
Summary of AZ HAPs program temporary site monitoring data	Multiple (4) loca- tions	AZ	Urban	June 1994– Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4–17 per site		μg/m³ (con- verted from ppb)	Directly from reference	2.0	$3.9 imes 10^1$
Suburban/ rural modeling results	Regional modeling grid encom- passing northeast- ern US	US	Urban, suburban/ rural, remote	7/11/95– 7/15/95				µg/m³ (con- verted from ppb)	Directly from reference		
Urban modeling results	Regional modeling grid encom- passing northeast- ern US	US	Urban, suburban/ rural, remote	7/11/95– 7/15/95				µg/m³ (con- verted from ppb)	Directly from reference		
	Data Description Roadside sammary Sacramento Summary of rural modeling results Summary of AZ HAPs program fixed wonitoring data Summary of AZ HAPs program fixed site monitoring data Summary of AZ HAPs program fixed site monitoring data	Study LocationData DescriptionCity or CountyRoadside sammary, SacramentoSacra- mentoSummary of rural modeling resultsNation- wide—all ural countiesSummary of nodeling resultsNation- wide—all ural countiesSummary of AZ HAPs program fixed site monitoring dataMation- wide—all urban countiesSummary of AZ HAPs program fixed site monitoring dataMultiple (4) loca- tionsSummary of ataMultiple (4) loca- tionsSummary of ataMultiple (4) loca- tionsSummary of resultsRegional grid encompassing ortheastMultiple (4) loca- tionsRegional modeling grid encompassing en	Study:DataGivorStateRoadsidetsSacratCAswmmarySacratUSSummary of urbaing resultsWation-all urban countiesUSSummary of urbaing resultsMation: urban countiesUSSummary of urbaing resultsMation: urban countiesUSSummary of urbang resultsMation: urban countiesUSSummary of adataMultiple tionsAZSummary of adataMultiple encome site moditionUSSummary of adataMultiple site encome site moditionUSSummary of adataMultiple site encome site encome site encome site encome site encome site encome site encome site encome site encome site encome site encome site encomeUSSummary of adataMultiple site encome site encome site encome site encome site encomeUSSummary of adataMultiple site encome site encome site encome site encomeUSMultiple adataRegional site encome site encome site encomeUSMultiple adataRegional site site encomeUSMultiple adataRegional site site encomeUSMultiple adataRegional site site siteUSMultiple adataRegional site site siteUSMultiple adataRegional<	Study LocationStudy LocationData DescriptionCity or CountyStateLocationRopadsides sammary, SacramentoSacra- mentoCARopadside, urbanSummary of rural modeling resultsNation- urban urban summary of site moditionsVSRuralSummary of AZZ HAPs program fixed dataMultiple (1) loca- tionsAZUrban and urban urban site moditoring dataMultiple (1) loca- tionsAZUrban and and urban urban urban site moditoring dataSummary of AZ HAPs program dataMultiple (1) loca- tionsAZUrban and and urban urban urban site moditoring dataMultiple (1) loca- tionsAZUrban and and urban urban urban urban site moditoring and encome site moditoring site moditoringKegional geing ansing encome site urban site moditoringVDUrban site urban passing encome site encomeUrban modeling resultsRegional encome site encome site encome site encome site encomeVDVD	Location(s)Study CountyIocationStudy PeriodData personCity or City or StamplingStateLocation PeriodStudy Periodsampling sampling sammany, SacramentoSacra mento wide-all urban countiesCo Summary of urban countiesRural Urban and and tionsRural Urban and and and tions1996Summary of wide-all urban countiesWite-all urban countiesUrban and and and tionsJurban and and and tionsAz and and and and tionsPeriodSummary of AZ HAPs program fixed site monitoring dataMultiple tionsAz and tionsUrban and and and and and tionsPeriodSummary of ataMultiple tionsAz tionsLurban site monitoring ataMultiple tionsAz tionsUrban site unonthe all tionsJurban site monitoring ataPeriodSuburban/ resultsRegional grid encom- passing rendusSuburban, site monitoring grid encom- passing rendusSuburban, tionsTityWrban resultsRegional grid encom- passing rendusSuburban, site anothe all passing tionsSuburban, tionsTityWrban resultsRegional grid encom- passing rendusSuburban, suburban, tionsTityWrban resultsRegional grid encom- passing rendusSuburban, suburban, tionsTity <td>Location(s)Study CountyLocationStudy TimeSample DescriptionReadside sampling data samumary, SacramentoSacra- mentoCARoadside, urban9/16/972 hrsSummary of modeling resultsNation- urban countiesUSRural19961 hrsSummary of modeling resultsNation- urban countiesUSUrban19961 hrsSummary of modeling dataNation- urban countiesUSUrban19961 hrsSummary of modeling dataMultiple- tionsUrban tions1 hrs2 hrsSummary of monitoring dataMultiple- tionsUrban tions1 hrs2 hrsSummary of monitoring dataMultiple- tionsUrban tions1 hrs2 hrsSummary of resultsMultiple- tionsUrban tions1 hrs2 hrsSuburban resultsMultiple- tionsUrban tions1 hrs2 hrsSuburban resultsRegional grid grid program northeast- ern USUrban tions1 hrs2 hrsWithout bank monitoring northeast- ern USUrban tions1 hrs2 hrsSuburbank resultsRegional grid grid ern USUrban tions2 hrsSuburbank resultsRegional ern USSuburbank trual remote7 hrsSuburbank resultsRegional ern USSuburbank trual remote1 hrs</td> <td>Study Location (ity or StateLocationStudy TypeSampleNumber of SampleDescriptionCity or CountyStateLocationStudy TypeSampleNumber of SampleRoadside sampling data summary of rural modeling dataSacra- mentoCA Roadside summary of rural urban ubicCA Roadside summary of wide-all urban countiesSume of summary of tionsSacra- summary of wide-all urban urban countiesSume of summary of (1)Nation- wide-all urban urban countiesUrban and Apr 19961996Sample summary of (-1 yr at each site)2 hrsof the 13 commute siteSummary of AZ HAPs program fixed dataMultiple (1) loca- (1) loca- site monitoringAZ (1) loca- (1) loca- (1) loca- siteJune and and and and and hype 19962 hrsof 60 per of 60 per siteSuburban/ rural modeling modeling grid encom- passing northeast- ern USSuburban suburban rural resultsAZ Regional grid encom- passing northeast- ern USUrban suburban rural, remoteJune passing rural, remoteAI hrs passing rural, remoteAI hrs passing rural, remoteSuburban passing rural, remoteJune passing rural, remoteJune passing rural, remoteSuburban rural, rural, remoteSuburban rural, rural, rural, remoteSuburban rural, rural, rural, remoteSuburban ru</td> <td>Study DescriptionStudy City or City or searpling dataStudy StateStudy PrequencyStudy StateStudy PrequencyStamplePerequency PrequencySeampling data summary modeling rural modelingSacra- mentoCA Roadside samplingPoint in the Prequency2 hrs at 2 horaPoint in the preparid at 2 horaPoint in the preparid preparid preparid in the preparid in the in the stateSample in the preparid in the in the<b< td=""><td>Study DescriptionStudy CountyStudy StateStudy DescriptionStudy StateStudy PriodStudy DurationNumber of Number of PrequencyDetection UnixRoadside sampling data sammary of resultsSacra mentoCA StatePodadice Priod2 hrs PriodPoffer of SamplesPoffer of PriodPoffer of PriodSummary of resultsNation- tiesUS VI deall urban modeling urbanUS VI deall and outbanPoffer PriodPoffer PriodPoffer PriodPoffer PriodPoffer PriodSummary of resultsNation- urban urban modeling urban modeling nordinariaUS PriodPriod Priod Priod Priod Priod Priod Priod Priod Priod Priod PriodPriod Priod Priod Priod Priod Priod Priod PriodPriod Priod Priod Priod Priod Priod PriodPriod Priod Priod Priod Priod Priod Priod Priod<</td><td>Instant DescriptionStudy CountyLocation (S) PeriodStudy PeriodSampleNumber of SampleDetection PerequencyUnitsSource of Summary StarsRoadside sampling data sampling data samplesSacra- mentoCARoadside, urban9/19/97- Pirod2 hrs9 of the 13 reported at 2 minet titiskill79%>MDL reported at 2 minet samplesDirectly PerequencySummary of meaning meaning meaning meaning meaning outpered titiskillNation- reported titiskillUSRural samples1996IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>Summary of results Number of County State Type <th< td=""></th<></td></b<></td>	Location(s)Study CountyLocationStudy TimeSample DescriptionReadside sampling data samumary, SacramentoSacra- mentoCARoadside, urban9/16/972 hrsSummary of modeling resultsNation- urban countiesUSRural19961 hrsSummary of modeling resultsNation- urban countiesUSUrban19961 hrsSummary of modeling dataNation- urban countiesUSUrban19961 hrsSummary of modeling dataMultiple- tionsUrban tions1 hrs2 hrsSummary of monitoring dataMultiple- tionsUrban tions1 hrs2 hrsSummary of monitoring dataMultiple- tionsUrban tions1 hrs2 hrsSummary of resultsMultiple- tionsUrban tions1 hrs2 hrsSuburban resultsMultiple- tionsUrban tions1 hrs2 hrsSuburban resultsRegional grid grid program northeast- ern USUrban tions1 hrs2 hrsWithout bank monitoring northeast- ern USUrban tions1 hrs2 hrsSuburbank resultsRegional grid grid ern USUrban tions2 hrsSuburbank resultsRegional ern USSuburbank trual remote7 hrsSuburbank resultsRegional ern USSuburbank trual remote1 hrs	Study Location (ity or StateLocationStudy TypeSampleNumber of SampleDescriptionCity or CountyStateLocationStudy TypeSampleNumber of SampleRoadside sampling data summary of rural modeling dataSacra- mentoCA Roadside summary of rural urban ubicCA Roadside summary of wide-all urban countiesSume of summary of tionsSacra- summary of wide-all urban urban countiesSume of summary of (1)Nation- wide-all urban urban countiesUrban and Apr 19961996Sample summary of (-1 yr at each site)2 hrsof the 13 commute siteSummary of AZ HAPs program fixed dataMultiple (1) loca- (1) loca- site monitoringAZ (1) loca- (1) loca- (1) loca- siteJune and and and and and hype 19962 hrsof 60 per of 60 per siteSuburban/ rural modeling modeling grid encom- passing northeast- ern USSuburban suburban rural resultsAZ Regional grid encom- passing northeast- ern USUrban suburban rural, remoteJune passing rural, remoteAI hrs passing rural, remoteAI hrs passing rural, remoteSuburban passing rural, remoteJune passing rural, remoteJune passing rural, remoteSuburban rural, rural, remoteSuburban rural, rural, rural, remoteSuburban rural, rural, rural, remoteSuburban ru	Study DescriptionStudy City or City or searpling dataStudy StateStudy PrequencyStudy StateStudy PrequencyStamplePerequency PrequencySeampling data summary modeling rural modelingSacra- mentoCA Roadside samplingPoint in the Prequency2 hrs at 2 horaPoint in the preparid at 2 horaPoint in the preparid preparid preparid in the preparid in the in the stateSample in the preparid in the in the <b< td=""><td>Study DescriptionStudy CountyStudy StateStudy DescriptionStudy StateStudy PriodStudy DurationNumber of Number of PrequencyDetection UnixRoadside sampling data sammary of resultsSacra mentoCA StatePodadice Priod2 hrs PriodPoffer of SamplesPoffer of PriodPoffer of PriodSummary of resultsNation- tiesUS VI deall urban modeling urbanUS VI deall and outbanPoffer PriodPoffer PriodPoffer PriodPoffer PriodPoffer PriodSummary of resultsNation- urban urban modeling urban modeling nordinariaUS PriodPriod Priod Priod Priod Priod Priod Priod Priod Priod Priod PriodPriod Priod Priod Priod Priod Priod Priod PriodPriod Priod Priod Priod Priod Priod PriodPriod Priod Priod Priod Priod Priod Priod Priod<</td><td>Instant DescriptionStudy CountyLocation (S) PeriodStudy PeriodSampleNumber of SampleDetection PerequencyUnitsSource of Summary StarsRoadside sampling data sampling data samplesSacra- mentoCARoadside, urban9/19/97- Pirod2 hrs9 of the 13 reported at 2 minet titiskill79%>MDL reported at 2 minet samplesDirectly PerequencySummary of meaning meaning meaning meaning meaning outpered titiskillNation- reported titiskillUSRural samples1996IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>Summary of results Number of County State Type <th< td=""></th<></td></b<>	Study DescriptionStudy CountyStudy StateStudy DescriptionStudy StateStudy PriodStudy DurationNumber of Number of PrequencyDetection UnixRoadside sampling data sammary of resultsSacra mentoCA StatePodadice Priod2 hrs PriodPoffer of SamplesPoffer of PriodPoffer of PriodSummary of resultsNation- tiesUS VI deall urban modeling urbanUS VI deall and outbanPoffer PriodPoffer PriodPoffer PriodPoffer PriodPoffer PriodSummary of resultsNation- urban urban modeling urban modeling nordinariaUS PriodPriod Priod Priod Priod Priod Priod Priod Priod Priod Priod PriodPriod Priod Priod Priod Priod Priod Priod PriodPriod Priod Priod Priod Priod Priod PriodPriod Priod Priod Priod Priod Priod Priod Priod<	Instant DescriptionStudy CountyLocation (S) PeriodStudy PeriodSampleNumber of SampleDetection PerequencyUnitsSource of Summary StarsRoadside sampling data sampling data samplesSacra- mentoCARoadside, urban9/19/97- Pirod2 hrs9 of the 13 reported at 2 minet titiskill79%>MDL reported at 2 minet samplesDirectly PerequencySummary of meaning meaning meaning meaning meaning outpered titiskillNation- reported titiskillUSRural samples1996IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Summary of results Number of County State Type State Type <th< td=""></th<>

Table B.6. Ambient and	Outdoor Exp	osure Data S	ummaries (Co	ontinued). Be	nzene (<i>Colum</i>	ns continued	from previo	us page)
	_	Overa and/	ll Arithmetic or Range of M	Mean Ieans	C and/o	overall Media r Range of M	n edians	
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Rodes et al. (1998) (<i>Continued</i>)	1–4 commutes		1.0	5.0				Roadside samples were collected simultaneously during commutes for in-vehicle measurements. Range in average concentrations represents averages over different commute types.
EPA National Air Tox- ics Assessment (NATA)	1 yr (annual average)	$7.3 imes 10^{-1}$			$6.6 imes 10^{-1}$			Mobile sources estimated to account for 24% of nationwide mean.
	1 yr (annual average)	1.6			1.4			Mobile sources estimated to account for 60% of nationwide mean.
Zielinska et al. (1998)	1 yr		$2.9 imes 10^{-1}$	7.9				
	1 yr		2.6	$1.4 imes 10^1$				
Seigneur et al. (2003)	1 hr		3.3×10^{-1}	1.6				Modeled time period noted to have high ozone pollution and low mixing height.
	1 hr		3.3	$1.6 imes 10^1$				Modeled time period noted to have high ozone pollution and low mixing height.

Table B.7. Ambier	nt and Outdoor	Exposure	Data S	Summaries	. 1,3-Butadi	iene (<i>Colui</i>	nns continu	e on next pa	ıge)			
		Stud Locatio	y n(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Eastern Research Group (ERG) (2004)	2003 UATMP data summary	Nation- wide	US	Urban, suburban, rural	2003	24 hrs	1,550	26%	μg/m³ (con- verted from ppb)	Directly from reference	$< 2.2 \times 10^{-2}$	1.4
EPA Air Quality System (AQS) Database (via AIRData web- site)	HAP monitor values report data summary	Nation- wide	US	Urban, suburban, rural	2003	Primarily 24 hrs, some 1 hr and 3 hr	56,919		µg/m³ (con- verted from ppbC)	Calculated by Gradient Corp. from annual sum- mary report		$1.6 imes 10^2$
Children's Environmental Health Protection Program	Barrio Logan monitoring data summary	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	69	99%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	$< 9 \times 10^{-2}$	2.2
	Boyle Heights monitoring data summary	Los Angeles	CA	Urban	Feb 2001– May 2002	24 hrs	74	100%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	1.5×10^{-1}	4.0
	Crockett monitoring data summary	Crockett	CA	Urban	Oct 2001– May 2003	24 hrs	81	49%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	< 9 × 10 ⁻²	$5.5 imes 10^{-1}$
	Fresno monitoring data summary	Fresno	CA	Urban	July 2002– Aug 2003	· 24 hrs	65	52%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	< 9 × 10 ⁻²	1.6
	Fruitvale monitoring data summary	Fruitvale area of Oakland	CA	Urban	Nov 2001– Apr 2003	· 24 hrs	83	78%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	< 9 × 10 ⁻²	2.2
	Wilmington monitoring data summary	Wilming- ton	CA	Urban	July 2001– July 2002	24 hrs	60	85%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	< 9 × 10 ⁻²	3.3
											Table continue	es on next page

		Overa	ll Arithmetic	Mean	,,(Overall Media	in .	
	Data	and/	or Range of M	leans	and/c	or Range of Me	edians	_
Source (Continued)	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Eastern Research Group (ERG) 2004	Typically 1 yr (annual aver- age)	$2.9 imes 10^{-1}$			$2.0 imes 10^{-1}$			Samples typically collected on a 6-day or 12-day schedule.
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	2.7×10^{-1}	$2.4 imes 10^{-2}$	7.1				Overall mean is the mean of all site average con- centrations. Minimum and maximum average concentrations represent range in average con- centrations across all sites (i.e., the lowest and highest site averages). Maximum individual sample concentration is for 1-hr sampling period.
Children's Environmental Health Protection Program	17 months	2.2						
	~ 15 months	9.3×10^{-1}						
	~ 1.5 yrs	1.1×10^{-1}						
	1 yr	2.7×10^{-1}						
	~ 1.5 yrs	$4.0 imes 10^{-1}$						
	~ 1 yr	6.2×10^{-1}						
								Table continues on next page

		Stud Locatio	y n(s)								Individua Measurem	ll Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Fitz et al. (2003)	In-vehicle data summary for school bus study	Los Angeles	CA	In-vehi- cle, urban	4/22/02- 6/12/02	1–1.5 hrs	31 bus commute runs	26%	μg/m³ (con- verted from ppb	Directly from reference)	1.3	2.9
Riediker et al. (2003)	In-vehicle data summary for NC state police patrol cars	Wake County	NC	In-vehi- cle, urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50	0%	μg/m³	Provided by author in email	< 6.5	< 6.5
Sapkota and Buckley (2003)	Baltimore Harbor tunnel tollbooth data summary	Balti- more	MD	Roadside, urban	7 week- days between 6/18/01– 6/28/01	3 hrs	8 samples per day on 7 week- days (56)		μg/m³	Directly from reference	$8.0 imes 10^{-1}$	$1.9 imes 10^1$
Kinney et al. (2002)	Summary of summer residential outdoor data	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	35		μg/m³	Directly from reference		
	Summary of winter residential outdoor data	New York	NY	Urban	Winter 1999 (over 8 weeks)	2 days	36		μg/m³	Directly from reference		
South Coast Air Quality Management District (AQMD) (2000)	Fixed Site sampling data summary	Southern Califor- nia South Coast Air Basin	СА	Primarily urban, including Los Angeles	Apr 1998– Mar 1999	24 hrs	one 24-hr sample every six days		μg/m³	Directly from reference		
	Regional modeling analysis summary	Southern Califor- nia South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999				µg/m³	Directly from reference		
Rodes et al. (1998)	Ambient air station data summary, Los Angeles	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	16	97%>MDL reported for all LA sam- ples	μg/m³	Directly from reference		
											Table continue	es on next pag

Table B.7. Ambien	t and Outdoo	or Exposure D	ata Summari	es (Continued)	. 1,3-Butadie	ene (<i>Columns</i>	continued fre	om previous page)
	Dete	Overa and/	ll Arithmetic or Range of M	Mean Ieans	and/	Overall Media or Range of Me	in edians	_
Source (Continued)	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Fitz et al. (2003)	Over 8 commute runs with detects	2.0						1,3-butadiene detected for only eight morning runs out of 31 bus commute runs.
Riediker et al. (2003)								Authors report that 1,3-butadiene not detectable throughout study; in email communication, Ron Williams of EPA indicated that large num- ber of non-detects is recognized as failure of technique.
Sapkota and Buckley (2003)	7 days of 3-hr integrated samples					2.0	$1.4 imes 10^1$	Range in median concentrations represent daily 3-hr time blocks over the week of sam- pling with minimum and maximum median concentrations.
Kinney et al. (2002)	8 weeks	1.4×10^{-1}						
	8 weeks	1.3×10^{-1}						
South Coast Air Quality Management District (AQMD) (2000)	1 yr	$7.9 imes 10^{-1}$						Report concluded that mobile sources were dominant pollutant sources.
	1 yr	3.4×10^{-1}						Modeling included emissions for on-road mobile, area and off-road mobile, and major point sources.
Rodes et al. (1998)	2–4 commutes		4.0×10^{-1}	$7.0 imes 10^{-1}$				Ambient samples were collected simultaneously during commutes for in-vehicle measurements. Range in average concentrations represents averages over different commute types.
								Table continues on next page

		Stud Locatio	y n(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Rodes et al. (1998) (<i>Continued</i>)	Ambient air station data summary, Sacramento	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	12	67%>MDL reported for all Sacramento samples	µg/m³	Directly from reference		
	In-vehicle data summary, Los Angeles	Los Angeles	CA	In-vehi- cle, urban	9/25/97– 10/3/97	2 hrs	16 com- mutes in 2 cars (32 total)	97%>MDL reported for all LA samples	µg/m³	Directly from reference	2.1	5.7
	In-vehicle data summary, Sacramento	Sacra- mento	CA	In-vehi- cle, urban	9/9/97– 9/16/97	2 hrs	13 com- mutes in 2 cars (26 total)	67%>MDL reported for all Sacramento samples	µg/m³	Directly from reference	$2.0 imes 10^{-1}$	4.4
	Roadside sampling data summary, Los Angeles	Los Angeles	CA	Roadside, urban	9/25/97– 10/3/97	2 hrs	12 of the 16 com- mutes at 2 locations (24 total)	97%>MDL reported for all LA samples	µg/m³	Directly from reference	0.0	4.9
	Roadside sampling data summary, Sacramento	Sacra- mento	CA	Roadside, urban	9/9/97– 9/16/97	2 hrs	9 of the 13 com- mutes at 2 locations (18 total)	67%>MDL reported for all Sacramento samples	µg/m³	Directly from reference	0.0	1.1
EPA National Air Toxics Assessment (NATA)	Summary of rural modeling results	Nation- wide—all rural counties	US	Rural	1996				µg/m³	Directly from reference		
	Summary of urban modeling results	Nation- wide—all urban counties	US	Urban	1996				μg/m³	Directly from reference		
Zielinska et al. (1998)	Summary of AZ HAPs program fixed site monitoring data	Multiple (5) loca- tions	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 yr at each site)	24 hrs	~ 60 per site		μg/m³ (con- verted from ppb)	Directly from reference	0.0	2.8
	Summary of AZ HAPs program temporary site monitoring data	Multiple (4) loca- tions	AZ	Urban	June 1994–Mar 1996 (~ 1 wk to 2 months at each site)	24 hrs	4–17 per site		μg/m ³ (con- verted from ppb)	Directly from reference	$9.0 imes 10^{-2}$	4.8
											Table continue	es on next pa

	D (Overa and/	ll Arithmetic or Range of M	Mean Ieans	(and/o	Overall Media or Range of M	in edians	_
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Rodes et al. (1998) (<i>Continued</i>)	1–4 commutes		1.0×10^{-1}	$5.0 imes 10^{-1}$				Ambient samples were collected simultaneously during commutes for in-vehicle measurements. Range in average concentrations represents averages over different commute types.
	2–4 commutes		2.4	4.7				Range in average concentrations represents aver- ages reported by commute type and car.
	1–4 commutes		$2.0 imes 10^{-1}$	2.8				Range in average concentrations represents aver- ages reported by commute type and car.
	2–4 commutes		1.0	2.9				Roadside samples were collected simulta- neously during commutes for in-vehicle mea- surements. Range in average concentrations represents averages over different commute types.
	1–4 commutes		2.0×10^{-1}	1.0				Roadside samples were collected simulta- neously during commutes for in-vehicle mea- surements. Range in average concentrations represents averages over different commute types.
EPA National Air Toxics Assessment (NATA)	1 yr (annual average)	2.5×10^{-2}			$1.4 imes 10^{-2}$			Mobile sources estimated to account for 54% of nationwide mean.
	1 yr (annual average)	8.4×10^{-2}			6.7×10^{-2}			Mobile sources estimated to account for 88% of nationwide mean.
Zielinska et al. (1998)	1 yr		2.0×10^{-2}	$7.0 imes 10^{-1}$				
	~ 1 week to 2 months		$1.8 imes 10^{-1}$	1.6				

Table B.8a. Am	bient and Outd	oor Exposi	ıre Dat	a Summar	ies. Chromiu	m Compou	nds (<i>Colum</i>	ns continue	on next p	age)		
		Study Location	y n(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA Air Qual- ity System (AQS) Data- base (via AIR- Data website)	HAP monitor values report data summary— PM _{2.5} Cr	Nation- wide	US	Urban, suburban, rural	2003	24 hrs	13,927		µg/m³	Calculated by Gradient Corp. from annual summary report		$5.6 imes 10^{-1}$
Children's Environmen- tal Health Protection Program	Barrio Logan monitoring data summary— TSP Cr	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	61	100%	µg/m³	Calculated by Gradient Corp. from study data set	$2.3 imes 10^{-3}$	3.1×10^{-2}
	Boyle Heights monitoring data summary— TSP Cr	Los Angeles	CA	Urban	Mar 2001– May 2002	24 hrs	68	91%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-3}$	$1.5 imes 10^{-2}$
	Crockett monitoring data summary— TSP Cr	Crockett	CA	Urban	Oct 2001– Feb 2003	24 hrs	60	57%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-3}$	$8.7 imes 10^{-3}$
	Fresno monitoring data summary— PM ₁₀ Cr	Fresno	CA	Urban	Aug 2002– Feb 2003	24 hrs	34	79%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-3}$	$1.7 imes 10^{-2}$
	Fruitvale monitoring data summary— TSP Cr	Fruitvale area of Oakland	CA	Urban	Nov 2001– Feb 2003	24 hrs	53	85%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-3}$	$1.0 imes 10^{-2}$
	Wilmington monitoring data summary— TSP Cr	Wilming- ton	CA	Urban	May 2001– July 2002	24 hrs	68	78%	µg/m³	Calculated by Gradient Corp. from study data set	< 2.0 × 10 ⁻³	$2.2 imes 10^{-2}$
EPA (2004)	Atlanta GA— PM _{2.5} Cr	Atlanta	GA	Urban	Oct 2001– Sept 2002	24 hrs	183		µg/m³	Directly from reference	< 1 × 10 ⁻³	3.0×10^{-3}
	$\begin{array}{c} \text{Boulder CO} \\ \text{PM}_{2.5} \ \text{Cr} \end{array}$	Boulder	CO	Urban	Oct 2001– Sept 2002	24 hrs	161		μg/m³	Directly from reference	$< 2 \times 10^{-3}$	$9.0 imes 10^{-3}$
											Table continue	s on next page

Table B.8a. Ambient a	and Outdoor Exp	osure Data Sur	nmaries (Cont	<i>inued</i>). Chromi	um Compound	ls (<i>Columns co</i>	ontinued from	previous page)
		Overa and/o	ll Arithmetic or Range of M	Mean eans	and/	Overall Media or Range of Me	n edians	_
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	$1.8 imes10^{-3}$	$4.0 imes 10^{-4}$	$3.5 imes 10^{-2}$				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentra- tions represent range in average concentrations across all sites (i.e., the lowest and highest site averages).
Children's Environmental Health Protection Program	17 months	$6.5 imes 10^{-3}$						Barrio Logan is located near two chrome plating facilities.
	~ 15 months	$5.7 imes 10^{-3}$						
	~ 1.5 yrs	$2.6 imes 10^{-3}$						
	6 months	$5.5 imes 10^{-3}$						
	~ 16 months	$4.1 imes 10^{-3}$						
	~ 1 yr	4.7×10^{-3}						
EPA (2004)	1 yr	Not provided						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
								Table continues on next page

		Study	7								Individua	al Sample
		Location	n(s)							0	Measurem	ient Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA (2004) (Continued)	Burlington VT— PM _{2.5} Cr	Burling- ton	VT	Urban	Oct 2001– Sept 2002	24 hrs	201		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	6.0×10^{-2}
	Chicago IL— PM _{2.5} Cr	Chicago	IL	Urban	Oct 2001– Sept 2002	24 hrs	139		µg/m³	Directly from reference	$< 1 \times 10^{-3}$	$5.0 imes10^{-3}$
	Detroit MI— PM _{2.5} Cr	Detroit	MI	Urban	Oct 2001– Sept 2002	24 hrs	189		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$3.3 imes 10^{-2}$
	Houston TX— PM _{2.5} Cr	Houston	ΤX	Urban	Oct 2001– Sept 2002	24 hrs	229		µg/m³	Directly from reference	< 1 × 10 ⁻³	$9.0 imes 10^{-3}$
	Minneapolis MN— PM _{2.5} Cr	Minn-eap- olis	MN	Urban	Oct 2001– Sept 2002	24 hrs	163		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$1.6 imes10^{-2}$
	Philadelphia PA— PM _{2.5} Cr	Philadel- phia	PA	Urban	Oct 2001– Sept 2002	24 hrs	262		µg/m³	Directly from reference	< 2 × 10 ⁻³	$1.8 imes 10^{-2}$
	Phoenix AZ— PM _{2.5} Cr	Phoenix	AZ	Urban	Oct 2001– Sept 2002	24 hrs	275		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$2.1 imes 10^{-2}$
	Riverside- Rubidoux CA— PM _{2.5} Cr	Riverside- Rubidoux	CA	Urban	Oct 2001– Sept 2002	24 hrs	161		µg/m³	Directly from reference	< 2 × 10 ⁻³	$2.4 imes 10^{-2}$
	Sacramento CA— PM _{2.5} Cr	Sacra- mento	CA	Urban	Oct 2001– Sept 2002	24 hrs	265		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$4.3 imes 10^{-2}$
	Seattle WA— PM _{2.5} Cr	Seattle	WA	Urban	Oct 2001– Sept 2002	24 hrs	314		µg/m³	Directly from reference	< 1 × 10 ⁻³	$1.6 imes 10^{-2}$
	St Louis MO— PM _{2.5} Cr	- St Louis	МО	Urban	Oct 2001– Sept 2002	24 hrs	324		µg/m³	Directly from reference	< 1 × 10 ⁻³	3.4×10^{-2}
Riediker et al. (2003)	Ambient air data summary— PM _{2.5} Cr	Wake County	NC	Urban	8/13/01– 10/11/01	7.75–14.7 hrs (average 9.1)	50		µg/m³	Directly from reference	0.0	$4.6 imes 10^{-3}$
	In-vehicle data summary for NC state police patrol cars— PM _{2.5} Cr	Wake County	NC	In-vehi- cle, urban	8/13/01– 10/11/01	7.75–14.7 hrs (average 9.1)	50		μg/m³	Directly from reference	0.0	$7.0 imes 10^{-3}$
	Roadside sample data summary— PM _{2.5} Cr	Wake County	NC	Roadside, urban	8/13/01– 10/11/01	7.75–14.7 hrs (average 9.1)	50		µg/m³	Directly from reference	0.0	$2.6 imes 10^{-3}$

	r	Overa	ll Arithmetic	Mean	1/	Overall Media	n	
	-	and/o	or Range of M	eans	and/	or Range of Me	dians	_
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
EPA (2004) (Continued)	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$1.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$1.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$3.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
Riediker et al. (2003)	50 late-shift patrols (3 PM to midnight) over 25 days	$1.2 imes 10^{-3}$						Minimum concentration of 0.0 is as reported in publication.
	50 late-shift patrols (3 PM to midnight) over 25 days	$1.9 imes 10^{-3}$						Minimum concentration of 0.0 is as reported in publication.
	50 late-shift patrols (3 PM to midnight) over 25 days	1.1×10^{-3}						Minimum concentration of 0.0 is as reported in publication.
								Table continues on next page

		Study Location	/ n(s)								Individu Measuren	al Sample 1ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Kinney et al. (2002)	Summary of summer residential outdoor data— PM _{2.5} Cr	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	34		µg/m³	Directly from reference		
South Coast Air Quality Management District (AQMD) (2000)	Fixed site sampling data summary— TSP Cr	Southern California South Coast Air Basin	CA	Primarily urban, including Los Ange- les	Apr 1998– Mar 1999	24 hrs	One 24-hr sample every six days		µg/m³	Directly from reference		
	Regional modeling analysis summary— simulated Cr	Southern California South Coast Air Basin	CA	Primarily urban, including Los Ange- les	Apr 1998– Mar 1999				μg/m³	Directly from reference		
Rodes et al. (1998)	Ambient air station data summary, Los Angeles — PM _{2.5} Cr	Los Ange- les	CA	Urban	9/25/97– 10/3/97	2 hrs	12 (invalid samples for 4 com- mutes)	Reported as 0%> MDL	µg/m³	Directly from reference		
	Ambient air station data summary, Sacramento — PM _{2.5} Cr	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	12	Reported as 0%>MDL	µg/m³	Directly from reference		
	In-vehicle data summary, Los Angeles— PM _{2.5} Cr	Los Ange- les	CA	In-vehi- cle, urban	9/25/97– 10/3/97	2 hrs	16 com- mutes in 2 cars (32 total)	Reported as 0%>MDL	µg/m³	Directly from reference	0.0	$4.0 imes10^{-2}$
	In-vehicle data summary, Sacramento— PM _{2.5} Cr	Sacra- mento	CA	In-vehi- cle, urban	9/9/97– 9/16/97	2 hrs	13 com- mutes in 2 cars (26 total)	Reported as 0%>MDL	μg/m³	Directly from reference	0.0	$5.0 imes 10^{-2}$

		Overa and/	ll Arithmetic or Range of M	Mean eans	and/	Overall Media or Range of Me	ı dians	
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Kinney et al. (2002)	8 weeks	4.6×10^{-4}						
South Coast Air Quality Management District (AQMD) (2000)	1 yr	$4.9 imes10^{-3}$						Report concluded that mobile sources were dominant pollutant sources.
	1 yr	$1.4 imes 10^{-2}$						Modeling included emissions for on-road mobile, area and off-road mobile, and major point sources.
Rodes et al. (1998)	2–4 commutes		0.0	3.0×10^{-2}				Ambient samples were collected simultaneously during commute for in-vehicle measurements. Range in average concentrations represents averages over differen commute types. Minimum con- centration of 0.0 is as reported in publication.
	1–4 commutes		0.0	3.0×10^{-2}				Ambient samples were collected simultaneously during commute for in-vehicle measurements. Range in average concentrations represents averages over differen commute types. Minimum con- centration of 0.0 is as reported in publication.
	2–4 commutes		0.0	$3.0 imes 10^{-2}$				Range in average concentrations represents averages reported by commute type and car. Minimus concentration of 0.0 is as reporte in publication.
	1–4 commutes		0.0	$4.0 imes 10^{-2}$				Range in average concentrations represents averages reported by commute type and car. Minimus concentration of 0.0 is as reporte in publication.
								Table continues on next po

		Stud Locatio	y n(s)								Individu Measuren	al Sample nent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Rodes et al. (1998) (<i>Continued</i>)	Roadside sampling data summary, Los Angeles— PM _{2.5} Cr	Los Angeles	CA	Roadside, urban	9/25/97– 10/3/97	2 hrs	12 of the 16 commutes at 2 loca- tions (24 total)	Reported as 0%>MDL	µg/m³	Directly from reference	0.0	$5.0 imes 10^{-2}$
	Roadside sampling data summary, Sacramento— PM _{2.5} Cr	Sacra- mento	CA	Roadside, urban	9/9/97– 9/16/97	2 hrs	9 of the 13 commutes at 2 loca- tions (18 total)	Reported as 0%>MDL	µg/m³	Directly from reference	0.0	$5.0 imes 10^{-2}$
EPA National Air Toxics Assessment (NATA)	Summary of rural modeling results— chromium compounds	Nation- wide	US	Rural	1996				µg/m³	Directly from reference		
	Summary of urban modeling results— chromium compounds	Nation- wide	US	Urban	1996				µg/m³	Directly from reference		

	_	Overa and/	ll Arithmetic l or Range of Me	Mean eans	C and/o	Overall Media or Range of Me	n edians	_
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Rodes et al. (1998) (<i>Continued</i>)	2–4 commutes		$1.0 imes 10^{-2}$	$3.0 imes 10^{-2}$				Roadside samples were collected simultaneously during commutes for in-vehicle measurements. Range in average concentrations represents averages over different commute types.
	1–4 commutes		$1.0 imes 10^{-2}$	$3.0 imes 10^{-2}$				Roadside samples were collected simultaneously during commutes for in-vehicle measurements. Range in average concentrations represents averages over different commute types.
EPA National Air Toxics Assessment (NATA)	1 yr (annual average)	$6.5 imes10^{-4}$			$7.5 imes 10^{-5}$			Mobile sources estimated to account for 4% of nationwide mean.
	1 yr (annual average)	$2.8 imes 10^{-3}$			$1.3 imes 10^{-3}$			Mobile sources estimated to account for 8% of nationwide mean.

		Stud Locatio	y n(s)								Individua Measurem	ll Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA Air Quality System (AQS) Database (via AIRData website)	HAP monitor values report data summary— TSP Cr-VI	Nation- wide	US	Urban, suburban, rural	2003	24 hrs (with some composite samples)	146		μg/m³	Calculated by Gradient Corp. from annual sum- mary report		$1.6 imes 10^{-3}$
Children's Environmental Health Protec- tion Program	Barrio Logan monitoring data summary— TSP Cr-VI	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	45	9%	μg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-4}$	$3.0 imes 10^{-4}$
	Boyle Heights monitoring data summary— TSP Cr-VI	Los Angeles	CA	Urban	Feb 2001– May 2002	24 hrs	73	9.6%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-4}$	$3.5 imes 10^{-4}$
	Crockett monitoring data summary— TSP Cr-VI	Crockett	CA	Urban	Oct 2001– May 2003	24 hrs	83	1%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-4}$	$2.2 imes 10^{-4}$
	Fresno monitoring data summary— PM ₁₀ Cr-VI	Fresno	CA	Urban	Aug 2002– Aug 2003	24 hrs	61	12%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-4}$	$2.9 imes 10^{-4}$
	Fruitvale monitoring data summary— TSP Cr-VI	Fruitvale area of Oakland	CA	Urban	Nov 2001– Apr 2003	24 hrs	83	8%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-4}$	$5.4 imes 10^{-4}$
	Wilmington monitoring data summary— TSP Cr-VI	Wilming- ton	CA	Urban	May 2001– July 2002	· 24 hrs	72	8%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-4}$	3.2×10^{-4}
Pratt et al. (2000)	Minnesota monitoring data— PM ₁₀ Cr-VI	Statewide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 yrs per site	Typically 24 hrs	855	75%	µg/m³	Directly from reference	< 2 × 10 ⁻³	$7.0 imes 10^{-3}$
South Coast Air Quality Management District (AQMD) (2000)	Fixed site sampling data summary— TSP Cr-VI	Southern California South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999	24 hrs	One 24-hr sample every six days		µg/m³	Directly from reference		
	Regional modeling analysis summary— simulated Cr-VI	Southern California South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999				μg/m³	Directly from reference		

Table B.8b. Ambier	nt and Outdoor	r Exposure Da	ta Summarie	s (Continued).	Hexavalent Cł	nromium Corr	pounds (<i>Col</i>	umns continued from previous page)
	Data	Overa and/	ll Arithmetic or Range of M	Mean leans	C and/o	Overall Media r Range of Me	n edians	_
Source (Continued)	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	$2.2 imes 10^{-5}$	0.0	$2.3 imes 10^{-4}$				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentra- tions represent range in average con- centrations across all sites (i.e., the lowest and highest site averages).
Children's Environmental Health Protection Program	17 months	$1.1 imes 10^{-4}$						Barrio Logan is located near two chrome plating facilities.
	~ 15 months	$1.2 imes 10^{-4}$						
	~ 1.5 yrs	$1.0 imes 10^{-4}$						
	6 months	1.2×10^{-4}						
	~ 16 months	$1.2 imes 10^{-4}$						
	~ 1 yr	$1.1 imes 10^{-4}$						
Pratt et al. (2000)	1–9 yrs	$1.0 imes 10^{-3}$			$1.0 imes 10^{-3}$			
South Coast Air Quality Management District (AQMD) (2000)	1 yr	$1.8 imes 10^{-4}$						Report concluded that mobile sources were dominant pollutant sources.
	1 yr	$2.4 imes 10^{-4}$						Modeling included emissions for on- road mobile, area and off-road mobile, and major point sources.

Table B.9. Aml	bient and Outdo	oor Exposure	e Data	Summarie	s . Dioxins	-Furans (<i>Coli</i>	umns contir	nue on next p	oage)			
		Study Locat	tion(s))							Individua Measurem	al Sample ient Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units ¹	Source of Summary Stats	Minimum	Maximum
California Ambient Dioxin Air Monitoring Program (CADAMP)	2003 Data summary	Multiple (10) locations	CA	Urban	2003	20–24 days over 4 weeks	11–13 per site	100%	TEQ pg/m³	Directly from reference	4.4×10^{-3}	7.1×10^{-2}
	2002 Data summary	Multiple (9) locations	CA	Urban	2002	20–24 days over 4 weeks	7–12 per site	100%	TEQ pg/m ³	Directly from reference	$6.1 imes 10^{-3}$	1.9×10^{-1}
Cleverly et al. (2002)	Data summary for Washington DC and San Francisco NDAMN sites	Washington, San Francisco	, DC, CA	Suburban	2000	24 days over 4 weeks	4 per site		TEQ pg/m³	Directly from reference		
Gertler et al. (1996 1998)	Fort McHenry Tunnel inlet/vent (air intake) data summary	Baltimore	MD	Tunnel, urban	10/25/95– 11/6/95	24 hrs (on day/ day, night/ night basis)	10 sampling runs (34 total inlet/vent samples)	100%	TEQ pg/m ³	Calculated by grouping data for dif- ferent runs	1.1×10^{-2}	1.1×10^{-1}
	Fort McHenry Tunnel bore 3 outlet data summary	Baltimore	MD	Tunnel, urban	10/25/95– 11/6/95	24 hrs (day/day samples only)	5	100%	TEQ pg/m³	Directly from reference	2.1×10^{-2}	$8.5 imes 10^{-2}$
	Fort McHenry Tunnel bore 4 outlet data summary	Baltimore	MD	Tunnel, urban	10/25/95– 11/6/95	24 hrs (on day/day, night/night basis)	10	100%	TEQ pg/m ³	Directly from reference	3.2×10^{-2}	1.6×10^{-1}
EPA (2003)	Literature survey data summary for urban background	Multiple (14) locations	CT, CA, OH, NY	Urban	1988–1995		106 (from 14 studies)		TEQ pg/m³	Directly from reference		
Hunt et al. (1997)	Phoenix AZ data summary	Phoenix	AZ	Urban	12/15/94– 12/20/94	24 hrs	4	100%	TEQ pg/m³	Directly from reference	9.2×10^{-2}	4.5×10^{-1}
										Tab	le continues	on next page

Table B.9. Ambient and Outdoo e Data Summ r Exnos ries . Dioxins-Fur s (Colui ntin xt n

		Over and	all Arithmeti /or Range of I	c Mean Means	and	Overall Med /or Range of M	ian Medians	_
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
California Ambi- ent Dioxin Air Monitoring Program (CAD- AMP)	1 yr (annual average)		$1.8 imes 10^{-2}$	$2.6 imes 10^{-2}$				Concentration reported as TEQ _{DF} -WHO ₉₇ . Range of means represent sites with minimum and maximum annual averages among all sites meeting ARB completeness criteria.
	1 yr (annual average)		1.3×10^{-2}	$4.3 imes 10^{-2}$				Concentration reported as TEQ _{DF} -WHO ₉₇ . Range of means represent sites with minimum and maximum annual averages among all sites meeting ARB completeness criteria.
Cleverly et al. (2002)	1 yr (annual average)	$1.6 imes 10^{-2}$						Concentration reported as TEQ_{DF} -WHO ₉₈ . SF and DC considered by authors to be the two NDAMN stations of more urban character that can serve as indicator of dioxin/furan levels in more populated areas. Data from other NDAMN sites located in rural and remote areas are not included since they are intended to represent atmospheric background levels.
Gertler et al. (1996 1998)	10 24-hr sampling periods	3.9×10^{-2}						Concentration reported as TEQ _{DF} -NATO ₈₉
	5 24-hr sampling periods	$4.9 imes 10^{-2}$						Concentration reported as TEQ _{DF} -NATO ₈₉ . Pri- marily light-duty vehicles, less than 2% heavy- duty diesel vehicles
	10 24-hr sampling periods	$7.6 imes 10^{-2}$						Concentration reported as TEQ _{DF} -NATO ₈₉ . Trucks directed into this bore, on average 24– 25% heavy-duty diesel vehicles
EPA (2003)	Weighted mean across 14 studies	$8.1 imes 10^{-2}$						Concentration reported as TEQ_{DF} -WHO ₉₈ . EPA assumed that non-detects equal to one-half the limit of detection. Individual study means shown to range from 0.029 to 0.232 TEQ pg/m ³ .
Hunt et al. (1997)	4 days	$2.5 imes 10^{-1}$						TEQ source not reported; appears to be NATA/80 TEQs.

		Stuc	ly								Individua	l Sample
		Locatio	on(s)		Study					Source of	Measurem	ent Range
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Borak et al. (2003)	School bus survey data summary— NIOSH 5040 EC	Not pro- vided		In-vehicle	Not speci- fied (likely in 2002)	13.7–20.1 hrs	27		μg/m³	Directly from reference	< 1.0 × 10 ¹	1.9
Children's Environmental Health Protection Program	Boyle Heights monitoring data summary— continuous Black Carbon	Los Angeles	CA	Urban	1/9/02– 2/28/02	1 hr	400	90%	μg/m³	Calculated by Gradient Corp. from study data set	0.0	7.8×10^{-1}
	Boyle Heights monitoring data summary— PM ₁₀ EC	Los Angeles	CA	Urban	Feb 2001– May 2002	24 hrs	144	10%	μg/m³	Calculated by Gradient Corp. from study data set	< 1	4.0
	Crockett monitoring data summary— continuous Black Carbon	Crockett	CA	Urban	10/2/01– 2/28/02	1 hr	2,381	100%	μg/m³	Calculated by Gradient Corp. from study data set	3.5×10^{-2}	5.8
	Crockett monitoring data summary— PM ₁₀ EC	Crockett	CA	Urban	Nov 2001– May 2003	24 hrs	78	0%	μg/m³	Calculated by Gradient Corp. from study data set	< 1	< 1
	Fresno monitoring data summary— continuous Black Carbon	Fresno	CA	Urban	June 2002– Aug 2003	1 hr	10,388	100%	μg/m³	Calculated by Gradient Corp. from study data set	2.0×10^{-3}	$1.3 imes 10^1$
	Fresno monitoring data summary— continuous EC	Fresno	CA	Urban	June 2002– Aug 2003	1 hr	9,008	99%	μg/m³	Calculated by Gradient Corp. from study data set	< 1 × 10 ⁻¹	$1.5 imes 10^1$
	Fruitvale monitoring data summary— continuous Black Carbon	Fruitvale area of Oakland	CA	Urban	12/11/01– 2/28/02	1 hr	1,030	100%	μg/m³	Calculated by Gradient Corp. from study data set	$7.3 imes 10^{-2}$	8.9
	Fruitvale monitoring data summary— PM ₁₀ EC	Fruitvale area of Oakland	e CA	Urban	Nov 2001– Feb 2003	24 hrs	71	8%	μg/m³	Calculated by Gradient Corp. from study data set	< 1	2.5
	Wilmington monitoring data summary— continuous Black Carbon	Wilming- ton	- CA	Urban	1/30/02– 2/28/02	1 hr	379	100%	μg/m³	Calculated by Gradient Corp. from study data set	0.0	6.7×10^{-1}
											Table continu	es on next page

Table B.10. Amb	ient and Outdo	or Exposure	Data Summ	aries (<i>Continu</i>	<i>ed</i>). DPM +	DEOG (EC +	BC as Surrog	gates) (Columns continued from previous page)
		Overall A F	arithmetic M Range of Mea	ean and/or ins	Overall 1	Median and/o Medians	or Range of	
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Borak et al. (2003)								Aethalometer also used to measure BC, although authors identified technical limita- tions associated with this methodology.
Children's Environmental Health Protection Program	~ 2 months	$2.0 imes 10^{-1}$						Black carbon measured using aethalometer; 0 reported for 41 hrs, with 0.008 $\mu g~C/m^3$ as next lowest concentration
	~ 15 months	$6.6 imes 10^{-1}$						$\rm PM_{10} EC$ method derived from NIOSH method.
	~ 5 months	$8.9 imes 10^{-1}$						Black carbon measured using aethalometer.
	~ 1.5 yrs							$\mathrm{PM}_{10}\mathrm{EC}$ method derived from NIOSH method.
	~ 1 yr	1.2						Black carbon measured using aethalometer.
	~ 1 yr	7.2×10^{-1}						EC instrument type not provided; 0 reported for 55 hrs, with 0.1 $\mu g~{C/m}^3$ as next lowest concentration
	~ 3 months	1.8						Black carbon measured using aethalometer.
	15 months	$6.1 imes 10^{-1}$						$\mathrm{PM}_{10}\mathrm{EC}$ method derived from NIOSH method.
	1 month	1.9×10^{-1}						Black carbon measured using aethalometer. Only 1 record out of 379 had a concentration of 0 and was not flagged, with the next lowest concentration being 0.02 $\mu g~C/m^3$
								Table continues on next page

		Stud Locatio	y n(s)	_						_	Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Children's Environmental Health Protec- tion Program (<i>Continued</i>)	Wilmington monitoring data summary— PM ₁₀ EC	Wilming- ton	CA	Urban	May 2001– July 2002	24 hrs	96	84%	µg/m³	Calculated by Gradient Corp. from study data set	< 1	4.9
Fitz et al. (2003)	In-vehicle data summary for school bus study— continuous Black Carbon	Los Angeles	CA	In-vehicle, urban and rural/ sub- urban	4/22/02- 6/12/02	1–1.5 hrs	32 bus commute runs		µg/m³	Directly from reference		
Martuzevicius et al. (2004)	Greater Cincin- nati PM _{2.5} mon- itoring study data summary— PM _{2.5} EC	Cincin- nati	OH	Roadside, urban	Dec 2001– Nov 2002	24 hrs	total of 219 daily PM _{2,5} samples		µg/m³	Directly from reference	1.0	$1.3 imes 10^1$
EPA (2004)	Atlanta GA— PM _{2.5} EC	Atlanta	GA	Urban	Oct 2001– Sept 2002	24 hrs	183		µg/m³	Directly from reference	< 1.3 × 10 ⁻¹	3.5
	Boulder CO— PM _{2.5} EC	Boulder	CO	Urban	Oct 2001– Sept 2002	24 hrs	161	100%	µg/m³	Directly from reference	$1.5 imes 10^{-1}$	4.4
	Burlington VT— PM _{2.5} EC	- Burling- ton	VT	Urban	Oct 2001– Sept 2002	24 hrs	201		µg/m³	Directly from reference	$< 1.5 \times 10^{-1}$	$8.4 imes 10^{-1}$
	Chicago IL— PM _{2.5} EC	Chicago	IL	Urban	Oct 2001– Sept 2002	24 hrs	139		µg/m³	Directly from reference	$< 5.9 \times 10^{-2}$	1.6
	Detroit MI— PM _{2.5} EC	Detroit	MI	Urban	Oct 2001– Sept 2002	24 hrs	189		µg/m³	Directly from reference	< 1.5 × 10 ⁻¹	3.7
	Houston TX— PM _{2.5} EC	Houston	ТΧ	Urban	Oct 2001– Sept 2002	24 hrs	229		µg/m³	Directly from reference	$< 5.9 \times 10^{-2}$	1.1
	Minneapolis MN—PM _{2.5} EC	Minne- apolis	MN	Urban	Oct 2001– Sept 2002	24 hrs	163		µg/m³	Directly from reference	$< 1.5 \times 10^{-1}$	1.8
	Philadelphia PA—PM _{2.5} EC	Philadel- phia	РА	Urban	Oct 2001– Sept 2002	24 hrs	262		µg/m³	Directly from reference	$< 1.5 \times 10^{-1}$	2.3

		Overall A	arithmetic M Range of Mea	ean and/or ns	Overall 1	Median and/o Medians	or Range of	_
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Children's Environmental Health Protec- tion Program (<i>Continued</i>)	~ 1 yr	$8.7 imes 10^{-1}$						PM_{10} EC method derived from NIOSH method. ARB summary data spreadsheet has units incorrectly labeled as mg C/m ³ .
Fitz et al. (2003)	Over all exposure runs grouped by route and window position		2.7	$1.0 imes 10^1$				Black carbon measured using aethalometer. Range in mean concentrations reflects mean concentrations presented in report for three groups of exposure runs: urban route one with windows closed (morning), urban route one with windows open (afternoon), and rural/suburban route with windows open (afternoon).
Martuzevicius et al. (2004)								$\rm PM_{2.5}~EC$ concentration via NIOSH method
EPA (2004)	1 yr	9.0×10^{-1}						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	1.0						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.6 imes 10^{-1}$						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	6.1×10^{-1}						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$6.8 imes 10^{-1}$						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$3.0 imes 10^{-1}$						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$3.9 imes 10^{-1}$						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$6.6 imes 10^{-1}$						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
								Table continues on next page

		Stud Locatio	y n(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA (2004) (<i>Continued</i>)	Phoenix AZ— PM _{2.5} EC	Phoenix	AZ	Urban	Oct 2001– Sept 2002	24 hrs	275		µg/m³	Directly from reference	$< 1.5 \times 10^{-1}$	5.0
	Riverside- Rubidoux CA— PM _{2.5} EC	River- - side- Rubid- oux	CA	Urban	Oct 2001– Sept 2002	24 hrs	161	100%	μg/m³	Directly from reference	$1.2 imes 10^{-1}$	4.3
	Sacramento CA—PM _{2.5} EC	Sacra- mento	CA	Urban	Oct 2001– Sept 2002	24 hrs	265		µg/m³	Directly from reference	$< 1.5 \times 10^{-1}$	8.4
	Seattle WA— PM _{2.5} EC	Seattle	WA	Urban	Oct 2001– Sept 2002	24 hrs	314		µg/m³	Directly from reference	$< 5.9 \times 10^{-2}$	2.7
	St Louis MO — PM _{2.5} EC	St Louis	МО	Urban	Oct 2001– Sept 2002	24 hrs	324		µg/m³	Directly from reference	$< 1.3 \times 10^{-1}$	2.7
Lena et al. (2002)	Hunts Point, NY sidewalk monitoring data summary— PM _{2.5} EC	New York City	NY	Roadside, urban	July–Aug 1999: 9 weekdays over 3-week period	10–12 hrs	33	100%	µg/m³	Directly from reference		
South Coast Air Quality Management District (AQMD) (2000)	Fixed site sampling data summary— PM ₁₀ EC	South- ern Cali- fornia South Coast Air Basin	СА	Primarily urban, including Los Angeles	Apr 1998- Mar 1999	24 hrs	one 24-hr sample every six days		µg/m³	Directly from reference		
	Regional modeling analysis summary— simulated EC	Southern Califor- nia South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998- Mar 1999				µg/m³	Directly from reference		

		Overall A F	rithmetic M ange of Mea	ean and/or ns	Overall 1	Median and/o Medians	or Range of	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
EPA (2004) (Continued)	1 yr	$7.5 imes 10^{-1}$						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	1.2						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	6.6×10^{-1}						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	6.0×10^{-1}						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$7.2 imes 10^{-1}$						$\rm PM_{2.5}$ EC concentration via NIOSH method; 1 of 13 sites featured in PM CD to represent cross-section of US.
Lena et al. (2002)	Varies (between 2–9 10–12 hr samples)	3.8	2.6	7.3				For 13 of 33 samples, $PM_{2.5}$ EC concentration measured via NIOSH method; for remaining samples, EC estimated from reflectance mea- surements of $PM_{2.5}$ filters.
South Coast Air Quality Man- agement Dis- trict (AQMD) (2000)	1 yr	3.4						Report concluded that mobile sources were dominant pollutant sources.
	1 yr	3.4						Modeling included emissions for on-road mobile, area and off-road mobile, and major point sources.

 Table B.10. Ambient and Outdoor Exposure Data Summaries (Continued).
 DPM + DEOG (EC + BC as Surrogates) (Columns continued from previous page)

Table B.10. Am	pient and Outdoo	r Exposur	re Dat	a Summarie	s (Continu	ed). DPM	+ DEOG (EC	+ BC as Surro	gates) (<i>Col</i>	umns contini	ie on next page)	
		Stud Locatio	ly on(s)	_							Individual Measureme	Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Rodes et al. (1998)	In-vehicle data summary, Los Angeles—con- tinuous Black Carbon	Los Angeles	CA	In-vehicle, urban	9/25/97– 10/3/97	2 hrs	16 com- mutes in 1 car (16 total sampling events)		µg/m³	Directly from reference	3.3	$2.3 imes 10^1$
	In-vehicle data summary, Sacramento— continuous Black Carbon	Sacra- mento	CA	In-vehicle, urban	9/9/97– 9/16/97	2 hrs	13 com- mutes in 1 car (13 total sampling events)		µg/m³	Directly from reference	$-3.0 imes 10^{-1}$	9.5
Kinney et al. (2000)	Harlem sidewalk monitoring data summary— PM _{2.5} EC	New York City -	NY	Roadside, urban	July 1996 (5 week- days within 13-day period)	8 hrs	40 (20 replicates)	100%	µg/m³	Directly from reference	1.1	7.9
EPA National Air Toxics Assessment (NATA)	Summary of rural modeling results—diesel PM	Nation- wide— all rural counties	US	Rural	1996				µg/m³	Directly from reference		
	Summary of urban modeling results— diesel PM	Nation- wide— all urban counties	US	Urban	1996				μg/m³	Directly from reference		
Manchester- Neesvig et al. (2003)	Southern California diesel exhaust PM ₁₀ source contributions— diesel PM	Multiple (12) South- ern Cali- fornia commu- nities	CA	Urban and rural	1995				µg/m³	Directly from reference		
	Southern California PM ₁₀ organics measurement data summary— PM ₁₀ EC	Multiple (12) South- ern Cali- fornia commu- nities	CA	Urban and rural	1995	2 weeks	Nominally 26 per site		µg/m³	Directly from reference		
Seigneur et al. (2003)	Suburban and rural modeling results— diesel PM	Regional model- ing grid encom- passing north- eastern US	US	Urban, suburban and rural remote	7/11/95- 7/15/95				µg/m³	Directly from reference		
Seigneur et al. (2003)	Urban modeling results— diesel PM	Regional model- ing grid encom- passing north- eastern US	US	Urban, suburban and rural remote	7/11/95– 7/15/95				µg/m³	Directly from reference		
EPA (2002)b	Literature survey data summary— diesel PM	Multiple US met- ropoli- tan areas	US	Urban and suburban locations	post-1990	Typically 24 hrs			µg/m³	Directly from reference	0.0	$4.7 imes 10^1$

		Overall 1	Arithmetic Me Range of Mear	ean and/or ns	Overall M	fedian and/o Medians	or Range of	
Source (Continued)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Rodes et al. (1998)	2–4 commutes		4.4	$2.1 imes 10^1$				Black Carbon measured with aethalometer. Range in average concentrations represents averages reported by commute type and car.
	1–4 commutes		$-3.0 imes 10^{-1}$	8.3				Black Carbon measured with aethalometer. Range in average concentrations represents averages reported by commute type and car.
Kinney et al. (2000)	5 days	3.4	1.5	6.2				PM _{2.5} EC concentration via NIOSH method.
EPA National Air Toxics Assess- ment (NATA)	1 yr (annual average)	$7.4 imes 10^{-1}$			$6.7 imes 10^{-1}$			Mobile sources estimated to account for 100% of nationwide mean.
	1 yr (annual average)	2.4			1.9			Mobile sources estimated to account for 100% of nationwide mean.
Manchester- Neesvig et al. (2003)	Seasonal aver- ages		3.0×10^{-1}	5.6				PM ₁₀ mass concentration source contribu- tions for DPM based on molecular-marker source apportionment model.
	1 yr (annual average)		1.5×10^{-1}	1.7				PM ₁₀ EC concentration measured via NIOSH method; range represents sites with mini- mum and maximum annual average concen- trations among 11 sites with measurable levels.
Seigneur et al. (2003)	1 hr		1.0	4.0				Simulated DPM concentration; modeled time period noted to have high ozone pollution and low mixing height.
Seigneur et al. (2003)	1 hr		2.0	$4.1 imes 10^1$				Simulated DPM concentration; modeled time period noted to have high ozone pollution and low mixing height.
EPA (2002)	Annual/ seasonal average		1.0	4.0				Typical range based on review of post-1990 chemical mass balance (CMB) studies and EC measurement studies.

 Table B.10. Ambient and Outdoor Exposure Data Summaries (Continued).
 DPM + DEOG (EC + BC as Surrogates) (Columns continued from previous page)

Table B.11. Am	bient and Outdo	or Exposi	ure Da	ta Summa	ries. Ethyl	benzene (C	olumns cont	inue on next	page)			
		Stud Locatic	ly on(s)	_							Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Eastern Research Group (ERG) (2004)	2003 UATMP data summary	Nation- wide	US	Urban, subur- ban, rural	2003	24 hrs	1,550	61%	µg/m³ (con- verted from ppb)	Directly from reference	4.3×10^{-2}	1.2×10^1
EPA Air Qual- ity System (AQS) Data- base (via AIR- Data website)	HAP monitor values report data summary	Nation- wide	US	Urban, subur- ban, rural	2003	primarily 24 hrs, some 1 hr and 3 hr	111,942		µg/m³ (con- verted from ppbC)	Calculated by Gradient Corp. from annual sum- mary report		$6.4 imes 10^1$
Children's Environmen- tal Health Protection Program	Barrio Logan monitoring data summary	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	69	10%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	< 2.6	3.9
	Boyle Heights monitoring data summary	Los Angeles	CA	Urban	Feb 2001– May 2002	24 hrs	64	73%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	< 8.7 × 10 ⁻¹	4.3
	Crockett monitoring data summary	Crockett	CA	Urban	Oct 2001– May 2003	24 hrs	80	0%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	< 8.7 × 10 ⁻¹	< 8.7 × 10 ⁻¹
	Fresno monitoring data summary	Fresno	CA	Urban	July 2002–Aug 2003	24 hrs	65	35%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	< 8.7 × 10 ⁻¹	4.8
	Fruitvale monitoring data summary	Fruitvale area of Oakland	CA	Urban	Nov 2001–Apr 2003	24 hrs	83	46%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	< 8.7 × 10 ⁻¹	9.1
	Wilmington monitoring data summary	Wilming- ton	- CA	Urban	July 2001–July 2002	24 hrs	58	40%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	< 8.7 × 10 ⁻¹	3.8
Fitz et al. (2003)	In-vehicle data summary for school bus study	Los Angeles	CA	In-vehi- cle, urban	4/22/02- 6/12/02	1–1.5 hrs	20 sam- pling runs		μg/m³ (con- verted from ppb)	Directly from reference		
Payne-Sturges et al. (2004)	Baltimore outdoor air data summary	Balti- more	MD	Urban	Jan 2000– June 2001	3 days	33		µg/m³	Directly from reference		2.0 (P90)
										Ta	ble continues	on next page

Health Effects Institute Special Report 16 $\ensuremath{\mathbb{C}}$ 2007

Table B.11. Amb	oient and Outdo	or Exposure	Data Summ	aries (<i>Contin</i>	ued). Ethylbe	nzene (Colui	mns continue	ed from previous page)
		Overall A	Arithmetic M Range of Mea	ean and/or ins	Overall M	Median and/o Medians	or Range of	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Eastern Research Group (ERG) (2004)	Typically 1 yr (annual average)	1.0			$6.5 imes 10^{-1}$			Samples typically collected on a 6-day or 12-day schedule.
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	$5.4 imes 10^{-1}$	8.2×10^{-3}	3.4				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages). Max- imum individual sample concentration is for 1 hr sampling period.
Children's Envi- ronmental Health Protec- tion Program	17 months	1.5						
	~ 15 months	1.5						
	~ 1.5 yrs							
	1 yr	9.1×10^{-1}						
	6 months	1.2						
	~ 1 yr	9.1×10^{-1}						
Fitz et al. (2003)	Overall exposure runs grouped by route and window position		1.7	4.8				Range in mean concentrations reflects the mean concentrations provided in the report for two groups of urban route one exposure runs: with windows closed (morning), and with windows open (afternoon).
Payne-Sturges et al. (2004)	18 months	1.3			1.0			
								Table continues on next page

		Stuc Locatio	ly on(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Riediker et al. (2003)	Ambient air data summary	Wake County	NC	Urban	8/13/01– 10/11/01	7.75–14.7 hrs (average 9.1)	50	100%	µg/m³ (con- verted from ppb)	Directly from reference	4.3×10^{-1}	2.2
	In-vehicle data summary for NC state police patrol cars	Wake County	NC	In-vehi- cle, urban	8/13/01– 10/11/01	7.75–14.7 hrs (average 9.1)	46 (4 excluded by authors)	100%	µg/m³ (con- verted from ppb)	Directly from reference	1.3	$1.1 imes 10^1$
	Roadside sample data summary	Wake County	NC	Road- side, urban	8/13/01- 10/11/01	7.75–14.7 hrs (average 9.1)	50	100%	μg/m³ (con- verted from ppb)	Directly from reference	$4.3 imes 10^{-1}$	2.2
Adgate et al. (2004b)	Minneapolis spring outdoor school data summary	Minne- apolis	MN	Urban	4/9/00– 5/12/00	5 days	10	100%	µg/m³	Directly from reference		$7.0 imes 10^{-1}$ (P90)
	Minneapolis winter outdoor school data summary	Minne- apolis	MN	Urban	1/24/00- 2/18/00	5 days	8	100%	µg/m³	Directly from reference		8.0×10^{-1} (P90)
Batterman et al. (2002)	Across study roadway and in-bus mea- surement data summary	Detroit	MI	In-vehi- cle, urban	10/20/99– 11/10/99 (1 day per week for 4 weeks)	3–4 hrs	74	95%	µg/m³	Directly from reference	< 1.0 × 10 ⁻¹	6.1
Kinney et al. (2002)	Summary of summer resi- dential out- door data	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	29		µg/m³	Directly from reference		
	Summary of winter residen- tial outdoor data	New York	NY	Urban	Winter 1999 (over 8 weeks)	2 days	36		µg/m³	Directly from reference		
Pratt et al. (2000)	Minnesota statewide mon- itoring data summary	State- wide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 yrs per site	Typically 24 hrs	3,650	80%	µg/m³	Directly from reference	$< 3.2 \times 10^{-1}$	$2.1 imes 10^1$
Sexton et al. (2004)	Minneapolis-St Paul outdoor air data sum- mary	Minne- apolis- St Paul	MN	Urban	Apr–Nov 1999	2 days	132	98.5%	μg/m³	Directly from reference		1.4 (P90)

Table B.11. Am	bient and Outdoo	or Exposure	Data Summ	aries (<i>Contin</i>	ued). Ethylbe	enzene (<i>Colui</i>	nns continue	ed from previous page)
		Overall A I	Arithmetic M Range of Mea	ean and/or ins	Overall N	Median and/o Medians	or Range of	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Riediker et al. (2003)	50 late-shift patrols (3 PM to midnight) over 25 days	8.7×10^{-1}						Minimum concentration of 0.0 is as reported in publication.
	50 late-shift patrols (3 PM to midnight) over 25 days	3.9						Minimum concentration of 0.0 is as reported in publication.
	50 late-shift patrols (3 PM to midnight) over 25 days	$8.7 imes 10^{-1}$						Four excluded samples were from one car that had extreme values, which increased from shift to shift.
Adgate et al. (2004b)	5 weeks				$5.0 imes 10^{-1}$			
	4 weeks				$6.0 imes 10^{-1}$			
Batterman et al. (2002)	. 4 days (over 4 weeks)	2.0						
Kinney et al. (2002)	8 weeks	1.9						
	8 weeks	1.3						
Pratt et al. (2000)	1–9 yrs	$7.4 imes 10^{-1}$			$4.6 imes 10^{-1}$			
Sexton et al. (2004)	7 months	$7.0 imes 10^{-1}$			$5.0 imes 10^{-1}$			Authors note that manufacturing plant located near East St Paul neighborhood.
								Table continues on next page

		Stud Locatic	y on(s)								Individua Measurem	al Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Fedoruk and Kerger (2003)	Data summary for in-vehicle measurements during 90 minute drive	Los Angeles	CA	In-vehi- cle, urban and suburban	June– July 1997	90 minutes	1	100%	µg/m³	Directly from reference	2.0	2.0
	Data summary for in-vehicle measurements during extreme heat/static con- ditions	Foxboro	MA	In-vehi- cle, urban and suburban	June– July 1997	90 minutes	3	100%	µg/m³	Directly from reference	4.7	3.2×10^1
	Data summary for in-vehicle measurements during moder- ate heat/static conditions	Foxboro	MA	In-vehi- cle, urban and suburban	June– July 1997	90 minutes	3	100%	µg/m³	Directly from reference	2.5	7.5
Mohamed et al. (2002)	1996 UATMP data summary	Nation- wide	US	Urban, near- urban	Sept 1996– Aug 1997	24 hrs	Samples collected every 12 days		μg/m³ (con- verted from ppb)	Directly from reference		
Rodes et al. (1998)	Ambient Air Station Data Summary, Los Angeles	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	16	100%	μg/m³	Directly from reference		
	Ambient air station data summary, sacramento	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	12	73%>MDL for all Sacra- mento sam- ples	µg/m³	Directly from reference		
	In-vehicle data summary, Los Angeles	Los Angeles	CA	In-vehi- cle, urban	9/25/97– 10/3/97	2 hrs	16 com- mutes in 2 cars (32 total)	100%	µg/m³	Directly from reference	4.5	$1.2 imes 10^1$
	In-vehicle data summary, Sacramento	Sacra- mento	СА	In-vehi- cle, urban	9/9/97– 9/16/97	2 hrs	13 com- mutes in 2 cars (26 total)	73%>MDL for all Sacra- mento sam- ples	μg/m³	Directly from reference	$6.0 imes 10^{-1}$	$1.0 imes 10^1$
	Roadside sampling data summary, Los Angeles	Los Angeles	CA	Road- side, urban	9/25/97– 10/3/97	2 hrs	12 of the 16 commutes at 2 loca- tions (24 total)	100%	µg/m³	Directly from reference	1.2	9.7
	Roadside sampling data summary, Sacramento	Sacra- mento	CA	Road- side, urban	9/9/97– 9/16/97	2 hrs	9 of the 13 commutes at 2 locations (18 total)	73%>MDL for all Sacramento samples	μg/m³	Directly from reference	$3.0 imes 10^{-1}$	3.3
Table B.11. Am	pient and Outdoo	or Exposure	Data Summ	aries (<i>Continu</i>	ed). Ethylbo	enzene (<i>Colui</i>	nns continue	ed from previous page)				
--------------------------------	--------------------------	------------------	---------------------------------	------------------------	---------------------	-------------------------------	---------------	---				
		Over and	all Arithmeti /or Range of l	c Mean Means	and/	Overall Medi or Range of M	an Iedians	_				
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes				
Fedoruk and Kerger (2003)	90 minutes	2.0						Testing conducted on used 1993 Toyota Camry.				
	3 90-minute tests	$1.6 imes 10^1$						Three vehicles tested: new 1997 Ford Tau- rus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.				
	3 90-minute tests	4.2						Three vehicles tested: new 1997 Ford Tau- rus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.				
Mohamed et al. (2002)	1 yr		$8.0 imes 10^{-2}$	4.1×10^{-1}				Samples collected every 12 days.				
Rodes et al. (1998)	2–4 commutes		1.6	3.5				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concen- trations represents averages over different commute types.				
	1–4 commutes		$6.0 imes 10^{-1}$	1.8				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concen- trations represents averages over different commute types.				
	2–4 commutes		5.7	9.7				Range in average concentrations represents averages reported by commute type and car.				
	1–4 commutes		$6.0 imes 10^{-1}$	8.2				Range in average concentrations represents averages reported by commute type and car.				
	2–4 commutes		2.7	5.6				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concen- trations represents averages over different commute types.				
	1–4 commutes		$6.0 imes 10^{-1}$	3.0				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concen- trations represents averages over different commute types.				
								Table continues on next page				

		Stud Locatic	ly on(s)								Individua Measurem	al Sample ient Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Zielinska et al. (1998)	Summary of AZ HAPs program fixed site monitoring data	Multiple (5) locations	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 yr at each site)	24 hrs	~ 60 per site		µg/m³ (con- verted from ppb)	Directly from reference	0.0	$1.1 imes 10^1$
	Summary of AZ HAPs program temporary site monitoring data	Multiple (4) locations	AZ	Urban	June 1994– Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4–17 per site		μg/m³ (con- verted from ppb)	Directly from reference	$8.7 imes 10^{-1}$	$1.9 imes 10^1$

Table B.11. Am	bient and Outdoo	r Exposure	e Data Summ	aries (<i>Continu</i>	ied). Ethylbo	enzene (<i>Colui</i>	mns continued	from previous page)
		Over and	all Arithmeti /or Range of I	c Mean Means	and/	Overall Medi or Range of M	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Zielinska et al. (1998)	1 yr		$4.0 imes10^{-2}$	3.5				
	~ 1 week to 2 months		1.1	$1.2 imes 10^1$				

		Study Locat	ion(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Eastern Research Group (ERG) (2004)	2003 UATMP data summary	Nationwide	US	Urban, suburban, rural	2003	24 hrs	1,875	70%	μg/m³ (converted from ppb)	Directly from reference	$9.8 imes 10^{-2}$	$4.9 imes 10^1$
EPA Air Quality System (AQS) Database (via AIRData web- site)	HAP monitor values report data summary	Nationwide	US	Urban, suburban, rural	2003	Primarily 24 hrs, some 1 hr and 3 hr	16,578		μg/m³ (converted from ppb)	Calculated by Gradient Corp. from annual sum- mary report		$1.8 imes 10^2$
Children's Environmen- tal Health Protection Program	Barrio Logan monitoring data summary	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	68	100%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	$6.5 imes 10^{-1}$	6.8
	Boyle Heights monitoring data summary	Los Ange- les	CA	Urban	Feb 2001– May 2002	24 hrs	73	99%	µg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	< 1.2 × 10 ⁻¹	$1.4 imes 10^1$
	Crockett monitoring data summary	Crockett	CA	Urban	Oct 2001– May 2003	24 hrs	82	98%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	< 1.2 × 10 ⁻¹	6.3
	Fresno monitoring data summary	Fresno	CA	Urban	July 2002– Aug 2003	24 hrs	67	100%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	9.5×10^{-1}	$1.2 imes 10^1$
	Fruitvale monitoring data summary	Fruitvale area of Oakland	CA	Urban	Nov 2001– Apr 2003	24 hrs	76	100%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	2.0×10^{-1}	$1.5 imes 10^1$
	Wilmington monitoring data summary	Wilming- ton	CA	Urban	May 2001– July 2002	24 hrs	71	100%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	4.9×10^{-1}	8.4
Fitz et al. (2003)	In-vehicle data summary for school bus study	Los Angeles	CA	In-vehi- cle, urban	4/22/02– 6/12/02	1–1.5 hrs	32 bus commute runs		µg/m³	Directly from reference	$3.4 imes 10^{-1}$	4.8
Riediker et al. (2003)	In-vehicle data summary for NC state police patrol cars	Wake County	NC	Urban	8/13/01- 10/11/01	7.75–14.7 hrs (average 9.1)	50		µg/m³	Provided by author in email	0.0	$6.5 imes 10^1$

Table B.12. Amb	ient and Outdoor	Exposure I)ata Summar	ies (<i>Continue</i>	d). Formald	ehyde (<i>Colum</i>	uns continued	l from previous page)
	_	Overall A	Arithmetic Me Range of Mea	ean and/or ns	and/	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Eastern Research Group (ERG) (2004)	Typically 1 yr (annual average)	3.2			2.4			
EPA Air Quality System (AQS) Database (via AIRData web- site)	Typically 1 yr (annual average)	4.3	0.0	$4.9 imes 10^1$				Overall mean is the mean of all site average con- centrations. Minimum and maximum average concentrations represent range in average con- centrations across all sites (i.e., the lowest and highest site averages). Maximum individual sample concentration is for 24-hr sampling period.
Children's Environmental Health Protection Program	17 months	2.8						
	~ 16 months	4.7						
	~ 1.5 yrs	1.9						
	1 yr	4.5						
	6 months	2.4						
	~ 15 months	3.1						
Fitz et al. (2003)	Over all expo- sure runs grouped by route and window position		$9.3 imes 10^{-1}$	2.1				Range in mean concentrations reflects the mean concentrations provided in the report for two groups of urban route one exposure runs: with windows closed (morning), and with windows open (afternoon).
Riediker et al. (2003)	50 late-shift patrols (3 PM to midnight) over 25 days	$2.1 imes 10^1$						Formaldehyde data not reported in journal arti- cle; data obtained through email communica- tion with Ron Williams of EPA, with minimum concentration of 0 as reported in email corre- spondence.
								Table continues on next page

		Study Locat	ion(s))							Individual Measureme	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Grosjean and Grosjean (2002)	Caldecott Tunnel data summary	Near San Francisco	CA	Urban	7/20/99– 8/5/99	2 hrs	8 at both inlet and outlet		μg/m³	Directly from reference		
	Tuscarora Mountain Tunnel data summary	Pennsyl- vania Turnpike	PA	Urban	5/1/99– 5/21/99	1 hr	10 at inlet, 9 at outlet		µg/m³	Directly from reference		
Kinney et al. (2002)	Summary of summer residential outdoor data	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	36		μg/m³	Directly from reference		
	Summary of winter residential outdoor data	New York	NY	Urban	Winter 1999 (over 8 weeks)	2 days	36		µg/m³	Directly from reference		
Pratt et al. (2000)	Minnesota statewide monitoring data summary	Statewide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 yrs per site	Typically 24 hrs	2494	99%	µg/m³	Directly from reference	$< 4.8 \times 10^{-2}$	$2.1 imes 10^1$
South Coast Air Quality Management District (AQMD) (2000)	Fixed site sampling data summary	Southern California South Coast Air Basin	CA	Primarily urban, including Los Ange- les	Apr 1998– Mar 1999	24 hrs	one 24 hr sample every six days		µg/m³	Directly from reference		
	Regional modeling analysis summary	Southern California South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999				µg/m³	Directly from reference		
Rodes et al. (1998)	Ambient air station data summary, Los Angeles	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	15 (invalid sample for 1 com- mute)	98%>MDL for all LA samples	µg/m³	Directly from reference		
	Ambient air station data summary, Sacramento	Sacramento	CA	Urban	9/9/97– 9/16/97	2 hrs	10 (invalid samples for 2 com- mutes)	96%>MDL for all Sacra- mento sam- ples	µg/m³	Directly from reference		

Table B.12. Ambient and Outdoor Exposure Data Summaries (Continued). Formaldehyde (Columns continue on next page)

Table continues on next page

Table B.12. Ambi	ent and Outdoor	Exposure	Data Summar	ies (<i>Continue</i>	e d). Formald	ehyde (<i>Colun</i>	nns continue	l from previous page)
	-	Overall .	Arithmetic Me Range of Mea	ean and/or ns	and/	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Grosjean and Grosjean (2002)	8 2-hr measurements		5.0	$2.1 imes 10^1$				Fleet consisted primarily of light-duty vehicles using California Phase 2 reformulated gasoline; average concentration range presented is aver- age concentrations across inlet (minimum) and outlet (maximum) measurements
	9–10 hrly measurements		1.7	4.6				Fleet included both light-duty vehicles and heavy-duty diesel trucks; average concentra- tion range presented is average concentrations across inlet (minimum) and outlet (maximum) measurements
Kinney et al. (2002)	8 weeks	5.3						
	8 weeks	2.1						
Pratt et al. (2000)	1–9 yrs	1.7			1.4			
South Coast Air Quality Management District (AQMD) (2000)	1 yr	4.8						Report concluded that mobile sources were dom- inant pollutant sources.
	1 yr	5.5						Modeling included emissions for on-road mobile, area and off-road mobile, and major point sources.
Rodes et al. (1998)	2–4 commutes		6.7	$2.1 imes 10^1$				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different commute types.
	1–4 commutes		2.0	4.1				Ambient samples were collected simultaneously during commutes for in- vehicle measurements. Range in average concentrations represents averages over differ- ent commute types.
								Table continues on next page

Table B.12. An	bient and Out	door Exposu	ıre Da	ta Summa	ries (Contin	ued). For	maldehyde (Columns con	tinue on next	page)		
		Study Locat	ion(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Rodes et al. (1998) (<i>Continued</i>)	In-vehicle data summary, Los Angeles	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	15 for vehicle 1 and 14 for vehicle 2 (29 total)	98%>MDL for all LA samples	µg/m³	Directly from reference	0.0	$2.4 imes 10^1$
	In-vehicle data summary, Sacramento	Sacramento	CA	Urban	9/9/97– 9/16/97	2 hrs	13 com- mutes in 2 cars (26 total)	96%>MDL for all Sacramento samples	µg/m³	Directly from reference	4.6	$1.9 imes 10^1$
	Roadside sampling data summary, Los Angeles	Los Angeles	СА	Urban	9/25/97– 10/3/97	2 hrs	10 of the 16 com- mutes at 2 locations (19 total due to 1 invalid sample)	98%>MDL for all LA samples	µg/m³	Directly from reference	0.0	$2.0 imes 10^1$
	Roadside sampling data summary, Sacramento	Sacramento	CA	Urban	9/9/97– 9/16/97	2 hrs	9 of the 13 com- mutes at 2 locations (18 total)	96%>MDL for all Sacramento samples	µg/m³	Directly from reference	3.0	8.3
EPA National Air Toxics Assessment (NATA)	Summary of rural modeling results	Nationwide	US	Rural	1996				µg/m³	Directly from reference		
	Summary of urban modeling results	Nationwide	US	Urban	1996				µg/m³	Directly from reference		
Zielinska et al. (1998)	Summary of AZ HAPs program fixed site monitoring data	Multiple (5) locations	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 yr at each site)	24 hrs	~ 60 per site		μg/m³ (converted from ppb)	Directly from reference	$2.0 imes 10^{-2}$	$2.5 imes 10^1$
	Summary of AZ HAPs program temporary site monitoring data	Multiple (4) locations	AZ	Urban	June 1994– Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4–17 per site		μg/m³ (converted from ppb)	Directly from reference	1.8×10^{-1}	7.8
											Table continue	s on next page

		Overall A I	Arithmetic Mea Range of Mea	ean and/or ns	and/	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Rodes et al. (1998) (<i>Continued</i>)	2–4 commutes		7.2	$2.0 imes 10^1$				Range in average concentrations represents aver ages reported by commute type and car.
	1–4 commutes		4.9	$1.2 imes 10^1$				Range in average concentrations represents aver ages reported by commute type and car.
	2–4 commutes		1.1×10^1	$1.5 imes 10^1$				Roadside samples were collected simultaneously during commutes for in-vehicle measurements. Range in average concentrations represents averages over different commute types.
	1–4 commutes		4.6	6.3				Roadside samples were collected simultaneously during commutes for in-vehicle measurements. Range in average concentrations represents averages over different commute types.
EPA National Air Toxics Assessment (NATA)	1 yr (annual average)	$5.5 imes 10^{-1}$			$4.7 imes 10^{-1}$			Mobile sources estimated to account for 25% of nationwide mean.
	1 yr (annual average)	1.4			1.1			Mobile sources estimated to account for 72% of nationwide mean.
Zielinska et al. (1998)	1 yr		1.1	4.4				
	~ 1 week to 2 months		7.7×10^{-1}	5.1				

Table B.13. Aml	bient and Outdo	or Exposu	re Dat	ta Summari	ies . <i>n</i> -Hexar	ne (<i>Columns</i>	continue or	n next page)				
		Stud Location	y n(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA Air Quality System (AQS) Database (via AIRData web- site)	HAP monitor values report data summary	Nation- wide	US	Urban, suburban and rural	2003	Primarily 24 hrs, some 1 hr and 3 hrs	108,288		µg/m³ (con- verted from ppbC)	Calculated from annual summary report		$1.0 imes 10^3$
Riediker et al. (2003)	In-vehicle data summary for NC state police patrol cars	Wake County	NC	In-vehi- cle, urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	47	> 75%	μg/m³ (con- verted from ppb)	Provided by author in email	1.9	$1.1 imes 10^2$
Batterman et al. (2002)	Across study roadway and in-bus measurement data summary	Detroit	MI	In-vehi- cle, urban	10/20/99– 11/10/99 (1 day per week for 4 weeks)	3–4 hrs	74	100%	µg/m³	Directly from reference		$2.5 imes 10^1$
Fedoruk and Kerger (2003)	Data summary for in-vehicle measurements during 90 minute drive	Los Angeles	CA	In-vehi- cle, urban and suburban	June–July 1997	90 minutes	1	100%	µg/m³	Directly from reference	1.8	1.8
	Data summary for in-vehicle measurements during extreme heat/static conditions	Foxboro	MA	In-vehi- cle, urban and suburban	June–July 1997	90 minutes	3	100%	µg/m³	Directly from reference	4.8	$4.1 imes 10^1$
	Data summary for in-vehicle measurements during moder- ate heat/static conditions	Foxboro	MA	In-vehi- cle, urban and suburban	June–July 1997	90 minutes	3	100%	µg/m³	Directly from reference	1.7	$1.1 imes 10^1$
Zielinska et al. (1998)	Summary of AZ HAPs program fixed site monitoring data	Multiple (5) locations	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 yr at each site)	24 hrs	~ 60 per site		μg/m³ (con- verted from ppb)	Directly from reference	0.0	$1.1 imes 10^2$
	Summary of AZ HAPs program temporary site monitoring data	Multiple (4) locations	AZ	Urban	June 1994– Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4–17 per site		μg/m³ (con- verted from ppb)	Directly from reference	$9.5 imes 10^{-1}$	$2.9 imes 10^3$
											Table continue	es on next page

Table B.13. Amb	pient and Outdoo	or Exposure	e Data Summa	aries (<i>Contin</i> u	ued). n-Hexa	ane (<i>Columns</i>	s continued f	from previous page)
		Over and	all Arithmetic /or Range of M	c Mean Means	and/	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	1.2	$2.4 imes 10^{-2}$	9.1				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages). Maxi- mum individual sample concentration is for 1-hr sampling period.
Riediker et al. (2003)	50 late-shift patrols (3 PM to midnight) over 25 days	$2.5 imes 10^1$						<i>n</i> -hexane data not reported in journal article; data obtained through email communication with Ron Williams of EPA.
Batterman et al. (2002)	4 days (over 4 weeks)	$1.6 imes 10^1$						
Fedoruk and Kerger (2003)	90 minutes	1.8						Testing conducted on used 1993 Toyota Camry.
	3 90-minute tests	$2.4 imes 10^1$						Three vehicles tested: new 1997 Ford Taurus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.
	3 90-minute tests	5.2						Three vehicles tested: new 1997 Ford Taurus, new 1997 Chevy Lumina, and used 1993 Toyota Camry. Benzene detected only during testing of used 1993 Toyota Camry.
Zielinska et al. (1998)	1 yr		3.5×10^{-1}	7.5				
	~ 1 week to 2 months		1.6	$1.9 imes 10^3$				

		Study Location	/ n(s)								Individu Measuren	al Sample 1ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA Air Quality System (AQS) Database (via AIRData website)	HAP monitor values report data summary— PM _{2.5} Pb	Nation- wide	US	Urban, suburban, rural	2003	24 hrs	13,927		μg/m³	Calculated from annual summary report		$9.6 imes 10^{-1}$
Children's Environ- mental Health Protection Program	Barrio Logan monitoring data summary —TSP Pb	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	61	100%	μg/m³	Calculated by Gradi- ent Corp. from study data set	$1.4 imes 10^{-3}$	$6.5 imes 10^{-2}$
	Boyle Heights monitoring data summary —TSP Pb	Los Angeles	CA	Urban	Mar 2001– May 2002	24 hrs	68	99%	µg/m³	Calculated by Gradi- ent Corp. from study data set	$< 4 \times 10^{-3}$	$6.3 imes 10^{-2}$
	Crockett monitoring data summary —TSP Pb	Crockett	CA	Urban	Oct 2001– Feb 2003	24 hrs	60	82%	μg/m³	Calculated by Gradi- ent Corp. from study data set	$< 4 \times 10^{-3}$	$6.1 imes 10^{-2}$
	Fresno monitoring data summary —PM ₁₀ Pb	Fresno	CA	Urban	Aug 2002– Feb 2003	24 hrs	34	94%	µg/m³	Calculated by Gradi- ent Corp. from study data set	$< 3 \times 10^{-3}$	2.3×10^{-2}
	Fruitvale monitoring data summary —TSP Pb	Fruitvale area of Oakland	CA	Urban	Nov 2001– Feb 2003	24 hrs	53	98%	µg/m³	Calculated by Gradi- ent Corp. from study data set	$2.0 imes 10^{-3}$	$8.2 imes 10^{-2}$
	Wilmington monitoring data summary —TSP Pb	Wilming- ton	CA	Urban	May 2001– July 2002	24 hrs	68	96%	μg/m³	Calculated by Gradi- ent Corp. from study data set	$< 4 \times 10^{-3}$	$4.0 imes 10^{-2}$
Martuzevi- cius et al. (2004)	Greater Cincinnati PM _{2.5} monitoring study data summary —PM _{2.5} Pb	Cincinnati	OH	Roadside and urban	Dec 2001– Nov 2002	24 hrs	Total of 219 daily PM _{2,5} samples		μg/m³	Directly from reference		
EPA (2004)	Atlanta GA —PM _{2.5} Pb	Atlanta	GA	Urban	Oct 2001– Sept 2002	24 hrs	183		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$8.0 imes 10^{-3}$
	Boulder CO —PM _{2.5} Pb	Boulder	CO	Urban	Oct 2001– Sept 2002	24 hrs	161		µg/m³	Directly from reference	$< 5 \times 10^{-3}$	$3.6 imes 10^{-2}$

Table B.14. Amb	pient and Outdo	or Exposure	Data Summa	ries (<i>Continue</i>	e d). Lead Co	ompounds (C	olumns cont	inued from previous page)
		Overa and/	all Arithmeti or Range of I	c Mean Means	and/	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	$4.8 imes 10^{-3}$	$1.0 imes 10^{-3}$	$5.5 imes 10^{-2}$				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages).
Children's Environmen- tal Health Protection Program	~ 1.5 yrs	$1.9 imes 10^{-2}$						
	~ 14 months	$2.7 imes 10^{-2}$						
	~ 1.5 yrs	$7.9 imes 10^{-3}$						
	8 months	9.2×10^{-3}						
	~ 1.5 yrs	$1.4 imes 10^{-2}$						
	~ 1 yr	$1.3 imes 10^{-2}$						
Martuzevicius et al. (2004)	5–23 days, ranges across sites		$1.8 imes 10^{-3}$	$2.8 imes 10^{-2}$				
EPA (2004)	1 yr	$3.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$5.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
								Table continues on next page

		Study	7								Individua	l Samplo
		Location	n(s)								Measurem	ient Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA (2004) (Continued)	Burlington VT —PM _{2.5} Pb	Burlington	VT	Urban	Oct 2001– Sept 2002	24 hrs	201		µg/m³	Calculated by Gradi- ent Corp. from annual summary report	$< 6 \times 10^{-3}$	$1.6 imes 10^{-2}$
	Chicago IL —PM _{2.5} Pb	Chicago	IL	Urban	Oct 2001– Sept 2002	24 hrs	139		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$4.0 imes10^{-2}$
	Detroit MI —PM _{2.5} Pb	Detroit	MI	Urban	Oct 2001– Sept 2002	24 hrs	189		μg/m³	Directly from reference	$< 5 \times 10^{-3}$	$3.4 imes 10^{-2}$
	Houston TX —PM _{2.5} Pb	Houston	ΤX	Urban	Oct 2001– Sept 2002	24 hrs	229		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$7.0 imes 10^{-3}$
	Minneapolis MN— PM _{2.5} Pb	Minneapo- lis	· MN	Urban	Oct 2001– Sept 2002	24 hrs	163		µg/m³	Directly from reference	$< 5 \times 10^{-3}$	$6.6 imes 10^{-2}$
	Philadelphia PA—PM _{2.5} Pb	Philadel- phia	PA	Urban	Oct 2001– Sept 2002	24 hrs	262		µg/m³	Directly from reference	$< 5 imes 10^{-3}$	$2.5 imes 10^{-2}$
	Phoenix AZ —PM _{2.5} Pb	Phoenix	AZ	Urban	Oct 2001– Sept 2002	24 hrs	275		µg/m³	Directly from reference	$< 5 \times 10^{-3}$	$2.0 imes 10^{-2}$
	Riverside- Rubidoux CA—PM _{2.5} Pb	Riverside- Rubidoux	CA	Urban	Oct 2001– Sept 2002	24 hrs	161		µg/m³	Directly from reference	$< 5 imes 10^{-3}$	$2.6 imes10^{-2}$
	Sacramento CA—PM _{2.5} Pb	Sacra- mento	CA	Urban	Oct 2001– Sept 2002	24 hrs	265		µg/m³	Directly from reference	$< 5 \times 10^{-3}$	$4.4 imes 10^{-2}$
	Seattle WA —PM _{2.5} Pb	Seattle	WA	Urban	Oct 2001– Sept 2002	24 hrs	314		µg/m³	Directly from reference	$< 2 imes 10^{-3}$	$7.8 imes 10^{-2}$
	St Louis MO —PM _{2.5} Pb	St Louis	МО	Urban	Oct 2001– Sept 2002	24 hrs	324		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$9.0 imes 10^{-2}$
Riediker et al. (2003)	Ambient air data summary —PM _{2.5} Pb	Wake County	NC	Urban	8/13/01– 10/11/01	7.75–14.7 hrs (average 9.1)	50		µg/m³	Directly from reference	0.0	$7.2 imes 10^{-3}$
	In-vehicle data summary for NC state police patrol cars —PM _{2.5} Pb	Wake County	NC	In-vehi- cle, urban	8/13/01– 10/11/01	7.75–14.7 hrs (average 9.1)	50		µg/m³	Directly from reference	0.0	$1.2 imes 10^{-2}$

		Overa and/	all Arithmeti or Range of I	c Mean Means	and/	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
EPA (2004) (Continued)	1 yr	Not provided						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$6.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$6.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$5.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$5.0 imes10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	Not provided						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$6.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	Not provided						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$4.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$1.4 imes 10^{-2}$						1 of 13 sites featured in PM CD to represent cross-section of US.
Riediker et al. (2003)	50 late-shift patrols (3 PM to midnight) over 25 days	$2.0 imes 10^{-3}$						Minimum concentration of 0.0 is as reported in publication.
	50 late-shift patrols (3 PM to midnight) over 25 days	$2.4 imes 10^{-3}$						Minimum concentration of 0.0 is as reported in publication.

		Study Locatior	n(s)								Individua Measurem	al Sample ient Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Riediker et al. (2003) (<i>Continued</i>)	Roadside sample data summary —PM _{2.5} Pb	Wake County	NC	Roadside, urban	8/13/01– 10/11/01	7.75–14.7 hrs (average 9.1)	50		μg/m³	Directly from reference	0.0	$2.7 imes 10^{-2}$
Chellam et al. (2005)	Tunnel data summary —PM _{2.5} Pb	Houston	ТХ	Tunnel, urban	8/29/00– 9/1/00	2 hrs	6	100%	µg/m³	Directly from reference	$5.9 imes10^{-3}$	$3.8 imes 10^{-2}$
Kinney et al. (2002)	Summary of summer residential outdoor data— PM _{2.5} Pb	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	36		μg/m³	Directly from reference		
	Summary of winter residential outdoor data— PM _{2.5} Pb	New York	NY	Urban	Winter 1999 (over 8 weeks)	2 days	36		µg/m³	Directly from reference		
Pratt et al. (2000)	Minnesota statewide monitoring data summary —PM ₁₀ Pb	Statewide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 yrs per site	typically 24 hrs	1081	86%	μg/m³	Directly from reference	$< 1 \times 10^{-4}$	$5.8 imes 10^{-2}$
South Coast Air Quality Management District (AQMD) (2000)	Fixed site sampling data summary —TSP Pb	Southern California South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999	24 hrs	One 24-hr sample every six days		µg/m³	Directly from reference		
	Regional modeling analysis summary— simulated Pb	Southern California South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999				µg/m³	Directly from reference		
Rodes et al. (1998)	Ambient air station data summary, Los Angeles— PM _{2.5} Pb	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	12 (invalid samples for 4 com- mutes)	2%>MDL for all LA samples	µg/m³	Directly from reference		
	Ambient air station data summary, Sacramento— PM _{2.5} Pb	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	12	1%>MDL for all Sac- ramento samples	µg/m³	Directly from reference		
	In-vehicle data summary, Los Angeles—PM _{2.5} Pb	Los Ange- les	CA	In-vehi- cle, urban	9/25/97– 10/3/97	2 hrs	16 com- mutes in 2 cars (32 total)	2%>MDL for all LA samples	μg/m³	Directly from reference	0.0	$6.0 imes 10^{-2}$
	In-vehicle data summary, Sacramento— PM _{2.5} Pb	Sacra- mento	CA	In-vehi- cle, urban	9/9/97– 9/16/97	2 hrs	13 com- mutes in 2 cars (26 total)	1%>MDL for all Sac- ramento samples	μg/m³	Directly from reference	0.0	$5.0 imes 10^{-2}$

Table continues on next page

Table B.14. Amb	pient and Outdo	or Exposure	Data Summa	aries (<i>Continu</i>	ed). Lead Co	mpounds (C	olumns cont	inued from previous page)
		Overa and/	all Arithmetic or Range of 1	c Mean Means	C and/o	Overall Medi or Range of M	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Riediker et al. (2003) (<i>Continued</i>)	50 late-shift patrols (3 PM to midnight) over 25 days	$4.3 imes 10^{-3}$						Minimum concentration of 0.0 is as reported in publication.
Chellam et al. (2005)								
Kinney et al. (2002)	8 weeks	$6.6 imes 10^{-3}$						
	8 weeks	$7.0 imes 10^{-3}$						
Pratt et al. (2000)	1–9 yrs	$5.0 imes 10^{-3}$			$4.0 imes10^{-3}$			
South Coast Air Quality Man- agement Dis- trict (AQMD) (2000)	1 yr	$2.0 imes 10^{-2}$						Report concluded that mobile sources were dominant pollutant sources.
	1 yr		$2.9 imes 10^{-3}$	4.8×10^{-2}				Range represents separate modeling esti- mates for point sources and area sources. Modeling included emissions for on-road mobile, area and off-road mobile, and major point sources.
Rodes et al. (1998)	2–4 commutes		0.0	2.0×10^{-2}				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different commute types.
	1–4 commutes		$1.0 imes 10^{-2}$	2.0×10^{-2}				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different commute types.
	2–4 commutes		0.0	$3.0 imes 10^{-2}$				Range in average concentrations represents averages reported by commute type and car.
	1–4 commutes		0.0	$4.0 imes 10^{-2}$				Range in average concentrations represents averages reported by commute type and car.
								Table continues on next page

		Study Location	y n(s)								Individua Measuren	al Sample 1ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Rodes et al. (1998) (<i>Continued</i>)	Roadside sampling data summary, Los Angeles— PM _{2.5} Pb	Los Angeles	CA	Roadside, urban	9/25/97– 10/3/97	2 hrs	12 of the 16 commutes at 2 locations (24 total)	2%> MDL for all LA samples	µg/m³	Directly from reference	0.0	$6.0 imes 10^{-2}$
	Roadside sampling data summary, Sacramento— PM _{2.5} Pb	Sacra- mento	CA	Roadside, urban	9/9/97– 9/16/97	2 hrs	9 of the 13 commutes at 2 locations (18 total)	1%> MDL for all Sacramento samples	µg/m³	Directly from reference	0.0	$4.0 imes 10^{-2}$
EPA National Air Toxics Assessment (NATA)	Summary of rural modeling results—Lead Compounds	Nation- wide— all rural counties	US	Rural	1996				μg/m³	Directly from reference		
	Summary of urban modeling results—Lead Compounds	Nation- wide— all urban counties	US	Urban	1996				μg/m³	Directly from reference		

Table B.14. Ambient and Outdoor Exposure Data Summaries (Continued). Lead Compounds (Columns continue on next page)

Table B.14. Am	bient and Outdoo	or Exposure	Data Summa	aries (<i>Continu</i>	ed). Lead Co	ompounds (C	Columns cont	inued from previous page)
		Over and	all Arithmeti or Range of 1	c Mean Means	and/o	Overall Medi or Range of N	ian ⁄Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	– Notes
Rodes et al. (1998) (<i>Continued</i>)	2–4 commutes		$1.0 imes 10^{-2}$	$2.0 imes 10^{-2}$				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different commute types.
	1–4 commutes		$1.0 imes 10^{-2}$	$2.0 imes 10^{-2}$				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different commute types.
EPA National Air Toxics Assessment (NATA)	1 yr (annual average)	$9.7 imes 10^{-4}$			1.7×10^{-4}			Mobile sources estimated to account for 17% of nationwide mean.
	1 yr (annual average)	$7.3 imes 10^{-3}$			$3.0 imes 10^{-3}$			Mobile sources estimated to account for 57% of nationwide mean.

		Stud Locatio	y n(s)								Individual Measureme	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA Air Quality System (AQS) Database (via AIRData website)	HAP monitor values report data summary— PM _{2.5} Mn	Nation- wide	US	Urban, suburban, rural	2003	24 hrs	13,927		μg/m³	Calculated by Gradient Corp. from annual sum- mary report		1.2
Children's Environmental Health Protection Program	Barrio Logan monitoring data summary— TSP Mn	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	61	100%	µg/m³	Calculated by Gradient Corp. from study data set	$4.6 imes 10^{-3}$	1.7×10^{-1}
	Boyle Heights monitoring data summary— TSP Mn	Los Angeles	CA	Urban	Mar 2001– May 2002	24 hrs	68	99%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-3}$	$6.1 imes 10^{-2}$
	Crockett monitoring data summary— TSP Mn	Crockett	CA	Urban	Oct 2001– Feb 2003	24 hrs	60	98%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-3}$	$7.0 imes 10^{-2}$
	Fresno monitoring data summary— PM ₁₀ Mn	Fresno	CA	Urban	Aug 2002– Feb 2003	24 hrs	34	100%	µg/m³	Calculated by Gradient Corp. from study data set	$6.0 imes 10^{-3}$	1.2×10^{-1}
	Fruitvale monitoring data summary —TSP Mn	Fruitvale area of Oakland	CA	Urban	Nov 2001– Feb 2003	24 hrs	53	100%	µg/m³	Calculated by Gradient Corp. from study data set	$3.0 imes 10^{-3}$	$4.9 imes 10^{-2}$
	Wilmington monitoring data summary —TSP Mn	Wilming- ton	CA	Urban	May 2001– July 2002	24 hrs	68	100%	µg/m³	Calculated by Gradient Corp. from study data set	$4.4 imes 10^{-3}$	$9.3 imes 10^{-2}$
Martuzevicius et al. (2004)	Greater Cincinnati PM _{2.5} monitoring study data summary —PM _{2.5} Mn	Cincin- nati	ОН	Roadside and urban	Dec 2001– Nov 2002	24 hrs	Total of 219 daily PM _{2,5} samples		μg/m³	Directly from reference		
EPA (2004)	Atlanta GA —PM _{2.5} Mn	Atlanta	GA	Urban	Oct 2001– Sept 2002	24 hrs	183		µg/m³	Directly from reference	$< 1 \times 10^{-3}$	$1.1 imes 10^{-2}$
	Boulder CO —PM _{2.5} Mn	Boulder	CO	Urban	Oct 2001– Sept 2002	24 hrs	161		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$1.5 imes 10^{-2}$

Table B.15. Ambient and Outdoor Exposure Data Summaries (Continued). Manganese Compounds (Columns continued from previous page)									
		Overa and/	ll Arithmeti or Range of I	c Mean Means	and/	Overall Medi or Range of M	an Iedians	_	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes	
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	$3.1 imes 10^{-3}$	$5.0 imes 10^{-4}$	8.7×10^{-2}				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages).	
Children's Environmen- tal Health Protection Program	17 months	3.1×10^{-2}							
	~ 15 months	$2.6 imes 10^{-2}$							
	~ 1.5 yrs	$1.9 imes 10^{-2}$							
	6 months	3.8×10^{-2}							
	6 months	$1.8 imes 10^{-2}$							
	~ 15 months	$2.9 imes 10^{-2}$							
Martuzevicius et al. (2004)	5–23 days, ranges across sites		$1.6 imes 10^{-3}$	$1.1 imes 10^{-2}$					
EPA (2004)	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.	
	1 yr	$3.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.	
								Table continues on next page	

Table B.15. Am	bient and Outdo	oor Exposu	re Da	ta Summar	ries (<i>Contin</i>	ued). Man	ganese Com	pounds (<i>Colu</i>	ımns contir	nue on next po	ıge)	
		Stud Locatio	y n(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA (2004) (Continued)	Burlington VT— PM _{2.5} Mn	Burling- ton	VT	Urban	Oct 2001– Sept 2002	24 hrs	201		μg/m³	Directly from reference	$< 2 \times 10^{-3}$	$7.0 imes 10^{-3}$
	Chicago IL— PM _{2.5} Mn	Chicago	IL	Urban	Oct 2001– Sept 2002	24 hrs	139		μg/m³	Directly from reference	< 1 × 10 ⁻³	1.4×10^{-2}
	Detroit MI— PM _{2.5} Mn	Detroit	MI	Urban	Oct 2001– Sept 2002	24 hrs	189		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$2.5 imes 10^{-2}$
	Houston TX— PM _{2.5} Mn	- Houston	ТΧ	Urban	Oct 2001– Sept 2002	24 hrs	229		µg/m³	Directly from reference	$< 1 \times 10^{-3}$	1.3×10^{-2}
	Minneapolis MN—PM _{2.5} Mn	Minne- apolis	MN	Urban	Oct 2001– Sept 2002	24 hrs	163		μg/m³	Directly from reference	$< 2 \times 10^{-3}$	$9.0 imes 10^{-3}$
	Philadelphia PA— PM _{2.5} Mn	Phila- delphia	PA	Urban	Oct 2001– Sept 2002	24 hrs	262		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	$9.0 imes 10^{-3}$
	Phoenix AZ— PM _{2.5} Mn	- Phoenix	ΑZ	Urban	Oct 2001– Sept 2002	24 hrs	275		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	2.7×10^{-2}
	Riverside- Rubidoux, CA— PM _{2.5} Mn	Riverside- Rubidoux	CA	Urban	Oct 2001– Sept 2002	24 hrs	161		µg/m³	Directly from reference	$< 2 \times 10^{-3}$	1.5×10^{-2}
	Sacramento CA— PM _{2.5} Mn	Sacra- mento	CA	Urban	Oct 2001– Sept 2002	24 hrs	265		μg/m³	Directly from reference	$< 2 \times 10^{-3}$	1.3×10^{-2}
	Seattle WA— PM _{2.5} Mn	Seattle	WA	Urban	Oct 2001– Sept 2002	24 hrs	314		µg/m³	Directly from reference	$< 1 \times 10^{-3}$	2.4×10^{-2}
	St. Louis MO— PM _{2.5} Mn	St. Louis	MO	Urban	Oct 2001– Sept 2002	24 hrs	324		μg/m³	Directly from reference	< 1 × 10 ⁻³	$1.3 imes 10^{-1}$
Riediker et al. (2003)	Ambient air data summary— PM _{2.5} Mn	Wake County	NC	Urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		µg/m³	Directly from reference	0.0	$6.1 imes 10^{-3}$
	In-vehicle data summary for NC state police patrol cars— PM _{2.5} Mn	Wake County	NC	In-vehicle and urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		µg/m³	Directly from reference	0.0	1.34×10^{-2}
	Roadside data summary— PM _{2.5} Mn	Wake County	NC	Roadside and urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		µg/m³	Directly from reference	$3.0 imes 10^{-4}$	$9.4 imes 10^{-3}$
											Table continue	s on next page

In-vohiclo	Waka	In-vohiclo	8/1	3/01_	1/ 1/b-	50
 m-vemune	VVANC	III-VEIIILIE	0/1	3/01-	/./	50

Table B.15. Am	bient and Outdo	or Exposure	Data Summ	aries (<i>Continu</i>	ied). Mangai	nese Compou	nds (<i>Colum</i>	ns continued from previous page)
		Overa and/	ll Arithmetio or Range of I	c Mean Means	and/	Overall Medi or Range of N	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
EPA (2004) (<i>Continued</i>)	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$3.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$4.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$4.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$4.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$3.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$1.4 imes 10^{-2}$						1 of 13 sites featured in PM CD to represent cross-section of US.
Riediker et al. (2003)	50 late-shift patrols (3 PM to midnight) over 25 days	$2.9 imes 10^{-3}$						
	50 late-shift patrols (3 PM to midnight) over 25 days	4.2×10^{-3}						
	50 late-shift patrols (3 PM to midnight) over 25 days	3.2×10^{-3}						
								Table continues on next page

S	Data	Locatio	n(s)								Measurem	ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Chellam et al. (2005)	Tunnel data summary— PM _{2.5} Mn	Houston	ΤX	Tunnel, urban	8/29/00– 9/1/00	2 hrs	6	100%	µg/m³	Directly from reference	2.3×10^{-2}	$8.0 imes 10^{-2}$
Kinney et al. (2002)	Summary of summer residential outdoor data—PM _{2.5} Mn	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	36		µg/m³	Directly from reference		
	Summary of winter residential outdoor data—PM _{2.5} Mn	New York	NY	Urban	Winter 1999 (over 8 weeks)	2 days	36		µg/m³	Directly from reference		
Pratt et al. (2000)	Minnesota statewide monitoring data summary— PM ₁₀ Mn	State- wide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 yrs per site	typically 24 hrs	1112	94%	µg/m³	Directly from reference	$< 5 \times 10^{-5}$	$7.1 imes 10^{-2}$
Rodes et al. (1998)	Ambient air station data summary, Los Angeles— PM _{2.5} Mn	Los Angeles -	CA	Urban	9/25/97– 10/3/97	2 hrs	12 (invalid samples for 4 com- mutes)	Reported as 0%>MDL	µg/m³	Directly from reference		
	Ambient air station data summary, Sacramento— PM _{2.5} Mn	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	12	Reported as 0%>MDL	µg/m³	Directly from reference		
	In-vehicle data summary, Los Angeles —PM _{2.5} Mn	Los Angeles	CA	In-vehi- cle, urban	9/25/97– 10/3/97	2 hrs	16 com- mutes in 2 cars (32 total)	Reported as 0%> MDL	µg/m³	Directly from reference	0.0	$4.0 imes 10^{-2}$
	In-vehicle data summary, Sacraento— PM _{2.5} Mn	Sacra- mento	CA	In-vehi- cle, urban	9/9/97– 9/16/97	2 hrs	13 com- mutes in 2 cars (26 total)	Reported as 0%> MDL	µg/m³	Directly from reference	0.0	$5.0 imes 10^{-2}$
	Roadside sampling data summary, Los Angeles— PM _{2.5} Mn	Los Angeles	CA	Roadside, urban	9/25/97– 10/3/97	2 hrs	12 of the 16 com- mutes at 2 locations (24 total)	Reported as 0%> MDL	µg/m³	Directly from reference	0.0	$3.0 imes 10^{-2}$

Health Effects Institute Special Report 16 $\ensuremath{\mathbb{C}}$ 2007

Table B.15. Am	bient and Outdo	or Exposure	Data Summ	aries (<i>Contin</i>	ued). Mangai	nese Compou	inds (Colum	ns continued from previous page)
		Overa and/	ll Arithmeti or Range of	c Mean Means	and/e	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Chellam et al. (2005)								
Kinney et al. (2002)	8 weeks	$2.1 imes 10^{-3}$						
	8 weeks	$2.4 imes 10^{-3}$						
Pratt et al. (2000)	1–9 yrs	$7.0 imes 10^{-3}$			$5.0 imes 10^{-3}$			
Rodes et al. (1998)	2–4 commutes		0.0	$3.0 imes 10^{-2}$				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different commute types.
	1–4 commutes		0.0	$3.0 imes 10^{-2}$				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different commute types.
	2–4 commutes		0.0	$3.0 imes 10^{-2}$				Range in average concentrations represents averages reported by commute type and car.
	1–4 commutes		0.0	$3.0 imes 10^{-2}$				Range in average concentrations represents averages reported by commute type and car.
	2–4 commutes		0.0	1.0×10^{-2}				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different commute types.
								Table continues on next page

		Stud Locatic	ly on(s)	-	QL 1						Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Rodes et al. (1998) (<i>Continued</i>)	Roadside sampling data summary, Sacramento— PM _{2.5} Mn	Sacra- mento	CA	Roadside, urban	9/9/97– 9/16/97	2 hrs	9 of the 13 commutes at 2 locations (18 total)	Reported as 0%> MDL	µg/m³	Directly from reference	0.0	$4.0 imes 10^{-2}$
EPA National Air Toxics Assessment (NATA)	Summary of rural modeling results Manganese Compounds	Nation- wide	US	Rural	1996				µg/m³	Directly from reference		
	Summary of urban modeling results— Manganese Compounds	Nation- wide	US	Urban	1996				µg/m³	Directly from reference		

Table B.15. Ambient and Outdoor Exposure Data Summaries (Continued). Manganese Compounds (Columns continue on next page

		Overa and/	all Arithmeti or Range of I	c Mean Means	(and/o	Overall Medi or Range of M	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	– Notes
Rodes et al. (1998) (<i>Continued</i>)	1–4 commutes		$1.0 imes 10^{-2}$	$2.0 imes 10^{-2}$				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different commute types.
EPA National Air Toxics Assessment (NATA)	1 yr (annual average)	$1.9 imes 10^{-3}$			3.2×10^{-4}			Mobile sources estimated to account for 1% of nationwide mean.
	1 yr (annual average)	$3.5 imes 10^{-3}$			1.8×10^{-3}			Mobile sources estimated to account for 6% of nationwide mean.

		Stud Locatio	y n(s)				_				Individu Measuren	al Sample 1ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA Air Quality System (AQS) Database (via AIRData web- site)	HAP monitor values report data summary— particulate (PM _{2.5}) Hg	Nation- wide	US	Urban, suburban and rural	2003	24 hrs	13,927		µg/m³	Calculated by Gradient Corp. from annual sum- mary report		2.8×10^{-2}
Children's Environmental Health Protection Program	Boyle Heights monitoring data summary— particulate (TSP) Hg	Los Angeles	CA	Urban	Mar 2001– May 2002	24 hrs	68	1%	µg/m³	Calculated by Gradient Corp. from study data set	$< 3 \times 10^{-3}$	$3.3 imes 10^{-3}$
	Crockett monitoring data summary— particulate (TSP) Hg	Crockett	CA	Urban	Oct 2001– Feb 2003	24 hrs	60	12%	µg/m³	Calculated by Gradient Corp. from study data set	< 3 × 10 ⁻³	$4.7 imes 10^{-3}$
	Fresno monitoring data summary— particulate (PM ₁₀) Hg	Fresno	CA	Urban	Aug 2002– Feb 2003	24 hrs	34	9%	µg/m³	Calculated by Gradient Corp. from study data set	< 3 × 10 ⁻³	$5.0 imes 10^{-3}$
	Fruitvale monitoring data summary— particulate (TSP) Hg	Fruitvale area of Oakland	CA	Urban	Nov 2001– Feb 2003	24 hrs	53	11%	µg/m³	Calculated by Gradient Corp. from study data set	$< 3 \times 10^{-3}$	$5.0 imes 10^{-3}$
	Wilmington monitoring data summary— particulate (TSP) Hg	Wilming- ton	CA	Urban	May 2001–July 2002	24 hrs	68	10%	µg/m³	Calculated by Gradient Corp. from study data set	$< 3 \times 10^{-3}$	$6.5 imes 10^{-3}$
Riediker et al. (2003)	Ambient air data summary— particulate (PM _{2.5}) Hg	Wake County	NC	Urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		µg/m³	Directly from reference	0.0	$9.5 imes 10^{-3}$
	In-vehicle data summary for NC state police patrol cars— particulate (PM _{2.5}) Hg	Wake County	NC	In-vehi- cle, urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		μg/m³	Directly from reference	0.0	$5.3 imes10^{-3}$
	Roadside sample data summary— particulate (PM _{2.5}) Hg	Wake County	NC	Roadside, urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		μg/m³	Directly from reference	0.0	$9.8 imes10^{-3}$

Table B.16. Amb	oient and Outdoo	or Exposure	Data Summ	aries (<i>Continu</i>	ed). Mercu	ry Compound	ls (Columns	continued from previous page)
		Overall A F	rithmetic M ange of Mea	ean and/or ns	Overall	Median and/o Medians	or Range of	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
EPA Air Quality System (AQS) Database (via AIRData web- site)	Typically 1 yr (annual average)	2.0×10^{-3}	$8.0 imes 10^{-4}$	$3.0 imes 10^{-3}$				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages).
Children's Environmen- tal Health Protection Program	~ 15 months	$1.5 imes 10^{-3}$						
	~ 1.5 yrs	$1.7 imes 10^{-3}$						
	8 months	$1.7 imes 10^{-3}$						
	~ 1.5 yrs	$1.8 imes 10^{-3}$						
	~ 1 yr	$1.8 imes 10^{-3}$						
Riediker et al. (2003)	50 late-shift patrols (3 pm to midnight) over 25 days	$2.9 imes 10^{-3}$						Minimum concentration of 0.0 is as reported in publication.
	50 late-shift patrols (3 pm to midnight) over 25 days	$1.1 imes 10^{-3}$						Minimum concentration of 0.0 is as reported in publication.
	50 late-shift patrols (3 pm to midnight) over 25 days	$3.8 imes 10^{-3}$						Minimum concentration of 0.0 is as reported in publication.
								Table continues on next page

		Stud Locatio	y n(s)								Individua Measurem	al Sample lent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Carpi and Chen (2002)	NYC background data summary— gaseous Elemental Hg	New York City	NY	Urban	June– Nov 2000	5 min continu- ous measure- ments	967–2551 per site		µg/m³	Directly from reference		$1.8 imes 10^{-2}$
Chen et al. (2004)	Connecticut statewide monitoring data summary— total gaseous Mercury (TGM)	Multiple locations	СТ	Urban and rural	Jan 1997– Dec 1999	Weekly			µg/m³	Directly from reference		
Pratt et al. (2000)	Minnesota statewide monitoring data summary— particulate (PM ₁₀) Hg	State- wide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 yrs per site	Typically 24 hrs	86	0%	µg/m³	Directly from reference	$< 5.7 \times 10^{-2}$	$< 5.7 \times 10^{-2}$
EPA National Air Toxics Assessment (NATA)	Summary of rural modeling results— Mercury Compounds	Nation- wide— all rural counties	US	Rural	1996				µg/m³	Directly from reference		
	Summary of urban modeling results— Mercury Compounds	Nation- wide— all urban counties	US	Urban	1996				µg/m³	Directly from reference		
McCarty et al. (2004)	Lake Michigan long-term particulate- phase Hg data summary	Multiple locations	WI, MI, IL, IN	Urban and rural	June 1994– Oct 1995	Weekly	Total of 397 (between 74 to 83 per site)	100%	µg/m³	Directly from reference	$1.1 imes 10^{-6}$	$4.9 imes 10^{-4}$
	Lake Michigan long-term vapor-phase Hg data summary	Multiple locations	WI, MI, IL, IN	Urban and rural	June 1994– Oct 1995	Weekly	Total of 386 (between 73 to 80 per site)	100%	µg/m³	Directly from reference	$1.6 imes 10^{-3}$	$2.2 imes 10^{-2}$

Table B.16. Amb	ient and Outdo	or Exposure	Data Summ	aries (<i>Contin</i> ı	ed). Mercu	ry Compound	ls (Columns co	ontinued from previous page)
		Overall A F	Arithmetic M Range of Mea	ean and/or ns	Overall 1	Median and/o Medians	or Range of	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Carpi and Chen (2002)	5–12 days		2.7×10^{-3}	$4.6 imes 10^{-3}$				
Chen et al. (2004)	3 yr average	$2.1 imes 10^{-3}$	$1.6 imes 10^{-3}$	3.8×10^{-3}				

Table B.16. Ambient and Outdoor Exposure Data Summaries (Continued	1). Mercury Compounds	(Columns continued)	from previous page)
--	-------------------------------	---------------------	---------------------

Pratt et al. (2000)							
EPA National Air Toxics Assessment (NATA)	1 yr (annual average)	$1.6 imes 10^{-3}$		$1.5 imes 10^{-3}$			Mobile sources estimated to account for 0.2% of nationwide mean.
EPA National Air Toxics Assessment (NATA)	1 yr (annual average)	2.2×10^{-3}		$1.8 imes 10^{-3}$			Mobile sources estimated to account for 1.7% of nationwide mean.
McCarty et al. (2004)	~ 17 months	$3.1\times 10^{-5}\ 1.2\times 10^{-5}$	7.4×10^{-5}		1.1×10^{-5}	$5.4 imes 10^{-5}$	Maximum site average concentration for urban stations near Chicago; statistics exclude 2 samples collected at George Wash- ington HS in East Chicago IN.
	~ 17 months	$2.4\times 10^{-3}\ 2.1\times 10^{-3}$	3.6×10^{-3}		$1.9 imes 10^{-3}$	$2.9 imes 10^{-3}$	Maximum site average concentration for urban stations near Chicago; statistics exclude 1 sample collected at George Washington HS in East Chicago IN.

		Stud Locatio	y n(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Eastern Research Group (ERG) (2004)	2003 UATMP data summary	Nation- wide	US	Urban, suburban and rural	2003	24 hrs	1,550	25%	µg/m³ (converted from ppb)	Directly from reference	$7.2 imes 10^{-2}$	$3.7 imes 10^1$
EPA Air Quality System (ÅQS) Data- base (via AIRData website)	HAP monitor values report data summary	Nation- wide	US	Urban, suburban and rural	2003	Primarily 24 hrs	8,102		µg/m³ (converted from ppbC)	Calculated by Gradient Corp. from annual summary report		$1.2 imes 10^2$
Children's Environmen- tal Health Protection Program	Barrio Logan monitoring data summary	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	69	100%	µg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	1.6	$2.2 imes 10^1$
	Boyle Heights monitoring data summary	Los Angeles	CA	Urban	Feb 2001– May 2002	24 hrs	71	100%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	2.7	$3.6 imes10^1$
	Crockett monitoring data summary	Crockett	CA	Urban	Oct 2001– May 2003	24 hrs	77	68%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	< 1.1	5.4
	Fresno monitoring data summary	Fresno	CA	Urban	July 2002– Aug 2003	24 hrs	65	82%	µg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	< 1.1	$2.3 imes 10^1$
	Fruitvale monitoring data summary	Fruitvale area of Oakland	CA	Urban	Nov 2001– Apr 2003	24 hrs	81	72%	µg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	< 1.1	8.7
	Wilmington monitoring data summary	Wilming- ton	CA	Urban	July 2001– July 2002	24 hrs	57	100%	μg/m³ (con- verted from ppb)	Calculated by Gradient Corp. from study data set	1.7	$3.4 imes 10^1$
Payne-Sturges et al. (2004)	Baltimore outdoor air data summary	Baltimore	MD	Urban	Jan 2000– June 2001	3 days	33		µg/m³	Directly from reference		8.7 (P90)

		I Exposure	Data Summa	aries (Commu	eu). WIDE	(Columns co	ininiaea jioi	n previous page)
		Over and	all Arithmeti /or Range of	c Mean Means	and/	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Eastern Research Group (ERG) (2004)	Typically 1 yr (annual average)	3.2			1.8			Samples typically collected on a 6-day or 12- day schedule.
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	1.1	$3.6 imes 10^{-2}$	$1.2 imes 10^1$				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages). Maxi- mum individual sample concentration is for 24-hr sampling period.
Children's Environmen- tal Health Protection Program	17 months	9.0						
	~ 16 months	$1.1 imes 10^1$						
	~ 1.5 yrs	1.6						
	1 yr	3.8						
	~ 1.5 yrs	2.4						
	~ 1 yr	8.3						
Payne-Sturges et al. (2004)	18 months	4.4			4.3			
								Table continues on next page

Source	Data Description	Study Location(s)									Individual Sample Measurement Range	
		City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Kinney et al. (2002)	Summary of summer residential outdoor data	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	35		μg/m³	Directly from reference		
	Summary of winter residential outdoor data	New York	NY	Urban	Winter 1999 (over 8 weeks)	2 days	36		µg/m³	Directly from reference		
Fedoruk and Kerger (2003)	Data summary for in-vehicle measurements during 90 minute drive	Los Angeles	CA	Urban and suburban	June– July 1997	90 min- utes	1	100%	μg/m³	Directly from reference	5.8	5.8
	Data summary for in-vehicle measurements during extreme heat/static conditions	Foxboro	MA	Urban and suburban	June– July 1997	90 min- utes	3	0%	µg/m³	Directly from reference	< 9.0 × 10 ⁻¹	< 9.0 × 10 ⁻¹
	Data summary for in-vehicle measurements during moderate heat/static conditions	Foxboro	MA	Urban	June– July 1997	90 min- utes	3	33%	µg/m³	Directly from reference	$< 9.0 imes 10^{-1}$	2.6
Rodes et al. (1998)	Ambient air station data summary, Los Angeles	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	16	100%	µg/m³	Directly from reference		
	Ambient air station data summary, Sacramento	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	12	92%> MDL for all Sacramento samples	μg/m³	Directly from reference		
	In-vehicle data summary, Los Angeles	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	16 com- mutes in 2 cars (32 total)	100%	µg/m³	Directly from reference	$2.0 imes 10^1$	$9.0 imes 10^1$
	In-vehicle data summary, Sacramento	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	13 com- mutes in 2 cars (26 total)	92%> MDL for all Sacramento samples	μg/m³	Directly from reference	1.4	$3.6 imes 10^1$
	Roadside sampling data summary, Los Angeles	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	12 of the 16 commutes at 2 locations (24 total)	100%	µg/m³	Directly from reference	6.9	$5.9 imes 10^1$
	Roadside sampling data summary, Sacramento	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	9 of the 13 commutes at 2 locations (18 total)	92%> MDL for all Sacramento samples	µg/m³	Directly from reference	1.1	$1.4 imes 10^1$

 ${\it Table\ continues\ on\ next\ page}$

Table B.17. Ambient and Outdoor Exposure Data Summaries (Continued). MTBE (Columns continued from previous page)										
		Overa and	all Arithmeti /or Range of I	c Mean Means	and/	Overall Medi or Range of M	an Iedians	_		
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes		
Kinney et al. (2002)	8 weeks	$1.3 imes 10^1$								
	8 weeks	$1.2 imes 10^1$								
Fedoruk and Kerger (2003)	90 minutes	5.8						Testing conducted on used 1993 Toyota Camry.		
	3 90-minute tests	Not provided						Three vehicles tested: new 1997 Ford Taurus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.		
	3 90-minute tests	2.6						Three vehicles tested: new 1997 Ford Taurus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.		
Rodes et al. (1998)	2–4 commutes		9.7	$2.6 imes 10^1$				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different com- mute types.		
	1–4 commutes		2.0	6.7				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different com- mute types.		
	2–4 commutes		$3.1 imes 10^1$	$6.0 imes 10^1$				Range in average concentrations represents averages reported by commute type and car.		
	1–4 commutes		1.4	$3.0 imes 10^1$				Range in average concentrations represents averages reported by commute type and car.		
	2–4 commutes		$1.5 imes 10^1$	$3.2 imes 10^1$				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different com- mute types.		
	1–4 commutes		1.1	$1.1 imes 10^1$				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different com- mute types.		

Source	Data Description	Study Location(s)									Individual Sample Measurement Range	
		City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of [–] Summary Stats	Minimum	Maximum
EPA Air Quality System (AQS) Database (via AIRData website)	HAP monitor values report data summary	Multiple locations	OR, TX	Urban and suburban	2003	Primarily 24 hrs	190		μg/m³	Calculated by Gradient Corp. from annual sum- mary report		6.9×10^{-1}
Eiguren- Fernandez et al. (2004)	Southern California urban and rural community data summary	Multi- ple (6) South- ern Cali- fornia locations	CA	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		μg/m³	Directly from reference		
Batterman et al. (2002)	Across study roadway and in-bus measurement data summary	Detroit	MI	In-vehicle and urban	10/20/99– 11/10/99 (1 day per week for 4 weeks)	3–4 hrs	74	90%	μg/m³	Directly from reference	< 1 × 10 ⁻¹	3.8
Zielinska et al. (1998)	Summary of AZ HAPs program fixed site monitoring data	Multi- ple (5) locations	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 yr at each site)	24 hrs	~ 60 per site		μg/m³	Directly from reference	0.0	2.0
	Summary of AZ HAPs program temporary site monitoring data	Multi- ple (4) locations	AZ	Urban	June 1994– Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4–17 per site		μg/m³	Directly from reference	$1.7 imes 10^{-1}$	1.8

Health Effects Institute Special Report 16 $\ensuremath{\mathbb{C}}$ 2007
		Over and	all Arithmetic /or Range of M	c Mean Means	and	Overall Medi /or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	8.4×10^{-2}	1.2×10^{-3}	3.7×10^{-1}				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages). Maximum individual sample concentra- tion is for 24-hr sampling period.
Eiguren- Fernandez et al. (2004)	~ 1 yr		7.4×10^{-2}	$5.8 imes 10^{-1}$				Lowest levels found in Lompoc, a rural community with no major freeways; simi- lar PAH levels observed in Atascadero, also considered a rural area, and in the urban sites.
Batterman et al. (2002)	4 days (over 4 weeks)	1.2						
Zielinska et al. (1998)	1 yr		9.5×10^{-3}	8.2×10^{-1}				
	~ 1 week to 2 months		2.6×10^{-1}	8.9×10^{-1}				

		Joi Expost	ne Du	u oummur		Shipounus	(continues c	onninae on n	ieni puge)			
		Stud Locatic	y on(s)	_						Source of	Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA Air Quality System (AQS) Database (via AIRData website)	HAP monitor values report data summary— PM _{2.5} Ni	Nation- wide	US	Urban, suburban, rural	2003	24 hrs	13,927		µg/m³	Calculated by Gradient Corp. from annual sum- mary report		$1.1 imes 10^{-1}$
Children's Environmen- tal Health Protection Program	Barrio Logan monitoring data summary—TSP Ni	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	61	93%	µg/m³	Calculated by Gradient Corp. from study data set	$< 4.7 \times 10^{-3}$	$2.2 imes 10^{-2}$
	Boyle Heights monitoring data summary—TSP Ni	Los Angeles	CA	Urban	Mar 2001– May 2002	24 hrs	68	90%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-3}$	3.1×10^{-2}
	Crockett monitoring data summary—TSP Ni	Crockett	CA	Urban	Oct 2001– May 2003	24 hrs	60	83%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-3}$	$4.6 imes 10^{-2}$
	Fresno monitoring data summary— PM ₁₀ Ni	Fresno	CA	Urban	Aug 2002– Feb 2003	24 hrs	34	85%	µg/m³	Calculated by Gradient Corp. from study data set	< 1.0 × 10 ⁻³	$9.0 imes 10^{-3}$
	Fruitvale monitoring data summary—TSP Ni	Fruitvale area of Oakland	CA	Urban	Nov 2001– Feb 2003	24 hrs	53	89%	µg/m³	Calculated by Gradient Corp. from study data set	$< 2.0 \times 10^{-3}$	$1.0 imes 10^{-2}$
	Wilmington monitoring data summary—TSP Ni	Wilming- ton	CA	Urban	May 2001– July 2002	24 hrs	68	100%	µg/m³	Calculated by Gradient Corp. from study data set	2.2×10^{-3}	$2.7 imes 10^{-2}$
Martuzevicius et al. (2004)	Greater Cincinnati PM _{2.5} monitoring study data sum- mary—PM _{2.5} Ni	Cincin- nati	ОН	Roadside, urban	Dec 2001– Nov 2002	24 hrs	Total of 219 daily PM _{2,5} samples		µg/m³	Directly from reference		
EPA (2004)	Atlanta GA— PM _{2.5} Ni	Atlanta	GA	Urban	Oct 2001– Sept 2002	24 hrs	183		μg/m³	Directly from reference	$< 1 \times 10^{-3}$	$2.0 imes 10^{-3}$
	Boulder CO— PM _{2.5} Ni	Boulder	CO	Urban	Oct 2001– Sept 2002	24 hrs	161		µg/m³	Directly from reference	1.0×10^{-3}	$1.0 imes 10^{-2}$
											Table continues	on next page

Table B.19. Aml	pient and Outdoo	or Exposure	Data Summ	aries (<i>Continu</i>	ed). Nickel	Compounds	(Columns co	ontinued from previous page)
		Overa and/	ll Arithmeti or Range of I	c Mean Means	and/	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	1.7×10^{-3}	$3.0 imes 10^{-4}$	$1.8 imes 10^{-2}$				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages).
Children's Environmen- tal Health Protection Program	17 months	$5.2 imes 10^{-3}$						
	~ 15 months	$6.8 imes 10^{-3}$						
	~ 1.5 yrs	$4.4 imes 10^{-3}$						
	6 months	$3.1 imes 10^{-3}$						
	6 months	$3.8 imes 10^{-3}$						
	~ 1 yr	$1.1 imes 10^{-2}$						
Martuzevicius et al. (2004)	5–23 days, ranges across sites		2.3×10^{-4}	4.6×10^{-3}				
EPA (2004)	1 yr	Not provided						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$1.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
								Table continues on next page

Table B.19. An	bient and Outd	oor Exposı	ıre Dat	a Summari	es (Continue	ed). Nickel	Compound	ls (<i>Columns c</i>	continue or	n next page)		
		Stud Locatio	ly on(s)								Individua Measurem	al Sample lent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
EPA (2004) (<i>Continued</i>)	Burlington VT— PM _{2.5} Ni	Burling- ton	VT	Urban	Oct 2001– Sept 2002	24 hrs	201		µg/m³	Directly from reference	$1.0 imes 10^{-3}$	$2.2 imes 10^{-2}$
	Chicago IL— PM _{2.5} Ni	Chicago	IL	Urban	Oct 2001– Sept 2002	24 hrs	139		µg/m³	Directly from reference	$< 1 \times 10^{-3}$	$7.0 imes 10^{-3}$
	Detroit MI— PM _{2.5} Ni	Detroit	MI	Urban	Oct 2001– Sept 2002	24 hrs	189		µg/m³	Directly from reference	$1.0 imes 10^{-3}$	$2.2 imes 10^{-2}$
	Houston TX— PM _{2.5} Ni	Houston	ТХ	Urban	Oct 2001– Sept 2002	24 hrs	229		μg/m³	Directly from reference	$< 1 \times 10^{-3}$	4.7×10^{-2}
	Minneapolis MN— PM _{2.5} Ni	Minn- eapolis	MN	Urban	Oct 2001– Sept 2002	24 hrs	163		μg/m³	Directly from reference	$1.0 imes 10^{-3}$	$1.4 imes 10^{-2}$
	Philadelphia PA— PM _{2.5} Ni	Phila- delphia	PA	Urban	Oct 2001– Sept 2002	24 hrs	262		µg/m³	Directly from reference	$1.0 imes 10^{-3}$	$1.3 imes 10^{-1}$
	Phoenix AZ— PM _{2.5} Ni	Phoenix	AZ	Urban	Oct 2001– Sept 2002	24 hrs	275		μg/m³	Directly from reference	$< 1 \times 10^{-3}$	$1.3 imes 10^{-1}$
	Riverside- Rubidoux CA— PM _{2.5} Ni	River- side- Rubidoux	CA	Urban	Oct 2001– Sept 2002	24 hrs	161		μg/m³	Directly from reference	$6.0 imes 10^{-3}$	$1.4 imes 10^{-2}$
	Sacramento CA— PM _{2.5} Ni	Sacra- mento	CA	Urban	Oct 2001– Sept 2002	24 hrs	265		µg/m³	Directly from reference	$1.0 imes 10^{-3}$	$6.1 imes 10^{-1}$
	Seattle WA— PM _{2.5} Ni	Seattle	WA	Urban	Oct 2001– Sept 2002	24 hrs	314		μg/m³	Directly from reference	$< 1 \times 10^{-3}$	$2.0 imes 10^{-2}$
	St Louis MO— PM _{2.5} Ni	St Louis	МО	Urban	Oct 2001– Sept 2002	24 hrs	324		µg/m³	Directly from reference	$< 1 \times 10^{-3}$	$4.0 imes 10^{-2}$
Riediker et al. (2003)	Ambient air data summary —PM _{2.5} Ni	Wake County	NC	Urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		μg/m³	Directly from reference	0.0	0.0
	In-vehicle data summary for NC state police patrol cars— PM _{2.5} Ni	Wake County	NC	In-vehicle and urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		µg/m³	Directly from reference	0.0	3.0×10^{-4}
										,	Table continue	s on next page

		Overa and/	ll Arithmeti or Range of I	c Mean Means	and/o	Overall Medi or Range of M	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	- Notes
EPA (2004) (Continued)	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$1.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$6.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$3.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$1.0 imes 10^{-2}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
	1 yr	$2.0 imes 10^{-3}$						1 of 13 sites featured in PM CD to represent cross-section of US.
Riediker et al. (2003)	50 late-shift patrols (3 pm to midnight) over 25 days	0.0						Minimum/maximum/mean concentrations of 0.0 is as reported in publication.
	50 late-shift patrols (3 pm to midnight) over 25 days	0.0						Mean concentration of 0.0 is as reported in publication.
								Table continues on next page

Table B.19. An	nbient and Outd	oor Exposu	re Dat	a Summari	ies (Continue	d). Nickel	Compound	ls (<i>Columns d</i>	continue or	n next page)		
		Stud Locatio	y n(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	f Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Riediker et al. (2003) (<i>Continued</i>)	Roadside sample data summary— PM _{2.5} Ni	Wake County	NC	Roadside and urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50		µg/m³	Directly from reference	0.0	$9.0 imes 10^{-4}$
Chellam et al. (2005)	Tunnel data summary— PM _{2.5} Ni	Houston	ΤX	Tunnel and urban	8/29/00– 9/1/00	2 hrs	6	100%	μg/m³	Directly from reference	$1.0 imes 10^{-3}$	$8.4 imes 10^{-2}$
Kinney et al. (2002)	Summary of summer residential outdoor data —PM _{2.5} Ni	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	36		µg/m³	Directly from reference		
	Summary of winter residential outdoor data— PM _{2.5} Ni	New York	NY	Urban	Winter 1999 (over 8 weeks)	2 days	36		µg/m³	Directly from reference		
Pratt et al. (2000)	Minnesota statewide monitoring data summary– PM ₁₀ Ni Subsulfide or compounds	State- wide	MN	Varied: urban, rural, industrial	1991–1999, up to 9 yrs per site	typically 24 hrs	1102	5%	µg/m³	Directly from reference	$< 2.2 \times 10^{-3}$	$2.0 imes 10^{-2}$
South Coast Air Quality Management District (AQMD) (2000)	Fixed Site sampling data summary —TSP Ni	Southern California South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999	24 hrs	One 24-hr sample every six days		µg/m³	Directly from reference		
	Regional modeling analysis summary— simulated Ni	Southern California South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999				µg/m³	Directly from reference		
Rodes et al. (1998)	Ambient air station data summary, Los Angeles— PM _{2.5} Ni	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	12 (invalid samples for 4 commutes	Reported as 0%>MDL	µg/m³	Directly from reference		
	Ambient air station data summary, Sacramento— PM _{2.5} Ni	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	12	Reported as 0%>MDL	µg/m³	Directly from reference		
											Table continues	s on next page

Table B.19. Am	bient and Outdo	or Exposure	Data Summ	aries (<i>Continu</i>	ed). Nickel	Compounds	(Columns co	ontinued from previous page)
		Overa and/	all Arithmeti or Range of I	c Mean Means	and/	Overall Medi or Range of N	ian ⁄Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Riediker et al. (2003) (<i>Continued</i>)	50 late-shift patrols (3 pm to midnight) over 25 days	0.0						Minimum/average concentrations of 0.0 is as reported in publication.
Chellam et al. (2005)								
Kinney et al. (2002)	8 weeks	$1.2 imes 10^{-2}$						
	8 weeks	$3.2 imes 10^{-2}$						
Pratt et al. (2000)	1–9 yrs	$1.0 imes 10^{-3}$			0.0			
South Coast Air Quality Management District (AQMD) (2000)	1 yr	$8.7 imes 10^{-3}$						Report concluded that mobile sources were dominant pollutant sources.
	1 yr	$7.8 imes 10^{-3}$						Modeling included emissions for on-road mobile, area and off-road mobile, and major point sources.
Rodes et al. (1998)	2–4 commutes		0.0	$1.0 imes 10^{-2}$				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different com- mute types.
	1–4 commutes		0.0	$1.0 imes 10^{-2}$				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different com- mute types.
								Table continues on next page

		Stuc Locatio	ly on(s)								Individu Measuren	al Sample 1ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Rodes et al. (1998) (<i>Continued</i>)	In-vehicle data summary, Los Angeles —PM _{2.5} Ni	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	16 commutes in 2 cars (32 total)	Reported as 0%>MDL	µg/m³	Directly from reference	0.0	$3.0 imes 10^{-2}$
	In-vehicle data summary, Sacramento— PM _{2.5} Ni	Sacra- mento	СА	In-vehicle and urban	9/9/97– 9/16/97	2 hrs	13 commutes in 2 cars (26 total)	Reported as 0%>MDL	µg/m³	Directly from reference	0.0	$3.0 imes 10^{-2}$
	Roadside sampling data summary, Los Angeles PM _{2.5} Ni	Los Angeles	CA	In-vehicle and urban	9/25/97– 10/3/97	2 hrs	12 of the 16 commutes at 2 locations (24 total)	Reported as 0%>MDL	μg/m³	Directly from reference	0.0	$3.0 imes 10^{-2}$
	Roadside sampling data summary, Sacramento— PM _{2.5} Ni	Sacra- mento	CA	Roadside, urban	9/9/97– 9/16/97	2 hrs	9 of the 13 commutes at 2 locations (18 total)	Reported as 0%>MDL	µg/m³	Directly from reference	0.0	$2.0 imes10^{-2}$
EPA National Air Toxics Assessment (NATA)	Summary of rural modeling results— Nickel Compounds	Nation- wide	US	Roadside, urban	1996				µg/m³	Directly from reference		
	Summary of urban modeling results— Nickel Compounds	Nation- wide	US	Urban	1996				μg/m³	Directly from reference		

		Overa and	all Arithmeti /or Range of I	c Mean Means	and/	Overall Medi or Range of N	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Rodes et al. (1998) (<i>Continued</i>)	2–4 commutes		0.0	$2.0 imes 10^{-2}$				Range in average concentrations represents averages reported by commute type and car.
	1–4 commutes		0.0	$3.0 imes 10^{-2}$				Range in average concentrations represents averages reported by commute type and car.
	2–4 commutes		0.0	$1.0 imes 10^{-2}$				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different com- mute types.
	1–4 commutes		0.0	0.0				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different com- mute types.
EPA National Air Toxics Assessment (NATA)	1 yr (annual average)	$5.7 imes 10^{-4}$			$1.0 imes 10^{-4}$	ł		Mobile sources estimated to account for 6% of nationwide mean.
	1 yr (annual average)	$2.7 imes 10^{-3}$			$1.4 imes 10^{-3}$	1		Mobile sources estimated to account for 17% of nationwide mean.

Table B.19. Ambient and Outdoor Exposure Data Summaries (Continued). Nickel Compounds (Columns continued from previous page)

		Stud Locatio	y n(s)								Individu Measuren	al Sample ient Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Children's Environmen- tal Health Protection Program	Fresno monitoring data summary— continuous particle- bound total PAH	Fresno	CA	Urban	June 2002–Aug 2003	Contin- uous (reported as hrly average)	10,302	99.99%	ng/m³	Calculated by Gradient Corp. from study data set	0.0	$2.9 imes 10^2$
Eiguren- Fernandez et al. (2004)	Southern California urban and rural community data summary— particle (PM _{2.5}) and gas-phase total PAH	Multiple (6) Southern Califor- nia loca- tions	CA	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
Fitz et al. (2003)	In-vehicle data sum- mary for school bus study— continuous particle- bound total PAH	Los Angeles	CA	In- vehicle, urban and rural/ suburban	4/22/02- 6/12/02	Contin- uous readings during 1–1.5 hr commutes	32 bus commute runs		ng/m³	Directly from reference		
Levy et al. (2003)	Boston high-traffic community study data summary— continuous particle- bound total PAH	Boston	MA	Roadside and urban	12 days in July-Aug 2001	Contin- uous	307		ng/m³	Directly from reference	0.0	$1.8 imes 10^2$
Riediker et al. (2003)	In-vehicle data summary for NC state police patrol cars— continuous particle- bound total PAH	Wake County	NC	In- vehicle, urban	8/13/01- 10/11/01	Contin- uous	Contin- uous		ng/m³	Directly from reference		
Sapkota and Buckley (2003)	Baltimore Harbor tunnel tollbooth data summary— continuous particle- bound total PAH	Baltimore	e MD	Roadside and urban	7 week- days between 6/18/01- 6/28/01	Contin- uous	Contin- uous for 3 of 7 sampling days		ng/m³	Directly from reference		

	and	/or Range of	Means	and	/or Range of N	ſedians	_
Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
~ 1 yr	$1.2 imes 10^1$						One zero measurement recorded, with 0.4 ng/m^3 as next lowest reading.
~ 1 yr		$2.6 imes 10^2$	$6.1 imes 10^2$				Approximate range for total PAH levels measured at the various sites, with the exception of Lompoc, a rural community with no major freeways, where the low- est levels were observed.
) Over all exposure runs grouped by route and window position		$3.6 imes10^1$	$2.0 imes 10^2$				Range in mean concentrations reflects mean concentrations presented in repor for three groups of exposure runs: urbar route one with windows closed (morn- ing), urban route one with windows open (afternoon), and rural/suburban route with windows open (afternoon).
12 days	$1.8 imes 10^1$			8.4	4.0	$5.7 imes 10^1$	Median concentration range represents minimum and maximum median con- centrations across all 9 sites.
50 late-shift patrols (3 pm to midnight) over 25 days	$2.2 imes 10^1$						
3 days of 3-hr 3) averages					9.3	$2.0 imes 10^2$	1 minute readings averaged over 3-hr tim- periods reported by authors; median concentration range respresents 3-hour time blocks within day with lowest and highest median concentration.
	Data Averaging Period ~ 1 yr ~ 1 yr ~ 1 yr) Cover all exposure runs grouped by route and window position 12 days 50 late-shift patrols (3 pm to midnight) over 25 days 3 days of 3-hr averages	Data Averaging Overall ~ 1 yr 1.2 × 10 ¹ ~ 1 yr ~ 1 yr ~ 1 yr	Data Averaging PeriodOverallMinimum~1 yr1.2 × 101~1 yr2.6 × 102~1 yr3.6 × 101 </td <td>Data Averaging PeriodOverallMinimumMaximum-1 yr$1.2 \times 10^1$$-1$ yr$2.6 \times 10^2$$6.1 \times 10^2$$-1$ yr$2.6 \times 10^2$$6.1 \times 10^2$$0$ Over all exposure runs grouped by ny sition$3.6 \times 10^1$$2.0 \times 10^2$$12$ days$1.8 \times 10^1$$$$$$50$ late-shift patrols (3 pm to midnight) over 25 days$2.2 \times 10^1$$$</td> <td>Data Averaging Overall Minimum Maximum Overall ~1 yr 1.2 × 10¹ ~1 yr 2.6 × 10² 6.1 × 10² ~1 yr 2.6 × 10² 6.1 × 10² 3.6 × 10¹ 2.0 × 10² 3.6 × 10¹ 2.0 × 10² 3.6 × 10¹ 2.0 × 10² </td> <td>Data Averaging PeriodOverallMinimumMaximumOverallMinimum$\sim 1 \text{ yr}$$1.2 \times 10^{11}$$1.2 \times 10^{11}$$1.2 \times 10^{11}$$1.2 \times 10^{11}$$1.2 \times 10^{11}$$\sim 1 \text{ yr}$$2.6 \times 10^{2}$$6.1 \times 10^{2}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$\sim 1 \text{ yr}$$2.6 \times 10^{11}$$2.0 \times 10^{2}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$\sim 1 \text{ yr}$$1.1 \times 10^{11}$$2.0 \times 10^{21}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$\sim 1 \text{ yr}$$1.1 \times 10^{11}$$2.0 \times 10^{21}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$\sim 1 \text{ yr}$$1.1 \times 10^{11}$$2.0 \times 10^{21}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$\sim 1 \text{ yr}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$\sim 1 \text{ yr}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$\sim 1 \text{ yr}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$\sim 1 \text{ yr}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$\sim 1 \text{ yr}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$\sim 1 \text{ yr}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$\sim 1 \text{ yr}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$$1.1 \times 10^{11}$<</td> <td>Data Avereging Period Overall Minimum Maximum Overall Minimum Maximum ~1 yr 1.2 × 10¹ 1.2 × 10¹ </td>	Data Averaging PeriodOverallMinimumMaximum -1 yr 1.2×10^1 -1 yr 2.6×10^2 6.1×10^2 -1 yr 2.6×10^2 6.1×10^2 0 Over all exposure runs grouped by ny sition 3.6×10^1 2.0×10^2 12 days 1.8×10^1 $$ $$ 50 late-shift patrols (3 pm to midnight) over 25 days 2.2×10^1 $$	Data Averaging Overall Minimum Maximum Overall ~1 yr 1.2 × 10 ¹ ~1 yr 2.6 × 10 ² 6.1 × 10 ² ~1 yr 2.6 × 10 ² 6.1 × 10 ² 3.6 × 10 ¹ 2.0 × 10 ² 3.6 × 10 ¹ 2.0 × 10 ² 3.6 × 10 ¹ 2.0 × 10 ²	Data Averaging PeriodOverallMinimumMaximumOverallMinimum $\sim 1 \text{ yr}$ 1.2×10^{11} $\sim 1 \text{ yr}$ 2.6×10^{2} 6.1×10^{2} 1.1×10^{11} 1.1×10^{11} 1.1×10^{11} $\sim 1 \text{ yr}$ 2.6×10^{11} 2.0×10^{2} 1.1×10^{11} 1.1×10^{11} 1.1×10^{11} $\sim 1 \text{ yr}$ 1.1×10^{11} 2.0×10^{21} 1.1×10^{11} 1.1×10^{11} 1.1×10^{11} $\sim 1 \text{ yr}$ 1.1×10^{11} 2.0×10^{21} 1.1×10^{11} 1.1×10^{11} 1.1×10^{11} $\sim 1 \text{ yr}$ 1.1×10^{11} 2.0×10^{21} 1.1×10^{11} 1.1×10^{11} 1.1×10^{11} $\sim 1 \text{ yr}$ 1.1×10^{11} 1.1×10^{11} 1.1×10^{11} 1.1×10^{11} <	Data Avereging Period Overall Minimum Maximum Overall Minimum Maximum ~1 yr 1.2 × 10 ¹ 1.2 × 10 ¹

Table B.20a. A	mbient and Ou	ıtdoor Expo	osure l	Data Sumr	naries (<i>Con</i>	tinued). P	OM: Total P.	AH as Surroga	ate (<i>Colun</i>	nns continued fi	rom previous	page)
		Stud Locatio	y n(s)								Individua Measurem	al Sample lent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Naumova et al. (2002)	Elizabeth residential outdoor air data summary— particle- (PM _{2.5}) and gas-phase total PAH	Elizabeth	NJ	Urban	June 1999– May 2000	48 hrs	15		ng/m³	Directly from reference	$1.2 imes 10^1$	$1.1 imes 10^2$
	Houston residential outdoor air data summary— particle- (PM _{2.5}) and gas-phase total PAH	Houston	ΤХ	Urban	June 1999– May 2000	48 hrs	21		ng/m³	Directly from reference	$1.0 imes 10^1$	$1.6 imes 10^2$
	Los Angeles residential outdoor air data summary— particle- (PM2.5) and gas-phase total PAH	Los Angeles	CA	Urban	June 1999– May 2000	48 hrs	19		ng/m³	Directly from reference	4.2	$6.4 imes 10^1$
Dachs et al. (2002)	Baltimore and Chesapeake Bay PAH data summary— gas-phase total PAH	Baltimore and adjacent Chesa- peake Bay	MD	Urban and coastal	2/19/97– 2/22/97 and 7/22/97– 7/28/97	Both 12 and 4 hrs			ng/m³	Directly from reference	4.1	$1.3 imes 10^2$
	Baltimore and Chesapeake Bay PAH data summary— particle-phase total PAH	Baltimore and adjacent Chesa- peake Bay	MD	Urban and coastal	2/19/97– 2/22/97 and 7/22/97– 7/28/97	Both 12 and 4 hrs			ng/m³	Directly from reference	1.4×10^{-1}	8.3
EPA National Air Toxics Assessment (NATA)	Summary of rural modeling results —POM	Nation- wide— all rural counties	US	Rural	1996				ng/m³	Directly from reference		
	Summary of urban modeling results —POM	Nation- wide— all urban counties	US	Urban	1996				ng/m³	Directly from reference		
Odabasi et al. (1999)	Chicago PAH data summary— total particle- and gas-phase total PAH	Chicago	IL	Urban	June– Oct 1995	24 hrs (2 12-hr daytime samples)			ng/m³	Directly from reference		
										Та	ble continues	on next page

Table B.20a. An	nbient and Outdo	or Exposur	e Data Summ	aries (<i>Continu</i>	<i>led</i>). POM: 1	otal PAH as Su	urrogate (Colu	mns continued from previous page)
		Over and	all Arithmeti /or Range of	c Mean Means	and	Overall Medi /or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Naumova et al. (2002)								
Dachs et al. (2002)	~ 1 week		$1.8 imes 10^1$	$3.9 imes10^1$				Feb sampling conducted at Chesapeake Bay site only, while July sampling at both sites where PAH levels generally 2–3 fold higher at Baltimore site.
	~ 1 week		7.7×10^{-1}	2.1				Feb sampling conducted at Chesapeake Bay site only, while July sampling at both sites where PAH levels generally 2–3 fold higher at Baltimore site.
EPA National Air Toxics Assessment (NATA)	1 yr (annual average)	$2.6 imes 10^1$			$1.2 imes 10^1$			Mobile sources estimated to account for 0.4% of nationwide mean.
	1 yr (annual average)	$1.1 imes 10^2$			$7.2 imes 10^1$			Mobile sources estimated to account for 0.4% of nationwide mean.
Odabasi et al. (1999)	5 months	$4.3 imes 10^2$						

Table B.20b. Aı	mbient and Outo	loor Expos	ure Da	ita Summa	ries. POM:	Benz[<i>a</i>]an	thracene (<i>C</i> e	olumns contin	ue on next	page)		
		Stud Locatio	y n(s)								Individua Measurem	al Sample aent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Eiguren- Fernandez et al. (2004)	Southern California urban and rural community data summary— gas-phase	Multiple (6) South- ern Cali- fornia locations	CA	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
	Southern California urban and rural commu- nity data summary— particle-phase (PM _{2.5})	Multiple (6) South- ern Cali- fornia locations	CA	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
Chellam et al. (2005)	Tunnel data summary— particle-phase (PM _{2.5})	Houston	ТХ	Tunnel, urban	8/29/00– 9/1/00	2 hrs	6	100%	ng/m³	Directly from reference	$8.5 imes 10^{-1}$	1.3
Naumova et al. (2002)	Elizabeth residential outdoor air data summary— gas-phase	Elizabeth	NJ	Urban	June 1999– May 2000	48 hrs	15		ng/m³	Directly from reference	3.2×10^{-3}	$9.4 imes 10^{-2}$
	Elizabeth residential outdoor air data summary— particle-phase (PM _{2.5})	Elizabeth	NJ	Urban	June 1999– May 2000	48 hrs	15		ng/m³	Directly from reference	3.5×10^{-2}	$5.0 imes 10^{-1}$
	Houston residential outdoor air data summary— gas-phase	Houston	ТХ	Urban	June 1999– May 2000	48 hrs	21		ng/m³	Directly from reference	$3.5 imes 10^{-3}$	$5.7 imes 10^{-1}$
	Houston residential outdoor air data summary— particle-phase (PM _{2.5})	Houston	ТХ	Urban	June 1999– May 2000	48 hrs	21		ng/m³	Directly from reference	$2.4 imes 10^{-3}$	$1.5 imes 10^{-1}$
	Los Angeles residential outdoor air data summary— gas-phase	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$1.0 imes 10^{-3}$	2.8×10^{-1}
	Los Angeles residential outdoor air data summary— particle-phase (PM _{2.5})	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	8.8×10^{-4}	3.1×10^{-1}
										Tabl	e continues	on next page

Table B.20b. An	nbient and Outdo	oor Exposu	re Data Sumr	naries (<i>Contir</i>	nued). POM:	Benz[<i>a</i>]anth	racene (<i>Colu</i>	mns continued from previous page)
		Over and	all Arithmeti /or Range of I	c Mean Means	and/	Overall Medi or Range of M	ian Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Eiguren- Fernandez et al. (2004)	~ 1 yr		< LOD	2.4×10^{-1}				Lowest levels found in Lompoc, a rural com- munity with no major freeways; similar PAH levels observed in Atascadero, also consid- ered a rural area, and in the urban sites.
	~ 1 yr		$6.3 imes 10^{-3}$	4.1×10^{-2}				Lowest levels found in Lompoc, a rural com- munity with no major freeways; similar PAH levels observed in Atascadero, also consid- ered a rural area, and in the urban sites.
Chellam et al. (2005)								
Naumova et al. (2002)	1 yr	$1.6 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$1.4 imes 10^{-1}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$2.2 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$1.3 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$1.3 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$4.1 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean.

 ${\it Table\ continues\ on\ next\ page}$

		Study Location	n(s)								Individua Measuren	al Sample 1ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Dachs et al. (2002)	Baltimore and Chesapeake Bay PAH data summary— gas-phase	Baltimore and adjacent Chesa- peake Bay	MD	Urban and coastal	2/19/97– 2/22/97 and 7/22/97– 7/28/97	Either 12 or 4 hrs			ng/m³	Directly from reference	< LOD	$3.0 imes 10^{-2}$
	Baltimore and Chesapeake Bay PAH data summary— particle-phase	Baltimore and adjacent Chesa- peake Bay	MD	Urban and coastal	2/19/97– 2/22/97 and 7/22/97– 7/28/97	Either 12 or 4 hrs			ng/m³	Directly from reference	$2.0 imes 10^{-3}$	$2.0 imes 10^{-1}$
Marr et al. (1999)	Tunnel data summary— particle-phase (PM _{2.5})	Near San Francisco	CA	Tunnel, urban	7/21/97– 8/5/97 (4 days of sampling in each of 2 bores)	3 hrs on 2 days	4 (2 per bore)	100%	ng/m³	Directly from reference	3.3	$1.0 imes 10^1$
Zielinska et al. (1998)	Summary of AZ HAPs pro- gram fixed site monitoring data—particle- and gas-phase	Multiple (5) locations	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 year at each site)	24 hrs	~ 60 per site		ng/m³	Directly from reference	0.0	7.5
	Summary of AZ HAPs program temporary site monitoring data— particle- and gas-phase	Multiple (4) locations	AZ	Urban	June 1994– Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4–17 per site		ng/m³	Directly from reference	0.0	3.8
Manchester- Neesvig et al. (2003)	Southern California PM ₁₀ organics measurement data summary— particle-phase (PM ₁₀)	Multiple (12) South- ern Cali- fornia communi- ties	CA	Urban and rural	1995	2 weeks	Nomi- nally 26 per site		ng/m³	Directly from reference		
Odabasi et al. (1999)	Chicago PAH data summary— particle- and gas-phase	Chicago	IL	Urban	June– Oct 1995	24 hrs (2 12-hr daytime samples)			ng/m³	Directly from reference		

Table B.20b. Ambient and Outdoor Exposure Data Summaries (Continued). POM: Benz[a]anthracene (Columns continue on next page)

	Data	Over and	all Arithmeti /or Range of I	c Mean Means	and/	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Dachs et al. (2002)	~ 1 week		$2.0 imes 10^{-3}$	$6.0 imes 10^{-3}$				Feb sampling conducted at Chesapeake Bay site only, while July sampling at both sites; average concentration range represents min- imum and maximum averages from 2 sam- pling periods at Chesapeake Bay site and 1 sampling period at Baltimore site.
	~ 1 week		$1.9 imes 10^{-2}$	$8.6 imes 10^{-2}$				Feb sampling conducted at Chesapeake Bay site only, while July sampling at both sites; average concentration range represents min- imum and maximum averages from 2 sam- pling periods at Chesapeake Bay site and 1 sampling period at Baltimore site.
Marr et al. (1999)								Minimum from light-duty bore; maximum from truck-influenced bore.
Zielinska et al. (1998)	1 yr		$2.0 imes 10^{-2}$	1.5				
	~ 1 week to 2 months		$1.5 imes 10^{-1}$	1.2				
Manchester- Neesvig et al. (2003)	Annual average range across sites		$8.0 imes 10^{-3}$	$1.9 imes 10^{-1}$				Not detected at one site (Lompoc, a rural coastal site); range represents sites with minimum and maximum annual average concentrations among 11 sites with measur- able levels.
Odabasi et al. (1999)	5 months	2.1						

Table B.20b. Ambient and Outdoor Exposure Data Summaries (Continued). POM: Benz[a]anthracene (Columns continued from previous page)

		Stud Locatio	y n(s)							0	Individu Measuren	al Sample nent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maxiumum
Children's Environmental Health Protec- tion Program	Barrio Logan monitoring data summary— particle-phase (PM ₁₀) BbF	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	56	79%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	1.1
	Barrio Logan monitoring data summary— particle-phase (PM ₁₀) BkF	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	56	50%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	$4.8 imes 10^{-1}$
	Boyle Heights monitoring data summary— particle-phase (PM ₁₀) BbF	Los Angeles	CA	Urban	Feb 2001– May 2002	24 hrs	142	93%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	$9.1 imes 10^{-1}$
	Boyle Heights monitoring data summary— particle-phase (PM ₁₀) BkF	Los Angeles	CA	Urban	Feb 2001– May 2002	24 hrs	142	51%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	$3.9 imes 10^{-1}$
	Crockett monitoring data summary— particle-phase (PM ₁₀) BbF	Crockett	CA	Urban	Nov 2001– May 2003	24 hrs	76	41%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	$2.4 imes 10^{-1}$
	Crockett monitoring data summary— particle-phase (PM ₁₀) BkF	Crockett	CA	Urban	Nov 2001– May 2003	24 hrs	76	17%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	$1.1 imes 10^{-1}$
	Fruitvale monitoring data summary— particle-phase (PM ₁₀) BbF	Fruitvale area of Oakland	CA	Urban	Nov 2001– Feb 2003	24 hrs	69	62%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	1.4
	Fruitvale monitoring data summary— particle-phase (PM ₁₀) BkF	Fruitvale area of Oakland	CA	Urban	Nov 2001– Feb 2003	24 hrs	69	46%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	$6.0 imes 10^{-1}$

Table B.20c. Ar	nbient and Outdo	oor Exposure	e Data Summ	aries (<i>Continu</i>	ed). POM: E	Benzo[<i>b,k</i>]fluc	oranthene (<i>Colu</i>	mns continued from previous page)
		Over and	all Arithmeti /or Range of I	c Mean Means	and/	Overall Medi or Range of M	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Children's Environmen- tal Health Protection Program	~ 1.5 yrs	2.6×10^{-1}						
	~ 1.5 yrs	1.1×10^{-1}						
	15 months	$1.6 imes 10^{-1}$						
	15 months	$7.0 imes 10^{-2}$						
	~ 1.5 yrs	$6.0 imes 10^{-2}$						
	~ 1.5 yrs	3.0×10^{-2}						
	16 months	2.2×10^{-1}						
	16 months	$1.0 imes 10^{-1}$						
								Table continues on next page

Date SourceDescriptionChoose County State TypeLocation TypeStudy TypeSample SampleNumber of DescriptionNumber of Sample PercenceUnitsSample Sample PercenceUnitsSample Sample PercenceUnitsMinimum dive ManhouMarkSurceMinimum Hall Protection (Continued)Wilminge data annumative-brack Protection (Continued)UnitsC.A.Urban May 200224 hrs6656% ng/m' Calculated brack and and m' 5×10^{-2} $4.0 \times$ Protection (Continued)Wilmingen annumative-brack particle-phase (Continued)C.A.Urban and manhou (DivMay 2002 and and mini24 hrs6633% ng/m' Calculated brack and m' 5×10^{-2} $4.0 \times$ Protection (Continued)Wilmingen annumative-particle-phase (Continued)Multiple (Continued)C.A.Urban and miniMay 2002 mini24 hrsSamples collected orlected every 8 ng/m' Directly prom particle-phase from montoning (Directle)Directly montoning (Directle)July 2002 mini24 hrsSamples collected every 8 ng/m' Directly montoning montoning from montoning from montoning (Directle)July 2002 mini24 hrsSamples collected every 8 ng/m' Directly montoning montoning from montoningEigenon- Contenned Contenned manned-minMultiple (Directle) montoningC.D. monton			Study Location	y n(s)								Individu Measuren	al Sample ient Range
Children's Herich mummalia Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection Protection 	Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maxiumum
Willinger montoring 	Children's Environmental Health Protection Program (<i>Continued</i>)	Wilmington monitoring data summary— particle-phase (PM ₁₀) BbF	Wilming- ton	CA	Urban	May 2001– July 2002	24 hrs	66	58%	ng/m³	Calculated by Gradi- ent Corp. from study data set	< 5 × 10 ⁻²	9.0×10^{-1}
Eiguren- Fernandezetal. Collifornia unumaty- gas-phase BbrMultiple california california (difference)CA unumaty- unumaty- (california) 		Wilmington monitoring data summary— particle-phase (PM ₁₀) BkF	Wilming- ton	CA	Urban	May 2001– July 2002	24 hrs	66	33%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	$4.0 imes 10^{-1}$
Southern ucalifornia ubcontinue gas-phase BkFMultiple (f) coations adat summary- gas-phase BkFCA (f) coations adat adat adat ploationsMay 2001- and and huly 2002 play 2002 coations24 hrs showsSamples coalacted coalacted daysDirectly from referenceDirectly from referenceSouthern communy- particle-phase (PM2,3) BkFMultiple (California LocationsCA dup 	Eiguren- Fernandez et al (2004)	Southern California urban and rural community data summary— gas-phase BbF	Multiple (6) Southern California locations	CA	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
Southern California urban and rural community data summary- particle-phase (PM_{2,3}) BbrMultiple (6) tocationsCA urban and ruralMay 2001- July 2002 tocations24 hrs events 		Southern California urban and rural community data summary— gas-phase BkF	Multiple (6) Southern California locations	CA	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
Southern California urban and rural $data$ summary— particle-phase $(PM_{2,5})$ BkFMultiple (6) (6) Southern California LocationsCA urban and ruralUrban and ruralMay 2001- July 200224 hrs hrs Collected every 8 daysng/m³Directly from referenceChellam et al. (2005)Tunnel data summary— particle-phase $(PM_{2,5})$ BkFHouston TXTX urbanTunnel, whan8/29/00- 9/1/002 hrs6100% ng/m³ng/m³Directly from reference 6.0×10^{-1} 3.Chellam et al. (2005)Tunnel data summary— particle-phase $(PM_{2,5})$ BkFHouston TXTX urbanTUnnel, whan $8/29/00-$ 9/1/002 hrs6100% ng/m³Directly from reference 6.0×10^{-1} 3.Naumova et al. (2002)Elizabeth residential controlNJ Urban urbanUrban urbanJune 1999- 1999- Mays48 hrs15ng/m³ 		Southern California urban and rural community data summary— particle-phase (PM _{2.5}) BbF	Multiple (6) Southern California Locations	CA	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
Chellam et al. (2005)Tunnel data summary- particle-phase (PM_{2.5}) BbFHoustonTXTunnel, urban $8/29/00-$ $9/1/00$ 2 hrs6100%ng/m³Directly from reference 6.0×10^{-1} 3Tunnel data summary- particle-phase (PM_{2.5}) BbFHoustonTXTunnel, urban $8/29/00-$ $9/1/00$ 2 hrs6100%ng/m³Directly from reference 6.0×10^{-1} 3Naumova et al. (2002)Elizabeth residential entidemElizabethNJUrban UrbanJune 1999- May 300048 hrs15ng/m³Directly from reference 4.5×10^{-3} $1.9 \times$		Southern California urban and rural community data summary— particle-phase (PM _{2.5}) BkF	Multiple (6) Southern California Locations	СА	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
Tunnel data summary— particle-phase $(PM_{2.5})$ BkFHouston TXTX urbanTunnel, $9/1/00$ $8/29/00-$ 2 hrs6100% ng/m³ng/m³ Directly reference 6.8×10^{-1} 3.5 3.5Naumova et al. (2002)Elizabeth residential outbareElizabeth NJUrban UrbanJune $1999-$ Mor 200048 hrs15ng/m³ Directly from reference 4.5×10^{-3} $1.9 \times$ reference	Chellam et al. (2005)	Tunnel data summary— particle-phase (PM _{2.5}) BbF	Houston	TX	Tunnel, urban	8/29/00– 9/1/00	2 hrs	6	100%	ng/m³	Directly from reference	$6.0 imes 10^{-1}$	3.9
Naumova et al. Elizabeth Elizabeth NJ Urban June 48 hrs 15 ng/m^3 Directly 4.5×10^{-3} 1.9×10^{-3}		Tunnel data summary— particle-phase (PM _{2.5}) BkF	Houston	TX	Tunnel, urban	8/29/00– 9/1/00	2 hrs	6	100%	ng/m³	Directly from reference	$6.8 imes 10^{-1}$	3.1
summary—gas- phase BbF+BkF	Naumova et al. (2002)	Elizabeth residential outdoor air data summary—gas- phase BbF+BkF	Elizabeth	NJ	Urban	June 1999– May 2000	48 hrs	15		ng/m³	Directly from reference	$4.5 imes 10^{-3}$	$1.9 imes 10^{-2}$

 Table B.20c. Ambient and Outdoor Exposure Data Summaries (Continued).
 POM: Benzo[b,k]fluoranthene (Columns continue on next page)

Table B.20c. Ar	nbient and Outdo	oor Exposur	e Data Summ	aries (<i>Continu</i>	ed). POM: I	Benzo[<i>b,k</i>]fluc	oranthene (<i>Co</i>	olumns continued from previous page)
		Over and	all Arithmetic /or Range of I	c Mean Means	and/	Overall Medi or Range of M	ian ⁄Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Children's Environmen- tal Health Protection Program (Continued)	~ 1 yr	$1.5 imes 10^{-1}$						
	~ 1 yr	$7.0 imes 10^{-2}$						
Eiguren- Fernandez et al. (2004)	~ 1 yr		< LOD	< LOD				Lowest levels found in Lompoc, a rural community with no major freeways; simi- lar PAH levels observed in Atascadero, also considered a rural area, and in the urban sites.
	~ 1 yr		< LOD	< LOD				Lowest levels found in Lompoc, a rural community with no major freeways; simi- lar PAH levels observed in Atascadero, also considered a rural area, and in the urban sites.
	~ 1 yr		1.2×10^{-2}	9.9×10^{-2}				Lowest levels found in Lompoc, a rural community with no major freeways; simi- lar PAH levels observed in Atascadero, also considered a rural area, and in the urban sites.
	~ 1 yr		$5.8 imes 10^{-3}$	$5.3 imes 10^{-2}$				Lowest levels found in Lompoc, a rural community with no major freeways; simi- lar PAH levels observed in Atascadero, also considered a rural area, and in the urban sites.
Chellam et al. (2005)								
Naumova et al. (2002)	1 yr	$8.8 imes 10^{-3}$						Mean concentration provided is geometric mean rather than arithmetic mean.
								Table continues on next page

		Study Location	y n(s)								Individua Measuren	al Sample ient Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maxiumum
Naumova et al. (2002) (<i>Continued</i>)	Elizabeth residential outdoor air data summary— particle-phase (PM _{2.5}) BbF+BkF	Elizabeth	NJ	Urban	June 1999– May 2000	48 hrs	15		ng/m³	Directly from reference	1.1×10^{-1}	1.2
	Houston residential outdoor air data sum- mary—gas- phase BbF+BkF	Houston	ТХ	Urban	June 1999– May 2000	48 hrs	21		ng/m³	Directly from reference	$4.5 imes 10^{-3}$	$9.5 imes 10^{-1}$
	Houston residential outdoor air data summary— particle-phase (PM _{2.5}) BbF+BkF	Houston	ТХ	Urban	June 1999– May 2000	48 hrs	21		ng/m³	Directly from reference	1.9×10^{-2}	4.2×10^{-1}
	Los Angeles residential outdoor air data sum- mary—gas- phase BbF+BkF	Los Angeles	CA	Urban	June 1999– May 2000	48 hrs	19		ng/m³	Directly from reference	$4.8 imes 10^{-3}$	$4.3 imes 10^{-2}$
	Los Angeles residential outdoor air data summary— particle-phase (PM _{2.5}) BbF+BkF	Los Angeles	СА	Urban	June 1999– May 2000	48 hrs	19		ng/m³	Directly from reference	7.2×10^{-3}	1.7
Gigliotti et al. (2000)	Coastal New Jersey data summary— gas-phase BkF	New Brun- swick and Sandy Hook	NJ	Suburban and coastal	Oct 1997– Oct 1998	24 hrs	Samples collected every 6–9 days		ng/m³	Directly from reference		
	Coastal New Jersey data summary— particle-phase BkF	New Brun- swick and Sandy Hook	NJ	Suburban and coastal	Oct 1997– Oct 1998	24 hrs	Samples collected every 6–9 days		ng/m³	Directly from reference		
Dachs et al. (2002)	Baltimore and Chesapeake Bay PAH data sum- mary—gas- phase BbF+BkF	Baltimore and adjacent Chesa- peake Bay	MD	Urban and coastal	2/19/97– 2/22/97 and 7/22/97– 7/28/97	Either 12 or 4 hrs			ng/m³	Directly from reference	< LOD	1.1×10^{-2}
											Table continu	es on next page

 Table B.20c. Ambient and Outdoor Exposure Data Summaries (Continued).
 POM: Benzo[b,k]fluoranthene (Columns continue on next page)

10010 0.200. 711		Over	all Arithmeti	c Mean	cuj. 10101.1	Overall Medi	ian	orannis commuca from previous page,
		and	or Range of l	Means	and/	or Range of N	/ledians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Naumova et al. (2002) (<i>Continued</i>)	1 yr	$4.8 imes 10^{-1}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$2.7 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	1.1×10^{-1}						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$9.8 imes 10^{-3}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$2.0 imes 10^{-1}$						Mean concentration provided is geometric mean rather than arithmetic mean.
Gigliotti et al. (2000)	~ 1 yr		$2.7 imes 10^{-3}$	1.2×10^{-2}				Concentrations in New Brunswick generally around 2 times higher than in Sandy Hook
	~ 1 yr		$1.2 imes 10^{-1}$	3.2×10^{-1}				Concentrations in New Brunswick generally around 2 times higher than in Sandy Hook
Dachs et al. (2002)	~ 1 week		< LOD	1.0×10^{-3}				Feb sampling conducted at Chesapeake Bay site only, while July sampling at both sites; average concentration range represents minimum and maximum averages from 2 sampling periods at Chesapeake Bay site and 1 sampling period at Baltimore site.
								Table continues on next page

Table B.20c. Am	bient and Outdo	or Exposu	re Dat	a Summar	ies (<i>Contin</i> u	<i>ied</i>). POM	: Benzo[<i>b,k</i>]	fluoranthene	(Column	s continue or	n next page)	
		Study Location	y n(s)								Individu Measuren	al Sample nent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maxiumum
Dachs et al. (2002) (<i>Continued</i>)	Baltimore and Chesapeake Bay PAH data summary— particle-phase BbF+BkF	Baltimore and adjacent Chesa- peake Bay	MD	Urban and coastal	2/19/97– 2/22/97 and 7/22/97– 7/28/97	Either 12 or 4 hrs			ng/m³	Directly from reference	$1.8 imes 10^{-2}$	$6.9 imes10^{-1}$
Marr et al. (1999)	Tunnel data summary— particle-phase (PM _{2.5}) BbF	Near San Francisco	CA	Tunnel and urban	7/21/97– 8/5/97 (4 days of sampling in each of 2 bores)	3 hrs on 2 days	4 (2 per bore)	100%	ng/m³	Directly from reference	3.1	6.8
	Tunnel data summary— particle-phase (PM _{2.5}) BkF	Near San Francisco	CA	Tunnel and urban	7/21/97– 8/5/97 (4 days of sampling in each of 2 bores)	3 hrs on 2 days	4 (2 per bore)	100%	ng/m³	Directly from reference	1.1	3.6
Zielinska et al. (1998)	Summary of AZ HAPs program fixed site monitoring data— particle- and gas-phase BbF+BkF	Multiple (5) locations	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 yr at each site)	24 hrs	~ 60 per site		ng/m³	Directly from reference	0.0	$1.2 imes 10^1$
	Summary of AZ HAPs program temporary site monitoring data—particle- and gas-phase BbF+BkF	Multiple (4) locations	AZ	Urban	June 1994– Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4–17 per site		ng/m³	Directly from reference	$2.5 imes 10^{-1}$	9.7
Manchester- Neesvig et al. (2003)	Southern California PM ₁₀ organics measurement data summary— particle-phase (PM ₁₀) BbF+BkF	Multiple (12) Southern California communi- ties	CA	Urban and rural	1995	2 weeks	Nomi- nally 26 per site		ng/m³	Directly from reference		
Odabasi et al. (1999)	Chicago PAH data summary— particle- and gas-phase BbF	Chicago	IL	Urban	June–Oct 1995	24 hrs (2 12-hr daytime samples)			ng/m³	Directly from reference		
	Chicago PAH data summary— particle- and gas-phase BkF	Chicago	IL	Urban	June–Oct 1995	24 hrs (2 12-hr daytime samples)			ng/m³	Directly from reference		
											Table continu	es on next page

Table B.20c. Ambient and Outdoor Exposure Data Summaries (Continued). POM: Benzolb.klfluoranthene (Columns co ntinu ovt r

		Ove and	rall Arithmeti l/or Range of l	c Mean Means	and/	Overall Medi or Range of N	ian ⁄Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	– Notes
Dachs et al. (2002) (<i>Continued</i>)	~ 1 week		$8.5 imes 10^{-2}$	$2.1 imes 10^{-1}$				Feb sampling conducted at Chesapeake Bay site only, while July sampling at both sites; average concentration range represents minimum and maximum averages from 2 sampling periods at Chesapeake Bay site and 1 sampling period at Baltimore site.
Marr et al. (1999)								Minimum from light-duty bore; maximum from truck-influenced bore.
								Minimum from light-duty bore; maximum from truck-influenced bore.
Zielinska et al. (1998)	1 yr		$2.2 imes 10^{-1}$	2.4				
	~ 1 week to 2 months		$4.5 imes 10^{-1}$	3.1				
Manchester- Neesvig et al. (2003)	Annual average range across sites		$2.1 imes 10^{-2}$	1.1				Range represents sites with minimum and maximum annual average concentrations among all 12 sites.
Odabasi et al. (1999)	5 months	2.3						
	5 months	1.9						

Table B.20d. Am	bient and Outd	oor Exposi	ure Da	ta Summa	ries. POM:	Benzo[<i>a</i>]p	yrene (<i>Colui</i>	mns continue	e on next j	page)		
		Stud Locatio	y n(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Children's Environmental Health Protection Program	Barrio Logan monitoring data sum- mary— particle-phase (PM ₁₀)	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	56	57%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	1.2
	Boyle Heights monitoring data summary— particle-phase (PM ₁₀)	Los Angeles	CA	Urban	Feb 2001– May 2002	24 hrs	142	70%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	$7.7 imes 10^{-1}$
	Crockett monitoring data summary— particle-phase (PM ₁₀)	Crockett	CA	Urban	Nov 2001– May 2003	24 hrs	76	18%	ng/m³	Calculated by Gradi- ent Corp. from study data set	< 5 × 10 ⁻²	1.6×10^{-1}
	Fruitvale monitoring data sum- mary— particle-phase (PM ₁₀)	Fruitvale area of Oakland	CA	Urban	Nov 2001– Feb 2003	24 hrs	69	51%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	1.3
	Wilmington monitoring data summary— particle-phase (PM ₁₀)	Wilming- ton	CA	Urban	May 2001– July 2002	24 hrs	66	45%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	$7.5 imes 10^{-1}$
Eiguren-Fernan- dez et al. (2004)	Southern California urban and rural community data summary— gas-phase	Multiple (6) South- ern Cali- fornia locations	СА	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
	Southern California urban and rural community data summary— particle-phase (PM _{2.5})	Multiple (6) South- ern Cali- fornia Locations	СА	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
Chellam et al. (2005)	Tunnel data summary—par- ticle-phase (PM _{2.5})	Houston	TX	Tunnel, urban	8/29/00- 9/1/00	2 hrs	6	100%	ng/m³	Directly from reference	2.7×10^{-1}	1.9
											Table continu	es on next page

Table B.20d. Aı	nbient and Outdo	oor Exposure	Data Summa	ries (<i>Continue</i>	ed). POM: B	enzo[a]pyrene	e (Columns c	ontinued from previous page)
		Overa and/	ll Arithmetic or Range of M	Mean Ieans	and/	Overall Medi or Range of M	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Children's Environmen- tal Health Protection Program	~ 1.5 yrs	2.1×10^{-1}						
	15 months	1.0×10^{-1}						
	~ 1.5 yrs	4.0×10^{-2}						
	16 months	1.6×10^{-1}						
	~ 1 yr	$1.1 imes 10^{-1}$						
Eiguren- Fernandez et al. (2004)	~ 1 yr		< LOD	< LOD				Lowest levels found in Lompoc, a rural community with no major freeways; sim- ilar PAH levels observed in Atascadero, also considered a rural area, and in the urban sites.
	~ 1 yr		$9.0 imes 10^{-3}$	1.0×10^{-1}				Lowest levels found in Lompoc, a rural community with no major freeways; sim- ilar PAH levels observed in Atascadero, also considered a rural area, and in the urban sites.
Chellam et al. (2005)								
								Table continues on next page

		Stud Locatio	y on(s)								Individua Measurem	al Sample lent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Naumova et al. (2002)	Elizabeth residential outdoor air data summary— gas-phase	Elizabeth	NJ	Urban	June 1999–May 2000	48 hrs	15		ng/m³	Directly from reference	< ~ 3 × 10 ⁻³	<~3×10 ⁻³
	Elizabeth residential outdoor air data summary— particle-phase (PM _{2.5})	Elizabeth	Ŋ	Urban	June 1999–May 2000	48 hrs	15		ng/m³	Directly from reference	$4.5 imes 10^{-2}$	5.3×10^{-1}
	Houston residential outdoor air data summary— gas-phase	Houston	ΤХ	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	$4.7 imes 10^{-3}$	5.4×10^{-2}
	Houston residential outdoor air data summary— particle-phase (PM _{2.5})	Houston	ТХ	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	2.1×10^{-3}	2.2×10^{-1}
	Los Angeles residential outdoor air data summary— gas-phase	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$5.3 imes 10^{-3}$	$8.3 imes 10^{-3}$
	Los Angeles residential outdoor air data summary— particle-phase (PM _{2.5})	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$8.0 imes 10^{-4}$	1.0
Gigliotti et al. (2000)	Coastal New Jersey data summary— gas-phase	New Brun- swick and Sandy Hook	NJ	Suburban and coastal	Oct 1997– Oct 1998	24 hrs	Samples collected every 6–9 days		ng/m³	Directly from reference		
	Coastal New Jersey data summary— particle-phase	New Brun- swick and Sandy Hook	NJ	Suburban and coastal	Oct 1997– Oct 1998	24 hrs	Samples collected every 6–9 days		ng/m³	Directly from reference		
											Table continu	es on next page

հե d i ግ .[__]. . 1 . 1 ,

Health Effects Institute Special Report 16 $\ensuremath{\mathbb{C}}$ 2007

Table B.20d. Ar	nbient and Outdo	oor Exposure	Data Summa	ries (<i>Continue</i>	d). POM: B	enzo[a]pyrene	e (<i>Columns c</i>	ontinued from previous page)
		Overa and/	ll Arithmetic or Range of M	Mean leans	and/	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Naumova et al. (2002)	1 yr	<~3×10 ⁻³						
	1 yr	1.8×10^{-1}						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$2.2 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$2.0 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$6.5 imes 10^{-3}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$6.2 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean.
Gigliotti et al. (2000)	~ 1 yr		$2.3 imes 10^{-3}$	3.7×10^{-2}				Concentrations in New Brunswick gener- ally around 2 times higher than in Sandy Hook.
	~ 1 yr		3.3×10^{-2}	8.8×10^{-2}				Concentrations in New Brunswick gener- ally around 2 times higher than in Sandy Hook.
								Table continues on next page

		Stud Locatio	y n(s)								Individua Measurem	al Sample lent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Dachs et al. (2002)	Baltimore and Chesapeake Bay PAH data summary— gas-phase	Balti- more and adjacent Chesa- peake Bay	MD.	Urban and coastal	2/19/97– 2/22/97 and 7/22/97– 7/28/97	Either 12 or 4 hrs		0%	ng/m³	Directly from reference	< LOD	< LOD
	Baltimore and Chesapeake Bay PAH data summary— particle-phase	Balti- more and adjacent Chesa- peake Bay	MD	Urban and coastal	2/19/97– 2/22/97 and 7/22/97– 7/28/97	Either 12 or 4 hrs			ng/m³	Directly from reference	$4.0 imes 10^{-3}$	$6.4 imes 10^{-1}$
Marr et al. (1999)	Tunnel data summary— particle-phase (PM _{2.5})	Near San Francisco	CA	Tunnel, urban	7/21/97– 8/5/97 (4 days of sampling in each of 2 bores)	3 hrs on 2 days	4 (2 per bore)	100%	ng/m³	Directly from reference	3.2	8.4
Zielinska et al. (1998)	Summary of AZ HAPs Program fixed site monitoring data—particle- and gas-phase	Multiple (5) Loca- tions	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 yr at each site)	24 hrs	~ 60 per site		ng/m³	Directly from reference	0.0	9.8
	Summary of AZ HAPs Program temporary site monitoring data—particle- and gas-phase	Multiple (4) Loca- tions	AZ	Urban	June 1994–Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4-17 per site		ng/m³	Directly from reference	0.0	5.8
Manchester- Neesvig et al. (2003)	Southern California PM ₁₀ organics measurement data summary— particle-phase (PM ₁₀)	Multiple (12) Southern Califor- nia com- munities	CA	Urban and rural	1995	2 weeks	Nomi- nally 26 per site		ng/m³	Directly from reference		
Odabasi et al. (1999)	Chicago PAH data s ummary— particle- and gas-phase	Chicago	IL	Urban	June–Oct 1995	24 hrs (2 12-hr daytime samples)			ng/m³	Directly from reference		

Table B.20d. Au	mbient and Outdo	or Exposure	e Data Summa	ries (<i>Continue</i>	ed). POM: B	enzo[<i>a</i>]pyren	e (<i>Columns c</i>	ontinued from previous page)
	_	Over and	all Arithmetic /or Range of N	Mean Ieans	and	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Dachs et al. (2002)	~ 1 week		< LOD	< LOD				Feb sampling conducted at Chesapeake Bay site only, while July sampling at both sites; average concentration range repre- sents minimum and maximum averages from 2 sampling periods at Chesapeake Bay site and 1 sampling period at Balti- more site.
	~ 1 week		1.9×10^{-2}	1.2×10^{-1}				Feb sampling conducted at Chesapeake Bay site only, while July sampling at both sites; average concentration range repre- sents minimum and maximum averages from 2 sampling periods at Chesapeake Bay site and 1 sampling period at Balti- more site.
Marr et al. (1999)								Minimum from light-duty bore; maximum from truck-influenced bore.
Zielinska et al. (1998)	1 yr		$2.0 imes 10^{-2}$	1.8				
	~ 1 week to 2 months		$1.5 imes 10^{-1}$	1.4				
Manchester- Neesvig et al. (2003)	1 yr (annual average)		$3.0 imes 10^{-3}$	2.8×10^{-1}				Not detected at one site (Lompoc, a rural coastal site); range represents sites with minimum and maximum annual average concentrations among 11 sites with mea- surable levels.
Odabasi et al. (1999)	5 months	1.6						

1able B.20e . <i>1</i>	Amplent and Ou	llaoor Expo	sure D	ata Sumn	laries. POM	: Chrysene	e (Columns d	continue on n	ext page)			
		Study Location	/ n(s)								Individua Measurem	al Sample ient Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Eiguren- Fernandez et al. (2004)	Southern Cali- fornia urban and rural community data summary— gas-phase	Multiple (6) South- ern Califor nia locations	CA	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
	Southern Cali- fornia urban and rural community data summary— particle-phase (PM _{2.5})	Multiple (6) South- ern Califor nia locations	CA	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
Chellam et al. (2005)	Tunnel data summary— particle-phase (PM _{2.5})	Houston	ТХ	Tunnel, urban	8/29/00– 9/1/00	2 hrs	6	100%	ng/m³	Directly from reference	2.7×10^{-1}	1.9
Naumova et al. (2002)	Elizabeth residential out- door air data summary— gas-phase	Elizabeth	NJ	Urban	June 1999–May 2000	48 hrs	15		ng/m³	Directly from reference	4.9×10^{-3}	5.4×10^{-1}
	Elizabeth residential out- door air data summary— particle-phase (PM _{2.5})	Elizabeth	NJ	Urban	June 1999–May 2000	48 hrs	15		ng/m³	Directly from reference	$9.6 imes 10^{-2}$	9.1×10^{-1}
	Houston residential out- door air data summary— gas-phase	Houston	ТХ	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	$3.5 imes 10^{-2}$	2.1
	Houston residential outdoor air data summary— particle-phase (PM _{2.5})	Houston	ΤX	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	$1.2 imes 10^{-2}$	$6.2 imes 10^{-1}$
	Los Angeles residential outdoor air data summary— gas-phase	Los Ange- les	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$1.9 imes 10^{-3}$	$4.7 imes 10^{-1}$
	Los Angeles Residential Outdoor air data summary— particle-phase (PM _{2.5})	Los Ange- les	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$8.3 imes 10^{-3}$	4.4×10^{-1}

Table continues on next page

Table B.20e. Am	bient and Outdo	oor Exposur	e Data Summ	aries (<i>Continu</i>	ed). POM: (Chrysene (<i>Co</i>	lumns contin	ued from previous page)
		Over and	all Arithmeti /or Range of l	c Mean Means	and/	Overall Medi or Range of N	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Eiguren-Fernan- dez et al. (2004)	~ 1 yr		< LOD	$3.8 imes 10^{-1}$				Lowest levels found in Lompoc, a rural com- munity with no major freeways; similar PAH levels observed in Atascadero, also considered a rural area, and in the urban sites.
	~ 1 yr		$8.0 imes 10^{-3}$	$5.7 imes 10^{-2}$				Lowest levels found in Lompoc, a rural com- munity with no major freeways; similar PAH levels observed in Atascadero, also considered a rural area, and in the urban sites.
Chellam et al. (2005)								
Naumova et al. (2002)	1 yr	1.0×10^{-1}						Reported as chrysene + triphenylene; mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$3.0 imes 10^{-1}$						Reported as chrysene + triphenylene; mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$3.6 imes 10^{-1}$						Reported as chrysene + triphenylene; mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	8.4×10^{-2}						Reported as chrysene + triphenylene; mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$9.9 imes 10^{-2}$						Reported as chrysene + triphenylene; mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	1.1×10^{-1}						Reported as chrysene + triphenylene; mean concentration provided is geometric mean rather than arithmetic mean.
								Table continues on next page

Table B.20e.	Ambient and Ou	tdoor Expo	sure D	ata Summ	aries (Cont	inued). PC	M: Chrysen	ne (<i>Columns d</i>	continue on	next page)		
		Study Location	/ n(s)								Individua Measurem	al Sample ient Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Dachs et al. (2002)	Baltimore and Chesapeake Bay PAH data summary— gas-phase	Baltimore and adjacent Chesa- peake Bay	MD	Urban/ coastal	2/19/97– 2/22/97 and 7/22/97– 7/28/97	Either 12 or 4 hrs			ng/m³	Directly from reference	< LOD	7.5×10^{-2}
	Baltimore and Chesapeake Bay PAH data summary— particle-phase	Baltimore and adjacent Chesa- peake Bay	MD	Urban/ coastal	2/19/97- 2/22/97 and 7/22/97- 7/28/97	Either 12 or 4 hrs			ng/m³	Directly from reference	$3.5 imes 10^{-3}$	$1.4 imes 10^{-1}$
Marr et al. (1999)	Tunnel data summary— particle-phase (PM _{2.5})	Near San Francisco	CA	Tunnel, urban	7/21/97– 8/5/97 (4 days of sampling in each of 2 bores)	3 hrs on 2 days	4 (2 per bore)	100%	ng/m³	Directly from reference	3.2	8.4
Zielinska et al. (1998)	Summary of AZ HAPs program fixed site monitoring data— particle- and gas-phase	Multiple (5) Loca- tions	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 year at each site)	24 hrs	~ 60 per site		ng/m³	Directly from reference	0.0	8.1
	Summary of AZ HAPs program temporary site monitoring data—particle- and gas-phase	Multiple (4) loca- tions	AZ	Urban	June 1994– Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4–17 per site		ng/m³	Directly from reference	1.9×10^{-1}	5.0
Manchester- Neesvig et al. (2003)	$\begin{array}{c} \text{Southern} \\ \text{California} \ \text{PM}_{10} \\ \text{organics} \\ \text{measurement} \\ \text{data} \\ \text{summary} \\ \text{particle-phase} \\ (\text{PM}_{10}) \end{array}$	Multiple (12) South- ern Califor- nia communi- ties	СА	Urban and rural	1995	2 weeks	Nomi- nally 26 per site		ng/m³	Directly from reference		
Odabasi et al. (1999)	Chicago PAH data summary— particle- and gas-phase	Chicago	IL	Urban	June– Oct 1995	24 hrs (2 12-hr daytime samples)			ng/m³	Directly from reference		
										Tak	le continues	on next pag

Table B.20e. Ar	nbient and Outdo	or Exposur Over and	re Data Summ rall Arithmeti l/or Range of I	aries (<i>Continu</i> c Mean Means	ed). POM: 0	Chrysene (<i>Col</i> Overall Medi or Range of M	l <i>umns contin</i> an 1edians	ued from previous page)
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	– Notes
Dachs et al. (2002)	~ 1 week		$7.0 imes 10^{-3}$	2.3×10^{-2}				Feb sampling conducted at Chesapeake Bay site only, while July sampling at both sites; average concentration range represents minimum and maximum averages from 2 sampling periods at Chesapeake Bay site and 1 sampling period at Baltimore site.
	~ 1 week		$2.0 imes 10^{-2}$	$6.3 imes 10^{-2}$				Feb sampling conducted at Chesapeake Bay site only, while July sampling at both sites; average concentration range represents minimum and maximum averages from 2 sampling periods at Chesapeake Bay site and 1 sampling period at Baltimore site.
Marr et al. (1999)								Minimum from light-duty bore; maximum from truck-influenced bore
Zielinska et al. (1998)	1 yr		$2.0 imes 10^{-2}$	1.7				
	~ 1 week to 2 months		$3.5 imes 10^{-1}$	1.8				
Manchester- Neesvig et al. (2003)	Annual average range across sites		$1.7 imes 10^{-2}$	3.3×10^{-1}				Reported as chrysene/triphenylene; range represents sites with minimum and maxi- mum annual average concentrations among all 12 sites.
Odabasi et al. (1999)	5 months	3.6						

Table B.20f. A	Gable B.20f. Ambient and Outdoor Exposure Data Summaries. POM: 7,12-Dimethylbenz[a] anthracene (Columns continue on next page)												
		Study Location(s)								Individu Measuren	al Sample nent Range		
Source	Data Description	City or County State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum		
No data identified													
Table B.20f. Ambient and Outdoor Exposure Data Summaries (Continued).
 POM: 7,12-Dimethylbenz[a] anthracene (Columns continued from previous page)

		Over and	all Arithmeti /or Range of l	c Mean Means	and/	Overall Medi or Range of N	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
No data identified								

		Stud Locatio	y n(s)								Individua Measurem	al Sample lent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Children's Environmental Health Protection Program	Barrio Logan monitoring data summary— particle-phase (PM ₁₀)	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	56	77%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	1.7
	Boyle Heights monitoring data summary— particle-phase (PM ₁₀)	Los Angeles	CA	Urban	Feb 2001– May 2002	24 hrs	142	94%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	1.4
	Crockett monitoring data summary— particle-phase (PM ₁₀)	Crockett	CA	Urban	Nov 2001– May 2003	24 hrs	76	37%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	$2.9 imes 10^{-1}$
	Fruitvale monitoring data summary— particle-phase (PM ₁₀)	Fruitvale area of Oakland	CA	Urban	Nov 2001– Feb 2003	24 hrs	69	57%	ng/m³	Calculated by Gradi- ent Corp. from study data set	$< 5 \times 10^{-2}$	1.7
	Wilmington monitoring data summary— particle-phase (PM ₁₀)	Wilming- ton	CA	Urban	May 2001– July 2002	24 hrs	66	62%	ng/m³	Calculated by Gradi- ent Corp. from study data set	< 5 × 10 ⁻²	1.1
Eiguren- Fernandez et al. (2004)	Southern California urban and rural community data sum- mary—gas- phase	Multiple (6) Southern Califor- nia loca- tions	CA	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
	Southern California urban and rural community data sum- mary—parti- cle-phase (PM _{2.5})	Multiple (6) Southern Califor- nia loca- tions	СА	Urban and rural	May 2001– July 2002	24 hrs	Samples collected every 8 days		ng/m³	Directly from reference		
Chellam et al. (2005)	Tunnel data summary— particle-phase (PM _{2.5})	Houston	ΤX	Tunnel, urban	8/29/00– 9/1/00	2 hrs	6	100%	ng/m³	Directly from reference	$1.4 imes 10^{-1}$	2.2
Naumova et al. (2002)	Elizabeth residential outdoor air data summary— gas-phase	Elizabeth	NJ	Urban	June 1999–May 2000	48 hrs	15		ng/m³	Directly from reference	3.5×10^{-3}	$8.7 imes 10^{-3}$

Table B.20g. Aml	bient and Outdoo	or Exposure D	ata Summari	es (Continued).	POM: Ind	eno[1,2,3- <i>cd</i>]	pyrene (<i>Colu</i>	mms continued from previous page)
		Overa and/	ll Arithmetic or Range of M	Mean leans	and/	Overall Medi or Range of M	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Children's Environmental Health Protection Program	~ 1.5 yrs	3.5×10^{-1}						
	15 months	$1.9 imes 10^{-1}$						
	~ 1.5 yrs	$7.0 imes 10^{-2}$						
	16 months	$2.4 imes 10^{-1}$						
	~ 1 yr	$1.8 imes 10^{-1}$						
Eiguren-Fernan- dez et al. (2004)	~ 1 yr		< LOD	< LOD				Lowest levels found in Lompoc, a rural community with no major freeways; sim- ilar PAH levels observed in Atascadero, also considered a rural area, and in the urban sites.
	~ 1 yr		$1.2 imes 10^{-2}$	$1.0 imes 10^{-1}$				Lowest levels found in Lompoc, a rural community with no major freeways; sim- ilar PAH levels observed in Atascadero, also considered a rural area, and in the urban sites.
Chellam et al. (2005)								
Naumova et al. (2002)	1 yr	$5.6 imes 10^{-3}$						Mean concentration provided is geometric mean rather than arithmetic mean.
								Table continues on next page

		Stud Locatio	y n(s)								Individua Measurem	al Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Naumova et al. (2002) (<i>Continued</i>)	Elizabeth residential outdoor air data summary— particle-phase (PM _{2.5})	Elizabeth	NJ	Urban	June 1999–May 2000	48 hrs	15		ng/m³	Directly from reference	$1.2 imes 10^{-1}$	2.2
	Houston residential outdoor air data summary— gas-phase	Houston	TX	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	$2.5 imes 10^{-3}$	$7.8 imes 10^{-2}$
	Houston residential outdoor air data summary— particle-phase (PM _{2.5})	Houston	ТХ	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	$1.0 imes 10^{-2}$	$7.8 imes 10^{-1}$
	Los Angeles residential outdoor air data summary— gas-phase	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	<~2×10 ⁻³	<~2×10 ⁻
	Los Angeles residential outdoor air data summary— particle-phase (PM _{2.5})	Los Angeles	СА	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$4.0 imes 10^{-3}$	1.9
Dachs et al. (2002)	Baltimore and Chesapeake Bay PAH data summary— gas-phase	Balti- more and adjacent Chesa- peake Bay	MD	Urban and coastal	2/19/97– 2/22/97 and 7/22/97– 7/28/97	Either 12 or 4 hrs		0%	ng/m³	Directly from reference	< LOD	< LOD
	Baltimore and Chesapeake Bay PAH data summary— particle-phase	Balti- more and adjacent Chesa- peake Bay	MD	Urban and coastal	2/19/97– 2/22/97 and 7/22/97– 7/28/97	Either 12 or 4 hrs			ng/m³	Directly from reference	< LOD	1.4
Marr et al. (1999)	Tunnel data summary— particle-phase (PM _{2.5})	Near San Francisco	CA	Tunnel, urban	7/21/97– 8/5/97 (4 days of sampling in each of 2 bores)	3 hrs on 2 days	4 (2 per bore)	100%	ng/m³	Directly from reference	$3.2 imes 10^{-1}$	3.1

Table B.20g. Am	bient and Outdo	or Exposure D	ata Summari	ies (Continued	I). POM: Ind	eno[1,2,3- <i>cd</i>]	pyrene (<i>Colu</i>	umns continued from previous page)
		Overa and/o	ll Arithmetic or Range of M	Mean leans	and/	Overall Medi or Range of N	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Naumova et al. (2002) (<i>Continued</i>)	1 yr	$5.9 imes 10^{-1}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	$1.5 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	9.0×10^{-2}						Mean concentration provided is geometric mean rather than arithmetic mean.
	1 yr	<~2×10 ⁻³						
	1 yr	2.0×10^{-1}						Mean concentration provided is geometric mean rather than arithmetic mean.
Dachs et al. (2002)	~ 1 week		< LOD	< LOD				Feb sampling conducted at Chesapeake Bay site only, while July sampling at both sites; average concentration range represents minimum and maximum averages from 2 sampling periods at Chesapeake Bay site and 1 sampling period at Baltimore site.
	~ 1 week		3.3×10^{-2}	2.9×10^{-1}				Feb sampling conducted at Chesapeake Bay site only, while July sampling at both sites; average concentration range represents minimum and maximum averages from 2 sampling periods at Chesapeake Bay site and 1 sampling period at Baltimore site.
Marr et al. (1999)							Minimum from light-duty bore; maximum from truck-influenced bore.

		Stud Locatio	y n(s)								Individu Measuren	al Sample vent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Zielinska et al. (1998)	Summary of AZ HAPs program fixed site monitoring data— particle- and gas-phase	Multiple (5) loca- tions	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 year at each site)	24 hrs	~ 60 per site		ng/m³	Directly from reference	0.0	5.4
	Summary of AZ HAPs program temporary site monitoring data— particle- and gas-phase	Multiple (4) loca- tions	AZ	Urban	June 1994– Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4–17 per site		ng/m³	Directly from reference	0.0	4.1
Manchester- Neesvig et al. (2003)	Southern California PM ₁₀ organics measurement data summary— particle-phase (PM ₁₀)	Multiple (12) Southern Califor- nia com- munities	CA	Urban and rural	1995	2 weeks	Nomi- nally 26 per site		ng/m³	Directly from reference		
Odabasi et al. (1999)	Chicago PAH data summary— particle- and gas-phase	Chicago	IL	Urban	June–Oct 1995	24 hrs (2 12-hour daytime samples)			ng/m³	Directly from reference		

		Over and	all Arithmetic /or Range of M	Mean Ieans	and/	Overall Medi or Range of M	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Zielinska et al. (1998)	1 yr		0.0	1.0				
	~ 1 week to 2 months		0.0	1.1				
Manchester- Neesvig et al. (2003)	Annual average range across sites		$3.0 imes 10^{-3}$	$1.6 imes 10^{-1}$				Range represents sites with minimum an maximum annual average concentra- tions among all 12 sites.
Odabasi et al. (1999)	5 months	1.2						

		Stud Locatio	y n(s)								Individua Measurem	al Sample lent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Eastern Research Group (ERG) (2004)	2003 UATMP data summary	Nation- wide	US	Urban, suburban, rural	2003	24 hrs	1,550	30%	µg/m³ (converted from ppb)	Reported	4.3×10^{-2}	$1.8 imes 10^1$
EPA Air Quality System (AQS) Database (via AIRData website)	HAP monitor values report data summary	Nation- wide	US	Urban, suburban, rural	2003	Primarily 24 hrs, some 1 hr and 3 hr	106,187		μg/m³ (converted from ppb)	Calculated by Gradient Corp. from annual sum- mary report		$6.6 imes 10^1$
Children's Environmental Health Protection Program	Barrio Logan monitoring data summary	San Diego	CA	Urban	Oct 1999– July 2000	24 hrs	52	54%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	$< 4.3 \times 10^{-1}$	4.3
	Boyle Heights monitoring data summary	Los Angeles	CA	Urban	Mar 2001– May 2002	24 hrs	69	55%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	$< 4.3 \times 10^{-1}$	3.6
	Crockett monitoring data summary	Crockett	CA	Urban	Oct 2001– May 2003	24 hrs	81	7%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	$< 4.3 \times 10^{-1}$	9.8×10^{-1}
	Fresno monitoring data summary	Fresno	CA	Urban	July 2003 –Aug 2003	24 hrs	65	25%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	< 4.3 × 10 ⁻¹	2.1
	Fruitvale monitoring data summary	Fruitvale area of Oakland	CA	Urban	Nov 2001 –Apr 2003	24 hrs	83	34%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	< 4.3 × 10 ⁻¹	2.7
	Wilmington monitoring data summary	Wilming- ton	CA	Urban	July 2001 –July 2002	24 hrs	60	70%	μg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	< 4.3 × 10 ⁻¹	4.3
Payne-Sturges et al. (2004)	Baltimore outdoor air data summary	Baltimore	MD	Urban	Jan 2000– June 2001	3 days	33		µg/m³	Directly from reference		1.7 (P90)
Adgate et al. (2004b)	Minneapolis spring outdoor school data summary	Minneap- olis	MN	Urban	4/9/00– 5/12/00	5 days	10	0%	µg/m³	Directly from reference		1.0×10^{-1} (P90)

Table B.21. Am	pient and Outdoo	or Exposure	Data Summ	aries (<i>Contin</i> u	ued). Styrene	(Columns co	ontinued from	n previous page)
		Overa and/	all Arithmeti 'or Range of I	c Mean Means	(and/c	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Eastern Research Group (ERG) (2004)	Typically 1 yr (annual average)	$6.4 imes 10^{-1}$			3.4×10^{-1}			Samples typically collected on a 6-day or 12-day schedule.
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	$2.7 imes 10^{-1}$	$3.2 imes 10^{-3}$	5.6				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages). Max- imum individual sample concentration is for 1-hr sampling period.
Children's Environmen- tal Health Protection Program	9 months	$6.0 imes 10^{-1}$						
	~ 15 months	$6.4 imes 10^{-1}$						
	~ 1.5 yrs	2.6×10^{-1}						
	1 yr	3.8×10^{-1}						
	~ 1.5 yrs	3.8×10^{-1}						
	~ 1 yr	1.0						
Payne-Sturges et al. (2004)	18 months	5.0×10^{-1}			$2.5 imes 10^{-1}$			
Adgate et al. (2004b)	5 weeks				0.0			
								Table continues on next page

		Stud Locatio	y n(s)								Individua Measurem	ll Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Adgate et al. (2004b) (<i>Continued</i>)	Minneapolis winter outdoor school data summary	Minneap- olis	MN	Urban	1/24/00– 2/18/00	5 days	8	0%	µg/m³	Directly from reference		1.0×10^{-1} (P90)
Batterman et al. (2002)	Across study roadway and in-bus measurement data summary	Detroit	MI	In-vehi- cle, urban	10/20/99– 11/10/99 (1 day per week for 4 weeks)	3–4 hrs	74	95%	µg/m³	Directly from reference	< 1.0 × 10 ⁻¹	3.5
Kinney et al. (2002)	Summary of summer resi- dential out- door data	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	30		µg/m³	Directly from reference		
	Summary of winter resi- dential out- door data	New York	NY	Urban	Winter 1999 (over 8 weeks)	2 days	36		µg/m³	Directly from reference		
Pratt et al. (2000)	Minnesota statewide monitoring data summary	State- wide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 yrs per site	Typically 24 hrs	2,507	60%	µg/m³	Directly from reference	$< 6.0 \times 10^{-2}$	1.5
Sexton et al. (2004)	Minneapolis- St Paul outdoor air data summary	Minneap- olis	MN	Urban	Apr–Nov 1999	2 days	132	43.2%	µg/m³	Directly from reference		$4.0 imes 10^{-1}$ (P90)
South Coast Air Quality Management District (AQMD) (2000)	Fixed site sampling data summary	Southern Califor- nia South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999	24 hrs	One 24-hr sample every six days		µg/m³	Directly from reference		
	Regional modeling analysis summary	Southern Califor- nia South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999				µg/m³	Directly from reference		
Adgate et al. (2004a)	Minnesota residential outdoor air data summary	State- wide	MN	Urban, nonurban	May–Sept 1997	6 days	100	39%	µg/m³	Directly from reference	< 6.0 × 10 ⁻¹	9.0×10^{-1} (P95)

Table B.21. Amb	pient and Outdoo	or Exposure	Data Summa	aries (<i>Contin</i> u	ued). Styrene	(Columns co	ntinued fron	n previous page)
		Overa and/	all Arithmetic or Range of M	c Mean Means	(and/c	Overall Media or Range of M	an ledians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Adgate et al. (2004b) (<i>Continued</i>)	4 weeks				$1.0 imes 10^{-1}$			
Batterman et al. (2002)	4 days (over 4 weeks)	1.1						
Kinney et al. (2002)	8 weeks	$3.2 imes 10^{-1}$						
	8 weeks	$4.3 imes 10^{-1}$						
Pratt et al. (2000)	1–9 yrs	$1.0 imes 10^{-1}$			$8.0 imes 10^{-2}$			
Sexton et al. (2004)	7 months	2.0×10^{-1}			1.0×10^{-1}			Authors note that manufacturing plant located near East St Paul neighborhood.
South Coast Air Quality Management District (AQMD) (2000)	1 yr	1.2						Report concluded that mobile sources were dominant pollutant sources.
	1 yr	$5.3 imes 10^{-1}$						Modeling included emissions for on-road mobile, area and off-road mobile, and major point sources.
Adgate et al. (2004a)	5 months	$5.0 imes 10^{-1}$						
								Table continues on next page

		Stud Locatio	y n(s)								Individua Measurem	al Sample lent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Fedoruk and Kerger (2003)	Data summary for in-vehicle measurements during extreme heat/ static condi- tions	Foxboro	MA	In-vehi- cle, urban and subur- ban	June–July 1997	90 min- utes	3	100%	µg/m³	Directly from reference; average con- centration calculated by Gradient Corp.	$9.4 imes 10^1$	$2.6 imes 10^2$
Mohamed et al. (2002)	1996 UATMP data summary	Nation- wide	US	Urban, near- urban	Sept 1996– Aug 1997	24 hrs	Samples collected every 12 days		μg/m³ (converted from ppb)	Directly from reference		
Zielinska et al. (1998)	Summary of AZ HAPs program fixed site monitoring data	Multiple (5) loca- tions	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 yr at each site)	24 hrs	~ 60 per site		μg/m³ (converted from ppb)	Directly from reference	0.0	$1.5 imes 10^1$
	Summary of AZ HAPs pro- gram tempo- rary site monitoring data	Multiple (4) loca- tions	AZ	Urban	June 1994–Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4–17 per site		µg/m³ (converted from ppb)	Directly from reference	2.6×10^{-1}	$3.2 imes 10^1$

		Over and	all Arithmetic /or Range of M	c Mean Means	and/	Overall Medi or Range of N	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	- Notes
Fedoruk and Kerger (2003)	3 90-minute tests	$1.9 imes 10^2$						Three vehicles tested: new 1997 Ford Tau- rus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.
Mohamed et al. (2002)	1 yr		$2.6 imes 10^{-1}$	$1.3 imes 10^1$				Samples collected every 12 days.
Zielinska et al. (1998)	1 yr		4.3×10^{-1}	1.2				
	~ 1 week to 2 months		3.8×10^{-1}	$2.4 imes 10^1$				

Table B.22. Ambi	ent and Outdoor	r Exposure	Data	Summarie	s. Toulene	e (<i>Column</i>	s continue o	n next page)			
		Stud Locatio	y n(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Eastern Research Group (ERG) (2004)	2003 UATMP data summary	Nation- wide	US	Urban, suburban, rural	2003	24 hrs	1,550	75%	µg/m³ (converted from ppb)	Directly from reference	$7.5 imes 10^{-2}$	$7.9 imes 10^1$
EPA Air Quality System (AQS) Database (via AIRData website)	HAP monitor values report data summary	Nation- wide	US	Urban, suburban, rural	2003	Primarily 24 hrs, some 1 hr and 3 hr	113,218		μg/m³ (converted from ppbC)	Calculated by Gradient Corp. from annual summary report		$2.2 imes 10^2$
Children's Environmental Health Protection Program	Barrio Logan monitoring data summary	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	69	100%	µg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	$9.0 imes 10^{-1}$	$2.5 imes 10^1$
	Boyle Heights monitoring data summary	Los Angeles	CA	Urban	Feb 2001– May 2002	24 hrs	74	100%	µg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	2.8	$1.0 imes 10^2$
	Crockett monitoring data summary	Crockett	CA	Urban	Oct 2001– May 2003	24 hrs	81	95%	µg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	$< 7.5 \times 10^{-1}$	6.8
	Fresno monitoring data summary	Fresno	CA	Urban	July 2002– Aug 2003	24 hrs	65	98%	µg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	< 7.5 × 10 ⁻¹	$2.3 imes 10^1$
	Fruitvale monitoring data summary	Fruitvale area of Oakland	CA	Urban	Nov 2001– Apr 2003	24 hrs	83	100%	µg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	$7.5 imes 10^{-1}$	$2.5 imes 10^1$
	Wilmington monitoring data summary	Wilming- ton	CA	Urban	July 2001– July 2002	24 hrs	60	100%	µg/m³ (converted from ppb)	Calculated by Gradient Corp. from study data set	1.2	$3.3 imes 10^1$
											Table continu	es on next page

Table B.22. Amb	ient and Outdoo	or Exposure	Data Summa	aries (<i>Continue</i>	e d). Toulene	e (Columns c	ontinued fro	om previous page)
		Over and	all Arithmeti /or Range of I	c Mean Means	(and/o	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Eastern Research Group (ERG) (2004)	Typically 1 yr (annual average)	4.4			2.6			Samples typically collected on a 6-day or 12-day schedule.
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	3.3	1.4×10^{-1}	$1.3 imes 10^1$				Overall mean is the mean of all site average concentrations. Minimum and maximum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages). Maxi- mum individual sample concentration is for 1-hour sampling period.
Children's Environmen- tal Health Protection Program	17 months	9.0						
	~ 15 months	$1.4 imes 10^1$						
	~ 1.5 yrs	2.0						
	1 yr	5.3						
	~ 1.5 yrs	6.7						
	~ 1 yr	7.5						
								Table continues on next page

		Study Location	y n(s)								Individu Measuren	al Sample ient Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Fitz et al. (2003)	In-vehicle data summary for school bus study	Los Angeles	CA	In-vehi- cle, urban	4/22/02– 6/12/02	1–1.5 hrs	20 sampling runs		μg/m³ (converted from ppb)	Directly from reference		
Payne-Sturges et al. (2004)	Baltimore outdoor air data summary	Baltimore	MD	Urban	Jan 2000– June 2001	3 days	33		µg/m³	Directly from reference		6.4 (P90)
Riediker et al. (2003)	Ambient air data summary	Wake County	NC	Urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	46	100%	μg/m³ (converted from ppb)	Directly from reference	3.0	$1.8 imes 10^1$
	In-vehicle data summary for NC state police patrol cars	Wake County	NC	In-vehi- cle, urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	46	100%	μg/m³ (converted from ppb)	Directly from reference	8.7	$4.9 imes 10^2$
	Roadside sample data summary	Wake County	NC	Roadside, urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	46	100%	µg/m³ (converted from ppb)	Directly from reference	2.3	$1.2 imes 10^1$
Adgate et al. (2004b)	Minneapolis spring outdoor school data summary	Minneap- olis	MN	Urban	4/9/00- 5/12/00	5 days	10	100%	µg/m³	Directly from reference		3.6 (P90)
	Minneapolis winter outdoor school data summary	Minneap- olis	MN	Urban	1/24/00– 2/18/00	5 days	8	100%	µg/m³	Directly from reference		4.2 (P90)
Batterman et al. (2002)	Across study roadway and in-bus measurement data summary	Detroit	MI	In-vehi- cle, urban	10/20/99– 11/10/99 (1 day per week for 4 weeks)	3–4 hrs	74	100%	μg/m³	Directly from reference		$3.3 imes 10^1$
Kinney et al. (2002)	Summary of summer residential outdoor data	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	31		µg/m³	Directly from reference		
	Summary of winter residential outdoor data	New York	NY	Urban	Winter 1999 (over 8 weeks)	2 days	36		µg/m³	Directly from reference		

Table B.22. Am	bient and Outdoo	r Exposure	Data Summa	aries (<i>Continu</i>	ed). Toulene	e (<i>Columns c</i>	ontinued fro	om previous page)
		Over and	all Arithmeti /or Range of I	c Mean Means	and/o	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Fitz et al. (2003)	Over all exposure runs grouped by route and window position		$5.4 imes 10^1$	$6.7 imes 10^1$				Range in mean concentrations reflects the mean concentrations provided in the report for two groups of urban route one exposure runs: with windows closed (morning), and with windows open (afternoon).
Payne-Sturges et al. (2004)	18 months	4.1			3.9			
Riediker et al. (2003)	50 late-shift patrols (3 PM to midnight) over 25 days	6.4						
	50 late-shift patrols (3 PM to midnight) over 25 days	$3.9 imes 10^1$						Four excluded samples were from one car that had extreme values, which increased from shift to shift.
	50 late-shift patrols (3 PM to midnight) over 25 days	5.7						
Adgate et al. (2004b)	5 weeks				2.7			
	4 weeks				2.6			
Batterman et al. (2002)	4 days (over 4 weeks)	$1.0 imes 10^1$						
Kinney et al. (2002)	8 weeks	7.5						
	8 weeks	6.5						
								Table continues on next page

		Stud Locatio	y n(s)								Individu Measurer	al Sample nent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Pratt et al. (2000)	Minnesota statewide monitoring data summary	Statewide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 years per site	typically 24 hrs	3650	98%	μg/m³	Directly from reference	< 4.3 × 10 ⁻¹	$7.5 imes 10^1$
Sexton et al. (2004)	Minneapolis- St Paul outdoor air data summary	Minneap- olis	MN	Urban	Apr–Nov 1999	2 days	132	82.6%	µg/m³	Directly from reference		$1.2 imes 10^1$ (P90)
South Coast Air Quality Management District (AQMD) (2000)	Fixed site sampling data summary	Southern Califor- nia South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999	24 hrs	One 24-hr sample every six days		μg/m³	Directly from reference		
	Regional modeling analysis summary	Southern Califor- nia South Coast Air Basin	CA	Primarily urban, including Los Angeles	Apr 1998– Mar 1999				μg/m³	Directly from reference		
Adgate et al. (2004a)	Minnesota residential outdoor air data summary	Statewide	MN	Varies	May– Sept 1997	6 days	100		µg/m³	Directly from reference	4.6	$1.6 imes10^1$ (P95)
Fedoruk and Kerger (2003)	Data summary for in-vehicle measurements during 90 minute drive	Los Angeles	CA	In-vehi- cle, urban and suburban	June– July 1997	90 min	1	100%	µg/m³	Directly from reference	$1.18 imes 10^1$	$1.18 imes 10^1$
	Data summary for in-vehicle measurements during extreme heat/ static conditions	Foxboro	MA	In-vehi- cle, urban and suburban	June– July 1997	90 min	3	100%	µg/m³	Directly from reference	$7.9 imes 10^1$	$2.4 imes 10^2$
	Data summary for in-vehicle measurements during moderate heat/ static conditions	Foxboro	MA	In-vehi- cle, urban and suburban	June– July 1997	90 min	3	100%	µg/m³	Directly from reference	$3.8 imes 10^1$	$9.0 imes 10^1$
Mohamed et al. (2002)	1996 UATMP data summary	Nation- wide	US	Urban, near-urban	Sept 1996– Aug 1997	24 hrs	Samples collected every 12 days		μg/m³ (converted from ppb)	Directly from reference		
											Table contin	ues on next page

		rosuit	Jumit		,. <u>.</u>			F
		Over and	all Arithmeti /or Range of I	c Mean Means	and/o	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Pratt et al. (2000)	1–9 yrs	3.8			2.6			
Sexton et al. (2004)	7 months	4.8			3.0			Authors note that manufacturing plant located near East St Paul neighborhood.
South Coast Air Quality Management District (AQMD) (2000)	1 yr	$1.3 imes 10^1$						Report concluded that mobile sources were dominant pollutant sources.
	1 yr	$1.2 imes 10^1$						Modeling included emissions for on-road mobile, area and off-road mobile, and major point sources.
Adgate et al. (2004a)	5 months	9.7						
Fedoruk and Kerger (2003)	90 min	$1.18 imes 10^1$						Testing conducted on used 1993 Toyota Camry.
	3 90-min tests	$1.7 imes 10^2$						Three vehicles tested: new 1997 Ford Taurus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.
	3 90-min tests	$7.1 imes 10^1$						Three vehicles tested: new 1997 Ford Taurus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.
Mohamed et al. (2002)	1 yr		1.4	$1.0 imes 10^1$				Samples collected every 12 days.
								Table continues on next page

		Stud Locatio	y n(s)								Individua Measurem	al Sample aent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Rodes et al. (1998)	Ambient air station data summary, Los Angeles	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	16	100%	µg/m³	Directly from reference		
	Ambient air station data summary, Sacramento	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	12	99%>MDL for all Sacramento samples	µg/m³	Directly from reference		
	In-vehicle data summary, Los Angeles	Los Angeles	CA	In-vehi- cle, urban	9/25/97– 10/3/97	2 hrs	16 com- mutes in 2 cars (32 total)	100%	µg/m³	Directly from reference	$2.3 imes 10^1$	$5.8 imes 10^1$
	In-vehicle data summary, Sacramento	Sacra- mento	CA	In-vehi- cle, urban	9/9/97– 9/16/97	2 hrs	13 com- mutes in 2 cars (26 total)	99%>MDL for all Sacramento samples	µg/m³	Directly from reference	3.2	$4.6 imes10^1$
	Roadside sampling data summary, Los Angeles	Los Angeles	CA	Roadside, urban	9/25/97– 10/3/97	2 hrs	12 of the 16 commutes at 2 locations (24 total)	100%	µg/m³	Directly from reference	6.9	$7.1 imes 10^1$
	Roadside sampling data summary, Sacramento	Sacra- mento	CA	Roadside, urban	9/9/97– 9/16/97	2 hrs	9 of the 13 commutes at 2 locations (18 total)	99%>MDL for all Sacramento samples	µg/m³	Directly from reference	2.1	$1.5 imes 10^1$
Zielinska et al. (1998)	Summary of AZ HAPs program fixed site monitoring data	Multiple (5) loca- tions	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 year at each site)	24 hrs	~ 60 per site		μg/m³ (converted from ppb)	Directly from reference	0.0	$6.3 imes 10^1$
	Summary of AZ HAPs program emporary site monitoring data	Multiple (4) loca- tions	AZ	Urban	June 1994– Mar 1996 (~ 1 wk to 2 months at each site)	24 hrs	4–17 per site		μg/m³ (converted from ppb)	Directly from reference	4.2	$1.2 imes 10^2$

	-	Over and	rall Arithmetic l/or Range of M	c Mean Means	(and/o	Overall Medi or Range of N	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Rodes et al. (1998)	2–4 commutes		9.6	$4.0 imes10^1$				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different com mute types.
	1–4 commutes		3.7	8.2				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different com mute types.
	2–4 commutes		$3.0 imes 10^1$	$5.1 imes 10^1$				Range in average concentrations represents averages reported by commute type and car.
	1–4 commutes		3.2	$3.5 imes 10^1$				Range in average concentrations represents averages reported by commute type and car.
	2–4 commutes		$1.6 imes 10^1$	$4.4 imes 10^1$				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different com- mute types.
	1–4 commutes		2.2	$1.2 imes 10^1$				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concentra- tions represents averages over different com- mute types.
Zielinska et al. (1998)	1 yr		2.3×10^{-1}	$2.0 imes 10^1$				
	~ 1 week to 2 months		6.2	$4.5 imes 10^1$				

Table B.23. Ambi	ent and Outdoo	or Exposur	re Data	Summari	es. Xylene	(Columns	continue o	on next page)			
		Stud Locatic	y on(s)								Individual Samp Ran	le Measurement ge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Eastern Research Group (ERG) (2004)	2003 UATMP—data summary— <i>m,p</i> -Xylene	Nation- wide	US	Urban, suburban, rural	2003	24 hrs	1,550	71%	μg/m³ (con- verted from ppb)	Reported	$8.7 imes 10^{-2}$	$3.4 imes 10^1$
	2003 UATMP data summary— <i>o</i> -Xylene	Nation- wide	US	Urban, suburban, rural	2003	24 hrs	1,550	63%	µg/m³ (con- verted from ppb)	Reported	$8.7 imes 10^{-2}$	$1.4 imes 10^1$
EPA Air Quality System (AQS) Database (via AIRData website)	HAP Monitor values report data summary— <i>m</i> -Xylene	Nation- wide	US	Urban, suburban, rural	2003	Primarily 24 hrs	2,967		μg/m³ (con- verted from ppbC)	Calculated from annual summary report		$1.0 imes 10^1$
	HAP monitor values report data sum- mary- o-Xylene	Nation- wide	US	Urban, suburban, rural	2003	Primarily 24 hrs	111,679		µg/m³ (con- verted from ppbC)	Calculated from annual summary report		$6.9 imes 10^1$
	HAP monitor values report data sum- mary— <i>p</i> -Xylene	Nation- wide	US	Urban, suburban, rural	2003	Primarily 24 hrs	2,981		μg/m³ (con- verted from ppbC)	Calculated from annual summary report		$2.1 imes 10^1$
Children's Environmental Health Protec- tion Program	Barrio Logan monitoring data summary— <i>m,p</i> -Xylene	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	69	70%	μg/m³ (con- verted from ppb)	Calculated	< 2.6	$1.6 imes 10^1$
	Barrio Logan monitoring data summary— <i>o</i> -Xylene	San Diego	CA	Urban	Oct 1999– Feb 2001	24 hrs	69	87%	μg/m³ (con- verted from ppb)	Calculated	$< 4.3 \times 10^{-1}$	5.2
	Boyle Heights monitoring data summary— <i>m,p</i> -Xylene	Los Angeles	CA	Urban	Feb 2001– May 2002	24 hrs	74	100%	μg/m³ (con- verted from ppb)	Calculated	1.7	$3.6 imes 10^1$
											Table contin	ues on next page

Table B.23. Ambient	t and Outdoor Expo	osure Data S	ummaries (Co	ntinued). Xyle	ene (<i>Columns</i>	continued fro	om previous p	page)
		Over and	rall Arithmetic I/or Range of M	e Mean ⁄Ieans	and/	Overall Medi or Range of M	an Iedians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Eastern Research Group (ERG) (2004)	Typically 1 yr (annual average)	2.4			1.4			
	Typically 1 yr (annual average)	1.1			$6.9 imes 10^{-1}$			
EPA Air Quality System (AQS) Database (via AIRData website)	Typically 1 yr (annual average)	1.0	2.7×10^{-1}	2.3				Overall mean is the mean of all site aver- age concentrations. Minimum and maxi- mum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages). Maximum individual sample concentration is for 3-hour sampling period.
	Typically 1 yr (annual average)	$6.4 imes 10^{-1}$	$6.5 imes 10^{-3}$	3.1				Overall mean is the mean of all site aver- age concentrations. Minimum and maxi- mum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages). Maximum individual sample concentration is for 3-hour sampling period.
	Typically 1 yr (annual average)	2.1	2.7	4.6				Overall mean is the mean of all site aver- age concentrations. Minimum and maxi- mum average concentrations represent range in average concentrations across all sites (i.e., the lowest and highest site averages). Maximum individual sample concentration is for 3-hour sampling period.
Children's Environmental Health Protection Program	17 months	5.6						
	17 months	1.9						
	~ 15 months	$1.0 imes 10^1$						
								Table continues on next page

		Stud Locatio	y n(s)								Individual Samp Ran	le Measuremen ge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Children's Environmental Health Protection Program (<i>Continued</i>)	Boyle Heights monitoring data summary— <i>o</i> -Xylene	Los Ange- les	CA	Urban	Feb 2001– May 2002	24 hrs	74	100%	μg/m³ (con- verted from ppb)	Calculated	$6.1 imes 10^{-1}$	9.5
	Crockett moni- toring data summary— <i>m,p</i> -Xylene	Crockett	CA	Urban	Oct 2001– May 2003	24 hrs	81	69%	μg/m³ (con- verted from ppb)	Calculated	< 8.7 × 10 ⁻¹	4.8
	Crockett monitoring data summary— <i>o</i> -Xylene	Crockett	CA	Urban	Oct 2001– May 2003	24 hrs	81	44%	μg/m³ (con- verted from ppb)	Calculated	$< 4.3 \times 10^{-1}$	1.3
	Fresno moni- toring data summary— <i>m,p</i> -Xylene	Fresno	CA	Urban	July 2002–Aug 2003	24 hrs	65	89%	μg/m³ (con- verted from ppb)	Calculated	$< 8.7 \times 10^{-1}$	$1.7 imes 10^1$
	Fresno moni- toring data summary— <i>o</i> -Xylene	Fresno	CA	Urban	July 2002–Aug 2003	24 hrs	65	72%	μg/m³ (con- verted from ppb)	Calculated	$< 4.3 \times 10^{-1}$	6.5
	Fruitvale monitoring data summary— <i>m,p</i> -Xylene	Fruitvale area of Oakland	CA	Urban	Nov 2001–Apr 2003	24 hrs	83	92%	µg/m³ (con- verted from ppb)	Calculated	$< 8.7 \times 10^{-1}$	$3.7 imes 10^1$
	Fruitvale monitoring data summary— <i>o</i> -Xylene	Fruitvale area of Oakland	CA	Urban	Nov 2001– Apr 2003	24 hrs	83	81%	μg/m³ (con- verted from ppb)	Calculated	$< 4.3 \times 10^{-1}$	6.5
	Wilmington monitoring data summary— <i>m,p</i> -Xylene	Wilming- ton	CA	Urban	July 2001– July 2002	24 hrs	60	100%	μg/m³ (con- verted from ppb)	Calculated	$8.7 imes 10^{-1}$	$2.7 imes 10^1$
	Wilmington monitoring data summary— <i>o</i> -Xylene	Wilming- ton	CA	Urban	July 2001– July 2002	24 hrs	60	95%	μg/m³ (con- verted from ppb)	Calculated	$< 4.3 \times 10^{-1}$	6.9

Table B.23. Ambien	t and Outdoor Expo	osure Data Sı	ımmaries (Co	ontinued). Xyle	ne (<i>Columns</i>	continued fro	om previous pag	e)
		Over and	all Arithmetic /or Range of I	c Mean Means	and	Overall Medi or Range of M	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Children's Environmental Health Protection Program (Continued)	~ 16 months	2.7						
	~ 1.5 yrs	1.3						
	~ 1.5 yrs	$3.9 imes 10^{-1}$						
	1 yr	3.3						
	1 yr	1.2						
	6 months	5.6						
	6 months	1.6						
	~ 1 yr	6.1						
	~ 1 yr	1.7						
								Table continues on next page

Table B.23. Amb	ient and Outdoo	or Exposur	e Data	Summari	es (Continu	1ed). Xyle	ne (<i>Columr</i>	ns continue	on next pag	e)		
		Stud Locatio	y n(s)								Individual Samj Ra	ple Measurement nge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Fitz et al. (2003)	In-vehicle data summary for school bus study— <i>m,p</i> -Xylene	Los Angeles	CA	In-vehi- cle, urban	4/22/02- 6/12/02	1–1.5 hrs	20 sam- pling runs		μg/m³ (con- verted from ppb)	Reported		
	In-vehicle data summary for school bus study— <i>o</i> -Xylene	Los Angeles	CA	In-vehi- cle, urban	4/22/02- 6/12/02	1–1.5 hrs	20 sam- pling runs		µg/m³ (con- verted from ppb)	Reported		
Payne-Sturges et al. (2004)	Baltimore out- door air data summary— total Xylenes	Baltimore	MD	Urban	Jan 2000– June 2001	3 days	33		µg/m³	Reported		7.1 (P90)
Riediker et al. (2003)	Ambient air data sum- mary—total xylenes	Wake County	NC	Urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50	100%	μg/m³ (con- verted from ppb)	Reported	1.7	$1.0 imes 10^1$
	In-vehicle data summary for NC state police patrol cars— total Xylenes	Wake County	NC	In-vehi- cle, urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	46 (4 excluded by authors)	100%	μg/m³ (con- verted from ppb)	Reported	6.1	$5.3 imes 10^1$
	Roadside sample data summary— total Xylenes	Wake County	NC	Urban	8/13/01– 10/11/01	7.75– 14.7 hrs (average 9.1)	50	100%	µg/m³ (con- verted from ppb)	Reported	1.7	8.2
Adgate et al. (2004b)	Minneapolis spring outdoor school data summary— <i>m,p-</i> Xylene	Minneap- olis	MN	Urban	4/9/00– 5/12/00	5 days	10	100%	μg/m³	Reported		2.8 (P90)
	Minneapolis spring outdoor school data summary— <i>o</i> -Xylene	Minneap- olis	MN	Urban	4/9/00- 5/12/00	5 days	10	100%	μg/m³	Reported		9.0×10^{-1} (P90)
	Minneapolis winter outdoor school data summary— <i>m,p</i> -Xylene	Minneap- olis	MN	Urban	1/24/00– 2/18/00	5 days	8	100%	μg/m³	Reported		3.3 (P90)
											Table conti	nues on next page

Health Effects Institute Special Report 16 $\ensuremath{\mathbb{C}}$ 2007

Table B.23. Ambien	it and Outdoor Expo	sure Data S	ummaries (Co	ntinued). Xyle	ene (<i>Columns</i>	continued fro	om previous p	age)
		Over and	all Arithmetic /or Range of M	c Mean Means	and/	Overall Medi or Range of M	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Fitz et al. (2003)	Over all exposure runs grouped by route and window position		8.7	$1.9 imes 10^1$				Range in mean concentrations reflects the mean concentrations provided in the report for two groups of urban route one exposure runs: with windows closed (morning), and with windows open (afternoon).
	Over all exposure runs grouped by route and window position		2.6	7.4				Range in mean concentrations reflects the mean concentrations provided in the report for two groups of urban route one exposure runs: with windows closed (morning), and with windows open (afternoon).
Payne-Sturges et al. (2004)	18 months	4.7			4.0			
Riediker et al. (2003)	50 late-shift patrols (3 PM to midnight) over 25 days	4.3						
	50 late-shift patrols (3 PM to midnight) over 25 days	$2.0 imes 10^1$						4 samples out of 50 were excluded from stats = 46 samples.
	50 late-shift patrols (3 PM to midnight) over 25 days	4.3						
Adgate et al. (2004b)	5 weeks				2.0			
	5 weeks				7.0×10^{-1}			
	4 weeks				2.3			
						-		

		Stud Locatio	y n(s)								Individual Samp Ran	le Measuremen ge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Adgate et al. (2004b) (<i>Continued</i>)	Minneapolis winter outdoor school data summary— <i>o</i> -Xylene	Minneap- olis	MN	Urban	1/24/00– 2/18/00	5 days	8	100%	µg/m³	Reported		1.1 (P90)
Batterman et al. (2002)	Across study roadway and in-bus measurement data summary— <i>m,p</i> -Xylene	Detroit	MI	In-vehi- cle, urban	10/20/99– 11/10/99 (1 day per week for 4 weeks)	3–4 hrs	74	95%	µg/m³	Reported	< 1.0 × 10 ⁻¹	$2.0 imes 10^1$
	Across study roadway and in-bus measurement data summary— <i>o</i> -Xylene	Detroit	MI	In-vehi- cle, urban	10/20/99– 11/10/99 (1 day per week for 4 weeks)	3–4 hrs	74	95%	µg/m³	Reported	< 1.0 × 10 ⁻¹	6.6
Kinney et al. (2002)	Summary of summer residential outdoor data— <i>m,p</i> -Xylene	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	30		µg/m³	Reported		
	Summary of summer residential outdoor data— <i>o</i> -Xylene	New York	NY	Urban	Summer 1999 (over 8 weeks)	2 days	30		µg/m³	Reported		
	Summary of winter residential outdoor data— <i>m,p</i> -Xylene	New York	NY	Urban	Winter 1999 (over 8 weeks)	2 days	36		µg/m³	32.3		
	Summary of winter residential outdoor data— <i>o</i> -Xylene	New York	NY	Urban	Winter 1999 (over 8 weeks)	2 days	36		µg/m³	32.3		
Pratt et al. (2000)	Minnesota statewide monitoring data summary— <i>m,p</i> -Xylene	Statewide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 yrs per site	typically 24 hrs	2,890	98%	µg/m³	Reported	< 1.8 × 10 ⁻¹	$5.9 imes 10^1$

Table B.23. Ambient a	nd Outdoor Expo	sure Data S	ummaries (Co	ntinued). Xyle	ene (<i>Columns</i>	continued fro	om previous page)
	_	Over	rall Arithmetic l/or Range of I	c Mean Means	and/	Overall Media or Range of M	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Adgate et al. (2004b) (<i>Continued</i>)	4 weeks				$8.0 imes 10^{-1}$			
Batterman et al. (2002)	4 days (over 4 weeks)	6.8						
	4 days (over 4 weeks)	2.2						
Kinney et al. (2002)	8 weeks	5.8						
	8 weeks	2.0						
	8 weeks	4.5						
	8 weeks	1.5						
Pratt et al. (2000)	1–9 yrs	2.1			1.4			
								Table continues on next page

		Stud Locatio	y n(s)								Individual Samp Ran	le Measurement ge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Pratt et al. (2000) (<i>Continued</i>)	Minnesota statewide monitoring data summary— <i>o</i> -Xylene	Statewide	MN	Varied: urban, rural, industrial	1991– 1999, up to 9 yrs per site	Typically 24 hrs	3650	91%	µg/m³	Reported	$< 1.4 \times 10^{-1}$	$1.7 imes 10^1$
Sexton et al. (2004)	Minneapolis- St Paul outdoor air data summary— <i>m,p</i> -Xylene	Minneap- olis	MN	Urban	Apr–Nov 1999	2 days	132	98.5%	µg/m³	Reported		5.5 (P90)
	Minneapolis- St Paul outdoor air data summary— <i>o</i> -Xylene	Minneap- olis	MN	Urban	Apr–Nov 1999	2 days	132	97.0%	μg/m³	Reported		1.7 (P90)
Adgate et al. (2004a)	Minnesota residential outdoor air data summary— <i>m,p</i> -Xylene	Statewide	MN	Urban, nonurban	May–Sept 1997	6 days	100	99%	µg/m³	Reported	$< 5.0 imes 10^{-1}$	4.8 (P95)
	Minnesota residential outdoor air data summary— <i>o</i> -Xylene	Statewide	MN	Urban, nonurban	May–Sept 1997	6 days	100	98%	µg/m³	Reported	$< 3.0 \times 10^{-1}$	2.4 (P95)
Fedoruk and Kerger (2003)	Data summary for in-vehicle measurements during 90 minute drive— <i>m,p</i> -Xylene	Los Angeles	CA	In-vehi- cle, urban and sub- urban	June–July 1997	90 min	1	100%	µg/m³	Reported	3.8	3.8
	Data summary for in-vehicle measurements during 90 minute drive— <i>o</i> -Xylene	Los Angeles	СА	In-vehi- cle, urban and sub- urban	June–July 1997	90 min	1	100%	µg/m³	Reported	1.3	1.3
	Data summary for in-vehicle measurements during extreme heat/static conditions— <i>m.p</i> -Xylene	Foxboro	MA	In-vehi- cle, urban and sub- urban	June–July 1997	90 min	3	100%	µg/m³	Reported	$1.6 imes 10^1$	$8.3 imes 10^1$

Table B.23. Ambient a	and Outdoor Expo	osure Data Su	ummaries (Co	ntinued). Xyl	ene (<i>Columns</i>	continued fro	om previous p	age)
		Over and	all Arithmetic /or Range of M	c Mean Means	and/	Overall Media or Range of M	an ledians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Pratt et al. (2000) (<i>Continued</i>)	1-9 yrs	$7.9 imes 10^{-1}$			$5.0 imes 10^{-1}$			
Sexton et al. (2004)	7 months	2.5			2.0			Authors note that manufacturing plant located near East St Paul neighborhood.
	7 months	$8.0 imes 10^{-1}$			$7.0 imes 10^{-1}$			Authors note that manufacturing plant located near East St Paul neighborhood.
Adgate et al. (2004a)	5 months	3.5						Samples collected every 12 days.
	5 months	1.5						
Fedoruk and Kerger (2003)	90 min	3.8						Testing conducted for used 1993 Toyota Camry.
	90 min	1.3						Testing conducted for used 1993 Toyota Camry.
	3–90 min tests	$4.6 imes 10^1$						Three vehicles tested: new 1997 Ford Tau- rus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.
								Table continues on next page

Table B.23. Amb	pient and Outdoo	or Exposu	re Data	ı Summari	es (<i>Continu</i>	ied). Xyle	ne (<i>Colum</i>	ns continue o	on next pag	e)		
		Stud Locatio	ly on(s)								Individual Sampl Ran	e Measurement ge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Fedoruk and Kerger (2003) (<i>Continued</i>)	Data summary for in-vehicle measurements during extreme heat/static conditions— <i>o</i> -Xylene	Foxboro	MA	In-vehi- cle, urban and sub- urban	June–July 1997	90 min- utes	3	100%	µg/m³	Reported	8.4	$2.2 imes 10^1$
	Data summary for in-vehicle measurements during moder- ate heat/ static conditions— <i>m,p</i> -Xylene	Foxboro	MA	In-vehi- cle, urban and sub- urban	June–July 1997	90 min- utes	3	100%	µg/m³	Reported	6.6	1.9×10^1
	Data summary for in-vehicle measurements during moder- ate heat/ static conditions— <i>o</i> -Xylene	Foxboro	MA	In-vehi- cle, urban and sub- urban	June–July 1997	90 min- utes	3	100%	µg/m³	Reported	3.9	9.9
Mohamed et al. (2002)	1996 UATMP data summary— <i>m,p</i> -Xylene	Nation- wide	US	Urban, near- urban	Sept 1996–Aug 1997	24 hrs	Samples collected every 12 days		μg/m³ (con- verted from ppb)	Reported		
	1996 UATMP data summary— <i>o</i> -Xylene	Nation- wide	US	Urban, near- urban	Sept 1996–Aug 1997	24 hrs	Samples collected every 12 days		μg/m³ (con- verted from ppb)	Reported		
Rodes et al. (1998)	Ambient air station data summary, Los Angeles— <i>m,p</i> -Xylene	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	16	100%	µg/m³	Reported		
	Ambient air station data summary, Los Angeles— <i>o</i> -Xylene	Los Angeles	CA	Urban	9/25/97– 10/3/97	2 hrs	16	100%	µg/m³	Reported		
	Ambient air station data summary, Sacramento— <i>m,p</i> -Xylene	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	12	92%>MDL reported for all Sacramento samples	µg/m³	Reported		
											Table continu	ues on next page

	an outdoor Expo	Ove and	rall Arithmetic	z Mean Jeans	and	Overall Medi /or Range of N	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Fedoruk and Kerger (2003) (<i>Continued</i>)	3 90-minute tests	$1.3 imes 10^1$						Three vehicles tested: new 1997 Ford Tau- rus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.
	3 90-minute tests	1.1 × 10 ¹						Three vehicles tested: new 1997 Ford Tau- rus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.
	3 90-minute tests	6.2						Three vehicles tested: new 1997 Ford Tau- rus, new 1997 Chevy Lumina, and used 1993 Toyota Camry.
Mohamed et al. (2002)	1 yr		$9.1 imes 10^{-1}$	5.6				
	1 yr		$4.8 imes 10^{-1}$	2.4				Samples collected every 12 days.
Rodes et al. (1998)	2–4 commutes		5.2	9.4				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concen- trations represents averages over differ- ent commute types.
	2–4 commutes		2.0	4.0				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concen- trations represents averages over differ- ent commute types.
	1-4 commutes		1.8	5.0				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concen- trations represents averages over differ- ent commute types.
								Table continues on next page

		Stud Locatio	ly on(s)								Individual Samp Rar	le Measuremen 1ge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Rodes et al. (1998) (<i>Continued</i>)	Ambient air station data summary, Sacramento— <i>o</i> -Xylene	Sacra- mento	CA	Urban	9/9/97– 9/16/97	2 hrs	12	70%>MDL reported for all Sacramento samples	µg/m³	Reported		
	In-vehicle data summary, Los Angeles— <i>m,p</i> -Xylene	Los Angeles	CA	In-vehi- cle, urban	9/25/97– 10/3/97	2 hrs	32	100%	µg/m³	Reported	$1.7 imes 10^1$	$4.5 imes 10^1$
	In-vehicle data summary, Los Angeles— <i>o</i> -Xylene	Los Angeles	CA	In-vehi- cle, urban	9/25/97– 10/3/97	2 hrs	32	100%	µg/m³	Reported	6.1	$1.6 imes 10^1$
	In-vehicle data summary, Sacramento— <i>m,p</i> -Xylene	Sacra- mento	CA	In-vehi- cle, urban	9/9/97— 9/16/97	2 hrs	13 com- mutes in 2 cars (26 total)	92%>MDL reported for all Sacra- mento sam- ples	µg/m³	Reported	1.8	$3.8 imes10^1$
	In-vehicle data summary, Sacramento— <i>o</i> -Xylene	Sacra- mento	CA	In-vehi- cle, urban	9/9/97– 9/16/97	2 hrs	13 com- mutes in 2 cars (26 total)	70%>MDL reported for all Sacra- mento sam- ples	µg/m³	Reported	$7.0 imes 10^{-1}$	$1.3 imes 10^1$
	Roadside sampling data summary, Los Angeles— <i>m,p</i> -Xylene	Los Angeles	CA	Roadside, urban	9/25/97– 10/3/97	2 hrs	12 of the 16 commutes at 2 locations (24 total)	100%	μg/m³	Reported	4.3	$3.7 imes 10^1$
	Roadside sampling data summary, Los Angeles— <i>o</i> -Xylene	Los Angeles	CA	Roadside, urban	9/25/97– 10/3/97	2 hrs	12 of the 16 commutes at 2 locations (24 total)	100% 5	μg/m³	Reported	1.6	$1.3 imes 10^1$
	Roadside sampling data summary, Sacramento— <i>m,p</i> -Xylene	Sacra- mento	CA	Roadside, urban	9/9/97– 9/16/97	2 hrs	9 of the 13 com- mutes at 2 locations (18 total)	92%>MDL reported for all Sacra- mento sam- ples	μg/m³	Reported	1.1	$1.1 imes 10^1$

Table B.23. Ambient	and Outdoor Expo	sure Data S	oummaries (Co	ntinued) . Xyl	ene (<i>Columns</i>	s continued fro	om previous p	page)
		Ove and	rall Arithmetic d/or Range of N	r Mean ⁄Ieans	and	Overall Medi /or Range of M	an Iedians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Rodes et al. (1998) (<i>Continued</i>)	1–4 commutes		$7.0 imes 10^{-1}$	2.3				Ambient samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concen- trations represents averages over differ- ent commute types.
	2–4 commutes		$2.2 imes 10^1$	$3.6 imes 10^1$				Range in average concentrations represents averages reported by commute type and car.
	2–4 commutes		7.8	$1.3 imes 10^1$				Range in average concentrations represents averages reported by commute type and car.
	1–4 commutes		1.8	$3.1 imes 10^1$				Range in average concentrations represents averages reported by commute type and car.
	1–4 commutes		$7.0 imes 10^{-1}$	$1.1 imes 10^1$				Range in average concentrations represents averages reported by commute type and car.
	2–4 commutes		9.9	$2.0 imes 10^1$				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concen- trations represents averages over differ- ent commute types.
	2–4 commutes		3.7	7.5				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concen- trations represents averages over differ- ent commute types.
	1–4 commutes		1.2	8.9				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concen- trations represents averages over differ- ent commute types.
								Table continues on next page

		Stud Locatic	ly on(s)	_							Individual Sampl Ran	le Measurement ge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Rodes et al. (1998) (<i>Continued</i>)	Roadside sampling data summary, Sacramento— <i>o</i> -Xylene	Sacra- mento	CA	Roadside, urban	9/9/97– 9/16/97	2 hrs	9 of the 13 commutes at 2 locations (18 total)	70%>MDL reported for all Sacramento samples	µg/m³	Reported	$6.0 imes 10^{-1}$	3.8
Zielinska et al. (1998)	Summary of AZ HAPs program fixed site monitoring data— m/p-Xylenes	Multiple (5) loca- tions	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 yr at each site)	24 hrs	~ 60 per site		µg/m³ (con- verted from ppb)	Directly from reference	0.0	$4.0 imes 10^1$
	Summary of AZ HAPs program fixed site monitoring data—o-Xylene	Multiple (5) loca- tions	AZ	Urban and rural	Apr 1994– Apr 1996 (~ 1 yr at each site)	24 hrs	~ 60 per site		μg/m³ (con- verted from ppb)	Directly from reference	0.0	$1.4 imes 10^1$
	Summary of AZ HAPs program temporary site monitor- ing data— m/p-Xylenes	Multiple (4) loca- tions	AZ	Urban	June 1994– Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4–17 per site		µg/m³ (con- verted from ppb)	Directly from reference	2.4	$1.3 imes 10^2$
	Summary of AZ HAPs program temporary site monitor- ing data— <i>o</i> -Xylene	Multiple (4) loca- tions	AZ	Urban	June 1994– Mar 1996 (~ 1 week to 2 months at each site)	24 hrs	4–17 per site		µg/m³ (con- verted from ppb)	Directly from reference	1.0	2.4×10^{1}
Table B.23. Ambier	nt and Outdoor Expo	sure Data Si	ummaries (Co	ntinued). Xyle	ene (<i>Columns</i>	continued fro	om previous p	age)				
--	--------------------------	--------------	------------------------------------	------------------	----------------------	-------------------------------	---------------	--				
		Over and	rall Arithmetic l/or Range of M	c Mean Means	and	Overall Medi or Range of M	an Iedians					
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes				
Rodes et al. (1998) (<i>Continued</i>)	1–4 commutes		$8.0 imes 10^{-1}$	3.6				Roadside samples were collected simulta- neously during commutes for in-vehicle measurements. Range in average concen trations represents averages over differ- ent commute types.				
Zielinska et al. (1998)	1 year		$1.3 imes 10^{-1}$	$1.3 imes 10^1$								
	1 year		$9.0 imes 10^{-2}$	4.6								
	~ 1 week to 2 months		3.6	$9.2 imes 10^1$								
	~ 1 week to 2 months		1.4	$1.1 imes 10^1$								

Appendix B. References

The reference list for Tables B.1 through B.30 was prepared by the Gradient Corporation for HEI. Any web addresses were accessed before February 7, 2005. HEI has not updated this list.

Adgate JL, Eberly LE, Stoebel C, Pellizzari ED, Sexton K. 2004a. Personal, indoor, and outdoor VOC exposures in a probability sample of children. J Expos Anal Environ Epidemiol 14:S4–S13.

Adgate JL, Church TR, Ryan AD, Ramachandran G, Fredrickson AL, Stock TH, Morandi MT, Sexton K. 2004b. Outdoor, indoor, and personal exposure to VOCs in children. Environ Health Perspect 112(14):1386–1392.

Batterman SA, Peng CY, Braun J. 2002. Levels and composition of volatile organic compounds on commuting routes in Detroit, Michigan. Atmos Environ 36(39–40):6015–6030.

Borak J, Sirianni G, Cohen HJ, Chemerynski S, Wheeler R. 2003. Comparison of NIOSH 5040 method versus aethalometer to monitor diesel particulate in school buses and work sites. Am Ind Hyg Assoc J 64:260–268.

California Air Resources Board. 2004. Children's Environmental Health Protection Act (SB 25) Statewide Air Monitoring Network. Downloaded from http://www.arb.ca.gov/ch/programs/sb25/sb25.htm.

California Air Resources Board. 2004. California Ambient Dioxin Air Monitoring Program (CADAMP) Downloaded from http://www.arb.ca.gov/aaqm/qmosopas/dioxins/dioxins.htm.

Carpi A, Chen YF. 2002. Gaseous elemental mercury fluxes in New York City. Water Air Soil Pollut 140:371–379.

Chan CC, Spengler JD, Ozkaynak H, Lefkopoulou M. 1991. Commuter exposures to VOCs in Boston, Massachusetts. J Air Waste Manage Assoc 41(12):1594–1600.

Chellam S, Kulkarni P, Fraser MP. 2005. Emissions of organic compounds and trace metals in fine particulate matter from motor vehicles: A tunnel study in Houston, Texas. J Air Waste Manage Assoc 55:60–72.

Chen H, Yang X, Perkins C. 2004. Trend and variability of total gaseous mercury (TGM) in the State of Connecticut, USA. during 1997–1999. Water Air Soil Pollut 151:103–116.

Cleverly DH, Winters D, Ferrario J, Riggs K, Hartford P, Joseph D, Wisbith T, Dupuy A, Byrne C. 2002. The National Dioxin Air Monitoring Network (NDAMN): Measurements of CDDs, CDFs, and coplanar PCBs at 18 rural, 8 national parks, and 2 suburban areas of the United States: Results for the year 2000. Organohalogen Compounds 56:437–440.

Dachs J, Glenn TR, Gigliotti CL, Brunciak P, Totten LA, Nelson ED, Franz TP, Eisenreich SJ. 2002. Processes driving the short-term variability of polycyclic aromatic hydrocarbons in the Baltimore and northern Chesapeake Bay atmosphere, USA. Atmos Environ 36:2281–2295.

Destaillats H, Spaulding RS, Charles MJ. 2002. Ambient air measurement of acrolein and other carbonyls at the Oakland-San Francisco Bay Bridge toll plaza. Environ Sci Technol 36(10):2227–2235.

Eastern Research Group. 2004. 2003 Urban Air Toxics Monitoring Program (UATMP). Final Report. Downloaded from http://www.epa.gov/ttn/amtic/airtxfil.html. July.

Eiguren-Fernandez A, Miguel AH, Froines JR, Thurairatnam S, Avol EL. 2004. Seasonal and spatial variation of polycyclic aromatic hydrocarbons in vapor-phase and $PM_{2.5}$ in Southern California urban and rural communities. Aerosol Sci Technol 38:447–455.

Environmental Protection Agency (US). 2002a. National Air Toxics Assessment (NATA). Downloaded from http://www.epa.gov/ttn/atw/nata/.

Environmental Protection Agency (US). 2002b. Health Assessment Document for Diesel Engine Exhaust. National Center for Environmental Assessment. Downloaded from http://cfpub2.epa.gov/ncea/cfm/recordisplay.cfm?deid =29060&CFID=1048605&CFTOKEN=13395006.

Environmental Protection Agency (US). 2003. Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo*p*-Dioxin (TCDD) and Related Compounds. National Academy Sciences (NAS) Review Draft. National Center for Environmental Assessment. Downloaded from *www.epa* .gov/ncea/pdfs/dioxin/nas-review/. December.

Environmental Protection Agency (US). 2004. Air Quality Criteria for Particulate Matter. Downloaded from *http://cfpub2* .epa.gov/ncea/cfm/partmatt.cfm. October.

Environmental Protection Agency (US). 2004. EPA Ambient Air Pollution Monitoring Data: Air Quality System (AQS) Database. Downloaded from *http://www.epa.gov/air/data* /index.html.

Appendix B. References

Fedoruk MJ, Kerger BD. 2003. Measurement of volatile organic compounds inside automobiles. J Expos Anal Environ Epidemiol 13:31–41.

Fitz DR, Winer AM, Colome S, Behrentz E, Sabin LD, Lee SJ, Wong K, Kozawa K, Pankratz D, Bumiller K, Gemmill D, Smith M. 2003. Characterizing the Range of Children's Pollutant Exposure During School Bus Commutes. California Air Resources Board. Downloaded from *http://www.arb.ca.gov/ research/schoolbus/schoolbus.htm*. October 10.

Gertler AW, Sagebiel JC, Dippel WA, Farina RJ. 1998. Measurements of dioxin and furan emission factors from heavyduty diesel vehicles. J Air Waste Manage Assoc 48:276–278.

Gertler AW, Sagebiel JC, Dippel WA, Sheetz LH. 1996. A Study to Quantify On-Road Emissions of Dioxins and Furans from Mobile Sources: Phase 2. Report to American Petroleum Institute, Health and Environmental Science Dept. API Publication No. 4642. Desert Research Institute, Reno NV.

Gigliotti CL, Dachs J, Nelson ED, Brunciak PA, Eisenreich SJ. 2000. Polycyclic aromatic hydrocarbons in the New Jersey coastal atmosphere. Environ Sci Technol 34(17):3547–3554.

Grosjean D, Grosjean E. 2002. Airborne carbonyls from motor vehicle emissions in two highway tunnels. In: Emissions from Diesel and Gasoline Engines Measured in Highway Tunnels. Research Report 107. Health Effects Institute, Boston MA. Downloaded from *http://www.healtheffects. org/Pubs/GertGros.pdf*. January.

Hunt GT, Maisel BE, Zielinska B. 1997. A source of PCDDs/PCDFs in the atmosphere of Phoenix, AZ. In: Dioxin '97, the 17th International Symposium on Chlorinated Dioxins and Related Compounds, August 25–29, Indianapolis, Indiana, US.

Kinney PL, Aggarwal M, Northridge ME, Janssen NAH, Shepard P. 2000. Airborne concentrations of $PM_{2.5}$ and diesel exhaust particles on Harlem sidewalks: A communitybased pilot study. Environ Health Perspect 108(3):213–218.

Kinney PL, Chillrud SN, Ramstrom S, Ross J, Spengler JD. 2002. Exposures to multiple air toxics in New York City. Environ Health Perspect 110(Suppl 4):539–546.

Lawryk NJ, Lioy PJ, Weisel CP. 1995. Exposure to volatile organic compounds in the passenger compartment of automobiles during periods of normal and malfunctioning operation. J Expos Anal Environ Epidemiol 5(4):511–531. Lena TS, Ochieng V, Carter M, Holguin-Veras J, Kinney PL. 2002. Elemental carbon and PM_{2.5} levels in an urban community heavily impacted by truck traffic. Environ Health Perspect 110(10):1009–1015.

Levy JI, Bennett DH, Melly SJ, Spengler JD. 2003. Influence of traffic patterns on particulate matter and polycyclic aromatic hydrocarbon concentrations in Roxbury, Massachusetts. J Expos Anal Environ Epidemiol 13:364–371.

Manchester-Neesvig JB, Schauer JJ, Cass GR. 2003. The distribution of particle-phase organic compounds in the atmosphere and their use for source apportionment during the Southern California Children's Health Study. J Air Waste Manage Assoc 53:1065–1079.

Marr LC, Kirchstetter TW, Harley RA, Miguel AH, Hering SV, Hammond SK. 1999. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. Environ Sci Technol 33(18):3091–3099.

Martuzevicius D, Grinshpun SA, Reponen T, Gorny RL, Shukla R, Lockey J, Hu S, McDonald R, Biswas P, Kliucininkas L, LeMasters G. 2004. Spatial and temporal variations of $PM_{2.5}$ concentration and composition throughout an urban area with high freeway density: The Greater Cincinnati Study. Atmos Environ 38(8):1091–1105.

McCarty HB, Miller K, Brent RN, Schofield J, Rossmann R. 2004. Results of the Lake Michigan Mass Balance Study: Mercury Data Report. US Environmental Protection Agency, Great Lakes National Program Office, Chicago IL. Downloaded from www.epa.gov/glnpo/lmmb/results/mercury/ index.html. February.

Mohamed MF, Kang D, Aneja VP. 2002. Volatile organic compounds in some urban locations in United States. Chemosphere 47(8):863–882.

Naumova YY, Eisenreich SJ, Turpin BJ, Weisel CP, Morandi MT, Colome SD, Totten LA, Stock TH, Winer AM, Alimokhtari S, Kwon J, Shendell D, Jones J, Maberti S, Wall SJ. 2002. Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in the US. Environ Sci Technol 36(12):2552–2559.

Odabasi M, Vardar N, Sofuoglu A, Tasdemir Y, Holsen TM. 1999. Polycyclic aromatic hydrocarbons (PAHs) in Chicago air. Sci Total Environ 227(1):57–67.

Payne-Sturges DC, Burke TA, Breysse P, Diener-West M, Buckley TJ. 2004. Personal exposure meets risk assess-

Appendix B. References

ment: A comparison of measured and modeled exposures and risks in an urban community. Environ Health Perspect 112(5):589–598.

Pratt GC, Palmer K, Wu CY, Oliaei F, Hollerbach C, Fenske MJ. 2000. An assessment of air toxics in Minnesota. Environ Health Perspect 108(9):815–825.

Riediker M, Williams R, Devlin R, Griggs T, Bromberg P. 2003. Exposure to particulate matter, volatile organic compounds, and other air pollutants inside patrol cars. Environ Sci Technol 37(10):2084–2093.

Rodes C, Sheldon L, Whitaker D, Clayton A, Fitzgerald K, Flanagan J, DiGenova F, Hering S, Frazier C. 1998. Measuring Concentrations of Selected Air Pollutants Inside California Vehicles. Prepared for California Environmental Protection Agency and South Coast Air Quality Management District. ARB Contract No. 95-339. Downloaded from http://www.arb.ca.gov/research/abstracts/95-339.htm. December.

Sapkota A, Buckley TJ. 2003. The mobile source effect on curbside 1,3-butadiene, benzene, and particle-bound polycyclic aromatic hydrocarbons assessed at a tollbooth. J Air Waste Manage Assoc 53:740–748.

Seigneur C, Pun B, Lohman K, Wu SY. 2003. Regional modeling of the atmospheric fate and transport of benzene and diesel particles. Environ Sci Technol 37(22):5236–5246. Sexton K, Adgate JL, Ramachandran G, Pratt GC, Mongin SJ, Stock TH, Morandi MT. 2004. Comparison of personal, indoor, and outdoor exposures to hazardous air pollutants in three urban communities. Environ Sci Technol 38(2):423–430.

Shikiya DC, Liu CS, Hahn MI, Juarros J, Barcikowski W. 1989. In-Vehicle Air Toxics Characterization Study in the South Coast Air Basin. Final Report. South Coast Air Quality Management District, El Monte CA.

Solomon GM, Campbell TR, Feuer GR, Masters J, Samkian A, Paul KA, Guzman JS. 2001. No Breathing in the Aisles: Diesel Exhaust Inside School Buses. Natural Resources Defense Council, New York NY and Coalition for Clean Air, Los Angeles CA. January.

South Coast Air Quality Management District. 2000. Multiple Air Toxics Exposure Study in the South Coast Air Basin (MATES-II). Downloaded from *http://www.aqmd.gov/ matesiidf/matestoc.htm*. March.

Wargo J, Brown D, Cullen M, Addiss S, Alderman N. 2002. Children's Exposure to Diesel Exhaust on School Buses. Environmental and Human Health, Inc. February.

Zielinska B, Fujita E, Sagebiel J, Harshfield G, Uberna E, Hayes T, Keene F. 1998. Arizona hazardous air pollutants monitoring program. J Air Waste Manage Assoc 48:1038– 1050.

Appendix C. Toxicity and Health Effects Tables

Introduction	180
Table C.1. Chronic Noncancer Toxicity Criteria and Source Materials for Each MSAT (Table entries link to Table C.3.)	182
Table C.2. Chronic Cancer Toxicity Criteria and Source Materials for Each MSAT (Table entries link to Table C.4.).	189
Table C.3. Summary of Chronic Noncancer. Toxicity Data for Each MSAT	203
Table C.4. Summary of Chronic Cancer Toxicity Data for Each MSAT	241
Table C.5. Acute Toxicity Criteria for Each MSAT (Table entries link to Table C.6.)	284
Table C.6. Summary of Acute Toxicity Data for Each MSAT	287
Appendix C. References	304

INTRODUCTION

In the toxicity and health portions of the literature survey, information on acute, chronic, and subchronic health effects (including cancer and noncancer endpoints) was collected from peer-reviewed secondary sources, such as the EPA's Health Assessment Documents, U.S. Agency for Toxic Substances and Disease Registry (ATSDR) reports, and the International Agency for Research on Cancer (IARC) monographs. The primary sources that served as the basis for key toxicity criteria were also obtained. For the seven priority MSATs (acetaldehyde, acrolein, benzene, 1,3-butadiene, formaldehyde, naphthalene, and POM), the survey was augmented with recent information from primary sources. The survey was also augmented for the nonpriority MSATs in cases in which the secondary sources were out of date (i.e., 2001 or earlier).

Tables C.1 and C.2 summarize the toxicity criteria that were readily available in the secondary sources and online, showing whether a given MSAT is considered a carcinogen, how toxic or potent it is, and the date of the most recent evaluation. The principal focus is on inhalation, because this is the predominant route of exposure to MSATs. To facilitate the comparison of criteria, all cancer and noncancer toxicity criteria are expressed in units per μ g/m³ for the inhalation route and mg/kg-day for the oral route. These tables were updated shortly before publication to reflect changes in regulatory values.

Table C.3 provides information on chronic noncancer health effects at the time the literature survey was completed (winter 2004–2005). For each MSAT, the details of the key chronic-toxicology studies that formed the basis of the toxicity criteria are summarized, starting with the Integrated Risk Information System (IRIS) and adding other sources if they were more recent. In addition, the studies on which the toxicity criteria were based are listed in the last column of the table. Criteria based on oral-route studies are included in the table only when no toxicity criteria were identified for the inhalation route.

Table C.4 provides information on chronic cancer health effects at the time the literature survey was completed. In addition, the studies on which the toxicity criteria were based are listed in the last column of the table. Criteria based on oral-route studies are included in the table only when the inhalation unit risk was not provided and the compound was classified as a carcinogen when inhaled; in these cases, the oral unit risk and associated critical study are provided.

For classes of compounds (e.g., POM and dioxins), information on the individual compounds is provided in the summary table (Table C.1), but detailed information is provided only for those that are the most toxic or the most studied. For POM, for example, detailed information was provided for benzo[*a*]pyrene; for dioxins, detailed information was provided for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin.

Appendix C. Toxicity and Health Effects Tables

Table C.5 summarizes the acute-toxicity criteria available for each MSAT at the time the literature survey was completed. This report does not include level 3 (in the acute exposure guideline levels and the *Emergency Response Planning Guidelines*), which pertains to life-threatening effects, because it was deemed too extreme to be useful in the report.

Table C.6 summarizes the studies that served as the basis for the acute-toxicity criteria for each MSAT at the time the literature survey was completed. The literature searches in this table were updated, like the literature searches in Tables C.3 and C.4, although to a lesser extent, because most of the exposure guidelines were of recent origin.

Although the hyperlinks from the tables to Web sites were active shortly before publication, HEI cannot be responsible for any subsequent changes in the Web sites referred to.

For more information about this appendix, see <u>Introduction</u> to <u>Appendices B, C, D, and E</u>.

			IRIS			Cal I	EPA		ATSDR	
	EDA East		Oral	Inhalati	on					
MSAT ^b	Sheet Year	RfD (mg/kg-day)	Year	RfC (µg/m ³)	Year	REL (µg/m ³)	Year	Route of Exposure	MRL	Year
Acetaldehyde ^c	<u>2004</u>	_	_	<u>9</u>	<u>1991</u>	<u>9</u>	<u>1993</u>	_	_	_
Acrolein ^c	<u>2004</u>	0.0005	<u>2003 Toxicological</u> <u>Review</u>	<u>0.02</u>	<u>2003</u>	0.06	<u>2001</u>	Intermediate inhalation	$0.09~\mu\text{g/m}^3$	<u>Draft 2005</u>
Arsenic Compounds (inorganic) ^c	<u>2004</u>	0.0003	2003	_	—	<u>0.03</u>	<u>2001</u>	Provisional chronic oral	0.0003 mg/ kg-day	<u>Draft 2005</u>
Benzene ^c	<u>2004</u>	0.004	<u>2003 Toxicological</u> <u>Review</u>	<u>30</u>	<u>2003</u>	60	<u>2000</u>	Intermediate inhalation	9.8 μg/m ³	<u>Draft 2005</u>
1,3-Butadiene	<u>2004</u>		2002 Support Docu- ment	<u>2</u>	<u>2002</u>	<u>20</u>	<u>2001</u>	_	Not done – results not suitable	<u>1992</u>
Cr III ^c	<u>2003</u>	1.5	<u>1998 Toxicological</u> <u>Review</u>	_	—	—	—	—	—	<u>2000</u>

 $^{\rm a}$ Abbreviations and acronyms are listed in Appendix E. — = This information is not available.

^b Primary MSATs are bolded.

^c This literature is updated in Table C.3. Noncancer.

^d Diesel Particulates: EPA, National Center for Environmental Assessment (Washington DC) May 2002. Health assessment document for diesel engine exhaust. EPA-600/8-90-057F.

			IRIS			Cal E	PA		ATSDR	
	EPA Fact		Oral	Inhalati	on					
MSAT ^b	Sheet Year	RfD (mg/kg-day)	Year	RfC (µg/m³)	Year	REL (µg/m ³)	Year	Route of Exposure	MRL	Year
Cr VI (chromium trioxide) ^c	<u>2003</u>		<u>1998 Toxicological</u> <u>Review</u>	Aerosols = $\underline{8 \times 10}^{-3}$	<u>1998</u>	Soluble Cr VI (except	<u>2000</u>	Intermediate inhalation	Aerosol mist = $0.005 \ \mu g/m^3$	<u>2000</u>
		0.003	1998	Particulates = <u>0.1</u>		Chromic trioxide) = 0.2 Chromic trioxide = 0.002			Particulate = <u>1 μg/m</u> ³	
Diesel Particulates	_	_	2003 2002 Support Docu- ment (Health Assess- ment Document 2002 ^d)	<u>5</u>	<u>2003</u>	Diesel exhaust = 5	<u>1998</u>	_	—	_
Dioxins			—							
2,3,7,8-tetrachlorodibenzo- <i>p</i> -dioxin (TCDD)	<u>2004</u>	_	—	Not calculated because RfD/ RfC < avg dose	<u>2003</u> (EPA dioxin	$4 imes 10^{-5}$	<u>2000</u>	Intermediate oral	$2 imes 10^{-8}$ mg/kg-day	<u>1998</u>
				of US popula- tion; MOE ranges from < 1 to 4	reas- sess- ment ^e)			Chronic oral	$1 imes 10^{-9}$ mg/kg-day	
1,2,3,7,8- <i>Penta</i> -CDD	—	—	—	—	—	$8 imes 10^{-5}$	<u>2000</u>	—	—	—
1,2,3,4,7,8- <i>Hexa</i> -CDD	—	—	—	_	—	4×10^{-4}	2000	—	—	—
1,2,3,0,7,0- <i>HEXU</i> -GDD	_	_	_	—		+ ^ 10	<u>2000</u>		—	
1,2,3,7,8,9- <i>Hexa</i> -CDD	—	—		—	—	4×10^{-4} 4×10^{-3}	<u>2000</u>		—	—
1,2,3,4,0,7,0- <i>nepiu</i> -CDD	_	—	—	_	_	4×10^{-2}	2000	—	—	_

^a Abbreviations and acronyms are listed in Appendix E. — = This information is not available.

^b Primary MSATs are bolded.

^c This literature is updated in Table C.3. Noncancer.

^d Diesel Particulates: EPA, National Center for Environmental Assessment (Washington DC) May 2002. Health assessment document for diesel engine exhaust. EPA-600/8-90-057F.

^e Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

			IRIS			Cal E	PA		ATSDR	
	FPA Fact	(Dral	Inhalatio	on					
MSAT ^b	Sheet Year	RfD (mg/kg-day)	Year	RfC (µg/m ³)	Year	REL (µg/m ³)	Year	Route of Exposure	MRL	Year
Furans			_							
2,3,7,8- <i>Tetra</i> -CDF		_	_	_	_	$4 imes 10^{-4}$	2000	_	_	_
1,2,3,7,8- <i>Penta</i> -CDF		_	_	_	_	$8 imes 10^{-4}$	2000	_	_	_
2,3,4,7,8- <i>Penta</i> -CDF	_	—	—	—	_	$8 imes 10^{-5}$	<u>2000</u>	Intermediate	3×10^{-8}	<u>1994</u>
1.2.3.4.7.8- <i>Hexa</i> -CDF		_	_	_	_	4×10^{-4}	2000			_
1.2.3.6.7.8- <i>Hexa</i> -CDF			_	_	_	4×10^{-4}	2000	_	_	_
1,2,3,7,8,9- <i>Hexa</i> -CDF	_	_	_	_	—	$4 imes 10^{-4}$	2000	_	_	_
2.3.4.6.7.8- <i>Hexa-</i> CDF	_	_	—	_	_	$4 imes 10^{-4}$	2000	_	_	_
1,2,3,4,6,7,8- <i>Hepta</i> -CDF		_	_	_	_	$4 imes 10^{-3}$	2000	_	_	
1,2,3,4,7,8,9- <i>Hepta</i> -CDF		_	_	_	_	$4 imes 10^{-3}$	2000	_	_	_
1,2,3,4,6,7,8,9- <i>Octa</i> -CDF	—	—	—	—	—	$4 imes 10^{-2}$	<u>2000</u>	—	—	—
Ethylbenzene ^c	<u>2004</u>	0.1	1991	<u>1000</u>	<u>1991</u>	<u>2000</u>	<u>2000</u>	Intermediate inhalation	$rac{4.3 imes 10^3}{\mu extrm{g/m}^3}$	<u>1999</u>
Formaldehyde ^c	<u>2004</u>	0.2	<u>2001</u>	_	_	<u>3</u>	<u>2000</u>	Chronic inhalation	<u>9.8 µg/m</u> ³	<u>1999</u>
								Intermediate inhalation	<u>37 µg/m</u> ³	
<i>n</i> -Hexane ^c	<u>2004</u>	_	—	<u>700</u>	<u>2005</u>	<u>7000</u>	<u>2000</u>	Chronic inhalation	$rac{2.1 imes 10^3}{\mu extrm{g/m}^3}$	<u>1999</u>
									Table continues	on next page

^b Primary MSATs are bolded.

^c This literature is updated in Table C.3. Noncancer.

^d Diesel Particulates: EPA, National Center for Environmental Assessment (Washington DC) May 2002. Health assessment document for diesel engine exhaust. EPA-600/8-90-057F.

			IRIS			Californi	ia EPA		ATSDR	
	FDA Fact		Oral	Inhalati	on					
MSAT ^b	Sheet Year	RfD (mg/kg-day)	Year	RfC (μg/m ³)	Year	REL (μg/m ³)	Year	Route of Exposure	MRL	Year
Lead Compounds (Separate modeling analysis for noncancer presented in report) ^c	<u>2004</u>	Not appropriate	<u>2004</u>	_	_	_	_	No acute, inter- mediate, or chronic MRLs have been derived for any route of expo- sure because of the lack of a clear threshold for the most se sitive effects in humans.	 2 n-	<u>2005</u>
Manganese compounds ^c	<u>2004</u>	0.14	1996	<u>0.05</u>	<u>1993</u>	<u>0.2</u>	<u>2000</u>	Chronic inhalation	<u>0.04 µg/m</u> ³	<u>2000</u>
Mercury compounds Methyl mercury ^c	<u>2004</u>	0.0001	<u>2006 Support</u> <u>Document</u>	_		—	—	Chronic oral	0.0003 mg/ kg-day	<u>1999</u>
Metallic and inorganic mercury ^c	<u>2004</u>	_	_	<u>0.3</u>	<u>1995</u>	<u>0.09</u> (inor- ganic mercury)	<u>2000</u>	Chronic inhalation	<u>0.2 µg/m</u> ³	<u>1999</u>
MTBE ^c	<u>2004</u>	3	1993	<u>3000</u>	<u>1993</u>	<u>8000</u>	<u>2000</u>	Chronic inhalation	$\frac{2.5\times10^3}{\mu\text{g/m}^3}$	<u>1996</u>
								Intermediate inhalation	$rac{2.5 imes10}{\mu extrm{g/m}^3}$	
									Table continues	s on next page

^b Primary MSATs are bolded.

^c This literature is updated in Table C.3. Noncancer.

^d Diesel Particulates: EPA, National Center for Environmental Assessment (Washington DC) May 2002. Health assessment document for diesel engine exhaust. EPA-600/8-90-057F.

Table C.1. (Continued). Ch	ronic Nonca	ncer Toxicity	Criteria and Source Mater	rials for Each MS.	\ Τ ^а					
			IRIS			Californ	ia EPA		ATSDR	
	FPA Fact		Oral	Inhalati	on					
MSAT ^b	Sheet Year	RfD (mg/kg-day)	Year	RfC (µg/m ³)	Year	REL (µg/m ³)	Year	Route of Exposure	MRL	Year
Naphthalene	<u>2004</u>	0.02	<u>1998 Toxicological</u> <u>Review</u>	<u>3</u>	<u>1998</u>	<u>9</u>	<u>2000 </u>	Chronic inhalation	<u>3.7 µg/m</u> ³	<u>2005</u>
Nickel compounds ^c	<u>2004</u>	0.02 (Ni soluable salts)	<u>1996</u>	_	_	Ni (except NiO) = <u>0.05</u>	<u>2000</u>	Chronic inhalation	<u>0.09 µg Ni/m</u> ³	<u>2005</u>
						NiO = <u>0.10</u>		Intermediate inhalation	<u>_0.2 µg Ni/m</u> ³	
РОМ	<u>2004</u>	_	_	_	_	_	_		_	_
Acenaphthene	_	<u>0.06</u>	<u>1994</u>	—	—	—	—	Intermediate oral	0.6 mg/kg-day	<u>1995</u>
Acenaphthylene		_	—	—	—	—	—	—	—	_
Anthracene	_	<u>0.3</u>	<u>1993</u>	_	<u>1994</u>		—	Intermediate oral	10 mg/kg-day	<u>1995</u>
Benz[a]anthracene	_	_	—	_	—	—		—	—	—
Benzo[b]fluoranthene	_	_	_	_	_			_	_	_
Benzo[<i>j</i>]fluoranthene	—	—	—	—	—	—	—	—	—	—
Benzo[<i>k</i>]fluoranthene Benzo[<i>g,h,i</i>]perylene	_	_		_	_	_	_	_	_	_
Benzo[<i>a</i>]pyrene (B[<i>a</i>]P) ^c		_	_	_	_	_		_	_	_
β-Chloronaphthalene Chrysene	_	<u>0.08</u>	<u>1990</u> —	_	_	_	_	_		_

 $^{\rm a}$ Abbreviations and acronyms are listed in Appendix E. — = This information is not available.

^b Primary MSATs are bolded.

^c This literature is updated in Table C.3. Noncancer.

d Diesel Particulates: EPA, National Center for Environmental Assessment (Washington DC) May 2002. Health assessment document for diesel engine exhaust. EPA-600/8-90-057F.

			IRIS			Californ	ia EPA		ATSDR	
	EPA Fact		Oral	Inhalati	on					
MSAT ^b	Sheet Year	RfD (mg/kg-day)	Year	RfC (µg/m ³)	Year	REL (µg/m ³)	Year	Route of Exposure	MRL	Year
POM (Continued)										
Dibenz[<i>a,h</i>]acridine	_	_	_	_	_	_	_	_	_	_
Dibenz[<i>a</i> , <i>h</i>]anthracene	_	_	—	_	_	_	_	_	_	_
Dibenz[<i>a,j</i>]acridine	_	_	_	_	_		_	_	_	_
Dibenzofuran	<u>2004</u>	_	_	_	_		_	_	_	_
Dibenzo[<i>a,e</i>]pyrene	—	—	_	—	—	—	—	—	_	—
Dibenzo[<i>a</i> , <i>h</i>]pyrene		—	_	_	_	_	_	_	_	_
Dibenzo[<i>a,i</i>]pyrene	_	_	_	_	_		_	_	_	_
Dibenzo[<i>a</i> , <i>l</i>]pyrene	_	_	_	_	_		_	_	_	_
7H-Dibenzo[<i>c</i> , <i>g</i>]carbazole	_	_	_	_	_		_	_	_	_
7,12-dimethylbenz[<i>a</i>]- anthracene	—	—	—	—	—	—	—	—	—	—
1,6-Dinitropyrene	—	_	_	_	—	—	—	_	_	—
1,8-Dinitropyrene	—	—	—	—	—	—	—		—	—
Fluoranthene	—	<u>0.04</u>	<u>1993</u>	—	<u>1994</u>	—	—	Intermediate oral	0.4 mg/kg-day	<u>1995</u>
Fluorene	—	<u>0.04</u>	<u>1990</u>	_	_	—	—	Intermediate oral	0.4 mg/kg-day	<u>1995</u>
Indeno[1,2,3- <i>cd</i>]pyrene	—	_	_	_	—	—	—	_	_	—
3-Methylcholanthrene	—	—	—	—	_	_	—	—	—	_
5-Methylchrysene	—	—	—	—	_	—	—	—	—	—
1-Methylnaphthalene	—	—	—	—	_	—	—	Chronic oral	0.07 mg/kg-day	<u>2005</u>
2-Methylnaphthalene	_	4×10^{-3}	<u>2003 Toxicological</u> Review	_	—		—	Chronic oral	0.05 mg/kg-day	<u>2005 </u>

^b Primary MSATs are bolded.

^c This literature is updated in Table C.3. Noncancer.

^d Diesel Particulates: EPA, National Center for Environmental Assessment (Washington DC) May 2002. Health assessment document for diesel engine exhaust. EPA-600/8-90-057F.

			IRIS			Californ	ia EPA		ATSDR	
	FPA Fact		Oral	Inhalati	on					Year
MSAT ^b	Sheet Year	RfD (mg/kg-day)	Year	RfC (µg/m ³)	Year	REL (µg/m ³)	Year	Route of Exposure	MRL	
POM (Continued)										
5-Nitroacenaphthene	—		—	—	—	—	—		—	
6-Nitrochrysene	—		—	—	—	—	—	—	—	
2-Nitrofluorene	_	_	_	_	—	—	_		_	_
1-Nitropyrene	_		_	_	_	_	_	_	_	_
4-Nitropyrene	—	_	_	—	_	_	_	_	—	_
Phenanthrene	—		—	—	<u>1994</u>	—	—		—	
Pyrene	—	<u>0.03</u>	<u>1993</u>	—	<u>1994</u>	—	—	_	—	—
Styrene ^c	<u>2004</u>	0.2	1990	<u>1000</u>	<u>1993</u>	<u>900</u>	<u>2005</u>	Chronic inhalation	300 μg/m ³	<u>1992</u>
Toluene ^c	<u>2004</u>	0.08	2005	<u>5</u>	<u>2005</u>	<u>300</u>	<u>2000</u>	Chronic inhalation	<u>300 µg/m</u> ³	<u>2000</u>
Xylene	<u>2004</u>	0.2	2003 <u>2003 Toxicological</u>	<u>100</u>	<u>2003</u>	700	<u>2000</u>	Chronic inhalation	217 μg/m ³	<u>2005 Draft</u>
			<u>Review</u>					Intermediate inhalation	2640 μg/m ³	

^b Primary MSATs are bolded.

^c This literature is updated in Table C.3. Noncancer.

^d Diesel Particulates: EPA, National Center for Environmental Assessment (Washington DC) May 2002. Health assessment document for diesel engine exhaust. EPA-600/8-90-057F.

 $^{\rm a}$ Abbreviations and acronyms are listed in Appendix E. — = This information is not available.

^b Primary MSATs are bolded.

^c This literature is updated in Tables C.4. Cancer.

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1–carcinogenic to humans.

^f Revised in IARC Monograph 32, Suppl. 7 (in prep.).

		IRIS			California E	PA	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per µg/m ³	Year	Cancer Potency Factor per μg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
1,3-Butadiene	<u>2004</u>	Carcinogenic to humans by inhalation (1999) Replaced previous classifi- cation of B2 – probable human carcinogen (1987)	3×10^{-5}	2002 Sup- port Doc- ument available for can- cer and non- cancer effects	$1.7 imes 10^{-4}$	<u>1992</u>	А	<u>Group 2A – probably</u> <u>carcinogenic to humans</u> ^e	<u>1999</u> ^e
Cr III ^c	<u>2003</u>	D – not classifiable as to human carcinogenicity (1986) Inadequate data to determine potential carcinogenicity (1996)	=	<u>1998</u>	-	_	-	<u>Group 3 – not classifiable</u> <u>as to its carcinogenicity to</u> <u>humans</u>	<u>1990</u>
Cr VI (chromium trioxide) ^c	<u>2003</u>	A – known human carcinogen (1986) Known human carcinogen by inhalation (1996 – proposed cancer guidelines)	1.2×10^{-2}	<u>1998</u>	$1.5 imes 10^{-1}$	<u>1986</u>	А	<u>Group 1 – carcinogenic</u> <u>to humans</u>	<u>1990</u>

^b Primary MSATs are bolded.

^c This literature is updated in Tables C.4. Cancer.

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2.3.7.8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2.3.7.8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1-carcinogenic to humans.

		IRIS			California EP	А	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per μg/m ³	Year	Cancer Potency Factor per µg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
Diesel particulates	_	Diesel engine exhaust: likely to be carcinogenic to humans by inhalation (1999)	=	<u>2003</u>	3.0×10^{-4} (Range = 1.3 × 10^{-4} to 2.4 × 10^{-3})	<u>1998</u>	B diesel exhaust particulates	<u>Group 2A – probably</u> <u>carcinogenic to humans</u> <u>Diesel engine exhaust</u>	<u>1989</u>
Dioxins									
Dioxins 2,3,7,8-tetrachloro- dibenzo- <i>p</i> -dioxin (TCDD)	<u>2004</u>	Likely to be carcinogenic to humans (1999)	$\frac{1 \times 10^{-3}}{\text{per pg/}}$ $\frac{\text{kg-day}}{\text{kg-day}}$ (oral dose based on body bur- den)	<u>2003</u> d	38	<u>2003</u>	А	<u>Group 1 – carcinogenic</u> <u>to humans</u>	<u>1997</u>
			TEF = 1 (WHO)	<u>2003</u> d					
1,2,3,7,8- <i>Penta</i> -CDD	_	—	_		38	<u>2003</u>	_	<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 1 (WHO)	<u>2003</u> d	(TEF = 1)			<u>as to its carcinogenicity to</u> <u>humans</u>	-
1,2,3,4,7,8- <i>Hexa</i> -CDD	—	—	—		3.8	<u>2003</u>	—	<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 0.1 (WHO)	<u>2003</u> d	(TEF = 0.1)			<u>as to its carcinogenicity to</u> humans	-

^b Primary MSATs are bolded.

^c This literature is updated in Tables C.4. Cancer.

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2.3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

 $^{\rm e}$ IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1–carcinogenic to humans.

		IF	RIS		California E	PA	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per µg/m ³	Year	Cancer Potency Factor per µg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
Dioxins (<i>Continued</i>)									
1,2,3,6,7,8- <i>Hexa</i> -CDD	_	B2 – probable human carcinogen (1986)	1.3 (based on <i>hexa</i> - chloro- dibenzo- <i>p</i> - diozin mixture adminis- tered by gavage)	<u>1991</u>	3.8 (TEF = 0.1)	<u>2003</u>	_	<u>Group 3 – not classifiable</u> <u>as to its carcinogenicity</u> <u>to humans</u>	<u>1997</u>
			TEF = 0.1 (WHO)	<u>2003</u> d					
1,2,3,7,8,9- <i>Hexa</i> -CDD	_	B2 – probable human carcinogen (1986)	1.3 (based on <i>hexa</i> - chloro- dibenzo- <i>p</i> - diozin mixture adminis- tered by gavage)	<u>1991</u>	3.8 (TEF = 0.1)	<u>2003</u>	_	<u>Group 3 – not classifiable</u> <u>as to its carcinogenicity</u> <u>to humans</u>	<u>1997</u>
			TEF = 0.1 (WHO)	<u>2003</u> d					
1,2,3,4,6,7,8- <i>Hepta</i> -CDD	_	—	 TEF = 0.01 (WHO)	<u>2003</u> d	0.38 (TEF = 0.01)	<u>2003</u>	—	<u>Group 3 – not classifiable</u> <u>as to its carcinogenicity</u> <u>to humans</u>	<u>1997</u>

^b Primary MSATs are bolded.

 $^{\rm c}$ This literature is updated in Tables C.4. Cancer.

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1–carcinogenic to humans.

^f Revised in IARC Monograph 32, Suppl. 7 (in prep.).

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

			IRIS		California E	PA	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per µg/m ³	Year	Cancer Potency Factor per µg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
Dioxins (<i>Continued</i>)									
1,2,3,4,6,7,8,9- <i>Octa</i> -CDD	—	—	—		0.0038	<u>2003</u>	—	<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 0.0001 (WHO)	<u>2003</u> d	(TEF = 0.0001)			to humans	
Furans									
2,3,7,8- <i>Tetra</i> -CDF	—	—			3.8	<u>2003</u>	—	<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 0.1 (WHO)	<u>2003</u> d	(TEF = 0.1)			<u>as to its carcinogenicity</u> <u>to humans</u>	
1,2,3,7,8- <i>Penta</i> -CDF	—	—	—		1.9	<u>2003</u>	—	<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 0.05 (WHO)	<u>2003</u> d	(TEF = 0.05)			<u>as to its carcinogenicity</u> <u>to humans</u>	
2,3,4,7,8- <i>Penta</i> -CDF	—	—	—		19	<u>2003</u>	—	<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 0.5 (WHO)	<u>2003</u> d	(TEF=0.5)			<u>as to its carcinogenicity</u> <u>to humans</u>	
1,2,3,4,7,8- <i>Hexa</i> -CDF	—	—	—		3.8	<u>2003</u>	—	<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 0.1 (WHO)	<u>2003</u> d	(TEF = 0.1)			<u>as to its carcinogenicity</u> <u>to humans</u>	

^c This literature is updated in Tables C.4. Cancer.

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2.3.7.8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2.3.7.8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1-carcinogenic to humans.

^f Revised in IARC Monograph 32, Suppl. 7 (in prep.).

^b Primary MSATs are bolded.

			IRIS		California E	PA	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per µg/m ³	Year	Cancer Potency Factor per µg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
Furans (Continued)									
1,2,3,6,7,8- <i>Hexa</i> -CDF	_	_	_		3.8	<u>2003</u>	_	<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 0.1 (WHO)	<u>2003</u> d	(TEF = 0.1)			<u>as to its carcinogenicity</u> <u>to humans</u>	
1,2,3,7,8,9- <i>Hexa</i> -CDF	—	—	—		3.8	<u>2003</u>	—	<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 0.1 (WHO)	<u>2003</u> d	(TEF = 0.1)			as to its carcinogenicity to humans	
2,3,4,6,7,8- <i>Hexa</i> -CDF	—	—	—		3.8	<u>2003</u>	—	<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 0.1 (WHO)	<u>2003</u> d	(TEF = 0.1)			as to its carcinogenicity to humans	
1,2,3,4,6,7,8- <i>Hepta</i> -CDF	—	—	—		0.38	<u>2003</u>	—	<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 0.01 (WHO)	<u>2003</u> d	(TEF = 0.01)			<u>as to its carcinogenicity</u> to humans	
1,2,3,4,7,8,9- <i>Hepta</i> -CDF	_	_			0.38	<u>2003</u>		<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 0.01 (WHO)	<u>2003</u> d	(TEF = 0.01)			<u>as to its carcinogenicity</u> to humans	
1,2,3,4,6,7,8,9- <i>Octa</i> -CDF	—	—	—		0.0038	<u>2003</u>	—	<u>Group 3 – not classifiable</u>	<u>1997</u>
			TEF = 0.0001 (WHO)	<u>2003</u> d	(TEF = 0.0001)			as to its carcinogenicity to humans	

^b Primary MSATs are bolded.

^c This literature is updated in Tables C.4. Cancer.

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1–carcinogenic to humans.

^f Revised in IARC Monograph 32, Suppl. 7 (in prep.).

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2.3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

Table C.2. (Continued). Chro	onic Cance	er Toxicity Criteria and Sour	rce Materials f	for Each M	1SAT ^a				
		IRIS	S		California E	PA	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per µg/m ³	Year	Cancer Potency Factor per µg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
Ethylbenzene ^c	<u>2004</u>	<u>D – not classifiable as to</u> <u>human carcinogenicity</u> (1986)	_	<u>1991</u>	_	_	_	<u>Group 2B – possibly</u> <u>carcinogenic to humans</u>	2000
Formaldehyde ^c	<u>2004</u>	B1 – probable human carcinogen (1986)	1.3×10^{-5}	<u>1991</u>	$\underline{6 \times 10}^{-6}$	<u>1992</u>	Gas: B	<u>Group 1 – carcinogenic to</u> <u>humans; sufficient evi-</u> <u>dence in both humans</u> <u>and animals</u>	<u>2006</u>
<i>n</i> -Hexane ^c	<u>2004</u>	Data are inadequate	—	<u>2005</u>	—	—	—	=	—
Lead compounds ^c (Separate modeling analysis for noncancer presented in report)	3 <u>2004</u> 3	<u>B2 – probable human</u> <u>carcinogen (1986)</u>	_	<u>1993</u>	$\underline{1.2 \times 10}^{-5}$	<u>1997</u>	В	Lead: <u>Group 2B – possibly car-</u> <u>cinogenic to humans</u> <u>Group 2A – inorganic</u> <u>lead compounds</u> Organolead compounds: <u>Group 3 – not classifiable</u> <u>as to their carcino-</u> <u>genicity to humans</u>	<u>1987</u> <u>2006</u>
Manganese compounds ^c	<u>2004</u>	D – not classifiable as to human carcinogenicity (1986)	_	<u>1996</u>	—	—	_	=	—

 $\overline{}^{a}$ Abbreviations and acronyms are listed in Appendix E. — = This information is not available.

^b Primary MSATs are bolded.

^c This literature is updated in Tables C.4. Cancer.

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1–carcinogenic to humans.

Table C.2. (Continued). Ch	ironic Cance	er Toxicity Criteria and Sour	ce Materials	for Each M	ISAT ^a				
		IRIS			California EF	PA	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per µg/m ³	Year	Cancer Potency Factor per µg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
Mercury compounds Methyl mercury ^c	<u>2004</u>	C – possible human carcin- ogen (1986)		<u>1995</u>	Inadequate human data, limited ani- mal data	_	_	<u>Group 2B – possibly</u> <u>carcinogenic to humans</u>	<u>1993</u>
Metallic and inorganic mercury ^c	<u>2004</u>	<u>C – possible human</u> <u>carcinogen (1986)</u>	_	<u>1995</u> (mercuric chloride)	Inadequate human and animal data	_	—	<u>Group 3 – not classifiable</u> <u>as to its carcinogenicity to</u> <u>humans</u>	<u>1993</u> -
		<u>D – not classifiable as to</u> <u>human carcinogenicity</u> <u>(1986)</u>		<u>1995</u> (elemen- tal mer- cury)					
MTBE ^c	<u>2004</u>	<u>Not available at this time</u>	—	—	$\underline{2.6 \times 10}^{-7}$	<u>1999</u>	_	<u>Group 3 – not classifiable</u> <u>as to its carcinogenicity to</u> <u>humans</u>	<u>1999</u> -
Naphthalene	<u>2004</u>	<u>C – possible human</u> <u>carcinogen (1986)</u>	—	<u>1998</u>	$\underline{3.4 \times 10}^{-5}$	<u>2004</u>	В	<u>Group 2B – possibly</u> <u>carcinogenic to humans</u>	<u>2002</u>
		<u>Cannot be determined</u> (1996)							
								Table continues on nex	xt page

^b Primary MSATs are bolded.

^c This literature is updated in Tables C.4. Cancer.

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1–carcinogenic to humans.

Health Effects Institute Special Report 16 © 2007

		IRIS	5		California E	PA	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per μg/m ³	Year	Cancer Potency Factor per μg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
Nickel compounds ^c	<u>2004</u>	<u>Ni refinery dust:</u> <u>A – known human</u> <u>carcinogen (1986)</u>	$\frac{\text{Ni refin-}}{\text{ery dust} = 2.4 \times 10^{-4}}$	<u>1991</u> (refinery dust)	2.6×10^{-4}	<u>1991</u>	Nickel com- pounds: A	<u>Nickel compounds:</u> <u>Group 1 – carcinogenic to</u> <u>humans</u>	<u>1990</u>
		<u>Ni subsulfide:</u> <u>A – known human</u> <u>carcinogen (1986)</u>	$\frac{\text{Ni subsul-}}{\text{fide} =} \\ \frac{4.8 \times 10}{10}^{-4}$	<u>1991</u> (subsul- fide)			Metallic Nickel: B	<u>Metallic nickel: Group 2B</u> <u>– possibly carcinogenic to</u> <u>humans</u>	
		<u>Ni carbonyl: B2 – Probable</u> <u>human carcinogen (1986)</u>	<u>•</u>						
РОМ	<u>2004</u>	_	—	_	_	_	Coal tars: A Soots: A PAHs: B	=	_
Acenaphthene	_	_	_	<u>1993</u>	_	_	—	=	_
Acenaphthylene	—	D – not classifiable as to human carcinogenicity (1986)	—	<u>1991</u>	_	_	—	=	—
Anthracene	_	D – not classifiable as to human carcinogenicity (1986)	—	<u>1991</u>	_	_	—	<u>Group 3 – not classifiable</u> <u>as to its carcinogenicity to</u> <u>humans</u>	1987
Benz[<i>a</i>]anthracene	_	B2 – probable human car- cinogen (1986)	—	<u>1994</u>	$1.1 imes 10^{-4}$	<u>1999</u>	В	<u>Group 2B – possibly carci-</u> <u>nogenic to humans</u>	1987 ^f
		2 · · ·	TEF = 0.1			<u>1993</u>		.	

 a Abbreviations and acronyms are listed in Appendix E. — = This information is not available.

^c This literature is updated in Tables C.4. Cancer.

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1–carcinogenic to humans.

^b Primary MSATs are bolded.

Table C.2. (Continued). Cl	hronic Cance	er Toxicity Criteria and Sou	rce Materials f	or Each N	/ISAT ^a				
		IRI	S		California E	PA	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per μg/m ³	Year	Cancer Potency Factor per µg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
POM (Continued)									
Benzo[b]fluoranthene	—	B2 – probable human	_	<u>1994</u>	$1.1 imes 10^{-4}$	<u>1999</u>	В	Group 2B – possibly	1987
		carcinogen (1986)	TEF = 0.1			<u>1993</u>		carcinogenic to humans	
Benzo[<i>j</i>]fluoranthene	_	_	_	_	1.1×10^{-4}	1000	в	Group 2B – possibly carcinogenic to humans	1987
Benzo[k]fluoranthene	_	Do mashahla human		1994	1.1×10^{-4}	1999	B	Crown 2D ressible	1987
Donzo[k]nuorunniono		carcinogen (1986)	TEF = 0.01	<u>1991</u>	1.1 / 10	<u>1993</u>	Ъ	carcinogenic to humans	1507
Benzo[<i>g,h,i</i>]perylene	_	D – not classifiable as to human carcinogenicity (1986)	_	<u>1990</u>	_	_	—	Group 3 – not classifiable as to its carcinogenicity to humans	1987
Benzo[<i>a</i>]pyrene (B[<i>a</i>]P) ^c	_	B2 – probable human carcinogen (1986)	<u>7.3 per mg/</u> <u>kg-day</u> <u>(oral</u> <u>potency</u> <u>factor)</u>	<u>1994</u>	$1.1 imes 10^{-3}$	<u>1999</u>	В	Group 2A – probably carcinogenic to humans	1987
			TEF = 1			<u>1993</u>			
β -Chloronaphthalene		—	—	—		—	—	—	—

 $^{\rm a}$ Abbreviations and acronyms are listed in Appendix E. — = This information is not available.

^b Primary MSATs are bolded.

^c This literature is updated in Tables C.4. Cancer.

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2.3.7.8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2.3.7.8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1–carcinogenic to humans.

		IRI	S		California E	PA	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per µg/m ³	Year	Cancer Potency Factor per µg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
POM (Continued)									
Chrysene	—	B2 – probable human	_	<u>1994</u>	$1.1 imes 10^{-5}$	<u>1999</u>	_	Group 2B – possibly	1987 ^f
		carcinogen (1986)	TEF = 0.001			<u>1993</u>		carcinogenic to humans	
Dibenz[<i>a</i> , <i>h</i>]acridine	—	_	—	—	$1.1 imes 10^{-4}$	<u>1999</u>	В	Group 2B – possibly carcinogenic to humans	1987 ^f
Dibenz[<i>a</i> , <i>h</i>]anthracene	—	B2 – probable human	—	<u>1994</u>	$1.2 imes 10^{-3}$	<u>1999</u>	В	Group 2A – probably	1987 ^f
		carcinogen (1900)	TEF = 1			<u>1993</u>		careinogenie to numans	
Dibenz[<i>a,j</i>]acridine	—	—	—	—	1.1×10^{-4}	<u>1999</u>	В	Group 2B – possibly carcinogenic to humans	1987 [†]
Dibenzofuran	<u>2004</u>	D – not classifiable as to human carcinogenicity (1986)	_	<u>1990</u>	_	—	_	_	_
Dibenzo[<i>a,e</i>]pyrene	_	—	—	—	1.1×10^{-3}	<u>1999</u>	В	Group 3 – not classifiable as its carcinogenicity to humans	1987 ^f
Dibenzo[<i>a</i> , <i>h</i>]pyrene	—	_	—	—	1.1×10^{-2}	<u>1999</u>	В	Group 2B – possibly carcinogenic to humans	1987

^b Primary MSATs are bolded.

^c This literature is updated in Tables C.4. Cancer.

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1–carcinogenic to humans.

		IRI	S		California E	PA	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per μg/m ³	Year	Cancer Potency Factor per µg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
POM (Continued)									
Dibenzo[<i>a</i> , <i>i</i>]pyrene		_	—	—	1.1×10^{-2}	<u>1999</u>	В	Group 2B – possibly carcinogenic to humans	1987 ^f
Dibenzo[<i>a</i> , <i>l</i>]pyrene		_	—	—	1.1×10^{-2}	<u>1999</u>	В	Group 2A – probably carcinogenic to humans	1987 ^f
7H-Dibenzo[<i>c,g</i>]carbazole	—	—	—	—	1.1×10^{-3}	<u>1999</u>	В	Group 2B – possibly carcinogenic to humans	1987 ^f
7,12-Dimethylbenz[<i>a</i>]- anthracene	—	—	_	—	7.1×10^{-2}	<u>1999</u>	_	—	—
1,6-Dinitropyrene	—	_	—	—	1.1×10^{-2}	<u>1999</u>	В	Group 2B – possibly carcinogenic to humans	1989
1,8-Dinitropyrene	—	—	—		$1.1 imes 10^{-3}$	<u>1999</u>	В	Group 2B – possibly carcinogenic to humans	1989
Fluoranthene	—	D – not classifiable as to human carcinogenicity (1986)	—	<u>1990</u>	_	_	_	Group 3 – not classifiable as to its carcinogenicity to humans	1987 ^f ,
Fluorene	_	D – not classifiable as to human carcinogenicity (1986)	—	<u>1990</u>	_	_	_	Group 3 – not classifiable as to its carcinogenicity to humans	1987 ^f

^b Primary MSATs are bolded.

^c This literature is updated in Tables C.4. Cancer.

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1–carcinogenic to humans.

		IR	IS		California E	PA	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per µg/m ³	Year	Cancer Potency Factor per µg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
POM (Continued)									
Indeno[1,2,3- <i>cd</i>]pyrene	—	B2 – probable human carcinogen (1986)	_	<u>1994</u>	$1.1 imes 10^{-4}$	<u>1999</u>	В	Group 2B – possibly carcinogenic to humans	1987 ^f
			TEF = 0.1		0	<u>1993</u>			
3-Methylcholanthrene	—	—		—	6.3×10^{-3}	<u>1999</u>	—		—
5-Methylchrysene	—		—	—	1.1×10^{-3}	<u>1999</u>	В	Group 2B – possibly carcinogenic to humans	1987 ^f
1-Methylnaphthalene	—	—	—	—	—	_	—	—	_
2-Methylnaphthalene	—	Inadequate to assess human carcinogenic potential (1999)	_	<u>2003</u>	_	_	—	_	_
5-Nitroacenaphthene	—	—	—	—	$3.7 imes 10^{-5}$	<u>1999</u>	_	Group 2B – possibly carcinogenic to humans	1987 ^f
6-Nitrochrysene	—	_	_	—	$1.1 imes 10^{-2}$	<u>1999</u>	В	Group 2B – possibly carcinogenic to humans	1989
2-Nitrofluorene	—	_	_	—	$1.1 imes 10^{-5}$	<u>1999</u>	_	Group 2B – possibly carcinogenic to humans	1989
1-Nitropyrene	—	_	—	—	$1.1 imes 10^{-4}$	<u>1999</u>	В	Group 2B – possibly carcinogenic to humans	1989
								Table continues on ne	xt page

^b Primary MSATs are bolded.

^c This literature is updated in Tables C.4. Cancer.

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2.3.7.8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2.3.7.8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1-carcinogenic to humans.

Table C.2. (Continued).	. Chronic Cance	er Toxicity Criteria and Sour	ce Materials f	or Each l	MSAT ^a				
		IRIS			California E	PA	<u>NTP</u>	IARC	
MSAT ^b	EPA Fact Sheet Year	Cancer Class	Unit Risk per μg/m ³	Year	Cancer Potency Factor per μg/m ³	Year	Cancer Class Human Carcinogen A: Known B: Reasonably Anticipated	Cancer Class	Year
POM (Continued)									
4-Nitropyrene	—	_	—	_	1.1×10^{-4}	<u>1999</u>	В	Group 2B – possibly carci- nogenic to humans	1989
Phenanthrene	—	D – not classifiable as to human carcinogenicity (1986)	_	<u>1990</u>	—	_	—	Group 3 – not classifiable as to its carcinogenicity to humans	1987
Pyrene	—	D – not classifiable as to human carcinogenicity (1986)	_	<u>1991</u>	—	_	—	Group 3 – not classifiable as to its carcinogenicity to humans	1987
Styrene ^c	<u>2004</u>	_	—	_	styrene oxide = 4.6×10^{-5}	=	Styrene-7,8- oxide, major metabolite: B	Group 2B – possibly carci- nogenic to humans	2002
Toluene ^c	<u>2004</u>	Data are inadequate for an assessment of the carcino- genic potential (2005)	=	<u>2005</u>	_	—	_	Group 3 – not classifiable as to their carcinogenic- ity to humans	1999
Xylene	<u>2004</u>	Data are inadequate for an assessment of the carcinogenic potential (1999)	—	<u>2003</u>	_	_	_	Group 3 – not classifiable as to their carcinogenic- ity to humans	1999

^b Primary MSATs are bolded.

^c This literature is updated in Tables C.4. Cancer.

^d Dioxins/Furans: EPA Dioxin Reassessment, National Center for Environmental Assessment (Washington DC) Dec 2003. Exposure and human health risk assessment of 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds. Part III: Integrated summary and risk characterization for 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) and related compounds (NAS Review Draft).

^e IARC changed its cancer classification for 1,3-butadiene at its 2007 meeting. The new classification is Group 1–carcinogenic to humans.

Table C.3. Summary of Chronic Noncancer Toxicity Data for Each MSAT													
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference					
Acetaldehyde													
R EFERENCES USE	EFERENCES USED TO SUPPORT THE TOXICITY CRITERIA DEVELOPMENT												
RfC, IRIS	<u>1991</u>	Degeneration of olfactory epithelium	Wistar rat, male	Inhalation: 4 wks (short-term) (complex exposure regimen)	NOAEL (HEC) = $8.7 \times 10^{3} \mu\text{g/m}^{3}$; LOAEL (HEC) = $1.69 \times 10^{4} \mu\text{g/m}^{3}$	1000	9 μg/m ³ based on NOAEL	Appelman et al. 1986; (NOAEL); 1982 (LOAEL)					
Chronic REL, Cal EPA	<u>1993</u>	Degeneration of olfactory epithelium	Rat	Details not provided.	Details not provided.	Details not provided.	9 μg/m ³	Reference not pro- vided by Cal EPA					
SELECTED REFER	ENCES F	ROM UPDATED LITERATURE SEA	RCHES, defined at th	e end of this table	-								
EPA IRIS draft Toxicological Review Docu- ment (1999)	1999	This comprehensive draft rev carcinogenicity of acetaldeh available on the EPA web sit and revision." Some of the k included below.	riew, prepared in sup yde. It also provides e, there is also a notic ey studies summarize	port of the EPA IRIS file, c a revised draft RfC value. the from EPA saying that "th ed by EPA (and not alread)	overs the toxicokine Note that although tl te draft has been pull y summarized elsew	tics, noncance nis draft report led back for add here in this tab	r toxicity, and is currently ditional analysis ole) are also	EPA 1999					
		Histopathological alter- ations of the tracheal epi- thelium	Syrian golden hamster	Inhalation: 6 hrs/day, 5 days/wk, 90 days	NOAEL (HEC) = $5.45 \times 10^{3} \mu g/m^{3};$ LOAEL (HEC) = $1.88 \times 10^{4} \mu g/m^{3}$	1000	5 μg/m ³	Kruysse et al. 1975 (as cited in EPA 1999)					
		Histological lesions in the nasal cavity, no increased incidence of tumors	Syrian golden hamster	Inhalation: 7 hrs/day, 5 days/wk, 52 wks	LOAEL (HEC) = 2.1 \times 10 ⁴ µg/m ³	_	_	Feron 1979 (as cited in EPA 1999)					
_	1997	In this review, the author dis- inhaled acetaldehyde, focus tract, with the nasal olfactor centrations sufficiently high lar to that of formaldehyde. Woutersen carcinogenicity s	cusses the biochemist ing on effects in the r y mucosa being the n enough to overwheln The primary rat toxic tudies).	try, genotoxicity, dosimetr at. Noncancer effects inclu nost sensitive target. The a m detoxification capacity. ity studies reviewed were	y, inhalation toxicolo ide degeneration and uthor suggests that t The chemistry and t all from the 1980s (ogy, and carcin l hyperplasia in issue injury oc oxicity of aceta the Appelman	ogenicity of n the respiratory curs only at con- aldehyde is simi- toxicity and	Morris 1997					

Health Effects Institute Special Report 16 @ 2007

Table continues on next page

Fable C.3. (Continued). Summary of Chronic Noncancer Toxicity Data for Each MSAT														
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference						
Acetaldehyde	(Conti	nued)												
SELECTED REFERI	ELECTED REFERENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table (Continued)													
	2003	Asthma symptoms	Humans— asthmatic Hispanic children (10–16 yrs old), living in a Los Angeles commu- nity (n = 22)	Inhalation of traffic pollutants, concentrations of numerous individual chemicals measured (24-hr samples)	Daily, for up to 3 n asthma symptom expiratory flow (I A positive associat several measures severity was repo pollutants and VC ratio for asthma s range increases ir 1.16–1.87) for an 2.36 µg/m ³ acetal No association wit Limitations: small exposure misclass mine which air p	nonths, subject diaries and rec PEF) results. tion with at lea of increased as rted for numer DCs. For examp ymptoms from n pollutants = 1 interquartile ra dehyde. h PEF was foun number of sub sification, impo ollutant respon	s filled out corded peak st one of thma symptom ous criteria air ole, the odds interquartile 48 (95% CI = inge increase of ad. jects, possible ossible to deter- usible.	Delfino et al. 2003						
	2005	Facial flushing (following alcohol intake) Induction of micronuclei	Human—(47 healthy Korean volunteers) Peripheral lympho-	Alcohol consumption (oral) In vitro MN assay, with	Information about consumption coll was a significant <i>ALDH2</i> genotype flushing. Acetaldehyde indu	facial flushing lected by quest association bet and alcohol-in uced MN in a d	and alcohol ionnaire. There ween the duced facial ose-dependent	Kim et al. 2005						
		(MN)	cytes collected from 47 healthy human volunteers	500 or 1500 μM acetal- dehyde	manner, with the subjects that were allele (which is as activity).	greatest freque homozygous f ssociated with a	ncy of MN in for the <i>ALDH2*2</i> a lack of enzyme							
		Aldehyde dehydrogenase-2 (2 which affect the rate of meta Note: This article does not di oping toxicity criteria. None induced effects, and the pote from alcohol/acetaldehyde e	ALDH2) genotypes we abolism of acetaldehy rectly address acetald theless, the article is ential effect of genetic exposure.	ere studied in this article b de to acetate (i.e., acetalde lehyde inhalation, or healt useful in the context of un c polymorphisms for metal	ecause <i>ALDH2</i> exhi hyde detoxification h endpoints that are derstanding the me polizing enzymes or	bits genetic po). e typically cons chanisms of ac 1 an individual	lymorphisms sidered in devel- etaldehyde- 's health risks							

Table C.3. (Co	ntinued	. Summary of Chronic Nonca	ncer Toxicity Data for	r Each MSAT	_			
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Acetaldehyd	e (<i>Conti</i>	nued)						
SELECTED REFE	RENCES F	ROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table (Contin	nued)			
_	2005	Irritation (ELIA _{local)}	Humans	Not specified	NOAEL = 8700 μg/m ³	5	ELIA _{local} = $1700 \ \mu g/m^3$	Schupp et al. 2005
		Increased relative organ weights (ELIA _{systemic)}	Hamsters	Inhalation: 6 hrs/day, 5 days/wk, 90 days	NOAEL = 127,000 μg/m ³	200	ELIA _{systemic} = 635 μg/m ³	
	 sure levels for VOCs released inside cars: (1) Short Term Exposure Levels Inside Automotive Vehicles, or STELIAs; (2) chronic Exposure Levels Inside Automotive vehicles for non-genotoxic substances, or ELIAs; and (3) ELIAs for carcinogenic and mutagenic substances, or ELIA_{cm}. They applied this concept to acetaldehyde, formaldehyde, and xylene and compared these risk-based "acceptable" exposure levels to concentrations in cars. For the acetaldehyde ELIA_{local}, the authors started with a NOAEL of 8700 µg/m³ for irritation (based on EPA 1991), and applied an uncertainty factor of 1/5, to derive an ELIA_{local} of 1700 µg/m³. For the acetaldehyde ELIA_{systemic}, the authors started with a NOAEL of 127,000 µg/m³ for irritation (based on Kruyne et al. 1975), and applied a total uncertainty factor of 200 to derive an ELIA_{systemic} of 635 µg/m³. The individual uncertainty factors were 2 (extrapolation to chronic), a scaling factor of 4, an exposure-time adjustment of 5, and an intraspecies extrapolation factor of 5. The average concentration of acetaldehyde measured in chamber tests designed to simulate cars at 23°C (42 µg/m³, as reported in FAT 1998) did not exceed the ELIAs. 							
Acrolein								
REFERENCES US	SED TO SU	JPPORT THE TOXICITY CRITERIA	DEVELOPMENT					
RfC, IRIS	<u>2003</u>	Nasal lesions	Wistar rat	Inhalation: 6 hrs/day, 5 days/wk, 13 wks	LOAEL (HEC) = 20 µg/m ³	1000	0.02 μg/m ³	Feron et al. 1978
							Table cor	ntinues on next page

Table C.3. (<i>C</i>	ontinued). Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Acrolein (Co	ontinue	<i>1</i>)						
SELECTED REF	ERENCES	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table				
	2004	Mechanisms of action (dose- and time-dependent neu- ronal plasma membrane disruption, induction of oxidative stress, mitochon- drial impairment)	Spinal cord tissue isolated from female Hartley guinea pigs	in vitro, exposure to 1, 10, 25, 50, 100, or 200 µM acrolein for 15 min, 1, 2, or 4 hrs	in vitro LOAEL = 1 µM for 4 hrs for membrane dis- ruption	_	_	Luo and Shi 2004
		This in vitro study investigates the potential mechanisms of action of acrolein. The authors suggest that acrolein, generated as a byproduct of oxidative stress and lipid peroxidation, may play a role in neurodegenerative disorders, such as Alzheimer's disease and secondary injury following spinal cord and brain trauma. The authors also note acrolein is a ubiquitous environmental pollutant, and that the acrolein-induced membrane disruption observed in this study may be an important mechanism in a variety of medical conditions.						
	2004	Mechanisms of action, hepatic injury (as indicated by plasma levels of liver enzymes and protein adducts)	Male Swiss mice	Single intraperitoneal injection of 60–100 mg/kg allyl alcohol (which is readily metabolized to acrolein), administered either alone or in conjunction with hydralazine	This in vivo study of acrolein-induce the ability of hydr drug, to suppress inactivating prote and preventing act in the liver. The findings suppo adduction plays a acrolein hepatotox	investigated the ed hepatotoxicit alazine, an anti acrolein-mediat in adducts form rolein-mediated ort the hypothes key role in the xicity.	e mechanisms ty by studying hypertensive ted toxicity by ned by acrolein l GSH depletion sis that protein pathogenesis of	Kaminskas et al. 2004

Table C.3. (Con	ntinued). Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Acrolein (<i>Cor</i>	ntinuec	1)						
SELECTED REFER	RENCES I	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table (Contin	nued)			
	2002	Non-neoplastic lesions in the nasal respiratory epithelium	Rats	Inhalation: 3 days	140 µg/m ³ ВМС ₀₅	Total UF = 100, exposure time adjust- ment = 6/24	"Tolerable concentration in air" = 0.4 µg/m ³	Gomes and Meek 2002 (Interna- tional Pro- gramme on Chemical Safety, World Health Organization)
		This "Concise International C and reviews physical and ch effects of acute and chronic after inhalation) are conside no indication that the severi address the use of a short-ter assess the potential carcinog	hemical Assessment nemical parameters, s acrolein exposures. I red the primary type ty of acrolein effects rm study was not con genicity of inhaled ac	Document" was prepared pources and levels of environment effects at the site of s of adverse health effects increases with duration of sidered appropriate. The a rolein.	jointly by Health Car onmental exposure, a first contact (eg, irri associated with acro exposure, an additio uthors also conclude	hada and Envi and human ar tation of the r lein exposure onal uncertain that the data	ronment Canada, ad environmental espiratory tract . Because there is aty factor to are inadequate to	
	2002	This article reviews the evide susceptibility to asthma, cell criteria pollutants may act s that could have the highest i release information for these and formaldehyde) and meta	ence linking hazardou lular mechanisms of ynergistically to indu impact on asthma (in compounds. He sug als warrant additiona	as air pollutants and asthm asthma, and asthma epide ace or exacerbate asthma. S cluding acetaldehyde, acro gests that the possible asth l attention.	na, discussing factors miology studies. Haz Specifically, the auth olein, benzene, and f ma risks from certair	that increase zardous air po or addresses 2 ormaldehyde aldehydes (i:	individual llutants and 28 air pollutants) and reviews air ncluding acrolein	Leikauf 2002
Arsenic Comj	pounds	(Inorganic)						
R EFERENCES US	ed to S	UPPORT THE TOXICITY CRITERIA	DEVELOPMENT					
REL, Cal EPA	2001	Reduction in fetal weight; increased incidences of intrauterine growth retarda- tion and skeletal malforma- tions	CFLP mouse	Inhalation	LOAEL (HEC) = 33 µg/m ³	1000	0.03 μg/m ³	Nagymajtenyi et al. 1985
			·		·		Table con	ntinues on next page

1able C.3. (C	Jonunuea	J. Summary Of Chronic No.						
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Arsenic Coi	mpounds	(Inorganic, Continued)						
SELECTED REP	FERENCES F	ROM UPDATED LITERATURE	SEARCHES, defined at th	e end of this table				
_	2000	Circulatory disease	US copper smelter workers (Tacoma, Washington) (n = 2802)	Inhalation: occupational exposure (estimated using air monitoring data and urinary arsenic data)	The baseline anal any association h circulatory disea for the healthy h survivor effect (H increased circula ularly for cardio baseline model. these results are HWSE may be of arsenic and circu diovascular dise	ysis in this stud between arsenic se. However, af ire effect and the HWSE), the auth atory mortality is vascular disease. The authors acl not conclusive oscuring an assi- ilatory disease ase) in occupat	dy did not reveal c exposure and fter adjustment he healthy worker hors reported rate ratios (partic- e) relative to their knowledge that , but suggest that ociation between (particularly car- ional studies.	Hertz-Picciotto et al. 2000a
_	2000	Circulatory disease	US copper smelter workers (Mon- tana) (<i>n</i> = 8014)	Occupational inhalation exposure (estimated based on years working in areas of heavy, medium, or light arsenic levels)	Prompted by the a article (above), the cohort of smelter et al. they found between duration cardiovascular d or all circulatory model or after ac vivor effect (HW occupational stu they found excess cancer. In a reply the data to date a ods used to accoo partial adjustme	2000 Hertz-Pico nese authors re- workers. Unlik no evidence of n of arsenic exp isease, cerebrov diseases, using ljustment for he SE). Consistent dies of arsenic- ss mortality onl y, Hertz-Picciot re not conclusi unt for HWSE p nt.	ciotto et al. examined their ce Hertz-Picciotto an association posure and vascular disease, g their baseline walthy worker sur- with most other exposed workers, y for respiratory to et al. note that ve, that the meth- provide only a	Lubin and Frau- meni 2000 (letter written in response to Hertz-Picciotto e al. 2000a); Hertz- Picciotto et al. 2000b (reply)
_	2001	Developmental effects	This author reviews studies (pre-1995) arsenic doses could deemed not relevan mal studies, "expos fatal to pregnant fe cluded that "inorga exposure occurs by experienced in the	and evaluates the evidence showed that intravenous of d cause neural tube defects at for assessing potential has sure via inhalation or oral i males, caused no arsenic-re- unic arsenic poses virtually v relevant routes (oral and i environment or in the wor	e for arsenic terator r intraperitoneal in , these exposure ro uman health risks. ngestion, even at c elated abnormalitie no danger to devel nhalation) at conce kplace" (p 170).	genicity. Althou jections of mate utes and expos In more recent oncentrations t s" (pg 170). The oping offspring entrations that a	igh earlier ernally-toxic ure levels were experimental ani- hat were nearly e author con- g when maternal are likely to be	DeSesso 2001

Table C.3. (Co	ntinued). Summary of Chronic N	oncancer Toxicity Data for	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Arsenic Com	pounds	(Inorganic, <i>Continued</i>	()					
SELECTED REFE	RENCES F	FROM UPDATED LITERATUR	E SEARCHES, defined at th	e end of this table(Contin	ued)			
	2002	Various health endpoints	Residential population, Guizhou, China	Sources of arsenic expo- sure: contaminated food (50–80%), and elevated indoor air levels (20–400 µg As/m ³) (10–20%)	This review article effects observed in Guizhou, China er of arsenic in indoo burning of coal co At least 3000 patie gnosed with chron health effects have lesions (about 17% function, neuropa tomegaly. The aut effects to inhalatio piratory symptom bron-chitis, reduc capa-city, X-ray al corneal inflamma	describes so a residential xposed to hig or air and foc ntaining higl ents in this a nic arsenic po e been report % of the resid thy, nephroto hors attributo on of arsenic s (persistent ed residual v pnormalities) tion, tearing o	me of the health populations in th concentrations of from domestic n levels of arseni rea have been di- bisoning. Various ed, including ski lents), lung dys- oxicity, and hepa ed several health in indoor air: res cough, chronic olume and vital , neurotoxicity, eyes, and blurred	Liu et al. 2002
Benzene								
References Us	SED TO S	UPPORT THE TOXICITY CRIT	ERIA DEVELOPMENT					
RfC, IRIS	<u>2003</u>	Decreased lymphocyte	Human—	Inhalation	BMCL (ADJ) = $8.2 \times 10^3 \text{ ug/m}^3$	300	30 μg/m ³	Rothman et al.

Table C.3. (Cor	ntinued). Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Benzene (<i>Con</i>	tinued)						
SELECTED REFER	RENCES F	TROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table				
	2003	Asthma symptoms	Humans— asthmatic Hispanic children (10–16 yrs old), living in a Los Angeles community (n = 22)	Inhalation of traffic pollutants, concentrations of numerous individual chemicals measured (24-hr samples)	Daily, for up to 3 m asthma symptom of expiratory flow (P A positive associati measures of increas was reported for n and VOCs. For exa asthma symptoms increases in pollut 1.48) for an interq 3.19 µg/m ³ benzer No association with Limitations: small n exposure misclass mine which air po	onths, subjec diaries and re EF) results. on with at lea used asthma s umerous crite imple, the od from interqu from interqu ants = 1.23 (Su uartile range the. n PEF was fou number of sub ification, imp llutant respo	ts filled out corded peak ast one of several ymptom severity eria air pollutants ds ratio for artile range 95% CI = 1.02- increase of and. pjects, possible possible to deter- nsible.	Delfino et al. 2003
	2004	Hematotoxicity (white blood cell and platelet counts, progenitor cell colony formation)	Humans— benzene-exposed workers from a shoe factory in China (<i>n</i> = 250), unexposed con- trols (<i>n</i> = 140)	Workplace inhalation of benzene Extensive exposure data (repeated individual benzene and toluene monitoring samples) was collected for up to 16 months. Average employment duration = 6.1 yrs	LOAEL < 3190 µg/m ³ for significant decreases in white blood cell and platelet counts, and decreases in pro- genitor cell col- ony formation	There was a response tr in platelets blood cell r Genetic vari ing enzyme dase and N oxidoreduc susceptibil induced de blood cell o	significant dose- end for changes and most white neasures. ants in metaboliz- es (myeloperoxi- AD(P)H:quinone etase) affected ity to benzene- creases in white counts.	Lan et al. 2004
	2004	Hematotoxicity (white blood cell and platelet counts, progenitor cell colony formation)	community ($n = 22$) Humans— benzene-exposed workers from a shoe factory in China ($n = 250$), unexposed con- trols ($n = 140$)	Workplace inhalation of benzene Extensive exposure data (repeated individual benzene and toluene monitoring samples) was collected for up to 16 months. Average employment duration = 6.1 yrs	and VOCs. For exa asthma symptoms increases in pollut 1.48) for an interq 3.19 µg/m ³ benzer No association with Limitations: small r exposure misclass mine which air po LOAEL < 3190 µg/m ³ for significant decreases in white blood cell and platelet counts, and decreases in pro- genitor cell col- ony formation	ample, the od from interque ants = 1.23 (Superior of the network of the interval of the interv	ds ratio for artile range 95% CI = 1.02 increase of and. ojects, possible oossible to deter- nsible. significant dose- end for changes and most white neasures. ants in metaboliz- es (myeloperoxi- AD(P)H:quinone tase) affected ity to benzene- creases in white counts. Table con	Lan et al. 20

Health Effects Institute Special Report 16 © 2007
Table C.3. (Con	tinued)	. Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Benzene (<i>Cont</i>	tinued)	1						
SELECTED REFER	ENCES F	ROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table (Contin	ued)			
	2004	Hematotoxicity (white blood cell, red blood cell, lymphocyte, and platelet counts; hemoglobin con- centration, mean corpuscu- lar volume)	Humans—workers participating in Shell's Benzene Medical Surveil- lance Program (n = 1200)	Workplace inhalation of benzene Mean benzene exposure (TWA-8) = 1914 µg/m ³ from 1977–1988, and 447 µg/m ³ since 1988. Estimated mean duration = 12.2 yrs. (male) and 13.8 yrs (female). Some workers also had expo- sure to butadiene.	NOAEL for hematological effects estimated to be 1914 µg/m ³ (the mean TWA from 1977–1988). Exposures for most workers were probably lower, as benzene levels decreased over time.	The percent values for e hematology measured v cantly diffe exposed an The authors blood coun have adequ be a useful for workers benzene ex whether ab ogy is truly for leukemi	of abnormal each of the 6 7 parameters vas not signifi- rrent between the d control groups. question whether t measurements ate sensitivity to surveillance tool with low-level posures, and normal hematol- an early marker ia.	Tsai et al. 2004
	2002	Hematotoxicity (blood cell counts)	Humans— benzene-exposed workers in either a glue factory, shoe-making factory, or sporting goods company in China (<i>n</i> = 130 exposed, 51 controls)	Workplace inhalation of benzene Based on personal expo- sure monitoring, ben- zene levels on the day of biological sample collec- tion ranged from 191– 389,180 µg/m ³ (median = 10,208 µg/m ³); 4-wk average benzene expo- sures ranged from 255– 173,855 µg/m ³ , and cumulative benzene exposures were esti- mated to range from 1.9 $\times 10^4$ –2.0 $\times 10^6$ (µg/ m ³)-yrs. The workers were also exposed to tol- uene and xylene.	LOAEL = ≤1595 µg/m ³ (4-wk average), for decreases in red blood cells, white blood cells, and neutrophils.	The decrease cells, white neutrophils dependent correlated v nary metab min adduct There was n effect of bea on lymphoe	es in red blood e blood cells, and s were dose- and also were with levels of uri- olites and albu- is. o significant nzene exposure cytes.	Qu et al. 2002

Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	7 Toxicity Criteria	Reference
Benzene (<i>Co</i>	ntinued)						
SELECTED REFE	ERENCES F	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table (Contin	ued)			
_	2005	Major congenital and neural crest malformations	Humans—women working in univer- sity biomedical research laborato- ries, (<i>n</i> = 1629 women total, 959 exposed to benzene and/or other solvents).	Workplace (laboratory) exposure to benzene and other chemicals, expo- sure information based on questionnaire	There was no sign congenital or neu laboratory work i Long term laborator associated with a malformations (a [95% CI = $1.0-6.0$ Long term laborator ticular was associ crest malformation = $1.0-12.0$]).	ificant associa ral crest malf n general. ory exposure f n increase in djusted OR = 0]). ory exposure f iated with an ons (adjusted b	ation between formations and to solvents was all major 2.5 to benzene in par- increase in neural OR = 3.5 [95% CI	Wennborg et al 2005
1,3-Butadien	le							
References U	SED TO S	UPPORT THE TOXICITY CRITERIA	DEVELOPMENT	1		1	1	
RfC, IRIS	<u>2002</u>	Ovarian atrophy	B6C3F1 mouse	Inhalation: 6 hrs/day, 5 days/wk, 2 yrs	$\begin{array}{l} {\rm BMCL_{10}\ (HEC) =} \\ {\rm 1.94 \times 10^3\ \mu g/m^3} \\ {\rm (BMC_{10} =} \\ {\rm 2.21 \times 10^3\ \mu g/m^3} \end{array}$	1000 3	2 μg/m ³	NTP 1993
Chronic REL, Cal EPA	<u>2001</u>	Ovarian atrophy	B6C3F1 mouse	Inhalation: 6 hrs/day, 5 days/wk, 103 wks	LOAEL = $1.38 \times 10^4 \mu g/m^3$ BMC ₀₅ (HEC) = $553 \mu g/m^3$	30	20 μg/m ³	NTP 1993

Table C.3. (Co	ontinued). Summary of Chronic Nonca	ncer Toxicity Data for	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
1,3-Butadien	ie (<i>Cont</i>	inued)						
SELECTED REFI	ERENCES I	FROM UPDATED LITERATURE SEA	ARCHES ; defined at th	ne end of this table(Contin	ued)			
	2003	Asthma symptoms	Humans,— asthmatic Hispanic children (10–16 yrs old), living in a Los Angeles community (n = 22)	Inhalation of traffic pollutants, concentra- tions of numerous individual chemicals measured (24-hr samples)	Daily, for up to 3 m asthma symptom expiratory flow (P A positive associat: measures of increa was reported for m and VOCs. For exa asthma symptoms increases in pollu 1.49) for an interq 2.9 µg/m ³ 1,3-but No association with Limitations: small exposure misclass mine which air po	onths, subjects diaries and rec EF) results. ion with at leas ased asthma sy umerous criter ample, the odd from interqua tants = 1.16 (95 uartile range in adiene. n PEF was four number of subj ification, impo ollutant respon	s filled out orded peak st one of several mptom severity ria air pollutants s ratio for rtile range 5% CI = 0.90– ncrease of nd. jects, possible ossible to deter- sible.	Delfino et al. 2003
	2002	Testicular injury (as indi- cated by suppressed serum levels of inhibin-B and increased levels of follicle stimulating hormone (FSH))	Humans —(<i>n</i> = 576, aged 20–47), stored blood sam- ples from workers at a polymer pro- duction plant in the mid-1970's	Workplace exposures in compounding polyvinyl chloride resins (lead and phthalate esters) and manufacturing nitrile rubber (acrylonitrile, butadiene, styrene). Exposure levels ranked based on job histories.	Abnormal levels of independently ass but there was an in with abnormal res FSH) in all 3 of th and mixed exposu control group. Ab els seemed to be m exposures in the p (acrylonitrile, but jects with abnorm (but not statistical reporting reprodu	inhibin-B and sociated with e ncreased preva ults (low inhib e exposed grou ures) in compar normal inhibin nost strongly co oroduction of s adiene, and sty al hormone lev ly significant) ctive problems	FSH were not xposure groups, lence of workers pin-B and high ps (PVC, nitrile, rison with the a-B and FSH lev- orrelated with ynthetic rubber rene). The sub- rels had a higher prevalence of	Lewis et al. 2002

Toxicity Griteria/ Griteria/ Griteria/YearEndpointAnimal Strain or Human PopulationRoute and Duration of ExposureNOAEL and LOAELUncertainty FactorToxicity CriteriaRefereSizerre view users and the problem of the path	Table C.3. (Co	ntinued). Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT		-	1	1
1,3-Butadiene (Continued) SELECTED REFERENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table (Continued) and local and hematology (Note that the cancer results from this study are pre- sented in Table 3-2.) Human-male workers employed at a petrochemi- cal facility in the total cohond). (Note this is a fol- low-up study of this cohort.) Overall mortality (SMR = 0.55 [95% CI = 0.42– 0.70]) was significantly lower for the cohort. There was no increase in any of the causes of morbidity (wide range of endpoints). There were no significant differences in hematological variables in the cohort. (Note this is a fol- low-up study of this cohort.) Table 3-2.) Tage of endpoints the total cohond). (Note this is a fol- low-up study of this cohort.) Overall numeration areas < 2210 µg/m ³ Cr III REFERENCES USED TO SUPPORT THE TOXICTY CRITERIA DEVELOPMENT RADIA for wide study of pre- sense in any of the causes of morbidity (wide range of endpoints). (Note this is a fol- low-up study of this cohort.) Inhalation: sense in a stable in the cohort. (Note this is a fol- low-up study of this cohort.) Cohe this is a fol- morbidity (wide range) on discussion of the scohort.) The authors concluded that the the butadiene exposure at this facility in the last 20 years does not pose a health hazard to employees." The sense of morbidity (and the pose of the scohort.) The sense of the scohort. References Used to Support the toxic transmit in the study of this cohort. Inhalation: the tota scohort. <t< th=""><th>Toxicity Criteria/ Source</th><th>Year</th><th>Endpoint</th><th>Animal Strain or Human Population</th><th>Route and Duration of Exposure</th><th>NOAEL and LOAEL</th><th>Uncertainty Factor</th><th>7 Toxicity Criteria</th><th>Reference</th></t<>	Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	7 Toxicity Criteria	Reference
SELECTED REFERENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table (Continued) 2001 and hematology (Note that the cancer results from this study are pre- sented in Table 3-2.) Human—male workers employed at a petrochemi- cal facility in Texas for at least 5. Potential workplace inhalation exposure to 1.3-butatione monomeri- te cal facility in Texas for at least 5. Overall mortality (SMR = 0.55 [95% CI = 0.42- 0.70]) was significantly lower for the cohort. There were no significant differences in hematological variables in the cohort. Norbidity (wid range of endpoints). There were no significant differences in hematological variables in the cohort. Norbidity (wid range of endpoints). Tsai et al. 1979–1992, shipping vars (n = 614 for the total cohort). (Note this is a fol- low-up tudy of this cohort.) Nonitoring data from 1979–1992; max in all areas < 2210 µg/m ³ Overall mortality (in the last 20 years does not pose a health hazard to employees." Tsai et al. Cr III REFERENCES USED TO SUPPORT THE TOXICITY CRITERIA DEVELOPMENT Respense Respense 1998 Morphological changes in lung macrophages Rabbit (species not specified) Inhalation: 6 hrs/day, 5 days/wk, 4 to 6 wks LOAEL = 600 µg/m ³ Endpoints boserved (mor- phological changes) not suitable for RKC development Johanson 1986	1,3-Butadien	e (Cont	inued)						
- 2001 Mortality, morbidity, and hematology (Note that the cancer results from this study are presented in Table 3-2.) Human—male workers employed at petrochemi- cal facility in Texas for at least 5 years (n = 614 for the total cohort.) Potential workplace inhalation: more was no increase in any of the causes of morbidity (wide range of endpoints). There were no significant differences in hematological variables in the cohort. Overall, the authors concluded that "the butadiene exposure to the total cohort.] There was no increase in any of the causes of morbidity (wide range of endpoints). There were no significant differences in meatological variables in the cohort. Overall, the authors concluded that "the butadiene exposure at this facility in the last 20 years does not pose a health hazard to employees." There was no increase in any of the causes of morbidity (wide range of endpoints). There were no significant differences in meatological variables in the cohort. Overall, the authors concluded that "the butadiene exposure at this facility in the last 20 years does not pose a health hazard to employees." There was no increase in any of the causes of morbidity (wide range of endpoints). There were no significant differences in meatological variables in the cohort. Overall, the authors concluded that "the butadiene exposure at this facility in the last 20 years does not pose a health hazard to employees." Cr III REC, IRIS 1998 Morphological changes in lung macrophages Rabbit (species not specified) Inhalation: 6 hers/day, 5 days/wk, 4 to 6 wks LOAEL = — Endpoints observed (morphological changes) not suitable for RIC development Johansson longeacause for RIC development Johanston ling	SELECTED REFE	RENCES F	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table (Contin	ued)			
Cr III REFERENCES USED TO SUFFORT THE TOXICITY CRITERIA DEVELOPMENT RfC, IRIS 1998 Morphological changes in lung macrophages Rabbit (species not specified) Inhalation: 6 hrs/day, 5 days/wk, 4 to 6 wks LOAEL = 600 µg/m ³ — Endpoints observed (morphological changes) not suitable for RfC development Johansson 1986 No detailed reports of non-carcinogenic effects in various cancer bioassays Animals, including rats and mice Inhalation: intrapleural injection, or intrabron- chial implantation/ duration unspecified — — — Baetjer et a Hueper an 1962; Levy Venitt 197		2001	Mortality, morbidity, and hematology (Note that the cancer results from this study are pre- sented in Table 3-2.)	Human—male workers employed at a petrochemi- cal facility in Texas for at least 5 years ($n = 614$ for the total cohort). (Note this is a fol- low-up study of this cohort.)	Potential workplace inhalation exposure to 1,3-butadiene monomer Monitoring data from 1979–1992, shipping area: arithmetic mean 8-hr TWA 1,3-butadiene = 22,984 µg/m ³ , max = 315,588 µg/m ³ Monitoring data from 1993–1998: max in all areas < 2210 µg/m ³	Overall mortality (0.70]) was signific There was no incre- morbidity (wide r There were no sign hematological var Overall, the author exposure at this fa not pose a health	SMR = 0.55 [cantly lower b ease in any of ange of endp nificant differ riables in the s concluded t acility in the hazard to em	95% CI = 0.42– for the cohort. E the causes of oints). ences in cohort. that "the butadiene last 20 years does ployees."	Tsai et al. 2001
Rife Kexces CSED To Softwart The Toxicit Textificit Development Development Rife, IRIS 1998 Morphological changes in lung macrophages Rabbit (species not specified) Inhalation: 6 hrs/day, 5 days/wk, 4 to 6 wks LOAEL = 600 µg/m ³ — Endpoints observed (morphological changes) not suitable for Rife development Johansson 1986 No detailed reports of non-carcinogenic effects in various cancer bioassavs Animals, including rats and mice Inhalation: intrapleural injection, or intrabron-chial implantation/duration unspecified — — — Baetjer et a 1962; Levy Venitt 197	Cr III Reception of the second	SED TO SI	προφή της Τονιστό Οριτερία	Devel odment					
No detailed reports of non-carcinogenic effects in various cancer Animals, including rats and mice Inhalation: intrapleural injection, or intrabron- chial implantation/ duration unspecified Baetjer et a Hueper an 1962; Lev Venitt 197	RfC, IRIS	<u>1998</u>	Morphological changes in lung macrophages	Rabbit (species not specified)	Inhalation: 6 hrs/day, 5 days/wk, 4 to 6 wks	LOAEL = 600 µg/m ³	_	Endpoints observed (mor- phological changes) not suitable for RfC development	Johansson et al. 1986
and Martin			No detailed reports of non-carcinogenic effects in various cancer bioassays	Animals, including rats and mice	Inhalation: intrapleural injection, or intrabron- chial implantation/ duration unspecified	_	_	_	Baetjer et al. 1959; Hueper and Payne 1962; Levy and Venitt 1975; Levy and Martin 1983
RfD, IRIS1998No effects observedRat (species not specified) 5% Cr2O3 in diet, 5 days/wk, 120 wksNOAEL (ADJ) = 1468 mg/kg-day1.5 mg/kg-dayIvankovic Preussma	RfD, IRIS	<u>1998</u>	No effects observed	Rat (species not specified)	5% Cr ₂ O ₃ in diet, 5 days/wk, 120 wks	NOAEL (ADJ) = 1468 mg/kg-day	1000	1.5 mg/kg-day	Ivankovic and Preussman 1975
SELECTED REFERENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table	SELECTED REFE	RENCES F	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table				·
An updated literature review was performed only for Cr VI (the primary chromium compound of concern).	An updated	literatur	e review was performed only f	for Cr VI (the primary	chromium compound of c	concern).			

Table C.3. (Cor	ntinued). Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Cr VI (Chrom	ium Tr	ioxide)						
R EFERENCES USI	ed to S	UPPORT THE TOXICITY CRITERIA	DEVELOPMENT					
RfC, IRIS	<u>1998</u>	Nasal septum atrophy	Human— occupational	Inhalation: median 4.5 yrs (0.1–36 yrs)	LOAEL (ADJ) = 0.714 µg/m ³	90	$8 imes 10^{-3}\mu extrm{g/m}^3$ (aerosols)	Lindberg and Hedenstierna 1983
		Lactate dehydrogenase in bronchioalveolar lavage fluid	Wistar rats, male	Inhalation: 22 hrs/day, 30–90 days	BMD (ADJ) = $34 \ \mu g/m^3$	300	0.1 μg/m ³ (particulates)	Glaser et al. 1990; Maslch et al. 1994
REL, Cal EPA	2001	Bronchoalveolar hyperplasia	Wistar rat, male	Inhalation: 22 hrs/day, 7 days/wk, 90 days	LOAEL (HEC) = 24.5 µg/m ³	100	0.2 μg/m ³ (Excluding chromium trioxide)	Glaser et al. 1990
		Nasal atrophy, nasal mucosal ulcerations, nasal septal perforations, transient pulmonary function changes	Human— occupational	Inhalation: mean 2.5 yrs (0.2–23.6 yrs)	LOAEL(HEC) = 0.68 µg/m ³	300	0.002 μg/m ³ (Chromium trioxide)	Lindberg and Hedenstierna 1983
ATSDR, MRL Intermediate	2000	Nasal irritation, mucosal atrophy, ulcerations, and transient pulmonary function changes	Human— occupational	Inhalation: median 2.5 yrs (range 0.1–36 yrs)	LOAEL (ADJ) = 0.5 µg/m ³	100	0.005 μg/m ³ (Chromic acid mist)	Lindberg and Hedenstierna 1983
		Alterations in l actate dehydrogenase in bronchio- alveolar lavage fluid	Wistar rat, male	Inhalation: 22 hrs/day, 28–90 days	BMC (ADJ) = 34 μg/m ³	30	1 μg/m ³ (Cr VI particulate compounds)	Glaser et al. 1990
SELECTED REFER	ENCES I	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table				
_	2004	Decreased hemoglobin, total protein, albumin, and alanine aminotransferase levels	Sprague Dawley rat, male	Inhalation: 6 hrs/day, 5 days/wk, 13 wks	NOAEL = 200 μ g/m ³ ; LOAEL = 500 μ g/m ³	_	—	Kim et al. 2004
		1	L		-		Table con	ntinues on next page

Table C.3. (Con	ttinued). Summary of Chronic No	ncancer Toxicity Data fo	r Each MSAT			
Toxicity Criteria/ Source	Year Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Toxicity Factor Criteria	Reference
Diesel Engine	Exhaust					
REFERENCES USI	ED TO SUPPORT THE TOXICITY CRITE	RIA DEVELOPMENT				
RfC, IRIS	2003 Pulmonary inflammation and histopathology	F344 rat	Inhalation: 16 hrs/day, 6 days/wk, 130 wks	NOAEL (HEC) = 144 µg DPM/m ³	30 5 μg/m ³	Rat chronic inhalation study: Ishinishi et al. 1988; Mathematical model of DPM deposition and clearance: Yu et al. 1991
SELECTED REFER	ENCES FROM UPDATED LITERATURE	SEARCHES, defined at th	e end of this table	-		
An updated li	terature review was not required l	because IRIS was update	d in 2003.			
Dioxin						
R EFERENCES USI	ED TO SUPPORT THE TOXICITY CRITE	RIA DEVELOPMENT				
EPA (Dioxin Reassessment)	2003 Cardiovascular disease	Human— occupational	Up to 40 yrs	_	- ED ₀₁ (excess body burden over back- ground for 1% excess risk) = 1.12×10^{-2} µg kg (3.1 × 10 ⁻³ µg/kg 95% lower bound)	Flesch-Janys et al. 1995 /
					Table co	ontinues on next page

Table C.3. (Cor	tinued). Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Dioxin (<i>Conti</i>	nued)							
R EFERENCES USI	ed to Si	UPPORT THE TOXICITY CRITERIA	DEVELOPMENT (Cont	inued)				
EPA (Dioxin Reassessment)	2003	Cardiovascular disease, diabetes	Human— occupational	Up to 51 yrs	_	_	Negative results	Steenland et al. 1999
EPA (Dioxin Reassessment)	<u>2003</u>	Cardiovascular disease	Human— occupational	Up to 39 yrs	_	_	Negative results	Zober et al. 1990 1994
SELECTED REFER	ENCES F	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table				
An updated l	iteratur	e review was not required beca	ause EPA's dioxin rea	ssessment was performed i	in 2003.			
Ethylbenzene								
R EFERENCES USI	ed to Su	UPPORT THE TOXICITY CRITERIA	DEVELOPMENT					
RfC, IRIS	<u>1991</u>	Developmental toxicity	Wistar rat, New Zealand white rabbit	Inhalation: 6–7 hrs/day, 7 days/wk, during days 1–19 (rats) and 1–24 (rabbits) of gestation	NOAEL (HEC) = $4.34 \times 10^5 \ \mu g/m^3$; LOAEL (HEC) = $4.34 \times 10^6 \ \mu g/m^3$	300	$1 imes 10^3\mu\text{g/m}^3$	Andrew et al. 1981; Hardin et al. 1981
REL, Cal EPA	2000	Nephrotoxicity, body weight reduction (rats), hyperplasia of the pituitary gland; liver cellu- lar alterations and necrosis (mice)	F344 rat, B6C3F1 mouse	Inhalation: 6 hrs/day, 5 days/wk, 103 wks	NOAEL (HEC) = $6.5 \times 10^4 \mu g/m^3$; LOAEL = $1.250 \times 10^6 \mu g/m^3$	30	$2 imes 10^3\mu g/m^3$	NTP 1999; Chan et al. 1998
MRL, ATSDR	<u>1999</u>	Developmental indices, skeletal abnormalities	Wistar rat	Inhalation: 7 hrs/day, 5 days/wk, 3 wks pregestational and days 1–19 of gestation	NOAEL (HEC) = $4.21 \times 10^5 \mu\text{g/m}^3$; LOAEL (HEC) = $4.27 \times 10^6 \mu\text{g/m}^3$	100	Intermediate MRL = $4.34 \times 10^3 \mu\text{g/m}^3$	Andrew et al. 1981

Mobile-Source Air Toxics, Appendix Table C.3. Summary of Chronic Noncancer Toxicity Data for Each MSAT

	ntinued). Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Ethylbenzene	(Cont	inued)						
SELECTED REFE	RENCES F	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table				
_	2003	Maternal toxicity (decreased weight gain), fetal toxicity (reduced fetal body weight)	Sprague-Dawley rat	Inhalation: 6 hrs/day, during days 6–20 of gestation	NOAEL = $2.17 \times 10^{6} \ \mu g/m^{3};$ LOAEL = $4.34 \times 10^{6} \ \mu g/m^{3}$	_	_	Saillenfait et al. 2003
IARC	2000	Detailed review of ethylbenze	ene exposure, toxicity	y, and carcinogenicity, incl	uding a summary of t	he 1999 NTI	P 2-year ethylbenz	zene study.
Formaldehyd	e							
References Us	ed to Si	UPPORT THE TOXICITY CRITERIA	DEVELOPMENT					
RfC, IRIS	The ir	halation RfC section does not	have a revision date,	the status is "no data," and	l an RfC is "not availa	ble at this ti	me."	
					a un fuio lo mot uvune			
REL, Cal EPA	2000	Nasal and eye irritation, nasal obstruction, lower airway discomfort. Histopathological nasal lesions: rhinitis, squamous metaplasia, dysplasia	Human— chemical plant workers	Inhalation: 8 hrs/day, 5 days/wk, average 10 yrs (range 1–36 yrs)	NOAEL (HEC) = $32 \mu g/m^3$; LOAEL (mean) = $260 \mu g/m^3$	10	3 μg/m ³	Wilhelmsson and Holmstrom 1992 Edling et al. 1988
REL, Cal EPA	2000 1999	Nasal and eye irritation, nasal obstruction, lower airway discomfort. Histopathological nasal lesions: rhinitis, squamous metaplasia, dysplasia Nasopharyngeal irritation and lesions in nasal epithelium	Human— chemical plant workers Cynomolgus monkey	Inhalation: 8 hrs/day, 5 days/wk, average 10 yrs (range 1–36 yrs) Inhalation: 22 hrs/day, 7 days/wk, 26 wks	NOAEL (HEC) = $32 \ \mu g/m^3$; LOAEL (mean) = $260 \ \mu g/m^3$ NOAEL = $1.21 \times 10^3 \ \mu g/m^3$; LOAEL = $3.63 \times 10^3 \ \mu g/m^3$	10 30	3 μg/m ³ Intermediate MRL = 36.9 μg/m ³	Wilhelmsson and Holmstrom 1992 Edling et al. 1988 Rusch et al. 1983

Table C.3. (<i>C</i>	ontinued). Summary of Chronic Nonca	ncer Toxicity Data for	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Formaldehy	de (<i>Con</i>	tinued)						
SELECTED REF	ERENCES 1	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table				
	1998	Neurotoxic effects	Human	This article cites numerou relationship between chru toxic effects, such as distr rium, and sleep. The auth including selection bias i participant recall in deter sure levels. The authors of nesses prohibit definitive formaldehyde exposure a	s research studies th onic, low-level form urbances of memory ors then discuss so n recruiting study p mining background conclude that overal conclusions about nd neurobehavioral	nat have sugge aldehyde exp , concentration me of the stude articipants and variables and l, these methor the relationsh consequence	ested a causal posure and neuro- on, mood, equilib- dy limitations, ad unreliability of a estimating expo- odological weak- hip between ss.	Williams and Lees-Haley 1998
	2001	Embryotoxicity and teratogenesis	Rat	This review article address associated with formalde rat studies with varying e ing mating, or during the effects included: increased decreased concentrations chondria, lysosomes, and	ses embryo toxicity hyde exposure. The exposure regimens (entire gestation perio d embryo mortality, of ascorbic acid, abr the endoplasmic ret	and teratogen authors revie exposure prio od). Some of t increased feta tormalities in iculum, and r	icity wed a number of r to mating, dur- he observed l anomalies, enzymes of mito- netabolic acidosis.	Thrasher and Kilburn 2001
	2001	Reproductive and developmental effects	Human Animal	In this comprehensive revipotential for reproductive exposure. Based on a revi "there is no credible evid- under exposure levels an also reviewed 11 epidem dence of increased risk of [95% CI = 0.9–2.1]). How tion biases, the authors for abortion (meta-relative ris noted that it was difficult comes (such as birth weig study limitations in the fi the authors concluded the unlikely at formaldehyde	iew article, the auth e and developmenta iew of 22 animal stu- ence of reproductive d routes relevant to iologic studies. A m f spontaneous aborti- vever, after accounti- ound no evidence of sk = 0.7 [95% CI = 0 to draw conclusion ght and infertility), of ew studies available at reproductive and exposure levels end	ors evaluated l effects from dies, the auth e or developm humans (pg 3 eta-analysis s ion (meta-rela ng for reporti increased ris 0.5–1.0]) (pg s about other lue to inconsi for these end development countered in v	the formaldehyde nors conclude nental toxicity" B1). The authors howed some evi- tive risk = 1.4 ng and publica- k of spontaneous 17). The authors reproductive out- istencies and lpoints. Overall, al effects were workplaces.	Collins et al. 2001

Table C.3. (Con	ntinued	. Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Formaldehyd	e (<i>Cont</i>	tinued)						
SELECTED REFER	RENCES F	ROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table (Conti	nued)			
	2002	This comprehensive formald histological studies of nasal NOAEL or LOAEL for forma sensory irritation, human st thereof, for a lifetime of exp duces pathological changes sensory irritation and pulma as confounding by multiple	ehyde review summa mucosa. Based on th ildehyde" (pg 23). Wh udies alone "are not a osure to formaldehyd to mucous membrane onary function chang exposures, selection	rizes controlled chamber s is review, the author conc ile these studies are usefu dequate to serve as a refer e" (pg 23). "The weight of es or the eyes, especially a es." (pg 29) The author als bias in community survey	studies, workplace s luded that "it is not p l for setting exposur rence concentration f evidence does not in t the exposure (492 t o discusses some of s, and the use of sub	tudies, commu possible to ider e ranges associ for estimating r ndicate that for o 3690 µg/m ³) the key study l ojective health o	nity studies, and ntify a specific ated with acute isk, or lack maldehyde pro- used to evaluate imitations, such endpoints.	Bender 2002
Health Canada	2003	This comprehensive article, p variety of health effects obse irritant effects on the eyes, r portion of the population ex 103). They also note that "for dence that formaldehyde is response" (pg 88–89).	prepared by Health Ca erved in human and a nose, and throat are the periences symptoms rmaldehyde is not like neurotoxic," and "form	anada under the Canadian nimal studies involving for the most sensitive noncance of irritation following exp cely to affect reproduction maldehyde is unlikely to b	Environmental Prot ormaldehyde exposu er health endpoints, oosure to 0.1 ppm (12 or development," "the be associated with su	ection Act (CE) re. The authors and that "only 20 μg/m ³) form here is little con uppression of th	PA), reviews a s conclude that a very small pro- aldehyde" (pg nvincing evi- ne immune	Litelpo and Meek 2003
	2003	Asthma symptoms	Humans— asthmatic Hispanic children (10–16 yrs old), living in a Los Angeles community (n = 22)	Inhalation of traffic pollutants, concentrations of numerous individual chemicals measured (24-hr samples)	Daily, for up to 3 m asthma symptom ratory flow (PEF) A positive associat measures of incre was reported for m and VOCs. For ex asthma symptom increases in pollu 1.80) for an intere 3.89 µg/m ³ forma No association wit Limitations: small exposure misclas mine which air p	nonths, subject diaries and rec results. tion with at lea ased asthma sy numerous crite ample, the odd s from interqua tants = 1.37 (9 quartile range in ldehyde. h PEF was four number of sub sification, impo ollutant respon	s filled out corded peak expi- st one of several mptom severity ria air pollutants ls ratio for urtile range 5% CI = 1.04– ncrease of nd. jects, possible ossible to deter- usible.	Delfino et al. 2003

Table C.3. (C	ontinued). Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Formaldehy	de (<i>Con</i>	tinued)						
SELECTED REF	ERENCES I	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table (Conti	nued)			
_	2005	Local irritation of the upper respiratory tract	Human— volunteers	Short term inhalation: 370 µg/m ³ (exposure details not specified)	NOAEL = 370 µg/m ³	~3		Schupp et al. 2005
		The authors developed an ap sure levels for VOCs release Exposure Levels Inside Auto mutagenic substances, or EL risk-based "acceptable" expo For formaldehyde, the author upper respiratory tract, base exposure level of 125 µg/m ³ (BGA 1992). The study auth the general population. The anism for acute and chronic value of 125 µg/m ³ was used The average concentration of in FAT 1998) did not exceed	proach (including red d inside cars: (1) Sho ponotive vehicles for r JA _{cm} . They applied t psure levels to concern rs considered the Ger d on Deutsch Forschr (about the German N ors concluded that the refore, because local toxicity, as well as "t d for the STELIA, ELI formaldehyde measu the ELIAs.	commended uncertainty f rt Term Exposure Levels I non-genotoxic substances this concept to acetaldehy ntrations in cars. man MAK value of 370 µg ungsgemeinschaft 2000 ar <i>M</i> AK value) recommended is factor of about 3 was an irritation of the upper resp the most likely threshold in A _{systemic} , ELIA _{local} , and F ured in chamber tests desi	actors) for developing nside Automotive Ve , or ELIAs; and (3) EL de, formaldehyde, an g/m ³ (essentially a NC ad Schlink et al. 1999 l by the former Bunde n appropriate uncerta piratory tract was com mechanism that prece LIA _{cm} . gned to simulate cars	g maximum "a hicles, or STI IAs for carcir d xylene, and DAEL for loca), and the ma esgesundheits inty factor fo isidered to be edes tumor fo at 23°C (48 p	acceptable" expo- ELIAs; (2) chronic agenic and d compared these l irritation of the ximum indoor air samt in Germany r extrapolation to the critical mech- rmation," this ag/m ³ , as reported	
_	2004	Allergic inflammatory responses (immunogenic and neurogenic)	Mice—female, C3H/He (allergic mouse model) (<i>n</i> = 5 per group)	Inhalation of 101, 483, or 2305 µg/m ³ formaldehyde, 16 hrs/day, 5 days/wk, 12 wks.	LOAEL = 101 µg/m ³ (significantly decreased levels of nerve growth factor in bron- chioalveolar lavage fluid in	Additional observed a els. The au this is the evidence o induced di nogenic an responses	effects were t higher dose lev- thors note that first experimental f formaldehyde- fferential immu- d neurogenic in allergic mice.	Fujimaki et al. 2004

Table C.3. (Continued). Summary of Chronic Noncancer Toxicity Data for Each MSAT									
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference	
Formaldehyde (<i>Continued</i>)									
SELECTED REFERENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table (Continued)									

— 20	002 Asthma	Humans— children aged $6 \mod 3$ yr. Case control study: asthma cases (n = 88) and controls $(n = 104)$ from Perth, Australia	Inhalation of formaldehyde indoors. Formaldehyde measured in children's bedroom and living room in winter and summer (mean = 27.5–30.2 µg/ m ³ , max = 189.7–224 µg/m ³).	LOAEL = 60 µg/m ³ for a significantly increased risk of asthma	Asthma subjects, and also children who reported wheeze, were exposed to significantly higher average indoor levels of formaldehyde. Children exposed to $\geq 60 \ \mu g/m^3$ formaldehyde were found to be 39% more likely to have asthma than those who were not exposed to such levels.	Rumchev et al. 2002
------	------------	---	--	---	---	------------------------

n-Hexane

REFERENCES U	JSED TO S	UPPORT THE TOXICITY CRITER Neurotoxicity (electrophysiological alterations)	IA DEVELOPMENT Human— workers in a tungsten carbide alloy factory	Inhalation: 8 hrs TWA exposure (duration adjusted) = 7.3 \times 10 ⁴ µg/m ³ , exposure duration (ove) = 6.2 yrs	LOAEL (HEC) = 7.3 \times 10 ⁴ µg/m ³	300	200 µg/m ³ *	Sanagi et al. 1980
		Epithelial lesions in the nasal cavity	B6C3F1 mouse	Inhalation: 6 hrs/day, 5 days/wk, 90 days	NOAEL (HEC) = $3.8 \times 10^4 \mu g/m^3$; LOAEL (HEC) = $7.7 \times 10^4 \mu g/m^3$	_		Dunnick et al. 1989

* This value has been updated. See Table C.1.

Table C.3. (Con	tinued). Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
n-Hexane (Co	ntinue	<i>d</i>)						
R EFERENCES USE	D TO S	UPPORT THE TOXICITY CRITERIA	DEVELOPMENT (Cont	inued)				
REL, Cal EPA	2000	Peripheral neuropathy (elec- tromyographic alterations; dose-related abnormal pos- ture and muscle atrophy)	SM-A strain mouse, male	Inhalation: 24 hrs/day, 6 days/wk, 1 yr	LOAEL = $8.83 \times 10^5 \ \mu g/m^3;$ NOAEL (HEC) = $2.04 \times 10^5 \ \mu g/m^3$	30	$7 imes 10^3 \ \mu g/m^3$	Miyagaki 1967
MRL, ATSDR	<u>1999</u>	Neurotoxicity (alterations in muscle strength, vibration sensation, and motor nerve conduction velocity)	Human—workers in a tungsten car- bide alloy factory	Inhalation: 8 hrs TWA exposure = $2.05 \times 10^5 \pm 1.45 \times 10^5 \mu g/m^3$, expo- sure duration (avg) = 6.2 yrs	LOAEL = 0.20 µg/m ³	100	$\begin{array}{c} 2.12\times10^{3}\\ \mu\text{g/m}^{3} \end{array}$	Sanagi et al. 1980
SELECTED REFER	ENCES F	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table				
	1991	Various health endpoints evaluated, including histo- logic evaluations and neu- robehavioral assessments	B6C3F1 mouse	Inhalation: 6 hrs/day, 5 days/wk, 13 wks (for all doses tested: 0, 1.8×10^{6} , 3.5×10^{6} , 1.4×10^{7} , and $3.2 \times 10^{7} \mu g/m^{3}$) An additional group was exposed to $3.5 \times 10^{6} \mu g/m^{3}$ for 22 hrs/day, 5 days/wk,13 wks (denoted "continuous")	The incidence and s increased with increased with increased with increased with increased and respiratory epimost mice at 3.2 × olfactory epithelia a few mice at 3.5 × m ³ . Minimal nerver occurred at 3.5×10^{7} µg/m ³ . The decrease in locome 3.5×10^{6} µg/m ³ (cm ³ . (The author all viously published The author conclusion concentrations up in only minimal to lesions of the nasa ane exposure, but seen at 3.5×10^{6} µ	severity of na reasing dose erative lesion ithelium wer $(10^7 \ \mu g/m^3, \)$ l changes we $(10^6 \ \mu g/m^3)$ e damage (par $10^6 \ \mu g/m^3)$ (co he only beha otor activity (continuous) a so summariz human and a ded that "exp to (3.2 × 10" oxicity," and " l cavity occu minimal or n g/m ³ or belo	asal lesions . Inflammatory, is of the olfactory while minimal re present in only and $1.8 \times 10^6 \text{ µg/}$ anodal swellings) ontinuous) and wior change was a in female mice at and $3.2 \times 10^7 \text{ µg/}$ es numerous pre- animal studies.) posure of mice to 7 µg/m^3) resulted "exposure-related rred after <i>n</i> -hex- to effects were ow" (pg 3).	Dunnick 1991 (NTP Toxicity study)

oxicity riteria/ ource	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference	
-Hexane ((Continue	d)							
ELECTED REF	FERENCES H	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table (Contin	ued)				
_	1993	Polyneuropathy	In this review, the aupathy, a subsequent in mice, studies of χ (from 1.77 \times 10 ⁶ µg concludes that exp that the Japanese T peripheral nerves.	this review, the author summarizes: early case reports (1960s) of <i>n</i> -hexane-induced polyneuro- bathy, a subsequent early animal study showing <i>n</i> -hexane induced peripheral nerve impairment n mice, studies of workers exposed to <i>n</i> -hexane, and the history of revisions to the Japanese TLV from $1.77 \times 10^6 \mu\text{g/m}^3$ to $3.53 \times 10^5 \mu\text{g/m}^3$ in 1967 to $1.41 \times 10^5 \mu\text{g/m}^3$ in 1986). The author concludes that exposure to $> 3.53 \times 10^5 \mu\text{g/m}^3$ is low enough to prevent subclinical impairment of hat the Japanese TLV of $1.41 \times 10^5 \mu\text{g/m}^3$ is low enough to prevent subclinical impairment of peripheral nerves.					
_	1996	Persistent sensory nerve effects	Human—workers diagnosed with <i>n</i> -hexane induced polyneuropathy (<i>n</i> = 90)	Inhalation: prior occupational exposure, shoe manufacturing workers	_	_	_	Valentino 1996	
		In this follow-up study, the a n-hexane induced polyneur tional <i>n</i> -hexane exposure; for nerve velocities. In contrast, without exposure.	uthors re-evaluated e opathy. For all of the or some of the subject sensory nerve effects	lectroneurographic pattern subjects, at least one year h s, over ten years had passe s remained statistically diff	s for 90 subjects pre- ad passed since diag d. The authors found erent from controls,	viously diagno gnosis and ces l a complete re even after mo	osed with sation of occupa- ecovery of motor re than ten years		
	1997	Significant reduction in total serum immunoglobulin levels compared to unexposed controls	Human—workers in Turkish shoe factories (<i>n</i> = 35)	Inhalation: occupational exposure	$\begin{array}{l} TWA \ exposure = \\ 8.12 \times 10^4 \ to \\ 7.59 \times 10^5 \ \mu g/m^3 \\ (mean = \\ 4.24 \times 10^5 \ \mu g/m^3) \end{array}$	_	_	Karakaya et al. 1997	
		The authors also summarized four previously published rodent studies showing suppression of a variety of immune functions following exposure to hexane metabolites. Overall, although the available animal data are "not sufficient to make a proper judg- ment of risk," the authors conclude that their findings "provide further evidence that <i>n</i> -hexane toxicity is not limited to the ner- vous system, but that it can also effect the immune system in humans" (p 124).							

Table C.3. (Co	ontinued). Summary of Chronic Nonca	ncer Toxicity Data for	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
n-Hexane (C	ontinue	ed)						
SELECTED REFE	ERENCES 1	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table (Contin	ued)			
	1999	Neurotoxicity	In this review, the at with the first case r The author describe exposures to <i>n</i> -hex the history of <i>n</i> -hex they conclude are t "because a growing icity from <i>n</i> -hexane 10^5 µg/m^3 , even this	thor summarizes the histor eports in Japanese literatur es numerous subsequent str ane." The author compares cane occupational standard he shortcomings of US occu- number of clinical reports e near, at, and below the cu- is level is too high to protect	ry of <i>n</i> -hexane neur- e in the 1960s and the udies showing neuro the history of <i>n</i> -hex s in the US and other upational standards have identified clin rrent time-weighted that workers" (p 452)	otoxicity stud he first US ca opathy at "rel ane neurotox er countries to . The author o ical and subo average TLV 7).	lies, beginning se report in 1971. atively low levels icity studies with o illustrate what concludes that clinical neurotox- of 1.77 \times	Lanska 1999
	2002	Color vision impairment: significant differences in color discrimination com- pared to controls	Human—leather industry workers diagnosed with polyneuropathy following <i>n</i> -hexane expo- sure (<i>n</i> = 26)	Inhalation: occupational exposure	_			Issever et al. 2002
		The authors conclude that th color vision.	ese results may indic	ate a relationship between a	n-hexane exposure a	and developn	nent of defects in	•
							Table con	ntinues on next page

Table C.3. (Con	ntinued)	. Summary of Chronic Nonca	ncer Toxicity Data for	Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Lead Compou	nds							
R EFERENCES USE	ed to Su	JPPORT THE TOXICITY CRITERIA	DEVELOPMENT					
IRIS, EPA	<u>2004</u>	Lead exposure can be associa are more sensitive to health Health effects associated wit toxicity criteria (i.e., reference ate to develop reference value	ted with various heal effects from lead, and h lead exposures are ce concentrations or c les for lead.	th effects, such as neurotos have a higher risk of lead e generally evaluated based ancer unit risks). In its IRI	kicity and developr exposure, due to fre on blood lead level S file for lead, EPA	nental delays. equent hand-to s, as opposed concluded the	Young children p-mouth behavior. to using standard at it is inappropri-	EPA 2004
SELECTED REFER	ENCES F	ROM UPDATED LITERATURE SEA	RCHES, defined at the	e end of this table				
NAAQS, EPA	2004	EPA has set a National Ambie	ent Air Quality Standa	ard (NAAQS) for lead of 1.	5 μg/m ³ (quarterly	average).	1.5 μg/m ³	EPA 2004
Blood lead level, CDC	2004	The Centers for Disease Contr of concern in children. A CE health effects at blood lead lead a definitive causal inter-pret and adverse health indicator that these associations are, a below 10 µg/dL, the CDC has dL, clinical interventions are inherent in laboratory testing ting a new level of concern v adverse effects are not exper	col and Prevention (Cl OC work group recent evels < 10 μg/dL, and ation of the observed s, the weight of availa t least in part, causal. s not revised its blood e not effective at lowe g preclude accurate b vould be arbitrary bec ienced.	DC) has identified 10 µg/dl y reviewed the literature to concluded that "while avat associations between high able evidence favors, and d " Although health effects h a lead level of concern, becc- ring blood lead levels or re- lood lead level classification ause there is no clear evide	L as the blood lead o evaluate the evid ilable evidence do er BLLs in the rang oes not refute, the i ave been postulate ause (1) at levels le educing risks, (2) in on below 10 µg/dL, ence of a threshold	level (BLL) ence for es not permit e < 10 μg/dL nterpretation d to occur ss than 10 μg/ laccuracies and (3) set- below which	Blood lead level of concern in children: 10 µg/dL	CDC 2004

Table C.3. (Continued). Summary of Chronic I	Noncancer Toxicity Data for	Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Lead Comp	ounds (C	ontinued)						
SELECTED RE	FERENCES F	FROM UPDATED LITERATU	RE SEARCHES, defined at the	e end of this table (Contin	ued)			
Gradient Corp.	2004	EPA's Adult Lead Mode exposure conditions. (levels at various air le The model determines case, exposure to lead Lead uptake is calculat (InhR, 20 m ³ /day), and assumed to be 24 hrs/ assumed to be one yea uptake into the body t 0.4 (µg/dL per µg/day) The incremental blood 0.002 to 0.1 µg/dL.	el (EPA 2003) can be used to Gradient Corp. has used this ad concentrations of potent: the incremental increase in in air), as follows: $\Delta PbB_{air} = \frac{EF}{AT} \times \frac{ET}{24}$ ed by multiplying the conce d the absorption fraction (A: day, 365 days/year. The ave ar (i.e., 365 days). The biokin o an incremental increase in) was used for the BKSF. leads are presented in the m	p predict adult blood lead h s model to evaluate increm ial interest. blood lead due to the lead $F - PbA \times InhR \times AF_a \times BKSF$ entration of lead in air (PbA F) for lead in air (0.32). Th raging time (AT) for chroni netic slope factor (BKSF) re n blood lead level in adults next column. Blood lead in	A) by the inhalation e exposure frequence c exposure to lead i elates the increment s. EPA's default valu	h given lood lead in this rate cy was n soil is cal lead le of m	Incremental increases in adult blood lead levels: • 0.002 μ g/dL at the mini- mum (mean) air conc. 9.67 × 10 ⁻⁴ μ g/m ³ • 0.07 μ g/dL at the maximum (mean) air conc. 0.027 μ g/m ³ • 0.006 μ g/dL at the mean in- vehicle conc. 0.0024 μ g/m ³ • 0.1 μ g/dL at the maximum in-vehicle conc. 0.04 μ g/m ³	
							Table cont	tinues on next p

Table C.3. (Co	ntinued). Summary of Chronic Nonc	ancer Toxicity Data for	Each MSAT					
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference	
Lead Compou	ınds (C	ontinued)							
SELECTED REFE	RENCES F	ROM UPDATED LITERATURE S	EARCHES, defined at the	e end of this table (Conti	nued)				
Gradient Corp.	2004	 The Integrated Exposure Uptake Biokinetic (IEUBK) Model (EPA 1994) can be used to predict children's blood lead levels associated with given exposure conditions. The IEUBK Model is a computer-based deterministic simulation that estimates the blood lead concentration in children resulting from their exposure to lead in soil, dust, drinking water, diet, and air. Gradient Corp. has used this model to evaluate incremental increases in blood lead levels at various air lead concentrations of potential interest. Specifically, the model estimates the intake and uptake of lead into the body and then uses biokinetic modeling to predict blood lead levels. Because of variations in behavior and physiology among individual children, different children will have different blood lead levels, even if they are exposed to the same environment. The IEUBK Model addresses this by treating its central estimate of blood lead concentration (averaged over childhood from age 0 to 7 yrs) as a geometric mean (GM) of a lognormal distribution among similarly exposed children. A default GSD of 1.6 is used to calculate the proportion of children in the variable population whose blood lead levels, Gradient Corp. performed a baseline calculation where the model was run using an air concentration of zero. Subsequent model runs used potential air concentrations of interest ranging from 9.67 × 10⁻⁴ µg/m³ to 0.04 µg/m³ (which included the minimum and maximum mean air lead concentrations for ambient air and in-vehicle). The modeling results showed that the blood lead outputs were the same in all cases, indicating that the model is not sensitive enough to detect a difference in blood lead due to these very low air lead concentrations. 							
Manganese									
R EFERENCES US	ED TO SI	UPPORT THE TOXICITY CRITERI	A DEVELOPMENT						
RfC, IRIS	<u>1993</u>	Impairment of neurobehavioral function	Human— occupational	Inhalation: 5.3 yrs (0.2–17.7 yrs)	LOAEL (HEC) = 50 µg/m ³	1000	0.05 μg/m ³	Roels et al. 1992 Roels et al. 1987	
Chronic REL, Cal EPA	<u>2000</u>	Impairment of neurobehavioral function	Human— occupational	Inhalation: 8 hrs/day, 5 days/wk, average 5.3 yrs (0.2–17.7 yrs)	LOAEL (HEC) = 54 µg/m ³	300	0.2 μg/m ³	Roels et al. 1992	
Chronic MRL, ATSDR	<u>2000</u>	Abnormal performance in neurobehavioral tests	Human— occupational	Inhalation: 5.3 yrs (0.2–17 yrs)	BMDL ₁₀ (ADJ) = 17.6 μg/m ³	500	0.04 μg/m ³	Roels et al. 1992	
							Table c	ontinues on next pag	

ontinued	<i>I</i>). Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
(Contin	ued)						
ERENCES	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table				
1999	Impaired performance on simple reaction time, motor function, memory tests	Human— occupational (Review of Mn studies using psychological tests)	Inhalation: 9.9 yrs (1–35 yrs)	LOAEL = 150 µg/m ³ (average worker exposures)	_	_	Iregren 1999
2001	Neurotoxicity	Human— occupational	Inhalation	This study provide may develop at a pared to the gener that welding func- may be a risk facto	es evidence that younger age in v al population, t es (which conta or for parkinson	parkinsonism velders, as com- hus suggesting in manganeses) ism.	Racette et al. 2001
2003	No significance neurobehav- ioral effects (motor func- tion, cognitive ability, simple reaction time)	Human— occupational, South African mine workers	Inhalation: 10.8 yrs (1–41 yrs)	NOAEL = 210 µg/m ³ (aver- age exposure across all jobs)	-	_	Myers et al. 2003a
2003	Memory, cognitive ability, motor function, simple reaction time, postural tremor, sway	Human— occupational, South African smelter	Inhalation: 18.2 yrs (SD 7.6 yrs)	According to the st little convincing e effects (avg expos 10 ³ μg/m ³). Howe related difference bol tests (both of	udy authors, re evidence of neu ure ranged up to ever, there were s for digit span which test cogn	sults provided cobehavioral o 5.08 × exposure- and digit sym- itive ability).	Myers et al. 2003
	Image: ontinue of the second seco	Image: symmetry of chronic Noncase Year Endpoint Continued Endpoint Image: symmetry of chronic Noncase Image: symmetry of chronic Noncase 1999 Impaired performance on simple reaction time, motor function, memory tests 2001 Neurotoxicity 2003 No significance neurobehavioral effects (motor function, cognitive ability, simple reaction time) 2003 Memory, cognitive ability, motor function, simple reaction time, postural tremor, sway	ontinued). Summary of Chronic Noncancer Toxicity Data for Animal Strain or Human PopulationYearEndpointAnimal Strain or Human Population(Continued)ERENCES FROM UPDATED LITERATURE SEARCHES, defined at the imple reaction time, motor function, memory tests1999Impaired performance on simple reaction time, motor function, memory testsHuman— occupational (Review of Mn studies using psychological tests)2001NeurotoxicityHuman— occupational (Review of Mn studies using psychological tests)2003No significance neurobehav- ioral effects (motor func- tion, cognitive ability, simple reaction time)Human— occupational, South African mine workers2003Memory, cognitive ability, motor function, simple reaction time, postural tremor, swayHuman— occupational, South African smelter	ontinued). Summary of Chronic Noncancer Toxicity Data for Each MSATYearEndpointAnimal Strain or Human PopulationRoute and Duration of Exposure(Continued)ERENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table1999Impaired performance on simple reaction time, motor function, memory testsHuman— occupational (Review of Mn studies using psychological tests)Inhalation: 9.9 yrs (1-35 yrs)2001NeurotoxicityHuman— occupational (Review of Mn studies using psychological tests)Inhalation2003No significance neurobehav- ioral effects (motor func- tion, cognitive ability, simple reaction time)Human— occupational, South African mine workersInhalation: 10.8 yrs (1-41 yrs)2003Memory, cognitive ability, motor function, simple reaction time, postural tremor, swayHuman— occupational, South African smelterInhalation: 18.2 yrs (SD 7.6 yrs)	ontinued). Summary of Chronic Noncancer Toxicity Data for Each MSAT Year Endpoint Animal Strain or Human Population Route and Duration of Exposure NOAEL and LOAEL (Continued) EXENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table LOAEL = 150 µg/m ³ (average worker exposures) LOAEL = 150 µg/m ³ (average worker exposures) 2001 Neurotoxicity Human— occupational (Review of Mn studies using psychological tests) Inhalation This study provide may develop at a pared to the gene that welding func- many be a risk fact 2001 No significance neurobehav- ioral effects (motor func- tion, cognitive ability, mine workers Inhalation: 10.8 yrs (1-41 yrs) NOAEL = 210 µg/m ³ (aver- age exposure across all jobs) 2003 Memory, cognitive ability, motor function, simple reaction time, postural tremor, sway Human— occupational, South African smelter Inhalation: 18.2 yrs (SD 7.6 yrs) According to the st little convincing e effects (arg exposure ald difference bol tests (both of the staled difference	ontinued). Summary of Chronic Noncancer Toxicity Data for Each MSAT Year Endpoint Animal Strain or Human Population Route and Duration of Exposure NOAEL and LOAEL Uncertainty Factor Continued) EXENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table Inhalation: 9.9 yrs (1-35 yrs) LOAEL = 150 µg/m ³ (average worker exposures)	ontinued). Summary of Chronic Noncancer Toxicity Data for Each MSAT Year Endpoint Animal Strain or Human Population Route and Duration of Exposure NOAEL and LOAEL Uncertainty Factor Toxicity Criteria (Continued) EMENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table Inhalation: 9.9 yrs LOAEL = 150 µg/m ³ (average worker exposures) — — — 2001 Neurotoxicity Human— occupational function, memory tests Inhalation excupational (tests) Inhalation This study provides evidence that parkinsonism may develop at a younger age in welders, as com- pared to the general population, thus suggesting the elistic function, cognitive ability, simple reaction time, ioral effects (moto func- tion, cognitive ability, motor function, simple reaction time, postural tremor, sway Inhalation: 10.8 yrs (DAEL = 210 µg/m ³ (aver- across all jobs) — — 2003 Memory, cognitive ability, motor function, simple reaction time, postural tremor, sway Human— occupational, South African simelter Inhalation: 18.2 yrs (D 7.6 yrs) According to the study authors, results provided little convincing evidence of neurobehavioral effects (avg exposure ranged up to 5.08 × 10 ³ µg/m ³). However, there were exposure- related differences for digit sym- bol tests (both of which test cognitive ability).

Table C.3. (Con	tinued)	. Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Mercury Com	pounds	6						
R EFERENCES USE	ED TO SU	JPPORT THE TOXICITY CRITERIA	DEVELOPMENT					
RfC, IRIS (ele- mental mer- cury)	<u>1995</u>	Hand tremor, increases in memory disturbance; slight subjective and objective evidence of autonomic dys- function	Human— occupational	Inhalation	LOAEL (ADJ) = 9 μg/m ³	30	0.3 μg/m ³ (elemental mercury)	Fawer et al. 1983; Piikivi and Tolo- nen 1989; Piikivi and Hanninen 1989; Piikivi 1989; Ngim et al. 1992; Liang et al. 1993
REL, Cal EPA	2000	Nervous system: hand tremor, memory and sleep disturbances, neurobehav- ioral and autonomic dys- function	Human— occupational	Inhalation: average duration = 13.7–15.6 yrs	LOAEL (HEC) = 8.9 µg/m ³	100	0.09 μg/m ³ (Mercury salts, elemental mercury)	Fawer et al. 1983; Piikivi and Tolo- nen 1989; Piikivi and Hanninen 1989; Piikivi 1989; Ngim et al. 1992; Liang et al. 1993
MRL, ATSDR (chronic inha- lation MRL for metallic mer- cury vapor)	2001	Increased frequency of hand tremors	Human— occupational, manufacture of fluorescent tubes, chloralkali, or acetaldehyde	Inhalation: average duration = 15.3 yrs	LOAEL (ADJ) = $6.2 \ \mu g/m^3$	30	0.2 μg/m ³	Fawer et al. 1983
SELECTED REFER	ENCES F	ROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table		1		
	1996	This review summarizes rese of the studies presented focu authors conclude that "there	arch presented at a 1 1s on methylmercury 2 is limited understan	996 conference on the new exposure and health effec ding of the effects at lower	rotoxicity of mercury ts, and not metallic o c levels of exposure" (7. Most or inorganic n (p 13).	nercury. The	Cranmer et al. 1996
	1	1					Table con	ntinues on next page

Table C.3. (Continued) Summary of Chronic Nonceur Toxicity Data for Each MSAT Toxicity Source Year Endpoint Animal Strain or Human Population Route and Duration of Exposure NOAEL and LOAEL Uncertainty Factor Toxicity Criteria Reference Mercury Computational Continued Immunotoxicity This article reviews studies investigating exposure to metallic mercury vapor and the effect on various immune parameters (e.g. immunogloanul). In evels, acute phase proteins, autoantibod- lies, and polynorphonuclear leucocycle functiona). The studies studies vary considerable, with some positive, some negative, and some borderhane results. Some that suggest suppressing effects on the with "immune parameters (e.g. immunogloanul). It evels allos studies vary considerable, and the studies in the studies and suggest suppressing effects on the with "immune parameters (e.g. immunogloanul). The studies states vary considerable, studies the states vary considerable, with some positive report that intension one' [10]. Moszzynaki 199 1999 Reproductive taxicity This review summarizes animal studies, case studies, and epidemiologic studies evaluating poten- ia remoduli we tribulant and the states is possitive report that intension one' [10]. Some positive report that intension most intermine parameters (p. 10). The authors also note that "no positive report that intension most intermine and and behavioral effects in offspring have been reported, but the studies feature is a studies. Some new possitive report that intension one' [10]. Schurus 199 2000 This review addresses elementametrus and stat									
Toxicity Criteria's SourceYearEndpointAnimal Strain or Human PopulationNOAEL and Duration of ExposureNOAEL and LOAELToxicityToxicityReferenceSuccess and the indepointSuccess and the indepointToxicityReferenceSuccess and the indepointSuccess and the indepointSuccess and the indepointSuccess and the indepointSuccess and the indepointIndepointThis article reviews studies investigating exposure to metallic mercury vapor and the effect on various imune parameters (e.g. immunoploubul levels, acate pase proteins, autoantibod- ies, and polymorphonuclear reusory functions). The available studies vary considerable, with some positive, some negative, and some bodefine inersults. Some data suggest suppressing effects on the human immune system, while other data suggest stimulting effects. The euthors also note that "no positive report that mercury vapor could be carcinogenic in man has appeared up to now" (p 10)1999Reproductive toxicity from mercury vapor exposure. Reproductive problems (spontaneous abortion, stillbirths, congenital malformations, infortlint, menstrual cycle disturbances, inhibi- the or ovariation, and behavioral effects in offspring have been reported, but the studies causes "interneous" abortion, stillbirths, congenital malformations, interneous appreaching or exceeding the TX." The authors conclude that "the safety of moderate and reproductive problems (spontaneous abortion, stillbirths, congenital malformations, interneous ecoses "interneous" appreaching or levels around 50 (graft "has been sector of the inturbunes, mercury disturb	Table C.3. (Con	ntinued). Summary of Chronic Nonca	ancer Toxicity Data for	Each MSAT				
Mercury Computed (Continued) Statistical References Statistical References References References References References Mossaczynski 199	Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
SILECTED REFERENCES FROM UPDATED LITERATURE SCARCHES, defined at the end of this table (Continued) Mosc 2000	Mercury Com	pound	s (Continued)						
- 1999 Immunotoxicity This article reviews studies investigating exposure to metallic mercury vapor and the effect on various immune parameters (e.g. immunoglobulin levels, acute phase proteins, autoantibot, some positive, some negative, and some borderline results. Some data suggest suppressing effects on the human immune system, while other data suggest stimulating effects. The authors conclude that "a full understanding of the relevance of the immunotoxicity tests to man is still incomplete" (p 10). The authors also note that "no positive report that mercury vapor could be carcinogenic in man has appeared up to now" (p 10). Schuurs 1999 - 1999 Reproductive toxicity This review summarizes animal studies, case studies, and epidemiologic studies evaluating potential report to be in string incomplete (p 10). The authors also note that "no positive report that mercury vapor could be abortion, stillistriks, congenital malformations, infertility, mentrul cycle disturbances, inhibition of ovulation, and behavioral effects in offspring) have been reported, but the studies "establishing a relationship between occupational mercury exposure and reproductive problems most likely concern women exposed to mercury concentrations approaching or exceeding the TLV." The authors conclude that "the safety of moderate and ven low occupational exposure is, however, not proven and safe levels are not determined" (p 254). Satoh 2000 - 2000 This review addresses elemental mercury and methylmercury. Exposure to about 5 × 10 ³ to 10 ⁴ µg/m ³ mercury vapor can result in bronchitis, bronchiolitis, pneumonitis, excitability, and tremers. Moderate and repeated exposure causes "micromurcurialism," characterized by weakness, fatigue, anorexia, loss of weight, and gastrointestinal disturbances.	SELECTED REFER	RENCES I	FROM UPDATED LITERATURE SE	ARCHES, defined at the	e end of this table (Contin	ued)			
- 1999 Reproductive toxicity This review summarizes animal studies, case studies, and epidemiologic studies evaluating potential reproductive toxicity from mercury vapor exposure. Reproductive problems (spontaneous abortion, stillbirths, congenital malformations, infertility, menstrual cycle disturbances, inhibition of ovulation, and behavioral effects in offspring) have been reported, but the studies "establishing a relationship between occupational mercury exposure and reproductive problems most likely concern women exposed to mercury concentrations approaching or exceeding the TLV." The authors conclude that "the safety of moderate and even low occupational exposure is, however, not proven and safe levels are not determined" (p 254). Satoh 2000 2000 This review addresses elemental mercury and methylmercury. Exposure to about 5 × 10 ³ to 10 ⁴ µg/m ³ mercury vapor can result in bronchilitis, pneumonitis, excitability, and tremors. Moderate and repeated exposure (uses than a few mg/m ³ , > 0.05 mg/m ³ mercury vapor) causes tremor, erethism, and gingivitis. Lower repeated exposure (uses than a few mg/m ³ , > 0.05 mg/m ³ has been associated with minor renal tubular defects, tiredness, memory disturbance, subclinical finger tremor, slower and attenuation of power spectrum EEG, and other neurobehavioral and neuropsychological effects. Some effects persist after cessation of exposure. Satoh 2000 - 2003 This comprehensive article reviews elemental mercury, inorganic mercury, and organic mercury. Health effects associated with high concentrations of mercury vapor include CNS defects, insomnia, forgetfulness), loss of appetite, tremor, erethism, and other peripheral and autonomic signs with long term exposure to lower levels. Health effects associated with high concentrations of me		1999	Immunotoxicity	This article reviews a on various immune ies, and polymorph some positive, some on the human immu clude that "a full un incomplete" (p 10). carcinogenic in man	studies investigating exposes parameters (eg, immunoglonuclear leucocyte function e negative, and some border une system, while other dates aderstanding of the relevan The authors also note that n has appeared up to now"	sure to metallic mere obulin levels, acute ons). The available s rline results. Some c ta suggest stimulati the of the immunoto "no positive report (p 10).	cury vapor and phase proteins, tudies vary cons lata suggest sup ng effects. The a xicity tests to m that mercury va	the effect , autoantibod- siderably, with pressing effects authors con- an is still por could be	Moszczynski 1999
 This review addresses elemental mercury and methylmercury. Exposure to about 5 × 10³ to 10⁴ µg/m³ mercury vapor can result in bronchitis, bronchiolitis, pneumonitis, excitability, and tremors. Moderate and repeated exposure (less than a few mg/m³, > 0.05 mg/m³ mercury vapor) causes tremor, erethism, and gingivitis. Lower repeated exposure causes "micromurcurialism," characterized by weakness, fatigue, anorexia, loss of weight, and gastrointestinal disturbances. Exposure to mercury vapor levels around 50 µg/m³ has been associated with minor renal tubular defects, tiredness, memory disturbance, subclinical finger tremor, slower and attenuation of power spectrum EEG, and other neurobehavioral and neuropsychological effects. Some effects persist after cessation of exposure. 2003 This comprehensive article reviews elemental mercury, inorganic mercury, and organic mercury. Health effects associated with high concentrations of mercury vapor include pneumonitis, bronchitis, and acrodyna (diffuse pruritic rash). Health effects associated with lower concentrations of mercury vapor include CNS defects, insomnia, forgetfulness, loss of appetite, tremor, erethism, and other peripheral and autonomic signs with long term exposure to lower levels. Health effects associated with inorganic mercury salts include renal injury, CNS damage, anemia, tremors, central neuropathy, acrodynia, and behavior alterations. The authors also discuss at length the possible immunotoxic effects of mercury, and suggest that low levels of mercury exposure (< 40 µg/kg bw) in adults may exacerbate systemic autoimmunity in susceptible individuals. 	_	1999	Reproductive toxicity	This review summar tial reproductive to: abortion, stillbirths, tion of ovulation, ar lishing a relationshi likely concern wom The authors conclu ever, not proven an	izes animal studies, case st xicity from mercury vapor , congenital malformations nd behavioral effects in off ip between occupational m nen exposed to mercury con de that "the safety of mode d safe levels are not determ	cudies, and epidemic exposure. Reproduc , infertility, menstru spring) have been re nercury exposure an ncentrations approa rate and even low o nined" (p 254).	blogic studies ev ctive problems (al cycle disturb ported, but the d reproductive j ching or exceed ccupational exp	valuating poten- spontaneous ances, inhibi- studies "estab- problems most ing the TLV." oosure is, how-	Schuurs 1999
 This comprehensive article reviews elemental mercury, inorganic mercury, and organic mercury. Health effects associated with high concentrations of mercury vapor include pneumonitis, bronchitis, and acrodyna (diffuse pruritic rash). Health effects associated with lower concentrations of mercury vapor include CNS defects, insomnia, forgetfulness, loss of appetite, tremor, erethism, and other peripheral and autonomic signs with long term exposure to lower levels. Health effects associated with inorganic mercury salts include renal injury, CNS damage, anemia, tremors, central neuropathy, acrodynia, and behavior alterations. The authors also discuss at length the possible immunotoxic effects of mercury, and suggest that low levels of mercury exposure (< 40 µg/kg bw) in adults may exacerbate systemic autoimmunity in susceptible individuals. 	_	2000	This review addresses eleme result in bronchitis, bronch mg/m ³ , > 0.05 mg/m ³ merce alism," characterized by we vapor levels around 50 µg/r finger tremor, slower and at effects persist after cessatio	ental mercury and metliolitis, pneumonitis, eury vapor) causes trem akness, fatigue, anores n ³ has been associated tenuation of power spennet	hylmercury. Exposure to al xcitability, and tremors. M tor, erethism, and gingivitis kia, loss of weight, and gast with minor renal tubular of ectrum EEG, and other neur	pout 5 × 10 ³ to 10 ⁴ oderate and repeate s. Lower repeated ex trointestinal disturb defects, tiredness, m robehavioral and ne	ug/m ³ mercury - d exposure (less posure causes ' ances. Exposure emory disturban uropsychologica	vapor can s than a few 'micromurcuri- to mercury nce, subclinical al effects. Some	Satoh 2000
	_	2003	This comprehensive article r with high concentrations of effects associated with lowe tremor, erethism, and other with inorganic mercury salt alterations. The authors also cury exposure (< 40 µg/kg b	eviews elemental mer mercury vapor incluc er concentrations of meripheral and autono ts include renal injury, o discuss at length the ow) in adults may exact	cury, inorganic mercury, an le pneumonitis, bronchitis ercury vapor include CNS omic signs with long term o , CNS damage, anemia, tren possible immunotoxic effe cerbate systemic autoimmu	nd organic mercury. , and acrodyna (diff defects, insomnia, f exposure to lower le mors, central neurop ects of mercury, and nity in susceptible i	Health effects a use pruritic rash orgetfulness, los vels. Health effo athy, acrodynia suggest that low ndividuals.	associated n). Health ss of appetite, ects associated a, and behavior w levels of mer-	Tchounwou et al. 2003

xicity iteria/ urce	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
ercury Co	mpound	s (Continued)						
lected R ef	FERENCES F	ROM UPDATED LITERATU	RE SEARCHES, defined at the	e end of this table (Contin	ued)			
_	2003	This review article add religious uses, methyl noted to be the centra irritation, pneumoniti that proteinureia, per exposures, such as in changes and memory cury vapor from amal have been suggested,	Iresses mercury vapor from of mercury in fish, and ethylm l nervous system, the periph is, metallic taste, stomatitis, g ipheral neuropathy, erethism the dental office, are lower a loss" (p 1733). Although pos gams and degenerative disea the authors conclude that th	dental amalgams, exposure hercury (thimerosal) in vacc heral nervous system, and t gingivitis, and increased sa n (bizarre behavior), and tre and may lead to mild, reve ssible associations between ases such as Alzheimer's di he available epidemiologic s	to mercury vapor cines. The target or he kidney. The aut livation occur at > emor occur at > 500 rsible effects on the long-term exposu sease, multiple scl studies show no co	from spills or cu gans for mercury hors summarize 1000 µg/m ³ mer 0 µg/m ³ . "Today' e kidney or mild re to low concen erosis, and Parki onnection.	ltural or y vapor are that bronchial cury vapor, and s occupational cognitive trations of mer- inson's disease	Clarkson et al. 2003
	2004	This comprehensive re inorganic mercury, wi vapors in concentration numerous case studie including cough, dysp mercurial eretheism, p inorganic mercury exp and hands, erythema, lar dysfunction, and r	his comprehensive review article addresses sources and effects of methylmercury, ethylmercury, elemental mercury, and norganic mercury, with a focus on children. The authors note that according to ATSDR, "inhalation of elemental mercury vapors in concentrations greater than (50 µg/m ³) for significant periods is considered unsafe" (pg 219). The authors cite numerous case studies involving acute and chronic elemental mercury vapor exposure and discuss a number of health effects, including cough, dyspnea, fever, tremors, malaise, axonal sensorimotor polyneuropathy, gingivitis, delusions, hallucinations, mercurial eretheism, pulmonary dysfunction, and acrodynia in children. The authors also summarize case studies involving inorganic mercury exposure and note various health effects including fatigue, insomnia, weight loss, paresthesias of the feet and hands, erythema, pruritus, excessive perspiration and hypersalivation, progressive weakness in the extremities, renal tubu- lar dysfunction, and neuropsychiatric disorders.					
_	2004	This article reviews ne authors discuss neuro insomnia, memory los acrodynia or pink disc neurotoxicity of elem adults, information is also discuss the fact th	urotoxic and developmental toxic effects from exposure t ss, excessive shyness, and ag ease in children. In contrast ental mercury or inorganic n insufficient to propose a no hat various US regulatory bo	l effects for methylmercury to mercury vapor, including ggression), tremor, gingiviti to organic mercury, "remar nercury compounds" (p 102 observable adverse effect l odies have interpreted the s	, ethylmercury, and g erethism (bizarre s, neuropsycholog kably little is know 27). WHO is refere level" for inorganic scientific literature	d inorganic merc behavior includ ical effects in ad vn about the dev nced as noting th mercury (p 102 differently, lead	eury. The ing excitability, ults, and relopmental nat, "even for 7). The authors ing to	Davidson et al. 2004

Table C.3. (Co	ntinued). Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
MTBE								
R EFERENCES US	ED TO S	UPPORT THE TOXICITY CRITERIA	DEVELOPMENT					
RfC, IRIS	<u>1993</u>	Increased absolute and relative liver and kidney weights and increased severity of spontaneous renal lesions (females), increased prostration (females), and swollen periocular tissue (males and females)	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 24 months	NOAEL (HEC) = 2.59 × 10 ⁵ µg/m ³ ; LOAEL (HEC) = 1.946 × 10 ⁶ µg/m ³	100	$3 imes 10^3\mu\text{g/m}^3$	Chun et al. 1992
REL, Cal EPA	<u>2000</u>	Nephrotoxicity, prostration, periocular swelling	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 24 months	NOAEL (HEC) = $2.60 \times 10^5 \ \mu g/m^3$; LOAEL = $1.1 \times 10^7 \ \mu g/m^3$	30	$8 imes 10^3~\mu g/m^3$	Chun et al. 1992, Bird et al. 1997
ATSDR, MRL Chronic	<u>1996</u>	Chronic progressive nephr- opathy leading to increased mortality and decreased mean survival time	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 24 months	NOAEL (ADJ) = $2.56 \times 10^5 \mu\text{g/m}^3;$ LOAEL = $1.08 \times 10^7 \mu\text{g/m}^3$	100	$2.53\times10^3\mu\text{g/m}^3$	Chun et al. 1992
SELECTED REFE	RENCES F	FROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table				
	2001	MTBE functions as a nontrad (eg, functioning as a cytotox of a complete carcinogen). S source of MTBE's carcinogen MTBE carcinogenesis was re majority of the nonoccupation small segment of the populate evaluated this possibility.	itional genotoxicant, ic not a mitogenic age ome studies have sug nicity in animals (the ecently revealed, whi onally exposed huma tion (eg, asthmatic cl	and several mechanisms ent, involvement in hormo gested that its two main m human carcinogenic pote ch explains some of the ef in population, MTBE is ur hildren, the elderly), may	have been proposed to onal mechanisms, or o letabolites, formaldeh ontial remains unclean fects. The totality of the alikely to produce las be at increased risk for	o explain its operating as a yde and tribu c). A role for l ne evidence s ting adverse l or toxicity, bu	mode of action promoter instead utanol, may be the DNA repair in shows that, for the health effects. A tt no studies have	Ahmed 2001

Table C.3. (Con	tinued)	. Summary of Chronic Nonca	ncer Toxicity Data for	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Naphthalene								
R EFERENCES USE	d to Su	JPPORT THE TOXICITY CRITERIA	DEVELOPMENT					
RfC, IRIS	<u>1998</u>	Nasal effects: hyperplasia and metaplasia in respiratory and olfactory epithelium, respectively	B6C3F1 mouse	Inhalation: 6 hrs/day, 5 days/wk, 103 wks	LOAEL (HEC) = $9.3 \times 10^3 \mu\text{g/m}^3$	3000	3 μg/m ³	NTP 1992
REL, Cal EPA	<u>2000</u>	Nasal inflammation, olfac- tory epithelial metaplasia, respiratory epithelial hyperplasia	B6C3F1 mouse	Inhalation: 6 hrs/day, 5 days/wk, 104 wks	LOAEL (ADJ) = 9.4 \times 10 ³ µg/m ³	1000	9 μg/m ³	NTP 1992
MRL, ATSDR	<u>2003</u>	Nonneoplastic lesions in nasal olfactory epithelium and respiratory epithelium	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 105 wks	LOAEL (HEC) = $1.05 \times 10^{-3} \mu g/m^3$	300	Chronic MRL = 3.67 µg/m ³	Abdo et al. 2001; NTP 1992; NTP 2000
SELECTED REFERI	ENCES F	ROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table				
An updated li	terature	e review was not required beca	use the ATSDR MRL	was updated in 2003.				
Nickel Compo	unds							
R EFERENCES USE	d to Su	JPPORT THE TOXICITY CRITERIA	DEVELOPMENT					
RfC, IRIS		IRIS RfC (for soluble nickel sa	alts, nickel carbonyl,	nickel refinery dust, and n	ickel subsulfide): "No	ot available a	it this time."	
REL, Cal EPA (Nickel and nickel com- pounds)	2000	Respiratory and hematopoietic system: pathological changes in the lung, nasal epithelium and lymph nodes	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 104 wks	LOAEL = 60 µg/m ³ (as nickel sulfate hexahydrate) NOAEL (HEC) = 1.6 µg Ni/m ³	30	0.05 μg Ni/m ³	NTP 1994a (the final 1996 ver- sion of this report was obtained, instead of the ear- lier 1994 version)
							Table co.	ntinues on next page

Table C.3. (Con	tinued). Summary of Chronic Nonca	ncer Toxicity Data for	Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Nickel Compo	unds (Continued)						
References Use	d то S i	UPPORT THE TOXICITY CRITERIA	DEVELOPMENT (Conti	nued)				
REL, Cal EPA (Nickel oxide)	<u>2000</u>	Respiratory and hematopoietic system: pathological changes in the lung and lymph nodes	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 104 wks	LOAEL (HEC) = 30 μg Ni/m ³	300	0.1 μg Ni/m ³	NTP 1994b (the final 1996 ver- sion of this report was obtained, instead of the ear- lier 1994 version)
MRL, ATSDR	<u>2003</u>	Chronic active inflamma- tion in the lung	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 13 wks	LOAEL = $110 \ \mu g \ Ni/m^3$ NOAEL (HEC) = $5.2 \ \mu g \ Ni/m^3$	30	Intermediate MRL = 0.2 μg Ni/m ³	NTP 1996
		Chronic active inflamma- tion and lung fibrosis	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 2 yrs	LOAEL = 60 µg Ni/m ³ NOAEL (HEC) = 2.7 µg Ni/m ³	30	Chronic MRL = 0.09 μg Ni/m ³	NTP 1996
SELECTED REFER	ENCES F	ROM UPDATED LITERATURE SEA	RCHES, defined at th	e end of this table		L	I	
	1999	This general review of nickel biomonitoring, and treatmen author notes several cardiore and perforations of the nasal (p 247). Although reproduct "there has been no documen ment. Similarly, no significa	addresses human exp t. In summarizing no espiratory effects, inc septum. Barceloux n ive and development tation of either repro- nt reproductive or de	posure sources, toxicokine ncancer health effects asso luding asthma, chronic hy otes that "nephrotoxicity i al effects have been obser ductive or developmental evelopmental abnormalitie	etics, mechanisms, top ociated with chronic e /pertrophic rhinitis an s not a prominent feat wed in animals expose effects following exp es have been detected	kicity, carcin exposure to in ad sinusitis, ture of chron ed to high co osure to nick in the work	ogenicity, nhaled nickel, the nasal polyposis, ic nickel toxicity" ncentrations, cel in the environ- setting" (p 249).	Barceloux 1999
							Table con	tinues on next page

Table C.3. (Con	tinued	. Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Nickel Compo	unds (Continued)						
SELECTED REFER	ENCES F	ROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table (Conti	nued)			
Haber et al. 2000 (the authors were a panel formed	2000	Lung fibrosis	F344 rat, male	Inhalation: 6 hrs/day, 5 days/wk, 2 yrs (nickel sulfate)	BMCL ₁₀ (HEC) = 1.7 μ g Ni/m ³ ; NOAEL (HEC) = 2.1 μ g Ni/m ³	10	0.02 μg Ni/m ³	Haber et al. 2000 (RfC based on data from NTP 1996)
by Toxicology Excellence for Risk Assess- ment (TERA), under con- tract to EPA, Health Can- ada, and oth-		Irregular opacities in chest radiographs	Human—nickel sinter plant workers	Inhalation: workplace exposure (soluble and insoluble nickel)	Minimal LOAEL (HEC) = 18 to 200 µg Ni/m ³	100	0.2 to 2 µg Ni/m ³ (value not recommend for use; calculated only for com- parison pur- poses)	Haber et al. 2000 (RfC based on data from Muir et al. 1993)
ers)		This comprehensive analysis RfC. They determined NOA rats to be the most sensitive on noncancer effects, they n higher than, the RfC based of EPA review, the conclusions	s considered numerou ELs and developed be endpoint. Although onetheless calculated on animal data. The au s of the assessment w	is animal studies and chose enchmark concentrations the authors concluded tha an RfC, and noted that th uthors conclude that over ill also be summarized for	se the 1996 NTP bioas (BMCL ₁₀) for various It uncertainties severe e RfC based on humar all confidence in the F EPA's Integrated Risk	say as the me endpoints, th ly limit the u data was co &fC is medium information	ost appropriate for nen determined lu use of the one avail mparable to, or an m to high. The aut a System (IRIS)'' (p	derivation of an ng fibrosis in male lable human study order of magnitude hors note that "after 210).
							Table cor	ntinues on next page

Toxicity Criteria/ SourceYearEndpointAnimal Strain or Human PopulationRoute and Duration of ExposureNOAEL and LOAELUncertainty FactorToxicity CriteriaReferencePOMSELECTED REFERENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this tableATSDR1995In this toxicological profile for PAHs (POMs), both non-cancer and cancer effects are reviewed. Mice fed high levels of benzo[a]pyrene during pregnancy had difficulty reproducing as did their offspring. Furthermore, the offspring of pregnant mice fed benzo[a]pyrene suffered from birth defects and decreased body weight. Studies in animals have also shown that PAHs can cause harmful effects on skin, body fluids, and the immune system after both short- and long-term exposure. None of these effects have been reported in humans. "Adverse noncancer respiratory effects, including blody vomit, breathing problems, chest pains, chest and throat irritation, and abnormalities in chest X-rays have been reported. "No studies were located regarding cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, dermal, or ocular effects in humans or animals following inhalation exposure to no long-term potentiation ILTP] a cellular correlate of earning an memory) in the F1 generation. Pregnancy outcomes (num- ber of pups/litter, number of resorptions) also reported. Pregnancy outcomes (num- ber of pups/litter, number of resorptions) also for sorptions) alsoAnimal Strain or the F1 generation.Animal Strain or 	Table C.3. (Co	ontinued). Summary of Chronic Nonca	ncer Toxicity Data for	Each MSAT				
POM SELECTED REFERENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table ATSDR 1995 In this toxicological profile for PAHs (POMs), both non-cancer and cancer effects are reviewed. Mice fed high levels of benzo[a]pyrene during pregnancy had difficulty reproducing as did their offspring. Furthermore, the offspring of pregnant mice fed benzo[a]pyrene suffered from birth defects and decreased body weight. Studies in animals have also shown that PAHs can cause harmful effects on skin, body fluids, and the immune system after both short- and long-term exposure. None of these effects have been reported in humans. "Adverse noncancer respiratory effects, including bloody vomit, breathing problems, chest pains, chest and throat irritation, and abnormalities in chest X-rays have been reported in humans exposed to PAHs and respirable particles in a rubber factory" (p 116). Adverse effects on respiratory tissues in animals have also been reported. "No studies were located regarding cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, dermal, or ocular effects in humans or animals following inhalation exposure to any of the 17 PAHs discussed in this profile (p 16)." IOA (P M) (M) (M) (M) (M) (M) (M) (M) (M) (M)	Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
SELECTED REFERENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table ATSDR 1995 In this toxicological profile for PAHs (POMs), both non-cancer and cancer effects are reviewed. Mice fed high levels of benzo[a]pyrene during pregnancy had difficulty reproducing as did their offspring. Furthermore, the offspring of pregnant mice fed benzo[a]pyrene suffered from birth defects and decreased body weight. Studies in animals have also shown that PAHs can cause harmful effects on skin, body fluids, and the immune system after both short- and long-term exposure. None of these effects have been reported in humans. "Adverse noncancer respiratory effects, including bloody vomit, breathing problems, chest pains, chest pains, chest and throat irritation, and abnormalities in chest X-rays have been reported in humans exposed to PAHs and respirable particles in a rubber factory" (p 116). Adverse effects on respiratory tissues in animals have also been reported. "No studies were located regarding cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, dermal, or ocular effects in humans or animals following inhalation exposure to any of the 17 PAHs discussed in this profile (p 16)." Nourological profile (p 16)." Wormley et al 2004 - 2004 Neurotoxic effects (ffects on fump and memory) in the F1 generation. Pregnant dams of reported. Maternal, nose-only in alpha pups (n = 10, particle, number of pups/litter, number of presorptions) also reported. Maternal, nose-only in controls tested on postnatal days 60-70 Neurotoxic effects (affects on postnatal days 11-21 Gestational exposure for the rat pups. IOAEL =	РОМ								
ATSDR1995In this toxicological profile for PAHs (POMs), both non-cancer and cancer effects are reviewed. Mice fed high levels of benzo[a]pyrene during pregnancy had difficulty reproducing as did their offspring. Furthermore, the offspring of pregnant mice fed benzo[a]pyrene suffered from birth defects and decreased body weight. Studies in animals have also shown that PAHs can cause harmful effects on skin, body fluids, and the immune system after both short- and long-term exposure. None of these effects have been reported in humans. "Adverse noncancer respiratory effects, including bloody vomit, breathing problems, chest pains, chest and throat irritation, and abnormalities in chest X-rays have been reported in humans exposed to PAHs and respirable particles in a rubber factory" (p 116). Adverse effects on respiratory tissues in animals have also been reported. "No studies were located regarding cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, dermal, or ocular effects in humans or animals following inhalation exposure to any of the 17 PAHs discussed in this profile (p 16)."ATSDR 19952004Neurotoxic effects (effects learning and memory) in the F1 generation. Pregnancy outcomes (num- ber of pups/litter, number of resorptions) also reported.Rats—F344 Pregnancy outcomes (num- ber of pups/litter, number of resorptions) alsoMaternal, nose-only inhale upps (n = 10, the rat pups.LOAEL = 100 µg/m³ for effects on LTP. 	Selected Refe	ERENCES F	FROM UPDATED LITERATURE SEA	ARCHES, defined at the	e end of this table				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ATSDR	<u>1995</u>	In this toxicological profile for benzo[a]pyrene during pregr mice fed benzo[a]pyrene suf can cause harmful effects on effects have been reported in chest pains, chest and throat respirable particles in a rubb studies were located regardi effects in humans or animals	or PAHs (POMs), both nancy had difficulty r fered from birth defect skin, body fluids, an h humans. "Adverse n t irritation, and abnor per factory" (p 116). A ng cardiovascular, gas s following inhalatior	non-cancer and cancer eff reproducing as did their of cts and decreased body we d the immune system after concancer respiratory effect malities in chest X-rays ha Adverse effects on respirator strointestinal, hematologic n exposure to any of the 17	ects are reviewed. fspring. Furthermo ight. Studies in anin both short- and lon ts, including blood we been reported in ory tissues in anima al, musculoskeleta PAHs discussed in	Mice fed high h re, the offspring nals have also s ng-term exposu y vomit, breath n humans expo- als have also be h, hepatic, derm this profile (p	evels of g of pregnant shown that PAH re. None of thes ing problems, sed to PAHs and en reported. "Ne al, or ocular 16)."	ATSDR 1995
		2004	Neurotoxic effects (effects on long-term potentiation [LTP] a cellular correlate of learning and memory) in the F1 generation. Pregnancy outcomes (num- ber of pups/litter, number of resorptions) also reported.	Rats—F344 Pregnant dams exposed $(n = 20)$, male pups $(n = 10)$, treated; $n = 12$, controls) tested on postnatal days 60-70	Maternal, nose-only inhalation exposure to 100 μg/m ³ B[<i>a</i>]P carbon black aerosol for 4 hrs/day, gestational days 11–21 Gestational exposure for the rat pups.	LOAEL = 100 µg/m ³ for effects on LTP. There was also a statistically sig- nif-icant increase in resorptions at this dose.		_	Wormley et al. 2004

Table C.3. (Co.	ntinued). Summary of Chronic Nonca	ncer Toxicity Data fo	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Styrene								
R EFERENCES US	ED TO S	UPPORT THE TOXICITY CRITERIA	DEVELOPMENT					
RfC, IRIS	<u>1993</u>	CNS effects	Human— occupational	Inhalation: 8.6 ± 4.5 yrs	NOAEL (HEC) = $3.4 \times 10^4 \mu\text{g/m}^3$	30	$1\times 10^3\mu\text{g/m}^3$	Mutti et al. 1984
REL, Cal EPA	<u>2000</u>	Neuropsychological defi- cits, as measured by mem- ory and sensory motor function tests	Human— occupational	Inhalation: 8.6 ± 4.5 yrs	$BMC_{05} (HEC) = 2.6 \times 10^3 \mu g/m^3$	3	900 μg/m ³	Mutti et al. 1984
SELECTED REFE	RENCES I	ROM UPDATED LITERATURE SEA	ARCHES, defined at th	e end of this table				
	2002	CNS effects – color vision	Human— occupational	Inhalation: chronic, duration varied	Threshold for decreased color vision = $2.13 \times 10^5 \mu\text{g/m}^3$			Cohen et al. 2002 (with support from Gobba et al. 1991; Gobba and Cavalleri 1993; Eguchi et al. 1995; Campagna et al 1995)
	2002	Ototoxicity (inner ear and 8th cranial nerve)	F344 rat	Inhalation: 14 hrs/day, 7 days/wk, 3 wks (Pryor) or 14 hrs/day, 5 days/ wk, 3 wks (Yano)	NOAEL = $8.52 \times 10^5 \mu g/m^3$; LOAEL = $3.41 \times 10^6 \mu g/m^3$	_	_	Cohen et al. 2002 (with support from Pryor et al. 1987; Yano et al. 1992)
		·		·			Table co	ntinues on next page

Table C.3. (Cor	ntinued). Summary of Chronic Nonca	ncer Toxicity Data for	r Each MSAT				
Toxicity Criteria/ Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Criteria	Reference
Toluene								
R EFERENCES USI	ED TO SI	UPPORT THE TOXICITY CRITERIA	DEVELOPMENT					
RfC, IRIS	<u>1992</u>	Neurological effects	Human— occupational	Inhalation: average exposure duration = 5.7 yrs	NOAEL = none; LOAEL (HEC) = $1.20 \times 10^5 \mu\text{g/m}^3$	300	400 μg/m ³ *	Foo et al. 1990
		Erosion of olfactory epithelium in male rats and degeneration of respiratory epithelium in both sexes	F344 rat	Inhalation: 6.5 hrs/day, 5 days/wk, 2 yrs	LOAEL (HEC) = 7.9 \times 10 ⁴ µg/m ³	_	—	NTP 1990
Chronic inhalation MRL, ATSDR	2000	Color vision impairment	Human— occupational	Inhalation: average duration, 16 to 18 yrs	LOAEL (ADJ) = $3.1 \times 10^4 \mu\text{g/m}^3$	100	300 µg/m ³	Zavalic et al. 1998
REL, Cal EPA	2000	Decreased brain weight (sub- cortial limbic area), altered dopamine receptor binding (caudate-putamen)	Sprague Dawley rat, male	Inhalation: 6 hrs/day, 5 days/wk, 4 wks, 29–40 days recovery	NOAEL (HEC) = $3 \times 10^4 \mu\text{g/m}^3$;	100	300 μg/m ³	Hillefors-Ber- glund et al. 1995 (with support from Orbaek and Nise 1989 and Foo et al. 1990)
* This value has bee	n updatec	l. See Table C.1.	1	1		1		
							Table co	ntinues on next page

Table C.3. (Co	ontinued	d). Summary of Chronic None	cancer Toxicity Data fo	or Each MSAT				
Toxicity Criteria / Source	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertaint y Factor	Toxicity Criteria	Reference
Toluene (<i>Co</i>	ntinued	<i>I</i>)						
SELECTED REFE	RENCES	FROM UPDATED LITERATURE S	EARCHES, defined at t	he end of this table				
_	2001	Spontaneous abortion	Human— occupational	Inhalation: duration varied	Results from severa an association betw and toluene expos and limitations in interpretation" of t	l occupationa ween spontan ure. However the studies su the findings.	ll studies suggest eous abortion , uncertainties ıggest "cautious	Bukowski 2001 (with support from Ng et al. 1992)
_	2004	Leukoencephalopathy (a neurological syndrome associated with toluene abuse, characterized by dementia and damage to brain white matter)	Human— occupational exposure and inhalant abuse	Inhalation: duration varied	Chronic toluene abo associated with ne LOAEL for damage area of uncertainty not been proven to tional levels, altho subtle white matter	use (high exp eurotoxicity. F e to brain whi 7. Leukoencep o occur at per ough a single s er changes in	osure) is clearly However, the ite matter is an obalopathy has missible occupa- study reported exposed workers.	Filley et al. 2004 (with support from Filley and Kleinschmidt- DeMasters 2001 and Thuomas et al. 1996)
Xylene								
R EFERENCES U	SED TO S	SUPPORT THE TOXICITY CRITERI	A DEVELOPMENT					
RfC, IRIS	2003	Impaired motor coordination (decreased rotarod performance and decreased latency in the paw-lick response in the hot-plate test)	Wistar rat	Inhalation: 6 hrs/day, 5 days/wk; 6 months	NOAEL (HEC) = $3.9 \times 10^4 \mu g/m^3$; LOAEL (HEC) = $7.8 \times 10^4 \mu g/m^3$	300	100 μg/m ³	Korsak et al. 1994
SELECTED REF	RENCES	FROM UPDATED LITERATURE S	EARCHES, defined at t	he end of this table	1			
An updated	literatu	re review was not required be	cause IRIS was update	ed in 2003.				

Selected References from Updated Literature Searches:

The toxicity and health portions of the literature survey took advantage of peer-reviewed secondary sources of information, such as the EPA's Health Assessment Documents, U.S. Agency for Toxic Substances and Disease Registry (ATSDR) reports, and International Agency for Research on Cancer (IARC) monographs. Information on chronic, noncancer endpoints was collected from these sources. In addition, the primary sources that key toxicity criteria were based upon were identified and obtained. The survey was augmented with information from primary sources for the seven priority MSATs. The survey was also augmented for the remaining 14 nonpriority MSATs. In cases where the secondary sources were out of date (i.e., 2001 or earlier).

Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Acetaldehyde						
R eferences Used to S	SUPPORT	THE TOXICITY CRITER	IA DEVELOPMENT			
Cancer potency, Cal EPA	<u>1999</u>	Rat nasal tumor incidence data	Wistar rat (male more sensitive than female)	Inhalation: 6 hrs/day, 5 days/wk, up to 28 months	$2.7\times 10^{-6}~\text{per}~\mu\text{g/m}^3$	Woutersen et al. 1986
Cancer unit risk, EPA (IRIS)	<u>1991</u>	Nasal adeno- carcinoma and squamous cell carcinoma	SPF Wistar rat, male	Inhalation: 6 hrs/day, 5 days/wk, 28 months	$2.2\times 10^{-6}~\text{per}~\mu\text{g/m}^3$	Woutersen and Appel- man 1984 (document unavailable, not included in documents provided to HEI)
Cancer classification, IARC	<u>1999</u>	Adenocarcinomas and squamous cell carcinomas of the nasal mucosa at all three dose levels	Wistar rat	Inhalation: 6 hrs/day, 5 days/wk, for a max of 28 months	Unit risk not calculated Overall evaluation: possibly carcinogenic to humans (Group 2B)	Woutersen et al. 1986
SELECTED REFERENCES	FROM UI	PDATED LITERATURE S	SEARCHES, defined at the	end of this table		
	2002	Increase in total malignant tumors	Sprague-Dawley rat	Ingestion of acetaldehyde in drinking water: 104 wks Dose levels $(\times 10^3 \mu g/L) 2500,$ 1500, 500, 250, 50, and 0	Increase in total malignant tumors in all treated groups except males at $250 \times 10^3 \mu g/L$ (statistically significant only in the high-dose groups). Increase in mammary tumors in all treated females except the $250 \times 10^3 \mu g/L$ group (increase not dose-related). Increased incidence of carcinomas of the Zym- bal gland, external ear ducts, nasal sinuses, and oral cavity in the high dose groups	Soffritti et al. 2002

Table C.4 (<i>Continued</i>	I). Summ	ary of Chronic Cancer Tox	cicity Data for Each M	MSAT .		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Acetaldehyde (<i>Cor</i>	ntinued)					
SELECTED REFERENCES	S FROM U	PDATED LITERATURE SEARC	HES, defined at the e	end of this table (Cont	inued)	
EPA IRIS <i>draft</i> Toxicological Review Document	1999	This comprehensive <i>draf</i> toxicity, and carcinogen <i>draft</i> report is currently been pulled back for add already summarized else	<i>t</i> review, prepared ir icity of acetaldehyde available on the EPA ditional analysis and ewhere in this table)	a support of the EPA IR and provides a revised web site, there is also revision." Some of the are also included belo	IS file, covers the toxicokinetics, noncancer l <i>draft</i> Unit Risk value. Note that although this a notice from EPA saying that "the draft has key studies summarized by EPA (and not w.	EPA 1999
		Nasal adenocarcinomas and squamous cell carcinomas	Wistar rat	Inhalation: 6 hrs/day, 5 days/wk, 28 months	$1.3\times 10^{-5}~{\rm per}~\mu g/m^3$	Woutersen et al. 1985, 1986 (as cited in EPA 1999)
		Nine cases of cancer identified in cohort: squamous cell bronchial tumors $(n = 5)$, squamous cell oral cavity tumors $(n = 2)$, one adenocarcinoma of the stomach $(n = 1)$, and adenocarcinoma of the cecum $(n = 1)$.	Human— occupational German chemical workers (<i>n</i> = 220)	Inhalation Acetaldehyde concentrations reported to range from 1 to $7 \times 10^3 \mu\text{g/m}^3$ (0.55–3.9 ppm)	Unit risk not calculated. Incidence rate of 6000 per 100,000 population compared to 1200 per 100,000 in the general German population.	Bittersohl 1974 (as cited in EPA 1999)
		All 9 patients were smok rent exposures to other of EPA considered the data	ers and there were o chemicals). "inadequate to evalu	ther major limitations (ate the carcinogenicity	eg, incidence rates not age-adjusted, concur- of acetaldehyde."	
		Increased incidence of laryngeal tumors (statistically signifi- cant in males only) Acetaldehyde also enhanced carcinoge- nicity of intratra- cheally instilled B[a]P	Syrian golden hamster	Inhalation: 7 hrs/day, 5 days/wk, 52 wks		Feron et al. 1982 (as cited in EPA 1999)
					Tal	ble continues on next page

Table C.4 (<i>Continued</i>). Summa	ary of Chronic Cancer To:	xicity Data for Each M	ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Acetaldehyde (<i>Con</i>	tinued)					
SELECTED REFERENCES	FROM U	PDATED LITERATURE SEARC	HES, defined at the e	nd of this table (Conti	nued)	
	1997	In this review, the author carcinogenicity of inhal mous cell carcinomas a The olfactory mucosa is $1.35 \times 10^6 \ \mu g/m^3$ (750 p for the tumorigenic resp The author goes on to so overwhelm detoxification 1980s (the Appelman an	r discusses the bioche ed acetaldehyde, focu nd adenocarcinomas the most sensitive ta opm) or higher. The au oonse, and that expose uggest that carcinoger on capacity. The prim nd Woutersen studies	emistry, genotoxicity, d using on effects in the r originating from respir rget, with nasal tumors uthor suggests that nasa ure to non-cytotoxic co nicity may only occur a ary rat toxicity/carcino).	osimetry, inhalation toxicology, and at. Tumors observed in the rat include squa- atory epithelial cells and olfactory mucosa. s observed at exposure concentrations of al respiratory epithelial cytotoxicity is critical ncentrations may pose limited cancer risk. t concentrations sufficiently high enough to ogenicity studies reviewed were all from the	Morris 1997
	2005	Genetic polymorphism for metabolizing enzyme (alcohol dehydrogenase [ADH] genotypes)	Humans— Heavy alcohol consumers with upper aerodiges- tive tract cancer (n = 107) com- pared to matched alcoholic controls with no cancer $(n = 103)$.	Chronic ethanol consumption (oral), exposure to acetal- dehyde as a metab- olite of ethanol		Visapaa et al. 2005
		Acetaldehyde, a metabol were studied in this arti phisms which affect the In this study, the <i>ADH1C</i> aerodigestive tract cance drinkers homozygous for possibly due to elevated Note: Even though this a understanding the mech phisms for metabolizing	ite of ethanol, is susp icle because both ADI e rate of metabolism o C*1 allele was found to er compared to match or the <i>ADH1C*1</i> allele d salivary acetaldehyc rticle does not directl nanisms of acetaldehy g enzymes on an indiv	ected to be responsible H and aldehyde dehydd f ethanol to acetaldehy o be significantly incre ed alcoholic controls w have a predisposition le levels following alco y address acetaldehydd rde-induced cancer and vidual's alcohol/acetald	for alcohol-related cancers. ADH genotypes rogenase (ALDH) exhibit genetic polymor- de and acetaldehyde to acetate. ased in heavy alcohol consumers with upper rith no cancer. The authors concluded, "heavy to develop upper aerodigestive tract cancer, hol consumption." e inhalation, it is useful in the context of l the potential effect of genetic polymor- lehyde cancer risk.	

Health Effects Institute Special Report 16 © 2007

Table C.4 (<i>Contin</i>	ued). Summ	ary of Chronic Cancer To:	xicity Data for Each M	ISAT		
Foxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Acetaldehyde ((Continued)					
Selected Referen	ICES FROM U	PDATED LITERATURE SEARC	CHES, defined at the e	nd of this table (Conti	nued)	
	2005	Increased relative organ weights	Hamsters	Inhalation: 6 hrs/day, 5 days/wk, 90 days	$ELIA_{cm} = 635 \ \mu g/m^3$	Schupp et al. 2005
		The authors developed a "acceptable" exposure le Vehicles, or STELIAs; (2 ELIAs; and (3) ELIAs fo dehyde, formaldehyde, in cars. For the acetaldehyde ELI olfactory epithelium du decided to use 635 µg/r The average concentratic as reported in FAT 1998	In approach (includin evels for VOCs release 2) chronic Exposure I r carcinogenic and m and xylene and comp (A _{cm} , the authors disc te to regenerative prol n ³ , the ELIA _{systemic} (s on of acetaldehyde me B) did not exceed the	g recommended uncer ed inside cars: (1) Shor levels Inside Automoti utagenic substances, or pared these risk-based " ussed that it was plaus iferation. Assuming a tee the non-cancer table assured in chamber test ELIAs.	tainty factors) for developing maximum t Term Exposure Levels Inside Automotive ve vehicles for non-genotoxic substances, or ELIA _{cm} . They applied this concept to acetal- acceptable" exposure levels to concentrations ible that acetaldehyde produces tumors in the hreshold mechanism for carcinogenesis, they e), as the ELIA _{cm} for acetaldehyde. s designed to simulate cars at 23°C (42 µg/m ³ ,	
Acrolein						
References Used	TO SUPPORT	THE TOXICITY CRITERIA DE	EVELOPMENT			
Cancer unit risk, EPA (IRIS)	2003	The IRIS acrolein carcino determined because the the oral or inhalation ro	ogenicity section was e existing data are inac oute of exposure. A qu	updated in 2003; the p dequate for an assessmentitative estimate of c	otential carcinogenicity of acrolein cannot be ent of human carcinogenic potential for either arcinogenic risk is not applicable. (Under the	

Table C.4 (<i>Contin</i>	nued). Summ	ary of Chronic Cancer To	xicity Data for Each N	/ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Acrolein (<i>Cont</i>	inued)					
SELECTED REFERE	NCES FROM U	PDATED LITERATURE SEAR	CHES, defined at the e	end of this table		
	2002	Liver tumor incidence	Neonatal mice— B6C3F1 (<i>n</i> = 23–24 per group)	Intraperitoneal injection of 75 or 150 nmol (¹ / ₃ of the total dose on day 8, and ² / ₃ of the total dose on day 15). Test ani- mals were killed at 12–15 months of age.	The authors used the same protocol to test tumorigenicity induced by lipid peroxidation using a number of other chemicals. Only the positive controls had a statistically significant increase in tumors (liver tumors in male mice). The authors concluded that the B6C3F1 neonatal mouse is not sensitive to carcinogens that indirectly induce an increase in endogenous DNA adduct formation through lipid peroxidation or oxidative stress (such as acrolein).	Von Tungeln et al. 2002
Arsenic Compo	ounds (Inorg	ganic)				
References Usei	D TO SUPPORT	THE TOXICITY CRITERIA D	EVELOPMENT			
Cancer unit risk, EPA (IRIS)	<u>1998</u>	Increased lung cancer mortality	Human— smelter workers	Inhalation	$4.3\times 10^{-3}~\text{per}~\mu\text{g/m}^3$	Brown and Chu 1983a,b,c; Lee-Feld- stein 1983; Higgins 1982 (document unavailable, not included in document provided to HEI); Ente line and Marsh 1982

Table C.4 (Continued	D							
	ij. Summa	ary of Chronic Cancer Tox	cicity Data for Each N	ISAT				
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference		
Arsenic Compound	ls (Inorg	anic, <i>Continued</i>)						
SELECTED REFERENCES	5 FROM U	PDATED LITERATURE SEARC	HES, defined at the e	nd of this table				
_	1994	Lung cancer	Human— smelter workers (Tacoma WA, Montana, and Sweden)	Inhalation	$1\times 10^{-3}~{\rm per}~\mu g/m^3$	Viren and Silvers 1994		
		The authors used updated results from the Tacoma smelter worker cohort, results from Swedish smelter workers, and results from the Montana cohort to evaluate the lung cancer dose response for arsenic. They used a linear absolute risk model to derive the unit risk estimates, consistent with the modeling approach used to develop the EPA unit risk of 4.3×10^{-3} . The authors calculated a unit risk of 1.28×10^{-3} based on the Tacoma smelter cohort, 0.89×10^{-3} for the Swedish study, and a composite unit risk of 1.43×10^{-3} considering all three cohorts. Overall, the authors concluded that "a summary unit risk of 1×10^{-3} seems wholly consistent with the recently available epidemiologic data" (p 137).						
_	1998	Mortality statistics	Human— Belgian residents	Inhalation (0.3 μg As/m ³) Ingestion (20–50 μg As/L drinking water)	_	Buchet and Lison 1998		
		This population had 3- to 4-fold higher urinary arsenic excretion compared to controls, but mortality by diseases of the nervous system, liver and heart, and cancers was not increased. Lung cancer mortality was increased in men (but not women) living around zinc smelters, which the authors noted might be related to past occupational exposure and/or smoking habits. Overall, the authors concluded that "a low to moderate level of environmental exposure to inorganic arsenic (0.3 µg As/m ³ of air; 20–50 µg As/L of drinking water) does not seem to affect the causes of mortality, suggesting in particular nonlinearity of the dose-response relationship for arsenic and cancer" (p 125).						
_	1999	Lung cancer	Human— US copper smelter workers (Tacoma WA) (n = 2802)	Inhalation	$12\times10^{-3}~\text{per}~\mu\text{g}/\text{m}^3$	Viren and Silvers 1999		
		This article used follow-u the lung cancer dose res Canadian analyses was conclude that "the linear recommend that "a unit ish) smelter workers" (p						
Table C.4 (<i>Continu</i>	ed). Summ	ary of Chronic Cancer Tox	cicity Data for Each M	MSAT				
---------------------------------	------------------	--	--	--	--	---		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference		
Arsenic Compou	nds (Inorg	ganic, <i>Continued</i>)						
SELECTED REFERENCE	CES FROM U	PDATED LITERATURE SEARC	HES, defined at the o	end of this table (Con	tinued)			
_	2000	Respiratory cancer	Human— US copper smelter workers (Montana) (n = 8014)	Inhalation	Excess relative risk $2.1 \times 10^{-4} \text{ per } \mu\text{g/m}^3\text{-yr}$ (95% CI = $1 \times 10^{-4}\text{-} 4.6 \times 10^{-4}$)	Lubin et al. 2000		
		This article provides resument ment cohort). The auth causes (1.14 [1.11–1.17] vous system and sense of (1.73 [1.41–2.12]), ill-de for respiratory cancer in risk of respiratory cancer numerous occupational so other cancer other than r increased mortality from	Its from new follow ors reported signific:), all cancers (1.13 [1 rgans (1.31 [1.01–1.7 fined conditions (2.2 creased with increase r and cumulative exp studies of workers ex espiratory cancer. Th other causes, with th	-up studies on the Mo antly increased standa 1.07–1.21]), respirator 7]), nonmalignant resp 26 [1.85–2.77]), and ex ing exposure duration posure to airborne arse posed to airborne arse the authors concluded the possible exception o	ntana copper smelter workers (the "Lee-Frau- ardized mortality ratios (SMR [95% CI]) for all y cancer (1.55 [1.41–1.70]), diseases of the ner- piratory diseases (1.56 [1.42–2.12]), emphysema (ternal causes (1.35 [1.23–1.49]). Relative risks the authors reported a linear relation between nic. Based on a compilation of results from nic, SMRs were not consistently elevated for any nat "there was no evidence that inhaled arsenic f chronic obstructive pulmonary disease" (p 564)			
Benzene								
R EFERENCES USED 1	O SUPPORT	THE TOXICITY CRITERIA DE	VELOPMENT					
Cancer unit risk, EPA (IRIS)	<u>2000</u>	Leukemia, chiefly acute myelogenous leukemia (AML)	Human— occupational	Inhalation	Range 2.2 × 10 ⁻⁶ – 7.8 × 10 ⁻⁶ per μ g/m ³	Rinsky et al. 1981, 1987; Paustenbach et al. 1993; Crump and Allen 1984; Crump 1992, 1994; EPA 1998		
					Ta	ble continues on next page		

Table C.4 (Contin	ued). Summ	ary of Chronic Cancer Tox	icity Data for Each N	1SAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Benzene (<i>Conti</i>	nued)					
SELECTED REFERE	NCES FROM U	PDATED LITERATURE SEARC	HES, defined at the e	and of this table		
	2002	Significant increase in leukemia; no significant increase in multiple myeloma	Human— update of rubber hydrochloride worker cohort (cohort followed since 1976)	Inhalation: duration of employment for leukemia cases = 1 month to 20 yrs.		Rinsky et al. 2002
		nd females, all races: SMR = 2.47 (95% CI = EL of $3.19 \times 10^3 \mu\text{g/m}^3$ -year over a 45-year $< 10^3 \mu\text{g/m}^3$ and at the NIOSH REL, risk drops				
	2000	Non-Hodgkins Lym- phoma – Results of individual studies as well as from the pooled analysis indicated that petroleum workers were not at an increased risk of NHL as a result of their exposure to benzene or benzene-containing petroleum products in their work environment	Human— occupational, 26 international cohorts of petroleum work- ers exposed to benzene or ben- zene-containing petroleum products (308,000 workers combined)	Inhalation Observation period of 60 years, 1937–1996		Wong and Raabe 2000
		To the extent it could be a upward trend between 1 specific analyses (eg, ref pattern was detected. No after 1950, even though				
	i	·			Tal	ble continues on next page

Table C.4 (<i>Continued</i>)	. Summ	ary of Chronic Cancer Tox	icity Data for Each M	1SAT					
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference			
Benzene (Continued)									
SELECTED REFERENCES	FROM U	PDATED LITERATURE SEARC	HES, defined at the e	nd of this table (Conti	inued)				
	2002	Update of benzene exposure and health effects in China	Human— occupational. Update of Chinese study in collaboration with NCI. Study expanded to include 74,828 workers exposed to benzene and other substances between 1972 and 1987 at 712 factories in 12 Chinese cities.	Inhalation		Wong 2002			
	Detailed criticism of the exposure analysis presented in Hayes et al. (2001, a review and reanalysis of benzene epi- demiology literature). Concludes that exposure levels among Chinese workers are similar to, if not higher than, the benzene levels reported in the pliofilm study.								
		·			Tab	le continues on next page			

able C.4 (<i>Contir</i>	nued). Summ	ary of Chronic Cancer Tox	icity Data for Each M	ISAT		
oxicity riteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
enzene (<i>Conti</i>	nued)					
ELECTED REFERE	NCES FROM UI	PDATED LITERATURE SEARCI	HES, defined at the e	nd of this table (Cont	tinued)	
	2003	Risk of leukemia increased at cumulative exposures above $6.38 \times 10^3 \mu\text{g/m}^3$ -yrs	Human— occupational Conducted a case- control study of lymphohematop oietic cancer nested within the existing cohort of Australian petro- leum workers previously found to have an excess of lymphohema- topoietic cancer	Inhalation Mean duration of employment prior to diagnosis was 20.4 years (standard deviation of 9.0 years), and ranged from 4.3 to 43 years	The first significant. increase was at 6.4 to $12.8 \times 10^3 \mu\text{g/m}^3$ -yrs (OR = 6.1 [95% CI = 1.4–26.0]) The dose-response consistently increased starting at $2.55 \times 10^4 - 5.10 \times 10^4 \mu\text{g/m}^3$ -yrs (OR = 5.9 [95% CI = 1.3–27.0]).	Glass et al. 2003
		Cases on average had a hi were in higher exposure with increasing exposur groups (groups 2, 4, and	gher lifetime cumula categories. No increa e to benzene. For leu 5).	tive exposure than con ase in risk for non-Hoc kemia the ORs were f	ntrol subjects, and a greater proportion of cases lgkin lymphoma/multiple myeloma was found ound to be elevated for 3 of the 5 exposure	
_	2003	An update of the expo- sure analyses that form the basis of EPA's cur- rent unit risk factor.	Human— occupational	Inhalation and dermal	These data could be combined with current or future mortality information to calculate a new cancer potency factor or occupational health standard for benzene.	Williams and Paustenbach 2003
		They found that the previ estimated exposures for (1981, 1987) underpredi dicted benzene exposure in this analysis incorpor vide better characterizat	ious analyses conduct those job categories t cted benzene exposu es, depending on the ate what is consider ion of the potential v	cted of the pliofilm co hat had the highest ex- res for most jobs. Cru specific job category ed to be the most likel vorkplace exposures f	hort, Paustenbach et al. (1992) generally over- cposure by about a factor of 2 to 4. Rinsky et al. mp and Allen (1984) both under- and over-pre- and time period. The new estimates presented y range of plausible exposure values, and pro- or this cohort.	

Table C.4 (<i>Continued</i>	d). Summ	ary of Chronic Cancer T	oxicity Data for Each M	1SAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Benzene (<i>Continue</i>	ed)					
SELECTED REFERENCES	S FROM U	PDATED LITERATURE SEAR	RCHES, defined at the e	end of this table (Cont	inued)	
	2005	Mortality and cancer incidence	Humans—workers occupationally exposed to ben- zene on or before 1966–1967, from a total of 233 plants in England and Wales (<i>n</i> = 5514)	Workplace inhala- tion exposure to benzene. Generally, exposures were not well characterized. Some of the facili- ties had benzene exposure informa- tion available. Many of the workers would have also been exposed to other carcinogens.	Significant increases(SMR [95%CI]):Lip cancer (974 [118–3519])Lung and bronchus cancer (121 [107–135])Acute non-lymphocytic leukemia (ANLL)(183 [100–307])Secondary and unspecified (140 [109–178])All neoplasms (109 [101–117])Significant decreases (SMR [95%CI]):Mental disorders (50 [21–98])Digestive system diseases (76 [56–100])Accidents (55 [35–82])Cancer incidence (SRR [95%CI]):All malignant neoplasms (107 [100–114])Esophagus (61 [35–99])Lung and bronchus (119 [106–134])Pleura (237 [133–391])The only carcinogenic effect of benzene on the lymphohemato-poietic system was ANLL. The increases in lung cancer and mesothe- lioma were suspected to be due to exposures to other carcinogens and not benzene.	Sorahan et al. 2005

Table C.4 (Conti	nued). Summa	ary of Chronic Cancer Tox	cicity Data for Each M	ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Benzene (<i>Cont</i>	inued)					
SELECTED REFERE	ENCES FROM UI	PDATED LITERATURE SEARC	HES, defined at the e	nd of this table (Cont	tinued)	
	2004	Acute childhood leukemia	Children—case- control study of 280 leukemia cases and 285 controls	Potential environ- mental exposure to benzene and other hydrocarbons. Exposure informa- tion collected by interviews of mothers.	Residing next to an auto repair garage or gas station (benzene-emitting sources) during childhood was associated with childhood leukemia (OR = 4.0 [95% CI = 1.5–10.3]), and in particular, acute non-lymphocytic childhood leukemia (OR = 7.7 [95% CI = 1.7–34.3]). A statistically significant trend was found between duration of childhood exposure to a neighboring repair garage or gas station and acute leukemia. No clear association was found for childhood leukemia and maternal exposure to hydrocarbons, residential traffic density, or other types of neighboring businesses.	Steffen et al. 2004
	2004	Mortality, including lymphohematopoietic cancers	Humans—workers employed for at least 1 month in benzene-exposed jobs (in 1 of 3 relevant production areas of a Michigan Dow Chemical facility), on or after 1938 (<i>n</i> = 2266) (Note this was a follow-up study of this cohort.)	Workplace inhalation exposure to benzene (average duration of exposure = 4.8 years, average intensity of exposure was 30,624 µg/m ³). To estimate exposure, jobs were assigned to an exposure category.	The authors note that risk for leukemia was "slightly above background" (SMR = 1.14 [95% CI = 0.59–1.99]) They also note that the SMR for non-malig- nant diseases of the blood was the highest SMR found in the study (SMR = 2.17 [95% CI = 0.87–4.48]), and that the risk seemed to increase with increasing duration of benzene exposure. Overall, risks had decreased since the previ- ous investigation of this cohort. However, despite the authors discussions that some of the SMRs were elevated, it is impor- tant to recognize that <i>none</i> were elevated with statistical significance. The only statis- tically significant changes were decreases in all causes of death (SMR = 0.9 [95% CI = 0.85–0.96]) and all heart disease (SMR = 0.9 [95% CI = 0.81–0.99]).	Bloemen et al. 2004

Table continues on next page

Table C.4 (<i>Conti</i>	nued). Summ	ary of Chronic Cancer Tox	kicity Data for Each M	ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Benzene (<i>Cont</i>	inued)					
SELECTED REFERE	ENCES FROM U	PDATED LITERATURE SEARC	HES, defined at the e	and of this table (Cont	tinued)	
	2003	2003 Mortality, including H lymphohematopoietic l cancers l	Humans—all hourly workers beginning employment at	Workplace inhalation exposure to benzene. Exposure	The authors suggested there was a trend (not significant) for increasing multiple myeloma risk with increasing cumulative benzene exposure. SMRs (95% CIs) were:	Collins et al. 2003
			the Solutia (Monsanto) plant in Sauget IL 1940–1977 (<i>n</i> = 4417)	estimates stratified based on time, department, and job.	 1.1 (0.3-2.5) non-exposed group 1.4 (0.2-5.1) < 3190 (µg/m³)-yrs group 1.5 (0.2-5.4) 3190-19,140 (µg/m³)-yrs group 2.6 (0.7-6.7) > 19,140 (µg/m³)-yrs group There was little evidence of such a trend for all leukemias, acute non-lymphocytic leukemias (ANL), or other lymphohematopoietic cancers. The authors also noted that workers exposed to peak exposures > 3.2 × 10⁵ µg/m³ for ≥ 40 days had greater (not significant) risk SMRs (95%CI) were: 2.7 (0.8-6.4) all leukemias 4.1 (0.5-14.9) ANL 4.0 (0.8-11.7) multiple myeloma The authors suggest that the number of peak exposures > 3.2 × 10⁵ µg/m³ benzene is a better predictor of risk However, despite the authors discussions of elevated SMRs and suggested trends, it is important to recognize that none of the potentially benzene-related endpoints were elevated with statistical significance. 	

Table C.4 (Continued). Summary of Chronic Cancer Toxicity Data for Each MSAT									
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference			
Benzene (Continued)									
SELECTED REFERENCES	FROM U	PDATED LITERATURE SEA	RCHES, defined at the e	nd of this table (Cont	nued)				
	2002	Leukemia	Humans—nested case-control study, with leukemia cases (n = 72) and controls $(n =$ 285) selected from a larger cohort of men employed at a French gas and electricity utility for \geq 1 year between 1978 and 1989	Potential workplace inhalation of ben- zene (from "use of solvents" and "exposure to gaso- line"). Workers also had potential work- place exposures to other chemicals. Benzene exposure estimated based on a job-exposure matrix. The estimated median TWA ben- zene exposure was 510 µg/m ³ . Mean employment dura- tion > 20 years.	The risk of leukemia was increased in workers with cumulative benzene exposures $\geq 53,592 \ (\mu g/m^3)$ -yrs (OR = 3.6 [95% CI = 1.1–11.7]). There was a trend for increasing risk with increasing exposure (OR = 1.2 [95% CI = 1.0–1.5]) per 31,900 ($\mu g/m^3$)-yrs increase in exposure). There was no clear association with a particular leukemia cell type. Leukemia was more strongly associated with exposures to benzene following a 10–20 year latency period. In previous epidemiologic studies, increased leukemia risks were usually not apparent at these relatively low ranges of occupational benzene exposure.	Guenel et al. 2002			
_	2003	This article reviews the 1,3-butadiene, and vir respect to benzene, the internal measures to of zene-induced leukem numerous types of ge- genetic polymorphism estimating risk for a p the critical elements in vide insight into the s	Albertini et al. 2003						

Table C.4 (<i>Continued</i>	l). Summa	ary of Chronic Cancer	Toxicity Data for Each N	/ ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
1,3-Butadiene						
REFERENCES USED TO	SUPPORT	THE TOXICITY CRITERIA	DEVELOPMENT			
Cancer unit risk, EPA (IRIS)	<u>2002</u>	Leukemia	Human— occupational (male)	Inhalation: duration not specified	$3\times 10^{-5} \text{per} \mu\text{g/m}^3$	Delzell et al. 1995, 1996; Macaluso et al. 1996
SELECTED REFERENCES	S FROM UP	PDATED LITERATURE SE	ARCHES, defined at the e	end of this table		
	2001	Leukemia mortality rates	Human—workers employed for at least one year during 1943 and 1991 in one of six synthetic rubber plants (n = 13,130). (Note these authors had previously published a study of this cohort, but the original exposure estimation approach was controversial. This study was based on revised exposure estimatos)	Workplace inhalation exposures to 1,3-butadiene, styrene, and dimethyl- dithiocarbamate. Cumulative exposure estimates based on a revised analysis of work histories. The revised TWA exposure estimates for 1,3-butadiene were about 4–6 times higher than the original estimates.	There was a statistically significant associa- tion between leukemia and the highest expo- sure category of 1,3-butadiene ($\geq 8.0 \times 10^5$ (µg/m ³)-yrs, RR = 3.8 [95% CI = 1.6–9.1]), the highest exposure category of styrene ($\geq 2.6 \times 10^5$ (µg/m ³)-yrs, RR = 3.2 [95% CI = 1.2–8.8]), and all of the exposure categories for dimethyl-dithiocarbamate. For 1,3-buta- diene, the association was stronger for (µg/m ³)-yrs due to exposure intensities > 2.2 × 10 ⁵ µg/m ³ . The independent effect of each chemical was difficult to evaluate.	Delzell et al. 2001

Table C.4 (Contin	ued). Summ	ary of Chronic Cancer T	oxicity Data for Each M	ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
1,3-Butadiene ((Continued)					
SELECTED REFEREN	ICES FROM U	PDATED LITERATURE SEAR	CHES, defined at the e	end of this table (Cont	tinued)	
	2001	Mortality for lymphohema- topoietic cancers, leukemia, non-Hodgkin lymphoma, and all causes of death	Humans— male workers employed for at least 6 months between 1943 and 1996 at a 1,3-butadiene monomer production facility (<i>n</i> = 2800). (Note this was a follow-up study of this cohort. The pattern of results seen were similar to those seen in earlier reports on this cohort.)	Workplace inhalation exposure to 1,3-butadiene. Exposure ranked based on potential for exposure in each job category.	Statistically significant increase in all lymphohematopoietic cancers (LHCs), (SMR = 141 [95% CI = 105–186]), but none of the SMRs for individual LHCs were statis- tically significantly elevated. Based on time first employed, the SMR for all LHC was sta- tistically significant only for those first employed before 1950. The SMRs for all LHC were highest for those employed less than 5 years. The observed decrease in SMRs with increasing length of employment is inconsis- tent with the expected dose-response rela- tionship. Furthermore, there was no association between the estimate of 1,3-butadiene exposure and any LHC category, confirming the lack of a dose-response effect. Overall, the authors conclude "there was no increase in risk with increasing butadiene exposure." Statistically significant decrease in all causes of death, (SMR = 89 [95% CI = 84–94]).	Divine and Hartman 2001

Table C.4 (Continued). Summ	ary of Chronic Cancer T	oxicity Data for Each N	/ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
1,3-Butadiene (<i>Con</i>	tinued)					
SELECTED REFERENCES	FROM U	PDATED LITERATURE SEAR	RCHES, defined at the e	end of this table (Con	tinued)	
	2001	Mortality, morbidity, and hematology (Note that the non- cancer results from this study are presented in Table C.3.)	Human— male workers employed at a petrochemical facility in Texas for at least 5 years (<i>n</i> = 614 for the total cohort) (Note this is a follow-up study of this cohort.)	Potential workplace inhalation exposure to 1,3-butadiene monomer Monitoring data from 1979–1992, shipping area: arithmetic mean 8-hr TWA 1,3-butadiene = $22,984 \ \mu g/m^3, max$ = $3.2 \times 10^5 \ \mu g/m^3$ Monitoring data from 1993–1998: max in all areas < 2210 \ \mu g/m^3	All cancer mortality (SMR = 0.57 [95% CI = 0.32–0.92]) was significantly lower for the cohort. Lymphohematopoietic cancer in the cohort was about the same as the comparison popu- lation (SMR = 1.06 [95% CI = 0.22–3.11]). Overall, the authors concluded "the butadi- ene exposure at this facility in the last 20 years does not pose a health hazard to employees."	Tsai et al. 2001

Table C.4 (<i>Continued</i>]). Summa	ary of Chronic Cancer Tox	icity Data for Each M	ISAT						
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference				
1,3-Butadiene (Con	1,3-Butadiene (<i>Continued</i>)									
SELECTED REFERENCES	5 FROM UF	PDATED LITERATURE SEARCH	HES, defined at the e	nd of this table (Cont	inued)					
	2001	Consistent with EPA's car authors derived new qua 1,3-butadiene based on u lymphohematopoietic ca table entry above) and m Manufacturers Associati The new Delzell exposure original estimates. For ex workers that died from let the original exposure esti The CMA proposed modifi the highest dose group (> dose value rather than th originally used; (2) use th 70-year lifetime instead of by EPA; and (3) use avera original assumption of 20 linear Poisson regression potency. For comparison, at the tir Valdez-Flores article, EP Unit Risk = 3.9×10^{-6} p risk assessment). (Note that in 2002, EPA is (µg/m ³), based on an LEC	ncer risk assessment antitative estimates of updated dose estimates ancer data from Delzo odifications propose on (CMA). estimates were "subst ample, the average do eukemia was more that imate. fications are: (1) chara- > 4.4×10^5 (µg/m ³)-yi e arbitrary value of 5 ne traditional default of the 85-year lifetime age adult inhalation r D m ³ /day. These mod modeling used to car ne of publication of t A estimated an EC ₀₁ per (µg/m ³) (based on essued a revised Unit I C ₀₁ = 561 µg/m ³ [EP/	guidelines, the f leukemia risk for tes and ell et al. (2001, see ed by the Chemical cantially" greater than ose ((μ g/m ³)-yrs) for an 6-fold greater than acterize the dose for rs) using the mean .5 × 10 ⁵ (μ g/m ³)-yrs assumption of a e originally assumed ates instead of EPA's ifications affect the lculate cancer this Sielken and = 2564 µg/m ³ , and a a 1998 draft EPA Risk of 3 × 10 ⁻⁵ per A IRIS 2005].)	Incorporating the Delzell updated exposure estimates resulted in a 2.5-fold decrease in risk, based on an increase in the EC ₀₁ (the effective concentration corresponding to an extra risk of leukemia of 1%) from 2652 µg/m ³ to 6188 µg/m ³ . The resulting cancer potency (Unit Risk) = 1.6×10^{-6} per (µg/m ³). Incorporating the CMA recommended modifications resulted in an additional 5.4-fold decrease in risk, based on an increase in the EC ₀₁ from 6188–33,371 µg/m ³ . Incorporating both the Delzell updated exposure estimates and the CMA modifications resulted in a 13-fold decrease in risk, based on an increase in risk, based on an increase in risk, based on an increase in the EC ₀₁ from 2652–33,371 µg/m ³ . The resulting revised Unit Risk = 3.0×10^{-7} per (µg/m ³), and the resulting upper bound Unit Risk = 5.0×10^{-7} per (µg/m ³).	Sielken and Valdez-Flores 2001				
	2001	This article reviews the metabolism and mechanisms of action of 1,3-butadiene, addressing species differences between mice, rats, and humans and the basis for interspecies extrapolations. Mice seem to be the most susceptible to 1,3-butadiene carcinogenicity because they generate higher levels of DNA-reactive metabolites, while humans seem to be at the lowest risk from 1,3-butadiene exposure. Overall, the authors conclude butadiene "is unlikely to be a human carcinogen at the low exposure concentrations currently encountered in the environment or workplace."								
					Tab	ole continues on next page				

Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
1,3-Butadiene (<i>C</i>	ontinued)	I				
SELECTED REFERENCE	ES FROM U	PDATED LITERATURE SEARC	THES, defined at the e	end of this table (Cont	inued)	
	2005	Brain tumors (summary of results from an NTP study). Profile of genetic alter- ations in brain tumors	Male and female B6C3F1 mice	Inhalation of 4.4×10^{5} , 6.9×10^{5} , 1.4×10^{6} , or $2.8 \times 10^{6} \mu g/m^{3}$ 1,3-butadiene, for 6 hrs/day, 5 days/wk, for 13, 26, 40, or 60 weeks	A total of 6 malignant gliomas and 2 neuroblastomas were observed at $1.4 \times 10^6 \ \mu g/m^3$. Many of the tumors had genetic alterations similar to those reported in human brain tumors (eg, p53 alterations). Based on the location of the brain tumors and the predom- inant pattern of mutations, the authors con- cluded that the observed brain tumors may be chemically induced.	Kim et al. 2005
_	2003	This article reviews the a usefulness of this data i data, hemoglobin and D to 1,3-butadiene (mice a than mice). This inform is hypothesized to be th	available non-tumor of n cancer risk assessm NA adduct data, and are more susceptible ation can be used in r the mechanism respon	lata for benzene, 1,3-bu nent. With respect to 1 genotoxicity data to u than rats, and human s risk assessment to imp sible for 1,3-butadiene	atadiene, and vinyl chloride and addresses the ,3-butadiene, the authors review metabolism nderstand species differences in susceptibility susceptibility is believed to be more like rats rove inter-species extrapolations. Genotoxicity e-induced carcinogenicity.	Albertini et al. 2003
Cr III						
R eferences Used t	O SUPPORT	THE TOXICITY CRITERIA DI	EVELOPMENT			
Cancer unit risk, EPA (IRIS)	<u>1998</u>	Lung tumor incidence	Animals, includ- ing rats and mice	Inhalation: intrapleural injec- tion, or intrabron- chial implantation/ duration unspeci- fied	No increase in lung tumor incidence	Baetjer et al. 1959; Hueper and Payne 1962; Levy and Venitt 1975; Levy and Martin 1983
SELECTED REFERENCE	ES FROM U	PDATED LITERATURE SEARC	THES, defined at the e	end of this table	1	1

Table C.4 (<i>Continue</i>	e d). Summ	ary of Chronic Cancer To	xicity Data for Each N	/ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Cr VI (Chromium	Trioxide)				
R eferences Used to) SUPPORT	THE TOXICITY CRITERIA D	EVELOPMENT			
Cancer unit risk, EPA (IRIS)	<u>1998</u>	Lung cancer mortality	Human— occupational	Inhalation: up to 20 yrs	$1.2\times 10^{-2} \text{ per } \mu\text{g/m}^3$	Mancuso 1975
SELECTED REFERENCE	ES FROM U	PDATED LITERATURE SEARC	CHES, defined at the e	end of this table	-	
	2003	Lung cancer mortality	Human— occupational	Inhalation: occupational tenure = 1 to 32 yrs	Risk of lung cancer mortality (assuming 45 yrs occupational exposure): 2.05×10^{-3} per µg/m ³ (relative risk model), 2.16×10^{-3} per µg/m ³ (additive risk model). Risk of lung cancer mortality (assuming continuous exposures): 9.78×10^{-3} per µg/m ³ (relative risk model), 1.25×10^{-2} per µg/m ³ (additive risk model).	Crump et al. 2003
_	2003	Mortality from all causes, all cancers, and lung cancer	Human— former workers of a US chromate production plant	Inhalation: duration of employ- ment at least 1 yr		Luippold et al. 2003
		"SMRs were significantly lung cancer (SMR = 242 hexavalent exposure. L to < 2.70 mg/m ³ -years, groups. Significantly in employment, and laten	y increased for all cau 1). A trend test showed ung cancer mortality SMR = 365 ; ≥ 2.70 to acreased SMRs were a cy of 20 or more year	ises combined (SMR = ed a strong relation bet was increased for the h 0 23 mg/m ³ -years, SMF lso found for year of h s."	129), all cancers combined (SMR = 155), and ween lung cancer mortality and cumulative highest cumulative exposure categories (≥ 1.05 R = 463), but not for the first three exposure ire before 1960, 20 or more years of exposed	

Table C.4 (<i>Continue</i>	e d). Summ	ary of Chronic Cancer	Toxicity Data for Each N	/ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Diesel Engine Ext	haust					
REFERENCES USED TO	O SUPPORT	THE TOXICITY CRITERIA	DEVELOPMENT			
Cancer unit risk, EPA (IRIS)	<u>2003</u>	Lung cancer	Human— numerous epidemiology studies of occupa- tionally exposed populations	Inhalation: varied	"The absence of adequate data to develop a sufficiently confident dose-response relationship from the epidemiologic studies has prevented the estimation of inhalation carcinogenic risk."	EPA 2003
SELECTED REFERENC	ES FROM U	PDATED LITERATURE SEA	ARCHES, defined at the e	end of this table		
An updated litera	ature search	ı was not required beca	use IRIS was updated ir	ı 2003.		
Dioxin						
R eferences Used to	O SUPPORT	THE TOXICITY CRITERIA	DEVELOPMENT			
Unit Risk, EPA (Dioxin Reassessment)	2003	Carcinogenicity— all cancer sites combined	Human— occupational	Inhalation: up to 51 yrs	Upper bound slope factor: 1×10^{-3} per pg TCDD/kg-d Range: 0.57×10^{-3} to 5.1×10^{-3} per pg TCDD/kg-d	Steenland et al. 2001; Becher et al. 1998
SELECTED REFERENC	ES FROM U	PDATED LITERATURE SEA	RCHES, defined at the e	end of this table		
An updated literatu	re search v	vas not required becaus	se the EPA Dioxin Reass	essment was release	d in 2003.	
Ethylbenzene						
References Used T	O SUPPORT	THE TOXICITY CRITERIA	DEVELOPMENT			
Cancer unit risk, EPA (IRIS)	<u>1991</u>	Classification: D, "not Quantitative estimate	classifiable as to humar e of carcinogenic risk is	n carcinogenicity." B "not available."	asis: "nonclassifiable due to lack of animal bioas	says and human studies".
					Tal	ole continues on next pag

Table C.4 (<i>Cont</i>	t inued) . Summ	ary of Chronic Cancer Tox	cicity Data for Each M	ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Ethylbenzene	(Continued)					
SELECTED REFER	RENCES FROM U	PDATED LITERATURE SEARC	HES, defined at the e	nd of this table		
IARC	2000	Rats: increased renal tumors (adenomas and carcinomas). Mice: increased lung ade- nomas and carcinomas in males, liver ade- nomas and carcinomas in females.	F344 rat, B6C3F1 mouse	Inhalation: 6 hrs/day, 5 days/wk, 2 yrs		NTP 1999
		Classification: Group 2B, experimental animals). (in mice were within the	possibly carcinogeni The IARC Working G historical control ran	c to humans (inadequa roup noted that the in 1ge.)	ate evidence in humans, sufficient evidence in creased incidences of lung and liver adenomas	
_	2002	Increased renal tubule hyperplasia and neo- plasms	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 2 yrs		Hard 2002
		The kidneys from the 199 the mode of action. The tumors was an exacerba by ethylbenzene. Becaus vance to humans for risl	9 NTP ethylbenzene author concluded th tion of CPN (chronic se CPN has no human assessment purpose	carcinogenicity study at the primary mode o progressive nephropa 1 disease counterpart, ss.	were histopathologically reevaluated to define of action underlying the increase in renal (thy, an age-related spontaneous renal disease) this pathway was considered to have no rele-	
	2003	Male rat kidney: α2u- glubulin accumulation, accelerated CPN, regen- erative cell proliferation. Mouse liver and lungs: formation of a toxic metabolite and regenera- tive cell proliferation.	F344 rat, B6C3F1 mouse	Inhalation: 6 hrs/day, 5 days/wk, 1 or 4 wks		Stott et al. 2003
		The study results suggest and altered cell populat have been associated wi of dosing and display cl	a mode of action for ion dynamics in male th nongenotoxic mod ear thresholds." (p 62	ethylbenzene carcino e rat kidney and mous les of tumorigenesis th 2)	genicity involving increased cell proliferation se liver and lungs. "Several of these changes nat, significantly, are reversible upon cessation	

Table C.4 (<i>Continue</i>	d). Summ	ary of Chronic Cancer To	oxicity Data for Each 1	ASAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Formaldehyde						
R eferences Used to	SUPPORT	THE TOXICITY CRITERIA D	EVELOPMENT			
Cancer unit risk, EPA (IRIS)	<u>1991</u>	Nasal squamous cell carcinoma	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 24 months	$1.3\times 10^{-5}~\text{per}~\mu\text{g/m}^3$	Kerns et al. 1983
Cal EPA	<u>1992</u>	Squamous nasal carcinoma incidence	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 24 months	$6.0\times 10^{-6}~{\rm per}~\mu{\rm g/m}^3$	Kerns et al. 1983; EPA 1987; OEHHA 1992
SELECTED REFERENCE	S FROM U	PDATED LITERATURE SEAR	CHES, defined at the	end of this table		
_	1997	This comprehensive rev metabolism and mecha involved in rat-to-hum The author concludes and that there are "majo $\mu g/m^3$) airborne expose "low concentration (≤ 1 uncoupled from the res regenerative replication (p 291).	iew article summariz nisms, and compares an extrapolation for f that there is "a demon or differences in the b ure concentrations" (p 2.46 \times 10 ³ µg/m ³ airb sponses at high conce n, and inflammation a	es formaldehyde carci rodent vs. human nas ormaldehyde, but ulti astrated, and reproduc iology of the nose for l 293). Overall, the aut orne exposure) extrap ntrations ($\geq 7.38 \times 10$ appear to be essential	mogenicity studies, discusses formaldehyde al passages. The author discusses uncertainties mately supports the use of the rat model. cible, experimental cancer response threshold," high (≥ 7.38 × 10 ³ µg/m ³) vs. low (≤ 2.46 × 10 ³ thor recommends that for formaldehyde, olation, where no tissue damage is observed, be 0 ³ µg/m ³), where epithelial degeneration, driving forces in formaldehyde carcinogenesis"	Morgan 1997
_	1997	In this meta-analysis, th reported no evidence of nasopharyngeal cancer studies. Overall, the au formaldehyde exposur- with conclusions from	e authors reviewed 4 f a relationship betwo , they reported a "met thors conclude that " e and nasopharyngeal two previous meta-an	7 epidemiologic studi een formaldehyde and a relative risk" of 1.0 the available studies o cancer" (p 639). (The alyses, because they i	es involving formaldehyde exposure. They either lung cancer or sinonasal cancer. For for cohort studies and 1.3 for case-control lo not support a causal relationship between authors note that their conclusion conflicts ncluded data from additional studies, corrected	Collins et al. 1997

Table C.4 (<i>Continu</i>	. Summ	ary of Chronic Cancer To	xicity Data for Each N	ISAT				
Toxicity Criteria	Year	Endpoint	Reference					
Formaldehyde ((Continued	Ŋ						
SELECTED REFEREN	CES FROM U	PDATED LITERATURE SEARC	THES, defined at the e	end of this table (Cont	inued)			
CIIT	1999	1999 This comprehensive review includes a hazard characterization and dose response assessment for inhaled formaldehyde. Formaldehyde induces DNA-protein cross-links (DPX) and cytotoxicity that result in regenerative cell proliferation. The mode of action for tumor induction at higher concentrations is different from that at lower concentrations because of the involvement of regenerative cell proliferation. The authors developed a biologi- cally-based, two-stage clonal growth model for carcinogenicity. For comparison, a benchmark dose model was also used to extrapolate formaldehyde-induced cancer in rats to potential cancer risk in humans. "Overall, the predicted risk levels for formaldehyde are considerably lower than in previous cancer risk assessments and in the benchmark dose assessment" (p 7–42).						
Health Canada	2003	Nasal cavity tumors	Rat	Inhalation	Risk = 8.8×10^{-6} for workers with a 40 yr occupational exposure to $1.23 \times 10^3 \mu\text{g/m}^3$ (1 ppm) formaldehyde (p 104).	Litelpo and Meek 2003		
		This comprehensive artistudies and mechanistic with sharp increases in $7.2 \times 10^3 \mu\text{g/m}^3$ (6 ppm the "predicted addition continuous exposure to (8h/d, 5d/wk) to 1.2×10^{-8} predicted additional rister exposure to levels of for to 2.7×10^{-8} , respective	cle reviews the result c information. Expose tumor incidence in th d) formaldehyde" (p 8 al risk of upper respir 4.8 µg/m ³ (0.004 ppr 10 ³ µg/m ³ (1 ppm) for ks of upper respirator rmaldehyde between rely" (p 104).	s from 5 formaldehydd rre response in the rat he nasal cavity occurri 8). Based on a biologic catory tract cancer for r n) formaldehyde and l rmaldehyde was 8.8 × ry tract cancer for non 1.2 and 120 µg/m ³ (0.0	bioassays in rats, as well as epidemiology bioassays "was similar and highly nonlinear, ing only at concentrations greater than cally-based, formaldehyde-specific model, nonsmoking workers with an 80-yr lifetime naving 40 yr of occupational exposure 10^{-6} . For the general population, the smokers, associated with an 80-yr continuous 001 and 0.1 ppm), range from 2.3×10^{-10}			
					Tal	ble continues on next pag		

Toxicity CriteriaYearAnimal Strain endpointRoute and Duration of ExposureUnit Risk, Potency, or ResultFormaldehyde (Continued)SELECTED REFERENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table (Continued)IARC2004Overall IARC evaluation: formaldehyde is carcinogenic to humans (Group 1). There is "sufficient evidence" in humans and experimental animals for the carcinogenicity of formaldehyde. (Note that this is a higher classification than previous IARC evaluations.)IARC reviewed human and animal carcinogenicity data, including data from several human studies published since their 1995 evaluation (follow-up results from 3 cohort studies and 3 new case-control studies (the specific response new new new human and animal carcinogenicity data, including data from several human studies (the specific response new new new new human and animal carcinogenic to humans and specific response new new new human and animal carcinogenic to human scale control studies (the specific response new new new human and animal carcinogenic to human scale control studies (the specific response new new new human and animal carcinogenic to human scale control studies (the specific) response new new new new human and animal carcinogenic the specific data that "the tot" human scale control studies (the specific) response new new human new new human scale control studies (the specific) response new new human scale control studies (the specific) response new new new human scale control studies (the specific) response new new new human scale control studies (the specific) response new new new human scale control studies (the specific) response new new new human scale control studies (the specific) response new new human scale control studies (the specific) response ne	
Formaldehyde (Continued) SELECTED REFERENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table (Continued) IARC 2004 Overall IARC evaluation: formaldehyde is carcinogenic to humans (Group 1). There is "sufficient evidence" in humans and experimental animals for the carcinogenicity of formaldehyde. (Note that this is a higher classification than previous IARC evaluations.) IARC reviewed human and animal carcinogenicity data, including data from several human studies published since their 1995 evaluation (follow-up results from 3 cohort studies and 3 new case-control studies (the specific reformerse were not listed by IARC) preserving the anidomiclogie data (IARC reviewed human studies of the reformerse were not listed by IARC)	Reference
SELECTED REFERENCES FROM UPDATED LITERATURE SEARCHES, defined at the end of this table (Continued) IARC 2004 Overall IARC evaluation: formaldehyde is carcinogenic to humans (Group 1). There is "sufficient evidence" in humans and experimental animals for the carcinogenicity of formaldehyde. (Note that this is a higher classification than previous IARC evaluations.) IARC reviewed human and animal carcinogenicity data, including data from several human studies published since their 1995 evaluation (follow-up results from 3 cohort studies and 3 new case-control studies (the specific reformance upper net listed by IARC).	
IARC 2004 Overall IARC evaluation: formaldehyde is carcinogenic to humans (Group 1). There is "sufficient evidence" in humans and experimental animals for the carcinogenicity of formaldehyde. (Note that this is a higher classification than previous IARC evaluations.) IARC reviewed human and animal carcinogenicity data, including data from several human studies published since their 1995 evaluation (follow-up results from 3 cohort studies and 3 new case-control studies (the specific references upon net listed by IARC)	
references were not listed by IARCJ). Regarding the epidemiologic data, IARC concluded that the results of the study of industrial workers in the USA, supported by the largely positive findings from other human studies, provided sufficient epidemiological evidence that formaldehyde causes nasopharyngeal cancer in humans." "There is strong, but not sufficient evidence for a causal association between leukaemia and occupational exposure to formaldehyde." "There is only limited epidemiological evidence that formaldehyde causes sinonasal cancer in humans."	IARC 2004; www-cie.iarc.fr/ htdocs/monographs/ vol88/formal.html Note that this IARC Monograph, Vol 88 was "in preparation" and not officially pub- lished at the time of this literature search. This table entry is based on the summary chapter provided on the IARC web page, last updated by IARC on 9/7/04 ^a .
^a Now published: IARC. 2006. Formaldehyde, 2-Butoxyethanol and 1- <i>tert</i> -Butoxypropan-2-ol. Vol 88.	1 (* .

Table C.4 (<i>Conti</i>	nued). Summ	ary of Chronic Cancer T	Coxicity Data for Each M	MSAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Formaldehyde	(Continued)				
SELECTED REFERE	ENCES FROM U	PDATED LITERATURE SEA	RCHES, defined at the e	end of this table (Cont	tinued)	
	2004	Cancer mortality	Human—workers employed at one of 10 US formaldehyde- producing or - using facilities prior to 1966 through 1994 (<i>n</i> = 25,619, 1921 deaths and 865,708 person- years of follow- up). Median follow-up duration = 35 years. (Note that this is a follow-up study of this cohort)	Workplace inhalation exposures Median 8-hr TWA = 553 µg/m ³ formaldehyde (range 12.3– 5228 µg/m ³)	A significant excess of nasopharyngeal cancer was observed for exposed workers (SMR = 2.10 [95% CI = 1.05–4.21]). Analyses based on a variety of formaldehyde exposure mea- sures suggested an exposure-response rela- tionship for nasopharyngeal tumors and possibly an association between other upper respiratory tract sites. There was no clear association with pancreas, brain, lung, or prostate cancers. Mortality from all solid tumors was signifi- cantly lower than expected. The authors note that they also found a signif- icant association between peak and average exposure to formaldehyde and mortality from leukemia, particularly myeloid leuke- mia, for this cohort (detailed in a separate publication).	Hauptmann et al. 2004
					Tab	le continues on next page

Table C.4 (<i>Continued</i>)	. Summa	ary of Chronic Cancer Tox	icity Data for Each M	1SAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Formaldehyde (<i>Con</i>	ntinued)					
SELECTED REFERENCES	FROM U	PDATED LITERATURE SEARC	HES, defined at the e	and of this table (Cont	inued)	
	2004	Mortality	Human— workers exposed to formaldehyde for \geq 3 months at one of three garment plants in GA and PA ($n = 11,039$) (Note that this is a follow-up study of this cohort.)	Workplace inhalation exposures Geometric mean TWA in the early 1980s = $184.5 \ \mu g/m^3$ (range 110.7– 246 $\mu g/m^3$) formaldehyde Median duration of employment = 3.3 years	The authors focus on a non-significant increase in mortality from myeloid leukemia (SMR = 1.44 [95% CI = 0.80-2.37]) with mortality greatest for workers first exposed in the earliest years (presumably higher exposure levels), workers with ≥10 years of exposure, and workers with ≥ 20 years since first exposure. There was no increase in mortality from nasal, pharyngeal, laryngeal, trachea, bron- chus, or lung cancers. Mortality from all causes and all cancers was significantly less than expected. The only statistically significant increase over the total study period (1955–1998) was for mortality from "other" heart diseases (i.e., not ischemic heart disease, cardiomy- opathy, or conductive disorders).	Pinkerton et al. 2004
	2002	Pharyngeal cancer (PC) and nasopharyngeal cancer (NPC) mortality	Human—workers employed at a plastics- producing plant between 1941 and 1984 (<i>n</i> = 7328) Nested case control included 7 NPC cases, and 15 PC cases, matched with controls	Workplace inhalation exposures to formaldehyde, particulates, and pigment Median average formaldehyde concentration for exposed workers = 169.7 µg/m ³	Statistically significant increases for PC (2.23-fold) and NPC (5-fold) were observed. However, despite the statistically significant increase, analyses based on a variety of formaldehyde exposure measures did not exhibit a consistent dose-response relationship. For example, both short- and long-term workers had similarly elevated risks. Overall, the authors concluded that the observed increases in PC and NPC in this cohort were unlikely to be associated with formaldehyde.	Marsh et al. 2002

Table continues on next page

Health Effects Institute Special Report 16 © 2007

Table C.4 (<i>Continued</i>)	. Summa	ary of Chronic Cancer Tox	cicity Data for Each M	SAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Formaldehyde (<i>Cor</i>	ntinued)					
SELECTED REFERENCES	FROM UP	DATED LITERATURE SEARCH	HES, defined at the en	nd of this table (Conti	inued)	
_	2003	This article presents a bet mark dose and pharmac tumor and cell proliferat dose-response relationsh els: (1) computational fir model combined with a use of mechanistically-b cancer risk in humans a cluded that linear extrap the most appropriate for	nchmark dose risk as okinetic modeling to tion endpoints in rats nip. Benchmark conce uid dynamics to estin computational fluid o ased extrapolation m t low exposure levels polation over-predicts assessing human hea	sessment for inhaled f estimate formaldehyd . Both the tumor and e entrations were extrap nate rate of delivery to dynamic method base odels helps reduce un was found to be simil risks and that a non-l lth risks from formale	ormaldehyde. The authors combined bench e cancer risks to humans, considering both cell proliferation data showed a non-linear olated to humans using two mechanistic me o the nasal lining; and (2) a pharmacokinetic d on DNA-protein cross links. In general, th accertainties in risk estimates. The predicted ar to EPA's risk assessment. The authors con inear margin-of-exposure (MOE) approach is dehyde.	- Schlosser et al. 2003
	2004	This article presents dose computational fluid dyn data for cytolethality/reg clonal growth modeling human tumor incidence only used if human data formaldehyde are <i>de mi</i> effects of formaldehyde	e-response modeling f namic model of the hu- generative cellular pro- to link DPX and CRC data was used to iden was not available. The nimis ($\leq 10^{-6}$) at rele should be sufficiently	or inhaled formaldely man respiratory tract oliferation (CRCP) and P with tumor formation ntify baseline parametric ne authors conclude the vant human exposure protective against por	yde, using a three-dimensional, to predict human dosimetry, dose-response l DNA-protein cross-linking (DPX), and on. General (i.e., not formaldehyde specific) er values for the model. Animal data was hat cancer risks associated with inhaled e levels and that protection from non-cancer otential carcinogenic effects.	Connolly et al. 2004
						Table continues on next page

			Animal Strain	Route and		
'oxicity Criteria	Year	Endpoint	or Human Population	Duration of Exposure	Unit Risk, Potency, or Result	Reference
`ormaldehyde	e (Continued)				
ELECTED REFER	ENCES FROM U	PDATED LITERATURE SEARC	HES, defined at the e	nd of this table (Cont	tinued)	
	2005	Local irritation of the upper respiratory tract (as the most likely threshold mechanisms preceding tumor formation) NOAEL = $370 \ \mu\text{g/m}^3$, UF ~ 3	Human volunteers	Short term inhalation: 370 μg/m ³ (exposure details not specified)	$ELIA_{cm} = 125 \ \mu g/m^3$	Schupp et al. 2005
		The authors developed at "acceptable" exposure la Vehicles, or STELIAs; (2 ELIAs; and (3) ELIAs for acetaldehyde, formaldel concentrations in cars. For formaldehyde, the au irritation of the upper re and the maximum indo the former Bundesgesur about 3 was an appropri- local irritation of the up toxicity, as well as "the is 125 µg/m ³ was used for The average concentration (48 µg/m ³ as reported is	n approach (includin evels for VOCs release chronic Exposure L carcinogenic and m hyde, and xylene and thors considered the espiratory tract, based or air exposure level adheitsamt in German fate uncertainty facto per respiratory tract most likely threshold the STELIA, ELIA, sys n of formaldehyde m n EAT 1998) did not	g recommended unce ed inside cars: (1) Sho levels Inside Automot utagenic substances, of compared these risk- German MAK value of on Deutsch Forschur of 125 µg/m ³ (about ¹), ny (BGA 1992). The st r for extrapolation to was considered to be mechanism that prece temic, ELIA _{local} , and E easured in chamber to exceed the ELIA	rtainty factors) for developing maximum ort Term Exposure Levels Inside Automotive ive vehicles for non-genotoxic substances, or or ELIA _{cm} . They applied this concept to based "acceptable" exposure levels to of 370 μ g/m ³ (essentially a NOAEL for local agsgemeinschaft 2000 and Schlink et al. 1999) /3 the German MAK value) recommended by udy authors concluded that this factor of the general population. Therefore, because the critical mechanism for acute and chronic edes tumor formation," this value of LIA _{cm} . ests designed to simulate cars at 23°C	

			Animal Strain	Route and		
Foxicity			or	Duration of	Unit Risk,	
Criteria	Year	Endpoint	Human Population	Exposure	Potency, or Result	Reference
n-Hexane						
References Used t	O SUPPORT	THE TOXICITY CRITERIA DE	EVELOPMENT			
Cancer unit risk, EPA (IRIS)	<u>1991</u>	As of 1991, the IRIS <i>n</i> -he at this time."	xane carcinogenicity	v assessment has been l	isted as "under review". The carcinogenicity	assessment is "not availa
Selected Reference	ES FROM U	PDATED LITERATURE SEARC	THES, defined at the	end of this table		
_	1999 Iı	Increase in the com- bined incidence of hepatocellular adenomas and carcino- mas in female mice at the high dose only $(3.18 \times 10^7 \ \mu g/m^3, 9000 \ ppm).$	B6C3F1 mouse	Inhalation: 6 hrs/day, 5 days/wk, 2 yrs		Daughtrey et al. 1999
		No evidence of carcino- genicity in rats. The only histopathological finding of note was upper respiratory tract tissue irritation (LOAEL = $3.18 \times 10^6 \ \mu g/m^3$, 900 ppm).	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 2 yrs		
		Note that the test materia containing 52% <i>n</i> -hexa The authors noted that "t (p 28). The authors also	al in this study was r ne and smaller amou he relevance for hun noted that "no neuro	not pure <i>n</i> -hexane, but ints of other six-carbon nans of these hexane-ir ptoxic effects character	was commercial hexane solvent, a mixture isomers. aduced mouse liver tumors is questionable" istic of <i>n</i> -hexane were observed" (p 28).	
						•

Table C.4 (<i>Continue</i>	d). Summ	ary of Chronic Cancer To	oxicity Data for Each M	ISAT		
Foxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Lead Compounds						
References Used to	SUPPORT	THE TOXICITY CRITERIA D	DEVELOPMENT			
Cancer unit risk,	<u>1993</u>				Not applicable	EPA 2004
EPA (IRIS)	RIS) EPA classifies lead as a probable human carcinogen (B2), based on increased tumors (primarily kidney tumors) in rodent bioassays, but recommends that a numerical estimate of carcinogenic risk not be used.					
Cancer potency, Cal EPA	<u>1997</u>	Kidney tumor incidence data	Rat (species not specified)	Oral, lead acetate administered in feed	$1.2 imes 10^{-5} \ \mathrm{per} \ \mathrm{\mu g/m^3}$	Azar et al. 1973
Selected Reference	S FROM U	PDATED LITERATURE SEAR	CHES, defined at the e	nd of this table		
Given that possibl	e health e	ffects from lead exposure	e are typically evaluate	d using blood lead lev	els, an updated literature search was deter	mined to be unnecessary.
Manganese						
Literature search o	conducted	and reviewed, but no ot	her studies were found	specifically relating to	possible carcinogenicity of manganese.	
Mercury Compou	nds					
References Used to	SUPPORT	THE TOXICITY CRITERIA D	DEVELOPMENT			
Cancer unit risk, EPA (IRIS) elemental mercury	<u>1995</u>	Classification: D, "not c animal data." "Epidem vapor and carcinogeni concurrent exposure to (<i>eg</i> , smoking)." No qua	lassifiable as to human iologic studies failed to city; the findings in the o other chemicals, incl ntitative estimate of ca	carcinogenicity." Basi o show a correlation be ese studies were confo uding human carcinog ırcinogenic risk is prov	s: "based on inadequate human and etween exposure to elemental mercury unded by possible or known ens, as well as life style factors rided.	
Cancer unit risk, EPA (IRIS) mercuric chloride	<u>1995</u>	Classification: C, "possi limited evidence of ca were reviewed, but ma due to an inadequate s inhalation exposure) is	ble human carcinogen. rcinogenicity in rats ar any of the tumor results study design. No quant s provided.	" Basis: "based on the ad mice." Several carci s were equivocal, of qu itative estimate of carc	absence of data in humans and nogenicity studies (oral exposures) lestionable relevance, or limited inogenic risk (from oral or	
						Table continues on next

Table C.4 (<i>Continu</i>	e d). Summ	nary of Chronic Cancer To:	kicity Data for Each N	/ISAT				
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference		
Mercury Compo	unds (<i>Cor</i>	ntinued)						
SELECTED REFEREN	CES FROM U	JPDATED LITERATURE SEARC	HES, defined at the e	end of this table				
_	1998	Liver, lung, and ovarian cancer	Mercury miners and millers (<i>n</i> = 6784 men and 265 women)	Inhalation of inorganic mercury		Boffetta et al. 1998		
		Increased liver cancer mortality (SMR = 1.64 [95% CI = 1.18–2.22]) was observed. Increased lung cancer mortality (SMR = 1.19 [95% CI = 1.03–1.38]) was also observed, but the authors noted that this may be explained by co-exposure to silica and radon. Three ovarian cancer deaths were reported, which the authors noted were "likely representing an excess" (p 591). The authors concluded that "exposure to inorganic mercury in mines and mills does not seem strongly associated with cancer risk, with the possible exception of liver cancer" (p 591).						
MTBE								
References Used 1	TO SUPPORT	r the Toxicity Criteria De	VELOPMENT					
Cancer unit risk, EPA (IRIS)	<u>1993</u>	_	_	_	IRIS cancer assessment not available at this time.	_		
Cal EPA	<u>1999</u>	Kidney adenomas and carcinomas	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 24 months	$2.6\times 10^{-7}~\text{per}~\mu\text{g/m}^3$	Chun et al. 1992, Bird et al. 1997		
		Male rat Leydig	Sprague	Gavage:		Belpoggi et al. 1995		

lable C.4 (Contin	uea). Sumn	lary of Chronic Cancer 105	Cicity Data for Each N	13/11		
Foxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
MTBE (Continu	ed)					
SELECTED REFEREN	ICES FROM U	JPDATED LITERATURE SEARC	HES, defined at the e	nd of this table		
	2003	Hormone levels (eg, testosterone, corticos- terone, LH, prolactin). Testosterone produc- tion declined 38–49% of control within hours of gavaging. Reductions less dramatic or nonex- istent if sampled longer after treatment or with lower doses; nondetect- able after 28 days of treatment. Overall only mild effects on hor- mone-dependent organ weights.	Sprague Dawley rat, male	Subchronic gavage exposure. 5 separate in vivo protocols to answer the question: could MTBE cause rat Leydig cell tumors by altering hor- mone levels? 1) every other day (14 treatments in 27 days) 2) daily for 28 days 3) 5 daily treatments in castrated rats with hormone replacement 4) 28 days 5) 14 consecutive days	None derived. Authors conclude reduced Leydig cell steroidogenesis enzyme activity may be a possible mechanism of carcinogenesis.	de Peyster et al. 2003
		Testosterone production declined 29–50%	Leydig cells exposed to MTBE or <i>t</i> -butanol (major metabolite)	In vitro exposures, 3 hrs	_	

Table C.4 (<i>Continu</i>	<i>ed</i>). Summ	ary of Chronic Cancer To	oxicity Data for Each N	ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Naphthalene						
R EFERENCES USED T	O SUPPORT	THE TOXICITY CRITERIA D	EVELOPMENT			
Cancer unit risk, EPA (IRIS)	<u>1998</u>	Predominantly benign respiratory tumors	Mouse	Inhalation: 6 hrs/day, 5 days/wk, 2 yrs	Classification: Group C, a possible human carcinogen. An inhalation unit risk was not derived "because of the weakness of the evidence (observations of predominant benign respiratory tumors in mice at high dose only) that naphthalene may be carcinogenic in humans."	NTP 1992
Cal EPA	2004	Nasal respiratory epithelial adenoma and nasal olfactory epithelial neuroblastoma	F344 rat	Inhalation: 6.2 hrs/day, 5 days/wk, 105 wks	$3.4\times 10^{-5} \ \text{per} \ \mu\text{g/m}^3$	NTP 2000; OEHHA 2002
SELECTED REFERENCE	CES FROM U	PDATED LITERATURE SEAR	CHES, defined at the e	and of this table		1
An updated litera	ature searcl	h was not required becau	se Cal EPA was update	ed in 2004.		
					Та	ble continues on next pag

Table C.4 (<i>Continued</i>	l). Summ	ary of Chronic Cancer To	oxicity Data for Each M	MSAT			
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference	
Nickel Compounds	6						
R EFERENCES USED TO	SUPPORT	THE TOXICITY CRITERIA D	EVELOPMENT				
Cancer unit risk, EPA (IRIS) nickel, soluble salts	<u>1994</u>	"The EPA has not evalua	ated soluble salts of n	ickel, as a class of com	pounds, for potential human carcinogenicity."		
Cancer unit risk, EPA (IRIS) nickel carbonyl	<u>1991</u>	Classification: B2, "prob malignant tumors at va respectively." The low intravenous route of ex	able human carcinoge rious sites in rats adn survival rate for both cposure in the other st	en." Basis: "based upon ninistered nickel carbo control and treated ani tudy, preclude a quanti	the observation of pulmonary carcinomas and nyl by inhalation and intravenous injection, mals in the inhalation study, and the use of an tative risk estimate.		
Cancer unit risk, EPA (IRIS) nickel	<u>1991</u>	Lung cancer	Human— refinery workers	Inhalation	$2.4\times 10^{-4}~\text{per}~\mu\text{g/m}^3$	Enterline and Marsh 1982;	
refinery dust)		Classification: A, "huma and nasal tumors in su and on animal data in	nn carcinogen." Basis: lfide nickel matte refi which carcinomas we	"Human data in which nery workers in severa re produced in rats by	exposure to nickel refinery dust caused lung l epidemiologic studies in different countries, inhalation and injection."	Chovil et al. 1981; Peto et al. 1984; Magnus et al. 1982	
Cancer unit risk, EPA (IRIS) nickel	<u>1991</u>	Lung cancer	Human— refinery workers	Inhalation	$4.8\times 10^{-4}~\text{per}~\mu\text{g/m}^3$	Enterline and Marsh 1982;	
subsulfide)		Classification: A, "huma nickel refinery dust, m animals by several rou icity assays." The incre to account for the roug	Chovil et al. 1981; Peto et al. 1984; Magnus et al. 1982				
Cal EPA (nickel and nickel compounds)	<u>1991</u>	Lung cancer	Human— Ontario nickel refinery sinter plant workers	Inhalation: 5 or more yrs work- place exposure	$2.6\times 10^{-4}~{\rm per}~\mu g/m^3$	Chovil et al. 1981; Rob- erts et al. 1983; Muir e al. 1984; CDHS 1991	
					Tab	ole continues on next pag	

Table C.4 (<i>Continue</i>)	d). Summ	ary of Chronic Cancer Tox	icity Data for Each N	ISAT				
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference		
Nickel Compound	s (Contir	nued)						
Selected Reference	s from U	PDATED LITERATURE SEARCH	HES, defined at the e	nd of this table				
	2000	This comprehensive anal insoluble nickel. Occup- nasal cancer. Insoluble, authors conclude that w insufficient to provide a note that "the overall da insufficient to determine under EPA's 1986 cance "D, not classifiable as to carcinogenic potential" also be summarized for	ysis reviews animal a ational exposure to n but not soluble, nick hile soluble nickel m dequate dose-respon ta suggest a nonlinea e the doses at which r guidelines, inhaled human carcinogenic (p 224). The authors i EPA's Integrated Risk	and human data to eva nixed soluble and inso el has been shown to b nay enhance the carcin se information to be u r dose-response relatio such nonlinearities oc soluble nickel should ity," because the data a note that "after EPA re information System (aluate the carcinogenicity of soluble and oluble nickel is associated with lung and be carcinogenic in animal studies. The mogenicity of other chemicals, "the data are seful in risk assessment" (p 224). They also onship for carcinogenicity, but the data are ecur" (p 210). The authors conclude that, be classified as "cannot be determined," or are "inadequate for an assessment of human view, the conclusions of the assessment will IRIS)" (p 210).	Haber et al. 2000 (the authors were a panel formed by Toxicology Excellence for Risk Assessment (TERA), under contract to EPA, Health Canada, and others)		
_	2000	Respiratory cancer	Human— Norwegian nickel refinery workers	Inhalation	The aim of this article was to develop refined quantitative historical exposure estimates for this cohort.	Grimsrud et al. 2000		
_	2002	This review article summ The authors also briefly cers in nickel workers. 7 molecular basis for nick changes in calcium hom	This review article summarizes animal studies showing nickel carcinogenesis via various routes of administration. The authors also briefly review epidemiology studies, noting an increased risk of respiratory tract and nasal can- cers in nickel workers. The authors provide a detailed discussion of nickel mechanistic studies to evaluate the molecular basis for nickel carcinogenesis (including alteration of transcription factors and signaling pathways, changes in calcium homeostasis, and induction of oxidative stress)					
_	2002	This article reviews hum potential of soluble (vs. 2 exposure to nickel refine However, animal inhalar vitro data suggest that th nickel ion to be present immediately dissociate i all, the authors conclude cinogens. However, if in compounds may enhance	an, animal, and mech insoluble) nickel com ery dust (containing s tion studies have gen te bioavailability of m at nuclear sites withis into nickel ions and a that "water-soluble haled at concentrations ce carcinogenic risks	nanistic information to apounds. Human epide soluble and insoluble erally failed to show a nickel is important; tur n respiratory target ce are rapidly cleared from nickel compounds, by ons high enough to inc associated with inhala	o evaluate hypotheses about the carcinogenic emiology studies show an association between nickel compounds) and respiratory cancers. a carcinogenic potential for soluble nickel. In nor induction requires sufficient quantities of dls. Because water-soluble nickel compounds m the lung, cellular uptake is inefficient. Over- themselves, will not be complete human car- luce chronic lung inflammation, these ation exposure to other substances" (p 841).	Oller 2002		

Table C.4 (<i>Continu</i>	ued). Summ	ary of Chronic Cancer	Toxicity Data for Each MS	SAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Nickel Compour	nds (<i>Contin</i>	nued)				
SELECTED REFEREN	CES FROM U	PDATED LITERATURE SEA	ARCHES, defined at the en	d of this table (Cont	inued)	
	2003	This comprehensive a measurements, anim risks associated with "threshold-like dose- have increased lung dence of increased lu differences in deposi exposure levels are o greater confidence ir lung cancer risks, est typical in current wo	article presents an integrat al data from cancer bioass low-level nickel exposure responses" for nickel carc cancer risk (3–4 fold exce ing cancer risk. Using lun ition, clearance, particle s consistent with those obse a using animal dose-respo timated using animal dose orkplaces.	ted analysis of huma says, and mechanisti es. The authors discu- tinogenicity. Based o sses), while most "lo g cancer dose-respor- ize distributions, and rved in high exposu- nse data to estimate e-response data, are l	n epidemiologic data, occupational exposure c information, to evaluate respiratory cancer ss the animal and mechanistic data supporting n epidemiologic data, "high exposure" cohorts w exposure" cohorts show no statistical evi- use functions from animal studies (adjusted fo d exposure patterns), predicted risks at high re worker cohorts. This consistency provides human risks at lower exposure levels. Excess ess than 10 ⁻⁴ for the low levels of exposure	Seilkop and Oller 2003
	2003	This review article su nickel compounds ar nickel compounds ir that "respiratory can 1 × 10 ³ μg/m ³ and to article primarily focu interactions with var ence with the metabo	mmarizes epidemiologic s re carcinogenic to the hum aduce tumors at virtually a cer risks are primarily rela o exposure to less soluble uses on possible genetic an rious molecular componen olism of essential metals.	studies showing that nan respiratory tract, all sites of applicatio ated to exposure to s forms at concentration nd epigenetic mechants of the cell, genera	both water-insoluble and water-soluble and experimental animal studies showing tha n. The authors cite a 1990 conclusion by IARG pluble nickel concentrations above ons above $1 \times 10^4 \mu\text{g/m}^3$ " (p 68). However, this nisms of nickel carcinogenesis, such as nickel tion of reactive oxygen species, and interfer-	Kasprzak et al. 2003
	I	1			Та	ble continues on next pag

Table C.4 (<i>Continue</i>	e d). Summ	ary of Chronic Cancer Tox	icity Data for Each M	ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
POM (Benzo[<i>a</i>]py	rene)					
REFERENCES USED TO	O SUPPORT	THE TOXICITY CRITERIA DE	VELOPMENT			
Cancer unit risk, EPA (IRIS)	<u>1994</u>	Forestomach, squamous cell papillomas and carcinomas	CFW-Swiss mouse	Oral, in diet, 1 to 197 days	7.3 per mg/kg-day (B[<i>a</i>]P) oral potency factor, geometric mean)	Neal and Rigdon 1967
		Forestomach, larynx, and esophagus, papillo- mas and carcinomas (combined)	Sprague Dawley rat	Oral, in diet, lifetime exposure	4.5 to 11.7 per mg/kg-day (range calculated from two studies)	Brune et al. 1981
	I	<u> </u>		I	Tal	ble continues on next page

Table C.4 (Contin	nued). Summa	ary of Chronic Cancer To	xicity Data for Each N	ISAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
POM (Benzo[<i>a</i>]	pyrene) (<i>Co</i>	ntinued)				
SELECTED REFERE	NCES FROM UI	PDATED LITERATURE SEAR	CHES, defined at the e	end of this table		
	1994	Lung tumor incidence	Wistar rat, female	Inhalation: 17 hrs/day, 5 days/wk, 10 or 20 months	$2\times 10^{-2} \ \text{per} \ \mu\text{g}/\text{m}^3$	Heinrich et al. 1994
_	1985	Lung cancer in US coke-oven workers	Human— occupational	Inhalation	$1 imes 10^{-2} ext{ per } \mu ext{g/m}^3$ (assuming 25 yrs occupational exposure)	Pott 1985
_	2000	Respiratory cancer	Human— occupational	Inhalation	$8.7\times 10^{-2}~{\rm per}~\mu g/m^3$	WHO 2000
	1989	Malignant lung tumor incidence	Mouse (strain not specified)	Inhalation: 6 hrs/day, 5 days/wk, 13 wks	$4\times 10^{-1}~{\rm per}~\mu{\rm g/m}^3$	RIVM 1989 pg 139 (UR based on data from Kniznikow et al. 1982)
	1989	Lung tumor incidence	Syrian golden hamster, male	Inhalation: 3 to 4.5 hrs/day, lifetime	$2.8\times 10^{-4}~{\rm per}~\mu g/m^3$	RIVM 1989 pg 140 (UR based on data from Thyssen et al. 1981)
	1989	Squamous cell carcinomas of the lung	Rat (strain not specified)	Inhalation: 1 hr/day, 5 days/wk, total of 494 expo- sures	$5.9 imes10^{-4}~{ m per}~{ m \mu g/m^3}$	RIVM 1989 pg 140 (UR based on data from Laskin et al. 1970)
	1989	Lung cancer mortality	Human—indoor exposure to coal smoke, China	Inhalation: cooking 17 hrs/wk (avg)	$6.7\times 10^{-2}~{\rm per}~\mu g/m^3$	RIVM 1989, pg 140
_	1989	Lung cancer mortality	Human—review of 3 epidemiology studies	Inhalation: lifetime	1×10^{-1} per µg/m ³ ('most appropriate value' based on review of epi. studies)	RIVM 1989, pg 147 (UR based on data from Tuomisto and Jan- tunen)
						Table continues on next page

Table C.4 (<i>Continued</i>	l). Summ	ary of Chronic Cancer To	xicity Data for Each N	MSAT		
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
POM (Benzo[a]pyr	ene) (Co	ontinued)				
SELECTED REFERENCES	S FROM U	PDATED LITERATURE SEARC	THES, defined at the e	end of this table (Cont	tinued)	
	1991	Respiratory tumors	Syrian golden hamster, male	Inhalation: 3 to 4.5 hrs/day, 7 days/wk, lifetime	0.37–1.7 \times 10 $^{-3}$ per $\mu g/m^{3}$	California Air Resources Board 1994; Collins et al. 1991 (UR based on data from Thyssen et al. 1981)
	1991	Respiratory tumors	Syrian golden hamster	Intratracheal instillation, once/wk, 30 wks	4.5 - $4.8 \times 10^{-3} \text{ per } \mu\text{g/m}^3$	California Air Resources Board 1994; Collins et al. 1991 (UR based on data from Saffiotti et al. 1972)
—	1991	Respiratory tumors	Syrian golden hamster	Intratracheal instillation, once/wk, 52 wks	$4.4 imes 10^{-3}~{ m per}~{ m \mu g/m^3}$	California Air Resources Board 1994; Collins et al. 1991 (UR based on data from Feron et al. 1973)
	1983	Lung-cancer mortality	Human— occupational, UK gas workers	Inhalation: 8 hrs/day, 5 days/ wk, average of 23 yrs	$4.3\times 10^{-1}\text{per}\mu\text{g/m}^3$	Pike 1983 (UR based on data from Doll et al. 1965; 1972)
	1994	Lung-cancer mortality	Human— occupational, aluminum smelters	Inhalation	$9.0\times 10^{-2}~{\rm per}~\mu g/m^3$ c	Bostrom et al. 2002 (UR based on data from Armstrong et al. 1994)
	2004	Lung cancer incidence	Human— occupational, aluminum smelters and other PAH pollution sources	Inhalation	Lung cancer risk: 5.3 per μg/m ³ (based on dispersion-adjusted B[<i>a</i>]P measurements), 2.1 per μg/m ³ (based on dispersion-adjusted B[<i>a</i>]P-equivalent PAH exposures)	Vyskocil et al. 2004
[°] Unable to verify derivatio	on of unit ris	sk.				

Table continues on next page

Coxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
POM (Benzo[a]pyrene) (Co	ntinued)				
SELECTED REFER	RENCES FROM UI	PDATED LITERATURE SEARC	HES, defined at the e	nd of this table (Conti	nued)	
_	2005	In this review article, the mixtures (in particular, Dibenzo[<i>a</i> , <i>h</i>]anthracene potency than B[<i>a</i>]P. Afte accessibility of various dicting lung cancer risk cohorts known to be exp	authors discuss cond in the context of eval (DBA) and dibenzo[a r consideration of va biological samples, th studying DBA- and posed to high ambien	cerns that B[a]P may no uating lung cancer risk a,l]pyrene (DB[a,l]P) are rious biomarkers of exp ne authors propose test DB[a,l]P-specific DNA t levels of PAHs.	ot be the best surrogate for evaluating PAH a from air pollution in urban areas). e estimated to have much greater carcinogenic posure and effect as well as the usefulness and ing a novel biomonitoring approach for pre- adducts in nasal cells from occupational	Okona-Mensah et al. 2005
_	2004	Forestomach tumors (based on a study by Culp et al. 1998)	Mice—female, B6C3F1 (based on a study by Culp et al. 1998)	Oral, 2-year feeding study (based on a study by Culp et al. 1998)	"Guideline Dose" for oral B[<i>a</i>]P carcinogenesis = 0.00008 mg/kg-d	Fitzgerald et al. 2004
		The authors used a modi cinogenesis of 0.00008 r total uncertainty factor of inadequacy, 9 for malign National Health and Me inherent in other BMD r limit on the dose associ- guideline value of 5 mg. The authors also question suggest that a PAH other tar in the Culp study we could not explain the co- role in PAH-induced lun PAH mixtures is relevan	fied benchmark dose ng/kg-d, based on a m of 4500 (5 for interspo- nancy, and 5 for geno dical Research Coun- nodels. In comparison ated with a 10% extra kg (soil). The d the common prace than B[<i>a</i>]P should b re qualitatively and c al tar-induced lung t ng carcinogenicity. The t for both oral and im	(BMD) approach to de nodeled 5% extra tumo ecies extrapolation, 10 toxicity). This modifie cil of Australia, in an e n, the EPA default BME a tumor risk level. The ctice of using toxicity e se considered as the ris quantitatively different umors. 7 <i>H</i> -benzo[<i>c</i>]flue his discussion about th halation exposures.	velop a "Guideline Dose" for oral B[<i>a</i>]P car- r incidence (BMD _{0.05}) of 0.362 mg/kg/d, and a for intraspecies variability, 2 for database d BMD approach was developed by the ffort to avoid the over-conservatisms often 0 approach is to use the 95% lower confidence authors proposed a corresponding B[<i>a</i>]P soil quivalence factors (TEFs) based on B[<i>a</i>]P, and k driver. The tumor responses to dietary coal than the responses to B[<i>a</i>]P alone; B[<i>a</i>]P prene was suggested as possibly playing a key e most appropriate approach for evaluating	

Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Styrene						
R EFERENCES US	ed to Support	THE TOXICITY CRITERIA	Development			
IARC	2002	Lymphatic and hematopoietic neo- plasms	Human— occupational	Inhalation: duration varied	Overall, small statistically unstable risks	Frentzel-Beyme et al. 1978; Ott et al. 1980; Hodgson & Jones 1985; Okun et al. 1985; Coggon et al. 1987; Bond et al. 1992; Kolstad et al. 1993, 1994, 1995; Kogevinas et al. 1994a,b; Wong et al. 1994; Anttila et al. 1998; Sathiakumar et al. 1999; Delzell et al. 2001
IARC	2002	Carcinogenicity	CD-1 mouse	Inhalation: 6 hrs/day, 5 days/wk Females – 98 wks Males – 104 wks	Increase in bronchioloalveolar carcinomas in females inhaling $6 \times 10^5 \ \mu\text{g/m}^3$; Increase in pulmonary adenomas at doses of 0.75, 1.5, $6 \times 10^5 \ \mu\text{g/m}^3$ in females and 1.5, 3, $6 \times 10^5 \ \mu\text{g/m}^3$ in males	Cruzan et al. 2001
IARC	2002	Carcinogenicity	Charles River CD rat	Inhalation: 6 hrs/day, 5 days/wk, 104 wks	No evidence of carcinogenicity	Cruzan et al. 1998
_	2002	Lung tumors	Human	PBPK inhalation model based on mice and rats, 2 vr studies	Using PBPK modeling for interspecies extrapolations, humans expected to be 100-fold less sensitive than mice to styrene exposure	Sarangapani et al. 2002 (with support from Cruzan et al. 1998 and Cruzan et al. 2001)
Table C.4 (<i>Continu</i>	<i>ed</i>). Sumr	nary of Chronic Cance	r Toxicity Data for Each	MSAT		
---------------------------------	-------------------	--------------------------	---	--	---	---------------------------
Toxicity Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	Unit Risk, Potency, or Result	Reference
Toluene						
R eferences Used t	O SUPPOR	T THE TOXICITY CRITERI	A DEVELOPMENT			
Cancer unit risk, EPA (IRIS)	<u>1994</u>	Carcinogenicity	F344 rat	Inhalation: 6 hrs/day, 5 days/wk, 106 wks	Inadequate data – no carcinogenic responses, highest dose < MTD	CIIT 1980
SELECTED REFERENCE	CES FROM	UPDATED LITERATURE S	EARCHES, defined at the	e end of this table		
A literature searc	ch was pe	rformed, but no articles	s related to toluene carc	inogenicity were ident	ified.	
Xylene						
R EFERENCES USED T	TO SUPPOR	T THE TOXICITY CRITER	IA DEVELOPMENT	ŀ		
Cancer unit risk, EPA (IRIS)	2003	Tumor incidence	F344 rat, B6C3F1 mouse	Oral gavage: 5 days/wk, 103 wks	Inadequate data, no evidence of carcinogenicity	NTP 1986
Cancer unit risk, EPA (IRIS)	2003	Tumor incidence	Sprague Dawley rat	Oral gavage: 4 to 5 days/wk, 104 wks	Inadequate data, predominantly negative results	Maltoni et al. 1983, 1985

Selected References from Updated Literature Searches:

The toxicity and health portions of the literature survey took advantage of peer-reviewed secondary sources of information, such as the EPA's Health Assessment Documents, U.S. Agency for Toxic Substances and Disease Registry (ATSDR) reports, and International Agency for Research on Cancer (IARC) monographs. Information on chronic and subchronic health effects (cancer endpoints) was collected from these sources. In addition, the primary sources that key toxicity criteria were based upon were identified and obtained. The survey was augmented with information from primary sources for the seven priority MSATs. The survey was also augmented for the remaining 14 nonpriority MSATs. In cases where the secondary sources were out of date (i.e., 2001 or earlier).

Table C.5. Ac	Table C.5. Acute Toxicity Criteria for Each MSAT ^a											
		NR(Conce	C/NAC AEGL entration (µg/	-1 ^b m ³) ^d		- T (NF Conc	C/NAC AEGL centration (µg/	-2 ^c m ³) ^d		Lost
MSAT	10 min	30 min	60 min	4 hr	8 hr	Last Updated	10 min	30 min	60 min	4 hr	8 hr	Updated
Acetaldehyde	<u>8.1×10</u> ⁴	<u>8.1×10</u> ⁴	<u>8.1×10</u> ⁴	<u>8.1×10</u> ⁴	<u>8.1×10</u> ⁴	2004	<u>6.12×10</u> ⁵	<u>6.12×10</u> ⁵	4.86×10^{5}	3.06×10^{5}	<u>1.98×10</u> ⁵	2004
Acrolein	70 ^p	70 ^p	70 ^p	70 ^p	70 ^p	2004	920 ^p	410 ^p	230 ^p	230 ^p	230 ^p	2004
Arsenic compounds ^e	_	_	_	_	_	_	_	_	_	_	_	_
Benzene	<u>4.15×10</u> ⁵ p	<u>2.33×10</u> ⁵ p	<u>1.66×10</u> ^{5 p}	<u>5.74×10</u> ⁴ p	<u>2.87×10</u> ^{5 p}	2002	<u>6.38×10</u> ⁶ ^p *	<u>3.51×10</u> ^{6p}	<u>2.55×10</u> ⁶ ^p	<u>1.28×10</u> ⁶ ^p	<u>6.38×10</u> ⁵ p	2003
1,3-Butadiene	<u>1.48×10</u> ⁶ *	<u>1.48×10</u> ⁶ *	<u>1.48×10</u> ⁶ *	<u>1.48×10</u> ⁶ *	<u>1.48×10</u> ⁶ *	2004	<u>1.48×10</u> ⁷ *	<u>1.48×10</u> 7*	<u>1.17×10</u> ⁷ *	<u>7.51×10</u> ⁶ *	<u>5.97×10</u> ⁶ *	2004
Dioxins and furans ^f	_	_	_	_	_	—	—	—	—	—	—	_
Formaldehyde	<u>1.11×10</u> ³ p	<u>1.11×10</u> ³ p	<u>1.11×10</u> ³ p	<u>1.11×10</u> ³ p	<u>1.11×10</u> ^{3 p}	2003	<u>1.72×10</u> ⁴ ^p	<u>1.72×10</u> ⁴ p	<u>1.72×10</u> ⁴ ^p	<u>1.72×10</u> ⁴ ^p	<u>1.72×10</u> ⁴ p	2003
<i>n</i> -Hexane	<u>NR</u> p	<u>NR</u> p	<u>NR</u> p	<u>NR</u> p	<u>NR</u> p	2004	<u>1.69×10</u> ⁷ ^p *	<u>1.16×10</u> ⁷ ^p *	<u>1.16×10</u> ⁷ ^p *	<u>1.16×10</u> ⁷ ^p *	<u>1.16×10</u> ⁷ p*	2004
Mercury compounds ^e	—	—	—	—	—	—	—	—	—	—	—	_
MTBE	—	—	—	—	—	—	_	_	_	-	—	—
Naphthalene	_	_	_	_	_	_	_	_	_	_	_	_
Nickel compounds ^e	—	—	—	—	—	—	—	—	—	—	—	—
Styrene	<u>8.52×10</u> ⁴ p	<u>8.52×10</u> ⁴ ^p	<u>8.52×10</u> ⁴ p	<u>8.52×10</u> ⁴ ^p	<u>8.52×10</u> ⁴ p	2003	<u>9.8×10</u> ^{5 p}	<u>6.82×10</u> ⁵ p	<u>5.54×10</u> ^{5 p}	<u>5.54×10</u> ^{5 p}	<u>5.54×10</u> ⁵ p	2003
Toluene	<u>7.54×10</u> ^{5‡}	<u>7.54×10</u> 5‡	<u>7.54×10</u> 5‡	<u>7.54×10</u> 5‡	<u>7.54×10</u> 5‡	2004	$3.73 \times 10^{6^{\ddagger}}$	<u>2.15× 10</u> ^{6‡}	<u>1.92×10</u> ^{6‡}	1 <u>.92×10</u> ^{6‡}	<u>1.92×10</u> ^{6‡}	2004
Xylenes (mixed) ^g	<u>5.67×10</u> ^{5 p}	<u>5.67×10</u> ^{5 p}	<u>5.67×10</u> ^{5 p}	<u>5.67×10</u> ^{5 p}	<u>5.67×10</u> ^{5 p}	2003	<u>4.80×10</u> ^{6p} *	<u>2.62×10</u> ⁶ ^p	<u>1.75×10^{6p}</u>	1 <u>.75×10^{6p}</u>	<u>1.75×10^{6p}</u>	2003

Please see footnotes at end of table.

Table C.5. (Co	ontinued) Acu	te Toxicit	y Criteria for l	Each MSA	T ^a					
	AIHA ERP	G-1 ^h	AIHA ER	PG-2 ⁱ	AT	'SDR MRL ^j		Cal E	PA REL ^k	
MSAT	Concentration (µg/m ³)	Last Updated	Concentration (µg/m ³)	Last Updated	Route of Exposure	Concentration (µg/m ³ unless noted)	<u>Last</u> <u>Updated</u>	Concentration (μg/m ³ unless noted)	Average Time (hr)	Last Updated
Acetaldehyde	1.8×10^4	2004	3.6×10^5	2004	_	_	_	_	_	_
Acrolein	229	1989	1.15×10^3	1989	Inhalation	0.115	1990	0.19	1	<u>1999</u>
Arsenic compounds ^e	—	_	-	_	Provisional oral	5×10^{-3} mg/kg-day	2000	<u>0.19</u>	4	<u>1999</u>
Benzene	$1.6 imes 10^5$	1996	4.79×10^{5}	1996	Inhalation	159.5	1997	1.28×10^{3}	6	<u>1999</u>
1,3-Butadiene	$2.21 imes 10^4$	1997	$4.42 imes10^5$	1997	_	_	_	_	_	_
Dioxins and furans ^f	_	—	_	—	Oral TCDD	2×10^{-7} mg/kg-d	1998	_	—	—
					Oral 2,3,4,7,8-Penta-CDF	1×10^{-6} mg/kg-d	1994			
Formaldehyde	$1.23 imes 10^3$	1988	$1.23 imes 10^4$	1988	Inhalation	49.2	1999	93.5	1	<u>1999</u>
<i>n</i> -Hexane	_	_	_	_	_	_	_	_	_	_
Mercury compounds ^e	<u>None^l</u>	2002	2×10 ³ (vapor)	2002	Oral	7×10 ⁻³ mg Hg/kg-day	1999	<u>1.8</u> (inorganic)	1	1999
MTBE	_	—	—	_	Inhalation	7.21×10^3	1996	—	—	_
Naphthalene	_	_	_	_	Oral	<u>0.6 mg/kg-day</u>	2003 Draft	_	_	_
Nickel compounds ^e	—	—	-	_	—	_	_	<u>6</u>	1	<u>1999</u>
Styrene	$2.13 imes 10^5$	1995	$1.07 imes 10^6$	1995	_	—	—	$2.17 imes10^4$	1	<u>1999</u>
Toluene	$1.89 imes 10^5$	1996	$1.13 imes 10^6$	1996	Inhalation	$3.77 imes 10^3$	2000	$3.69 imes 10^4$	1	<u>1999</u>
Xylene (mixed) ^g	_	_	_	_	Inhalation	$4.4 imes 10^3$	1995	$2.2 imes 10^4$	1	<u>1999</u>

Please see footnotes at end of table.

Table C.5. (Continued) Acute Toxicity Criteria for Each MSAT: footnotes for table

- ^a No acute criteria or relevant literature were available for chromium compounds, diesel particulates, ethylbenzene, lead compounds, manganese compounds, or polycyclic organic matter (POM). POM (also known as PolyNuclear Aromatic Hydrocarbon [PNAs] and Polycyclic Aromatic Hydrocarbon [PAHs]) includes organic compounds with more than one benzene ring and which have a boiling point greater than or equal to 100°C. No acute toxicity criteria are available for POMs either as individual compounds or as a group.
- ^b National Research Council, National Advisory Committee Acute Exposure Guideline Level-1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.
- ^c National Research Council, National Advisory Committee Acute Exposure Guideline Level-2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

 d p = proposed.

— = no information.

- NR = not recommended due to insufficient data.
- * = $\geq 10\%$ lower explosive limit (4.47 $\times 10^7 \,\mu\text{g/m}^3$ for benzene, 4.42 $\times 10^7 \,\mu\text{g/m}^3$ for butadiene, 3.88 $\times 10^7 \,\mu\text{g/m}^3$ for *n*-hexane, 3.93 $\times 10^7 \,\mu\text{g/m}^3$ for xylene).
- ‡ = interim.

e Although different metal species vary in their toxicity, the on-road mobile source inventory contains emissions estimates for total metal compounds (i.e., the sum of all species).

^f This refers to two large groups of chlorinated dibenzo-*p*-dioxins and chlorinated dibenzofurans. With the exception of two acute oral MRL values (ATSDR), no acute toxicity criteria is available for individual compounds or for these compounds as a group.

^g The conversion factor from ppm to $\mu g/m^3$ for Xylene used was the average of the conversion factors of *m*-, *o*-, and *p*-Xylene.

^e Although different metal species vary in their toxicity, the on-road mobile source inventory contains emissions estimates for total metal compounds (i.e., the sum of all species).

^f This refers to two large groups of chlorinated dibenzo-*p*-dioxins and chlorinated dibenzofurans. With the exception of two acute oral MRL values on the next page (ATSDR), no acute toxicity criteria is available for individual compounds or for these compounds as a group.

^g The conversion factor from ppm to µg/m³ for Xylene used was the average of the conversion factors of *m*-, *o*-, and *p*-Xylene.

^h American Industrial Hygiene Association Emergency Response Planning Guidelines-1: 1 hour exposure; no more than mild transient adverse health effects and no clearly defined objectionable odor.

ⁱ American Industrial Hygiene Association Emergency Response Planning Guidelines-2: 1 hour exposure; no irreversible or other serious health effects or symptoms that could impair an individual's ability to take protective action.

^j Agency for Toxic Substances and Disease Registry Minimal Risk Level: The airborne concentration of a substance without an appreciable risk of adverse effects (other than cancer) over a duration of exposure up to 14 days.

^k California EPA Reference Exposure Level: An exposure that is not likely to cause adverse effects in a human population, including sensitive subpopulations, exposed to that concentration for one hour on an intermittent basis.

¹ Adverse effects delayed for over 1 hour.

Table C.6. Sum	mary of	Acute Toxicity Dat	a for Each MSAT					
Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference
Acetaldehyde	,							
R EFERENCES US	ed to Su	JPPORT THE TOXICITY	y Criteria Develop	MENT				
ERPG-1, AIHA	2004	Odor detection	Human	Inhalation	$LOAEL = 1.26 \times 10^3 \mu\text{g/m}^3$	_	$1.8\times 10^4~\mu\text{g/m}^3$	AIHA 1989
		Eye irritation	Human	Inhalation: 15 min	$LOAEL = 4.5 \times 10^4 \mu\text{g/m}^3$	_		Silverman et al. 1946
ERPG-2, AIHA	2004	Red eyes and transient conjunctivitis	Human	Inhalation: 15 min	$LOAEL = 3.6 \times 10^5 \mu\text{g/m}^3$	_	$3.6 imes 10^5~\mu\text{g/m}^3$	Silverman et al. 1946
		Mild upper respiratory tract irritation	Human	Inhalation: 30 min	$LOAEL = 2.4 \times 10^5 \mu\text{g/m}^3$	-		Sim and Pattle 1957
AEGL-1, EPA	Sep-04	Discomfort	Human	Inhalation: 15 min	$LOAEL = 4.5 \times 10^4 \mu\text{g/m}^3$	1	$8.1 imes 10^4 \ \mu g/m^3$ at all time points ^a	Silverman et al. 1946
AEGL-2, EPA	Sep-04	Dyspnea and excitation	Wistar rat	Inhalation: effects observed during first 30 min of 6 hr exp	NOAEL = $4 \times 10^6 \mu g/m^3$	10		Appelman et al. 1982
SELECTED REFER	RENCES F	ROM UPDATED LITER	ATURE SEARCHES, d	efined at the end of th	is table	IL.		
_	2005	Bronchoconstric- tion, airway obstruction, changes in intratracheal pressure (asthma)	Artificially- ventilated, anaesthetized guinea pigs— male (<i>n</i> = about 400 total, 6 per dose)	Intravenous injection of a single dose of acetaldehyde (diluted in saline) Dose levels = 6.25, 12.5, 25, 50, or 100 mg/kg	LOAEL = 6.25 mg/kg	Acetaldehyde is h main factor in al Acetaldehyde cau increase in intra permeability, lev histamine, and a (The authors' mai activity of 3 che acetaldehyde-in	nypothesized to be a cohol-induced asthma. used a dose-dependent tracheal pressure, vascular rels of circulating blood nirway obstruction n focus was to compare the micals in preventing duced pulmonary changes.)	Rossoni et al. 2005
^a AEGL value based	on person	al communication with l	Dr. Falke, EPA/Office of P	ollution Prevention & Toxics,	AEGL Committee Member		T	· · · · · · · · · · · · · · · · · · ·
								iues on next page

Table C.6 (Cor	ntinued).	Summary of Acute	Toxicity Data for Ea	ch MSAT				
Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference
Acetaldehyd	e (Contin	ued)						
SELECTED REFE	RENCES FR	COM UPDATED LITER	ATURE SEARCHES, de	fined at the end of th	is table (Continued)			
	2005 E	yes itch	Sensitive humans	Acute (15 min) inhalation	LOAEL = 45,800 μg/m ³	3	STELIA = 15,300 μg/m ³	Schupp et al. 2005
Acrolein	I s " Fo (T T t	Levels Inside Autor substances, or ELIA 'acceptable" exposi- or the acetaldehyde based on Deutsch I he estimated acetal been parked in the	notive vehicles for r _{ccm} . They applied th ire levels to concent e STELIA, the author Forschungsgemeinse dehyde concentratio sun) did not exceed	ion-genotoxic substance is concept to acetaldel rations in cars. rs started with a LOAE chaft 1971) and applied on at 65°C (1680 μg/m ³ the STELIA.	ces, or ELIAs; and (3) El nyde, formaldehyde, an L of 45,800 μg/m ³ for it d an uncertainty factor of —an exposure scenario	LIAs for carcinoge d xylene and com thing of eyes in s of 3 to derive a ST potentially releva	nic and mutagenic pared these risk-based ome sensitive individuals ELIA of 15,300 µg/m ³ . Int for starting a car that has	
R EFERENCES U	SED TO SUI	PPORT THE TOXICITY	Y CRITERIA DEVELOPM	1ENT				
AEGL-1, EPA	Jan- Ey 04 "	ye irritation, 'annoyance''/ liscomfort	Human	Inhalation	Threshold = 210 µg/m ³	3	70 μg/m ³ at all time points	Weber-Tscopp et al. 1977
AEGL-2, EPA	Jan- 10 04 i s r	0–25% decrease n respiratory rate and moderate to severe eye and nose irritation	Human	Inhalation: 1 hr	Threshold = 690 µg/m ³	3	920 μg/m ³ (10 min), 410 μg/m ³ (30 min), 230 μg/m ³ (1, 4, 8 hr)	Weber-Tscopp et al. 1977
							Table contin	nues on next page

288

Table C & (Card	tinued Summer of A sut	Torrigity Data for Ea	oh MCAT				
Table C.6 (Con	Indea). Summary of Acut	e Toxicity Data for Ea	CII MISAI	Τ	Γ		T
Tox Criteria	Year Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference
Acrolein (<i>Cor</i>	ntinued)						
SELECTED REFER	RENCES FROM UPDATED LITE	RATURE SEARCHES, de	efined at the end of th	is table			
— Arsenic Comj	2004 Lung function (based on spirometric measurements, FEV ₁ , FVC, FEF ₂₅₋₇₅)	Human— firefighters performing prescribed burns of forest and range (<i>n</i> = 65)	Inhalation of smoke during prescribed burn (average 5.4 hrs) Mean acrolein = 22.9 µg/m ³ (range 0–93.9 µg/m ³)	Concentrations of acro monoxide were meas There was a significan function (comparing However, no significar individual toxic com acrolein and formald response relationship The relatively small cl suggested to be at lea	blein, formaldehyd sured in personal at decrement in all pre-shift to post-si nt associations we ponents of smoke ehyde), nor was th o. hanges in lung fun st partly due to th	le, PM _{3.5} , and carbon breathing zone samples. three measures of lung hift values). re found with any of the measured (including here any evidence of a dose- action decrements were e healthy worker effect.	Slaughter et al. 2004
References Us	ED TO SUPPORT THE TOXICIT	y Criteria Developn	ÆNT				
REL, Cal EPA	1999 Decreased fetal weight	Mouse— pregnant (species not specified)	Inhalation: 4 hrs/day, 4 days	LOAEL = 190 µg/m ³	1000	0.19 µg/m ³	Nagymajtenyi et al. 1985
No relevant stu	dies were available to upda	ate acute toxicity crit	eria for arsenic.				
						Table conti	nues on next page

Table C.6 (<i>Cor</i>	ntinued). Summary of Acute	Toxicity Data for Ea	ich MSAT				
Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference
Benzene								
R EFERENCES U	SED TO	SUPPORT THE TOXICITY	CRITERIA DEVELOP	MENT				
AEGL-1, EPA	Dec- 02	Mild CNS effects	Human	Inhalation: 2 hrs	NOAEL = $3.40 \times 10^5 \mu\text{g/m}^3$	3	$\begin{array}{c} 4.15 \times 10^5 \ (10 \ \mathrm{min}), \\ 2.33 \times 10^5 \ (30 \ \mathrm{min}), \\ 1.66 \times 10^5 \ (11 \ \mathrm{hr}), \\ 5.74 \times 10^4 \ (4 \ \mathrm{hr}), \\ 2.87 \times 10^4 \ (8 \ \mathrm{hr}) \ \mathrm{\mu g/m}^3 \end{array}$	Srbova et al. 1950
AEGL-2, EPA	Jun- 03	Locomotor activity	Rat	Inhalation: 4 hrs	NOAEL = $1.24 \times 10^7 \mu\text{g/m}^3$	10	$\begin{array}{c} 6.38 \times 10^{6} \ (10 \ \mathrm{min}), \\ 3.51 \times 10^{6} \ (30 \ \mathrm{min}), \\ 2.55 \times 10^{6} \ (1 \ \mathrm{hr}), \\ 1.28 \times 10^{6} \ (4 \ \mathrm{hr}), \\ 6.38 \times 10^{5} \ (8 \ \mathrm{hr}) \ \mathrm{µg/m^{3}} \end{array}$	Molnar et al. 1986
No relevant st	udies w	vere available to upda	te acute toxicity crit	eria for benzene.				
1,3-Butadien	е							
References U	SED TO	SUPPORT THE TOXICITY	CRITERIA DEVELOPI	MENT				
AEGL-1, EPA	Dec- 04	Eye irritation, difficulty focusing	Human	Inhalation: 7 hrs	Point of departure = $4.42 \times 10^6 \mu\text{g/m}^3$	3	1.48×10 ⁶ μg/m ³ at all time points	Carpenter et al 1944
AEGL-2, EPA	Dec- 04	Absence of effects	Rat	Inhalation: 6 hrs/day, 5 days/week, 3 months	NOAEL = $1.77 \times 10^7 \mu\text{g/m}^3$	3	1.48 × 10 ⁷ (10 and 30 min), 1.17 × 10 ⁷ (1 hr), 7.51 × 10 ⁶ (4 hr), 5.97 × 10 ⁶ (8 hr) μ g/m ^{3 a}	Crouch et al. 1979
No relevant st	udies w	vere available to upda	te acute toxicity crit	eria for 1,3-butadiene	Э.			
							Table con	tinues on next pag

Table C.b (Con	tinued)). Summary of Acute	e Toxicity Data for Ea	ich MSAT				
Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference
Chromium Co	ompou	ınds						
No relevant stu	dies w	ere available to upda	te acute toxicity crit	eria for chromium.				
Diesel Engine	Exha	ust						
No relevant stu	dies w	ere available to upda	te acute toxicity crit	eria for diesel engin	ie exhaust.			
Dioxin								
Dioxin References Us	ed to S	SUPPORT THE TOXICIT	y Criteria Developn	ИENT				
Dioxin REFERENCES US Oral acute MRL, ATSDR	ED TO 5	SUPPORT THE TOXICIT Immunological effects, impaired resistance to infection	Y CRITERIA DEVELOPM B6C3F1 mouse— female	Acute oral gavage	NOAEL = 0.005 μg/kg-day; LOAEL = 0.01 μg/kg-day	30 (an additional modifying fac- tor of 0.7 was applied to account for bioavailability differences)	2 × 10 ⁻⁷ mg/kg-day TCDD	Burleson et al. 1996

Table C.6 (<i>Con</i>	tinued	. Summary of Acut	e Toxicity Data for Ea	ch MSAT				
Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference
Dioxin (Conti	inued)							
SELECTED REFE	RENCES	FROM UPDATED LITE	RATURE SEARCHES, de	efined at the end of t	his table			
	2001	Cancer, multiple sites	Human— (Zone A, highest exposure; Zone B, lower expo- sure; Zone R, lowest exposure)	Inhalation: Residential exposure due to 1976 accident at small chemical plant during trichlorophenol production.	Elevated deaths from a Non-significant excess Increased all cause m 1.4 (1.0–2.0). From 1 tiple myeloma had h Zone B: 10–15 yr RR 9 yr period had an ex other digestive cance 25.2 (3.3–195.2). In z all cancer deaths betw	rectal cancer—no l ss of "other" digest nortality in 5–9 yr p 5–20 yrs, lung can ighest rates betwee R = 6.3 (1.9-21.0). F access of colon cance ers, RR = 11.3 (1.5– cones A and B com ween 15 and 20 yrs	atency-related pattern. we and lung cancers. period only in Zone A: RR = cer RR = 2.4 (1.0–5.8). Mul- in 10 and 15 yrs latency in remales in Zone A over a 5– er (RR = 8.0 (2.0–32.5), and 82.6), and melanoma, RR = bined, males had excess of s, RR = 1.1 (1.0–1.3).	Bertazzi et al. 2001
Ethylbenzene Selected Refe	RENCES	FROM UPDATED LITE	RATURE SEARCHES, de	efined at the end of t	his table			
_	2000	Ototoxicity (mid-frequency hearing loss)	Wag/Rij rat	Inhalation: 8 hrs/day, 5 days	NOAEL = $1.30 \times 10^{6} \mu\text{g/m}^{3};$ LOAEL = $1.74 \times 10^{6} \mu\text{g/m}^{3}$	_	_	Cappaert et al. 2000
Formaldehyd	le							
REFERENCES US	SED TO S	SUPPORT THE TOXICIT	y Criteria Developn	IENT				
AEGL-1, EPA	Jun- 03	Slight eye irritation	Human	Inhalation: 6 min	NOAEL = $1.11 \times 10^{3} \mu\text{g/m}^{3};$ LOAEL = $1.23 \times 10^{3} \mu\text{g/m}^{3}$	1	$1.1 imes 10^3 \mu g/m^3$ at all time points	Bender et al. 1983
AEGL-2, EPA	Mar- 03	Mild lacrimation with adaptation	Human	Inhalation: 30 min	$LOAEL = 1.70 \times 10^4 \mu\text{g/m}^3$	1	$1.72 \times 10^4 \mu\text{g/m}^3$ at all time points	Sim and Pattle 1957

Table C.6 (<i>Co</i>	ntinued). Summary of Acute	e Toxicity Data for Ea	ch MSAT				
Гох Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference
Formaldehy	de (Co	ntinued)						
SELECTED REFI	ERENCES	FROM UPDATED LITE	RATURE SEARCHES, de	efined at the end of th	is table			
_	2005	Local irritation of the upper respiratory tract	Human— volunteers	Short term inhalation: 370 μg/m ³ (exposure details not specified)	NOAEL = 370 μg/m ³	~3	STELIA = 125 µg/m ³	Schupp et al. 2005
		levels for VOCs rel Levels Inside Auto substances, or ELL "acceptable" exposs For formaldehyde, t upper respi-ratory exposure level of 1 (BGA 1992). The st general population for acute and chron µg/m ³ was used fo The average concen the ELIAs. Howev for starting a car th formaldehyde in c	eased inside cars: (1) omotive vehicles of n- A_{cm} . They applied th ure levels to concent the authors considered tract, based on Deuts .25 µg/m ³ (about 1/3 .udy authors conclude . Therefore, because nic toxicity, as well a r the STELIA, ELIA _{sy} tration of formaldehy er, the estimated forr at has been parked in ars.	Short Term Exposure I on-genotoxic substance is concept to acetaldel rations in cars. ed the German MAK vau- che German MAK value ed that this factor of ab- local irritation of the s "the most likely three vate measured in chaml naldehyde concentration i the sun) did exceed the	Levels Inside Automoties, or ELIAs; and (3) El nyde, formaldehyde, ar alue of 370 µg/m ³ (esse schaft 2000 and Schlin e) recommended by the out 3 was an appropri- upper respiratory tract shold mechanism that CLIA _{cm} . Der tests designed to sin on at 65°C (1470 µg/m he STELIA, suggesting	ive Vehicles, or ST LIAs for carcinogen ad xylene and com entially a NOAEL f ik et al 1999) and t e former Bundesges ate uncertainty fac was considered to precedes tumor for mulate cars at 23°C ³ —an exposure sco a possible concern	ELIAs; (2) chronic Exposure nic and mutagenic pared these risk-based or local irritation of the he maximum indoor air sundheitsamt in Germany tor for extrapolation to the be the critical mechanism rmation," this value of 125 C (48 µg/m ³) did not exceed enario potentially relevant a for short term exposures to	
_	2004	Lung function (based on spirometric measurements, FEV_1 , FVC, FEF_{25-75})	Human— firefighters performing prescribed burns of forest and range (<i>n</i> = 65)	Inhalation of smoke during prescribed burn (average 5.4 hrs) Mean formaldehyde = $66.4 \ \mu g/m^3$ (range $0-258.3 \ \mu g/m^3$)	Concentrations of acr monoxide were mean There was a significan function (comparing However, no significan individual toxic com acrolein and formal response relationship The relatively small com	olein, formaldehyd sured in personal nt decrement in all g pre-shift to post-s int associations we iponents of smoke lehyde), nor was tl p. 	le, PM _{3.5} , and carbon breathing zone samples. three measures of lung hift values). re found with any of the measured (including here any evidence of a dose-	Slaughter et al. 2004

Table C.6 (<i>Co</i>	ntinued). Summary of Acute	Toxicity Data for E	ach MSAT				
Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference
Formaldehy	de (<i>Cor</i>	ntinued)						
_	2003	Potentiation of allergic bronchocon- striction	Guinea pigs— male, albino, Hartley strain (<i>n</i> = 20–33 per group)	Transnasal exposure to 0.1 or 1.0% formaldehyde, 3 times per week, 6 weeks				Kita et al. 2003
		Three groups of anir challenge with incr formaldehyde for 5 formaldehyde, and cyclophosphamide injection of ovalbur first ovalburni inje Formaldehyde signif in a dose-dependen guinea pigs, but no Overall, the authors bronchoconstriction	nals were tested. The easing concentratic weeks, then given then challenged wi , followed by an inj min and aluminum ection, after which to ficantly potentiated at manner. Formald t in non-sensitized concluded that rep n) by enhancing and	ne "non-sensitized" grou ons of methacholine at 5 an injection of anti-oval th ovalbumin. The "act ection of ovalbumin and hydroxide three weeks the animals were challe antigen-induced bronc ehyde also increased an or passively sensitized a eated formaldehyde exp igenic sensitization.	p was exposed to form i-minute intervals. The lbumin serum, then exp tively sensitized" group d aluminum hydroxide later. The 6-week expo nged with ovalbumin. hoconstriction (increas ntibody titer (IgG). Thes animals. posure does not induce	haldehyde for 6 wee "passively sensitize posed for one additi was first given an two days later (sen sure to formaldehy e in the lateral pres se effects were obse asthma, but worser	eks, followed by an acute ed" group was exposed to ional week to injection of asitization), and a booster de began on the day of the soure of the tracheal tube) rved in actively sensitized as asthma (allergic	
_	2004	Locomotor activity and exploratory behavior	AB-Mice— adult, male (n = 20 per group)	Single inhalation exposure to 1353, 2829, or 6396 µg/m ³ formaldehyde for 2 hours	LOAEL = 1353 µg/m ³			Malek et al. 2004
		In all exposure group were altered. Some No signs of overt tox	ps, motion activity of the parameters r icity (lacrimation, r	was significantly reduce remained significantly a nasal secretion, or regur	ed, and exploratory beh ltered 24 hours after ea gitation) were observed	aviors (eg, frequenc xposure. l at these exposure	cy of rearing, floor sniffing) levels.	
							Table contin	nues on next pe

Table C.6 (Cont	Fable C.6 (Continued). Summary of Acute Toxicity Data for Each MSAT											
Tox Criteria	Year Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference					
<i>n</i> -Hexane												
R EFERENCES USI	ED TO SUPPORT THE TOXICITY	CRITERIA DEVELOP	MENT									
AEGL-1, EPA	Jun- 04	_	_	_	—	Not recommended due to insufficient data	—					
AEGL-2, EPA	Jun- Reduced respira- 04 tion associated with some narcosis	Rat	Inhalation: 6 hrs	Point of departure = $3.53 \times 10^7 \mu g/m^3$ Scaled to 10-min exposure using exponent of $n = 3$; 30 min, 1 hr, 4 hr, and 8 hr AEGL-2 equal because steady state reached by 30 min	3	1.69 \times 10 ⁷ µg/m ³ (10 min), 1.16 \times 10 ⁷ µg/m ³ (30 min, 1, 4, 8 hr)	Bus et al. 1982					
Lead Compou	nds											
Exposures were	very low (see exposure cor	nponent), so acute t	oxicity is not a conce	ern.								
Manganese Co	ompounds											
Studies about a	cute toxicity of manganese	were focused on me	tal fume fever and w	ere therefore not relevant	to developing acu	te criteria for MSATs.						
Mercury Com	pounds											
REFERENCES USI	ED TO SUPPORT THE TOXICITY	CRITERIA DEVELOP	MENT									
ERPG-1, AIHA	ERPG-1, AIHA2002Mercury vapor is odorless and produces no irritation or other early warning signs.Not appropriateATSDR 1999Derivation of an ERPG-1 value is not appropriate.ATSDR 1999ATSDR 1999ATSDR 1999											
						Table contin	nues on next page					

Table C.6 (Con	tinued). Summary of Acute	Toxicity Data for Ea	ach MSAT				
Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference
Mercury Com	poun	ds (<i>Continued</i>)						
ERPG-2, AIHA	2002	Symptoms of elemental mercury intoxication	Human	Inhalation: periods of hours or days	NOAEL = 400 to 2000 µg/m ³		2000 μg/m ³ (vapor)	Bidstrup et al. 1951; Benning 1958; Battigelli 1960; Elghany et al. 1997; Stopford et al. 1978; Takahata et al. 1970; Valic and Jacobs 1965; Watanabe 1969; Yoshida and Yamamura 1982
REL, Cal EPA	<u>1999</u>	CNS disturbances in offspring	Rat— pregnant	Inhalation: 1 hr	$LOAEL = 1.8 \times 10^3 \mu\text{g/m}^3$	1000	1.8 μg/m ³ (inorganic)	Danielson et al. 1993
MTBE References Us	ED TO S	SUPPORT THE TOXICITY	CRITERIA DEVELOP	MENT				
ATSDR, MRL	<u>1996</u>	Neurological effects: concentration- related increases in ataxia and duck- walk gait in both sexes	F344 rat	Inhalation: 6 hrs. Observation at 1, 6, and 24 hrs post-exposure	NOAEL (ADJ) = $7.21 \times 10^5 \mu\text{g/m}^3$ LOAEL = $1.44 \times 10^7 \mu\text{g/m}^3$ for transient effects (seen at 1 hr post- exposure, but not 6 or 24 hr)	100	$7.21\times 10^3\mu\text{g/m}^3$	Gill 1989
							Table con	ntinues on next page

Table C.6 (<i>Con</i>	tinued)	. Summary of Acute	Toxicity Data for Ea	ach MSAT							
Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference			
MTBE (Contin	nued)										
SELECTED REFE	RENCES	FROM UPDATED LITER.	ATURE SEARCHES, d	efined at the end of thi	is table						
	1998	Irritative symp- toms, discomfort, CNS effects, nasal and ocular effects.	Human— 10 male volunteers	2 hours at three levels 1.8×10^4 , 9×10^4 , $1.8 \times 10^5 \mu\text{g/m}^3$) during light physi- cal work. Each person expo-sed 3 times (to a differ- ent concentration each time); at least 2 weeks between suc- cessive exposures.	NOAEL = $1.8 \times 10^5 \mu\text{g/m}^3$ for eye measurements, inflammatory mark- ers in nasal lavage fluid. Various nasal effects at $1.8 \times 10^4 \mu\text{g/m}^3$ and $9 \times 10^4 \mu\text{g/m}^3$, but not dose-related.			Nihlen et al. 1998			
		Aim was to assess ac methods (eg, blinkin airway resistance bu relationship. Conclu	Aim was to assess acute health effects up to the Swedish occupational exposure limit value with both a questionnaire and objective methods (eg, blinking frequency, nasal lavage) administered before, during, and after exposure. Nonsignificant increases in nasal airway resistance but not related to exposure level. Nonsignificant tendency of decreased nasal volume but no clear dose-effect relationship. Conclusion: "no or minimal acute effects of MTBE vapor on short-term exposure at relatively high levels."								
_	2003	Respiratory parameters	F344 rat— male	Inhalation: nose only. 4 hrs MTBE only; 7 consecutive days gasoline fol- lowed by MTBE / gasoline on day 8.				Benson et al. 2003			
		Inhalation of MTBE alone or with gasoline had no concentration-dependent effect on respiratory minute volume. MTBE equivalents rapidly distributed to all tissues examined, with the largest percentages distributed to the liver. Between $1.44 \times 10^5 \text{ µg/m}^3$ and $1.44 \times 10^6 \text{ µg/m}^3$ (4-hr MTBE exposure) significant decrease in the elimination half-life of VOCs in breath and a significant increase in the percentage of IBB (initial body burdens) of MTBE equivalents eliminated as VOCs in breath. Gasoline co-exposure significantly decreased the percentage of the MTBE equivalent IBBs in tissues and increased rates of elimination of MTBE equivalents. The study indicates that the uptake and fate of inhaled MTBE are altered upon increasing exposure levels from $1.44 \times 10^4 \text{ µg/m}^3$ and $1.44 \times 10^6 \text{ µg/m}^3$, suggesting that toxic effects observed previously upon repeated inhalation of concentrations of $1.44 \times 10^6 \text{ µg/m}^3$ or greater may not necessarily be linearly extrapolated to effects that might occur at lower concentrations. Further, coexposure to gasoline, whether acute or repeated, decreases body tissue burdens of MTBE equivalents and enhances the elimination rate of MTBE and its metabolites, thereby potentially reducing the toxic effects of the MTBE compared to when it is inhaled alone.									

Table C.6 (Con	tinued)	. Summary of Acute	Toxicity Data for Ea	ch MSAT				
Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference
MTBE (Contin	nued)							
SELECTED REFEI	RENCES	FROM UPDATED LITER.	ATURE SEARCHES, de	fined at the end of th	is table (Continued)			
	2000	Symptoms, odor rat- ings, neurobehav- ioral performance on a task of driving simulation, and psychophysiologic responses (heart and respiration rate, endtidal CO ₂ , finger pulse vol- ume, electromyo- graph, finger temperature) were measured before, during, and imme- diately after expo- sure.	12 individuals selected based on self-report of symptoms (self- reported sensi- tives; SRSs) asso- ciated with MTBE compared to 19 controls without self- reported sensitiv- ities.	Inhalation: exposed for 15 min to clean air, gaso- line, gasoline with 11% MTBE, and gasoline with 15% MTBE. Dou- ble-blind, repeated measures, con- trolled exposure.				Fiedler et al. 2000
		Relative to controls, with 15% MTBE that accompanied by sig in symptoms or neu- compared to exposu- when exposed to gat specificity associate	SRSs (self-reported s an when exposed to nificant differences i robehavioral or psy ire to clean air or to soline with 15% MT d with MTBE in epi	sensitive persons) repo gasoline with 11% MT in neurobehavioral per chophysiologic respon gasoline. Thus, the pre FBE, did not support a idemiologic studies.	orted significantly more FBE or to clean air. Hov formance or psychoph ises were observed whe esent study, although sh dose-response relation	e total symptoms w wever, these differe ysiologic responses en exposure to gase nowing increased to aship for MTBE exp	when exposed to gasoline nces in symptoms were not s. No significant differences oline with 11% MTBE was otal symptoms among SRSs posure nor the symptom	
Naphthalene								
R EFERENCES US	ed to S	SUPPORT THE TOXICITY	CRITERIA DEVELOPM	IENT				
MRL, ATSDR (draft)	<u>2003</u>	Neurotoxicity	Sprague Dawley rat—pregnant	Gavage/gestation days 6-15	LOAEL = 50 mg/kg-day	90	0.6 mg/kg-day	NTP 1991
							Table conti	nues on next page

Table C.6 (Continued). Summary of Acute Toxicity Data for Each MSAT									
Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference	
Nickel Comp	ounds								
References Us	ed to S	SUPPORT THE TOXICITY	CRITERIA DEVELOPM	ÆNT					
REL, Cal EPA	<u>1999</u>	Respiratory system: > 15% decrease in FEV ₁	Human with occupational asthma (<i>n</i> = 7)	Inhalation: 30 min	LOAEL = 33 µg Ni/m ³	6	6 μg/m ³	Cirla et al. 1985	
SELECTED REFE	RENCES	FROM UPDATED LITERA	ATURE SEARCHES, de	efined at the end of th	is table				
	1988	Histopathologic lesions in nasal epithelium, lung and bronchial lymph nodes; lung inflammation; reduced body weight; lethargy	F344 rat and B6C3F1 mouse	Inhalation of nickel sulfate hexahydrate aerosol: 6 hrs/day, 12 days	$\begin{array}{l} LOAEL = \\ 3.5 \times 10^3 \mu g \\ NiSO_4 \cdot 6H_2 O/m^3 \\ (corresponding to \\ 840 \mu g \ soluble \ Ni/m^3) \end{array}$	_		Benson et al. 1988	
_	2002	Changes in inflam- matory responses and mucus secre- tion (biochemical characteristics of acute bronchiolitis)	Wistar rat, male	Inhalation of nickel chloride aerosol (via whole body): 5 hrs/day, 5 days	Effects observed fol- lowing 5-day expo- sure regimen of $850 \ \mu g/m^3$ (day 1), $240 \ \mu g/m^3$ (days 2–5)	_	_	Ishihara et al. 2002	
	2003	Effects on heart rate and electro- cardiogram measurements	Old beagle dog with preexisting cardiac abnor- malities (<i>n</i> = 7)	Inhalation of respirable particles (via mouth, not nose): 3 hrs/day, 3 successive days	NOAEL = 60 μg/m ³ nickel oxide; NOAEL = 100 μg/m ³ nickel sulfate	No effects on hear measurements of tested.	rt rate or electrocardiogram bserved at the single dose	Muggenburg et al. 2003	
Table continues or									

Table C.6 (Cor	tinued). Summary of Acute	Toxicity Data for l	Each MSAT				
Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference
РОМ								
No acute toxic	ity crite	eria are available for l	POMs either as ind	ividual compounds or a	as a group.			
SELECTED REFE	RENCES	FROM UPDATED LITER	RATURE SEARCHES,	defined at the end of th	nis table			
_	2003	Male reproductive parameters (testicular steroidogenesis, epididymal function)	Rats—adult, F344 (n = 10 per group)	Inhalation: 25, 75, or 100 µg B[<i>a</i>]P/m ³ , 4 hr/day, 10 days (Testosterone and luteinizing hormone concentrations tested only at 75 µg/m ³ .)	NOAEL = 25 μg/m ³ , LOAEL = 75 μg/m ³	Reduced progressive motility of sperm at 75 and 100 μ g/m ³ in a concentration- dependent manner. Initial decline in plasma testosterone concentrations at 75 μ g/m ³ , followed by a compensatory increase in testosterone levels. Increases in luteinizing hormone concentrations at 75 μ g/m ³ . No effect on testis weight or density of stored sperm at any B/dP concentration		Inyang et al. 2003
	2005	Altered immune responses	Mice—female, Balb/cA (n = 5 per group)	Single intranasal instillation of 0.05 mg B[<i>a</i>]P	LOAEL = Single intranasal instillation of 0.05 mg B[<i>a</i>]P	Altered immune responsion significantly increase IgE antibodies to mit and increased cytoki IL-10, IL-12p70, IFN-	onses indicated by ed levels of serum e allergen extract, ne secretion (IL-4, γ) in spleen cultures.	Kadkhoda et al 2005

Mobile-Source Air Toxics, Appendix Table C.6. Summary of Acute Toxicity Data for Each MSAT

Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertaint Factor
Styrene						
R EFERENCES US	SED TO	SUPPORT THE TOXICIT	y Criteria Develop	PMENT		
AEGL-1, EPA	Sep- 03	Minor irritation and headache	Human	Inhalation, mostly: 4 hr exposures	NOAEL = $8.52 \times 10^{4} \mu\text{g/m}^{3};$ LOAEL = $2.13 \times 10^{5} \mu\text{g/m}^{3}$	1
AEGL-2, EPA	Sep- 03	Eye and throat irritation	Human	Inhalation: 1 hr	NOAEL = 2.17 $10^5 \mu\text{g/m}^3$; LOAEL = 4.22 × $10^5 \mu\text{g/m}^3$ (for 20 min)	100
Toluene		1	1			
References U	SED TO	SUPPORT THE TOXICIT	y Criteria Develor	PMENT		
AEGL-1, EPA	Sep- 04	No effects to minor discomfort and subtle neuro- behavioral effects	Human	Inhalation: up to 8 hrs	NOAEL = 7.54 × 10 ⁵ μg/m ³	1

÷

Table continues on next page

Toxicity Value

 $8.52 \times 10^4 \, \mu g/m^3$ at all time points

 $9.80\times 10^5\,\mu\text{g/m}^3$

(10 min), $6.82 \times 10^5 \text{ µg/m}^3$

(30 min), 5.54 \times 10 µg/m³ (1, 4, 8 hr)

 $7.54 imes10^5\,\mu g/m^3$ at all time points

Reference

Seeber et al. 2002

Stewart et al.

17 studies including: Astrand et al.

1972; Gamberale and Hultengren 1972; Stewart et al. 1975; Baelum et al. 1990

1968

Table C.6 (Co	ntinued	d). Summary of Acut	e Toxicity Data for I	Each MSAT				
Tox Criteria	Year	Endpoint	Animal Strain or Human Population	Route and Duration of Exposure	NOAEL and LOAEL	Uncertainty Factor	Toxicity Value	Reference
Toluene (<i>Co</i>	ntinue	d)						
R EFERENCES U	SED TO	SUPPORT THE TOXICIT	ry Criteria Develoi	PMENT (Continued)				
AEGL-2, EPA	Sep- 04	Obvious central nervous system depression	Human	Inhalation: 20 min	NOAEL = $2.64 \times 10^{6} \mu g/m^{3};$ 4 and 8 hr equal to 1 hr value (steady state in blood and brain by 1 hr)	1	$\begin{array}{c} 3.73 \times 10^{6} \ \mu g/m^{3} \\ (10 \ min), \\ 2.15 \times 10^{6} \ \mu g/m^{3} \\ (30 \ min), \\ 1.92 \times 10^{6} \ \mu g/m^{3} \\ (1, 4, 8 \ hr) \end{array}$	Gabmerale and Hultengren 1972
		Attention deficit	Monkey	Inhalation: 50 min	NOAEL = 7.45 \times 10 ⁶ µg/m ³ higher respiratory rate and cardiac output in monkeys relative to body weight (50 min monkey \cong 20 min human)	3		Taylor and Evans 1985
Xylene								
R EFERENCES U	SED TO	SUPPORT THE TOXICIT	ry Criteria Develoi	PMENT				
AEGL-1, EPA	Dec- 03	Eye irritation	Human	Inhalation: 30 min	90% of subjects ex- posed to 400 ppm had mild effects	3	$5.67 \times 10^5 \mu g/m^3$ at all time points	Hastings et al. 1984
AEGL-2, EPA	Dec- 03	Poor coordination	Rat	Inhalation: 4 hrs	LOAEL = 5.67×10^{6} 10 and 30 min; values based on PBPK modeling; 1 hr, 4 hr, and 8 hr values equiv- alent because steady state reached at 1 hr	3	$\begin{array}{c} 4.80 \times 10^{6} \ \mu g/m^{3} \\ 10 \ \mathrm{min}), \\ 2.62 \times 10^{6} \mu g/m^{3} \\ (30 \ \mathrm{min}), \\ 1.75 \times 10^{6} \ \mu g/m^{3} \\ (1, 4, 8 \ \mathrm{hr}) \end{array}$	Carpenter et al. 1975

Selected References from Updated Literature Searches:

The toxicity and health portions of the literature survey took advantage of peer-reviewed secondary sources of information, such as the EPA's Health Assessment Documents, U.S. Agency for Toxic Substances and Disease Registry (ATSDR) reports, and International Agency for Research on Cancer (IARC) monographs. Information on acute, chronic, and subchronic health effects (including cancer and noncancer endpoints) was collected from these sources. In addition, the primary sources that key toxicity criteria were based upon were identified and obtained. The survey was augmented with information from primary sources for the seven priority MSATs. The survey was also augmented for the remaining 14 nonpriority MSATs. In cases where the secondary sources were out of date (i.e., 2001 or earlier).

302

The reference list for Tables C.1–C.6 was prepared by the Gradient Corporation for HEI. Any web addresses were accessed before February 7, 2005. HEI has not updated this list. All literature identified by Gradient is included. The list is organized by chemical.

ACETALDEHYDE

Included in Tables

American Industrial Hygiene Association. 1989. Odor Thresholds for Chemicals with Established Occupational Health Standards. American Industrial Hygiene Association, Fairfax VA.

Appelman LM, Woutersen RA, Feron VJ. 1982. Inhalation toxicity of acetaldehyde in rats: I. Acute and subacute studies. Toxicology 23(4):293–307.

Appelman LM, Woutersen RA, Feron VJ, Hooftman RN, Notten WRF. 1986. Effect of variable versus fixed exposure levels on the toxicity of acetaldehyde in rats. J Appl Toxicol 6(5):331–336.

Environmental Protection Agency (US). 1999. Toxicological Review of Acetaldehyde (External Review Draft). NCEA-S-0687. Washington DC. Downloaded from *http://www.epa* .gov/ncea. August 18, 2000.

Morris JB. 1997. Dosimetry, toxicity and carcinogenicity of inspired acetaldehyde in the rat. Mutat Res 380(1–2):113–124.

Silverman L, Schulte HF, First MW. 1946. Further studies on sensory response to certain industrial solvent vapors. J Ind Hyg Toxicol 28(2):262–266.

Sim VM, Pattle RE. 1957. Effect of possible smog irritants on human subjects. JAMA 165(15):1908–1913.

Soffritti M, Belpoggi F, Lambertini L, Lauriola M, Padovani M, Maltoni C. 2002. Results of long-term experimental studies on the carcinogenicity of formaldehyde and acetaldehyde in rats. Ann N Y Acad Sci 982:87–105.

Woutersen RA, Appelman LM. 1984. Lifespan Inhalation Carcinogenicity Study of Acetaldehyde in Rats: III. Recovery after 52 weeks of exposure. Report No. V84.288/190172. CIVO-Institutes TNO, The Netherlands.

Woutersen RA, Appelman LM, Van Garderen-Hoetmer A, Feron VJ. 1986. Inhalation toxicity of acetaldehyde in rats: III. Carcinogenicity study. Toxicology 41:213–231.

Not Included in Tables

American Industrial Hygiene Association. 2004. Emergency Response Planning Guidelines (ERPG) for Acetaldehyde. American Industrial Hygiene Association, Fairfax VA.

Myou S, Fujimura M, Kita T, Katayama N, Abo M, Yoshimi Y, Nishitsuji M, Nomura S, Nakao S. 2001. Sensory neuropeptides are not involved in acetaldehyde-induced bronchoconstriction in guinea-pigs. J Auton Pharmacol 21(3):139–143.

National Toxicology Program (US). 2002. Acetaldehyde (CAS No. 75-07-0). In: Report on Carcinogens, Tenth edition. US Department of Health and Human Services, Public Health Service, US National Toxicology Program, Research Triangle Park NC. Downloaded from *http://ehp.niehs*.*nih.gov/roc/tenth/profiles/s001acet.pdf*. December 3, 2004.

Prieto L, Gutierrez V, Cervera A, Linana J. 2002. Airway obstruction induced by inhaled acetaldehyde in asthma: Repeatability and relationship to adenosine 5'-monophosphate responsiveness. J Investig Allergol Clin Immunol 12(2):91–98.

Stanek J, Symanowicz PT, Olsen JE, Gianutsos G, Morris JB. 2001. Sensory-nerve-mediated nasal vasodilatory response to inspired acetaldehyde and acetic acid vapors. Inhalation Toxicol 13(9):807–822.

ACROLEIN

Included in Tables

Feron VJ, Kruysse A, Til HP, Immel HR. 1978. Repeated exposure to acrolein vapor: Subacute studies in hamsters, rats and rabbits. Toxicology 9(1–2):47–57.

Weber-Tschopp A, Fischer T, Gierer R, Grandjean E. 1977. Experimentally induced irritating effects of acrolein on men. Int Arch Occup Environ Health 40(2):117–130.

Not Included in Tables

Darley EF, Middleton JT, Garber MJ. 1960. Plant damage and eye irritation from ozone-hydrocarbon reactions. J Agric Food Chem 8(6):483–485.

ARSENIC

Included in Tables

Brown CC, Chu KC. 1983a. Approaches to epidemiologic analysis of prospective and retrospective studies: Example of

lung cancer and exposure to arsenic. In: Risk Assessment Proc. SIMS Conf. on Environ. Epidemiol. June 28–July 2, 1982, Alta, VT. SIAM Publications.

Brown CC, Chu KC. 1983b. Implications of the multistage theory of carcinogenesis applied to occupational arsenic exposure. JNCI 70(3):455–463.

Brown CC, Chu KC. 1983c. A new method for the analysis of cohort studies: Implications of the multistage theory of carcinogenesis applied to occupational arsenic exposure. Environ Health Perspect 50:293–308.

Buchet JP, Lison D. 1998. Mortality by cancer in groups of the Belgian population with a moderately increased intake of arsenic. Int Arch Occup Environ Health 71(2):125–130.

DeSesso JM. 2001. Teratogen update: Inorganic arsenic. Teratology 64(3):170–173.

Enterline PE, Marsh GM. 1982. Cancer among workers exposed to arsenic and other substances in a copper smelter. Am J Epidemiol 116(6):895–911.

Hertz-Picciotto I, Arrighi HM, Hu SW. 2000a. Does arsenic exposure increase the risk for circulatory disease? Am J Epidemiol 151:174–181.

Hertz-Picciotto I, Hu SW, Arrighi HM. 2000b. Author's reply [to Re: Does arsenic exposure increase the risk for circulatory disease?]. Am J Epidemiol 152:293.

Higgins I. 1982. Arsenic and respiratory cancer among a sample of Anaconda smelter workers. Report submitted to the Occupational Safety and Health Administration in the comments of the Kennecott Minerals Company on the inorganic arsenic rulemaking. (Exhibit 203-5).

Lee-Feldstein A. 1983. Arsenic and respiratory cancer in man: Follow-up of an occupational study. In: Arsenic: Industrial, Biomedical, and Environmental Perspectives: Proceedings of the Arsenic Symposium, Gaithersburg, Maryland (Lederer WH, Fensterheim RF, eds), pp 245–265. Van Nostrand Reinhold, New York NY.

Liu J, Zheng B, Aposhian HV, Zhou Y, Chen M-L, Zhang A, Waalkes MP. 2002. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizou, China. Environ Health Perspect 110(2):119–122.

Lubin JH, Fraumeni JF. 2000. Re: Does arsenic exposure increase the risk for circulatory disease? Am J Epidemiol 152:290–293.

Lubin JH, Pottern LM, Stone BJ, Fraumeni JF. 2000. Respiratory cancer in a cohort of copper smelter workers: Results from more than 50 years of follow-up. Am J Epidemiol 151:554–565.

Nagymajtenyi L, Selypes A, Berencsi G. 1985. Chromosomal aberrations and fetotoxic effects of atmospheric arsenic exposure in mice. J Appl Toxicol 5(2):61–63.

Viren JR, Silvers A. 1994. Unit risk estimates for airborne arsenic exposure: An updated view based on recent data from two copper smelter cohorts. Regul Toxicol Pharmacol 20:125–138.

Viren J, Silvers A. 1999. Nonlinearity in the lung cancer doseresponse for airborne arsenic: Apparent confounding by year of hire in evaluating lung cancer risks from arsenic exposure in Tacoma smelter workers. Regul Toxicol Pharmacol 30:117–129.

BENZENE

Included in Tables

Crump KS. 1992. Exposure-Response Analyses of Pilofilm Cohort. Work Supported by Western States Petroleum Association. Draft.

Crump KS. 1994. Risk of benzene-induced leukemia: A sensitivity analysis of the Pliofilm cohort with additional follow-up and new exposure estimates. J Toxicol Environ Health 42:219–242.

Crump KS, Allen BC. 1984. Quantitative Estimates of Risk of Leukemia from Occupational Exposure to Benzene. OSHA Docket H-059B, Exhibit 152. Science Research Systems, Ruston LA.

Environmental Protection Agency (US). 1998. Carcinogenic Effects of Benzene: An Update. EPA/600/P-97/001F. National Center for Environmental Assessment, Washington DC.

Glass DC, Gray CN, Jolley DJ, Gibbons C, Sim MR, Fritschi L, Adams GG, Bisby JA, Manuell R. 2003. Leukemia risk associated with low-level benzene exposure. Epidemiology 14(5):569–577.

Molnar J, Paksy KA, Naray M. 1986. Changes in the rat's motor behavior during 4-hr inhalation exposure to prenarcotic concentrations of benzene and its derivatives. Acta Physiol Hung 67(3):349–354.

Paustenbach DJ, Bass RD, Price P. 1993. Benzene toxicity and risk assessment, 1972–1992: Implications for future regulation. Environ Health Perspect 101(Suppl 6):177–200.

Rinsky RA, Hornung RW, Silver SR, Tseng CY. 2002. Benzene exposure and hematopoietic mortality: A long-term epidemiologic risk assessment. Am J Ind Med 42(6):474–480.

Rinsky RA, Smith AB, Hornung R, Filloon TG, Young RJ, Okun AH, Landrigan PJ. 1987. Benzene and leukemia: An epidemiologic risk assessment. N Engl J Med 316:1044– 1050.

Rinsky RA, Young RJ, Smith AB. 1981. Leukemia in benzene workers. Am J Ind Med 2:217–245.

Rothman N, Li GL, Dosemeci M, Bechtold WE, Marti GE, Wang YZ, Linet M, Xi LQ, Lu W, Smith MT, Titenko-Holland N, Zhang LP, Blot W, Yin SN, Hayes RB. 1996. Hematotoxocity among Chinese workers heavily exposed to benzene. Am J Ind Med 29:236–246.

Srbova J, Teisinger J, Skramovsky S. 1950. Absorption and elimination of inhaled benzene in man. Arch Ind Hyg Occup Med 2(1):1–8.

Williams PRD, Paustenbach DJ. 2003. Reconstruction of benzene exposure for the Pliofilm cohort (1936–1976) using Monte Carlo techniques. J Toxicol Environ Health A 66(8):677–781.

Wong O. 2002. Investigations of benzene exposure, benzene poisoning, and malignancies in China. Regul Toxicol Pharmacol 35(1):126–135.

Wong O, Raabe GK. 2000. Non-Hodgkin's lymphoma and exposure to benzene in a multinational cohort of more than 308,000 petroleum workers, 1937–1996. J Occup Environ Med 42(5):554–568.

Not Included in Tables

Snyder R. 2002. Benzene and leukemia. Crit Rev Toxicol 32(3):155–210.

1,3-BUTADIENE

Included in Tables

Carpenter CP, Shaffer CB, Weil CS, Smyth HF. 1944. Studies on the inhalation of 1,3-butadiene; with a comparison of its narcotic effect with benzol, toluol, and styrene, and a note on the elimination of styrene by the human. J Ind Hyg Toxicol 26(3):69–78.

Crouch CN, Pullinger DH, Gaunt IF. 1979. Inhalation toxicity studies with 1,3-butadiene: 2. 3-Month toxicity study in rats. Am Ind Hyg Assoc J 40(9):796–802.

Delzell E, Sathiakumar N, Hovinga M, Macaluso M, Julian J, Larson R, Cole P, Muir DCF. 1996. A follow-up study of synthetic rubber workers. Toxicology 113:182–189.

Delzell E, Sathiakumar N, Macaluso M, Hovinga M, Larson R, Barbone F, Beall C, Cole P, Julian J, Muir DCF. 1995. A Follow-Up Study of Synthetic Rubber Workers.

Macaluso M, Larson R, Delzell E, Sathiakumar N, Hovinga M, Julian J, Muir D, Cole P. 1996. Leukemia and cumulative exposure to butadiene, styrene and benzene among workers in the synthetic rubber industry. Toxicology 113:190–202.

National Toxicology Program (US). 1993. NTP Technical Report on the Toxicology and Carcinogenesis Studies of 1,3-Butadiene (CAS No. 106-99-0) in B6C3F1 Mice (Inhalation Studies). NTP TR 434, NIH Publication No. 93-3165. US Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park NC. Downloaded from *http://ntp.niehs.nih.gov/ ntp/htdocs/LT_rpts/tr434.pdf.*

Not Included in Tables

American Industrial Hygiene Association. 1997. Emergency Response Planning Guidelines (ERPG) for 1,3-Butadiene. American Industrial Hygiene Association, Fairfax VA.

Hughes K, Meek ME, Walker M. 2001. Health risk assessment of 1,3-butadiene as a priority substance in Canada. Chem Biol Interact 135–136:109–135.

Irvine LFH. 1981. 1,3-Butadiene: Inhalation Teratogenicity Study in the Rat (Final Report). 2788-522/3. Hazleton Laboratories Europe, Harrogate, England.

Melnick RL, Huff JE, Chou BJ, Miller RA. 1990. Carcinogenicity of 1,3-butadiene in C57BL/6 \times C3HF1 mice at low exposure concentrations. Cancer Res 50:6592–6599.

Wilson RH. 1944. Health hazards encountered in the manufacture of synthetic rubber. JAMA 124(11):701–703.

CHROMIUM

Included in Tables

Crump C, Crump K, Hack E, Luippold R, Mundt K, Liebig E, Panko J, Paustenbach D, Proctor D. 2003. Dose-response and risk assessment of airborne hexavalent chromium and lung cancer mortality. Risk Anal 23(6):1147–1163.

Glaser U, Hochrainer D, Steinhoff D. 1990. Investigation of irritating properties of inhaled Cr(VI) with possible influence on its carcinogenic action. In: Environmental Hygiene II (Seemayer NO, Hadnagy W, eds), pp 239–245. Springer-Verlag, Berlin/New York NY.

Ivankovic S, Preussmann R. 1975. Absence of toxic and carcinogenic effects after administration of high doses of chromic oxide pigment in subacute and long-term feeding experiments in rats. Food Cosmet Toxicol 13:347–351.

Kim HY, Lee SB, Jang BS. 2004. Subchronic inhalation toxicity of soluble hexavalent chromium trioxide in rats. Arch Toxicol 78(7):363–368.

Lindberg E, Hedensteirna G. 1983. Chrome plating: Symptoms, findings in the upper airways, and effects on lung function. Arch Environ Health 38(6):367–374.

Luippold RS, Mundt KA, Austin RP, Liebig E, Panko J, Crump C, Crump K, Proctor D. 2003. Lung cancer mortality among chromate production workers. Occup Environ Med 60:451–457.

Malsch PA, Proctor DM, Finley BL. 1994. Estimation of a chromium inhalation reference concentration using the benchmark dose method: A case study. Regul Toxicol Pharmacol 20:58–82.

Mancuso TF. 1975. Consideration of chromium as an industrial carcinogen. In: International Conference on Heavy Metals in the Environment, Toronto, Ontario, October 27–31, pp 343–356.

DIESEL ENGINE EXHAUST

Included in Tables

Environmental Protection Agency (US). 2002. Health Assessment Document for Diesel Engine Exhaust. EPA/600/8-90/057F. National Center for Environmental Assessment, Washington DC.

Ishinishi N, Kuwabara N, Takaki Y, Nagase S, Suzuki T, Nakajima T, Maejima K, Kato A, Nakamura M. 1988. Long-

term inhalation experiments on diesel exhaust. In: Diesel Exhaust and Health Risks: Results of the HERP Studies, pp 11–84. Japan Automobile Research Institute, Research Committee for HERP Studies, Ibaraki, Japan.

Yu CP, Yoon KJ, Chen YK. 1991. Retention modeling of diesel exhaust particles in rats and humans. J Aerosol Med 4(2):79–115.

DIOXIN

Included in Tables

Becher H, Steindorf K, Flesch-Janys D. 1998. Quantitative cancer risk assessment for dioxins using an occupational cohort. Environ Health Perspect 106(Suppl 2):663–670.

Bertazzi PA, Consonni D, Bachetti S, Rubagotti M, Baccarelli A, Zocchetti C, Pesatori AC. 2001. Health effects of dioxin exposure: A 20-year mortality study. Am J Epidemiol 153:1031–1044.

Burleson GR, Lebrec H, Yang YG, Ibanes JD, Pennington KN, Birnbaum LS. 1996. Effect of 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) on influenza virus host resistance in mice. Fundam Appl Toxicol 29(1):40–47.

Flesch-Janys D, Berger J, Gurn P, Manz A, Nagel S, Waltsgott H, Dwyer JH. 1995. Exposure to polychlorinated dioxins and furans (PCDD/F) and mortality in a cohort of workers from a herbicide-producing plant in Hamburg, Federal Republic of Germany. Am J Epidemiol 142(11):1165–1175.

Moore JA, McConnell EE, Dalgard DW, Harris MW. 1979. Comparative toxicity of three halogenated dibenzofurans in guinea pigs, mice and rhesus monkeys. Ann N Y Acad Sci 75:151–163.

Steenland K, Deddens J, Piacitelli L. 2001. Risk assessment for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) based on an epidemiologic study. Am J Epidemiol 154:451–458.

Steenland K, Piacitelli L, Deddens J, Fingerhut M, Chang LI. 1999. Cancer, heart disease, and diabetes in workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. JNCI 91:779–786.

Zober A, Messerer P, Huber P. 1990. Thirty-four-year mortality follow-up of BASF employees exposed to 2,3,7,8-TCDD after the 1953 accident. Int Arch Occup Environ Health 62:139–157.

Zober A, Ott MG, Messerer P. 1994. Morbidity follow up study of BASF employees exposed to 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) after a 1953 chemical reactor incident. Occup Environ Med 51:479–486.

ETHYLBENZENE

Included in Tables

Andrew FD, Buschbom RL, Cannon WC, Miller RA, Montgomery LF, Phelps DW, Sikov MR. 1981. Teratologic Assessment of Ethylbenzene and 2-Ethoxyethanol. NTIS PB83-208074. National Technical Information Service, Springfield VA, Battelle Pacific Northwest Laboratories, Richland WA.

Cappaert NLM, Klis SFL, Baretta AB, Muijser H, Smoorenburg GF. 2000. Ethyl benzene-induced ototoxicity in rats: A dose-dependent mid-frequency hearing loss. J Assoc Res Otolaryngol 1(4):292–299.

Chan PC, Hasemani JK, Mahleri J, Aranyi C. 1998. Tumor induction in F344/N rats and B6C3F1 mice following inhalation exposure to ethylbenzene. Toxicol Lett 99(1):23–32.

Hard GC. 2002. Significance of the renal effects of ethylbenzene in rodents for assessing human carcinogenic risk. Toxicol Sci 69(1):30–41.

Hardin BD, Bond GP, Sikov MR, Andrew FD, Beliles RP, Niemeier RW. 1981. Testing of selected workplace chemicals for teratogenic potential. Scand J Work Environ Health 7(4):66–75.

International Agency for Research on Cancer. 2000. Ethylbenzene. In: IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man: Volume 77. Some Industrial Chemicals, pp 227–266. World Health Organization, Lyon, France.

National Toxicology Program (US). 1999. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Ethylbenzene (CAS No. 100-41-4) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). NTP TR 466, NIH Publication No. 99-3956. US Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park NC. Downloaded from *http://ntp-server.niehs.nih.gov* on January 18, 2005.

Saillenfait AM, Gallisot F, Morel G, Bonnet P. 2003. Developmental toxicities of ethylbenzene, ortho-, meta-, para-xylene and technical xylene in rats following inhalation exposure. Food Chem Toxicol 41(3):415–429. Stott WT, Johnson KA, Bahnemann R, Day SJ, McGuirk RJ. 2003. Evaluation of potential modes of action of inhaled ethylbenzene in rats and mice. Toxicol Sci 71:53–66.

FORMALDEHYDE

Included in Tables

Bender J. 2002. The use of noncancer endpoints as a basis for establishing a reference concentration for formaldehyde. Regul Toxicol Pharmacol 35(1):23–31.

Bender JR, Mullin LS, Graepel GJ, Wilson WE. 1983. Eye irritation response of humans to formaldehyde. Am Ind Hyg Assoc J 44(6):463–465.

Chemical Industry Institute of Toxicology. 1999. Formaldehyde: Hazard Characterization and Dose-Response Assessment for Carcinogenicity by the Route of Inhalation (revised edition). Chemical Industry Institute of Toxicology, Research Triangle Park NC.

Collins JJ, Acquavella JF, Esmen NA. 1997. An updated meta-analysis of formaldehyde exposure and upper respiratory tract cancers. J Occup Environ Med 39(7):639–651.

Collins JJ, Ness R, Tyl RW, Krivanek N, Esmen NA, Hall TA. 2001. A review of adverse pregnancy outcomes and formaldehyde exposure in human and animal studies. Regul Toxicol Pharmacol 34(1):17–34.

Edling C, Hellquist H, Odkvist L. 1988. Occupational exposure to formaldehyde and histopathological changes in the nasal mucosa. Br J Ind Med 45(11):761–765.

Environmental Protection Agency (US). 1987. Assessment of Health Risks to Garment Workers and Certain Home Residents from Exposure to Formaldehyde. Office of Pesticides and Toxic Substances, Washington DC.

Holmstrom M, Wilhelmsson B, Hellquist H, Rosen G. 1989. Histological changes in the nasal mucosa in persons occupationally exposed to formaldehyde alone and in combination with wood dust. Acta Otolaryngol. 107(1–2):120–129.

International Agency for Research on Cancer. 2004. Monographs Programme on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde. International Agency for Research on Cancer, Lyon, France. Downloaded from *wwwcie.iarc.fr/htdocs/monographs/vol88/formal.html*.

Kerns WD, Pavkov KL, Donofrio DJ, Gralla EJ, Swenberg JA. 1983. Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Res 43(9):4382– 4392.

Liteplo RG, Meek ME. 2003. Inhaled formaldehyde: Exposure estimation, hazard characterization, and exposureresponse analysis. J Toxicol Environ Health B Crit Rev 6(1):85–114.

Morgan KT. 1997. A brief review of formaldehyde carcinogenesis in relation to rat nasal pathology and human health risk assessment. Toxicol Pathol 25(3):291–307.

Office of Environmental Health Hazard Assessment. 1992. Final Report on the Identification of Formaldehyde as a Toxic Air Contaminant. California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, Air Toxicology and Epidemiology Section, Berkeley CA. Downloaded from www.oehha.ca.gov/air/toxic_contaminants/html/Formaldehyde.htm on January 18, 2005.

Rusch GM, Clary JJ, Rinehart WE, Bolte HF. 1983. A 26week inhalation toxicity study with formaldehyde in the monkey, rat, and hamster. Toxicol Environ Pharmacol 68(3):329–343.

Sim VM, Pattle RE. 1957. Effect of possible smog irritants on human subjects. JAMA 165(15):1908–1913.

Thrasher JD, Kilburn KH. 2001. Embryo toxicity and teratogenicity of formaldehyde. Arch Environ Health 56(4):300–311.

Wilhelmsson B, Holmstrom M. 1992. Possible mechanisms of formaldehyde-induced discomfort in the upper airways. Scand J Work Environ Health 18(6):403–407.

Williams CW, Lees-Haley PR. 1998. Research on chronic, low-level exposure to formaldehyde: Implications for neuropsychological assessment. J Clin Psychol 54(6):851–862.

n-HEXANE

Included in Tables

Bus JS, Deyo D, Cox M. 1982. Dose-dependent disposition of n-hexane in F-344 rats after inhalation exposure. Fundam Appl Toxicol 2(5):226–229.

Daughtrey W, Newton P, Rhoden R, Kirwin C, Haddock L, Duffy J, Keenan T, Richter W, Nicolich M. 1999. Chronic inhalation carcinogenicity study of commercial hexane solvent in F-344 rats and B6C3F1 mice. Toxicol Sci 48(1):21–29. Dunnick JK. 1991. Toxicity Studies of *n*-Hexane (CAS No. 110-54-3) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). NTP TOX 2, NIH Publication No. 91-3121. US Department of Health and Human Services, Public Health Service, National Institutes of Health, US National Toxicology Program, Research Triangle Park NC. Downloaded from *http://ehp.niehs.nih.gov* on December 02, 2004.

Dunnick JK, Graham DG, Yang RSH, et al. 1989. Thirteenweek toxicity study of n-hexane in B6C3F1 mice after inhalation exposure. Toxicology 57:163–172.

Issever H, Malat G, Sabuncu HH, Yuksel N. 2002. Impairments of colour vision in patients with n-hexane exposuredependent toxic polyneuropathy. Occup Med 52(4):183–186.

Karakaya A, Yucesoy B, Burgaz S, Karakaya AE. 1997. Immune function in n-hexane-exposed workers. Ann N Y Acad Sci 837:122–125.

Lanska DJ. 1999. Limitations of occupational air contaminant standards, as exemplified by the neurotoxin n-hexane. J Public Health Policy 20(4):441–458.

Miyagaki H. 1967. Electrophysiological studies on the peripheral neurotoxicity of n-hexane. Jpn J Ind Health 9(12–23):660–671.

Sanagi S, Seki Y, Sugimoto K, Hirata M. 1980. Peripheral nervous system functions of workers exposed to n-hexane at a low level. Int Arch Occup Environ Health 47:69–79.

Takeuchi Y. 1993. N-hexane polyneuropathy in Japan: A review of n-hexane poisoning and its preventive measures. Environ Med 62(1):76–80.

Valentino M. 1996. Residual electroneurographic modifications in subjects with n-hexane induce polyneuropathy: A follow-up study. Med Lav 87(4):289–296.

LEAD

Included in Tables

Azar A, Snee RD, Habibi K. 1973. Relationship of community levels of air lead and indices of lead absorption. In: Environmental Health Aspects of Lead, Proceedings of an International Symposium. Amsterdam, the Netherlands, October 1972. Commission of the European Communities, Luxembourg.

Azar A, Trochimowicz HJ, Maxfield ME. 1973. Review of lead studies in animals carried out at Haskell Laboratory: Two year feeding study and response to hemorrhage study. In: Environmental Health Aspects of Lead: Proceedings International Symposium. Amsterdam, the Netherlands, October 1972 (Barth D, Berlin A, Engel R, Recht P, Smeets J, eds), pp 199–208.

Commission of the European Communities, Luxembourg. Centers for Disease Control and Prevention (US). 2004. Why not change the blood lead level of concern at this time? (last updated 10/7/04). Downloaded from www.cdc.gov/ nceh/lead/spotLights/changeBLL.htm.

Environmental Protection Agency (US). 2004. National Ambient Air Quality Standards (NAAQS) (last updated 10/1/04). *http://epa.gov/air/criteria.html*.

Work Group of the Advisory Committee on Childhood Lead Poisoning Prevention. 2004. A Review of Evidence of Health Effects of Blood Lead Levels <10ug/dL in Children [Draft Final for ACCLPP Review]. US Public Health Service, Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta GA.

MANGANESE

Included in Tables

Iregren A. 1999. Manganese neurotoxicity in industrial exposures: Proof of effects, critical exposure level, and sensitive tests. Neurotoxicology 20(2–3):315–323.

Myers JE, teWaterNaude J, Fourie M, Zogoe HB, Naik I, Theodorou P, Tassel H, Daya A, Thompson ML. 2003a. Nervous system effects of occupational manganese exposure on South African manganese mineworkers. Neurotoxicology 24(4–5):649–656.

Myers JE, Thompson ML, Ramushu S, Young T, Jeebhay MF, London L, Esswein E, Renton K, Spies A, Boulle A, Naik I, Iregren A, Rees DJ. 2003b. The nervous system effects of occupational exposure on workers in a South African manganese smelter. Neurotoxicology 24(6):885–894.

Racette BA, McGee-Minnich L, Moerlein SM, Mink JW, Videen TO, Perlmutter JS. 2001. Welding-related parkinsonism: Clinical features, treatment, and pathophysiology. Neurology 56:8–13.

Roels HA, Ghyselen P, Buchet JP, Ceulemans E, Lauwerys RR. 1992. Assessment of the permissible exposure level to

manganese in workers exposed to manganese dioxide dust. Br J Ind Med 49:25–34.

Roels H, Lauwerys R, Buchet JP, Genet P, Sarhan MJ, Hanotiau I, de Fays M, Bernard A, Stanescu D. 1987. Epidemiological survey among workers exposed to manganese: Effects on lung, central nervous system, and some biological indices. Am J Ind Med 11:307–327.

Not Included in Tables

Meo SA, Al-Khlaiwi T. 2003. Health hazards of welding fumes. Saudi Med J 24(11):1176–1182.

MERCURY

Included in Tables

Agency for Toxic Substances and Disease Registry. 1999. Toxicological Profile for Mercury. US Department of Health and Human Services, Public Health Service, Atlanta GA. Downloaded from *www.atsdr.cdc.gov/toxprofiles/tp46-p.pdf*.

Battigelli MC. 1960. Mercury toxicity from industrial exposure. A critical review of the literature. Part I. J Occup Med 2:337–344.

Benning D. 1958. Outbreak of mercury poisoning in Ohio. Ind Med Surg 27(7):354–363.

Bidstrup PL, Bonnell JA, Harvey DG, Locket S. 1951. Chronic mercury poisoning in men repairing direct-current meters. Lancet 2(19):856–861.

Boffetta P, Garcia-Gomez M, Pompe-Kirn V, Zaridze D, Bellander T, Bulbulyan M, Caballero JD, Ceccarelli F, Colin D, Dizdarevic T, Espanol S, Kobal A, Petrova N, Sallsten G, Merler E. 1998. Cancer occurrence among European mercury miners. Cancer Causes Control 9:591–599.

Clarkson TW, Magos L, Myers GJ. 2003. The toxicology of mercury: Current exposures and clinical manifestations. N Engl J Med 349(18):1731–1737.

Counter SA, Buchanan LH. 2004. Mercury exposure in children: A review. Toxicol Appl Pharmacol 198(2):209–230.

Cranmer M, Gilbert S, Cranmer J. 1996. Neurotoxicity of mercury: Indicators and effects of low-level exposure: Overview. Neurotoxicology 17(1):9–14.

Danielsson BRG, Fredriksson A, Dahlgren L, Gardlund AT, Olsson L, Dencker L, Archer T. 1993. Behavioural effects of

prenatal metallic mercury inhalation exposure in rats. Neurotoxicol Teratol 15:391–396.

Davidson PW, Myers GJ, Weiss B. 2004. Mercury exposure in child development outcomes. Pediatrics 113(4):1023–1029.

Elghany NA, Stopford W, Bunn WB, Fleming LE. 1997. Occupational exposure to inorganic mercury vapour and reproductive outcomes. Occup Med 47(6):333–336.

Fawer RF, De Ribaupierre Y, Guillemin MP, Berode M, Lob M. 1983. Measurement of hand tremor induced by industrial exposure to metallic mercury. Br J Ind Med 40:204–208.

Liang YX, Sun RK, Sun Y, Chen ZQ, Li LH. 1993. Psychological effects of low exposure to mercury vapor: Application of a computer-administered neurobehavioral evaluation system. Environ Res 60:320–327.

Moszczynski P. 1999. Immunological disorders in men exposed to metallic mercury vapor. A review. Cent Eur J Public Health 7(1):10–14.

Ngim CH, Foo SC, Boey KW, Jeyaratnam J. 1992. Chronic neurobehavioural effects of elemental mercury in dentists. Br J Ind Med 49:782–790.

Piikivi L. 1989. Cardiovascular reflexes and low long-term exposure to mercury vapour. Int Arch Occup Environ Health 61:391–395.

Piikivi L, Hanninen H. 1989. Subjective symptoms and psychological performance of chlorine-alkali workers. Scand J Work Environ Health 15:69–74.

Piikivi L, Tolonen U. 1989. EEG findings in chlor-alkali worker subjected to low long term exposure to mercury vapor. Br J Ind Med 46:370–375.

Satoh H. 2000. Occupational and environmental toxicology of mercury and its compounds. Ind Health 38(2):153–164.

Schuurs AH. 1999. Reproductive toxicity of occupational mercury. A review of the literature. J Dent 27(4):249–256.

Stopford W, Bundy SD, Goldwater LJ, Bittikofer JA. 1978. Microenvironmental exposure to mercury vapor. Am Ind Hyg Assoc J 39(5):378–384.

Takahata N, Hayashi H, Watanabe S, Anso T. 1970. Accumulation of mercury in the brains of two autopsy cases with chronic inorganic mercury poisoning. Folia Psychiatr Neurol Jpn 24(1):59–69. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D. 2003. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18(3):149–175. Downloaded from *http://www3.interscience.wiley.com/cgibin/fulltext/104530772/PDFSTART* on December 15, 2004.

Valic F, Jacobs MB. 1965. Assessment of mercury air concentrations in a work environment. Am Ind Hyg Assoc J 26(3):266–269.

Watanabe S. 1969. Mercury in the body 10 years after long term exposure to mercury. In: Proceedings of the 16th International Congress on Occupational Health, Tokyo, Japan, pp 553–554.

Yoshida M, Yamamura Y. 1982. Elemental mercury in urine from workers exposed to mercury vapor. Int Arch Occup Environ Health 51(2):99–104.

Not Included in Tables

American Industrial Hygiene Association. 2002. Emergency Response Planning Guidelines (ERPG) for Mercury Vapor. American Industrial Hygiene Association, Fairfax VA.

MTBE

Included in Tables

Ahmed FE. 2001. Toxicology and human health effects following exposure to oxygenated or reformulated gasoline. Toxicol Lett 123(2–3):89–113.

Belpoggi F, Soffritti M, Filippini F, Maltoni C. 1997. Results of long-term experimental studies on the carcinogenicity of methyl tert-butyl ether. Ann N Y Acad Sci 837:77–95.

Belpoggi F, Soffritti M, Maltoni C. 1995. Methyl-tertiary-butyl ether (MTBE) – a gasoline additive – causes testicular and lympho-haematopoietic cancers in rats. Toxicol Ind Health 11(2):119–149.

Belpoggi F, Soffriti M, Maltoni C. 1998. Pathological characterization of testicular tumors and lymphomas -leukaemias, and of their precursors observed in Sprague-Dawley rats exposed to methyl-tertiary-butyl-ether (MTBE). Eur J Oncol 3:201–206.

Benson JM, Tibbetts BM, Barr EB. 2003. The uptake, distribution, metabolism, and excretion of methyl tertiary-butyl ether inhaled alone and in combination with gasoline vapor. J Toxicol Environ Health A 66(11):1029–1052.

Bird MG, Burleigh-Flayer HD, Chun JS, Douglas JF, Kneiss JJ, Andrews LS. 1997. Oncogenicity studies of inhaled methyl tertiary-butyl ether (MTBE) in CD-1 mice and F-344 rats. J Appl Toxicol 17:S45–S55.

Chun JS, Burleigh-Flayer HD, Kintigh WJ. 1992. Methyl Tertiary Butyl Ether: Vapor Inhalation Oncogenicity Study in Fischer 344 Rats. Report to Methyl Tertiary Butyl Ether Committee, pp 1–250. Bushy Run Research Center. Washington DC.

de Peyster A, MacLean KJ, Stephens BA, Ahern LD, Westover CM, Rozenshteyn D. 2003. Subchronic studies in Sprague-Dawley rats to investigate mechanisms of MTBEinduced Leydig cell cancer. Toxicol Sci 72(1):31–42.

Fiedler N, Kelly-McNeil K, Mohr S, Lehrer P, Opiekun RE, Lee C, Wainman T, Hamer R, Weisel C, Edelberg R, Lioy PJ. 2000. Controlled human exposure to methyl tertiary butyl ether in gasoline: Symptoms, psychophysiologic and neurobehavioral responses of self-reported sensitive persons. Environ Health Perspect 108(8):753–763.

Gill MW. 1989. Methyl Tertiary Butyl Ether: Single Exposure Vapor Inhalation Neurotoxicity Study in Rats. Report to Methyl Tertiary Butyl Ether Committee, pp 1–47. Bushy Run Research Center. Washington DC.

Nihlen A, Walinder R, Lof A, Johanson G. 1998. Experimental exposure to methyl tertiary-butyl ether. II. Acute effects in humans. Toxicol Appl Pharmacol 148:281–287.

NAPHTHALENE

Included in Tables

Abdo KM, Grumbein S, Chou BJ, Herbert R. 2001. Toxicity and carcinogenicity study in F344 rats following 2 years of whole-body exposure to naphthalene vapors. Inhalation Toxicol 13(10):931–950.

National Toxicology Program (US). 1991. Developmental Toxicity of Naphthalene (CAS No. 91-20-3) in Sprague-Dawley (CD (Trade Name)) Rats on Gestational Days 6 through 15. Final Study Report and Appendix. PB92-135623. National Technical Information Service, Springfield VA.

National Toxicology Program (US). 1992. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Naphthalene (CAS No. 91-20-3) in B6C3F1 Mice (Inhalation Studies). NTP TR 410, NIH Publication No. 92-3141. Public Health Service, National Institutes of Health. National Toxicology Program (US). 2000. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Naphthalene (CAS No. 91-20-3) in F344/N Rats (Inhalation Studies.). NTP TR 500, NIH Publication No. 01-4434. US Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park NC. Downloaded from http://ntp-server.niehs .nih.gov/htdocs/LT-studies/TR500.html on 5/4/01.

Office of Environmental Health Hazard Assessment. 2002. Air Toxics Hot Spots Program Risk Assessment Guidelines, Part II: Technical Support Document for Describing Available Cancer Potency Factors. California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, Air Toxicology and Epidemiology Section, Oakland CA. Downloaded from http://oehha.ca.gov/air/hot_spots/pdf/ TSDNov2002.pdf.

NICKEL

Included in Tables

Barceloux DG. 1999. Nickel. J Toxicol Clin Toxicol 37(2):239–258.

Barceloux DG. 2000. Erratum re: Nickel. J Toxicol Clin Toxicol 38(7):813.

Benson JM, Burt DG, Carpenter RL, Eidson AF, Hahn FF, Haley PJ, Hanson RL, Hobbs CH, Pickrell JA, Dunnick JK. 1988. Comparative inhalation toxicity of nickel sulfate to F344/N rats and B6C3F1 mice exposed for twelve days. Fundam Appl Toxicol 10(1):164–178.

California Department of Health Services. 1991. Health Risk Assessment for Nickel. California Department of Health Services, Berkeley CA.

Chovil A, Sutherland RB, Halliday M. 1981. Respiratory cancer in a cohort of nickel sinter plant workers. Br J Ind Med 38:327–333.

Cirla AM, Bernabeo F, Ottoboni F, Ratti R. 1985. Nickel induced occupational asthma: Immunological and clinical aspects. In: Progress in Nickel Toxicology (Brown SS, Sunderman FW, eds), pp 165–168. Blackwell Scientific Publications, Boston MA.

Denkhaus E, Salnikow K. 2002. Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42(1):35–56.

Enterline PE, Marsh GM. 1982. Mortality among workers in a nickel refinery and alloy manufacturing plant in West Virginia. JNCI 68(6):925–933.

Grimsrud TK, Berge SR, Resmann F, Norseth T, Andersen A. 2000. Assessment of historical exposures in a nickel refinery in Norway. Scand J Work Environ Health 26(4):338–345.

Haber LT, Erdreicht L, Diamond GL, Maier AM, Ratney R, Zhao Q, Dourson ML. 2000. Hazard identification and dose response of inhaled nickel-soluble salts. Regul Toxicol Pharmacol 31:210–230.

Ishihara Y, Kyono H, Serita F, Toya T, Kawashima H, Miyasaka M. 2002. Inflammatory responses and mucus secretion in rats with acute bronchiolitis induced by nickel chloride. Inhalation Toxicol 14(4):417–430.

Kasprzak KS, Sunderman FW, Salnikow K. 2003. Nickel carcinogenesis. Mutat Res 533(1–2):67–97.

Magnus K, Andersen A, Hogetveit AC. 1982. Cancer of respiratory organs among workers at a nickel refinery in Norway. Int J Cancer 30:681–685.

Muggenburg BA, Benson JM, Barr EB, Kubatko J, Tilley LP. 2003. Short-term inhalation of particulate transition metals has little effect on the electrocardiograms of dogs having preexisting cardiac abnormalities. Inhalation Toxicol 15(4):357–371.

Muir DCF, Julian JA, Roberts RS. 1984. Mortality analysis in a Canadian sinter plant: A comparison of two cohorts based on year of first hiring. In: Progress in Nickel Toxicology, Proceedings of the Third International Conference on Nickel Metabolism and Toxicology, 4–7 September 1984, Paris, France (Brown SS, Sunderman FW, eds), pp 207–210. Blackwell Scientific Publications, Oxford, England.

National Toxicology Program (US). 1996a. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Nickel Sulfate Hexahydrate (CAS No. 10101-97-0) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). NTP TR 454, NIH Publication No. 96-3370. US Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park NC. Downloaded from *http://ntp.niehs.nih.gov/ntp/htdocs/LT_rpts/tr454.pdf*.

National Toxicology Program (US). 1996b. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Nickel Oxide (CAS No. 1313-99-1) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). NTP TR 451, NIH Publication No. 963367. US Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park NC. Downloaded from http://ntp.niehs.nih.gov/ntp/htdocs/LT_rpts/tr451.pdf.

Oller AR. 2002. Respiratory carcinogenicity assessment of soluble nickel compounds. Environ Health Perspect 110(Suppl 5):841–844.

Peto J, Cuckle H, Doll R, Hermon C, Morgan LG. 1984. Respiratory cancer mortality of Welsh nickel refinery workers. In: IARC Sci. Pub. No. 53: Nickel in the Human Environment, pp 37–46. World Health Organization, Lyon, France.

Roberts RS, Julian JA, Muir DCF, Shannon HS. 1983. Cancer mortality associated with the high temperature oxidation of nickel subsulfide. In: Nickel in the Human Environment, Proceedings of a Joint Symposium, held at IARC, 8–11 March 1983 (Sunderman FW, ed.), pp 23–35. International Agency for Research on Cancer, Lyon, France.

Seilkop SK, Oller AR. 2003. Respiratory cancer risks associated with low-level nickel exposure: An integrated assessment based on animal, epidemiological, and mechanistic data. Regul Toxicol Pharmacol 37(2):173–190.

Not Included in Tables

California Department of Health Services, Smith AH, Goeden H, Wood R, Shearn V, Mann J, Frisch J, Allen H, Hertz-Picciotto I, Holtzman D, Alexeeff GV. 1991. Initial Statement of Reasons for Rulemaking: Proposed Identification of Nickel as a Toxic Air Contaminant: Technical Support Document, Part B. California Air Resources Board.

POM

Included in Tables

Agency for Toxic Substances and Disease Registry (US). 1995. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs) (Update). NTIS PB95-264370. US Agency for Toxic Substances and Disease Registry, Atlanta GA.

Armstrong B, Tremblay C, Baris D, Theriault G. 1994. Lung cancer mortality and polynuclear aromatic hydrocarbons: A case-cohort study of aluminum production workers in Arvida, Quebec, Canada. Am J Epidemiol 139(3):250–262.

Bostrom CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Victorin K, Westerholm R. 2002. Cancer risk assessment, indicators, and

guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(Suppl 3):451–489.

Brune H, Deutsch-Wenzel RP, Habs M, Ivankovic S, Schmahl D. 1981. Investigation of the tumorigenic response to benzo(a)pyrene in aqueous caffeine solution applied orally to Sprague-Dawley rats. J Cancer Res Clin Oncol 102:153– 157.

California Environmental Protection Agency. 1994. Benzo[a]pyrene as a Toxic Air Contaminant: Part B. Health Assessment. Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Air Resources Board, Berkeley CA.

Collins JF, Brown JP, Dawson SV, Marty MA. 1991. Risk assessment for benzo(a)pyrene. Regul Toxicol Pharmacol 13:170–184.

Pike. 1983. Polycyclic Aromatic Hydrocarbons: Evaluation of Sources and Effects. National Academy Press, Washington DC.

Doll R, Fisher REW, Gammon EJ, Gunn W, Hughes GO, Tyrer FH, Wilson W. 1965. Mortality of gasworkers with special reference to cancers of the lung and bladder, chronic bronchitis, and pneumoconiosis. Br J Ind Med 22:1–12.

Doll R, Vessey MP, Beasley RWR, Buckley AR, Fear EC, Fisher REW, Gammon EJ, Gunn W, Hughes GO, Lee K, Norman-Smith B. 1972. Mortality of gasworkers: Final report of a prospective study. Br J Ind Med 29:394–406.

Environmental Protection Agency (US). 1993. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. EPA/600/R-93/089; NTIS PB94-116571. Environmental Criteria and Assessment Office, Cincinnati OH.

Feron VJ, De Jong D, Emmelot P. 1973. Dose-response correlation for the induction of respiratory-tract tumours in Syrian golden hamsters by intratracheal instillations of benzo[a]pyrene (letter to the editor). Eur J Cancer 9:387– 390.

Heinrich U, Roller M, Pott F. 1994. Estimation of a lifetime unit lung cancer risk for benzo[a]pyrene based on tumour rates in rats exposed to coal tar/pitch condensation aerosol. Toxicol Lett 72:155–161.

Kniznikow BA. 1982. Lung tumors in mice exposed to benzo(*a*)pyrene. Gigiena i sanitariia (7):23–27.

Laskin S, Kuschner M, Drew RT. 1970. Studies in pulmonary carcinogenesis. In: Inhalation Carcinogenesis: Proceedings of a Biology Division, Oak Ridge National Laboratory, Conference Held in Gatlinburg, Tennessee, October 8–11, 1969, Sponsored by the National Cancer Institute and US Atomic Energy Commission (Hanna M, Nettesheim P, Gilbert JR, eds), pp 321–351. US Atomic Energy Commission, Oak Ridge TN.

Neal J, Rigdon RH. 1967. Gastric tumors in mice fed benzo(a)pyrene: A quantitative study. Texas Rep Biol Med 25(4):553–557.

Pott F. 1985. Pyrolyseabgase, PAH und lungenkrebsrisiko: Daten und bewertung [Pyrolytic emissions, profiles of polycyclic aromatic hydrocarbons and lung cancer risk: Data and evaluation]. STAUB-Reinhalt Luft 45(7–8):369–379.

Saffiotti U, Montesano R, Sellakumar AR, Kaufman DG. 1972. Respiratory tract carcinogenesis induced in hamsters by different dose levels of benzo[a]pyrene and ferric oxide. JNCI 49:1199–1204.

RIVM (Slooff W, Janus JA, Matthijsen AJCM, Monitzaan GK, Ros JPM, eds). 1989. Integrated Criteria Document PAHs; Appendix of effects of 10 selected compounds. Report No. 758474011. National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands. Downloaded from *www.rivm.nl/bibliotheek/rapporten/758474011.pdf* on 1/6/05.

Thyssen J, Althoff J, Kimmerle G, Mohr U. 1981. Inhalation studies with benzo[*a*]pyrene in Syrian golden hamsters. JNCI 66(3):575–577.

Vyskocil A, Viau C, Camus M. 2004. Risk assessment of lung cancer related to environmental PAH pollution sources. Hum Exp Toxicol 23(3):115–127.

World Health Organization. 2000. Air Quality Guidelines for Europe, Second Edition. WHO Regional Publications, European Series No. 91. WHO Regional Office for Europe, Copenhagen, Denmark. Downloaded from *http://bookorders.who.int* on January 06, 2005.

Not Included in Tables

Boutwell RK, Bosch DK. 1958. The carcinogenicity of creosote oil: Its role in the induction of skin tumors in mice. Cancer Res 18(10):1171–1175.

Gorski T. 1959. Experimental investigations on the carcinogenic properties of some pitches and tars manufactured from Silesian pit coal. Medycyna Pracy 10:309–317.

Kinkead ER. 1973. Toxicity of coal tar aerosol. In: Proceedings of the Fourth Annual Conference on Environmental Toxicology, Fairburn, Ohio, Oct. 16–18, 1973, pp 177–188.

Konstantinov VG, Kuz'minykh AI. 1971. Tarry substances and 3,4-benzpyrene in the air of electrolytic shops of aluminum works and their carcinogenic significance. Hyg Sanit 36:368–373.

MacEwen JD, Hall A, Scheel LD. 1976. Experimental oncogenesis in rats and mice exposed to coal tar aerosols. In: Seventh Annual Conference on Environmental Toxicology, held October, 1976 in Dayton, Ohio, pp 66–81.

McConnell EE, Specht HD. 1973. Lesions found in animals exposed to coal tar aerosols. In: Proceedings of the Fourth Annual Conference on Environmental Toxicology, Fairburn, Ohio, Oct. 16–18, 1973, pp 189–198.

National Institute for Occupational Safety and Health (US). 1976. Health Hazard Evaluation Determination Report No. 75-102-305, Sellers and Marquis Roofing Company, A.J. Shirk Roofing Company, Western Roofing Company, and the Quality Roofing Company; A Joint Venture, Kansas City, Missouri. NTIS PB89-165963; HHE-75-102-304.

National Research Council, Committee on the Biologic Effects of Atmospheric Pollutants. 1972. Chemical reactivity of polycyclic aromatic hydrocarbons and aza-arenes. In: Biologic Effects of Atmospheric Pollutants: Particulate Polycyclic Organic Matter, pp 63–81. National Academy Press, Washington DC.

Pierre F, Robillard J, Mouchel A. 1965. Skin tumors in workers exposed to coal-tars. Arch Mal Prof 26(9):475–481.

Poel WE, Kammer AG. 1957. Experimental carcinogenicity of coal-tar fractions: The carcinogenicity of creosote oils. JNCI 18(1):41–55.

Roe FJC, Bosch D, Boutwell RK. 1958. The carcinogenicity of creosote oil: The induction of lung tumors in mice. Cancer Res 18:1176–1178.

Schneider K, Roller M, Kalberlah F, Schuhmacher-Wolz U. 2002. Cancer risk assessment for oral exposure to PAH mixtures. J Appl Toxicol 22(1):73–83. Susorov NA. 1970. Group damage to the organ of vision by coal tar pitch. Voenno Med Zh 3:75.

Tsai PJ, Shieh HY, Lee WJ, Lai SO. 2001. Health-risk assessment for workers exposed to polycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturing industry. Sci Total Environ 278(1–3):137–150.

Wallcave L, Garcia H, Feldman R, Lijinsky W, Shubik P. 1971. Skin tumorigenesis in mice by petroleum asphalts and coal-tar pitches of known polynuclear aromatic hydrocarbon content. Toxicol Appl Pharmacol 18(1):41–52.

STYRENE

Included in Tables

Campagna D, Mergler D, Huel G, Belanger S, Truchon G, Ostiguy C, Drolet D. 1995. Visual dysfunction among styrene-exposed workers. Scand J Work Environ Health 21(5):382–390.

Cohen JT, Carlson G, Charnley G, Coggon D, Delzell E, Graham JD, Greim H, Krewski D, Medinsky M, Monson R, Paustenbach D, Petersen B, Rappaport S, Rhomberg L, Ryan PB, Thompson K. 2002. A comprehensive evaluation of the potential health risks associated with occupational and environmental exposure to styrene. J Toxicol Environ Health B 5(1–2):1–263.

2002. Erratum re: A comprehensive evaluation of the potential health risks associated with occupational and environmental exposure to styrene. J Toxicol Environ Health B Crit Rev 5(3):335.

Cruzan G, Cushman JR, Andrews LS, Granville GC, Johnson KA, Bevan C, Hardy CJ, Coombs DW, Mullins PA, Brown WR. 2001. Chronic toxicity/oncogenicity study of styrene in CD-1 mice by inhalation exposure for 104 weeks. J Appl Toxicol 21(3):185–198.

Eguchi T, Kishi R, Harabuchi I, Yuasa J, Arata Y, Katakura Y, Miyake H. 1995. Impaired colour discrimination among workers exposed to styrene: Relevance of a urinary metabolite. Occup Environ Med 52(8):534–538.

Gobba F, Cavalleri A. 1993. Kinetics of urinary excretion and effects on colour vision after exposure to styrene. In: Butadiene and Styrene: Assessment of Health Hazards. IARC Scientific Publications No. 127 (Sorsa M, Peltonen K, Vainio H, Hemminki K, eds), pp 79–88. International Agency for Research on Cancer, Lyon, France.

Gobba F, Galassi C, Imbriani M, Ghittori S, Candela S, Cavalleri A. 1991. Acquired dyschromatopsia among styreneexposed workers. J Occup Med 33(7):761–765.

Mutti A, Mazzucchi A, Rustichelli P, Frigeri G, Arfini G, Franchini I. 1984. Exposure-effect and exposure-response relationships between occupational exposure to styrene and neuropsychological functions. Am J Ind Med 5(4):275–286.

Pryor GT, Rebert CS, Howd RA. 1987. Hearing loss in rats caused by inhalation of mixed xylenes and styrene. J Appl Toxicol 7(1):55–61.

Sarangapani R, Teeguarden JG, Cruzan G, Clewell HJ, Andersen ME. 2002. Physiologically based pharmacokinetic modeling of styrene and styrene oxide respiratory-tract dosimetry in rodents and humans. Inhalation Toxicol 14(8):789–834.

Seeber A, van Thriel C, Haumann K, Kiesswetter E, Blaszkewicz M, Golka K. 2002. Psychological reactions related to chemosensory irritation. Int Arch Occup Environ Health 75(5):314–325.

Stewart RD, Dodd HC, Baretta ED, Schaffer AW. 1968. Human exposure to styrene vapor. Arch Environ Health 16(5):656–662.

Yano BL, Dittenber DA, Albee RR, Mattsson JL. 1992. Abnormal auditory brainstem responses and cochlear pathology in rats induced by an exaggerated styrene exposure regimen. Toxicol Pathol 20(1):1–6.

TOLUENE

Included in Tables

Astrand I, Ehrner-Samuel H, Kilborn A, Ovrum P. 1972. Toluene exposure. I. Concentration in alveolar air and blood at rest and during exercise. Work Environ Health 9:119–130.

Baelum J, Lundqvist GR, Molhave L, Andersen NT. 1990. Human response to varying concentrations of toluene. Int Arch Occup Environ Health 62:65–71.

Bukowski JA. 2001. Review of the epidemiological evidence relating toluene to reproductive outcomes. Regul Toxicol Pharmacol 33(2):147–156.

Filley CM, Halliday W, Kleinschmidt-DeMasters BK. 2004. The effects of toluene on the central nervous system. J Neuropathol Exp Neurol 63(1):1–12.

Filley CM, Kleinschmidt-DeMasters BK. 2001. Toxic leukoencephalopathy. N Engl J Med 345(6):425–432.

Foo SC, Jeyaratnam J, Koh D. 1990. Chronic neurobehavioral effects of toluene. Br J Ind Med 47:480–484.

Gamberale F, Hultengren M. 1972. Toluene exposure. II. Psychophysiological functions. Work Environ Health 9:131–139.

Hillefors-Berglund M, Liu Y, von Euler G. 1995. Persistent, specific and dose-dependent effects of toluene exposure on dopamine D2 agonist binding in the rat caudate-putamen. Toxicology 100:185–194.

National Toxicology Program (US). 1990. NTP Technical Report on the Toxicology and Carcinogenesis Studies of Toluene (CAS No. 108-88-3) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). NTP TR 371, NIH Publication No. 90-2826. US Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park NC. Downloaded from http://ntpserver.niehs.nih.gov on November 19, 2004.

Ng TP, Foo SC, Yoong T. 1992. Risk of spontaneous abortion in workers exposed to toluene. Br J Ind Med 49:804–808.

Orbaek P, Nise G. 1989. Neurasthenic complaints and psychometric function of toluene-exposed rotogravure printers. Am J Ind Med 16:67–77.

Stewart RD, Hake CL, Forster HV, Lebrun AJ. 1975. Toluene: Development of a Biologic Standard for the Industrial Worker by Breath Analysis. Report to NIOSH. PB8215422, NIOSH-00080663. National Technical Information Service, Springfield VA.

Taylor JD, Evans HL. 1985. Effects of toluene inhalation on behavior and expired carbon dioxide in macaque monkeys. Toxicol Appl Pharmacol 80(3):487–495.

Thuomas KA, Moller C, Odkvist LM, Flodin U, Dige N. 1996. MR imaging in solvent-induced chronic toxic encephalopathy. Acta Radiol 37:177–179.

Zavalic M, Mandic Z, Turk R, Bogadi-Sare A, Plavec D. 1998. Quantitative assessment of color vision impairment in workers exposed to toluene. Am J Ind Med 33:297–304.

Not Included in Tables

Andersen I, Lundqvist GR, Molhave L, Pedersen OF, Proctor DF, Vaeth M, Wyon DP. 1983. Human response to controlled

levels of toluene in six-hour exposures. Scand J Work Environ Health 9:405–418.

XYLENES

Included in Tables

Carpenter CP, Kinkead ER, Geary DL Jr, Sullivan LJ, King JM. 1975. Petroleum hydrocarbon toxicity studies. V. Animal and human response to vapors of mixed xylenes. Toxicol Appl Pharmacol 33:543–558.

Hastings L, Cooper GP, Burg W. 1984. Human sensory response to selected petroleum hydrocarbons. In: Advances in Modern Environmental Toxicology, Volume VI: Applied Toxicology of Petroleum Hydrocarbons (MacFarland HN, Holdsworth CE, MacGregor JA, eds), pp 255–270. Princeton Scientific Publisher, Princeton NJ.

Korsak Z, Wisniewska-Knypl J, Swiercz R. 1994. Toxic effects of subchronic combined exposure to n-butyl alcohol and m-xylene in rats. Int J Occup Med Environ Health 7(2):155–166.

Not Included in Tables

Dudek B, Gralewicz K, Jakubowski M, Kostrzewski P, Sokal J. 1990. Neurobehavioral effects of experimental exposure to toluene, xylene, and their mixture. Pol J Occup Med 3(1):109–116.

Nelson KW, Ege JF, Ross M, Woodman LE, Silverman L. 1943. Sensory response to certain industrial solvent vapors. J Ind Hyg Toxicol 25(7):282–28

Appendix D. Indoor Exposure Tables

Introduction		319
Table D.1. Indoor Exposure Data Sources		320
Table D.2. Indoor Exposure Data Sources for Selected	d MSATs	324
Tables D.3–D.8g. Indoor Exposure Data Summar	ies	
D.3. Acetaldehyde	D.8b. POM: Benz[a]anthracene	346
D.4. Acrolein	D.8c. POM: Benzo[b,k]fluoranthene	352
D.5. Benzene	D.8d. POM: Benzo[a]pyrene	360
D.6. 1,3-Butadiene	D.8e. POM: Chrysene	368
D.7. Formaldehyde	D.8f. POM: 7,12-Dimethylbenz[a]anthracene	374
D.8a. POM: Total PAH as Surrogate	D.8g. POM: Indeno[1,2,3-cd]pyrene	376
Appendix D. References		382

Introduction

The tables in Appendix D summarize information on indoor air concentrations for six of the seven priority MSATs (not including naphthalene).

Table D.1 is a summary of the sources of data on indoor air concentrations for each MSAT, including brief descriptions of each study and details of study time periods, locations, and types of location (e.g., residences, office buildings, and schools), as well as a description of each location and notes. Table D.2 is a matrix of data sources showing the MSATs investigated in each study used for indoor air concentration information.

Tables D.3 through D.8 are data summaries for each MSAT. Certain MSATs are represented by one or more surrogate compounds.

Although the hyperlinks from the tables to Web sites were active shortly before publication, HEI cannot be responsible for any subsequent changes in the Web sites referred to.

For more information about this appendix, see <u>Introduc-</u> tion to Appendices B, C, D, and E.

Table D.1. Indoor Ex	Table D.1. Indoor Exposure Data Sources										
Reference	Reference Description	Study Time Period	Study Locations	Locations Type	Locations Description	Notes					
EPA Indoor Air Studi	ies										
Girman et al. (1999)	Conference proceedings summarizing preliminary findings from the EPA Building Assessment Survey and Evaluation (BASE) study of 56 randomly selected public and private office buildings	Summer 1995– Winter 1997-98	Nationwide	Public and commercial office buildings	56 randomly selected public and private office buildings across the US, excluding build- ings with highly publicized indoor air quality problems	Samples collected in 56 randomly selected buildings, with 3 indoor sampling locations/building.					
Recent, Peer-Reviewe	ed Residential Indoor Air Monitoring S	Studies									
Adgate et al. (2004a)	Journal article summarizing screening- phase indoor measurements collected in 284 households and intensive-phase personal, indoor, and outdoor measure- ments for 10 VOCs collected in a proba- bility sample of 72 households as part of the Minnesota Children's Pesticide Exposure Study (MNCPES)	May–Sept 1997	Multiple locations, MN	Urban, nonurban residences	Households recruited from cit- ies of Minneapolis and St Paul (designated urban households) and Rice and Goodhue Coun- ties (designated nonurban households). 97% of homes were single-family homes, and approximately 20% were homes with smokers present.	Weighted distributions from inten- sive-phase sampling stated to be representative of more than 58,000 urban and 4,000 nonurban house- holds.					
Adgate et al. (2004b)	Journal article summarizing exposure measurements for 15 VOCs conducted in multiple locations (outdoors, indoors at school, indoors at home, and personal samples) among a study population of 113 children attending two inner-city schools in Minneapolis	Winter (1/24/00– 2/18/00) and Spring (4/9/00– 5/12/00)	Minneapolis MN	Urban residences and schools	Two inner-city Minneapolis schools serving predominantly low-income households. Approximately 20% of house- holds had smokers present, 64% were apartments.	Children were participants in School Health Initiative: Environ- ment, Learning, and Disease (SHIELD) study, which consisted of a randomly-selected ethnically and racially diverse sample of inner-city children in Minneapolis.					
Chuang et al. (1999)	Journal article summarizing PAH expo- sure data collected during study of North Carolina children in low-income families	Feb–Aug 1995 (2 homes sampled in Feb 1994)	Durham and Piedmont, NC	Inner city and rural low-income housing	24 low-income homes included in study, 14 inner-city homes and 10 rural homes; 5 homes had smokers present.						
Clayton et al. (1999)	Journal article summarizing extensive exposure data (indoor, outdoor, and per- sonal air; dust; tap water; food; urine; blood) from the EPA National Human Exposure Assessment Survey (NHEXAS) Phase I field study conducted in EPA Region V in July 1995–May 1997	July 1995– May 1997	EPA Region V (IL, IN, OH, MI, MN, WI)	Residences	Approximately 250 study partic- ipants selected via probability sampling for inclusion in study.	Most households were sampled once, but one subset was sampled up to 3 times.					
Feng and Zhu (2004)	Journal article summarizing subset of 30 indoor air samples analyzed for carbo- nyl compounds from 75 randomly selected homes in Ottawa, Canada	Not provided	Ottawa, Canada	Urban residences	Samples drawn from subset of 75 randomly selected homes.						

-		0, 1	Ct 1	Tanatian	T !	
Reference	Description	Time Period	Locations	Type	Description	Notes
Recent, Peer-Review	ed Residential Indoor Air Monitoring S	Studies (<i>Continu</i>	ed)			
Gordon et al. (1999)	Journal article summarizing preliminary residential environmental measure- ments (indoor, outdoor, and personal air; dust; soil; dermal wipes) from the EPA National Human Exposure Assess- ment Survey (NHEXAS) Arizona pilot study	Not provided in paper, but assumed to be 1995–1997	Arizona	Residences	Probability-based sampling of approx. 170 residences	
Kinney et al. (2002)	Journal article summarizing personal, indoor, and outdoor sampling con- ducted in 1999 as part of the Toxic Exposure Assessment, a Columbia/Har- vard (TEACH) study, an urban air toxics study of inner-city New York City neigh- borhoods	Winter and sum- mer 1999, 8 weeks/season	New York City	Urban residences	Inner-city neighborhoods prima- rily in northern Manhattan and the South Bronx, but also including the boroughs of Queens and Brooklyn. All study participants were non- smokers.	
Mukerjee et al. (1997)	Journal article summarizing residential air, household dust, and soil pollutant data collected during 1993 Lower Rio Grande Valley Environmental Scoping Project	Spring 1993, summer 1994	Lower Rio Grande Valley	Urban and rural residences	Nine residences sampled dur- ing study, three located in city of Brownsville and six in rural agricultural areas, all but one within economically-disadvan- taged areas or substandard housing communities	Authors report that smoking activi- ties occurred in majority of study homes. Six residences were sam- pled during both seasons.
Naumova et al. (2002)	Journal article summarizing indoor and outdoor PAH measurements collected in 55 nonsmoking residences in three urban areas during June 1999–May 2000 as part of Relationship of Indoor, Out- door, and Personal Air study (RIOPA)	June 1999– May 2000	Los Angeles CA, Houston TX, and Elizabeth NJ	Urban residences	Nonsmoking residences in urban areas near dominant emission sources, with LA and Elizabeth homes near high-traf- fic roadways	
Payne-Sturges et al. (2004)	Journal article summarizing personal, indoor, and outdoor sampling of 33 non- smoking adult residents conducted as part of a community-based exposure assessment conducted in Baltimore	Jan 2000– - June 2001	Baltimore MD	Urban residences	South Baltimore communities in close proximity to large chemi- cal industries as well as nearby interstate highways and local truck traffic servicing industry	
Phillips et al. (2005)	Journal article summarizing personal, indoor, and outdoor VOC data collected in four OK cities as part of the Oklahoma Urban Air Toxics Study	Not provided (although assumed to be very recent)	4 Oklahoma cities	Urban residences	Sampling conducted in 37 dif- ferent urban detached, single- family homes, all nonsmoking	
Reiss et al. (1995)	Journal article summarizing indoor carbo- nyl measurements made in four Boston- area residences in winter of 1993 and in nine residences during summer of 1993	Winter and Spring 1993	Boston MA	Urban and suburban residences	Included both unattached and attached dwelling units; homes with smokers specifically excluded, and wood-burning fireplaces not operated during the sampling periods.	Sampling conducted in a total of 9 different residences, with 4 sam- pled in both seasons and 5 sam- pled during only the summer sampling season.

Health Effects Institute Special Report 16 © 2007

321

Reference	Reference Description	Study Time Period	Study Locations	Locations Type	Locations Description	Notes
Recent, Peer-Reviev	ved Residential Indoor Air Monitoring S	Studies (<i>Continu</i>	ed)			
Sawant et al. (2004)	Journal article summarizing indoor and outdoor carbonyl measurements made inside 20 residences and 7 schoolrooms in Mira Loma, western Riverside County CA	Sept 2001 to Jan 2002	Mira Loma CA	Semi-rural residences	Sampling conducted in 20 resi- dences, nearly all with gas heating and 5 with smoking inside, and in 7 classrooms (2 portables) within the area high school	
Sax et al. (2004)	Journal article summarizing personal, indoor, and outdoor sampling con- ducted in 1999 and 2000 as part of the Toxic Exposure Assessment, a Colum- bia/ Harvard (TEACH) study, an urban air toxics study of inner-city New York City and LA neighborhoods	Winter and sum- mer 1999 (NYC) and winter and fall 2000 (LA)	New York NY and Los Angeles CA	Urban residences	Primarily inner city neighbor- hoods in both NYC and LA, all nonsmoking homes	
Sexton et al. (2004)	Journal article summarizing personal, indoor, and outdoor sampling for 15 VOCs conducted over 3 seasons in 1999 among population of 71 nonsmoking adults in three Minneapolis-St Paul urban neighborhoods	Apr–Nov 1999	Minneapolis- St Paul MN	Urban residences	3 urban neighborhoods (Phil- lips, East St Paul, Battle Creek) with different outdoor VOC concentration profiles, includ- ing large manufacturing plant located near East St Paul neigh- borhood	
Van Winkle and Scheff (2001)	Journal article summarizing VOC, PAH, and trace element data collected indoors and outdoors at 10 homes for 10 months (1994–1995) as part of a Public Health Assessment in Southeast Chicago	June 1994– Apr 1995	Southeast Chicago IL	Urban residences	Study area heavily industrial- ized with many known air toxic emission source types including manufacturing facili- ties, coke plants, municipal solid waste landfills, on-road vehicles, etc. All nonsmoking homes.	Ten homes monitored on either quarterly or monthly basis for 10- month period.
Zhang et al. (1994)	Journal article summarizing indoor and outdoor carbonyl measurements made in suburban New Jersey homes in sum- mer 1992	Summer 1992	Central New Jersey	Suburban residences	Six homes included in study, each nonsmoking and with natural gas stoves/ovens and central air-conditioning.	All indoor samples collected in kitchens with gas-on and gas-off combustion conditions.
Recent, Peer-Reviev	ved Commercial Building / School Indoo	or Air Monitorin	g Studies			
Daisey et al. (1992)	Journal article summarizing VOC mea- surements from 12 northern California office buildings with different ventila- tion types	June–Sept 1990	San Francisco Bay Area CA	Urban office buildings	Included buildings with natural ventilation, mechanical venti- lation with operable windows and no AC, and mechanical ventilation with sealed win- dows and AC; each with smok- ing prohibited except in specific areas and 9 out of 12 built prior to 1970.	Samples collected in 32 areas within the 12 buildings, with indoor loca- tions chosen to represent potential exposures.
						Table continues on next page

322

Mobile Source Air Toxics, Appendix Table D.1. Indoor Exposure Data Sources

Health Effects]	
Institute Special	
Report 16 © 2007	

Table D.1. (Continued	Fable D.1. (Continued) Indoor Exposure Data Sources										
Reference	Reference Description	Study Time Period	Study Locations	Locations Type	Locations Description	Notes					
Recent, Peer-Reviewe	d Commercial Building / School Indo	or Air Monitorii	ng Studies (<i>Conti</i>	nued)							
Levy et al. (2002)	Journal article summarizing PM and PAH measurements made in a variety of non- residential microenvironments in Boston MA	Summer 2000	Boston MA	Urban nonresidential micro- environments	Sampled indoor nonresidential microenvironments included a public library, coffee shop, mall, food court, apartment, and hos- pital, several in high-traffic areas and all nonsmoking.	Two traffic microenvironments included in study- subway station and bus- were excluded from data compilation.					
Shendell et al. (2004)	Journal article summarizing VOC measure ments made during a pilot study of porta ble and traditional classrooms in Los Angeles County	- June 2000– - June 2001	Los Angeles CA	Urban portable and traditional school class-rooms	Seven schools in two school dis- tricts included in study, from which 20 classrooms (13 porta- bles and seven in main build- ings) were randomly selected for sampling.						
Subramanian et al. (2004)) Journal article summarizing airborne car- bonyl measurements made inside six large Midwestern US office buildings	Nov 1996– Oct 1998	IA, NE, MN	Urban office buildings	Included six private office build- ings, all classified as non-com- plaint environments	In general, sampling conducted from 4 different locations (3 indoors, 1 outdoors) at each building.					
Wilson et al. (2001)	Journal article summarizing persistent organic pollutant measurements (eg, PAHs, phthalates, pesticides, PCBs) in multiple media at 10 child day care cen- ters located in central NC	Spring 1997	Durham, Chapel Hill, Raleigh NC	Rural and urban child day care centers	Three centers located in rural communities and six in urban centers						
Large-Scale California	a Air Resources Board (ARB) Studies										
Fortmann et al. (2001) <u>www.arb.ca.gov/researc</u> <u>h/abstracts/97-330.htm</u>	ARB report summarizing experimental study conducted in a CA test house to investigate the impact of residential cook ing activities on exposures to particulate and gaseous air toxics	Feb 2000 -	Rohnert Park CA	Residence	Small single-story ranch style home used as a test house	Indoor measurements conducted in kitchen for realistic cooking tests using gas range, electric range, and microwave.					
Sheldon et al. (1992a) <u>www.arb.ca.gov/researc</u> <u>h/abstracts/a933-</u> <u>144.htm</u>	ARB report summarizing indoor and out- door PAH and phthalate measurements made in 125 Riverside CA homes as part of the PTEAM study	Fall 1990	Riverside CA	Urban residences	Data collected from probability sample of homes representing 61,520 households in Riverside with at least one nonsmoking resident over the age of 10	Based on questionnaire responses, little use of indoor heating appli- ances occurred during study period, and less than 30% of homes reported any smoking.					
Sheldon et al. (1992b) <u>www.arb.ca.gov/researc</u> <u>h/abstracts/a833-</u> <u>156.htm</u>	ARB report summarizing large indoor air VOC study conducted during a single sea son for a probability sample of 128 house holds in Woodland CA	May and June - 1990 -	Woodland CA	Urban residences	Woodland is a medium-size city in a predominantly agricul- tural region of CA	Data collected from probability sam- ple of homes representing 15,008 households in Woodland target area at time of study.					
Sheldon et al. (1993) <u>www.arb.ca.gov/researc</u> <u>h/abstracts/ a033-</u> <u>132.htm</u>	ARB report summarizing indoor and out- door PAH measurements made in 280 Northern California homes in winter 1992	Winter 1992 2	Placerville and Roseville, CA	Urban residences	Homes selected to represent spe- cific combustion source catego- ries including tobacco smoking, fireplaces, woodstoves, and gas heat	-					
Whitmore et al. (2003) <u>www.arb.ca.gov/researc</u> <u>h/abstracts/00-317.htm</u>	ARB report summarizing California Porta- ble Classrooms Study (PCS) Phase I survey (i.e., a questionnaire and passive formalde hyde sampling) of a randomly selected sample of all CA public schools with at least one portable classroom and a Phase II field study of a subset of these schools.	Phase I Study: Spring 2001; Phase II Field Study: Oct 2001– Feb 2002	CA (statewide)	Portable and traditional school classrooms	911 classrooms (644 portable and 267 traditional) included within Phase I survey, and 201 classrooms at 67 schools state- wide included within Phase II field study	Formaldehyde data collected using passive monitors in Phase I, while indoor air data collected for suite of VOCs and carbonyls during Phase II study component.					

Table D.2. Indoor Exposure Data Source	es for Each MSA	ΑT				
			М	SAT		
Data Source	Acetaldehyde	Acrolein	Benzene	1,3- Butadiene	Formaldehyde	POM ^a
EPA Indoor Air Studies						
Building Assessment Survey and Evaluation (BASE) Study— Girman et al. (1999)			~			
Recent, Peer-Reviewed Residential Ind	oor Air Monito	ring Studies				
Adgate et al. (2004a) Adgate et al. (2004b) ^b Chuang et al. (1999) Clayton et al. (1999)			↓ ↓ ↓			*
Feng and Zhu (2004) Gordon et al. (1999) Kinney et al. (2002) Mukerjee et al. (1997)	✓ ✓	✓	* * *	√ √ √	√ √ √	✓
Naumova et al. (2002) Payne-Sturges et al. (2004) Phillips et al. (2005) Reiss et al. (1995)	1	✓	4		✓	✓
Sawant et al. (2004) Sax et al. (2004) Sexton et al. (2004) Van Winkle and Scheff (2001) Zhang et al. (1994)	✓ ✓ ✓	~	↓ ↓ ↓	↓ ↓	✓ ✓ ✓	*
Recent, Peer-Reviewed Commercial Bu	ilding / School	Indoor Air I	Monitoring S	Studies		
Daisey et al. (1992) Levy et al. (2002) Shendell et al. (2004) Subramanian et al. (2000) Wilson et al. (2001)	√ √		4		√ √	√
Large-Scale California Air Resources E	Board (ARB) Stu	dies				
Fortmann et al. (2001) Sheldon et al. (1992a) Sheldon et al. (1992b) Sheldon et al. (1993) Whitmore et al. (2003)	✓ ✓	✓ C	√ √	✓	✓ ✓	↓ ↓

^a Surrogates used for POM include total polycyclic aromatic hydrocarbons (Total PAHs) as well as seven PAHs identified by EPA as probable human carcinogens and used as surrogates for the larger group of POM compounds in EPA air toxics evaluations.

^b Also included indoor monitoring in school classrooms of study participants.

^c Acrolein and 1,3-butadiene were also included as target analytes, but acrolein results were excluded from the report due to sample interferences and the analytical methods were not able to quantify 1,3-butadiene.

Table D.3. Indoor Exposure Data Summaries. Acetaldehyde (Columns continue on next page)

		Study Location	n(s)		Study					Source of	Individua Measurem	al Sample aent Range
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	f Detection Frequency	Units	Summary Stats	Minimum	Maximum
Feng and Zhu (2004)	Summary of Ottawa, Can- ada residential indoor data	Ottawa	ON	Residences	Not given	100 mins	30	100%	μg/m³	Directly from reference	4.4	$3.8 imes 10^1$
Fortmann et al. (2001)	Summary of residential cooking experimental data	Rohnert Park	CA	Test house	Feb 2000	1 hr 30 mins to 5 hrs 8 mins	6	100%	µg/m³	Directly from reference	$1.3 imes 10^1$	$4.3 imes 10^2$
Reiss et al. (1995)	Summary of Boston-area residential indoor sam- pling data— winter sam- pling season	Boston	MA	Residences	Winter 1993	24 hrs	14	100%	µg/m³ (converted from ppb)	Directly from reference	7.9	$1.8 imes 10^1$
	Summary of Boston-area residential indoor sam- pling data— spring sam- pling season	Boston	MA	Residences	Spring 1993	24 hrs	26	100%	µg/m³ (converted from ppb)	Directly from reference	2.5	$3.0 imes 10^1$
Sawant et al. (2004)	Summary of Mira Loma residential indoor sampling data	Mira Loma	СА	Residences	Sept 2001 –Jan 2002	24 hrs	83	100%	μg/m³	Raw data provided by study authors and stats calcu- lated by Gra- dient Corp.	$7.8 imes 10^{-1}$	$2.4 imes 10^1$
	Summary of Mira Loma schoolroom indoor sam- pling data	Mira Loma	CA	School rooms, including two portable units	Sept 2001 –Jan 2002	24 hrs	28	100%	μg/m³	Raw data provided by study authors and stats calcu- lated by Gra- dient Corp.	4.5	$2.5 imes 10^1$
Sax et al. (2004)	Summary of TEACH Project LA winter residential indoor data	Los Angeles (South Central)	CA	Residences	Winter 2000 (Feb–Mar)	2 days	40	100%	µg/m³	Directly from reference	4.1	$3.6 imes 10^1$

	Data	Overall A R	rithmetic M ange of Mea	lean and/or ans	Overall N	fedian and/o Medians	or Range of	_
Source (<i>Continued</i>)	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Feng and Zhu (2004)	ng and Zhu 100 mins 1.8×10^1 (004)							Samples were a subset of samples from 75 ran- domly selected homes in the city of Ottawa.
Fortmann et al. (2001)								Indoor measurements conducted in kitchen of resi- dential house where 32 cooking tests were con- ducted for gas range, electric range, and microwave, including frying foods, broiling foods cooking meat in the oven, and oven-cleaning. Aldehyde measurements made in only a subset of cooking tests.
Reiss et al. (1995)	48 hrs	1.2×10^1						Four homes were sampled during consecutive 24- hr periods, with multiple sampling locations in the larger residences.
	48 hrs	9.2						Nine homes were sampled during consecutive 24- hr periods (including four previously sampled during the winter), with multiple sampling loca- tions in the larger residences.
Sawant et al. (2004)	6 days	$1.0 imes 10^1$	1.1	$1.8 imes 10^1$	9.0	1.1	$2.0 imes 10^1$	Homes sampled over 12 days, with sampling con- ducted in six alternating 24-hr segments. Ranges in average and median concentrations represent ranges in home averages and medians.
	6 days	1.2×10^1	7.0	1.7×10^{1}	$1.1 imes 10^1$	6.9	$1.5 imes 10^1$	School rooms sampled over 12 days, with sampling conducted in six alternating 24-hr segments. Sam pling was not conducted in one school room due to logistical constraints. Ranges in average and median concentrations represent ranges in class- room averages and medians.
Sax et al. (2004)	2 days	$1.5 imes 10^1$			$1.5 imes 10^1$			One 2-day sample collected at each study participant residence.

Table D.3. Indoor Exposure Data Summaries (Continued). Acetaldehyde (Columns continue on next page)

		Study Locatio	on(s)		Study					Source of	Individu Measuren	al Sample ant Range
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Sax et al. (2004)	Summary of TEACH Project LA fall residential indoor data	Los Angeles (South Central)	CA	Residences	Fall 2000 (Sept–Oct)	2 days	33	100%	µg/m³	Directly from reference	3.5	$2.3 imes 10^1$
Sax et al. (2004); Kinney et al. (2002)	Summary of TEACH Project NYC summer residential indoor data	New York	NY	Residences	Summer 1999 (June– Aug)	2 days	41	100%	µg/m³	Directly from reference	2.9	$9.2 imes 10^1$
	Summary of TEACH Project NYC winter residential indoor data	New York	NY	Residences	Winter 1999 (Feb–Apr)	2 days	37	100%	μg/m³	Directly from reference	5.4	$5.4 imes 10^1$
Shendell et al. (2004)	Summary of Los Angeles County portable and traditional classroom indoor sampling data	Los Angeles	CA	Portable and traditional school classrooms	June 2000–June 2001	5 days			µg/m³	Directly from reference	$1.0 imes 10^{-1}$	$2.5 imes 10^1$
Subramanian et al. (2000)	Summary of Midwestern US large office building indoor sampling data	Urban areas	IA, NE, MN	Large office buildings	Nov 1996– Oct 1998	8 hrs	23 mea- surement periods		μg/m³ (converted from ppb)	Directly from reference		
Whitmore et al. (2003)	Summary of California portable classrooms study Project Phase II indoor sampling data	Statewide	CA	Portable and traditional school classrooms	Oct 2001– Feb 2002	~ 6–8 hrs	199	98.6%	µg/m³ (converted from ppb)	Directly from reference	< 1.4	2.0×10^{1} (P95)
Zhang et al. (1994)	Summary of suburban New Jersey residen- tial indoor sampling data	Central NJ	NJ	Residences	Summer 1992	2.5–3 hrs	36	100%	μg/m³ (converted from ppb)	Directly from reference <i>Tab</i>	1.2 le continues	$2.9 imes10^1$

Table D.3. Indo	Fable D.3. Indoor Exposure Data Summaries (Continued). Acetaldehyde (Columns continued from previous page)											
	Data	Overall A R	rithmetic M ange of Mea	ean and/or ns	Overall M	edian and/c Medians	or Range of					
Source (<i>Continued</i>)	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes				
Sax et al. (2004)	2 days	9.6			8.6			One 2-day sample collected at each study participant residence.				
Sax et al. (2004); Kinney et al. (2002)	2 days	$1.5 imes 10^1$			$1.1 imes 10^1$			One 2-day sample collected at each study participant residence.				
	2 days	$1.6 imes 10^1$			$1.4 imes 10^1$			One 2-day sample collected at each study participant residence.				
Shendell et al. (2004)	School wk aver- aged over sam- pling during both cooling and heating seasons	6.8			6.0			Samples collected during both heating and cooling seasons from 20 classrooms (13 portables, 7 in main building) from seven schools within two school districts. Data reported reflect school wkly integrated averages, Monday AM to Friday PM, including both school hrs and overnight.				
Subramanian et al. (2000)	2 yrs	5.0						Samples collected seasonally from six different buildings, multiple indoor sampling locations per building, over 2 yrs.				
Whitmore et al. (2003)	~ 6-8 hrs	1.2×10^1			$1.1 imes 10^1$			Data reported are for Phase II field study where measurements made in 201 classrooms at 67 schools statewide.				
Zhang et al. (1994)	6 days	5.3						Six homes were sampled each afternoon for 6 days.				

Table D.4. Indoor Exposure Data Summaries. Acrolein (Columns continue on next page)

		Study Locatio	n(s)		Study					Source of	Individua Measurem	al Sample aent Range
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	f Detection Frequency	Units	Summary Stats	Minimum	Maximum
Feng and Zhu (2004)	Summary of Ottawa, Canada resi- dential indoor data	Ottawa	ON	Residences	Not given	100 mins	30	0%	µg/m³	Directly from reference	< 2	< 2
Reiss et al. (1995)	Summary of Boston-area residential indoor sam- pling data— winter sam- pling season	Boston	MA	Residences	Winter 1993	24 hrs	14	0%	µg/m³ (converted from ppb)	Directly from reference	< 1 × 10 ⁻¹	< 1 × 10 ⁻¹
	Summary of Boston-area residential indoor sam- pling data— spring sam- pling season	Boston	MA	Residences	Spring 1993	24 hrs	26	0%	μg/m ³ (converted from ppb)	Directly from reference	< 1 × 10 ⁻¹	< 1 × 10 ⁻¹
Sawant et al. (2004)	Summary of Mira Loma res- idential indoor sampling data	Mira Loma	CA	Residences	Sept 2001 –Jan 2002	24 hrs	83	94%	µg/m³	Raw data provided by study authors and stats calculated by Gradient Corp.	< 7.0 × 10 ⁻²	6.9
	Summary of Mira Loma schoolroom indoor sam- pling data	Mira Loma	CA	School rooms, including two porta- ble units	Sept 2001 –Jan 2002	24 hrs	28	86%	µg/m³	Raw data provided by study authors and stats calculated by Gradient Corp.	< 7.0 × 10 ⁻²	2.4
Sheldon et al. (1992b)	Summary of Woodland CA main study res- idential indoor sampling data	Woodland	CA	Residences	May and June 1990	24 hrs	62 VVOC samples	80%	µg/m³	Directly from reference	< 2.0	2.1×10^{1} (P90)
										Та	ble continues	on next page

	Data	Overall A R	rithmetic M lange of Mea	ean and/or ns	Overall N	/ledian and/o Medians	or Range of	_
Source	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Feng and Zhu (2004)								Samples were a subset of samples from 75 randomly selected homes in city of Ottawa.
Reiss et al. (1995)								Four homes were sampled during consecutive 24-hr periods, with multiple sampling locations in the larger residences.
								Nine homes were sampled during consecutive 24-hr periods (including four previously sample during the winter), with multiple sampling loca tions in the larger residences.
Sawant et al. (2004)	6 days	1.4	$6.4 imes 10^{-2}$	3.6	1.7	$6.4 imes 10^{-2}$	² 2.6	Homes sampled over 12 days, with sampling con- ducted in six alternating 24-hr segments. Ranges in average and median concentrations represent ranges in home averages and medians.
	6 days	1.2	$4.8 imes 10^{-1}$	2.1	1.7	$8.0 imes 10^{-2}$	2 2.1	School rooms sampled over 12 days, with sam- pling conducted in six alternating 24-hr seg- ments. Sampling was not conducted in one school room due to logistical constraints. Range in average and median concentrations represent ranges in classroom averages and medians.
Sheldon et al. (1992b)	24 hrs				4.1			Monitoring conducted during one 24-hr period in a single season for a probability sample of 128 households in Woodland CA. Data provided are descriptive statistics—ARB report also provides weighted descriptive statistics representing the estimated 15,008 permanent residences in Wood land target area at time of study.

Data Source Description (ity or County State (2004) Location (ity or County State State (2004) Interview (ity or County State State (2004) Description (ity or County State State (2004) Interview (ity or County State (2004) Minimum (ity or County State (2004) Minimum (ity or County State (2004) Minifunction (2004) Minimum (ity or Co			Study Locatio	on(s)		Study					Source of	Individua Measurem	l Sample ent Range
Adgene et al. (2004a)Minnesota phase index maryStatewideMN Residences sept 1997 0 days 282 100% pg/m^3 Directly role 1.4 1.4 Adgene et al. (2004b)Minnesota rine maryStatewideMN Residences Sept 1997 6 days 101 100% pg/m^3 Directly role 1.4 1.4 Adgete et al. (2004b)Minnesota rine summaryMinnesotalis maryMN Schools $4/9/10_{-0}$ 5 days 47 90.5% pg/m^3 Directly reference 1.4 1.4 Adgete et al. (2004b)Minnesotalis summaryMN Schools $4/9/10_{-0}$ 5 days 47 90.5% pg/m^3 Directly reference 1.4 1.4 Adgete et al. (2004b)Minnesotalis summaryMN Schools $1/24/00_{-}$ 5 days 47 90.5% pg/m^3 Directly reference 1.4 Minnesotalis summaryMinnesotalis MN Residences $1/24/00_{-}$ 5 days 39 77.1% pg/m^3 Directly reference 1.4 Minnesotalis summaryMinnesotalis MN Residences $1/24/00_{-}$ 2 days 38 90% pg/m^3 Directly reference 1.4 Minnesotalis summaryMinnesotalis MN Residences $1/24/00_{-}$ 2 days 93 100% pg/m^3 Directly reference 1.4 Clayton et al. summaryMinnesotalis MovingMN Residences $1/24/00_{-}$ 2 days 93 100% <	Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Adgeto et al. (2004b)Minneapolis spring indoor spring indoor spring indoor sheed at summaryMNSchools sf/12/00 6 days101100% 100% pg/m^3 Directly rform reference1.4Adgeto et al. (2004b)Minneapolis spring indoor spring indoor shehol data summaryMNSchools sf/12/00 5 days 47 90.5% 90.5% pg/m^3 Directly rform reference $1/24/00$ reference $5/12/00$ $5/12/00$ 5 days 39 77.1% 100% pg/m^3 Directly reference $1/24/00$ reference 2 days 88 99% 100% pg/m^3 Directly reference $1/24/00$ reference 2 days 88 99% 100% pg/m^3 Directly reference $1/24/00$ 100% 2 days 88 99% 100% pg/m^3 Directly reference $1/24/00$ 100% 2 days 100% 100% pg/m^3 Directly 100% $1/24/00$ 100% 2 days 100% 100% pg/m^3 Directly 100% $1/24/00$ 100% $1/24/00$ 100% 2 days 100% 100% pg/m^3 Directly 100% $1/24/00$ 100% $1/24/00$ 100% $1/24/00$ 100% 100% 100% $1/24/00$ 100% $1/24/00$ 	Adgate et al. (2004a)	Minnesota screening- phase indoor air data sum- mary	Statewide	MN	Residences	May– Sept 1997	6 days	282	100%	µg/m³	Directly from reference	1.4	1.3×10^{1} (P95)
Adgete et al. (2004b)Minneapolis spring indoor school data summaryMin schools 5/12/00Min Schools 5/12/00 $\frac{1}{2}/4/00-5$ 5 days 47 90.5% 90.5% $µg/m³$ $µg/m³$ Directly from referenceDirectly from referenceMinneapolis summaryMinneapolis manaryMN NSchool st 2/18/00 5 days 2/18/00 39 2 days 77.1% $µg/m³$ $µg/m³$ Directly from referenceDirectly 		Minnesota intensive- phase indoor air data sum- mary	Statewide	MN	Residences	May– Sept 1997	6 days	101	100%	µg/m³	Directly from reference	1.4	7.5 (P95)
Minneapolis winter indoor school data summaryMinneapolis MNMNSchool S $1/24/00-$ $2/18/00-$ 5 days3977.1% $\mu g/m^3$ Directly from referenceMinneapolis spring indoor home data summaryMinneapolis Minneapolis winter indoor home data summaryMNResidences $4/9/00-$ $5/12/00-$ 2 days8899% $\mu g/m^3$ Directly from referenceMinneapolis winter indoor home data summaryMinneapolis Minneapolis winter indoor home data summaryMNResidences $1/24/00-$ 	Adgate et al. (2004b)	Minneapolis spring indoor school data summary	Minneapolis	MN	Schools	4/9/00– 5/12/00	5 days	47	90.5%	µg/m³	Directly from reference		1.0 (P90)
Minneapolis spring indoor home data summaryMinneapolis MinneapolisMNResidences $\frac{4}{9}/00-5/12/00$ 2 days8899% $\mu g/m^3$ Directly from referenceMinneapolis winter indoor home data summaryMinneapolis Minee data summaryMinneapolis MinneapolisMNResidences $1/24/00-2/18/00$ 2 days93100% $\mu g/m^3$ Directly from referenceClayton et al. (1999)NHEXAS Region V indoor air data summaryStatewide Mi, MN, WIII. Residences July 1995- May 1997-6 days40299.8% $\mu g/m^3$ Directly from 		Minneapolis winter indoor school data summary	Minneapolis	MN	Schools	1/24/00– 2/18/00	5 days	39	77.1%	μg/m³	Directly from reference		1.6 (P90)
		Minneapolis spring indoor home data summary	Minneapolis	MN	Residences	4/9/00– 5/12/00	2 days	88	99%	μg/m³	Directly from reference		7.2 (P90)
Clayton et al. (1999)NHEXAS Region V indoor air data summaryStatewide IL, N, OH, MI, MN, WIIL, Residences July 1995- May 19976 days 6 days402 99.8%99.8% $\mu g/m^3$ $\mu g/m^3$ Directly from referenceDirectly from reference1.Daisey et al. (1994)Phase I Califor- San Francisco nia healthy building study data summaryCAOffice buildingsJune-Sept 19908 hrs8 hrs $\mu g/m^3$ Directly from reference<1.0 × 10^{-1}		Minneapolis winter indoor home data summary	Minneapolis	MN	Residences	1/24/00- 2/18/00	2 days	93	100%	µg/m³	Directly from reference		6.2 (P90)
Daisey et al. (1994) (1994) Phase I Califor- San Francisco CA Office June–Sept 8 hrs (1994) $\frac{1}{1990}$ Directly $\frac{1.0 \times 10^{-1}}{1000}$ Girman et al. EPA BASE Nationwide US Public Summer 8–10 hrs > 200 81–100% µg/m ³ Directly 6.0×10^{-1} 1. (1999) $\frac{1}{1990}$ $\frac{1}{1995}$ $\frac{1}{1997-98}$ $\frac{1}{1997-98}$	Clayton et al. (1999)	NHEXAS Region V indoor air data summary	Statewide	IL, IN, OH, MI, MN, WI	Residences	July 1995– May 1997	6 days	402	99.8%	μg/m³	Directly from reference		1.3 × 10 ¹ (P90)
	Daisey et al. (1994)	Phase I Califor- nia healthy building study data summary	San Francisco	CA	Office buildings	June–Sept 1990	8 hrs			µg/m³	Directly from reference	< 1.0 × 10 ⁻¹	2.7
	Girman et al. (1999)	EPA BASE study results	Nationwide	US	Public and com- mercial office buildings	Summer 1995– Winter 1997-98	8–10 hrs	> 200	81–100%	µg/m³	Directly from reference	$6.0 imes 10^{-1}$	$1.7 imes 10^1$

 ${\it Table\ continues\ on\ next\ page}$

		Overall A R	rithmetic Me ange of Mear	an and/or 1s	Overall M	edian and/o Medians	or Range of	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Adgate et al. (2004a)	6 days	4.6			3.3			One six-day sample collected from each of 284 res- idences; 2 samples had invalid results for ben- zene. Summary statistics are weighted distributions estimated for more than 42,000 urban and 3,000 nonurban households.
	6 days	3.9			3.1			One six-day sample collected from each of 101 res- idences from the 284 screening-phase residences. Summary statistics are weighted distributions estimated for more than 58,000 urban and 4,000 nonurban households.
Adgate et al. (2004b)	5 wks				$6.0 imes 10^{-1}$			Samples collected from 5 rooms in two schools
	4 wks				$6.0 imes 10^{-1}$			Samples collected from 5 rooms in two schools
	2 days				2.1			A single 2-day sample collected at each study par- ticipant's residence
	2 days				2.2			A single 2-day sample collected at each study par- ticipant's residence
Clayton et al. (1999)	6 days	7.2			4.4			Most households sampled once, but a subset sam- pled up to 3 times.
Daisey et al. (1994)	8 hrs	9.8×10^{-3}	l					Mean concentration provided is geometric mean rather than arithmetic mean. Samples collected from 12 office buildings within a total of 32 areas
Girman et al. (1999)								Samples collected in 56 randomly selected build- ings, with 3 indoor sampling locations per build- ing
								Table continues on next page

		Study Locatio	on(s)		Study					Source of	Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Gordon et al. (1999)	NHEXAS Arizona pilot study indoor air data sum- mary	Statewide	AZ	Residences	1995– 1997	6–7 days	185	49%	µg/m³	Directly from reference	$< 2.4 \times 10^{-1}$	$9.0 imes 10^1$
Mukerjee et al. (1997)	Lower Rio Grande Valley environmental scoping study indoor air data summary— spring sam- pling season	Lower Rio Grande Valley	TX	Residences	Spring 1993	24 hrs	9	100%	µg/m³	Directly from reference		
	Lower Rio Grande Valley environmental scoping study indoor air data summary— summer sam- pling season	Lower Rio Grande Valley	ТХ	Residences	Summer 1994	24 hrs	6	100%	µg/m³	Directly from reference		
Payne-Sturges et al. (2004)	Baltimore indoor air data summary	Baltimore	MD	Residences	Jan 2000– June 2001	3 days	33		µg/m³	Directly from reference		8.34 (P90)
Phillips et al. (2005)	Oklahoma urban air toxics study daytime indoor air data summary	Four Oklahoma Cities	ОК	Residences	Not provided	12 hrs	40		μg/m³	Directly from reference		$1.4 imes 10^1$
	Oklahoma urban air toxics study night- time indoor air data summary	Four Oklahoma Cities	ОК	Residences	Not provided	12 hrs	40		μg/m³	Directly from reference		$1.1 imes 10^2$
Sax et al. (2004)	Summary of TEACH Project LA winter resi- dential indoor data	Los Angeles (South Central)	CA	Residences	Winter 2000 (Feb–Mar)	2 days	40	100%	μg/m³	Directly from reference	1.6	$1.7 imes 10^1$
	Summary of TEACH Project LA fall residen- tial indoor data	Los Angeles (South Central)	CA	Residences	Fall 2000 (Sept–Oct)	2 days	32	100%	µg/m³	Directly from reference	1.0	6.3

Table D.5. Indo	or Exposure Data	Summarie	es (Continued). Benzene	(Columns co	ontinued from previous	page)
		Overall A R	rithmetic Mean and/or ange of Means	Overall N	fedian and/or Range of Medians	
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum Maximum	Overall	Minimum Maximum	Notes
Gordon et al. (1999)	6–7 days			1.3		Samples from ~ 170 homes.
Mukerjee et al. (1997)	3 wks			2.4		Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
	10 days			2.4		Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
Payne-Sturges et al. (2004)	3 days	3.7		2.5		One 3-day sample collected from 33 different residences.
Phillips et al. (2005)	12 hrs			$6.2 imes10^{-1}$	1	One 12-hr daytime sample collected from 37 dif- ferent residences with 3 residences sampled on two occasions.
	12 hrs			1.2		One 12-hr nighttime sample collected from 37 dif- ferent residences with 3 residences sampled on two occasions.
Sax et al. (2004)) 2 days	4.9		4.3		One 2-day sample collected at each study participant residence.
Sax et al. (2004)	2 days	2.5		2.3		One 2-day sample collected at each study participant residence.
						Table continues on next page

			on(s)		Study					Source of	Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Sax et al. (2004); Kinney et al. (2002)	Summary of TEACH Project NYC summer residential indoor data	New York	NY	Residences	Summer 1999 (June– Aug)	2 days	30	38%	µg/m³	Directly from reference	1.5	6.3
	Summary of TEACH Project NYC winter residential indoor data	New York	NY	Residences	Winter 1999 (Feb–Apr)	2 days	36	100%	µg/m³	Directly from reference	1.7	$3.9 imes 10^1$
Sexton et al. (2004)	Minneapolis- St Paul indoor air data sum- mary	Minneapolis- St Paul	MN	Residences	Apr–Nov 1999	2 days	292	99.7%	µg/m³	Directly from reference		1.5 × 10 ¹ (P90)
Sheldon et al. (1992b)	Summary of Woodland CA main study res- idential indoor sampling data	Woodland	CA	Residences	May and June 1990	24 hrs	104 VOC samples	98%	μg/m³	Directly from reference	$< 3.8 \times 10^{-1}$	8.3 (P90)
Shendell et al. (2004)	Summary of Los Angeles County porta- ble and tradi- tional classroom indoor sam- pling data	Los Angeles	CA	Portable and tradi- tional school classrooms	June 2000–June 2001	5 days			µg/m³	Directly from reference	$7.0 imes 10^{-1}$	3.4
Van Winkle and Scheff (2001)	Southeast Chicago indoor air data sum- mary	Chicago	IL	Residences	June 1994–Apr 1995	24 hrs	48	100%	µg/m³	Directly from reference	1.3	$3.4 imes 10^1$
Whitmore et al. (2003)	Summary of California portable class- rooms study Project Phase II indoor sam- pling data	Statewide	СА	Portable and tradi- tional school classrooms	Oct 2001 – Feb 2002	~ 6–8 hrs	73	63.7%	µg/m³ (converted from ppb)	Directly from reference	< 2	4.1 (P95)

Table D.5. Indoc	or Exposure Data	Summarie	es (Continued). Benzene	(Columns co	ontinued from previous	page)
		Overall A R	rithmetic Mean and/or ange of Means	Overall N	fedian and/or Range of Medians	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Minimum Maximum	Overall	Minimum Maximum	Notes
Sax et al. (2004); Kinney et al. (2002)	2 days	1.7		1.5		One 2-day sample collected at each study participant residence.
	2 days	5.3		3.6		One 2-day sample collected at each study participant residence.
Sexton et al. (2004)	2 days	5.8			1.9	Samples collected over 3 seasons from residences of 71 study participants. Authors note that a man- ufacturing plant is located near one of neighbor- hoods (East St Paul).
Sheldon et al. (1992b)	24 hrs			2.2		Monitoring conducted during one 24-hr period in a single season for a probability sample of 128 households in Woodland CA. Data provided are descriptive statistics—ARB report also provides weighted descriptive statistics representing the estimated 15,008 permanent residences in Wood- land target area at time of study.
Shendell et al. (2004)						Samples collected during both heating and cooling seasons from 20 classrooms (13 portables, 7 in main building) from seven schools within two school districts. Data reported reflect school wkly integrated averages, Monday AM to Friday PM, including both school hrs and overnight.
Van Winkle and Scheff (2001)	10 months	4.1		2.9		Ten homes monitored on either quarterly or monthly basis for 10-month period. Southeast Chicago study area within heavily industrialized area with many known air toxic emission source types (including coke plants, manufacturing facilities, municipal solid waste landfills, on- road vehicles, etc.).
Whitmore et al. (2003)	~ 6–8 hrs	1.8		1.1		Data reported are for VOC samples collected in subset of the 201 classrooms at 67 schools included in Phase II field study.

Table D.6. Indoor Exposure Data Summaries. 1,3-Butadiene (Columns continue on next page)

		Study Locatio	on(s)		Study					Source of	Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Gordon et al. (1999)	NHEXAS Arizona pilot study indoor air data sum- mary	Statewide	AZ	Residences	1995–1997	6–7 days	24	4%	μg/m³	Directly from reference	$< 3.8 \times 10^{-1}$	$6.0 imes 10^{-1}$
Mukerjee et al. (1997)	Lower Rio Grande Valley environmental scoping study indoor air data summary— spring sam- pling season	Lower Rio Grande Valley	TX	Residences	Spring 1993	24 hrs	9	67%	µg/m³	Directly from reference		
	Lower Rio Grande Valley environmental scoping study indoor air data summary— summer sam- pling season	Lower Rio Grande Valley	ТХ	Residences	Summer 1994	24 hrs	6	17%	µg/m³	Directly from reference		
Sax et al. (2004)	Summary of TEACH Project LA winter resi- dential indoor data	Los Angeles (South Central)	CA	Residences	Winter 2000 (Feb–Mar)	2 days	40	60%	μg/m³	Directly from reference	< 6.0 × 10 ⁻²	1.8
	Summary of TEACH Project LA fall residen- tial indoor data	Los Angeles (South Central)	CA	Residences	Fall 2000 (Sept–Oct)	2 days	32	38%	µg/m³	Directly from reference	$< 6.0 imes 10^{-2}$	1.5
Sax et al. (2004); Kinney et al. (2002)	Summary of TEACH Project NYC summer residential indoor data	New York	NY	Residences	Summer 1999 (June– Aug)	2 days	30	44%	µg/m³	Directly from reference	$< 6.0 \times 10^{-2}$	$1.2 imes 10^1$
	Summary of TEACH Project NYC winter residential indoor data	New York	NY	Residences	Winter 1999 (Feb–Apr)	2 days	36	64%	μg/m³	Directly from reference	$< 6.0 imes 10^{-2}$	5.8
Sheldon et al. (1992b)	Summary of Woodland CA main study res- idential indoor sampling data	Woodland	СА	Residences	May and June 1990	24 hrs	62 VVOC samples	9.8%	µg/m³	Directly from reference	< 1.2	$1.0 imes 10^1$
Van Winkle and Scheff (2001)	Southeast Chicago indoor air data summary	Chicago	IL	Residences	June 1994–Apr 1995	24 hrs	48	81%	µg/m³	Directly from reference	< LOD	2.5

	Data	Overall A Ra	rithmetic Mean and/or ange of Means	Overall Me	dian and/or Ran Medians	ge of	
Source	Averaging Period	Overall	Minimum Maximum	Overall	Minimum Max	ximum	Notes
Gordon et al. (1999)	6–7 days			$< 3.8 \times 10^{-1}$			Samples from subset of ~ 170 homes included in pilot study VOC sampling.
Mukerjee et al. (1997)	3 wks			$8.0 imes 10^{-1}$			Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
	10 days			1.4			Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
Sax et al. (2004)	2 days	$5.0 imes 10^{-1}$		$5.0 imes 10^{-1}$			One 2-day sample collected at each study participan residence.
	2 days	$2.0 imes 10^{-1}$		< 6.0 × 10 ⁻²			One 2-day sample collected at each study participan residence.
Sax et al. (2004); Kinney et al. (2002)	2 days	1.2		< 6.0 × 10 ⁻²			One 2-day sample collected at each study participan residence.
	2 days	1.0		$7.0 imes 10^{-1}$			One 2-day sample collected at each study participan residence.
Sheldon et al. (1992b)	24 hrs	4.7					Monitoring conducted during one 24-hr period in a single season for a probability sample of 128 house holds in Woodland CA. Data provided are descrip tive statistics—ARB report also provides weighted descriptive statistics representing the estimated 15,008 permanent residences in the Woodland tar- get area at time of study.
Van Winkle and Scheff (2001)	10 months	$4.2 imes 10^{-1}$		$2.6 imes 10^{-1}$			Ten homes monitored on either quarterly or monthly basis for 10-month period. Southeast Chicago study area within heavily industrialized area with many known air toxic emission source types (including coke plants, manufacturing facilities, municipal solid waste landfills, on-road vehicles, etc.).

Table D.7. Indoor Exposure Data Summaries. Formaldehyde (Columns continue on next page)

	-			•								
	Study I		on(s)		Study					Source of	Individua Measurem	ll Sample ent Range
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Feng and Zhu (2004)	Summary of Ottawa, Canada residential indoor data	Ottawa	ON	Residences	Not given	100 mins	30	100%	µg/m³	Directly from reference	5.8	$8.5 imes 10^1$
Fortmann et al. (2001)	Summary of residential cooking experimental data	Rohnert Park	CA	Test House	Feb 2000	1 hr 30 mins– 5 hrs 8 mins	6	100%	µg/m³	Directly from reference	$3.7 imes 10^1$	$4.2 imes 10^2$
Gordon et al. (1999)	NHEXAS Arizona pilot study indoor air data summary	Statewide	AZ	Residences	1995– 1997	6–7 days	189	69%	µg/m³	Directly from reference	$< 1.2 \times 10^{1}$	$4.1 imes 10^2$
Reiss et al. (1995)	Summary of Boston-area residential indoor sam- pling data	Boston	MA	Residences	Winter 1993	24 hrs	14	100%	µg/m³ (converted from ppb)	Directly from reference	7.4	$2.0 imes 10^1$
	Summary of Boston-area residential indoor sam- pling data— spring sam- pling season	Boston	MA	Residences	Spring 1993	24 hrs	26	100%	μg/m³ (converted from ppb)	Directly from reference	7.3	$6.6 imes 10^1$
Sawant et al. (2004)	Summary of Mira Loma residential indoor sampling data	Mira Loma	СА	Residences	Sept 2001 –Jan 2002	24 hrs	83	100%	μg/m³	Raw data provided by study authors and stats calculated by Gradient Corp.	1.5	$4.6 imes10^1$
	Summary of Mira Loma schoolroom indoor sampling data	Mira Loma	CA	School rooms, including two portable units	Sept 2001 –Jan 2002	24 hrs	28	100%	μg/m³	Raw data provided by study authors and stats calculated by Gradient Corp.	7.7	$2.2 imes10^1$
Sax et al. (2004)	Summary of TEACH Project LA winter resi- dential indoor data	Los Angeles (South Central)	CA	Residences	Winter 2000 (Feb–Mar)	2 days	40	100%	μg/m³	Directly from reference	7.9	$5.9 imes10^1$
											Table continue	es on next page

	Data	Overall A R	rithmetic M ange of Mea	ean and/or ns	Overall M	ledian and/o Medians	or Range of			
Source	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes		
Feng and Zhu (2004)	100 mins	$2.8 imes 10^1$						Samples were a subset of samples from 75 ran- domly selected homes in the city of Ottawa.		
Fortmann et al. (2001)								Indoor measurements conducted in kitchen of res- idential house where 32 cooking tests were con- ducted for gas range, electric range, and microwave, including frying foods, broiling foods, cooking meat in the oven, and oven-clean- ing. Aldehyde measurements made in only a sub- set of cooking tests.		
Gordon et al. (1999)	6-7 days				$2.1 imes 10^1$			Samples from ~ 170 homes.		
Reiss et al. (1995)	48 hrs	$1.4 imes 10^1$						Four homes were sampled during consecutive 24- hr periods, with multiple sampling locations in the larger residences.		
	48 hrs	$2.0 imes 10^1$						Nine homes were sampled during consecutive 24- hr periods (including four previously sampled during the winter), with multiple sampling loca- tions in the larger residences.		
Sawant et al. (2004)	6 days	1.6×10^{1}	1.5	$3.5 imes 10^1$	$1.5 imes 10^1$	1.5	$3.7 imes 10^1$	Homes sampled over 12 days, with sampling con- ducted in six alternating 24-hr segments. Ranges in average and median concentrations represent ranges in home averages and medians.		
	6 days	$1.5 imes 10^1$	$1.1 imes 10^1$	$2.0 imes 10^1$	$1.4 imes 10^1$	$1.1 imes 10^1$	$2.0 imes 10^1$	School rooms sampled over 12 days, with sam- pling conducted in six alternating 24-hr seg- ments. Sampling was not conducted in one of the school rooms because of logistical constraints. Ranges in average and median concentrations represent ranges in classroom averages and medi- ans.		
Sax et al. (2004)	2 days	$2.1 imes 10^1$			$1.8 imes 10^1$			One 2-day sample collected at each study participant residence.		
								Table continues on next page		

Table D.7. Indoor Exposure Data Summaries (Continued). Formaldehyde (Columns continued from previous page)

Individual Sample Study Location(s) Measurement Range Study Source of Data Location Time Sample Number of Detection Summary Source Description City or County State Type Period Duration Samples Frequency Units Stats Minimum Maximum Sax et al. Summary of Los Angeles CA Residences Fall 2000 2 days 33 100% $\mu g/m^3$ Directly 8.2 $3.2 imes 10^1$ TEACH Project LA fall (2004)(South (Sept-Oct) from Central) reference residential indoor data $5.1 imes 10^1$ 100% $\mu g/m^{\scriptscriptstyle 3}$ 5.8 Sax et al. Summary of New York NY Residences Summer 2 days 41 Directly TEACH Project (2004); Kin-1999 from ney et al. (2002) NYC (Junereference summer Aug) residential indoor data Summary of New York NY Residences Winter 2 days 37 100% µg/m³ Directly 5.2 $2.2 imes 10^1$ TEACH Project 1999 from NYC winter (Feb-Apr) reference residential indoor data Shendell et al. Los Angeles 1.3×10^{1} $5.5 imes 10^1$ Summary of Los Angeles CA Portable 5 days µg/m³ Directly Iune (2004) 2000from and traditional June 2001 County reference portable and school traditional classrooms classroom indoor sampling data IA, NE 23 Subramanian Summary of Urban areas Large Nov 1996-8 hrs $\mu g/m^3$ Directly et al. (2000) Oct 1998 (converted Midwestern office measurefrom MN buildings US large office ment from ppb) reference building periods indoor sampling data $2.9 imes 10^1$ Oct 2001 ~ 6-8 hrs 199 100% Whitmore et al. Statewide CA Portable Summary of µg/m³ Directly California (P95) (2003)and (converted to Feb from traditional Portable 2002 from ppb) reference Classrooms school Study Project Phase II indoor classrooms sampling data $7.6 imes10^1$ Summary of Statewide CA Portable Spring Primarily 911 97% $\mu g/m^3$ Directly < 7.4 (P95) California and 2001 7-10 davs (converted from Portable traditional reference from ppb) Classrooms Study Project school classrooms Phase I indoor sampling data Zhang et al. (1994) $3.3 imes 10^1$ $1.3 imes 10^2$ NJ Residences Summer 2.5-3 hrs 100% Summary of Central NJ 36 µg/m³ Directly Suburban (converted 1992 from New Jersey from ppb) reference residential indoor sampling data

Table D.7. Indoor Exposure Data Summaries (Continued). Formaldehyde (Columns continue on next page)

		Overall A R	rithmetic Mean and/or ange of Means	Overall M	ledian and/or Range of Medians	
Source	Data Averaging Period	Overall	Minimum Maximum	Overall	Minimum Maximum	- Notes
Sax et al. (2004)	2 days	$1.6 imes 10^1$		$1.5 imes 10^1$		One 2-day sample collected at each study participant residence.
Sax et al. (2004); Kinney et al. (2002)	2 days	$2.1 imes 10^1$		$1.9 imes 10^1$		One 2-day sample collected at each study participant residence.
	2 days	1.2×10^1		$1.2 imes 10^1$		One 2-day sample collected at each study participant residence.
Shendell et al. (2004)	School wk averaged over sampling during both cooling and heating sea- sons	2.2×10^1		$2.0 imes 10^1$		Samples collected during both heating and cooling seasons from 20 classrooms (13 portables, 7 in main building) from seven schools within two school districts. Data reported reflect school wkly integrated averages, Monday AM to Friday PM, including both school hrs and overnight.
Subramanian et al. (2000)	2 yrs	8.6				Samples collected seasonally from six different buildings, multiple indoor sampling locations per building, over 2 yrs.
Whitmore et al. (2003)	~ 6–8 hrs	1.6×10^{1}		$1.5 imes 10^1$		Data reported are for Phase II field study where measurements were made in 201 classrooms at 67 schools statewide.
	Primarily 7–10 days	$3.3 imes 10^1$		$2.7 imes 10^1$		Data reported are for Phase I study component where passive formaldehyde samplers were mailed to schools and valid data were obtained from 911 classrooms (644 portable and 267 tradi- tional). Authors note that passive sampler is a screening method and that it is not intended to be highly accurate and sensitive (i.e., typically within 20–30% of active monitor concentration).
Zhang et al. (1994)	6 days	$6.7 imes 10^1$				Six homes were sampled each afternoon for 6 days.

Table D.8a. Indoor Exposure Data Summaries	5. POM (Total PAH as Surrogate) (Columns continue on next	page)
--	---	-------

		Study Locatio	on(s)	_	Study					Source of	Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Det Samples Fre	etection equency	Units	Summary Stats	Minimum	Maximum
Chuang et al. (1999)	North Carolina low-income housing indoor air data summary—par- ticle- and gas- phase total PAH	Durham and Piedmont	NC	Residences	Primarily Feb–Aug 1995 (2 homes in Feb 1994)	24 hrs	24		ng/m³	Directly from reference	$3.7 imes 10^2$	$9.9 imes 10^3$
Levy et al. (2002)	Urban Boston nonresidential indoor data summary— continuous particle-bound total PAH	Boston	MA	Urban nonresi- dential indoor spaces	June–Aug 2000	Contin- uous	Total of 669 10-min time periods with valid data		ng/m³	Directly from reference		
Naumova et al. (2002)	Elizabeth residential indoor air data summary—par- ticle- (PM _{2.5}) and gas-phase total PAH	Elizabeth	NJ	Urban	June 1999–May 2000	48 hrs	15		ng/m³	Directly from reference	$2.2 imes 10^1$	$3.5 imes 10^2$
	Houston residential indoor air data summary—par- ticle- (PM _{2.5}) and gas-phase total PAH	Houston	TX	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	2.1×10^1	$3.1 imes 10^2$
	Los Angeles residential indoor air data summary—par- ticle- (PM _{2.5}) and gas-phase total PAH	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$1.6 imes 10^1$	$2.2 imes 10^2$

	Data	Overall A R	rithmetic M ange of Mea	ean and/or ins	Overall M	ledian and/o Medians	or Range of	_
Source	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Chuang et al. (1999)	24 hrs	$2.5 imes 10^3$						14 homes were in the inner city, the other 10 were in rural areas. 5 homes had smokers present. Each home was sampled during one 24-hr period
Levy et al. (2002)	~ 12 hrs		5.0	1.2×10^{1}				Average concentration range represents minimum and maximum median concentrations across 6 of the indoor nonresidential microenvironments studied by Levy et al. (including a public library, coffee shop, mall, food court, apartment, and hos- pital; it excludes two transportation microenvi- ronments—subway and bus). Each microenvironment sampled a minimum of 3 times, approximately 4 hrs each time.
Naumova et al. (2002)								One 48-hr sample was collected in each home. All homes were nonsmoking.
								One 48-hr sample was collected in each home. All homes were nonsmoking.
								One 48-hr sample collected in each home. All homes were non-smoking homes.

Table D.8a. Indoor Exposure Data Summaries (Continued). POM (Total PAH as Surrogate) (Columns continued from previous page)

Individual Sample Study Location(s) Measurement Range Study Source of Data Location Time Sample Number of Detection Summary Source Description City or County State Type Period Duration Samples Frequency Units Stats Minimum Maximum NC Residences Primarily Feb-Aug 1995 (2 $1.1 imes 10^{-1}$ Chuang et al. North Carolina Durham and 24 hrs 24 ng/m³ Directly 3.1 (1999)low-income Piedmont from housing indoor reference homes in Feb 1994) air data summary—parti-cle- and gasphase Summary of Rohnert CA Test house Feb 2000 11% Directly < LOD 1.8×10^{1} Fortmann et al. 1 hr 30 9 ng/m³ mins– 5 hrs 8 (2001)residential Park from cooking experi-mental data reference mins particle-(PM₁₀) and gas-phase Lower Rio Grande Valley ng/m³ Mukerjee et al. (1997) Lower Rio TX Residences Spring 1993 24 hrs 8 100% Directly Grande from environmental Valley reference scoping study spring season indoor air data summary—par-ticle- (PM_{2.5}) and gas-phase Lower Rio Grande Valley Lower Rio Grande Valley TX Residences Summer 24 hrs 6 17% ng/m³ Directly 1994 from environmental reference scoping study summer season indoor air data summary—parti-cle- (PM_{2.5}) and gas-phase June 1999–May $8.3 imes10^{-3}$ $9.3 imes10^{-2}$ Elizabeth Elizabeth NJ Urban 48 hrs 15 ng/m³ Directly Naumova et al. residential indoor air data (2002)from 2000 reference summarygas-phase $1.4 imes 10^{-2}$ $9.7 imes10^{-2}$ Elizabeth Elizabeth NJ Urban June 1999–May 48 hrs 15 ng/m³ Directly residential from indoor air data 2000 reference summary–par-ticle-phase (PM_{2.5}) ng/m³ Urban 1.9×10^{-3} Houston Houston ΤХ Iune 48 hrs 21 Directly 1.1 residential 1999–May from indoor air data 2000reference summary—gas-phase

Table D.8b. Indoor Exposure Data Summaries. POM: Benz[a]anthracene (Columns continue on next page)

	Data	Overall A R	rithmetic M ange of Mea	lean and/or ans	Overall M	edian and/o Medians	or Range of	
Source	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Chuang et al. (1999)	24 hrs	5.9×10^{-3}	l					14 homes were in the inner city, the other 10 were in rural areas. 5 homes had smokers present. Each home was sampled during one 24-hr period
Fortmann et al. (2001)								Indoor measurements conducted in kitchen of resi dential house where 32 cooking tests were con- ducted for gas range, electric range, and microwave, including frying foods, broiling foods, cooking meat in the oven, and oven-clean- ing. PAH measurements made in subset of cook- ing experiments.
Mukerjee et al. (1997)	3 wks				$4.0 imes 10^{-1}$			Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
	10 days				$2.0 imes 10^{-1}$			Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
Naumova et al. (2002)	48 hrs	$2.7 imes 10^{-2}$	2					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
	48 hrs	$4.4 imes 10^{-2}$	2					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
	48 hrs	2.2×10^{-2}	2					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
								Table continues on next page

Table D.8b. Indoor Exposure Data Summaries (Continued). POM: Benz[a]anthracene (Columns continue on next page)

		Study Locatio	on(s)		Study					Source of	Individual Sample Measurement Range	
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Naumova et al. (2002)	Houston residential indoor air data summary–par- ticle-phase (PM _{2.5})	Houston	TX	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	$1.7 imes 10^{-3}$	$1.7 imes 10^{-1}$
	Los Angeles residential indoor air data summary—gas- phase	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$4.7 imes10^{-3}$	$7.1 imes 10^{-2}$
	Los Angeles residential indoor air data summary—par- ticle-phase (PM _{2.5})	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$2.0 imes 10^{-3}$	$8.9 imes10^{-2}$
Sheldon et al. (1992a)	Riverside, CA PTEAM resi- dential indoor PAH study data summary—par- ticle- and gas- phase	Riverside	CA	Residences	Fall 1990	12 hrs	115 day- time sam- ples; 113 nighttime samples	49.1% for daytime samples; 56.3% for nighttime samples	ng/m³	Directly from reference	< 1.1 × 10 ⁻¹	$\begin{array}{c} 3.0 \times 10^{-1} \\ (P90) \end{array}$
Sheldon et al. (1993)	Data summary for homes with smoking: Northern Cali- fornia residen- tial indoor PAH study—parti- cle- and gas- phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	52		ng/m³	Directly from reference		$1.1 imes 10^1$
	Data summary for homes with smoking/fire- place: Northerm California resi- dential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	11		ng/m³	Directly from reference		5.1
	Data summary for homes with fireplace: Northern California residential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	45		ng/m³	Directly from reference	able continues	2.3

	Data	Overall A R	rithmetic Mean and/or ange of Means	Overall M	edian and/o Medians	or Range of	_
Source	Averaging Period	Overall	Minimum Maximum	Overall	Minimum	Maximum	Notes
Naumova et al. (2002)	48 hrs	1.0×10^{-2}					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
	48 hrs	$1.5 imes 10^{-2}$					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
	48 hrs	$2.0 imes 10^{-2}$					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
Sheldon et al. (1992a)	24 hrs			1.1×10^{-1}			Two 12-hr indoor air samples collected during daytime and overnight periods in subset of 125 homes monitored as part of the PTEAM main study. Data reported are weighted air concentra tions for the combined 24-hr daytime and night time sampling period in each home.
Sheldon et al. (1993)	24 hrs	1.3		$5.8 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	1.1		$6.8 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	4.3×10^{-1}		1.7×10^{-1}			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.

Table D.8b. Indoor Exposure Data Summaries (Continued). POM: Benz[a]anthracene (Columns continue on next page)

	Study Location(s)		_	Study					Source of	Individua Measurem	ll Sample ent Range	
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Sheldon et al. (1993)	Data summary for homes with woodstove: Northern California residential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	54		ng/m³	Directly from reference		7.8
	Data summary for homes with woodstove/ gas heat: Northerm California resi- dential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	22		ng/m³	Directly from reference		8.8×10^{-1}
	Data summary for homes with no source: Northern California residential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	36		ng/m³	Directly from reference		8.9×10^{-1}
	Data summary for homes with gas heat: North- ern California residential indoor PAH study— particle- and gas-phase	Placerville and - Roseville	CA	Residences	Winter 1992	24 hrs	51		ng/m³	Directly from reference		2.0
Van Winkle and Scheff (2001)	Southeast Chi- cago indoor air data sum- mary— particle- and gas-phase	Chicago	IL	Residences	June 1994–Apr 1995	24 hrs	45	7%	ng/m³	Directly from reference	< LOD	$1.4 imes 10^1$
Wilson et al. (2001)	North Carolina child day care center indoor air data summary— particle- and gas-phase	Durham, Chapel Hill, Raleigh	NC	Day care centers	Spring 1997	48 hrs			ng/m³	Directly from reference	$7.3 imes 10^{-2}$	$1.5 imes 10^{-1}$
										Т	able continues	s on next page

	Data	Overall Arithmetic Mean and/o Range of Means	or Overall Median and/or Range of Medians	F
Source	Averaging Period	Overall Minimum Maximu	m Overall Minimum Maximum	n Notes
Sheldon et al. (1993)	24 hrs	5.5×10^{-1}	2.0×10^{-1}	One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	$3.2 imes 10^{-1}$	$2.6 imes10^{-1}$	One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	$1.7 imes 10^{-1}$	1.1×10^{-1}	One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	$3.2 imes 10^{-1}$	1.0×10^{-1}	One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
Van Winkle and Scheff (2001)	10 months	$5.6 imes10^{-1}$	< LOD	Ten homes monitored on either quarterly or monthly basis for 10-month period. Southeast Chicago study area within heavily industrialized area with many known air toxic emission source types (including coke plants, manufacturing facilities, municipal solid waste landfills, on- road vehicles, etc.).
Wilson et al. (2001)	48 hrs	1.1×10^{-1}		Ten day care centers included in study, with one 48-hr sampling session per center.

Individual Sample Study Location(s) Measurement Range Study Source of Sample Number of Detection Data Location Time Summary Source Description City or County State Type Period Duration Samples Frequency Units Stats Minimum Maximum Primarily Feb–Aug 1995 (2 1.7×10^{-1} North Carolina Durham and NC Residences ng/m³ Directly 5.8 Chuang et al. 24 hrs 24 from (1999)low-income Piedmont housing indoor air data reference homes in summary-Feb 1994) particle- and gas-phase BbF+BkF Lower Rio Grande Valley environmental Mukerjee et al. TX Residences $24 \ hrs$ 100% Lower Spring 8 ng/m³ Directly Rio Grande Valley (1997) 1993 from reference scoping study spring season indoor air data summary—par-ticle- (PM_{2.5}) and gas-phase BbF Lower Rio Grande Valley environmental Lower TX Residences Summer 24 hrs 6 17%ng/m³ Directly Rio Grande Valley 1994 from reference scoping study summer season indoor air data summarvparticle-(PM_{2.5}) and gas-phase BbF Lower Rio Grande Valley Lower Rio Grande TX Residences Spring 1993 24 hrs 8 100% ng/m³ Directly from reference environmental Valley scoping study spring season indoor air data summary—par-ticle- (PM_{2.5}) and gas-phase BkF Directly ng/m³ Lower Rio 17% Lower TX Residences Summer 24 hrs 6 Rio Grande Valley Grande Valley from 1994 environmental reference scoping study summer season indoor air data summaryparticle-(PM_{2.5}) and gas-phase BkF Directly $5.0 imes10^{-3}$ $3.1 imes 10^{-2}$ Naumova et al. Elizabeth Elizabeth NJ Urban $48 \ \mathrm{hrs}$ 15 ng/m³ June (2002)residential í999from indoor air data May 2000 reference summarygas-phase BbF+BkF 1.3×10^{-1} 5.7×10^{-1} Elizabeth Elizabeth NJ Urban June $48 \ \mathrm{hrs}$ 15ng/m³ Directly residential 1999 from indoor air data May 2000 reference summary particle-phase (PM_{2.5}) BbF+BkF

Table D.8c. Indoor Exposure Data Summaries. Benzo[b,k]fluoranthene (Columns continue on next page)

	Data	Overall A R	rithmetic M ange of Mea	ean and/or .ns	Overall M	ledian and/o Medians	or Range of	_
Source (<i>Continued</i>)	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Chuang et al. (1999)	24 hrs	1.3						14 homes were in the inner city, the other 10 were in rural areas. 5 homes had smokers present. Each home was sampled during one 24-hr period.
Mukerjee et al. (1997)	3 wks				$3.0 imes 10^{-1}$			Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
	10 days				$2.0 imes 10^{-1}$			Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
	3 wks				3.0×10^{-1}			Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
	10 days				$2.0 imes 10^{-1}$			Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
Naumova et al. (2002)	48 hrs	8.9×10^{-3}	3					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
	48 hrs	2.9×10^{-2}	L					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
								Table continues on next page

Table D.8c. Indoor Exposure Data Summaries (Continued). Benzo[b,k]fluoranthene (Columns continue on next page)

		Study Location			Study					Source of	Individua Measureme	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Naumova et al. (2002)	Houston residential indoor air data summary— gas-phase BbF+BkF	Houston	TX	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	$6.1 imes 10^{-3}$	1.0×10^{-1}
	Houston residential indoor air data summary— particle-phase (PM _{2,5}) BbF+BkF	Houston	ΤX	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	2.1×10^{-2}	2.9
	Los Angeles residential indoor air data summary—gas- phase BbF+BkF	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$6.0 imes 10^{-3}$	$3.4 imes 10^{-2}$
	Los Angeles Residential Indoor Air Data summary—Par- ticle-Phase (PM _{2.5}) BbF+BkF	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	2.0×10^{-2}	$7.4 imes 10^{-1}$
Sheldon et al. (1992a)	Riverside, CA PTEAM resi- dential indoor PAH study data summary— particle- and gas-phase BkF	Riverside	СА	Residences	Fall 1990	12 hrs	115 day- time sam- ples; 113 nighttime samples	39.4% for daytime samples; 33.9% for nighttime samples	ng/m³	Directly from reference	$< 8.0 imes 10^{-2}$	3.5
Sheldon et al. (1993)	Data summary for homes with smoking: Northern Cali- fornia residen- tial indoor PAH study—parti- cle- and gas- phase BbF and BkF	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	52		ng/m³	Directly from reference		$3.6 imes10^1$
	Data summary for homes with smoking/fire- place: Northern California resi- dential indoor PAH study— particle- and gas-phase BbF and BkF	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	11		ng/m³	Directly from reference		$1.5 imes 10^1$
	Data	Overall Ar Ra	ithmetic M nge of Mea	ean and/or ins	Overall M	fedian and/o Medians	or Range of					
--------------------------------	---------------------	---------------------	--------------------------	-------------------	---------------------	-------------------------	-------------	---				
Source (<i>Continued</i>)	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	- Notes				
Naumova et al. (2002)	48 hrs	$2.5 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.				
	48 hrs	$9.6 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.				
	48 hrs	$1.3 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.				
	48 hrs	$1.5 imes 10^{-1}$						Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking homes.				
Sheldon et al. (1992a)	24 hrs	1.7			$6.2 imes 10^{-1}$	I		Two 12-hr indoor air samples collected during daytime and overnight periods in subset of 125 homes monitored as part of the PTEAM main study. Data reported are unweighted air concen- trations for the combined 24-hr daytime and nighttime sampling period in each home.				
Sheldon et al. (1993)	24 hrs	3.7			2.0			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.				
	24 hrs	3.7			2.8			One 24-hr sample collected from each of 280 homes, including homes with a variety of combustion sources including fireplaces, woodstoves, gas heating, and smoking.				

Table D.8c. Indoor Exposure Data Summaries (Continued). Benzo[b,k]fluoranthene (Columns continued from previous page)

Table D.8c. Indoor Exposure Data Summaries (Continued). Benzo[b,k]fluoranthene (Columns continue on next page)

		Study Location	(s)	Study					Source of	Individual Measureme	Sample ent Range
Source	Data Description	City or County S	Locati tate Type	on Time e Period	Sample Duration	Number of D Samples Fr	etection requency (Units	Summary Stats	Minimum	Maximum
Sheldon et al. (1993)	Data summary for homes with fireplace: Northern California residential indoor PAH study— particle- and gas-phase BbF and BkF	Placerville (and Roseville	CA Resider	nces Winter 1992	24 hrs	45	n	ng/m³	Directly from reference		6.4
	Data summary for homes with woodstove: Northern Cali fornia residen- tial indoor PAH study—parti- cle- and gas- phase BbF and BkF	Placerville (and Roseville	CA Resider	nces Winter 1992	24 hrs	54	n	ng/m³	Directly from reference		$2.1 imes 10^1$
	Data summary for homes with woodstove/gas heat: Northern California residential indoor PAH study— particle- and gas-phase BbF and BkF	Placerville (and Roseville	CA Resider	nces Winter 1992	24 hrs	22	n	ng/m³	Directly from reference		4.4
	Data summary for homes with no source: Northern California residential indoor PAH study—parti- cle- and gas- phase BF and BkF	Placerville (and Roseville	CA Resider	nces Winter 1992	24 hrs	36	n	ng/m³	Directly from reference		5.9
	Data summary for homes with gas heat: Northern California residential indoor PAH study— particle- and gas-phase BbF and BkF	Placerville (and Roseville	CA Resider	nces Winter 1992	24 hrs	51	n	ng/m³	Directly from reference		8.3
Van Winkle and Scheff (2001)	Southeast Chicago indoor air data sum- mary— particle- and gas-phase BbF	Chicago	IL Resider	nces June 1994– Apr 1995	24 hrs	45	2% n	ng/m³	Directly from reference	< LOD	3.0
										Table continue	es on next page

	Data	Overall A R	rithmetic Me ange of Mear	ean and/or ns	Overall M	edian and/o Medians	or Range of	_
Source (<i>Continued</i>)	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Sheldon et al. (1993)	24 hrs	1.6			$8.4 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	2.0			7.9×10^{-1}			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	1.5			1.3			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	8.1×10^{-1}			$5.6 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	1.5			$6.4 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
Van Winkle and Scheff (2001)	10 months	$6.7 imes 10^{-2}$			< LOD			Ten homes monitored on either quarterly or monthly basis for 10-month period. Southeast Chicago study area within heavily industrialized area with many known air toxic emission source types (including coke plants, manufacturing facilities, municipal solid waste landfills, on- road vehicles, etc.).
								Table continues on next page

Dete		Study Locatio	on(s)		Study					Source of	Individual Sample Measurement Range	
Source	Data Description	City or County	[,] State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Van Winkle and Scheff (2001)	Southeast Chicago indoor air data summary— particle- and gas-phase BkF	Chicago	IL	Residences	June 1994– Apr 1995	24 hrs	45	2%	ng/m³	Directly from reference	< LOD	3.0
Wilson et al. (2001)	North Carolina child day care center indoor air data summary— particle- and gas-phase BbF	Durham, Chapel Hill, Raleigh	NC	Day care centers	Spring 1997	48 hrs			ng/m³	Directly from reference	< 4 × 10 ⁻²	1.7×10^{-1}
	North Carolina child day care center indoor air data summary— particle- and gas-phase BkF	Durham, Chapel Hill, Raleigh	NC	Day care centers	Spring 1997	48 hrs			ng/m³	Directly from reference	$< 4 \times 10^{-2}$	1.1×10^{-1}
											Table continu	es on next page

Table D.8c. Indoor Exposure Data Summaries (Continued). Benzo[b,k]fluoranthene (Columns continue on next page)

	Data	Overall Arithmetic Mean and/or Range of Means	Overall Median and/or Range of Medians	
Source (<i>Continued</i>)	Averaging Period	Overall Minimum Maximum	Overall Minimum Maximum	Notes
Van Winkle and Scheff (2001)	10 months	$6.7 imes 10^{-2}$	< LOD	Ten homes monitored on either quarterly or monthly basis for 10-month period. Southeast Chicago study area within heavily industrialized area with many known air toxic emission source types (including coke plants, manufacturing facilities, municipal solid waste landfills, on- road vehicles, etc.).
Wilson et al. (2001)	48 hrs	1.3×10^{-1}		Ten day care centers included in study, with one 48-hr sampling session per center.
	48 hrs	$8.1 imes 10^{-2}$		Ten day care centers included in study, with one 48-hr sampling session per center.

Table D.8c. Indoor Exposure Data Summaries (Continued). Benzo[b,k]fluoranthene (Columns continued from previous page)

Table D.8d. Indoor Exposure Data Summaries. Benzo[a]pyrene (Columns continue on next page) Individual Sample Study Location(s) Measurement Range Study Source of Data City or Location Time Sample Number of Detection Summary Source Description County State Type Period Duration Samples Frequency Units Stats Minimum Maximum $5.0 imes10^{-2}$ Chuang et al. (1999) North Carolina Durham NC Residences Primarily Feb–Aug $24 \ \mathrm{hrs}$ 24 ng/m³ Directly from 4.5low-income and housing indoor Piedmont 1995 (2 reference air data summaryhomes in Feb 1994) particle- and gas-phase Fortmann et al. (2001) Summary of residential Test house Feb 2000 2.1×10^{1} Rohnert CA 1 hr 30 9 56% ng/m³ Directly < LOD mins to 5 Park from cooking hrs 8 mins reference experimental data particle-(PM₁₀) and gas-phase Mukerjee et al. (1997) Lower Rio Grande Valley Spring 1993 $24 \ hrs$ 88% Lower TX Residences 8 ng/m³ Directly Rio Grande from environmental Valley reference scoping study spring season indoor air data summary—par-ticle- (PM_{2.5}) and gas-phase TX Residences Summer $24 \ hrs$ 33% Lower Rio Grande Valley 6 ng/m³ Directly Lower Rio Grande 1994 from environmental Valley reference scoping study summer season indoor air data summaryparticle-(PM_{2.5}) and gas-phase ng/m³ $< \sim 3 \times 10^{-3} < \sim 3 \times 10^{-3}$ Naumova et al. Elizabeth resi-Elizabeth Urban 48 hrs 0% Directly NJ 15 June (2002) dential indoor 1999–May from air data 2000reference summary gas-phase $5.5 imes10^{-3}$ $2.5 imes 10^{-1}$ Elizabeth resi-Elizabeth NJ $48 \ hrs$ Urban 15 ng/m³ Directly June dential indoor 1999–May 2000 from reference air data summary particle-phase (PM_{2.5}) $4.0 imes10^{-3}$ $1.0 imes10^{-2}$ Houston resi-Houston ТΧ Urban June $48 \ hrs$ 21ng/m³ Directly 1999-May dential indoor from 2000 air data reference summary gas-phase

		Overall Arithmetic	Mean and/or	Overa	all Median a	and/or	
Source	Data Averaging	Kange of M	eans	Ra	nge of Medi	lans	-
(Continued)	Period	Overall Minimu	n Maximum	Overall	Minimum	Maximum	Notes
Chuang et al. (1999)	24 hrs	$7.0 imes 10^{-1}$					14 homes were in the inner city, the other 10 were in rural areas. 5 homes had smokers present. Each home was sampled during one 24-hr period.
Fortmann et al. (2001)							Indoor measurements conducted in kitchen of res- idential house where 32 cooking tests were con- ducted for cooking with gas range, electric range, and microwave, including frying foods, broiling foods, cooking meat in the oven, and oven-clean- ing. PAH measurements made in subset of cook- ing experiments.
Mukerjee et al. (1997)	3 wks			$4.0 imes 10^{-1}$			Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
	10 days			$2.0 imes 10^{-1}$			Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
Naumova et al. (2002)	48 hrs	<~3 ×10 ⁻³					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
	48 hrs	1.1×10^{-1}					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
	48 hrs	$7.3 imes 10^{-3}$					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
							Table continues on next page

Table D.8d. Indoor Exposure Data Summaries (Continued). Benzo[a]pyrene (Columns continue on next page)

		Study Locat	tion(s)								Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Naumova et al. (2002)	Houston residential indoor air data summary— particle-phase (PM _{2.5})	Houston	ТХ	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	$2.7 imes 10^{-3}$	1.0
	Los Angeles residential indoor air data summary— gas-phase	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$3.7 imes 10^{-3}$	$7.7 imes 10^{-3}$
	Los Angeles residential indoor air data summary— particle-phase (PM _{2.5})	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$1.0 imes 10^{-2}$	$5.6 imes 10^{-1}$
Sheldon et al. (1992a)	Riverside, CA PTEAM resi- dential indoor PAH study data summary— particle- and gas-phase	Riverside	CA	Residences	Fall 1990	12 hrs	115 daytime samples; 113 night- time sam- ples	68.1% for daytime samples; 75.0% for nighttime samples	ng/m³	Directly from reference	< 8.0 × 10 ⁻²	6.5×10^{-1} (P90)
Sheldon et al. (1993)	Data summary for homes with smoking: Northern California residential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	52		ng/m³	Directly from reference		$2.8 imes 10^1$
	Data summary for homes with smoking/fire- place: Northern California residential indoor PAH study— particle- and gas-phase	Placerville and Roseville	СА	Residences	Winter 1992	24 hrs	11		ng/m³	Directly from reference		8.6
											Table continue	s on next page

	Data	Overall Aı Ra	rithmetic M ange of Mea	ean and/or ns	Overa Ra	all Median a nge of Medi	and/or ians	
Source (<i>Continued</i>)	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Naumova et al. (2002)	48 hrs	$1.8 imes 10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
	48 hrs	$6.0 imes 10^{-3}$						Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
	48 hrs	$6.1 imes10^{-2}$						Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking.
Sheldon et al. (1992a)	24 hrs				1.9×10^{-1}			Two 12-hr indoor air samples collected during daytime and overnight periods in subset of 125 homes monitored as part of the PTEAM main study. Data reported are weighted air concentra- tions for the combined 24-hr daytime and night- time sampling period in each home.
Sheldon et al. (1993)	24 hrs	2.2			1.1			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	2.1			1.3			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
								Table continues on next page

Table D.8d. Indoor Exposure Data Summaries (Continued). Benzo[a]pyrene (Columns continue on next page)

		Study Locat	ion(s)		Q. 1						Individua Measurem	l Sample ent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Sheldon et al. (1993)	Data summary for homes with fireplace: Northern Cali- fornia residen- tial indoor PAH study—parti- cle- and gas- phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	45		ng/m³	Directly from reference		3.4
	Data summary for homes with woodstove: Northern Cali- fornia residen- tial indoor PAH study—parti- cle- and gas- phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	54		ng/m³	Directly from reference		$1.6 imes10^1$
	Data summary for homes with woodstove/gas heat: Northerm California resi- dential indoor PAH study— particle- and gas-phase	Placerville and Roseville	СА	Residences	Winter 1992	24 hrs	22		ng/m³	Directly from reference		2.4
	Data summary for homes with no source: Northern cali- fornia residen- tial indoor PAH sudy—parti- cle- and gas- phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	36		ng/m³	Directly from reference		3.2
	Data summary for homes with gas heat: Northern Cali- fornia residen- tial indoor PAH sudy—parti- cle- and gas- phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	51		ng/m³	Directly from reference		4.8
Van Winkle and Scheff (2001)	Southeast Chi- cago indoor air data summary— particle- and gas-phase	Chicago	IL	Residences	June 1994–Apr 1995	24 hrs	45	4%	ng/m³	Directly from reference	< LOD	3.0
											Table continue	s on next page

Table D.8d. Indoo	or Exposure Da	ata Summar	ies (<i>Continı</i>	ed). Benzo[a	a]pyrene (<i>Coli</i>	umns contin	nued from p	previous page)
	Data	Overall A R	rithmetic M ange of Mea	lean and/or ans	Overa Rai	all Median a nge of Medi	and/or ans	_
Source (<i>Continued</i>)	Averaging Period	Overall	Minimum	Maximum	Overall	Minimum	Maximum	Notes
Sheldon et al. (1993)	24 hrs	1.0			$4.7 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	1.2			$4.1 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	$7.9 imes 10^{-1}$	L		8.3×10^{-1}			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	$4.1 imes 10^{-1}$			2.9×10^{-1}			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	$8.3 imes 10^{-1}$			2.5×10^{-1}			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
Van Winkle and Scheff (2001)	10 months	$9.0 imes 10^{-2}$	2		< LOD			Ten homes monitored on either quarterly or monthly basis for 10-month period. Southeast Chicago study area within heavily industrialized area with many known air toxic emission source types (including coke plants, manufacturing facilities, municipal solid waste landfills, on- road vehicles, etc.).
								Table continues on next page

Table D.8d. Indoor Exposure Data Summaries (Continued). Benzo[a]pyrene (Columns continue on next page)

		Study Loca	tion(s)								Individua Measurem	ıl Sample ıent Range
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Wilson et al. (2001)	North Carolina child day care center indoor air data summary— particle- and gas-phase	Durham, Chapel Hill and Raleigh	NC	Day care centers	Spring 1997	48 hrs			ng/m³	Directly from reference	5.4×10^{-2}	1.6×10^{-1}

Table D.8d. Indo	Fable D.8d. Indoor Exposure Data Summaries (Continued). Benzo[a] pyrene (Columns continued from previous page)												
	Data	Overall Arithmetic Mean and/or Range of Means	Overall Median and/or Range of Medians										
Source (<i>Continued</i>)	Averaging Period	Overall Minimum Maximum	Overall Minimum Maximum	n Notes									
Wilson et al. (2001)	48 hrs	$1.0 imes 10^{-1}$		Ten day care centers included in study, with one 48-hr sampling session per center.									

Table D.8e. Indoor Exposure Data Summaries. Chrysene (Columns continue on next page)

		Study Locatio	on(s)		Study					Source of	Individu Measuren	al Sample nent Range
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Chuang et al. (1999)	North Carolina low-income housing indoor air data summary— particle- and gas-phase	Durham and Piedmont	NC	Residences	Primarily Feb–Aug 1995 (2 homes in Feb 1994)	24 hrs	24		ng/m³	Directly from reference	$3.0 imes 10^{-2}$	3.4
Fortmann et al. (2001)	Summary of residential cooking experi- mental data— particle- (PM ₁₀) and gas-phase	Rohnert Park	CA	Test house	Feb 2000	1 hr 30 mins– 5 hrs 8 mins	9	44%	ng/m³	Directly from reference	< LOD	$1.2 imes 10^1$
Mukerjee et al. (1997)	Lower Rio Grande Valley environmental scoping study spring season indoor air data summary— particle- (PM _{2.5}) and gas-phase	Lower Rio Grande Valley	TX	Residences	Spring 1993	24 hrs	8	38%	ng/m³	Directly from reference		
	Lower Rio Grande Valley environmental scoping study summer sea- son indoor air data summary— particle- (PM _{2,5}) and gas-phase	Lower Rio Grande Valley	TX	Residences	Summer 1994	24 hrs	6	17%	ng/m³	Directly from reference		
Naumova et al. (2002)	Elizabeth residential indoor air data summary—gas- phase	Elizabeth	NJ	Urban	June 1999–May 2000	48 hrs	15		ng/m³	Directly from reference	$2.5 imes 10^{-2}$	$4.0 imes 10^{-1}$
	Elizabeth residential indoor air data summary— particle-phase (PM _{2.5})	Elizabeth	NJ	Urban	June 1999–May 2000	48 hrs	15		ng/m³	Directly from reference	$4.0 imes 10^{-2}$	2.4×10^{-1}
	Houston residential indoor air data summary— gas-phase	Houston	ΤX	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	$5.0 imes 10^{-2}$	1.5
	Houston residential indoor air data summary— particle-phase (PM _{2.5})	Houston	ТХ	Urban	June 1999–May 2000	48 hrs	21		ng/m³	Directly from reference	$1.6 imes 10^{-2}$	$9.6 imes 10^{-1}$
											Table continue	s on next page

		Overall A and/or F	rithmetic Mean Range of Means	Over Ra	all Median a nge of Medi	nd/or ans	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Maxi Minimum mum	Overall	Minimum	Maximum	Notes
Chuang et al. (1999)	24 hrs	8.4×10^{-1}					14 homes were in the inner city, the other 10 were in rural areas. 5 homes had smokers present. Each home was sampled during one 24-hr period.
Fortmann et al. (2001)							Indoor measurements conducted in kitchen of resi- dential house where 32 cooking tests were con- ducted for gas range, electric range, and microwave, including frying foods, broiling foods, cooking meat in the oven, and oven-cleaning. PAH measurements made in subset of cooking experiments.
Mukerjee et al. (1997)	3 wks			$2.0 imes 10^{-1}$			Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
	10 days			$2.0 imes 10^{-1}$			Nine homes were monitored for 3 wks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
Naumova et al. (2002)	48 hrs	$1.0 imes 10^{-1}$					Reported as chrysene + triphenylene; mean concen- tration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were nonsmoking.
	48 hrs	1.1×10^{-1}					Reported as chrysene + triphenylene; mean concen- tration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were nonsmoking.
	48 hrs	$2.7 imes 10^{-1}$					Reported as chrysene + triphenylene; mean concen- tration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were nonsmoking.
	48 hrs	$7.1 imes 10^{-2}$					Reported as chrysene + triphenylene; mean concen- tration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were nonsmoking.
							Table continues on next page

Table D.8e. Indoor Exposure Data Summaries (Continued). Chrysene (Columns continue on next page)

		Study Locatio	on(s)		Study					Source of	Individua Measurem	al Sample aent Range
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Summary Stats	Minimum	Maximum
Naumova et al. (2002)	Los Angeles residential indoor air data summary— gas-phase	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$4.0 imes 10^{-2}$	2.1×10^{-1}
	Los Angeles residential indoor air data summary— particle-phase (PM _{2.5})	Los Angeles	CA	Urban	June 1999–May 2000	48 hrs	19		ng/m³	Directly from reference	$1.6 imes10^{-2}$	1.2×10^{-1}
Sheldon et al. (1992a)	Riverside, CA PTEAM residential indoor PAH study data summary— particle- and gas-phase	Riverside	СА	Residences	Fall 1990	12 hrs	115 day- time samples; 113 night- time sam- ples	80.3% for daytime samples; 84.7% for nighttime samples	ng/m³	Directly from reference	$< 9.0 \times 10^{-2}$	5.8×10^{-1} (P90)
Sheldon et al. (1993)	Data summary for homes with smoking: Northern California residential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	52		ng/m³	Directly from reference		$1.1 imes 10^1$
	Data summary for homes with smoking/fire- place: North- ern California residential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	11		ng/m³	Directly from reference		4.3
	Data summary for homes with fireplace: Northern California residential indoor PAH study—parti- cle- and gas- phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	45		ng/m³	Directly from reference		2.9
	Data Summary for Homes with Woodstove: Northern California residential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	54		ng/m³	Directly from reference		7.6

Table D.8e. Inde	(Continued). Chr	ysene (<i>Colum</i>	ns continue	d from prev	ious page)		
		Overall A and/or F	rithmetic Mean Range of Means	Over Ra	all Median a nge of Medi	and/or ans	
Source (<i>Continued</i>)	Data Averaging Period	l Overall	Maxi Minimum mum	Overall	Minimum	Maximum	Notes
Naumova et al. (2002)	48 hrs	$8.3 imes 10^{-2}$					Reported as chrysene + triphenylene; mean concen- tration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were nonsmoking.
	48 hrs	$5.6 imes 10^{-2}$					Reported as chrysene + triphenylene; mean concen- tration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were nonsmoking.
Sheldon et al. (1992a)	24 hrs			1.8×10^{-1}			Two 12-hr indoor air samples collected during day- time and overnight periods in subset of 125 homes monitored as part of the PTEAM main study. Data reported are weighted air concentrations for the combined 24-hr daytime and nighttime sampling period in each home.
Sheldon et al. (1993)	24 hrs	2.0		9.6×10^{-1}			One 24-hr sample collected from each of 280 homes, including homes with a variety of combustion sources including fireplaces, woodstoves, gas heat- ing, and smoking.
	24 hrs	1.5		1.3			One 24-hr sample collected from each of 280 homes, including homes with a variety of combustion sources including fireplaces, woodstoves, gas heat- ing, and smoking.
	24 hrs	$5.6 imes 10^{-1}$		$2.7 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of combustion sources including fireplaces, woodstoves, gas heat- ing, and smoking.
	24 hrs	$6.1 imes 10^{-1}$		$2.8 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of combustion sources including fireplaces, woodstoves, gas heat- ing, and smoking.

Table D.8e. Indoor Exposure Data Summaries (Continued). Chrysene (Columns continue on next page) Individual Sample Study Location(s) Measurement Range Study Source of Data Location Time Sample Number of Detection Summary Source Description City or County State Type Period Duration Samples Frequency Units Stats Minimum Maximum Placerville Sheldon et al. Data summary CA Residences Winter 24 hrs 22 ng/m³ Directly 1.1 and Roseville for homes with woodstove/gas heat: Northern (1993)1992 from reference California residential indoor PAH study— particle- and gas-phase Directly Data summary Placerville CA Residences Winter 24 hrs 36 ng/m³ 1.0 and Roseville for homes with 1992 from no source: Northern reference California residential indoor PAH study— particle- and gas-phase Placerville 2.5 Data summary CA Residences Winter $24 \ \mathrm{hrs}$ 51 ng/m³ Directly for homes with gas heat: Northern and Roseville 1992 from reference California residential indoor PAH study— particle- and gas-phase Van Winkle Southeast Chicago Residences 24 hrs 45 11% ng/m³ Directly < LOD 3.0 IL June and Scheff (2001) Chicago indoor air data 1994–Apr 1995 from reference summary— particle- and gas-phase Wilson et al. (2001) $6.0 imes 10^{-2}$ $1.5 imes 10^{-1}$ North Carolina NC Spring 1997 Durham, Day $48 \ \mathrm{hrs}$ ng/m³ Directly child day care center indoor Chapel Hill, Raleigh care from centers reference air data summaryparticle- and gas-phase Table continues on next page

		Overall A and/or R	rithmetic Mean ange of Means	Over Ra	all Median a nge of Medi	nd/or ans	_
Source (<i>Continued</i>)	Data Averaging Period	Overall	Maxi Minimum mum	Overall	Minimum	Maximum	Notes
Sheldon et al. (1993)	24 hrs	4.1×10^{-1}		3.5×10^{-1}			One 24-hr sample collected from each of 280 homes, including homes with a variety of combustion sources including fireplaces, woodstoves, gas heat- ing, and smoking.
	24 hrs	2.4×10^{-1}		$1.8 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of combustion sources including fireplaces, woodstoves, gas heat- ing, and smoking.
	24 hrs	4.0×10^{-1}		$1.8 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of combustion sources including fireplaces, woodstoves, gas heating, and smoking.
Van Winkle and Scheff (2001)	10 months	$2.0 imes 10^{-1}$		< LOD			Ten homes monitored on either quarterly or monthly basis for 10-month period. Southeast Chicago study area within heavily industrialized area with many known air toxic emission source types (including coke plants, manufacturing facilities, municipal solid waste landfills, on-road vehicles, etc.).
Wilson et al. (2001)	48 hrs	1.1×10^{-1}					Ten day care centers included in study, with one 48-hr sampling session per center.

Table D.8f. Indoor Exposure Data Summaries. 7,12-Dimethylbenz[a]anthracene (Columns continue on next page)

Data Location Time Sample Number of Detection Summary Source Description City or County State Type Period Duration Samples Frequency Units Stats Minimum Maximur			Study Location(s)		Study					Source of	Individual Sample Measurement Range
	Source	Data Description	City or County State	Location Type	Time Period	Sample Duration	Number of Detec Samples Frequ	ction lency Ur	nits	Summary Stats	Minimum Maximum

No data identified.

Mobile Source Air Toxics, Appendix Tables D.3–D.8g. Indoor Exposure Data Summaries

Table D.8f. Indoor Exposure Data Summaries (Continued). 7,12-Dimethylbenz[a]anthracene (Columns continued from previous page)

	Data	Overall A R	rithmetic Mean and/or ange of Means	Over Ra	all Median and/or nge of Medians		
Source	Averaging Period	Overall	Minimum Maximum	Overall	Minimum Maximum	 Notes	

No data identified.

		Study Location	(s)	_	0 L		NT 1				Individual Samj Ra	ple Measurement nge
Source	Data Description	City or County	State	Location Type	Time Period	Sample Duration	of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Chuang et al. (1999)	North Carolina low-income housing indoor air data summary— particle- and gas-phase	Durham and Piedmont	NC	Residences	Primarily Feb–Aug 1995 (2 homes in Feb 1994)	24 hrs	24		ng/m³	Directly from reference	$3.0 imes 10^{-2}$	8.8
Fortmann et al (2001)	Summary of residential cooking experimental data— particle- (PM ₁₀) and gas- phase	Rohnert Park	CA	Test house	Feb 2000	1 hr 30 mins to 5 hrs 8 mins	9	0%	ng/m³	Directly from reference	< LOD	< LOD
Mukerjee et al. (1997)	Lower Rio Grande Valley environmental scoping study spring season indoor air data summary— particle- (PM _{2.5}) and gas-phase	Lower Rio Grande Valley	ТХ	Residences	Spring 1993	24 hrs	8	38%	ng/m³	Directly from reference		
	Lower Rio Grande Valley environmental scoping study summer sea- son indoor air data summary—par- ticle- (PM _{2.5}) and gas-phase	Lower Rio Grande Valley	TX	Residences	Summer 1994	24 hrs	6	17%	ng/m³	Directly from reference		
Naumova et al. (2002)	. Elizabeth residential indoor air data summary– gas-phase	Elizabeth	NJ	Urban	June 1999- May 2000	- 48 hrs	15		ng/m³	Directly from reference	$2.7 imes 10^{-3}$	$5.3 imes 10^{-3}$
	Elizabeth residential indoor air data summary– particle-phase (PM _{2.5})	Elizabeth	NJ	Urban	June 1999- May 2000	48 hrs	15		ng/m³	Directly from reference	9.7×10^{-2}	8.4×10^{-1}
	Houston residential indoor air data summary— gas-phase	Houston	ТХ	Urban	June 1999- May 2000	• 48 hrs	21		ng/m³	Directly from reference	2.8×10^{-3}	$2.0 imes 10^{-2}$

	Data	Overall Arithmetic Mean and/or Range of Means	C and/or	Overall Median r Range of Medians	_
Source	Averaging Period	Overall Minimum Maximum	Overall	Minimum Maximum	Notes
Chuang et al. (1999)	24 hrs	8.8×10^{-1}			14 homes were in the inner city, the other 10 were in rural areas. 5 homes had smokers present. Each home sampled during one 24-hr period.
Fortmann et al. (2001)					Indoor measurements conducted in kitchen of res idential house where 32 cooking tests were con- ducted for gas range, electric range, and microwave, including frying foods, broiling foods, cooking meat in the oven, and oven-clean ing. PAH measurements made in subset of cook ing experiments.
Mukerjee et al. (1997)	3 wks		$2.0 imes 10^{-1}$	1	Nine homes were monitored for 3 weeks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
	10 days		$2.0 imes 10^{-1}$	1	Nine homes were monitored for 3 weeks in spring 1993, and six of the nine were resampled for 10 days the following summer. Authors report that smoking activities occurred in majority of study homes.
Naumova et al. (2002)	48 hrs	$4.0 imes10^{-3}$			Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking .
	48 hrs	$3.3 imes 10^{-1}$			Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking .
	48 hrs	4.8×10^{-3}			Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking .
					Table continues on next pag

		Study Location(s)								Individual Samp Ra	ole Measurement nge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Naumova et al. (2002)	Houston residential indoor air data summary—par- ticle-phase (PM _{2.5})	Houston	TX	Urban	June 1999- May 2000	48 hrs	21		ng/m³	Directly from reference	7.4×10^{-3}	6.9
	Los Angeles residential indoor air data summary— gas-phase	Los Angeles	CA	Urban	June 1999- May 2000	48 hrs	19	0%	ng/m³	Directly from reference	< ~2 × 10 ⁻³	< ~2 × 10 ⁻³
	Los Angeles residential indoor air data summary— particle-phase (PM _{2.5})	Los Angeles	CA	Urban	June 1999- May 2000	48 hrs	19		ng/m³	Directly from reference	$1.6 imes 10^{-2}$	1.2
Sheldon et al. (1992a)	Riverside, CA PTEAM residential indoor PAH study data summary— particle- and gas-phase	Riverside	CA	Residences	Fall 1990	12 hrs	115 day- time sam- ples; 113 nighttime samples	68.5% for daytime samples; 68.6% for nighttime samples	ng/m³	Directly from reference	$< 2.2 \times 10^{-1}$	1.4 (P90)
Sheldon et al. (1993)	Data summary for homes with smoking: northern Cali- fornia residen- tial indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	52		ng/m³	Directly from reference		$3.2 imes 10^1$
	Data summary for homes with smoking/fire- place: north- ern California residential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	11		ng/m³	Directly from reference		8.8
	Data summary for homes with fireplace: northern California residential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	45		ng/m³	Directly from reference		5.7

Table D.8g. Indoor Exposure Data Summaries (Continued). Indeno[1,2,3-cd]pyrene (Columns continue on next page)

	Data	Overal and/c	l Arithmetic Mean r Range of Means	O and/or	verall Medi r Range of M	an Iedians	
Source	Averaging Period	Overall	Minimum Maximum	Overall	Minimum	Maximum	Notes
Naumova et al. (2002)	48 hrs	$7.1 imes 10^{-2}$					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking .
	48 hrs	<~2× 10 ⁻³					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking .
	48 hrs	$2.0 imes 10^{-1}$					Mean concentration provided is geometric mean rather than arithmetic mean. One 48-hr sample collected in each home. All homes were non- smoking .
Sheldon et al. (1992a)	24 hrs			$3.9 imes 10^{-1}$			Two 12-hr indoor air samples collected during daytime and overnight periods in subset of 125 homes monitored as part of the PTEAM main study. Data reported are weighted air concentra- tions for the combined 24-hr daytime and night- time sampling period in each home.
Sheldon et al. (1993)	24 hrs	2.8		1.7			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	2.6		1.5			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	1.7		1.0			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.

		Study Location(s)								Individual Samı Ra	ole Measurement nge
Source	Data Description	City or County	State	Location Type	Study Time Period	Sample Duration	Number of Samples	Detection Frequency	Units	Source of Summary Stats	Minimum	Maximum
Sheldon et al. (1993)	Data summary for homes with woodstove: northern California residential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	54		ng/m³	Directly from reference		$1.7 imes 10^1$
	Data summary for homes with woodstove/gas heat: northerm California resi- dential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	22		ng/m³	Directly from reference		3.8
	Data summary for homes with no source: northern California resi- dential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	36		ng/m³	Directly from reference		4.9
	Data summary for homes with gas heat: north- ern California residential indoor PAH study— particle- and gas-phase	Placerville and Roseville	CA	Residences	Winter 1992	24 hrs	51		ng/m³	Directly from reference		6.6
Van Winkle and Scheff (2001)	Southeast Chicago indoor air data summary— particle- and gas-phase	Chicago	IL	Residences	June 1994- Apr 1995	24 hrs	45	0%	ng/m³	Directly from reference	< LOD	< LOD
Wilson et al. (2001)	North Carolina child day care center indoor air data summary— particle- and gas-phase	Durham, Chapel Hill and Raleigh	NC	Day care centers	Spring 1997	48 hrs			ng/m³	Directly from reference	< 4 × 10 ⁻²	9.0×10^{-2}

Table D.8g. Indoor Exposure Data Summaries (Continued). Indeno[1,2,3-cd]pyrene (Columns continue on next page)

Source	Data Averaging Period	Overall Arithmetic Mean and/or Range of Means		Overall Median and/or Range of Medians			_
		Overall	Minimum Maximum	Overall	Minimum	Maximum	Notes
Sheldon et al. (1993)	24 hrs	1.9		8.3×10^{-1}			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	1.4		1.4			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	9.2×10^{-1}	L	$7.7 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
	24 hrs	1.4		$8.0 imes 10^{-1}$			One 24-hr sample collected from each of 280 homes, including homes with a variety of com- bustion sources including fireplaces, wood- stoves, gas heating, and smoking.
Van Winkle and Scheff (2001)	10 months	< LOD		< LOD			Ten homes monitored on either quarterly or monthly basis for 10-month period. Southeast Chicago study area within heavily industrialized area with many known air toxic emission source types (including coke plants, manufacturing facilities, municipal solid waste landfills, on- road vehicles, etc.).
Wilson et al. (2001)	48 hrs	$6.4 imes 10^{-2}$	2				Ten day care centers included in study, with one 48-hr sampling session per center.

Appendix D. References

The reference list for Tables D.1–D.14 was prepared by the Gradient Corporation for HEI. Any web addresses were accessed before August 30, 2005. HEI has not updated this list.

Adgate JL, Church TR, Ryan AD, Ramachandran G, Fredrickson AL, Stock TH, Morandi MT, Sexton K. 2004b. Outdoor, indoor, and personal exposure to VOCs in children. Environ Health Perspect 112(14):1386–1392.

Adgate JL, Eberly LE, Stoebel C, Pellizzari ED, Sexton K. 2004a. Personal, indoor, and outdoor VOC exposures in a probability sample of children. J Expos Anal Environ Epidemiol 14:S4–S13.

Chuang JC, Callahan PJ, Lyu CW, Wilson NK. 1999. Polycyclic aromatic hydrocarbon exposures of children in lowincome families. J Expos Anal Environ Epidemiol 2:85–98.

Clayton CA, Pellizzari ED, Whitmore RW, Perritt RL, Quackenboss JJ. 1999. National Human Exposure Assessment Survey (NHEXAS): Distributions and associations of lead, arsenic and volatile organic compounds in EPA Region V. J Expos Anal Environ Epidemiol 9:381–392.

Daisey JM, Hodgson AT, Fisk WJ, Mendell MJ, Ten Brinke J. 1994. Volatile organic compounds in twelve California office buildings: Classes, concentrations and sources. Atmos Environ 28(22):3557–3562.

Feng Y, Zhu J. 2004. Separation and determination of carbonyl compounds in indoor air using twostep gradient capillary electrochromatography. Anal Sci 20:1691–1695.

Fortmann R, Kariher P, Clayton R. 2001. Indoor Air Quality: Residential Cooking Exposures. Final Report. California Air Resources Board, Sacramento CA. Downloaded from *www.arb.ca.gov/research/abstracts/97-330.htm*.

Girman JR, Hadwen GE, Burton LE, Womble SE, McCarthy JF. 1999. Individual volatile organic compound prevalence and concentrations in 56 buildings of the building assessment survey and evaluation (BASE) study. In: Indoor Air 99, Proceedings of the 8th International Conference on Indoor Air Quality and Climate, Vol 2, pp 460–465. Construction Research Communications, London, United Kingdom.

Gordon SM, Callahan PJ, Nishioka MG, Brinkman MC, O'Rourke MK, Lebowitz MD, Moschandreas DJ. 1999. Residential environmental measurements in the National Human Exposure Assessment Survey (NHEXAS) pilot study in Arizona: Preliminary results for pesticides and VOCs. J Expos Anal Environ Epidemiol 9:456–470. Kinney PL, Chillrud SN, Ramstrom S, Ross J, Spengler JD. 2002. Exposures to multiple air toxics in New York City. Environ Health Perspect 110(Suppl 4):539–546.

Levy JI, Dumyahn T, Spengler JD. 2002. Particulate matter and polycyclic aromatic hydrocarbon concentrations in indoor and outdoor microenvironments in Boston, Massachusetts. J Expos Anal Environ Epidemiol 12:104–114.

Mukerjee S, Ellenson WD, Lewis RG, Stevens RK, Somerville MC, Shadwick DS, Willis RD. 1997. An environmental scoping study in the Lower Rio Grande Valley of Texas: III. Residential microenvironmental monitoring for air, house dust, and soil. Environ Int 23(5):657–673.

Naumova YY, Eisenreich SJ, Turpin BJ, Weisel CP, Morandi MT, Colome SD, Totten LA, Stock TH, Winer AM, Alimokhtari S, Kwon J, Shendell D, Jones J, Maberti S, Wall SJ. 2002. Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in the US. Environ Sci Technol 36(12):2552–2559.

Payne-Sturges DC, Burke TA, Breysse P, Diener-West M, Buckley TJ. 2004. Personal exposure meets risk assessment: A comparison of measured and modeled exposures and risks in an urban community. Environ Health Perspect 112(5):589–598.

Phillips ML, Esmen NA, Hall TA, Lynch R. 2005. Determinants of exposure to volatile organic compounds in four Oklahoma cities. J Expos Anal Environ Epidemiol 15:35–46.

Reiss R, Ryan PB, Tibbetts SJ, Koutrakis P. 1995. Measurement of organic acids, aldehydes, and ketones in residential environments and their relation to ozone. J Air Waste Manage Assoc 45(10):811–822.

Sawant AA, Na K, Zhu X, Cocker K, Butt S, Song C, Cocker DR. 2004. Characterization of PM-2.5 and selected gasphase compounds at multiple indoor and outdoor sites in Mira Loma, California. Atmos Environ 38(37):6269–6278.

Sax SN, Bennett DH, Chillrud SN, Kinney PL, Spengler JD. 2004. Differences in source emission rates of volatile organic compounds in inner-city residences of New York City and Los Angeles. J Expos Anal Environ Epidemiol 14:S95–S109.

Sexton K, Adgate JL, Ramachandran G, Pratt GC, Mongin SJ, Stock TH, Morandi MT. 2004. Comparison of personal, indoor, and outdoor exposures to hazardous air pollutants in three urban communities. Environ Sci Technol 38(2):423–430.

Appendix D. References

Sheldon L, Clayton A, Jones B, Keever J, Perritt R, Smith D, Whitaker D, Whitmore R. 1992b. Indoor Pollutant Concentrations and Exposures. Final Report. California Air Resources Board, Sacramento CA. Downloaded from *http://www.arb.ca.gov/research/abstracts/a833-156.htm*.

Sheldon L, Clayton A, Keever J, Perritt R, Whitaker D. 1992a. PTEAM: Monitoring of Phthalates and PAHs in Indoor and Outdoor Air Samples in Riverside, California. Final Report, Volume 2. Downloaded from *www.arb.ca.gov/research/ abstracts/a933-144.htm*.

Sheldon L, Clayton A, Keever J, Perritt R, Whitaker D. 1993. Indoor Concentrations of Polycyclic Aromatic Hydrocarbons in California Residences. Final Report. California Air Resources Board, Sacramento CA. Downloaded from *www.arb.ca.gov/research/abstracts/a033-132.htm*.

Shendell DG, Winer AM, Stock TH, Zhang L, Zhang J, Maberti S, Colome SD. 2004. Air concentrations of VOCs in portable and traditional classrooms: Results of a pilot study in Los Angeles County. J Expos Anal Environ Epidemiol 14:44– 59. Subramanian P, Breuer GM, Reynolds SJ. 2004. Low molecular weight carbonyls in large midwestern office buildings. J Environ Anal Chem 76(3):215–239.

Van Winkle MR, Scheff PA. 2001. Volatile organic compounds, polycyclic aromatic hydrocarbons and elements in the air of ten urban homes. Indoor Air 11(1):49–64.

Whitmore R, Clayton A, Phillips M, Akland G. 2003. California Portable Classrooms Study Phase I: Mailed Survey. Final Report, Volume 1. California Air Resources Board, Sacramento CA. Downloaded from *www.arb.ca.gov/research/ abstracts/00-317.htm*.

Wilson NK, Chuang JC, Lyu C. 2001. Levels of persistent organic pollutants in several child day care centers. J Expos Anal Environ Epidemiol 11:449–458.

Zhang J, He Q, Lioy PJ. 1994. Characteristics of aldehydes: Concentrations, sources, and exposures for indoor and outdoor residential microenvironments. Environ Sci Technol 28:146–152.

Abbreviation List for Appendices B–D

ACGIH	American Conference of Industrial Hygienists						
ADJ	adjusted for continuous exposure; e.g., BMCL (ADJ)						
AML	acute myeloid leukemia (also referred to as acute myelogenous leukemia)						
ARB	Air Resources Board (California)						
ATSDR	Agency for Toxic Substances and Disease Registry (U.S.)						
BMC	benchmark concentration. A concentration that produces a predetermined change (listed as BMC_x) in response rate of an adverse effect compared to background.						
BMCL	benchmark concentration lower confidence limit						
BMD	benchmark dose						
CI	confidence interval						
DPM	diesel particulate matter						
DEOG	diesel exhaust organic gases						
EPA	Environmental Protection Agency (U.S.)						
GSD	geometric standard deviation						
HEC	human equivalent concentration						
HWSE	healthy worker survivor effect						
IARC	International Agency for Research on Cancer						
IRIS	Integrated Risk Information System (EPA)						
LOD	limit of detection						
LOAEL	lowest observed adverse effect level						
MRL	minimal risk level						
NHEXAS	EPA National Human Exposure Assessment Survey						
NHL	non-hodgkin lymphoma						
NOAEL	no observed adverse effect level						
NTP	National Toxicology Program (U.S.)						
OR	odds ratio						
PAH	polycyclic aromatic hydrocarbon						
PBPK	physiologically based pharmacokinetic						
PNA	polynuclear aromatic hydrocarbon						
POM	polycyclic organic matter						
PTEAM	particle total exposure assessment methodology study						
REL	reference exposure level (California EPA)						
RfC	reference concentration–inhalation (EPA)						
RfD	reference dose–oral (EPA)						
RIOPA	Relationship of Indoor, Outdoor, and Personal Air study						
SMR	standardized mortality ratio						

SRR	standardized risk ratio	TWA	time weighted average
TEACH	Toxic Exposure Assessment, a	UF	uncertainty factor
	Columbia/Harvard study	VOCs	volatile organic compound
TEF	toxicity equivalency factor	VVOC	very volatile organic compound
TLV	threshold limit value		