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Appendix I
Random Effects Cox Models

1.1 Introduction

Although the incorporation of random effects into Cox models has gained
increasing attention in analyses of event history data, these models pose
considerable theoretical difficulties in the development of estimation and in-
ference procedures (Clayton 1991). Until recently, previous research in this
area has focussed mainly on survival models with one level of random effects
(Sastry 1?97; Sargent 1998). The frequentist approaches to nested frailty
survival models have usually been restricted to piecewise constant baseline
hazard functions and specific random effects distributions (Sastry 1997). On
the other hand, Bayestan approaches to nested random effects Cox models
are computationally intensive, and the assessment of convergence of com-
putational techniques such as the Gibbs sampler remains an area of debate
(Glifford 1993; Smith and Roberts 1993; Sargent 1998). Flexible frailty mod-
els that can be fit with reasonable computational effort are therefore needed.

Considerable progress has been made in recent years in the area of random
effects generalized linear models (Breslow and Clayton 1993; Lee and Nelder
1996; Ma 1999). The connection between the Cox and Poisson regression
models has long been recognized (Whitehead 1980). In this paper, we show
that random effects methods developed for use with generalized linear models
can be applied by characterizing the random effects Cox model as a random
effects Poisson regression model. Our approach deals with an unspecified
baseline hazard function and a wide range of random effects distributions.
QOur approach can also handle ties and stratification in the same way as in
the standard Cox model. Further, our explicit expressions for the random
effects facilitate incorporation of relatively large numbers of random effects.

The organization of this appendix is as follows. We introduce the random

effects Cox model and its auxiliary random effects Poisson models in Sec-
tions 1.2 and 1.3, respectively. In Section 1.4, we discuss the estimation of the



nested random effects Cox models based on the orthodox BLUP approach
to the auxiliary random effects Poisson models. The methods described in
this section were used in fitting random effects Cox models to the American
Cancer Society Study data (see Section L5).

1.2 Random Effects Cox Model

In this section, we consider a Cox model with two levels of random ef-
fects. Suppose that the cohort of interest is stratified on the basis of one or
more relevant covariates. Let the hazard function for individual (%, 7, k) from

stratum s = 1,2,...,a at time ¢ be denoted by hfj}a(t) Given the random
effects, we assume that the hazard functions for individuals are conditionally

independel}t with

R (t) = h$ (t)uy; exp(8TxL)). (1)
Here, u;; > 0 are random effects, or frailties, shared by all individuals

within the same group, and h{(2) is the baseline hazard function for strata
s =1,...,a. Clearly the (possibly censored) survival times within the same
group are correlated. The random effects are traditionally assumed not to
depend on the regression parameter 8. Without loss of generality, we assume
that the design matrix is of full rank.

We will focus on estimation and inference on three-level hierarchical Cox
models with the following nested random effects structure. Suppose each co-
hort is composed of m independent clusters indexed by 4. Within each cluster
i, there are J; correlated sub-clusters indexed by (i, 7). Further, within each
sub-cluster (4, 7) there are n;; individuals whose survival times are given by
(1). We introduce a class of models with nested random effects based on
the class of Tweedie exponential dispersion model distributions denoted by
Tw, (1, 6%), where Tw, (1, 0?) includes the normal (r = 0), Poisson (r = 1),
gamma (r = 2), compound Poisson (1 < r < 2) and inverse Gaussian (r = 3)
distributions (Jgrgensen, 1997).

More specifically, we assume that the cluster level random effects us, ..., um
are independently identically distributed random effects following the Tweedie
dispersion model distribution, with

U, ..o yUn ~ Tw,(1,0%). (2)
We further assume that, given the cluster level random effects U, = u, =
(u1,...,%n), the sub-cluster level random effects Uy, ..., Ups,, are condition-

ally independent, and the conditional distribution of Uj;, given U, = u,,
depends on u; only which is



Uij|U* =Up ~ TWq(Ug,&J?), (3)

Assumptions (1)-(3) together provide a full parametric specification of a
nested random effects Cox model. To avoid non-positive random effects, we
require r > 2 and ¢ > 2. A Cox model with one level of random effects is
obtained as a special case of the Cox model with two levels of random effects
by setting w? = 0 and J; = 1 for all i.

1.3 Auxiliary Random Effects Poisson Models

Let 75,..., 75, denote the distinct uncensored event times in the sth
stratum, with mg, indicating the multiplicity of uncensored events happening
at time 7,, (s = 1,...,a). The risk set at time 7. is a subset of stratum
s, R(tan) = {(3,5,k)  tijx = Ten}, where & is the observed survival time
for individual (4,7, k) from the sth stratum. In addition, let Y,-g-i)'h be 1 if
~-an uncensored event happens for individual (%, j, k) from the sth stratum at
time 75, and 0 otherwise. Given the random effects U = u, Peto’s version of
the conditional partial likelihood (¢f. Cox and Oakes 1984 p.103) is

YI(‘) (s)
ﬁ i jm)ering) Ui [exp (x5 8)]Vkn (may!) @

ol [ DGakeR () B eXP(X{8)men

pé(B; Y|u) = l:[

We now define an auxiliary random effects Poisson regression model. As-
sume that the components of Y are conditionally independent, given random
effects U = u, with

Yé,?n ~ Poisson (u,-,- exp{on + X;gkﬁ))

= Poisson (u,(;,zh) (4,3, k) € R(7sn), ()

(s}

where 155} , = u;; exp(a,n+x;8). Given the random effects, the conditional

likelihood for the random effects Poisson model is

le,B;Y ) = T]

s=1 h=1 (i,j,k)ER(7,1) explus; exp{as, + x[j;0)]
v
1“—[ ﬁ s merma) by [exp{ash + x;:.8)]
s=1 h=
We will show that the maximum conditional Poisson likelihood estimates for

i OXPIEG gk eR(rn) Uij eXP(on + X5 8)]
the regression parameter vector B from (6) are the maximum conditional
partial likelihood estimates for the regression parameter vector 8 from (4).
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Consider the maximum likelihood estimates for Vg’,)c,h, denoted by 175:1,1.1

based on the conditional Poisson likelihood. Since Y;g'}?h (4,7,k) € R(7s) are

independent for (7, j, k) € R(7s) given the random effects, it follows from
the relation

Xz Y:‘_('i?,h’= Msh, (7)
(i,j,k)eR(T,h)
that
. .f’i(;]z:,h = Mghp. (8)
(‘i,j,k)ER(T,h)
We therefore have
> uiexp(Gon + XB) = man. (9)
:." (iljlk)ER(Tsh) "
or m
exp(Gieh) = 2 (10)

24,5 k)R (ren) Wi exp(XéEkﬁ) .
At its maximum (&, 3), the conditional Poisson likelihood for (a, B) is

Yi('l)h ~ T v
11 exp(—man)u;” " [exp(&sn + X;5.8)]
1 (i,j,k)ER(Tah)
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where the first and third equalities were obtained by using (9) and (7), and
(10), respectively. Clearly the conditional partial likelihood and conditional
Poisson likelihood share the same kernel at maximum conditional Poisson
likelihood estimates for the regression parameter vector 8.

Let f(u) be the density function of u. The joint partial likelihood of the
regression parameter 8 given the data and the random effects is

pé(B; Y, u) = pl(B; Y |u) f(u). (12)

The joint likelihood of the regression parameter 8 given the data and the
random effects for the auxiliary random effects Poisson regression model is



o, B;Y, 1) = ¥, B; Y |u) f(u). (13)

To obtain the regression parameter estimates, given the data and the ran-
dom effects, maximizing the joint (partial) likelihood is equivalent to maxi-
mizing the conditional (partial) likelihood since the random effects vector U
does not depend on the regression parameter vector. Therefore we have

£(&, 3;Y, U) = constant - pf(B; Y, U). (14)

This demonstrates that the maximum joint Poisson likelihood estimates for
the regression parameter vector 8 from (6) are the maximum joint partial
likelihood estimates for the regression parameter vector 8 from (4). We may
therefore make inferences on the random effects Cox models by fitting ran-
dom eﬁ‘ectfs" Poisson models.

The random effects are unobserved, and thus have to be predicted. Al-
gorithms for fitting random effects models usually iterate between updat-
ing random effects and updating parameter estimates until convergence is
achieved. Given the predicted random effects, the estimates of the regres-
sion parameter G for the auxiliary models are also the regression parameter
estimates for the corresponding random effects Cox models. We therefore
approximate the random effects using the consistent random effects predic-
tors for the auxiliary models.

In the remainder of this appendix, we will focus on the nested random ef-
fects Cox models specified by (1), (2) and (3} via fitting the auxiliary nested
random effects Poisson models specified by (5), (2) and (3).

1.4 Orthodox BLUP Approach to Auxiliary Models

In this section, we discuss estimation of the auxiliary nested random effects
Poisson models based on the orthodox BLUP approach to nested random ef-
fects Poisson models (Ma 1999).

Prediction of random effects

We will predict the random effects by the best linear unbiased predictor
of U given Y in the literal sense (cf Brockwell and Davis 1991 p.64). More
specifically, letting U and Y be random vectors with finite second moments,
the best linear unbiased predictor of U given Y is given by

U = E(U) + Cov(U, Y)Var 1(Y) (Y — E(Y)). (15)

We call U the orthodox BLUP of the random effects since the mode of the
conditional density of the random effects given the data is also referred to



as BLUP in the literature (McGilchrist 1993), although this mode generally
is neither linear nor unbiased. The orthodox BLUP of the random effects is
a linear unbiased predictor of U given Y which minimizes the mean square
distance between the random effects U and their predictor within the class
of linear functions of Y.

Explicit expressions for the mean square distances between the components
of the random effects U and their predictors are as follows:

c(i) = EU;—-U;)?

- 1 220, Eqa E . (8) ’ (16)
+ 0% ) gm bt (i,4,6)ER(r,n) WiiHijk p

where (%, f, k) in (16) runs over the risk set R(7.) for fixed i. Her,

W = exp (an+ 7))

= exp ((aT,ﬁT)Xgﬁ,h)

. = exp (7' xhn) (7
a;d, for fixed (%, 5),

wi; =1/ (1 + w? Za: i Z #Eﬁa,h) ) (18)

8=1 h=1 (i,j,k)eR(7.n) .

where (4, 7, k) in (18) runs over the risk set R(ry3). Similarly we have
o(ij) = E(Uy—Uy)*
= wy {w? + c(i)wy}, (19)
where (4, §, k) runs over the risk set R(7,) for fixed (4, §).
The cluster-specific random effects predictor can be expressed as
L+ 0% Tocs it Ssbiering) WisYion
1+ 02 o1 it Zigker(nn) wijﬂg;l)c,h

c(i) (51-2- + i i > w.-,-Y,-g-‘l),h) ; (20)

s=1h=1(i,j k)ER{T,})

.

I

where (i, j, k) runs over the risk set R(7,) for any given i. The sub-cluster
random effects predictors are



- . a s
Uj=wyls +Pwy D3 Y Y;Si’h, (21)

5=1 h=1 (ij,k)G'R-(Tah)

where (4, 7, k) runs over the risk set R(7) for any given (i, ).

Using Chevyshev’s inequality, it follows from (16) and (19) that we have
the following consistency results (Ma 1999):

() U; 55 U; as 0 — 0;
(i) Oy = Uy as w? + 02 — 0.
We also have
ey P _f: P . (s)
(iii) Uy — Uy; as MinLjkan (Hiji,n) — 0O
(iV) ﬁ,‘ -i)' U,; as J,: — oo and ffij i) Uij as miﬂj(nij) —r CQ,

where ny; is number of the induced observations y,(;,)ch contained in sub-cluster

(4,7). The latter part of result (iv) holds if HS;,)C 48 are bounded from zero. Re-
sults (i)-(iii) are usually referred as ‘small dispersion asymptotics’, whereas
(iv} corresponds to large sample asymptotics. The magnitude of the n;; de-
pends not only on the number of individuals in sub-cluster (4, 7), but also
on the number of the failures in each individual’s stratum. In other words,
the greater the number of subjects, especially those with complete survival
histories, the better we are able to predict the random effects.

Estimation of Regression Parameters

Consider first the estimation for the regression parameters with the case of
known dispersion parameters. Consideration of unknown dispersion param-
eters will be discussed in the next section.

Differentiating the joint likelihood of the auxiliary model for the data and
random effects yields the joint score function. Replacing the random effects
with their predlctors we have an unbiased estimating function for regression
parameters v = (a',8")7:

1] Gs
= Z Z Z xz(;l)c h zgsk)h. Ua”z(;}c ht (22)
s=1 h=1 (i,/,k)ER(7,1)
The solutions of () = O provide estimates of the regression parameters.
The Newton scoring algorithm introduced by Jgrgensen et al (1995) can be
used to solve this estimating equation.



The Newton scoring algorithm is defined as the Newton algorithm applied
to the equation () = 0, but with the derivative of /() replaced by its
expectation. This expectation, denoted by S(7), is called the sensitivity
matrix; its expression is given by

St = S clje] + 3 3wt

i=1 i=14=1
a s
- Z Z Z MEJ;)G hxg':’c h( ‘E_:;c h)T (23)
s=1 h=1 (4,5,k) ER(Tsn)
where
/ (& (8) (o) 924
: €; = z Z Z wljpl’t]k hxljk h ( )
s=1 h=1(1,j,k)eR{7sp)
and

a g

w-(53 5 us;z,,xs;;h) )
s=1 h=1 (i,j,k) ER(Tn)

Here, index (3,7, k) runs over the risk set R(7,) for fixed ¢ in (24) and for

fixed (7, ) in (25), respectively, and (i, 5, k) runs freely over the risk set R(7sn)

in the last term of (23). The resulting algorithm gives the following updated

value for ~:

v = =871 )v(). (26)
The sensitivity matrix multiplied by —1 has been shown to be the Godambe
information matrix for the nested random effects Poisson model (Ma 1999).
That is, the sensitivity matrix plays a role in the Newton scoring algorithm

similar to that of the Fisher information matrix in the Fisher scoring algo-
rithm.

Under mild regularity conditions, the solutions of 1(v) = 0, denoted by
%, have been shown to be consistent as m — co with the asymptotic co-
variance given by —S~!(+). For fixed m, the asymptotic covariance has the
same expression —S~!(-y) for large cluster sizes for the auxiliary model with
only one level of gamma distributed random effects (Lee and Nelder 1996).
In general, the estimating function 4/(-y) has been shown to be optimal in
the sense that it attains the minimum asymptotic covariance for estimate
% among a certain class of linear functions of Y (Ma 1999). When there
are no random effects, the sensitivity matrix becomes the negative Fisher
information matrix derived from partial likelihood for standard Cox model.
Expression (23) shows that the asymptotic variance for regression parameter
estimates based on standard Cox model is smaller than that based on the



random effects Cox model if the regression parameter estimates are identical
for both models.

An analogue of Wald’s test is available for testing the hypothesis Hj :
By = 0, where By is a sub-vector of 8. The test statistic is:

W =By {7@} B,

where J'(7) is the block of the asymptotic covariance matrix of § corre-
sponding to B;. Asymptotically, this statistic follows a x?(k)-distribution,
where £ is the size of the sub-vector 5y

Estimation of Dispersion Parameters
)
We now discuss the situation in which the dispersion parameters are un-
known. Inspired from generalized linear models, we adopt the following ad-
justed Pearson estimators for the dispersion parameters.

1 &, n
~2 __ T 12 .
62 = m;{(u, 1)? +¢(i)} . (27)
The first term in (27) is the Pearson estimator, with the second term being
a bias correction term.

3 %i{(ﬁﬁ—@)%c(z‘j)w(i)—2c(i)wﬁ}. (28)

=1 Yi j=1

0= —
m;
The first term in (28) is the Pearson estimator, whereas the remaining terms
are bias correction terms. These dispersion parameter estimates can also be
shown to be consistent as m — oo (Ma 1999).

In fact, our orthodox BLUP approach depends on the the random effects
only via the first and second moments of the sub-cluster random effects. It
has been shown to be robust, to a certain extent, against misspecification
of the random effects distributions (Ma 1999), and thus covers non-Tweedie
random effects such as log-normal random effects.

Computational Procedures

Initial values for the regression parameters are taken as the regression
parameter estimates obtained from standard Poisson regression techniques
assuming independent responses. Initial random effects predictions for U;
and I:Tij are given by the average of the responses within cluster 7 divided
by the average of all responses and the average of the responses within sub-
cluster (4, j) divided by the average of all responses, respectively. The initial



dispersion parameter estimates are calculated from Pearson estimators, omit-
- ting the bias-correction terms.

The algorithm then iterates between updating the regression parameter
estimates via the Newton scoring algorithm, updating random effect predic-
tors via the orthodox BLUP, and updating dispersion parameter estimates
via the adjusted Pearson estimators.

1.5 Applications

The methods described in the previous section can be applied to the
American Cancer Society Study data. Because of the possibility of cluster-
ing effects at the city level, we included a random effect for each city in our
re-analysis of these data. The corresponding random effects Cox regression
mode] assuthes that, given random effects, the hazard functions for individ-
uals are conditionally independent with the hazard function for individual j
‘from city 4 given by

hP @) = 1 (¢)u; exp(B7x), (29)

where the cohort is stratified on the basis of five year age groups, race and
s%x’ for the American Cancer Society Study (s = 1,...,96). The City-specific
random effects are assumed to follow Tweedie distributions with mean unity
and variance o2, with r = 2 corresponding to a gamma distribution. The
Peto-Breslow approximation (Cox and Oakes 1984) for tied survival times
was used in all analyses.

The results of fitting the random effects Cox regression model to the Amer-
ican Cancer Society Study data is shown in Table 50. In the ACS Study, the
random effects Cox model provides estimates of relative risk with associated
confidence limits similar to those based on the two-stage model, thereby con-
firming the accuracy of the simpler two-stage approach.

1.6 Summary

In this appendix, we introduced a class of random effects Cox models
which accommodates a wide range of nested random effects distributions
based on Tweedie exponential dispersion model distributions. An important
feature of this approach is that the principal results depend only on the
first and second moments of the unobserved random effects. The orthodox
BLUP approach to random effects Poisson modeling techniques enables us
to study this new class of models as a single class, rather than as a collection
of unrelated models. This new methodology is directly applicable to the
analysis of survival data with one or more levels of clustering, of the type
found in the American Cancer Society Study of air pollution and mortality.
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