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APPENDIX H: SPATIAL ANALYSIS

This appendix is divided into two sections. In Section 1, we give an introduction to spatial analysis,
with an emphasis on methods used in environmental and public health research. Section 2 summarizes the
specific methods used to adjust for autocorrelation in the ACS study.

SECTION 1: INTRODUCTION TO SPATIAL ANALYSIS
Why Is Spatial Analysis Needed?

Investigating the spatial pattern of disease and possible covariates can lead to improved understanding
of disease pathogenesis. Many public health, medical geography and epidemiology experts (refer to Curtis
and Taket 1996; Last 1998; Young 1998) cite Snow’s 1855 geographic study of cholera outbreaks in
London as one of the first epidemiologic studies. Snow mapped the incidence density of cholera cases in
London to explore possible causes of a localized outbreak. He found a distance decay effect from a water
pump located on Broad Street (ie, a decreasing density of cases as the distance from the pump increased).
This led to the discovery that the water from this pump had been contaminated by sewage from a leaking
cesspool or drain (Curtis and Taket 1996). Snow removed the handle from the pump, and subsequently
the number of new cases declined. In turn, Snow identified a contaminated water supply from the company
that owned the pump (Last 1998). Although the spatial analysis of disease has progressed considerably
since Snow’s discovery, his study illustrates how spatial associations between disease and environmental
risk factors can illuminate environmental health processes and lead to important modifications in public
health policy.

Spatial analysis can increase our understanding of disease pathogenesis in two ways (Mayer 1983).
Firstly, geographical studies may suggest possible causal factors in pathogenesis. Association of disease
with place implies the population of that place either possesses inherent traits that make it more susceptible
to disease or that they experience some increased level of exposure to arisk agent such as air pollution.
In some cases, populations may experience “double jeopardy” where the population displays both higher
susceptibility and experiences greater exposure (Institute of Medicine 1998). Recent literature on
environmental justice in the United States provides a good example of this type of synergistic effect.
Impoverished and minority groups are more susceptible to the effects of ambient pollution because of
increased health risks from poor nutrition, higher workplace exposures, and the psychosocial effects of
knowing others have more control over their lives. As well, they often experience higher ambient exposure
to environmental pollutants.

Secondly, spatial analysis can help identify how the populations of places adapt and relate to their
environment. Such adaptions may be beneficial and protective or maladaptive and detrimental to health
(Mayer 1983). Adaption to air pollution risks provides a good example. In areas that experience high
pollution events, individuals may reduce their exposure on high pollution days by staying inside ornot
engaging in strenuous exercise, or they may underestimate the risk and proceed with their daily activities
as though no excess risk is present during high pollution events.
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Spatial analysis typically employs two types of information. The first type includes attributes of spatial
features measured as population size, mortality rates, pollution estimates or nominal variables such as name,
soil type, or disease type. The second type involves the location of a spatial feature described by position
on amap measured in one of many geographic coordinate or referencing systems (Goodchild 1986). In
bringing these two types of information together, spatial analysis seeks to assess nonindependence or
association in attribute values at nearby locations or locations likely to experience spatial interaction (eg,
airports with connections to other distant airports). Explicit and systematic treatment of the locational
aspects of attribute values separates spatial analysis from the standard statistical analysis employed in most
environmental health research.

Spatial Analysis in a GIS Environment: Approaches And Methods

Although the spatial analysis of disease advanced for many years without the aid of geographic
information systems (GIS) and associated spatial statistics techniques (Gatrell and L&ytonen 1998), the
advent of these tools and methods has expanded the use of spatial analysis in environmental and public
health research (refer to Rushton 1998; Getis 1998). GIS is generally seen as a spatial analysis system for
the organization, storage, transformation, retrieval, analysis, and display of data (refer to Aronoff 1989;
Davis 1996; DeMers 1998) for which the location of attributes is considered important (eg, the incidence
ofa specific disease condition in relation to a pollution source). Spatial analysis in a GIS environment can
be divided into three broad categories: (1) visualization, (2) exploration, and (3) modeling (Bailey and
Gatrell 1995). These categories tend to be porous and iterative. For example, spatially continuous air
pollution data measured at fixed-site monitors first have to be interpolated with a statistical model before
pollution distributions can be visualized. Yet these categories remain useful for explaining the various
approaches employed by medical geographers and spatial epidemiologists.

Visualization involves linking attribute data such as mortality rates, pollution estimates, or covariate data
such as educational level to a location measured in a coordinate system such as longitude and latitude.
Maps produced by linking attributes to coordinate systems help to generate hypotheses about potential
relations between environmental phenomena and health outcomes. Visualizing some aspect of the effect (eg,
mortality) gives clues about possible causes of disease (Mayer 1983). By visualizing and reclassifying
attribute data, analysts can identify variables for more sophisticated modeling. Jerrett and colleagues
(1997), for example, mapped the location of major toxic polluters in Canada to identify social and
economic processes that associate with higher pollution emissions. Visualization with maps also helps
officials to educate the public and policymakers by conveying complex information in an easily understood
map format.

Exploration builds on visualization with spatial “queries” based on Boolean or set operators that may
show co-location between, for example, areas of low income and high mortality rates. Such queries will
highlight areas on the map that meet both conditions. In this report, we employ this exploratory technique
to illustrate a three by three table on maps of the United States. These maps show the co-location of high,
medium, and low pollution with high, medium, and low mortality risks (see Figures 19,20 and 21 in the
main report).
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Modeling combines both visualization and exploration techniques with statistical analysis designed to assess
whether spatial patterns apparent in the data have occurred by chance or whether they display significant
departures from a random or control distribution. Spatial modeling usually focuses on data in the following
forms: points (eg, the location of individuals who have died in a given period), point attribute (eg, estimates
of pollution at a fixed-site monitor), areal form (eg, a polygon area with an age-adjusted mortality rate), or
continuous surface form (eg, surfaces of pollution interpolated from estimates of fixed-point attributes).
Point pattern maps are referred to as “dot” or “dot density” maps. Areal datamaps are called “choropleth”
maps. Maps displaying continuous surfaces are usually referred to as isoline or isopleth maps. We have
interpolated fixed pollution estimates to generate continuous surfaces of air pollution for visualization (see
Figures 16, 17, and 18 in the main report).

Five processes and associated methods underlie most spatial modeling. First are methods for assessing
autocorrelation among observations. Tobler’s (1970) often cited first law of geography captures the
essence of spatial autocorrelation: “everything is related to everything else, but near things are more related
than distant things™. In other words, spatial autocorrelation means attribute values (say mortality) of near
entities (say metropolitan areas) will likely be more clustered or share similar values than distant ones. This
is similar to data in temporal sequence where we would expect to see mortality rates that are one day apart
to share more in common than those one year apart. Although similar, spatial autocorrelation tends to be
more complex than temporal autocorrelation. Temporal processes can only move in one direction (ie, from
present to future), whereas spatial processes can move in 360 degrees around a compass. In addition, lags
in space or “distances” may be measured in standard Euclidian terms or as functional distances such as
travel time or monetary cost. These two factors, directionality and functional distance, make spatial analysis
of autocorrelation more complex than its temporal counterpart.

Using ambient air pollution exposures as an example, we might expect pollution levels to be more
similar between Pittsburgh and Johnstown than Pittsburgh and Seattle. This may occur because of
similarities in the underlying social and economic processes that cause pollution (eg, manufacturing base)
or to some climatic variables that cause spillovers from region to region (eg, prevailing wind patterns). Such
spillovers would display a distance decay effect, meaning the level of spatial autocorrelation would diminish
as a function of distance between the two regions. Autocorrelation tests use point, line or area features that
have attribute values attached to them. In the case of positive autocorrelation, we would observe high
mortality rates occurring with adjacent value high values.

Local indicators of spatial autocorrelation (LISA), such as the local G or I statistics, can also assess
for the clustering in small areas to identify “hot spots” of high or low values (Getis and Ord 1992). These
local statistics usually break the entire study area into smaller regions to see iflocal areas have attributes
values that are higher or lower than what would be expected based on the global average of the entire study
area. Local hot spots of high or low disease or mortality rates can suggest potential hypotheses about
association with possible causal agents.

“Interpolation” of point samples of a phenomenon across areas or zones that lack specific observations

represents a second type of spatial modeling (Burrough and McDonnell 1998). For example, data from
anetwork of pollution monitoring stations may be interpolated to estimate the most likely values between

Part II Appendix H Page 3



sample locations, thus enabling analysts to make more accurate assessments with known errors of the
exposure over a continuous surface. Although such models are often used to predict likely values, they can
also form the basis of visualizing spatially continuous data.

A third type of modeling deals with the intensity of clustering over space. This type of modeling
addresses the hypothesis that the intensity of point clustering in a given area differs significantly froma
random (or control) pattern observed in the entire study area (Bailey and Gatrell 1995). Here the concern
is with the location and the presence or absence of a disease or condition. For example, we might
investigate the clustering of cancer cases in relation to the underlying population at risk. This helps
researchers identify disease or mortality clusters that may appear in proximity to a pollution source or some
other potential risk factor.

A fourth type of modeling deals with cross-sectional or spatial correlation. Here we would predict
mortality rates in given areas with other attribute data such as socioeconomic, lifestyle, and pollution
exposure variables. This approach then becomes similar to regression analysis or some other form of
generalized linear model such as the logit (Jerrett et al 1998; Griffith et al 1998). Predicting health outcomes
from environmental exposure while controlling for other known risk factors leads to suggestive evidence
of statistical (and potentially causal) associations. Often the residuals from ordinary or weighted least
squares regression models will display significant autocorrelation, which violates the assumption that each
observation in the model is independent. Autocorrelation in the residuals of regression models can inflate
significance values and may suggest specification error that leads to biased parameter estimates (Miron
1984). Mapping of residuals can help to assess whether important variables are missing from the regression
model. When autocorrelation in the residuals cannot be eliminated by adding new variables or changing the
specification of the model, other techniques can be employed to avoid inflated significance levels. This
method usually involves either filtering the spatial autocorrelation out of the model (Getis 1995; Griffith et
al 1998) or explicitly building the autocorrelation into the error term of the model (Bailey and Gatrell 1995).
The latter model is called a simultaneous autoregressive (SAR) model.

The final class of models involves the assessment of diffusion or spatial interaction over time and space.
Such models may allow for a better understanding of how infectious diseases spread through populations
or how particular vectors influence the spread of a disease (eg, mosquitos and malaria) (refer to Knox
1964; Scharstom 1996). These models attempt to determine whether clustering occurs in time and space
simultaneously. For example, do disease outbreaks occur in close proximity such as neighboring houses
in a short time lag such as 24 hours? Or do asthma attacks happen within low income neighborhoods within
a short lag-time after large air pollution events?

The methods we employ in this study fall into this final class of spatiotemporal models. Here we use
the Cox proportional-hazards model to assess an individual’s chance of survival between 1982-1989. A
wide range of individual risk covariates (eg, smoking habits) are tested to determine how survival chances
may be affected by exposure to pollution, while controlling for other health determinants. The Cox models
are formulated with a dummy variable for each of the 151 metropolitan areas, and the resulting coefficient
indicates represents the remaining risk of mortality after individual and lifestyle factors are taken into
account. The resulting relative risks are then used in a spatial analysis that proceeds from visualization to
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exploration to modeling.

SECTION 2: ADJUSTMENT FOR SPATIAL AUTOCORRELATION IN THE ACS STUDY

In this Section of the appendix, we describe the technical details involved in fitting the spatial risk
models used to take spatial autocorrelation into account in the ACS Study.

Database Construction

We have integrated the relative risk estimates from the survival analysis with ambient air pollution data
and ecologic covariate data into arelational database using ARC/INFO 7.1.2 and ArcView 3.1 software.
Ecologic predictor variables were derived for each Metropolitan Statistical Area (MSA) using data from
the County City Data Book and other secondary sources (see Appendix E for a complete discussion of
the variables). These variables represent the socioeconomic, environmental, and health services
determinants of health. As documented in Appendix E, past research has found that all of the variables
tested have shown significant associations with health outcomes, and thus they have the potential to
confound ormodify the pollution-health relation. In addition, we have tested population groups known to
experience higher mortality rates (ie, African-Americans) and variables that proxy for the supply of medical
services. A few additional variables were also interpolated for visualization purposes, and these are listed
in Table H.1.

Analytic Approach

We have employed geostatistical techniques in combination with traditional statistical tools such as
multiple regression. The analysis proceeded in three stages that involved visualization, exploration, and
modeling (Bailey and Gatrell 1995). Although our emphasis here is on modeling the relations, we use the
two preceding stages to assist us with model formulation and interpretation. Ultimately, the analytic results
from the spatial regression modeling are more important to the scientific interpretation of this report.

Visualization Stage In this stage we used an optimal interpolation technique called kriging to generate
continuous surface maps of the pollution, relative risk, and most of the ecologic covariates. Interpolation
methods allow for estimates from point samples of unmeasured areas between the points and allows for
visualization of the spatial patterns in the data. Kriging models exploit spatial dependence in the data to
develop surfaces. The spatial dependence can be divided roughly into two broad categories. First order
effects measure broad trends in all the data points such as the global mean, whereas second order effects
measure local variations at short distances between the points (see Bailey and Gatrell 1995 and Burrough
and McDonnell 1998 for reviews of kriging). Kriging models are considered optimal interpolators because
they supply the best linear unbiased (BLUE) estimate of the variable’s value at any point in the coverage
(Burrough and McDonnell, 1998). GS +2.1 geostatistical software was used to generate the interpolation
estimates. Resulting maps were generated in ArcView 3.1 and used to visualize the spatial distribution of
the data and to refine our list of potential covariates that might be associated with elevated relative mortality
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risk. The number and distribution of MS As in the original ACS study are less than optimal for some ofthe
geostatistical models. Hence the resulting surfaces depict spatial variation in the ACS sample and are not
necessarily representative of the spatial variation that would be found for all the United States in amore
complete sample. It is also important to note that the mortality variables used for visualization were not
weighted to account for the statistical uncertainty in the mortality estimates. Weights, however, were
employed for subsequent regression modeling.

Exploration Inthis stage, we performed tests for spatial autocorrelation in the response and predictor
variables using global and local indicators of spatial autocorrelation (LISA) statistics, including the global
Moran’s ] and the local G statistics (Getis and Ord 1996). We ran these tests and other geostatistical
techniques with the S-Plus 2000 spatial statistics package and macro programs developed by Sawada
(1999) to run on Excel 97. These tests reveal where hot spots of spatial autocorrelation may exist among
the variables and can show the critical distance at which autocorrelation begins to diminish in the variables.
In this method, we adjusted for first order effects with a distance weight. This distance weight is based on
the average centroid-to-centroid distance.

We performed global tests using the Moran’s /. Global autocorrelation tests measure the tendency,
across all data points, for higher (or lower) values to correlate more closely together in space with other
higher (or lower) values than would be expected if the cases represented a random distribution. Positive
correlations with significant p-values suggest high values in region 7 tend to depend on values in adjacent
regions; (ie, higher values will cluster in space with other high values). To understand how autocorrelation
tests work, it is useful to distinguish spatial autocovariance from ordinary covariance. Autocovariance is
defined for observations lagged in time or space with a single sequenced variable, whereas ordinary
covariance refers to the joint observation of two variables (Odland 1988). Global tests rely on the
assumption of stationarity or structural stability over space.

For the global and local Moran statistics, we formed the spatial weights matrix with Thiessen polygons.
These polygons are formed by Delaunay triangulation and have the special property that all points within
the polygon are closer to the point it encircles than any other point in the dataset (DeMers 1998). We
generated the Thiessen polygons with ArcView 3.1. See Figure H.1 for amap illustrating the Thiessen
polygons used in this analysis (Figures H2, H3, H4, and HS5 are referred to on page 191 of the main
report). Each MSA was assigned its own polygon (V=151). These tests were performed with an adjusted
first order neighbor weight (ie, all those polygons j connected to polygon i and within the average centroid-
to-centroid distance). Global tests were also performed with distance lags.

Below we summarize Odland’s (1988) exposition of the global Moran’s I as follows:

;. _n_ I W (X;- X) (x;- X)
L1 W 2 OG- X)°
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where, 7 is the number of regions, w;; is the spatial weight matrix for the pair of regions i and 7, x; and x;
are the data values, and x is the mean value for the entire sequence.

Moran’s I measures spatial autocovariance in the series X(x; - x)°. This depends on the variance in
the data, but not on its spatial arrangement. The second important term is n/23.w,, which measures the
connectivity among regions. Its value is invariate with the x values, but will change if the map arrangement
(ie, locational features of the coverage) changes. Expected values are given by -[1/n -~ 1)]. If x; is
independent of its neighboring observations, the / should roughly equal this expected value, within the limits
of statistical significance. If the values exceed the expected value, this suggests positive autocorrelation. The
converse also holds.

Nonstationarity, meaning the relation among the cases varies over space, is quite common. Local
indicators of spatial association (LISA) allow for local instabilities or nonstationarity in the data. In so doing,
local tests show the areas with potential “hot spots™ or clusters.

The G statistic measures the amount of local autocorrelation that results from the concentration of
weighted points within a distance d from the original point and all other weighted points in the study area
(Getis and Ord 1992). The null hypothesis requires the sum of values at all sites / within a radius of d are
notmore or less than would be expected by chance based on a random distribution (Getis and Ord 1996).
It has several attributes that make it attractive for measuring local spatial association. In particular, the
calculation of the expected value used for significance testing automatically corrects for the density of the
point pattern of the phenomenon of interest. In other words, the density of point samples does not influence
the value of the G statistic. When the more general case discussed above takes the form of either x; or x;
+x;, we have the G statistic. There are two types of G statistics, G,(d) and G, '(d). They are essentially the
same, with the difference being G;(d) does not allow point to equal point i. For a practical example, if we
wish to determine the G,(d) value for mean sulfate for the Fort Lauderdale MSA, we would use all MSAs
within a specified distance of Fort Lauderdale, but we would exclude Fort Lauderdale in the calculation.
For G;"(d), we would include Fort Lauderdale in the calculation. For this study, we used both G;(d) and
G;'(d). (For derivation and differences between the two types of G statistics refer to Getis and Ord 1996).

The G statistic measures local spatial autocorrelation at each MSA as follows: First we calculate a
global sum of values for all metropolitan areas (eg, the sum of all mortality risk in all 151 cities minus the
MSA for which the statistic is being calculated). Then we calculate the local sum of mortality risks for
MSAs within a given lag distance (eg, all cases within six hundred kilometers of an MSA). The G statistic
is the proportion of the summed relative risks within the specified 600 km distance over the sum of all
summed mortality risks, minus the case MSA of interest. If the local sum exceeds the proportion that we
would expect by chance, we can conclude that the sum of mortality risks around the MS A of interest is
significantly and positively autocorrelated. The G statistic can be calculated with the mortality value for the
MSA included or excluded from the summation calculations. For this study, we have excluded each MSA
from the summation calculations.

There is no predetermined rule by which to select a distance. According to several sources (Getis and
0rd 1992, Ord and Getis 1995, Anselin 1995), the distance should, at a minimum, have one neighbor, but
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preferably eight to produce a stable estimate that reasonably conforms to the underlying assumption of
normality in the random variable. We also used sermivariogram analysis in combination with the G statistics
to determine critical distances at which spatial dependence diminished. The spatial weight matrix for this
test usually relies on Euclidian distance, although many modifications are possible if there is prior knowledge
about the spatial process in question (eg, travel time instead of distance). For this initial analysis, we used
only Euclidian distance.

We performed a sensitivity analysis using various distances: 800 km, 750 km, 600 km, and 440 km.
The first two distances improve the stability of the estimates because most MAS have eight neighbors,
whereas with the third distance each has at least one neighbor. From exploration of the semivariogram
models, it appeared 750 km was the critical distance where spatial dependence diminished. Other
variograms were derived for a subsample of 107 cases in the Eastern United States. These variograms,
based on a denser and more stable sample, show that 600 km was the critical distance where the spatial
dependence decreased.

We also experimented with smaller lag distances. A smaller search radius results in smaller clusters,
yet in most cases these occur in the same place as with the larger search radius. In the case of all cause
mortality, it begins to concentrate closely on the lower Great Lakes region and along the Texas-Louisiana
border, With the smaller search window, some areas in the West have too few values to derive stable
estimates, but areas in the East still have stable estimates with a large number of neighbors. We also reran
the statistics on the Eastern portion (N = 107). The results show a smaller, but similar cluster in the lower
Great Lakes region and the Ohio Valley.

Below we give the formulas for the G statistic. Most of the formulas for the local statistics have been
adapted directly from Ord and Getis (1995) and Getis and Ord (1996). For the local indicators of spatial
association (LISA) statistics, we begin with the general case which takes the following form:

i I MYy

where w;; and y; are elements of matrices W and Y, and the focus is on the value ofT at location i. With
LISA statistics, W represents spatial association between site i and other sites j. Y represents association
inthe values of arandom variable at site i with other sites j. Below, for illustration, we give the formula for
the G;(d):

G,(d)= z fuff(d)xf
L X

where wytakes the form of symmetric zero/one spatial weights for all links within a given lag distance d'of
i. Other links are zero. The numerator is the sum of all x; within d of case i (excluding
x,), while the denominator is the sum of all x;, excluding x;. The computational form of the statistic is laid
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out below:

60, x Ac)X;- WX() Y
SOM(- 1)S,)- W, W(n- 2)Y*

where {wy(d)} is defined above. The sum of the weights can be written as

m’i= z}%(d):]‘ ’

and
Sp= Ej WysJ *

The mean is calculated as

—_ ijj ..
x(y- —Lj. i
0-
and the variance as:

2

X, _

SR~ R, i

(n-1)

Modeling 1n the modeling stage, we used both two-stage regression methods and simultaneous
autoregressive (SAR) models. (Note: Some of the following sections should be read along with methods
section of the main report). These models all use city-specific relative risks based on Cox regression as the
starting point. With the two-stage methods, the relative risks are combined using different weighting
schemes as discussed in the report. Specifically, the weights in the independent observations model are
based on the standard errors of the city-specific mortality rates, with the weights in the independent cities
model also taking into account intercity variation in mortality. The regional adjustment model allows for
spatial patterns by stratifying by region. Finally, the spatial filtering model removes broad regional trends
in the data prior to regression analysis.

Spatial filters were developed based on amethod developed by Getis (1995). The method builds on
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the (7 statistic and is calculated as follows:

o
X;| ——
n-1

X; -
G;(d)

where, x;is the original variable in its untransformed form, ;is the spatial weight matrix for case x; (in the
zero-one case we have employed here, this is simply the number of neighbor in the lag distance used to
calculate the G statistic), # is the total sample size, and G(d) is the Getis-Ord statistic for the case x; This
method uses the G statistic as the filtering mechanism and explicitly incorporates these filtered variables and
residual autocorrelation variables into the model. Essentially, it takes the original value for the random
variable (eg, mortality risk) and multiplies it by the ratio of the number of cases within the lag distance from
the MSA over the total sample size minus one. Thisis the expected mean value for the G statistic. This
value is then divided by the G statistic for that MSA. Say for example we looked at an MSA with 75
neighbors, we would expect the proportion of all 150 values to be 0.50. If we observed this proportion
to be 0.70, then we could say that the filter value would be 0.50/0.70 of the mortality variable or roughly
0.71.If the original mortality risk was 1.1, our new filtered value would be 1.1 times 0.71 or 0.785. When
we subtract this value from the original value, we would be left with a pure spatial autocorrelation effect of
0.315. Ifthe filter lag is correctly chosen, the result is a variable value that has the autocorrelation removed
from it. By removing autocorrelation before the variables are entered into the model, we can estimate the
relations using weighted least squares. Getis (1995) has demonstrated that this method removes most of
the autocorrelation from the model, thus allowing for estimation with least squares, providing an easily
interpreted result. Since the autocorrelation is removed from the variables before entry into the model and
there is no expectation of autocorrelation in these variables, an unmodified Moran test may be used to test
for global autocorrelation.

Filtering distances were chosen by careful inspection of semivariogram models and exploration of
which filter distance would remove all significant autocorrelation without introducing significant negative
autocorrelation. In a few instances, variables did not require filtering because there was no significant
autocorrelation present (eg, physicians variable). Figure H.2 shows a map illustrating the spatial extent of
the search window. These search windows may be thought of as regional level filters that will best control
for autocorrelation in variables with a relatively large spatial area. The filtering produces two variables: (1)
one with spatial autocorrelation removed (this represents the effect of interest), and (2) one that is highly
autocorrelated (pure spatial effect). We then ran the filtered variables without the spatial effects and tested
for global autocorrelation with a Moran’s 7. In some cases, variables had to be filtered many times to find
the correct distance for removing significant spatial autocorrelation.

The filter distance for most variables was 600 km (although the filtering distance was as low as 570
km and as high as 704 km). We attempted to filter the natural log variables, but with this approach, we
were unable to derive estimates of both filtered variables and the leftover autocorrelation effects. We
therefore filtered the mortality variables prior to applying a natural log transformation. The filtered variables
were then transformed with the natural log to allow for calculation of the relative risk estimates.
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Approximately 30 cases lacked a sufficient a number of neighbors to derive a stable filtered estimate
(ie, eight neighbors or more is recommended). For these variables we assumed the distance was great
enough that they would not add significantly to global autocorrelation. We then included the raw unfiltered
cases with the filtered cases. The new dataset, which included 121 filtered cases and 30 unfiltered cases,
was then tested for global autocorrelation. For all variables used in this analysis, we found this filtering
method successfully removed global autocorrelation. This method has the advantage of maintaining all the
available data, while still removing the significant autocorrelation before estimation with weighted least
squares.

We crossvalidated our results with a third modelling approach, the Simultaneous Autoregressive
(SAR) model. Here, the logarithms of the city-specific mortality rates represent the response variables,
assumed to be normally distributed. City-level covariates are included as predictors. However, the error
structure incorporates correlation between mortality rates after accounting for city-level predictors of
mortality. The correlation structure is based on the concept of “nearest-neighbor,” in that one is more likely
to be influenced by one’s neighbor no matter how far away that neighbor is. A city’s neighbor is defined
in the following manner. First, we constructed Thiessen polygons for each city. Asnoted earlier, these are
geographic areas that have the property that any point within the area is closer to the city than any other
city. Then the neighbor of any city is given by all the Thiessen polygons touching the polygon of the city.
Each city may have a different number of neighbors and the nearest neighbor will be a different distance
away for each city. A correlation structure is derived in which a city’s residual response is correlated only
with the residual responses of the city’s neighbor. Cities which are not neighbors are not assumed to be
correlated. A common correlation parameter is assumed for the entire dataset and is estimated
simultaneously with the regression parameters using maximum likelihood techniques in S-Plus. We also
weighted the analysis by 1/(7>+v,) thus incorporating the concept of a random effects model in the analysis.

In addition to the nearest neighbor modelling approach we also considered an “adjusted” nearest
neighbor approach in which mortality rates among cities were assumed to be correlated when they were
anearest neighbor or were within the average distance between all cities. This distance was 111 km for
the cities with sulfate data and 123 km for the cities with sulfur dioxide data. We only report the results for
the neighbor model specification, since the results for the adjusted nearest neighbor were almost identical.
The data used to generate the correlation matrix in the adjusted model contained more cities in the
Northeast and Ohio Valley regions compared to using nearest neighbor only. However, the inclusion of
these additional cities did not influence the estimate of the common correlation parameter and thus made
little difference in our estimates of the air pollution effect on mortality.

For this model, we chose amuch tighter spatial dependence criterion to account for highly local spatial
interaction. For example, in much of the Eastern United States, we might expect individuals to live in one
metropolitan area, but work in another. Thus the possibility exists of exposure mismeasurement, as these
individuals may live in arcas with relatively low pollution and work in areas with high pollution. Hence there
could be systematic mismeasurement in the pollution exposure estimates and the resulting relative risk.

SAR models are based on the idea that in an areal regression model, residuals — rather than the
dependent variable itself— tend to take similar values. This model rests on the belief that autocorrelation
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arises from a missing variable (Griffith et al 1998) or from some systematic mismeasurement in the
dependent variable (Miron 1984). In this case, where we use the mortality risk from the Cox survival model
as the dependent variable, it is likely a combination of the two phenomena. First, the survival model may
have excluded important independent variables. Second, as aresult of the model misspecification at the
individual level, the relative risk ratios, which form the dependent variable in the ecologic model, may be
systematically underestimated in regions of the United States. If such autocorrelation exists, itis possible
that the missing variables intervene in the air pollution-health association, thus causing a spurious result in
the survival model. Third, after inclusion of the sulfate variable, the error terms may still be autocorrelated,
suggesting a missing ecologic variable. The pollution coefficients from this model can contain a bias that
results in either an overestimation or underestimation of the pollution effect, and this makes the significance
tests unreliable. When autocorrelation is controlled through the SAR models, the possibility of this problem
occurring is reduced. The model extends the standard regression formulation (refer to Bailey and Gatrell
1995; Kaluzny et al 1998; Odland 1988).

The model begins as
Y=Xf+e+n

where Yisacolumn vector of the value of'y, the city-specific logarithms of the comparative risks, Xis an
n by k matrix of values for the independent variables, 8 is arow vector of parameters with k elements, and
¢is a column vector of normally distributed errors with n elements, and 1 is a vector of normally distributed
variates with zero expectation and covariance given V, a diagonal matrix with entries {v;,j=1,...,n}, the
corrected variance estimate of the city-specific logarithms of the comparative risks. The two components
of variance are assumed to be independent.

The model is extended with an autoregressive error term as follows:

e=pWe+v

where, Wis the spatial weight matrix, p is an autocorrelation parameter, and v is a vector of independent
random errors with variance 2 thus incorporating a random effects variance structure into the model.

The above equation can be written as

v=({T-pW)e
and hence

e=(-pW)'v.

Under this formulation the covariance matrix of € is given by
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Cld-pW) (- pW)' =7 Q(p)

The covariance matrix of Y is then given by Z=1Q(p) + V. The regression parameter vector f and the
two dispersion parameters p and T can be estimated by maximum likelihood methods. However, we are
not aware of any computer programs that can accommodate such a covariance structure. As partof our
sensitivity analysis we considered an approximation to X, ' say, of the form

s [(1- e W)TD (- o W)

where D is a diagonal matrix with elements 7° +v;. X’ has the same diagonal (variance) elements as = but
different off-diagonal (covariance) elements. The covariance structure given by X' can be accommodated
by the SAR model using the Spatial module of S-Plus.
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