=4

APPENDIX AVAILABLE ON REQUEST

Special Report

Reanalysis of the Harvard Six Cities Study and the American Cancer
Society Study of Particulate Air Pollution and Mortality

Part IT: Sensitivity Analyses

Appendix C. Flexible Modeling of the Effects of Fine Particles
and Sulfate on Mortality

Daniel Krewski, Richard T. Burnett, Mark S. Goldberg, Kristin Hoover, Jack Siemiatycki,
Michael Jerrett, Michal Abrahamowicz, Warren H. White, and Others

Correspondence may be addressed to Dr Daniel Krewski, Professor of Epidemiclogy and Statistics,
Department of Epidemiology and Community Medicine, Room 3229C, 451 Smyth Road,
University of Ottawa, Ottawa Ontario K1H 8M5, Canada

Although this document was produced with partial funding by the United States Environmental Protection
Agency under Assistance Award R824835 to the Health Effects Institute, it has not been subjected to the
Agency’s peer and administrative review and therefore may not necessarily reflect the views of the Agency, and
no official endorsement by it should be inferred. The contents of this document also have not been reviewed by
private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect
the views or policies of these parties, and no endorsement by them should be inferred.

This document was reviewed by the HEI Health Review Committee
but did not undergo the HEI scientific editing and production process.

Copyright © 2000 Health Effects Institute, Cambridge MA



UNIVERSITY OF OTTAWA

Faculty of Medicine Faculty of Health Sciences

Re-analysis of the Harvard Six-Cities Study
and the American Cancer Society Study
of Air Pollution and Mortality,

Phase II: Sensitivity Analysis

Appendix A,B,C,D,E,F,G,H,and I

R. Samuel McLaughlin Center for
Population Health Risk Assessment
Institute of Population Health
University of Ottawa

August, 2000



APPENDIX C: FLEXIBLE MODELING OF THE EFFECTS OF FINE PARTICLES AND SULFATE
ON MORTALITY

INTRODUCTION

The original analyses of both the Six Cities Study data and the ACS Study data were based on the
Cox proportional-hazards model, with the main exposure of interest being the long-term average of city-
specific levels of fine particles (Dockery et al 1993; Pope et al 1995). This modeling strategy relies ontwo
important assumptions. First, the Cox proportional-hazards (PH) assumption requires that the hazard ratio
remain constant over the entire follow-up period. In the case of multiple covariates, the PH assumption must
be satisfied by each covariate. The second assumption is relevant only for continuous predictors, and
requires that the effect of increasing the value of the predictor on the logarithm of hazard can be described
by a specific parametric function. In the original analyses of the Six Cities Study and the ACS Study, a
linear function was used to describe the effect of fine particles, as well as the effects of other quantitative
variables including body mass index (BMI) and number of pack-years of smoking, for either current or
former-smokers.

' Both assumptions are quite plausible in many applications of the Cox model, but they are not
necessary a priori, and thus require empirical corroboration. Violation of the linearity assumption may
occur, for example, if there is a threshold in the exposure-response relation. Accurate estimation of such
nonlinear effects is essential in order to properly characterize the association between particulate air
pollution and mortality. Accounting for non-proportional-hazards is also important, both to avoid biased
estimates of relative risks, and to provide additional insights into the mechanisms by which long-term levels
of air pollution affect mortality. Indeed, one of the more common reasons for the violation of the PH
assumption in the Cox analyses with fixed-in-time covariates is that such analyses do not account for
changes over time in the covariate values (Abrabamowicz etal 1996). If current risks depend mostly on
the current value of the risk factor, then the hazard ratio, expressing the impact of a fixed-in-time measure
of the risk factor, may vary over time. This consideration may be important in the Six Cities Study.
Whereas the effects of fine particles are represented by a single (fixed-in-time) value, the annual average
fine particle levels in the six cities tended to decrease during the study period.

The Original Investigators did not report on the assessment of consistency of these assumptions
with the relevant data. One reason might be that simultaneous verification of both assumptions requires
specialized software. Indeed, although several methods have been proposed for either (7) testing the PH
assumption or (#) testing the linearity assumption, they do not permit verification of both assumptions at the
same time, for the same predictor. Mackenzie and Abrahamowicz(1999) show that failure to account for
the fact that the effect of a continuous risk factor violates the PH assumption may produce spurious
evidence of nonlinearity. Conversely, failure to account for nonlinearity may result in increased false-positive
rates when testing the validity of the PH assumption.

OVERVIEW OF THE FLEXIBLE PRODUCT MODEL.
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To address these issues, we reanalysed the Six Cities Study data and the ACS Study data using
ourregression spline generalization of the Cox model (Mackenzie and Abrahamowicz 1999) that extends
our previous method for flexible modeling of time-dependent hazard ratios (Abrahamowicz et al 1996) to
include simultaneous modeling of nonlinear effects of continuous covariates on the log hazard. The resulting
model defines the log hazard ratio (HR) at time t, associated with the covariate value x, as the product of
the two "marginal” functions: f{#} and g(x). The shape of g(x) describes how, at any fixed point in time, the
loghazard changes with increasing x values, with the special case of a linear function corresponding to the
conventional linearity assumption in the Cox model. The estimate of g(x) only permits an assessment of the
relative impact of changing x values over different subintervals [x,,x,] within its range, with steeper portions
of the curve corresponding to greater impacts. To assess the absolute impact of such a change, the
difference g(x;) -g(x,) has to be multiplied by a function f{7), since under the product model the impact of
the covariate depends on ¢. Thus, f{7) represents the time-dependence of the changes in the impact of x
on the log hazard.

Both estimated functions are modeled using low-dimension quadratic regression splines, (ie,
piecewise quadratic polynomials). Knots, representing points at which subsequent quadratic pieces of the
estimated function join each other, are placed at equally spaced quantiles of the sample distribution of non-
censored failure times or covariate values, respectively. Both functions may be conveniently represented
by graphs of their point estimates, together with the corresponding pointwise 95% confidence intervals.

The product model offers two model-based likelihood ratio tests (LR T) that can be employed to
simultaneously test the PH assumption and the linearity assumption, for the same continuous covariate. Each
testis based on comparison of the log likelihood of the product model with one of the "marginal” models,
in which the effect of the predictor is constrained either (i) to have a constant log hazard ratio 1) =C, or
(i7) to have a linear impact on the log hazard g(x) = bx. This is possible because constant and linear
functions are included in the family of quadratic regression splines, so that the conventional models,
corresponding to null hypotheses of the above LRT tests, are nested within the flexible product model.

Our method allows specification ofhow the effect of a particular covariate should be modeled.
These a priori decisions are made independently for each covariate, based on knowledge of the covariate,
goals of the analysis, and the amount of data available. For example, for some covariates the full product
submodel may be entertained, implying flexible modeling of both time-dependent and nonlinear effects,
although the effects of other covariates may be represented by a simpler submodel, with PH or linearity
constraints imposed a priori.

In applications of the flexible product model, it is necessary to specify the required number of
degrees-of-freedom (df} for this effect, that equals the number of quadratic components plus two. Thus,
higher df's result in a more flexible model, reducing the risk of biased estimates, but also in a higher variance
of the estimate and arisk of overfitting bias. MacKenzie and Abrahamowicz(1999) suggest the use of a
5 dfmodel (3-piece quadratic spline) for time-dependent effect to achieve the best bias/variance trade-off.
The use of 4 df's for nonlinear effects was also suggested as a default option for large data, implying a 2-
piece quadratic spline.
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Specifying df's a priori is important with respect to the accuracy of the LRT, as selecting the
"optimal" df's a posteriori and then carrying out tests based on such an "optimal" model inflates type | error
rates (Abrahamowicz et al 1996). However, for exploratory purposes, fitting flexible models with different
df'smay be useful. This will help evaluating the robustness of the findings based on the default model,
especially with respect to the shape of the estimated functions. Finally, results of flexible analyses may
indicate that some or all of the assumptions being tested are well met by empirical data. In that case the
initial flexible model may be simplified by removing those time-dependent and/or nonlinear effects specified
a priori that are not significant.

SELECTION OF DATA FOR ANALYSIS
The Six Cities Study

Complex modeling required by the product model described in the previous section imposes
restrictions on the size and complexity of the data. At present, we were able to extend the program to
handle data with up to about 3,000 observations, provided only few covariates are modeled simultaneously.
To reduce the number of observations to a tractable level, while maximizing the amount of information
extracted from the data, we employed two approaches. The first consists of simply splitting the entire
cohort into 4 randomly selected disjoint and complementary subsets, each of about 2025 subjects. Each
of the four subsets is then analyzed independently using the same series of models. Whereas the “random
subsets™ approach avoids numerical problems, statistical power of the LR Ts is substantially reduced, as
each subset contains only about 375 deaths (about 25% of the total number of deaths). However, the
independence of the results for the four subsets allows us, in part, to resolve this problem. In fact, because
the subsets are disjoint for any specific model, the log likelihoods of the four subsets can be summed up
in order to approximate the log likelihood of the entire sample under an extended model that estimates
separate regression coefficients for each of the four subsets. Accordingly, the sum of subset-specific log
likelihoods can be considered as corresponding to the model with 4 times as many parameters as the model
estimated for each subset. It follows that, under the null hypothesis, the sum ofthe LRT statistics from the
four models will be distributed as a Chi-squared statistic with 4 times as many degrees-of-freedom as the
“nominal” LRT for each subset.

This conjecture was validated in a computer simulation where we generated 10,000 random
samples of 1,000 each, randomly split the samples into four subsets and analyzed each using a conventional
Cox model. We then added the LRT of the four subsets in each sample. In the simulations, the individual
survival times were independent of the values of any continuous covariate included in the Cox model, so
that the null hypothesis was true. The empirical distribution of 10,000 values of the combined LRT was
virtually the same as the theoretical distribution of the Chi-squared statistic with 4 degrees-of-freedom:
particular quantiles of the empirical distribution and the corresponding theoretical values were almost
identical. Based on the results of these simulations, we assume that the sum of the four 1-gfLRT values (for
testing the adjusted effect of a given variable under the PH assumption) represents the 4-dfLRT, and,
accordingly, we assume the sum of the four 4-dftests (of time-dependence of a given effect) represents
a 16-dfLRT.
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However, each of the four subsets also yields a different spline estimate of a function of interest (for
example, the time-dependent effect of fine particles). Because of the flexibility of 5-dfestimates and the
relatively small number of deaths in each subset, the subset-specific estimates may be unstable; hence,
random variation may induce some spurious differences in their respective shapes. Yet, it is unclear how
the four estimates could be aggregated. Specifically, knots (points where subsequent polynomial pieces of
aspline join each other) are automatically placed at the terciles of the distribution of uncensored event times
observed in a given subset. Therefore, there is variability from subset to subset, so that the estimated spline
coefficients cannot be directly compared or averaged.

To avoid these difficulties and provide areasonably stable and accurate estimate of the pattern of
time-dependent changes of the adjusted effect of fine particles on mortality, we used a procedure similar
to the case-cohort approach (Barlow et al 1999). First, we randomly sampled 1,500 subjects from about
8,100 participants of the Six Cities Study, using simple random sampling (that is, independently of survival
and covariate values). These 1,500 subjects, including the ones who died during the follow-up, were
considered arandom subcohort and, in the analysis, were treated as if they were followed prospectively
(Barlow etal 1999). We then added to the random subcohort all other subjects who died during the study.
Accordingly, the final sample included all deaths (cases) observed in the Six Cities Study. In the analyses,
however, we had to account for the fact that cases corresponding to deaths occurring outside the subcohort
were identified retrospectively (that is, selected based on the observed outcome). Therefore, as
recommended by Prentice and Breslow (1978), each case from outside the subcohort was included in only
onerisk set, corresponding to the time of death of the particular case. By contrast, cases occurring within
the subcohort and controls were included in all risk sets until their time of death or censoring, respectively.

It is emphasized that this version of the case-cohort approach was used mainly to obtain unique and
relatively stable spline estimates of the effects of interest. Note that the case-cohort approach would be
inferior to the random subsets approach as far as hypothesis testing is concerned. First, the case-cohort
uses less information than the combined analyses of four random subsets, which reduces statistical power.
Second, although the value of the test statistics will depend on the numerical weights (assigned to weigh
differentially cases within vs. those outside the subcohort), the choice of correct weights remains
controversial (Barlow et al 1999),

Using the above approaches, we analyzed subsets of the participants of the Six Cities Study with
a number of versions of the flexible product model, which varied with respect to the set of included
covariates and model complexity. Separate analyses were carried out using either fine particles (PM, 5) or
sulfate particles as the main exposure variable. We attempted to follow the Original Investigators' approach
with respect to the choice of potential confounders and stratification variables, while taking into account
numerical limitations of the flexible modeling approach. Specifically, as in the original analysis by Dockery
and collegues (1993), all primary analyses used two stratification variables: sex and age at the beginning
of follow-up, categorized in 5-year intervals. Moreover, in all analyses the effect of exposure to air pollution
was adjusted for the baseline value of BMI and for two variables related to smoking status, one
representing current-smokers and another former-smokers. Two variations of the model were considered,
the first adjusting for the two binary variables indicating, respectively, current and former-smokers, and the
second adjusting for the two quantitative variables, representing cumulative exposure to smoking, in terms
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of the estimated number of pack-years of smoking, separately for current and former-smokers.

This strategy was necessary because simultaneous inclusion of all four smoking variables resulted
innumerical convergence problems, especially with highly flexible models. This resulted partly from the
limitations on the size of the data, and partly from the high degree of multicollinearity among these four
variables. In addition to obvious negative correlation between variables representing current vs former-
smokers, the quantitative and binary variables were inherently positively correlated, as all subjects who had
the lowest value (0) for current-smoker pack-years had, by definition, the lowest value (0) of the binary
indicator of current smoking. This creates identifiability problems in flexible nonlinear modeling of the effect
of the number of pack-years for current-smokers, adjusted for the binary indicator of current-smoker.
Indeed, the contrast between the current-smokers and other subjects may be represented either by the log
hazard ratio estimate for the binary variable, or by estimating the difference in log hazards between value
0 and higher values of the number of pack-years for current-smokers. In flexible modeling, the estimate of
this difference is locally independent of the estimated effect of increasing the number of pack-years (x)
among current-smokers, as the former concerns the interval 0 <x < 1 and the latter x > 1.

ACS Study

In order to employ flexible product model to analyze the effects of fine particles and sulfate on
mortality inthe ACS Study, it was necessary to develop a different sampling strategy. Given that the current
implementation of our flexible model limits the sample size to less than 3,000 observations it would be
impractical to analyze all the ACS data as this would imply separate analyses of each of about 200 subsets.
Instead, we chose to limit the analyses to 10 disjoint subsets, each with 2,200 individuals selected using
simple random sampling from the entire ACS cohort. The main reason for fixing the number of subsets at
10 was to obtatn statistical power similar to that of the random-subsets analyses ofthe Six Cities Study
data. The power of significance tests in survival analyses is largely driven by the number of observed
deaths. Our flexible analyses of the Six Cities Study were based on four random subsets yielding a total
of about 8,100 individuals with more than 1,400 deaths. Given that the censoring level was substantially
higher in the ACS Study than in the Six Cities Study, we had to increase the number of subsets in the ACS
Study to achieve a comparable number of deaths. As atypical subset 0f 2,200 participants of the ACS
Study contained about 170 deaths, 8 subsets would be necessary to obtained anumber of deaths close
to 1,400.

However, we had to take into account that, with the same total number of deaths, the power of the
combined likelihood ratio test in the ACS analyses will be lower than in the Six Cities Study analyses. This
difference in power occurs because of the difference in degrees-of-freedom, reflecting the differences in
the number of subsets: with m subsets the combined LRT of time-dependence uses 4m degrees-of-freedom
whereas the combined LRT of nonlinearity uses 2m degrees-of-freedom. To compensate for the resulting
loss of power, we increased the number of deaths in the ACS analyses by about 25%, compared to the
Six Cities Study analyses, which implied increasing the number of random subsets from 8 to 10. Thus,
flexible analyses of the ACS cohort were based on 10 disjoint random subsets, consisting of the total of
22,000 study participants with about 1,700 deaths. Even if this represents only a small fraction of the
original ACS cohort, we assumed that 1,700 deaths will be sufficient to ensure a satisfactory precision of

Part IT Appendix C Page 5



the estimates and more than adequate statistical power to detect any effect of clinical relevance.

Inthe case of analyses of fine particles sampling frame was restricted to the inhabitants of the 50
cities with available measurements whereas for the sulfate analyses we sampled from the inhabitants of all
151 cities. To facilitate statistical inference, in each case we relied on simple random sampling of all eligible
individuals, independently of the city of residence and covariate values.

In addition, to increase numerical stability and precision of the estimated spline functions,
representing various effects of interest, we adopted an approach similar in spirit to the case-cohort
approach (see section 2.8). Given that about 40,000 deaths occurred in the ACS Study, the size of the
dataset including all deaths would largely exceed the numerical capabilities of the current version of our
program. Therefore, we first randomly selected a subcohort of 1,200 participants of the ACS Study and
then added additional 1,300 deaths randomly selected from about 40,000 deaths that occurred outside this
subcohort. The resulting sample of 2,500 participants, including about 1,370 deaths (comparable to the
1,430 deaths used in the case-cohort analyses of the Six Cities Study data) was then analyzed while
manjpulating time-at-risk so as to account for retrospective identification of those cases that were not
included in the subcohort (see section 2.8).

All analyses were stratified by sex and 5-year age categories and the effects of air pollution were
adjusted for education (dichotomized: college or higher vs lower), BMI and two smoking variables, one
representing the information on current-smokers (at baseline) and the other related to former-smokers. In
most analyses of the ACS data, the smoking effects were represented by quantitative variables
corresponding to cumulative exposure in terms of pack-years, that were calculated as the product of
smoking intensity and smoking duration. Replacing these quantitative variables by the corresponding binary
indicators of current and past smoker, respectively, did not change materially the estimated effects of fine
particles or sulfate.

Asinthe analyses of the Six Cities Study data, time-dependent effects were represented by 5-
degrees-of-freedom (df) quadratic spline and tested using 4-dfLRT. Possibly nonlinear effects of fine
particles and sulfate, and of each of the three quantitative covariates were represented by a 3-df quadratic
spline, and the nonlinearity was tested using LRT on 2 df.

MODELING THE SIX CITIES STUDY DATA
Effect of Fine Particles

Flexible analyses of the effect of fine particles, represented by a quantitative city-level variable,
indicated that its adjusted effect meets the linearity assumption. Regardless of the subset of covariates
included in the model, and regardless of whether the PH assumption was imposed on this effect or not, the
Pvalues for the test of nonlinearity for each of the four disjoint subsets were far above the nominal (.05
level associated with statistical significance. In contrast, flexible analyses of the effect of fine particles
suggested that the Cox proportional-hazards (PH) assumption may be violated. Using the 5-df (default)
representation, and adjusting for the quantitative variables representing pack-years of cigarette smoking
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for current and former-smokers, respectively, as well as for BMI, the time-dependent hazard ratio for the
effect of fine particles was marginally significant for the product model, and remained so in a simpler model
in which g(x) was restricted to be linear. The P values for each of the four subsets (as well as for the
combined test) are listed in Table C.1. The combined LRT with 16 dfyielded a P value of .032. Replacing
quantitative smoking variables by the corresponding binary indicators of current and former-smoker did
not affect this finding appreciably as the time-dependent effect of fine particles remained statistically
significant for the product and the restricted models (P = 0.048).

The solid curves in Figures C.1a through C.1d represent the 5-df estimates of the pattern of
changes in the log HR for fine particles during the first 15 years of follow-up (obtained from the flexible
product model applied to the four disjoint datasets) after having been adjusted for the two binary smoking
status indicators and BMI. The dashed curves, representing pointwise 95% confidence intervals, help
assess the precision of the log HR estimates at specific points during follow-up. The graphs in Figures C.1a
through C.1d suggest that changes in the effect of air pollution may follow a non-monotone pattern over
time.

All four panels of Figure C.1 show that the estimated impact of fine particles on mortality increases
substantially at about 10 to 12 years of follow-up, and then decreases in the last few years. The four
estimates are less consistent in the first few years of follow-up where, for two subsets, the effect of fine
particles seems to decrease, whereas for two other subsets it seems to increase. However, wide confidence
intervals around the estimated function during the first 3 years of follow-up (reflecting the relatively low
number of deaths in the initial phase) indicate that these apparent discrepancies may be due largely to
numerical instability of the subset-specific estimates.

To provide amore stable estimate of the pattern of changes over time in the effect of fine particles,
we show in Figure C.2 the estimate obtained with the case-cohort approach, where information contained
inall deaths is used. As expected, the confidence intervals here are much tighter than in Figure C.1, The
estimate shows a modest decline in the effect of fine particles in the first four years, followed by the
relatively constant and practically null effect in years four through eight, and finally by a substantial increase
intheeffectin years 10to 12, This latter increase confirms the consistent findings of the four subset-specific
analyses (Figures C.1a through C.1d). When the number of df§ was reduced to 3 or 2, the time-dependent
effect became non-significant, with the model fit being much worse than for the 5-dfmodel. This shows that
less flexible models were not able to represent the complex non-monotone pattern of changes over time
in the log HR for fine particles.

This non-monotonicity of changes in the effect of fine particles during the follow-up explains why
our test (based on flexible modeling) rejected the PH hypothesis, although the test proposed Grambsch and
Therneaun (1994) (as incorporated in S-Plus) failed to reject this hypothesis. The reason is that the latter
test statistic is developed assuming the log-hazard ratio is a linear function of time. (We have previously
shown, in the context of assessing prognostic factors for mortality in nasopharyngeal cancer, that when the
actual pattern of change shows marked non-monotonicity, the test of Grambsch and Therneau has very low
power [Rachet et al 1998]).
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To assess the plausibility of such a complex pattern of changes, we compared our results in Figures
C.1 and C.2 with those in Figure 1 of the original publication by Dockery and collegues (1993), which
shows the patterns of changes in yearly average particle levels for each of the six cities. The main objective
was to establish to what extent the decreasing and increasing portions of our time-dependent estimates of
the fine particle effect correspond to periods of respectively decreasing and increasing between-cities
variation in the yearly particulate levels. Unfortunately, fine particle levels were not measured prior to 1979,
corresponding approximately to the first four to five years of follow-up (Dockery et al 1993). However,
the upper graph of Figure 1 in that article shows that during the same time interval (1975—-1980), total
particles decreased considerably in the two cities with the highest pollution levels, resulting in an important
reduction in between-cities variation from 1975 to 1980. As fine particles represent a fraction of total
particles, it may be expected that the variance of fine particle levels across cities may also have been
reduced during the initial 5 years. If so, then this decrease would coincide in time with the estimated
decrease in the impact of fine particles on mortality suggested by the case-cohort estimate in Figure C.2.
Moreover, the increase in the estimated time-dependent effect of fine particles, seen after about 11 years
of follow-up in Figures C.1 and C.2, coincides with a sharp increase in fine particle levels in Steubenville,
and an increasing between-city variation in these levels (middle graph in Figure 1 of the original publication).

In the previous paragraph, we argued that the periods of decrease/increase in the estimated time-
dependent effect of fine particles scem to agree with concurrent decreases/increases in the between-city
variation in particulate levels. We now attempt to explain why such an agreement may occur. In the Six
Cities Study, the city-specific levels of fine particles are represented by a fixed-in-time variable,
corresponding to the average within-city level during the relevant period (1980—1985). Thus, the estimated
log hazard ratio represents the effect of increasing this long-term average by one unit of exposure (here
corresponding to arange of 29.6-11.0=18.6). Assume now that the impact of air pollution on mortality
in a given year depends mostly on the current (yearly average) particulate levels rather than on their long-
term average levels. In addition, assume that the actual between-city variance of particles levels is much
higher in year one than in year five. Then, under the above assumptions, the observed differences in
mortality among cities due to air pollution will also be much greater in year 1 than in year 5. In the Cox
model, however, differences in mortality in both years will be attributed to the same magnitude of the
differences in the long-term average pollution levels. As aconsequence, because of the failure to account
for yearly changes in particulate levels, the apparent impact of the same differences in their long-term
average levels on mortality will appear much bigger in year one than in year five. In this situation, a flexible
time-dependent model] will detect these apparent temporal differences in the estimated effect, and will likely
yield evidence of time-dependence in the effect of long-term average particle levels. From this perspective,
the results of our analyses may suggest that the relation between fine particles and mortality may be refined
by taking into account short term, for example annual, variation of particulate levels in individual cities.

Effect of Sulfate Particles
Similar analyses were carried out focusing on the effect of sulfate. Table C.2 shows the results of
LRT testing of the PH hypothesis, indicating that sulfate also have a marginally significant time-dependent

effect (P =0.0316 for the combined 16-df LRT). Figures C.3a through C.3d present the estimated
patterns of time-dependence of sulfate effects for the four random subsets. Figure C.4 shows the estimate
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obtained using the case-cohort approach. The results in Figures C.3 and C.4 show that the estimated
pattern of changes over time in the impact of sulfate on mortality is quite similar to that seen in Figures C.1
and C.2 for fine particles.

Effects of Selected Covariates

In addition to flexible modeling of the effects of exposure to particulate air pollution, we also
considered flexible estimation of the effects of selected covariates, including smoking variables and BML
For both binary smoking indicator variables, the time-dependent effects were nonsignificant and the
corresponding log hazard estimates were very flat (graphs not shown). This further confirms that their
impact on hazard remains constant during the follow-up period, and that the conventional Cox PH
approach is adequate to represent the effects of these important risk factors.

‘When the binary smoking vartables were replaced by the corresponding quantitative pack-years
variables, flexible modeling yielded significant nonlinear effects of pack-years for current-smokers. The
estimated effect of increasing the number of pack-years is presented in Figure C.5, which resembles a two-
segment linear spline. The estimate indicates a large difference in risk between the zero and non-zero pack-
years of cigarette smoking. Although the risk continues to increase gradually with increasing number of
pack-years, the eventual slope is much smaller than the initial slope (it is between 0 and 1). This pattern has
aclear interpretation. In the absence of the binary indicator for current smoking status, the flexible nonlinear
modeling approach allowed us to detect a large gap in risks between current-smokers (pack-years > 0)
and non-smokers (pack-years =0), as reflected by the first, steep component in Figure C.5. The second
component of'this estimate shows that the actual effect of increasing the number of pack-years for current-
smokers is almost perfectly linear. Although the nonlinear effect of the number of pack-years for former-
smokers was not statistically significant, Figure C.6 shows that the pattern of nonlinearity is very similarto
that for current-smokers, but the effects are weaker. Thus, the results of Figures C.5 and C.6 indicate that
the flexibility of regression spline modeling may provide important insights in the role of continuous
covariates and, in some cases, compensate for some aspects of model misspecification (due here to
omitting the binary indicators of smoking status). The ability of our flexible model for pack-years variables
to detect important difference in the risks between current-smokers and other subjects also explains the
near collinearity problems discussed in section C.2. When the model included both flexible (3-df)
representation of the continuous effect of pack-years and the corresponding binary smoking indicator
variable, the difference in risks between smokers and nonsmokers could be represented by either variable,
resulting in identifiability problems,

Finally, Figure C.7 presents the nonlinear estimate of the effect of BMI on the log hazard, which
was statistically significant in all analyses. The relation between BMI and risk is non-monotone with the
highest risks observed for either small or large BMI values. This pattern, which can be well approximated
by a quadratic function, is consistent with the characterization of BMI in our extended model. Accordingly,
in all analyses reported in this appendix, the effect of BMI was represented by a nonlinear 3-df estimate.

Modeling the ACS Study Data
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Effects of Fine Particles

The left part of Table C.3 summarizes the results of testing of the time-dependence of the effect of
fine particles on mortality, after adjusting for education, BMI and the two quantitative smoking variables,
and taking into account the nonlinearity of the fine particles effect. The combined LRT on 40 dfrejects the
PH hypothesis (P=0.015 in Table C.3), although the P values for individual subsets vary substantially and
in only two among the 10 subsets fall below the conventional 0.05 cutoff.

Figure C.8 shows the estimated patterns of time-dependence in the 10 randomly selected subsets.
The ten estimates show considerable variation so that no overall pattern of changes over time in the effects
of fine particles emerges. Animportant portion of the differences between subset-specific estimates is likely
due to sampling error. First, with only about 170 deaths per subset, the precision of the 5-dfestimates is
limited as indicated by relatively wide pointwise confidence intervals in Figure C.8. Moreover, in eight of
the ten subsets represented in Figure C.8 the time-dependent effects of fine particles are statistically
nonsignificant (P values between 0.12 and 0.58), in which case the flexible estimate may represent mostly
the over-fitting bias (Abrahamowicz et al 1996).

Itis also likely that the between-subsets variation in the pattern of changes in the impact of fine
particles over time may be partly due to the random between-samples variation in the proportions of
participants from different cities. Indeed, the results of the Six Cities Study analyses suggested that the
observed changes over time in the estimated effect of the long-term average levels of fine particles may
reflect the short-term changes in their levels in specific cities (section 3). On the other hand, it is likely that
the patterns of changes in yearly fine particle levels may be quite different among the 50 cities with available
fine particles measures in the ACS Study. If so, then the estimated patterns of changes, and their statistical
significance, may vary considerably depending on which cities have relatively larger representation in a given
subset. This might also explain why it is unlikely to observe one consistent overall pattern of changes over
time.

To obtain a more stable estimate of the pattern of time-dependent changes in the impact of fine
particles on mortality, Figure C.9 shows the results of the case-cohort approach, based on 2,500
individuals with more than 1,300 deaths. As expected, the pointwise confidence intervals in Figure C.8 are
more narrow than in Figure C.9, reflecting enhanced precision, although it should be noted that the case-
cohort-based intervals in Figure C.9 are only approximative, due to uncertainty about optimal weighting
of cases (Barlow et al 1999). The most prominent feature of the time-dependent estimate of the log hazard
ratio for fine particles in Figure C.9 is its flatness. This suggests that the impact of fine particles on mortality
in the ACS Study remained remarkably stable across most of the follow-up period, corroborating the
conclusion of the previous paragraph about the absence of any systematic changes.

The left column of Table C.4 shows the results of testing the nonlinearity of the adjusted effect of
fine particles in the 10 subsets of the ACS Study. The combined LRT on 20 dfyields a very significant
evidence of nonlinearity (7 =0.0002), although subset-specific P values vary considerably. The fact that
both time-dependent and nonlinear effects of fine particles are statistically significant underscores the
importance of using the flexible product model that simultaneously accounts for both effects. (Accordingly
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in this section, all reported tests and estimates that are related to nonlinearity of fine particles effects are
adjusted for time-dependent effect and vice versa.) Figure C.10 shows the 3-dfestimates of the nonlinear
effects of fine particles for the 10 random subsets. It should be noted that the estimated functions show the
log hazard ratio relative to the subset-specific mean fine particles value, at which the estimate is a priori
fixed to 0 (Mackenzie and Abrahamowicz 1999). (This explains why the confidence interval shrinks to null
at the sample mean and widens with increasing difference from the mean.) Whereas there is substantial
variation between subset-specific shapes of the estimated dose-response curves, a lot of this variation may
be due to sampling error and over-fitting bias, as indicated by wide confidence intervals. To obtain a more
stable estimate, Figure C.11 shows the case-cohort-based estimate of the nonlinear effect of fine particles
on mortality, adjusted for the estimate of their time-dependent effect (see Figure C.9). The estimate in
Figure C.11 suggests that the impact of fine particles may be relatively stronger in the lower half of its range
than in its upper half.

Effects of Sulfate

The combined 40-dfLRT reported in the right column of Table C.3 shows a very significant time-
dependence of the adjusted effect of sulfate on mortality (P <0.003), based on 10 random subsets of the
ACS cohort. Figure C.12 shows the corresponding estimates for the ten subsets. As for fine particles, there
is considerable variation between subset-specific patterns of time-dependent changes in the effect of sulfate
and this variation remains substantial even ifthe comparison is restricted to the subsets with significant or
marginally non-significant time-dependence. This finding suggests that changes observed in individual
subsets may reflect changes in sulfate levels in individual cities so that overall pattern of changes over time
would be difficult to detect and to interpret. This is confirmed in Figure C.13 which shows that the case-
cohort-based estimate of the time-dependent effect of sulfate particles is quite flat.

The right column of Table C.4 shows the very significant nonlinearity of the adjusted effect of sulfate
particles in the ACS Study, based on the combined LRT test (P < 0.006). Figure C.14 shows the 3-df
nonlinear estimate for each of the ten subsets. A rather consistent pattern emerges from the ten panels of
Figure C.14. With few exceptions, there is a clear dose-response relation in the upper half of the
distribution of sulfate levels, but in the lower range there is little evidence of such a relation. This pattern is
confirmed in Figure C.15 that shows the results of the case-cohort approach and, thus, provides amore
stable estimate of the dose-response curve. Figure C.15 shows a clearly nonlinear though monotonic
relation between sulfate levels and risks of death: increasing sulfate levels seems to have only very minor
impact on log hazard ratio as long as their level does not exceed about 15 pg/m>but beyond this level the
risks increase very sharply.

Effects of Selected Covariates

Figures C.16 and C.17 showthe nonlinear 3-dfestimates of the effects of pack-years of cigarette
smoking for, respectively, current and former-smokers, obtained using the case-cohort approach. The
dose-response curve in Figure C.16 shows a two-phase relation with the initial sharp increase in the risk
representing the difference between subjects who did not smoke at baseline (0 pack-years) and current-
smokers (1 or more pack-years) and the second segment showing that risks for non-smokers increase
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gradually with increasing exposure. This pattern is quite similar to the estimate of the impact of pack-years
for current-smokers in the Six Cities Study (see Figure C.5). The dose-response curve for past smokers
is similar with the exception that the initial segment suggests that between 0 and 1 pack-years the risks tend
to decrease rather than increase, although the estimated difference is minor (Figure C.17).

Finally, Figure C.18 confirms the U-shaped effect of BMI on mortality, with risks being the lowest

in the middle of its range and increasing in both tails of the distribution. This pattern, which may be well
represented by a quadratic function, is similar to that estimated for the Six Cities Study (see Figure C.7).
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Table C.1 Test for the proportional hazards hypothesis for the effect of PM 2.5 on mortality in the
Harvard Six-Cities Study: Results for the 4 random subsets.

Random Subset Likelihood Ratio Test Degrees of Freedlom  P-value
1 7.10 4 1303

2 6.06 4 1944

3 8.48 4 0756

4 6.32 4 1767
All? 27.96 16 .03197

a. Combined likelihood ratio test.



Table C.2. Test for the proportional hazards hypothesis for the effect of Sulfates on mortality in the
Harvard Six-Cities Study: Results for the 4 random subsets

Random Subset Likelihood Ratio Test Degrees of Freedom  P-value
1 7.86 4 0971
2 5.32 4 2572
3 6.76 4 1487
4 8.06 4 0896
AllP 28.00 16 0316

a. Combined likelihood ratio test.



Table C.3. Test for time dependence of the effects of fine and sulfate particles in the American

Cancer Society Study.
Fine Particles Sulfates
Random LRT! df?  p-value Random LRT df  p-value
Subset Subset

1 7.38 4 0.12 1 5.72 4 0.22
2 4.36 4 0.36 2 4.80 4 0.31
3 2.86 4 0.58 3 10.10 4 0.04
4 12.42 4 0.01 4 7.08 4 0.13
5 3.16 4 0.53 5 5.28 4 0.26
6 6.04 4 0.20 6 8.14 4 0.09
7 4.52 4 0.34 7 4.62 4 0.33
8 3.78 4 0.44 8 428 4 0.37
9 11.90 4 0.02 9 16.50 4 0.00
10 5.36 4 0.25 10 3.08 4 0.55
Sum 61.78 40 0.02 Sum 69.60 40 0.00

1. Likelihood ratio test statistic
2. Degrees of freedom
3. Combined LRT



Table C.4. Test for non-linearity of the effects of fine particles and sulfate particles in the American

Cancer Society Study.
Fine Particles Sulfates
Random LRT! dff  p-value Random LRT df  p-value
Subset Subset

1 13.56 2 0.00 1 4.06 2 0.13
2 0.68 2 0.71 2 1.12 2 0.57
3 0.02 2 1.00 3 5.96 2 0.05
4 12.08 2 0.00 4 6.64 2 0.04
5 3.00 2 0.22 5 2.08 2 0.35
6 3.72 2 0.16 6 0.12 2 0.94
7 1.26 2 0.53 7 2.06 2 0.36
8 2.34 2 0.31 8 3.10 2 0.21
9 4.48 2 0.11 9 13.28 2 0.00
10 9.22 2 0.01 10 1.04 2 0.59
Sum 50.36 20 0.00 Sum 39.46 20 0.01
1. Likelihood ratio test statistic
2. Degrees of freedom

3. Combined LRT
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Figure C.1 Flexible quadratic spline estimate (5-df) of the time-dependent effect of fine particles on the log
hazard of mortality of four disjoint subsets of the Harvard Six-Cities Study. The horizontal axes represent the
follow-up time, and the vertical axes correspond to the log hazard ratio (HR) associated with increasing the

fine particles level by 18.6 micrograms/m3, which correspond to the difference between the
lowest of the city-specific levels, The solid curves r

curves the pointwise 95% confidence intervals.
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Figure C.3 Flexible quadratic spline estimate (5-df) of the time-dependent effect of sulfates on the log hazard
of mortality on four disjoint subsets of the Harvard Six-Cities Study. The horizontal axes represent the follow-
up time, and the vertical axes correspond to the log hazard ratio (IIR) associated with increasing the fine
particles level by 8.0 micrograms/m3, which correspond to the difference between the highest and the lowest of

the city-specific levels. The solid curves represents the point estimates of the log HR and the dashed curves the
pointwise 95% confidence intervals.
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Figure C.14. Flexible quadratic spline (3-df) estimates of the non-linear effect of increasing the level of exposure to
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Sulfates on the log hazard of mortality of ten disjoint subsets of the American Cancer Society Study. The horizontal
axcs represent the cumulative exposure to exposure to Sulfates, and the vertical axes correspond to the log hazard

(HR) ratio associated with increasing the Sulfates level by 19.9 micrograms/m3, which corresponds to the difference

between the highest and the lowest of the city-specific levels. The solid curves represent the point estimates of the
log HR and the dashed curves represent the pointwise 95% confidence intervals.
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Figure C.15, Flexible quadratic spline (3-df) estimate of the non-linear effect of increasing the level of exposure to Sulfates on the
log hazard of mortality of a "case-cohort” type subset of the American Cancer Society Study. The horizontal axis represents the
cumulative exposure to exposure to Sulfates, and the vertical axis corresponds to the log hazard (HR) ratio associated with
increasing the Sulfates level by 19.9 micrograms/m3, which correspond to the difference between the highest and the lowest of the
city-specific levels. The solid cutves represent the point estimates of the log HR and the dashed curves represent the pointwise 95%
confidence intervals,
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