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A B O U T  H E I

 vii

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the institute

• Identifies the highest-priority areas for health effects research;

• Competitively funds and oversees research projects;

• Provides intensive independent review of HEI-supported studies and related 
research;

• Integrates HEI’s research results with those of other institutions into broader 
evaluations; and

• Communicates the results of HEI’s research and analyses to public and private 
decision makers.

HEI typically receives balanced funding from the U.S. Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the 
United States and around the world also support major projects or research programs. HEI has 
funded more than 340 research projects in North America, Europe, Asia, and Latin America, the 
results of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, 
diesel exhaust, ozone, particulate matter, and other pollutants. These results have appeared in 
more than 260 comprehensive reports published by HEI, as well as in more than 1,000 articles in 
the peer-reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Research Committee solicits input from HEI sponsors and other stakeholders and works with 
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and 
oversee their conduct. The Review Committee, which has no role in selecting or overseeing 
studies, works with staff to evaluate and interpret the results of funded studies and related research.

All project results and accompanying comments by the Review Committee are widely 
disseminated through HEI’s website (www.healtheffects.org), printed reports, newsletters and 
other publications, annual conferences, and presentations to legislative bodies and public agencies.
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Research Report 195, Impacts of Regulations on Air Quality and Emergency Department Visits in 
the Atlanta Metropolitan Area, 1999–2013, presents a research project funded by the Health 
Effects Institute and conducted by Dr. Armistead (Ted) Russell of Georgia Institute of Technology, 
Atlanta, Georgia, U.S.A, and his colleagues. The report contains three main sections.

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the 
study and its findings; it also briefly describes the Review Committee’s comments on 
the study.

The Investigators’ Report, prepared by Russell and colleagues, describes the 
scientific background, aims, methods, results, and conclusions of the study.

The Commentary, prepared by members of the Review Committee with the 
assistance of HEI staff, places the study in a broader scientific context, points out its 
strengths and limitations, and discusses remaining uncertainties and implications of 
the study’s findings for public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of the Review 
Committee, an independent panel of distinguished scientists who have no involvement in 
selecting or overseeing HEI studies. During the review process, the investigators have an 
opportunity to exchange comments with the Review Committee and, as necessary, to revise 
their report. The Commentary reflects the information provided in the final version of the report.
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HEI’s Accountability Research Program

INTRODUCTION

The goal of most air quality regulations is to protect
the public’s health by implementing regulatory actions
or providing economic incentives that help reduce the
public’s exposure to air pollutants. If this goal is met, air
pollution should be reduced, and indicators of public
health should improve or at least not deteriorate. Eval-
uating the extent to which air quality regulations suc-
ceed in protecting public health is part of a broader
effort — variously termed accountability research, out-
comes research, or research on regulatory effectiveness —
designed to assess the performance of environmental
regulatory policies in general. In recent decades, air
quality in the United States and Western Europe has
improved substantially, and this improvement is attrib-
utable to a number of factors, including increasingly
stringent air quality regulations. However, the cost of
the pollution-control technologies and mechanisms
needed to implement and enforce these regulations is
often high. It is therefore prudent to ask whether the
regulations have in fact yielded demonstrable improve-
ments in public health, which will provide useful feed-
back to inform future efforts.

Several U.S. government agencies have concluded
that direct evidence about the extent to which air qual-
ity regulations have improved health (measured as a
decrease in premature mortality and excess morbidity)
is lacking. This finding is well documented by the Na-
tional Research Council (NRC) in its report Estimating
the Public Health Benefits of Proposed Air Pollution Regu-
lations (NRC 2002) and also has been made by the Cal-
ifornia Air Resources Board, the U.S. Environmental
Protection Agency (EPA), the U.S. Centers for Disease
Control and Prevention (CDC), and other agencies.

In 2003, the Health Effects Institute published a
monograph on accountability research, Communica-
tion 11, Assessing Health Impact of Air Quality Regula-
tions: Concepts and Methods for Accountability Research
(HEI Accountability Working Group 2003). This mono-
graph was written by the members of HEI’s multidisci-
plinary Accountability Working Group after a 2001
workshop on the topic. Communication 11 set out a
conceptual framework for accountability research and
identified the types of evidence required and the meth-
ods by which the evidence should be obtained. It has
also guided the development of the HEI Accountability
Research program, which is discussed below.

Between 2002 and 2004, HEI issued four requests
for applications (RFAs), under which eight studies were
funded (see Table). A ninth study was funded later, un-
der Request for Preliminary Applications (RFPA) 05-3,
“Health Effects of Air Pollution.” Following this first
wave of research, HEI held further workshops to dis-
cuss lessons learned, identify key remaining questions,
and plan a second wave of research. These efforts led
to the publication of Communication 14 (van Erp and
Cohen 2009) and Communication 15 (HEI 2010b),
and the issuance of RFA 11-1, “Health Outcomes Re-
search — Assessing the Health Outcomes of Air Qual-
ity Actions.” The first wave of research primarily
consisted of studies evaluating relatively short-term, lo-
cal-scale, and sometimes temporary interventions; RFA
11-1 solicited additional studies with a focus on longer-
term, regional- and national-scale regulations, including
programs targeted at improving air quality surrounding
major ports, as well as further methods development. 

This preface describes both the framework of ac-
countability research as it relates to air quality regula-
tions and HEI’s Accountability Research program.
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HEI’s Accountability Research Program

RFA /
Investigator (Institution) Intervention Study or Report Title

First-Wave Studiesa

RFA 02-1

Douglas Dockery
(Harvard T.H. Chan School 
of Public Health, Boston, 
MA)

Coal ban in Irish cities Effect of Air Pollution Control on Mortality 
and Hospital Admissions in Ireland 
(Research Report 176; 2013)

Annette Peters
(Helmholtz Zentrum 
München–German 
Research Center for 
Environment and Health, 
Neuherberg, Germany)

Switch from brown coal to 
natural gas for home heating 
and power plants, changes in 
motor vehicle fleet after 
reunification of Germany

The Influence of Improved Air Quality on 
Mortality Risks in Erfurt, Germany (Research 
Report 137; 2009)

RFA 04-1

Frank Kelly
(King’s College London, 
U.K.)

Measures to reduce traffic 
congestion in the inner city of 
London

The Impact of the Congestion Charging 
Scheme on Air Quality in London: Part 1. 
Emissions Modeling and Analysis of Air 
Pollution Measurements. Part 2. Analysis of 
the Oxidative Potential of Particulate Matter 
(Research Report 155; 2011)

RFA 04-4

Frank Kelly
(King’s College London, 
U.K.)

Measures to exclude most 
polluting vehicles from entering 
greater London

The London Low Emission Zone Baseline 
Study (Research Report 163; 2011)

Richard Morgenstern 
(Resources for the Future, 
Washington, DC)

Measures to reduce sulfur 
emissions from power plants 
east of the Mississippi River

Accountability Analysis of Title IV Phase 2 of 
the 1990 Clean Air Act Amendments 
(Research Report 168; 2012)

Curtis Noonan
(University of Montana, 
Missoula, MT)

Wood stove change-out program Assessing the Impact of a Wood Stove 
Replacement Program on Air Quality and 
Children’s Health (Research Report 162; 
2011)

Jennifer Peel
(Colorado State University, 
Fort Collins, CO)

Measures to reduce traffic 
congestion during the Atlanta 
Olympics

Impact of Improved Air Quality During the 
1996 Summer Olympic Games in Atlanta on 
Multiple Cardiovascular and Respiratory 
Outcomes (Research Report 148; 2010)

Chit-Ming Wong
(University of Hong Kong)

Measures to reduce sulfur 
content in fuel for motor 
vehicles and power plants

Impact of the 1990 Hong Kong Legislation for 
Restriction on Sulfur Content in Fuel 
(Research Report 170; 2012)

RFPA 05-3

Junfeng (Jim) Zhang 
(University of Medicine 
and Dentistry of New 
Jersey, Piscataway, NJ)

Measures to improve air quality 
during the Beijing Olympics

Cardiorespiratory Biomarker Responses in 
Healthy Young Adults to Drastic Air Quality 
Changes Surrounding the 2008 Beijing 
Olympics (Research Report 174; 2013)

Table continues next page

a Abbreviations: RFA, Request for Applications; RFPA, Request for Preliminary Applications.
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BACKGROUND

The first step in assessing the effectiveness of air
quality regulations is to measure emissions of the tar-
geted pollutants to see whether they have in fact de-
creased as intended. A ser ies of intermediate
assessments, described in detail below, is needed to ac-
curately measure the adverse health effects associated
with air pollution to see whether their levels also de-
creased in incidence or severity relative to emissions.
Some accountability studies to date have used hypo-
thetical scenarios (comparing estimated outcomes un-
der existing and more stringent regulations) and risk
estimates obtained from epidemiological studies in an
attempt to quantify past effects on health and to predict
future effects (U.S. EPA 1999). However, more extensive

validation of these estimates with data on actual out-
comes would be helpful.

The long-term improvements in U.S. air quality have
been associated with improved health in retrospective
epidemiological studies (Chay and Greenstone 2003;
Laden et al. 2006; Pope et al. 2009). Considerable chal-
lenges, however, are inherent in the assessment of the
health effects of air quality regulations. Different regula-
tions go into effect at different times, for example, and
may be implemented at different levels of government
(e.g., national, regional, or local). Their effectiveness
therefore needs to be assessed in ways that take into
account the varying times of implementation and levels
of regulation. In addition, other changes at the same
time and place might confound an apparent association
between pollution reduction and improved health, such

HEI’s Accountability Research Program (continued)

RFA /
Investigator (Institution) Intervention Study or Report Title

Second-Wave Studies a

RFA 11-1

Frank Gilliland
(University of Southern 
California)

California and federal programs 
to improve air quality, including 
control of emissions from diesel 
engines and other sources 
targeted at freight transport 
and ports, as well as stationary 
sources

The Effects of Policy-Driven Air Quality 
Improvements on Children’s Respiratory 
Health (Research Report 190; 2017)

Ying-Ying Meng
(University of California–
Los Angeles)

2006 California Emissions 
Reduction Plan for Ports and 
Goods Movement to control 
emissions from road, rail, and 
marine transportation, focusing 
on the ports of Los Angeles 
and Long Beach

Improvements in Air Quality and Health 
Outcomes Among California Medicaid 
Enrollees Due to Goods Movement Actions 
(Study ongoing)

Armistead Russell
(Georgia Institute of 
Technology)

Programs to control emissions 
from major stationary sources 
and mobile sources in the 
Southeast United States

Impacts of Regulations on Air Quality and 
Emergency Department Visits in the Atlanta 
Metropolitan Area, 1999–2013 (Current 
report)

Corwin Zigler
(Harvard T.H. Chan School 
of Public Health)

National regulations to improve 
air quality focusing on State 
Implementation Plans for 
particulate matter

Causal Inference Methods for Estimating 
Long-Term Health Effects of Air Quality 
Regulations (Research Report 187; 2016)

a Abbreviations: RFA, Request for Applications; RFPA, Request for Preliminary Applications.
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as economic trends (e.g., changes in employment),
health care improvements, and behavioral changes (e.g.,
staying indoors when government warnings indicate
pollution concentrations are high). Moreover, adverse
health effects that might have been caused by exposure
to air pollution can also be caused by other environ-
mental risk factors (some of which may have changed
over the same time periods as the air pollution concen-
trations). These challenges become more pronounced
when regulations are implemented over long periods
and when changes in air quality and health outcomes are
not seen immediately, thus increasing the chance for
confounding by other factors. For these reasons, scenar-
ios in which regulations are expected to have resulted in
rapid changes in air quality tend to be among the first,
and most likely, targets for investigation, rather than eval-
uations of complex regulatory programs implemented
over multiple years. Studies in Ireland by Clancy and col-
leagues (2002) and in Hong Kong by Hedley and col-
leagues (2002) are examples of such scenarios.

These inherent challenges are well documented in
Communication 11 (HEI Accountability Working Group
2003), which was intended to advance the concept of

accountability research and to foster the development
of methods and studies throughout the relevant scien-
tific and policy communities. In addition, recent advances
in data collection and analytic techniques provide an un-
precedented opportunity to improve assessments of
the effects of air quality interventions.

THE ACCOUNTABILITY EVALUATION CYCLE

The NRC’s Committee on Research Priorities for
Airborne Par ticulate Matter set out a conceptual
framework for linking air pollution sources to adverse
health effects (NRC 1998). This framework can be
used to identify factors along an “accountability evalua-
tion cycle” (see Figure), each stage of which affords its
own opportunities for making quantitative measure-
ments of the intended improvements. 

At the first stage (regulatory action), one can assess
whether controls on source emissions have in fact been
put into place. At the second stage (emissions), one can
determine whether controls on sources have indeed
reduced emissions, whether emitters have changed

Accountability Evaluation Cycle. Each box represents a stage in the process between regulatory action and human health responses to air
pollution. Arrows connecting the stages indicate possible directions of influence. The text below the arrows identifies factors affecting the
effectiveness of regulatory actions at each stage. At several of the stages, knowledge gained from studies on outcomes can provide valuable
feedback for improving regulatory or other actions.
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their practices, and whether there have been unin-
tended consequences. At the third stage (ambient air
quality), one can assess whether controls on sources
and reductions in emissions have resulted in improved
air quality. At the fourth stage (personal or population
exposure), one can assess whether the improvement in
air quality has reduced people’s actual exposure and
whether susceptible subpopulations (those most likely
to experience adverse health effects) have benefited.
At this stage, it is impor tant to take into account
changes in time–activity patterns that could either in-
crease or reduce exposure. The actual dose that an in-
dividual’s organs may be exposed to should also be
considered (i.e., whether reductions in exposure have
led to reductions in concentrations in body tissues such
as the lung). Finally, at the fifth stage (human health re-
sponse), one can assess whether risks to health have
declined, given the evidence about changes in health
outcomes such as morbidity and mortality that have re-
sulted from changes in exposure. The challenge at this
stage is to investigate the health outcomes that are
most directly related to exposure to air pollution.

At each stage in the accountability evaluation cycle,
the opportunity exists to collect evidence that either
validates the assumptions that motivated the interven-
tion or points to ways in which the assumptions were
incorrect. The collection of such evidence can thus en-
sure that future interventions are maximally effective.

Ultimately, the framework for accountability research
will need to encompass investigations of the broader
consequences of regulations, not just the intended con-
sequences. Unintended consequences should also be
investigated, along with the possibility that risks to pub-
lic health in fact increased, as discussed by Wiener
(1998) and others who have advanced the concept of a
portfolio of effects of a regulation.

HEI’S ACCOUNTABILITY RESEARCH PROGRAM

The first wave of HEI’s Accountability Research pro-
gram included nine studies (see Table). These studies
involved the measurement of indicators along the en-
tire accountability evaluation cycle, from regulatory or
other interventions to human health outcomes. Many
of the studies focused on interventions that were im-
plemented over relatively short periods of time, such as
a ban on the sale of coal, the replacement of old wood

stoves with more efficient, cleaner ones, reductions in
the sulfur content of fuels, and measures to reduce traf-
fic. Other groups focused on longer-term, wider-rang-
ing interventions or events; for instance, one study
assessed complex changes associated with the reunifi-
cation of the former East and West Germany, including
a switch from brown coal to natural gas for fueling
power plants and home-heating systems and an in-
crease in the number of modern diesel-powered vehi-
cles in eastern Germany. HEI also supported research,
including the development of methods, in an especially
challenging area, namely, assessment of the effects of
regulations implemented incrementally over extended
periods of time. In one such study, Morgenstern and
colleagues (2012) examined changes that resulted from
Title IV of the 1990 Clean Air Act Amendments (U.S.
EPA 1990), which aimed at reducing sulfur dioxide
emissions from power plants by requiring compliance
with prescribed emission limitations. The first-wave
studies are described in more detail in an interim evalu-
ation of the HEI Accountability Research program (van
Erp and Cohen 2009; van Erp et al. 2012).

Subsequently, HEI funded four studies as part of the
second wave of HEI’s Accountability program (see Ta-
ble). Two studies evaluated regulatory and other ac-
tions at the national or regional level implemented over
multiple years; a third study is evaluating complex sets
of actions targeted at improving air quality in large ur-
ban areas and major ports with well-documented air
quality problems and programs to address them; and a
fourth study developed methods to support such ac-
countability research. Gilliland and colleagues evaluated
respiratory symptoms and lung function growth in chil-
dren in Southern California from 1993–2012. They
used data from three cohorts of the Children’s Health
Study, attempting to relate changes in health outcomes
to major air quality regulations during that time period
(Berhane et al. 2016; Gauderman et al. 2015; Gilliland
et al. 2017; Lurmann et al. 2015). Russell and col-
leagues, as described in their Investigators’ Report, as-
sessed the effect of major stationary source and mobile
source control programs on emissions and air quality in
the southeastern United States, using detailed emis-
sions and air pollution measurements and modeling
combined with time-series analyses of cardiovascular
and respiratory emergency department visits and hos-
pital admissions in Atlanta. Meng and colleagues are
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evaluating the effects on air quality and health associ-
ated with the California Air Resources Board’s Emission
Reduction Plan for Ports and Goods Movement. They
are examining the changes in criteria and hazardous air
pollutants and characterizing health outcomes among
Medicaid beneficiaries in the region surrounding the
ports of Long Beach and Los Angeles. Phase 1, which
focused on evaluating changes in air quality, has been
completed (Su et al. 2016); Phase 2, to evaluate effects
on health outcomes, is currently ongoing. Zigler and
colleagues developed and applied statistical methods to
evaluate long-term regulatory actions, focusing on the
Clean Air Act and the role of attainment status of
counties for PM10, O3, CO, and SO2 concentrations. In
particular, they focused on methods targeted on the
question of whether air quality and health outcomes
are causally related (Zigler and Dominici 2014; Zigler et
al. 2016). 

 For an updated interim discussion of HEI’s recent
experiences in accountability research see Boogaard
and colleagues (2017).

FUTURE DIRECTIONS

The second stage of accountability research was
largely conceived during HEI’s Strategic Plan for 2010
through 2015 (HEI 2010a). During the current Strate-
gic Plan for 2015 through 2020 (HEI 2015), HEI contin-
ues to look closely at opportunities for unique new
contributions to accountability research. We envision
that future studies will again focus on large-scale, com-
plex regulations to improve air quality and will contin-
ue to develop and implement statistical methods to
tackle these complicated questions. In the interim, in-
vestigators who have identified a distinctive opportuni-
ty to evaluate the effects of environmental regulations
on air pollution and human health are encouraged to
contact HEI.

In addition, HEI continues to provide other research-
ers with access to extensive data and software from
HEI-funded studies (see HEI’s website, www.healtheffects
.org/research/databases). In the same spirit, the recent
State of Global Air website (HEI 2017) makes available
data on air quality and health outcomes for countries
around the world. The interactive site allows explora-

tion of the data and comparisons among countries. The
data currently cover 1990–2016 and are updated annu-
ally. State of Global Air 2018 is expected to be released
in April 2018.
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This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Armistead (Ted)
G. Russell at the Georgia Institute of Technology, Atlanta, Georgia, and colleagues. Research Report 195 contains both the detailed Investiga-
tors’ Report and a Commentary on the study prepared by the Institute’s Review Committee.

 1

What This Study Adds
• This accountability study examined the ex-

tent to which national and state regulations 
targeting power plants and mobile sources 
were effective in reducing pollutant emis-
sions, improving air quality, and ultimately 
reducing cardiorespiratory emergency 
department visits in the Atlanta area.

• Actual conditions in the period 1999–2013 
were compared with estimated quantitative 
projections of emissions, air quality, and 
emergency department visits that likely 
would have occurred in the absence of 
regulations (called a “counterfactual 
scenario”).

• The study demonstrated that both the 
emissions and levels of all evaluated 
pollutants decreased by 14% to 91% over 
the study period. There were fewer 
emergency department visits for asthma and 
other cardiorespiratory outcomes than would 
have been expected without the regulations.

• Regulations targeting power plants 
appeared more effective in improving air 
quality than those targeting mobile sources. 
The HEI Review Committee had more 
confidence, however, in the results that were 
attributed to all regulations combined than to 
individual regulatory programs.

• This is one of few accountability studies to 
follow changes of individual regulations on 
emissions all the way through health 
outcomes, using scenarios with and without 
regulation. The approach is valuable and 
worth considering for future accountability 
studies.

Impacts of Regulations on Atlanta Air Quality and Emergency 
Department Visits

INTRODUCTION

Accountability research evaluates whether regu-
latory and other actions aimed at improving air
quality have resulted in the intended decreases in
air pollutant concentrations and improvements in
public health. Such studies are complicated by the
fact that simply comparing the changes in air pollu-
tion before and after an action may not capture
what might have happened to air pollution in the
absence of a regulation altogether.

A relatively recent approach to accountability
research is to compare changes in air quality and
health after the regulation went into effect with pro-
jected scenarios that estimate what the air quality
and health outcomes would have been without the
intervention. Dr. Ted Russell from the Georgia Insti-
tute of Technology and colleagues at the Georgia
Institute of Technology and at Emory University pro-
posed to examine whether national and state regula-
tions targeting power plants and mobile sources
were effective in reducing pollutant emissions,
improving air quality, and ultimately reducing emer-
gency department visits in the Atlanta area, using
both measurements and modeling approaches.

APPROACH

Russell and colleagues identified major regulatory
actions implemented between 1995 and 2010 and
then assessed the effects of those regulations along
the HEI chain of accountability by evaluating chang-
es in emissions, effects of changes in emissions on air
quality, and finally changes in air quality on emer-
gency department visits for the period 1999–2013.
The investigators estimated projected scenarios to
compare what actually happened with what likely
would have happened without the regulations. They
focused on six sets of national- and state-level regula-
tory programs that they thought were likely to affect
air pollutant emissions and air quality in Atlanta,
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Georgia: three national program sets to reduce emis-
sions from power plants (electricity-generating units
[EGUs]), and three program sets targeting motor vehi-
cle fuel and emissions standards (mobile sources)
adopted in response to national requirements.

To evaluate the effect of the regulations on emis-
sions, the investigators used two approaches. First,
they compared emissions before the regulations
(from 1995 for power plants and 1993 for mobile
sources) to emissions at the end of the study period
(2013) for the southeastern United States. Second,
because emissions could have changed for reasons
unrelated to the regulations, they used daily records
of how much electricity was generated by power
plants and how far cars were driven in order to esti-
mate how much higher the emissions at the end of
the study period would have been if the regulations
had not been implemented (called a “counterfactual
scenario”).

Similarly, to evaluate the effects of regulations on
air quality, they compared measured levels of a large
number of pollutants at a monitoring site near down-
town Atlanta at the beginning of the study period
(1999) with their levels at the end of the study period
(2013). Because meteorology could affect the results,
they adjusted the air quality measurements for the
potential influence of daily meteorology. They again
used a counterfactual scenario approach to project
what the air pollutant levels would have been
without the regulations and compared those pro-
jected levels with measured levels in order to esti-
mate the effects of the emissions changes on air
quality.

Finally, Russell and colleagues used time-series
models to relate the daily numbers of Atlanta area
emergency department visits to daily air pollutant
levels for outcomes related to diseases of the heart
(all cardiovascular disease and the subset from con-
gestive heart failure) and lung (all respiratory disease
and the subset from asthma). Following the counter-
factual scenario approach, they compared actual
numbers of emergency department visits with the
numbers that likely would have occurred without the
regulations. They presented results for the impact of
each set of regulations, the three sets of regulations
affecting power plants, the three sets of regulations
affecting motor vehicles, and all six sets combined. 

Unlike many other such studies, the uncertainty
reported for the numbers of emergency department

visits also included uncertainty carried forward
from the emissions and air quality models, respec-
tively. They also tested the effects of a number of
assumptions on the results, including the number
of pollutants (1, 5, 7, or 9) included in the health
models; which years were considered when con-
structing the health models (1999–2005 vs. 1999–
2013); and the size of the study area (5 or 20 counties
in the Atlanta area).

MAIN RESULTS AND INTERPRETATION

The investigators reported that air pollutant emis-
sions and ambient concentrations decreased over the
study period 1999–2013 for most pollutants evalu-
ated, and estimated that the pollutant levels were
lower than what would have been expected without
regulatory actions. Their modeling suggested that the
observed improvements in air quality were associ-
ated with fewer emergency department visits for
asthma and other lung outcomes compared with
what would have been expected without the regula-
tions (see Statement Figure). The health results were
robust to the geographical scale of assessment (5 or
20 counties) and number of pollutants (1, 5, 7, or 9)
in the health models. These results were less robust
to the period evaluated. Estimates of effects of air
pollutant changes on emergency department visits
were larger for results with models of relationships
between emergency department visits and air quality
based on data from 1999 through 2005 than for
models of relationships between emergency depart-
ment visits and air quality based on data from 1999
through 2013. Although both analyses reported
improvements in health with declining air pollution,
the HEI Review Committee thought the differences
in estimates for ED visits using data from two dif-
ferent periods suggested there was uncertainty that
was not fully accounted for, and that perhaps the
results for the two periods should be weighted more
equally since it is not clear which health model was
more appropriate.

The investigators also reported that regulations
targeting power plants had a greater impact than
those targeting mobile sources in improving air
quality and health.

In its independent review of the report, the HEI
Review Committee noted that the study was an ambi-
tious application of HEI’s accountability framework
as it encompassed a broad suite of regulatory
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programs designed to reduce multipollutant emis-
sions from power plants and mobile sources in
Georgia and nearby states over the period from 1999
to 2013. The Committee thought that the investiga-
tors had tackled an important public health question,
examining whether the regulations had individually
or collectively reduced emissions, improved air
quality, and ultimately reduced ED visits for respira-
tory and cardiovascular outcomes in the Atlanta area.

The Review Committee concluded that the inves-
tigators had thoughtfully applied a counterfactual
scenario approach to compare actual observations
after the regulations were implemented to without-
regulation scenarios. The study built on large and
well-characterized data sets of air pollutant
concentrations and emergency department visits
from the Atlanta area. It addressed some concerns of
earlier studies, such as the influence of meteorology
on air quality. One of the difficulties encountered
was that regulations were implemented in different
years; the investigators handled this by comparing
actual conditions to counterfactual conditions for

each day of the study period. Together with the ex-
tensive sensitivity and uncertainty analyses in the
development and application of the health models,
these were all clear strengths of the study.

The Review Committee had the most confidence
in the results for the link between changes in emis-
sions and air quality because the investigators were
able to rule out meteorology as an alternative expla-
nation for the changes in air quality. The Committee
thought that the link between regulations and emis-
sions also appeared strong, although exploration of
the potential effect on emissions of factors other
than regulations, such as market-induced efficiency
improvements, would have enhanced the analysis.

The Review Committee noted some limitations
in the linkages between air quality and health
effects (and therefore also in the estimates of
changes in the numbers of emergency department
visits). One of the strengths of the study is that it
was conducted over a long period of time (i.e., 15
years); however, this leads to the possibility that
potentially important factors that also changed

Statement Figure. Estimated emergency department visits in Atlanta in 2012–2013 for all regulations combined compared with a sce-
nario without the regulations for two different models. Positive numbers indicate there were fewer emergency department visits with
regulatory programs in place. Whiskers represent the 95% confidence intervals. Actual numbers of emergency department visits are listed
in parentheses.
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over time were not fully captured, such as changes
in healthcare access and practice. This could
explain why the health models based on data from
different periods yielded different results.

Overall, the Committee had more confidence in the
results attributed to all regulations combined than to
individual regulatory programs. The investigators’
finding that regulations targeting power plants had
more impact on improving air quality and reducing
emergency department visits than regulations tar-
geting mobile sources needs further study. Direct
comparisons may not be appropriate because a
single monitor would be more suitable to capture
the regional impact of power plant regulations than
the more spatially heterogeneous impact of mobile
source regulations. In addition, measurements of
mobile emissions were not available and some of
the mobile source regulations did not go into effect
until the later part of the study period (e.g., heavy-
duty diesel rules targeting particulate matter and
oxides of nitrogen emissions from new vehicles
beginning in 2007 and 2010). The separation of
attribution to different programs is inherently more
difficult than linking overall emissions reductions
to health outcomes, because it requires the separa-
tion of changes that overlapped in time. It is also
possible that slow turnover of the vehicle fleet and
lack of compliance may have hampered reaching
full implementation of the fuel and technology
changes by the end of the study period (2013), and
further improvements may have continued since
then. Thus, the ultimate effectiveness of mobile
source regulations may actually be better — even if

more gradual — than what the investigators were
able to estimate in their study.

The Committee thought that this report by Rus-
sell and colleagues was a valuable addition to the
accountability literature. It is one of few studies to
follow changes of regulations on emissions all the
way through to health outcomes, using scenarios
based on actual observed data. This is a valuable
approach worth considering for future account-
ability studies, though this sort of work is labor and
computationally intensive. In addition, this work
provides a detailed protocol for how to conduct
similar investigations in other areas of the world.

In the future, other researchers could apply simi-
lar approaches to the long-term impacts of regula-
tions on health outcomes in other locations,
although it would be recommended to more thor-
oughly account for changes in medical practice and
healthcare access, where possible. In particular, al-
though efforts to disentangle the effects of specific
regulations among a suite of regulations remain
challenging, such efforts are important and should
continue. This study is a strong and important con-
tribution to HEI’s accountability research portfolio
because it sequentially and carefully addressed
multiple links in the accountability chain. The re-
sults suggesting that reductions in emissions and
improved air quality were linked to health benefits
are important in terms of continued evaluation of
the public health benefits of air pollution regulation
in the context of implementation and compliance
issues that may hamper achievement of the in-
tended benefits.



Health Effects Institute Research Report 195 © 2018 5

INVESTIGATORS’ REPORT

Impacts of Regulations on Air Quality and Emergency Department Visits 
in the Atlanta Metropolitan Area, 1999–2013

Armistead (Ted) G. Russell1, Paige Tolbert2, Lucas R.F. Henneman1, Joseph Abrams2, Cong Liu1, 
Mitchel Klein2, James Mulholland1, Stefanie Ebelt Sarnat2, Yongtao Hu1, Howard H. Chang2, 
Talat Odman1, Matthew J. Strickland2, Huizhong Shen1, and Abiola Lawal1

1Georgia Institute of Technology; Atlanta, Georgia; 2Emory University, Atlanta, Georgia

ABSTRACT

INTRODUCTION

The United States and Western Europe have seen great
improvements in air quality, presumably in response to
various regulations curtailing emissions from the broad
range of sources that have contributed to local, regional,
and global pollution. Such regulations, and the ensuing
controls, however, have not come without costs, which are
estimated at tens of billions of dollars per year. These costs
motivate accountability-related questions such as, to what
extent do regulations lead to emissions changes? More
important, to what degree have the regulations provided
the expected human health benefits?

Here, the impacts of specific regulations on both elec-
tricity generating unit (EGU*) and on-road mobile sources
are examined through the classical accountability process
laid out in the 2003 Health Effects Institute report linking
regulations to emissions to air quality to health effects, with

a focus on the 1999–2013 period. This analysis centers on
regulatory actions in the southeastern United States and
their effects on health outcomes in the 5-county Atlanta
metropolitan area. The regulations examined are largely
driven by the 1990 Clean Air Act Amendments (C). This
work investigates regulatory actions and controls promul-
gated on EGUs: the Acid Rain Program (ARP), the NOx
Budget Trading Program (NBP), and the Clean Air Inter-
state Rule (CAIR) — and mobile sources: Tier 2 Gasoline
Vehicle Standards and the 2007 Heavy Duty Diesel Rule.

METHODS

Each step in the classic accountability process (see
Figure 1) was addressed using one or more methods.
Linking regulations to emissions was accomplished by
identifying major federal regulations and the associated
state regulations, along with analysis of individual facility
emissions and control technologies and emissions mod-
eling (e.g., using the U.S. Environmental Protection
Agency’s [U.S. EPA’s] MOtor Vehicle Emissions Simulator
[MOVES] mobile-source model). Regulators, including
those from state environmental and transportation agen-
cies, along with the public service commissions, play an
important role in implementing federal rules and were
involved along with other regional stakeholders in the
study. We used trend analysis, air quality modeling, satel-
lite data, and a ratio-of-ratios technique to investigate a
critical current issue, a potential large bias in mobile-
source oxides of nitrogen (NOx) emissions estimates.

The second link, emissions–air quality relationships, was
addressed using both empirical analyses as well as chemical
transport modeling employing the Community Multiscale
Air Quality (CMAQ) model. Kolmogorov-Zurbenko

This Investigators’ Report is one part of Health Effects Institute Research
Report 195, which also includes a Commentary by the Review Committee
and an HEI Statement about the research project. Correspondence concern-
ing the Investigators’ Report may be addressed to Dr. Armistead (Ted) Rus-
sell, Department of Civil and Environmental Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, GA 30322; e-mail: trussell@ce.gatech.
edu.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award CR–
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Agency’s peer and administrative review and therefore may not necessarily
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inferred. The contents of this document also have not been reviewed by pri-
vate party institutions, including those that support the Health Effects Insti-
tute; therefore, it may not reflect the views or policies of these parties, and
no endorsement by them should be inferred.

* A list of abbreviations and other terms appears at the end of this volume.
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filtering accounting for day of the year was used to sepa-
rate the air quality signal into long-term, seasonal,
weekday–holiday, and short-term meteorological signals.
Regression modeling was then used to link emissions and
meteorology to ambient concentrations for each of the spe-
cies examined (ozone [O3], particulate matter �2.5 µm in
aerodynamic diameter [PM2.5], nitrogen dioxide [NO2],
sulfur dioxide [SO2], carbon monoxide [CO], sulfate
[SO4

2�], nitrate [NO3
�], ammonium [NH4

+], organic
carbon [OC], and elemental carbon [EC]). CMAQ modeling
was likewise used to link emissions changes to air quality
changes, as well as to further establish the relative roles of
meteorology versus emissions change impacts on air quality
trends. CMAQ and empirical modeling were used to inves-
tigate aerosol acidity trends, employing the ISORROPIA II
thermodynamic equilibrium model (Ansari and Pandis
1999; Nenes 1998) to calculate pH based on aerosol compo-
sition. The relationships between emissions and meteo-
rology were then used to construct estimated counterfactual
air quality time series of daily pollutant concentrations that
would have occurred in the absence of the regulations.

Uncertainties in counterfactual air quality were captured
by the construction of 5,000 pollutant time series using a
Monte Carlo sampling technique, accounting for uncer-
tainties in emissions and model parameters.

Health impacts of the regulatory actions were assessed
using data on cardiorespiratory emergency department (ED)
visits, using patient-level data in the Atlanta area for the
1999–2013 period. Four outcome groups were chosen based
on previous studies identifying associations with ambient
air pollution: a combined respiratory disease (RD) category;
the subgroup of RD presenting with asthma; a combined
cardiovascular disease (CVD) category; and the subgroup of
CVD presenting with congestive heart failure (CHF).

Models were fit to estimate the joint effects of multiple
pollutants on ED visits in a time-series framework, using
Poisson generalized linear models accounting for overdis-
persion, with a priori model formulations for temporal and
meteorological covariates and lag structures. Several param-
eterizations were considered for the joint-effects models,
including different sets of pollutants and models with non-
linear pollutant terms and first-order interactions among

Figure 1. Two accountability frameworks: the chain of accountability and direct accountability. This study uses the chain of accountability approach,
accounting for increasing confounding along the length of the chain using multiple models. (Reprinted from Henneman et al. 2016 with permission from
Taylor & Francis.)
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pollutants. Use of different periods for parameter estimates
was assessed, as associations between pollutant levels and
ED visits varied over the study period. A 7-pollutant, nonlin-
ear model with pollutant interaction terms was chosen as
the baseline model and fitted using pollutant and outcome
data from 1999–2005 before regulations might have sub-
stantially changed the toxicity of pollutant mixtures. In
separate analyses, these models were fitted using pollutant
and outcome data from the entire 1999–2013 study period.
Daily counterfactual time series of pollutant concentra-
tions were then input into the health models, and the dif-
ferences between the observed and counterfactual
concentrations were used to estimate the impacts of the
regulations on daily counts of ED visits. To account for the
uncertainty in both the estimation of the counterfactual
time series of ambient pollutant levels and the estimation
of the health model parameters, we simulated 5,000 sets of
parameter estimates using a multivariate normal distri-
bution based on the observed variance–covariance matrix,
allowing for uncertainty at each step of the chain of ac-
countability. Sensitivity tests were conducted to assess the
robustness of the results.

RESULTS

EGU NOx and SO2 emissions in the Southeast decreased
by 82% and 83%, respectively, between 1999 and 2013,
while mobile-source emissions controls led to estimated de-
creases in Atlanta-area pollutant emissions of between 61%
and 93%, depending on pollutant. While EGU emissions
were measured, mobile-source emissions were modeled.
Our results are supportive of a potential high bias in mobile-
source NOx and CO emissions estimates. Air quality bene-
fits from regulatory actions have increased as programs have
been fully implemented and have had varying impacts over
different seasons. In a scenario that accounted for all emis-
sions reductions across the period, observed Atlanta central
monitoring site maximum daily 8-hour (MDA8h) O3 was es-
timated to have been reduced by controls in the summer-
time and increased in the wintertime, with a change in
mean annual MDA8h O3 from 39.7 ppb (counterfactual) to
38.4 ppb (observed). PM2.5 reductions were observed year-
round, with average 2013 values at 8.9 µg/m3 (observed) ver-
sus 19.1 µg/m3 (counterfactual). Empirical and CMAQ anal-
yses found that long-term meteorological trends across the
Southeast over the period examined played little role in
the distribution of species concentrations, while emissions
changes explained the decreases observed. Aerosol pH,
which plays a key role in aerosol formation and dynamics
and may have health implications, was typically very low
(on the order of 1–2, but sometimes much lower), with

little trend over time despite the stringent SO2 controls
and SO4

2� reductions.

Using health models fit from 1999–2005, emissions
reductions from all selected pollution-control policies led
to an estimated 55,794 cardiorespiratory disease ED visits
prevented (i.e., fewer observed ED visits than would have
been expected under counterfactual scenarios) — 52,717
RD visits, of which 38,038 were for asthma, and 3,057 CVD
visits, of which 2,104 were for CHF — among the residents
of the 5-county area over the 1999–2013 period, an area
with approximately 3.5 million people in 2013. During the
final two years of the study (2012–2013), when pollution-
control policies were most fully implemented and the
associated benefits realized, these policies were estimated
to prevent 5.9% of the RD ED visits that would have occurred
in the absence of the policies (95% interval estimate: �0.4%
to 12.3%); 16.5% of the asthma ED visits (95% interval esti-
mate: 7.5% to 25.1%); 2.3% of the CVD ED visits (95%
interval estimate: �1.8% to 6.2%); and 2.6% of the CHF ED
visits (95% interval estimate: �6.3% to 10.4%). Estimates of
ED visits prevented were generally lower when using health
models fit for the entire 1999–2013 study period.

Sensitivity analyses were conducted to show the impact
of the choice of parameterization of the health models and
to assess alternative definitions of the study area. When
impacts were assessed for separate policy interventions,
policies affecting emissions from EGUs, especially the
ARP and the NBP, appeared to have had the greatest effect
on prevention of RD and asthma ED visits.

CONCLUSIONS

This study demonstrates the effectiveness of regulations
on improving air quality and health in the southeastern
United States. It also demonstrates the complexities of
accountability assessments as uncertainties are introduced
in each step of the classic accountability process. While
accounting for uncertainties in emissions, air quality–
emissions relationships, and health models does lead to
relatively large uncertainties in the estimated outcomes
due to specific regulations, overall the benefits of regula-
tions have been substantial.

INTRODUCTION

Tens of billions of dollars are spent annually in the
United States, directly or indirectly, on controls to improve
air quality. Globally, the costs are greater still. These con-
trols are often justified by assessments quantifying the
expected improvements in air quality, public health, and
welfare that would accompany successful implementation
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(e.g., U.S. EPA 1997, 1998, 2005a, 2015). Stakeholders (e.g.,
those tasked with implementing the controls, government
entities that promulgated the regulations, and others) ask if
those controls are achieving their intended benefits. This
simple question, however, is not trivial to answer given the
many complexities inherent in linking specific actions (or
interventions, often driven by one or more regulations) and
outcomes. Accountability research in the air quality and
health arena takes on this task.

The Health Effects Institute’s Communication 11 (HEI
Accountability Working Group 2003) — Assessing Health
Impact of Air Quality Regulations: Concepts and Methods
for Accountability Research — laid out a framework for
accountability research as a chain of steps that connect
regulations, emissions, air quality, exposure or dose, and
health effects (Figure 1). Recent research has explored a
second, complementary framework, termed direct, in
which researchers link the outcome of interest (usually
either air quality changes or public health outcomes)
directly to the intervention itself by framing it as a hypo-
thetical experiment in a potential-outcomes paradigm
(Zigler and Dominici 2014). Henneman and colleagues
(2016) provided a detailed review of accountability
studies, including frameworks used in classic- and direct-
accountability research studies.

The 2003 HEI report notes that a successful account-
ability study should address regulatory impacts on out-
comes at each link in the chain of accountability, up to and
including the outcome of interest (e.g., if the outcome of
interest is air quality, one should look at the intervention’s
impact on emissions and air quality; if the outcome is
health, the exposure or dose and health endpoints are
added). Typically, researchers then apply these relation-
ships, explicitly or implicitly, to a hypothetical scenario —
often termed a baseline or counterfactual — that assumes
the intervention did not occur, and attribute differences
between the actual and counterfactual to the control mea-
sure. Previously, these counterfactuals have utilized infor-
mation (e.g., ambient pollutant concentrations) from
periods prior to or locations assumed to be unaffected by
the promulgation of the intervention.

Within the direct accountability framework (Zigler and
Dominici 2014; Zigler et al. 2016), researchers determine
an intervention condition and a control condition such
that, assuming portions of a populations were assigned
randomly to these conditions, differences in the outcome
of interest (typically air quality or health outcomes)
between the two conditions are interpreted as the causal
effects of the intervention.

The key to accountability research in both frameworks
is to address factors that cloud the signal of interest (i.e.,

impacts of regulations on links in the chain of account-
ability; see Figure 1) (HEI Accountability Working Group
2003). Extraneous factors may inject uncertainty in
relationships between all links in the chain. Between reg-
ulations and emissions, for example, the control imple-
mentation may be less effective than that planned by the
regulators, because of the specific technology or because of
enforcement, or because another regulation was imple-
mented concurrently. Uncertainties remain in relating
emissions to air quality due to incomplete knowledge of
transport, chemistry, and emissions. Lifestyle changes,
variability in access to care, and population changes
impact the relationship between air quality, exposure, and
health effects.

Early accountability studies typically focused on
assessing the impact of short-term regulations and related
events (such as plant closings) that caused relatively
immediate changes in air pollution concentrations and
allowed for the linkages along the chain of accountability
to be established using before-and-after comparisons (HEI
2010; van Erp and Cohen 2009). Most early studies were
limited to city scales. The field evolved by expanding to
interventions spanning wider spatial and longer temporal
scales, which required the development and application of
newer, more powerful methods. Spatially broader inter-
ventions have the benefit of having larger potential
impacts, but accountability studies assessing their impact
may be subject to greater sources of error at each step in the
chain of accountability. Both popular approaches, classic
and direct, have been used in recent years to investigate
such varied policies as coal bans in Irish cities (Clancy et
al. 2002; Goodman et al. 2009), fuel sulfur bans in Hong
Kong (Hedley et al. 2002; Peters et al. 1996), short-term
policies enacted for Olympic Games and other major
events (Friedman et al. 2001; Lin et al. 2013b; Peel et al.
2010; Rich et al. 2012), and long-term emissions reduction
policies (including combinations of multiple policies)
(Gauderman et al. 2015; Peters et al. 2009; U.S. EPA 2011;
Zigler et al. 2012).

At the core of assessing the effectiveness of an air quality
intervention in the accountability framework is a compar-
ison of what the air quality was and what it would have
been in the absence of the intervention (i.e., the actual
versus the counterfactual). In a prospective study, both the
actual and counterfactual must be projected; in a retrospec-
tive study, only the counterfactual needs to be estimated,
since the actual case was observed (Cropper et al. 2017).
There are a variety of ways to develop counterfactuals (HEI
Accountability Working Group 2003; Henneman et al.
2016), but, because they are not observed, it is impossible
to evaluate counterfactuals directly. Instead, judgment of
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their validity is based on multiple factors, such as the mag-
nitude of counterfactual sensitivities to model inputs and
assumptions (e.g., emissions changes, meteorology for air
pollution, and air pollution at varying levels for health
effects) and characteristics of the counterfactuals them-
selves in comparison to values before the intervention or
in similar locations that did not have the intervention.

REGULATING AIR QUALITY IN THE SOUTHEASTERN 
UNITED STATES, 1990s TO THE PRESENT

The 1990 C marked a turning point in regulating air
quality across the United States. The 1970 C (which
amended the original 1963 Act) gave the U.S. EPA the
authority to regulate air pollutants using two specific
tools: air quality standards and emissions limits (National
Research Council 2004). The U.S. EPA sets National
Ambient Air Quality Standards (NAAQS) for six criteria
pollutants — O3, particulate matter (PM), CO, SO2, NO2,
and lead — at levels designed to protect public human
health and public welfare. Each pollutant has both pri-
mary (health) and secondary (welfare) standards (these are
the same for many species), and PM is regulated both as
PM2.5 and as PM10 (particulate matter �10 µm in aerody-
namic diameter). NAAQS are written as concentrations
averaged over a specific period of time and follow specific
statistical forms unique to each pollutant. U.S. EPA desig-
nates areas in exceedance of the NAAQS as nonattainment
areas (NAAs), and requires the encompassing state to
develop a State Implementation Plan (SIP) for reducing
ambient air quality concentrations below the standards.
The 1990 C clarified and expanded the U.S. EPA’s previous
authority related to NAAQS-setting and enforcement,
mobile- and stationary-source emissions standards, emis-
sions cap-and-trade programs, and permit requirements.
The Cs expanded and modified the U.S. EPA’s jurisdiction
to regulate air toxics (hazardous air pollutants) and chemi-
cals related to the stratospheric O3 depletion.

Emissions standards aim to reduce the release of air pol-
lutants from specific industries and source types, and are
written either as emissions rates (emissions per activity, e.g.,
grams NOx/mile, where NOx is the sum of nitric oxide
[NO] and NO2) or as total allowable emissions over a spec-
ified amount of time. Some standards are applied to spe-
cific plants, while others are applied to a fleet of sources;
some regulatory programs (e.g., the ARP defined in the
1990 C) set up trading markets that permit plant owners to
buy and sell emission allowances (National Research
Council 2004). For mobile sources, recent regulatory pro-
grams (e.g., the Tier 2 Gasoline Vehicle Standards and the
2007 Heavy Duty Diesel Rule) set standards for both
engines and fuel composition. Mobile-source emissions

limits are set at a federal level; however, the U.S. EPA
allows one state, California, to set mobile emissions stan-
dards independent of the national levels (though they
must be at least as stringent), and other states can adopt
either the federal or California standards. States use other
tools to reduce emissions in NAAs, such as setting limits
on Reid vapor pressure in gasoline that are below the fed-
eral limits and overseeing inspection and maintenance
(IM) programs.

In response to regulations contained in the 1990 C, the
U.S. EPA and the Georgia Department of Natural
Resources’ Environmental Protection Division (EPD) have
applied various regulatory tools to improve air quality,
with a focus on Atlanta, which frequently exceeds the
NAAQS for O3 and PM2.5. Assessments of the effective-
ness of specific regulations, however, are made difficult by
the complex interplay between national regulations and
their implementation at the state and local levels. For
example, the EPD has implemented multiple emissions
standards on stationary sources separate from national
programs. Often, the state programs, codified in SIPs, are
similar in approach and timing to national programs and
may be developed in negotiations between regulators, util-
ities, and public service commissions that govern utilities.
A state may promulgate a rule to achieve multiple objec-
tives or meet multiple national standards (e.g., O3 and
PM2.5 share precursors). Further, a utility, whose actions
are subject to public service commission rulings, may seek
to identify the most cost-effective measures to address
multiple regulations. Such interconnected emissions poli-
cies affect air quality in varying ways depending on mul-
tiple factors such as source industry, location and stack
height, economic activity, and climate. Any assessment of
the effectiveness of specific regulations implemented
under the C, therefore, must begin by acknowledging the
intermeshed nature of air pollution regulations.

ACCOUNTABILITY ASSESSMENT OF REGULATIONS 
IN THE SOUTHEASTERN UNITED STATES

The southeastern United States, with its large, discrete
population centers, humid subtropical climate, and high
levels of biogenic emissions, presents a unique environ-
ment for investigating the effectiveness of regulations pro-
mulgated under the 1990 C. The region sees high
photochemical activity, and the effects of this activity are
accentuated by both natural and anthropogenic emissions,
particularly of volatile organic compounds (VOCs), PM,
NOx, and SO2. Biogenic emission sources contribute large
amounts of VOCs, which serve as precursors to O3 and
PM2.5. Southeastern cities experience elevated pollutant
levels that often exceed the NAAQS, but these cities have
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been the beneficiary of a number of recent control pro-
grams and have seen dramatic improvements in air quality
over recent decades (Blanchard et al. 2013).

This study uses multiple models to investigate impacts
of controls implemented under the C on multiple links
along the chain of accountability. The primary analysis of
the study focuses on the development of daily counter-
factual time series of ambient concentrations that assume
the absence of specific control programs over the period
of interest. Analyses of these counterfactuals allow for
the quantification of air quality and health benefits
related to specific air pollution regulations under the
1990 C.

The methodical approach assesses nine specific regula-
tory scenarios focused on EGU and mobile emissions.
Meetings with regulatory agency staff and regional stake-
holders that helped develop and implement these regula-
tions proved helpful in assessing impacts of regulations on
emissions. It is of interest to assess these programs, consid-
ering that multiple changes occurred during the period of
interest that likely had large impacts on emissions, such as
the recessions in the early and late 2000s, meteorological
variability (such as in 2009 and 2013, two years with rela-
tively cool, wet summers), population shifts, and the retrofit
of major coal plants near the city from coal to natural gas.

Two empirical approaches, meteorological detrending and
a statistical model of emissions, and a deterministic model
(CMAQ) were employed to assess emissions–meteorology–
air-quality relationships. Results of this analysis are com-
bined with assessments of emissions reductions to create
daily time series of ten air pollution species for each of
nine counterfactual scenarios assuming the absence of one
or more regulations and to estimate uncertainty bounds.
Intermediate results from all three models provide insights
into both the confidence in modeling results and relevant
atmospheric relationships (such as aerosol pH and NOx
emissions levels).

Air quality results of the present study are specific to the
southeastern United States, but the majority of the
methods are more broadly applicable to areas with long
records of ambient air quality measurements.

ASSESSMENT OF THE HEALTH IMPACTS OF 
POLLUTION-CONTROL POLICIES

There are numerous challenges to estimating health
impacts for this study as well as for air pollution account-
ability studies in general. Policies may not be imple-
mented over a precise period, there may be several policies
implemented concurrently, and the effects are not limited
to a specific geographical boundary nor are they uniformly
distributed within any area. Importantly, while policies

may be aimed at lowering ambient pollutant levels below
specific standards with the ultimate goal of reducing air-
pollution–linked health outcomes, pollution controls
affect pollutants at the emissions level, so that there are
multiple levels of separation between the measured effects
of policies on emissions and their eventual health impacts.
Finally, studies measuring health impacts through this
chain of accountability often rely on health associations
for individual pollutants, which can fail to capture the
overall impact of policies that can impact emissions of
multiple toxic pollutants.

This study utilizes two critical analytic tools that are in-
tended to address these limitations of accountability studies:
counterfactual analysis and multipollutant modeling.

COUNTERFACTUAL STUDY DESIGN

Many observational studies assessing the effects of an
intervention use a pre–post approach, which contrasts out-
comes in the period after an intervention to outcomes in
the period before the intervention (Henschel et al. 2012; Li
et al. 2010; Lin et al. 2013a, 2014; van Erp et al. 2011). Dif-
ferences between outcomes before and after an interven-
tion could possibly be due to many factors other than the
intervention itself, so that study results may be biased by
temporal confounding, which can be a particularly major
concern if periods of interest are relatively long.

Other studies may utilize the approach of selecting geo-
graphical locations that did not implement the interven-
tions of interest as controls for comparison (Atkinson et al.
2009; Boogaard et al. 2012). The assumptions being made in
these types of analyses are that trends in pollution-related
health outcomes in different locations would have been
the same in the absence of the intervention. Similar to pre–
post analyses, these types of studies become increasingly
susceptible to confounding over longer study periods (for
these studies, through spatiotemporal effect modification),
as different geographical areas may undergo important
changes that lead to diverging secular trends. Since both
study types utilize explicit comparisons between interven-
tion and reference populations (defined by either time or
space), these study types are well suited to interventions
that take place fully during a specific, well-defined period.

This current study assesses impacts of numerous over-
lapping pollution-control policies, which were imple-
mented to full effect over long periods, such that there are
no clear-cut reference or intervention periods. Rather, this
study can be conceptualized as measuring the effects of a
progressively increasing gradient of the implementation of
these policies. These effects could not be adequately cap-
tured using a classical pre–post approach, which typically
measures the effect for a binary indicator of the presence or
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absence of an intervention; however, a counterfactual anal-
ysis is ideally suited for this task. For counterfactual
accountability studies, outcomes after an intervention are
compared with outcomes during the same period and in
the same geographical location but in the absence of the
intervention. In other words, in these studies the outcome
is estimated for the hypothetical situation in which the
intervention(s) of interest had not been implemented, but
all external factors are held constant; then these counter-
factual outcomes are compared with observed outcomes to
determine the impact of the interventions.

The counterfactual design used for this study modeled
continuous changes at all stages on the chain of account-
ability and was therefore able to more fully capture the
impacts of these policies. The primary limitations of coun-
terfactual studies involve potential estimation errors
through the modeling of counterfactual exposures and out-
comes. To address this potential issue, we used Monte
Carlo simulations to account for model uncertainty at mul-
tiple study stages.

MULTIPOLLUTANT HEALTH IMPACT MODELING

There is an extensive body of literature linking air pollu-
tion and cardiorespiratory health outcomes, which in-
cludes population-level studies and panel studies, cohort
studies, and time-series studies, studies on indoor and am-
bient air pollution, experimental studies, and observa-
tional studies (Brunekreef and Holgate 2002; Cohen et al.
2005; Curtis et al. 2006; Seaton et al. 1995). Since all people
are exposed to some level of air pollution and there are
many dimensions at which exposure can be measured,
there are myriad ways to conduct studies assessing the rela-
tionship between air pollution and health outcomes. Quan-
tifying the effects of ambient air pollution — a mixture of
numerous gaseous and particulate pollutants — on human
health can be difficult, and every study design has a
unique set of strengths and weaknesses. Traditional assess-
ments of single-pollutant health associations may be mis-
leading: measured associations may actually be capturing
the effects of highly correlated pollutants originating from
common sources (Woodruff et al. 2009). Conversely, health
associations for multipollutant models are difficult to in-
terpret, especially as differing amounts of measurement er-
ror can lead to incorrect assumptions about the effects of
correlated pollutants (Brunekreef and Holgate 2002; Tolbert
et al. 2007).

However, assessing whether pollutant–health associa-
tions exist is not a goal of this study. The vast amount of air
pollution research conducted over many decades has led
to overwhelming evidence that ambient air pollution, in
various forms, is linked to adverse cardiorespiratory health

outcomes. These associations are not being tested in this
study, which leads to considerable freedom in modeling
health impacts; the joint impact of complex pollutant mix-
tures can be properly assessed without attempting to disen-
tangle individual pollutant effects. Single-pollutant or
bipollutant models may underestimate the true impact of air
pollution mixtures (Mauderly et al. 2010), strengthening the
argument for utilizing larger multipollutant models.

More intricate investigations of health impacts are possible
if assessments of individual associations are not required.
There is no reason to believe that effects of individual pollut-
ants are independent of levels of other pollutants; rather,
multipollutant mixtures may exhibit important atmospheric
chemical reactions or synergistic health effects (Mauderly
and Samet 2009). In addition, the dose–response curves be-
tween pollutants and health effects may not be linear
(Schwartz and Zanobetti 2000). The use of pollutant inter-
action terms and nonlinear terms in a multipollutant
health impact model may make individual pollutant con-
tributions difficult to decipher. However, if assumptions
about pollutants being independently and linearly associ-
ated with health outcomes are false, these more detailed
models could result in more accurate and complete assess-
ments of the impact of pollution-control policies.

LONG-TERM POLLUTANT AND HOSPITAL ED 
DATA SETS

One other key strength of this study is the availability of
long-term data sets on ambient pollutant levels and hos-
pital ED visits in the Atlanta metropolitan area. Numerous
studies have used these data sets in time-series analyses to
measure health associations of daily ambient pollutant
levels. Early studies established an association between
several pollutants (such as NO2, CO, O3, PM2.5, and PM10)
and assorted cardiovascular and respiratory outcomes
(Metzger et al. 2004; Peel et al. 2005; Tolbert et al. 2000).
Subsequent analyses quantified health effects of ambient
air pollutants on children and other susceptible groups
(Darrow et al. 2011; O’Lenick et al. 2017; Peel et al. 2007;
Strickland et al. 2010, 2014). Efforts were made to charac-
terize and address potential methodological issues arising
in time-series studies such as measurement error
(Goldman et al. 2011; Sarnat et al. 2010), temporal time
windows (Darrow et al. 2011), residual confounding (Flan-
ders et al. 2011, 2017), power estimation (Winquist et al.
2012b), and spatial variability (Sarnat et al. 2013; Strick-
land et al. 2011). Some analyses utilized alternative expo-
sures such as pollen counts (Darrow et al. 2012), VOCs
(Ye et al. 2017), or oxidative potential (Bates et al. 2015;
Fang et al. 2016), or used alternative outcomes such as hos-
pital admissions (Winquist et al. 2012b). Additional
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studies have explored novel methods such as joint pollutant
effects (Winquist et al. 2014) or Bayesian ensemble-based
source apportionment (Gass et al. 2015). All these studies
contributed to the epidemiological literature, not only for
the quantification of the acute effects of ambient air pollu-
tion, but also on time-series analytic methodology. Cru-
cially, these studies helped to improve confounder control
in order to decrease bias stemming from effects of meteo-
rology, seasonality, long-term trends, and other time-varying
factors on both air pollution and ED visitation patterns.

SPECIFIC AIMS

This study approaches the accountability of regulations
under the 1990 C through six objectives, the first three of
which are focused on the first three links in the chain of
accountability. The final three objectives assess the linkages
between changes in air pollution and improvements in
public health, and evaluate factors (modeling assumptions
and estimation error) that can affect estimation of the
overall impacts of pollution-control policies.

This report is organized as follows: the current section
covers specific objectives of the project and details the
study area, regulatory actions of interest, and the impor-
tance of stakeholder engagement in the conduct of this
work. The next two major sections, “Study Design and
Methods” and “Results,” step through links in the chain of
accountability to maintain consistency in the discussion
and aid the reader in keeping track of the chain of events as
they happened in reality. The “Discussion and Conclu-
sions” section builds on the results, integrating across the
findings. An “Implications of Findings” section identifies
those issues that rise to the top in terms of potentially
important conclusions that could warrant action. The
main body of this report provides the key aspects of the
study. Additional details can be found in the Appendices,
Additional Materials (available on the HEI website), and
journal articles based on this work (see “Other Publica-
tions Resulting from This Research”). The reader should
note that we make use of multiple acronyms — which we
define at their first use — throughout the text. We refer the
reader to the “Abbreviations and Other Terms” section at
the end of this report.

OBJECTIVES

The current study had six objectives, which are listed
below. This report is organized according to the chain of
accountability, so while all of the objectives are addressed,
they are not necessarily addressed in order.

1. Quantitatively assess the impacts of controls on
utility NOx and SOx emissions on air quality in the
southeastern United States.

2. Quantitatively assess the impacts of controls on light-
duty vehicle NOx, VOC, and CO emissions and on
heavy-duty vehicle NOx and PM emissions on air
quality in the Southeast.

3. Assess the impact of meteorological trends on air
quality in the Southeast.

4. Assess the impacts of the regulatory programs on
acute cardiorespiratory ED health outcomes.

5. Evaluate the effects of methodological choices used in
estimating the impact of pollution-control policies.

6. Conduct uncertainty analyses capturing potential error
in parameter estimation at multiple study stages to con-
struct comprehensive confidence interval estimates.

STUDY AREA

Most of the measurement-based empirical analysis
focuses on Atlanta, Georgia. Atlanta is both the most pop-
ulous metropolitan area in Georgia and a rapidly growing
urban hub; the 5-county Atlanta metropolitan area
(DeKalb, Fulton, Cobb, Gwinnett, and Clayton counties)
grew from 2.85 million people in 1999 to 3.54 million in
2013, a 24.2% increase (see Appendix C, available on the
HEI website). The current PM2.5 20-county Atlanta nonat-
tainment area (ANAA) grew from 4.01 million people in
1999 to 5.35 million in 2013 (a 33.5% increase), while the
entire state of Georgia increased in population 24.2%
during this time, from 8.05 to 9.99 million; for reference,
the U.S. population grew 13.3% from 1999–2013. 

The Jefferson Street monitoring station (JST), which is
part of the SouthEastern Aerosol Research and CHaracteriza-
tion (SEARCH) network (Hansen et al. 2003), is located
roughly 2 miles northwest of downtown Atlanta and about
1.4 miles from a major interstate highway. This site has pro-
vided detailed air quality data since 1998. Multiple aspects
of the study’s air quality analyses — meteorological
detrending, aerosol acidity analyses, and ambient air quality
trend assessment — were extended to other SEARCH sites.
These are addressed in brief in the main body of this report
and in detail in publications and appendices associated with
this report (Henneman et al. 2015, 2017a, 2017b; see
Appendix E available on the HEI website). SEARCH site
abbreviations are listed at the end of Appendix E.

The ANAA serves as the boundary for the mobile emis-
sions analysis, while EGU emissions are split into two cat-
egories: those within the ANAA and those within six
southeastern states (Alabama, Georgia, Mississippi, North
Carolina, South Carolina, and Tennessee) that have been
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shown to be major contributors to air quality issues in
Georgia, as well as in Alabama (Bergin et al. 2005).

CMAQ air quality modeling associated with this study
covers the East Coast of the United States. The two
approaches — observation-based studies using monitor
data and regional air quality modeling encompassing a
much broader area — allow for a detailed look into both
spatial and temporal scales important to this account-
ability analysis.

SCENARIOS AND REGULATORY PROGRAMS OF 
INTEREST

Defining the regulatory actions of interest is an impor-
tant first step in accountability analyses (HEI Account-
ability Working Group 2003). EGUs and on-road mobile
(MOB) vehicles are major sources that impact air quality in
Atlanta. Both of these source categories have been subject to
regulations promulgated under the 1990 C (U.S. EPA 2011),
and those regulations are suspected of achieving both emis-
sions reductions and health benefits. This project begins by
investigating the emissions reductions that have been
achieved under specific programs in the Southeast.

Because of the overlapping nature of regulations at
national, state, and local levels, it is difficult to separate
the impacts of concurrent regulations on emissions. As
discussed above, a utility may decide to install a control
device for multiple reasons, and any one regulatory action
may drive the implementation of various control options
(e.g., changes in fuels, retrofits, or plant closings). Simi-
larly, automobile controls include on-board (largely feder-
ally regulated) and fuel-related (both state and federally
regulated) controls. The majority of the control programs
of interest, therefore, are defined by both the national and
local programs that drive the changes in the modeled
counterfactuals.

The first regulatory scenario of interest is the EGUMOB
scenario (Table 1), which considers all of the regulatory
actions analyzed here on EGUs and mobile sources over
the period of interest. This scenario was the most straight-
forward to estimate because it is based on total energy
demand, vehicle activity, and emissions factors (the rela-
tionship of emissions to activity) from the beginning of the
period. The majority of the regulatory scenarios listed in
Table 1 are named after the relevant national programs, but

Table 1. Scenarios Used in the Analysis

Scenario Name Regulatory Programs Perioda

EGUMOB All EGU and mobile regulations 1993–2013 (Mobile)
1995–2013 (ANAA)
1997–2013 (Southeast)

EGUALL All EGU regulations 1995–2013 (ANAA)
1997–2013 (Southeast)

EGUARP ARP and GRAQCyy 1995–2013 (ANAA)
1997–2013 (Southeast)

EGUNBP NBP and SIP Call and GRAQCjjj 1999–2013

EGUCAIR CAIR and GRAQCsss 2009–2013

MOBALL All mobile regulations 1993–2013

MOBIM Inspection and Maintenance 1993–2013

MOBGSP Tier 2 Gasoline Program
GRAQCbbb

2000–2013

MOBDSP Heavy Duty Diesel Rule 2006–2013

 a Years provided correspond to the dates used in the analysis, and not necessarily to the dates of the regulatory action. Differences between the dates used 
and the program start dates stem from data variability.

GRAQC = Georgia Rules for Air Quality Control (Georgia EPD 2013); GRAQC= Gasoline Marketing Rule; GRAQCjjj = NOx Emissions from Electric Utility 
Steam Generating Units; GRAQCsss = Multipollutant Control for Electricity Utility Steam Generating Units; GRAQCyy = Emissions of Nitrogen Oxides from 
Major Sources.
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refer to both the national and state programs (and continue
to do so for the entirety of this report). Georgia state pro-
grams are named by their title in the Georgia Rules for Air
Quality Control (GRAQC) documents published by the
Georgia Environmental Protection Division (Georgia EPD
2013). The last column in Table 1 refers to the period used
to estimate the effects of each regulatory program. Each
counterfactual scenario describes the hypothetical condi-
tions under which the controls of interest were not imple-
mented and uses the first year in the period as the base
year (i.e., the year before effects are estimated). Relative
program implementation time lines are displayed in
Figure 2.

EGU Programs

The three national EGU programs investigated in most
detail in this report are the ARP, the NBP and its associated
SIP Call, and the CAIR.

The ARP was finalized and promulgated in 1993 to
combat increasing SO2 and NOx emissions throughout the
United States, especially in eastern states (National
Research Council 2004; U.S. EPA 2002). Under Title IV of
the Clean Air Act Amendments in 1990, Congress set out

to reduce annual SO2 emissions in the United States by
50% in 2010 compared with 1980 levels. To achieve these
reductions, the legislation prescribed a cap-and-trade
approach for SO2 and an emissions factor (in mass per heat
input) limit for NOx that included two phases. Phase I of
the ARP, which began in 1995 for SO2 and 1996 for NOx,
targeted the largest existing power plants. Starting in 2000,
Phase 2 of the ARP required all other plants regulated
under Title IV of the CAA to achieve emissions reductions.
In order to ensure reductions were being made, continuous
emissions monitors were required for both SO2 and NOx
on all regulated stacks (Morgenstern et al. 2012).

To address the problem of O3 precursors being trans-
ported across state lines in the East, the U.S. EPA issued the
NOx SIP Call in 1998. This call was meant to improve the
implementation of the controls established under the ARP.
The SIP Call did not place a limit on individual sources;
instead, it required each state to develop a plan to reduce
NOx emissions during the O3 season that contributed to
nonattainment in downwind states, particularly in the
northeastern United States (U.S. EPA 1998, 2003). The U.S.
EPA began the NBP under the 1998 SIP Call to aid states in
their effort to meet their emissions budgets. The NBP was a

Figure 2. Implementation time lines for mobile and EGU regulatory programs at the federal and state levels. Each beginning date denotes the start of
enforcement for each program and may not reflect the first time initial effects are reported in the remainder of this report. GRAQC = Georgia Rules for Air
Quality Control (Georgia EPD 2013). The subscripts on GRAQC refer to sections of the Rules.
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cap-and-trade strategy that was optional; however, all
20 states in the NOx SIP Call and the District of Columbia
used the program to help meet their NOx SIP Call require-
ments by 2003 (U.S. EPA did not assess each state’s perfor-
mance until 2007). A portion of northern Georgia was
included under the original draft of the NOx SIP Call, but
was later removed from the requirements of the rule
because of court actions and the U.S. EPA’s redesignation
of Birmingham, Alabama, and Memphis, Tennessee, non-
attainment areas (U.S. EPA 2008). Georgia began requiring
seasonal NOx controls on EGU sources in the ANAA
beginning in 2000 under a state program (GRAQCjjj) sim-
ilar to ones adopted by other states under the SIP Call.

CAIR, promulgated in 2005, was the regulatory
approach to further reducing NOx and SO2 emissions
adopted by the U.S. EPA after the Clean Skies Act did not
pass Congress. The focus of CAIR is pollutant (e.g., PM2.5)
transport across state borders. The regulation affected
28 eastern states, and set up three interstate emissions
trading programs: the CAIR SO2 annual trading program,
the CAIR NOx annual trading program, and the CAIR NOx
ozone-season trading program (U.S. EPA 2005a,c). In
effect, CAIR extended the ozone-season NOx controls
under the NPB to the entire year, and required large coal
plants to install SO2 controls. The U.S. EPA reports that
CAIR should have led to reductions of NOx and SO2 emis-
sions of 41% and 44%, respectively, in 2015 (U.S. EPA
2005a). A 2008 court decision kept CAIR in place, but
instructed the U.S. EPA to develop an alternative rule that
satisfies CAA requirements related to cross-state transfer
of air pollutants. The resulting rule, the Cross-State Air
Pollution Rule, was promulgated in 2011 and delayed by
litigation until 2015. It is not addressed in the analysis
here, but it is possible that the rule, even in its proposed
stage, may have impacted utilities’ decisions regarding
controls and fleet makeup toward the end of the study
period.

Each of the major national EGU rules relates to a rule in
the GRAQC. GRAQCyy — Emissions of Nitrogen Oxides
from Major Sources — required EGUs in 13 counties origi-
nally in the Atlanta 1-hr O3 NAA to install “reasonably avail-
able control technology” (Georgia EPD 2013) by July 1995.
The rule was expanded to 32 more counties in 1999 and to
smaller facilities in 2007. GRAQCjjj — NOx Emissions from
Electric Utility Steam Generating Units — established
summertime emissions limits (1 May–30 September) on a
lb/mmBtu heat input basis for plants in the 13-county
NAA. Compliance was required by some units as early as
summer 1999, and more plants were added each summer
between 2000 and 2002. GRAQCsss — Multipollutant Con-
trol for Electricity Utility Steam Generating Units — was

promulgated in 2007, and established dates of compliance
for specific plants regarding installation of selective cata-
lytic reduction (a NOx emissions control device) and flue
gas desulfurization (an SO2 emissions control device) on
specific units. This rule overlaps in both date and purpose
with CAIR in that it requires year-round controls on NOx
and strict controls on SO2 from coal-fired power plants.

Mobile Programs

Enhanced inspection and maintenance have been re-
quired on automobiles registered in 13 counties surround-
ing Atlanta since 1996. The affected counties are as
follows: Cherokee, Clayton, Cobb, Coweta, DeKalb, Doug-
las, Fayette, Forsyth, Fulton, Gwinnett, Henry, Paulding,
and Rockdale. In general, the requirement covers gasoline-
powered cars and light trucks, specifically those 24 model-
years old and newer.

Two separate gasoline programs are included in this
analysis. Beginning in 1999, Georgia required gasoline
sold in an expanded region of 25 counties to have a sum-
mertime Reid vapor pressure of 7 psi or less and a seasonal
average sulfur content of less than 150 ppm (by weight).
The seasonal sulfur limit was reduced in 2003 to 90 ppm
and was reduced further in 2004 to a 30-ppm year-round
average. In 2006, the federal Tier 2 limit required an
annual average of 30 ppm sulfur fuel or less. Therefore,
before 2006, benefits are attributed to the Georgia Gasoline
Marketing Rule and afterward to the Tier 2 program.

Lowering Reid vapor pressure is an approach to reduce
evaporative VOC emissions. Reducing sulfur both reduces
SO2 and SO4

2� emissions and improves the efficiency of
selective catalytic reduction controls that reduce NOx
emissions. The focus of both the Georgia Gasoline Mar-
keting Rule and the Tier 2 Motor Vehicle Emissions Stan-
dards and Gasoline Sulfur Requirement is to reduce
mobile contributions to ambient O3 and PM levels by
reducing NOx and VOC emissions. The rule has the further
effect of reducing SOx emissions, which contribute to the
formation of secondary PM through atmospheric conver-
sion to SO4

2� (U.S. EPA 1999).

The Tier 2 Program included updated engine emissions
standards applicable to all passenger cars, light trucks, and
medium-duty passenger vehicles. The standards were
phased in between 2004 and 2009. Average manufacturer
fleet vehicle emissions from new vehicles under this pro-
gram are required to meet a standard of 0.07 g/mile NOx,
and nonmethane hydrocarbons (NMHCs, a component of
VOCs) are regulated based on which of several certification
bins each car model fits into. NOx standards before this rule
was in place ranged from 0.30 g/mile to 1.53 g/mile
depending on the type of vehicle.
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The 2007 Heavy Duty Highway Rule was promulgated
in 2001 (U.S. EPA 1997, 2000). Like the Tier 2 gasoline
rule, this program sets standards for both engines and
fuel. The goal of this regulation was to reduce O3 levels by
reducing O3 precursor emissions (NOx and NMHCs). One
major aspect of the rule was limiting sulfur content to
15 ppm or less by June 2006. This improves the efficiency
of post-combustion selective catalytic reduction at
removing NOx and VOCs. Diesel sales in Georgia went
from being comprised of 91% fuel in 2006 with a sulfur
content of between 15 and 500 ppm to 35% in 2007, with
the difference being declining sales of diesel with sulfur
content greater than 500 ppm and increasing sales of fuel
with sulfur content less than 15 ppm. By 2008, no diesel
with sulfur content greater than 500 ppm was sold, and by
2012, 100% of fuel sold in Georgia had less than 15 ppm
sulfur (U.S. Energy Information Administration 2014).

A second major component of the Heavy Duty Highway
Rule is the reduction of NOx and NMHC emissions stan-
dards applicable to all highway heavy-duty engines. These
standards were enforced beginning on model-year 2004 vehi-
cles. The previous standards were for total hydrocarbons at
1.3 g/bhp-hr and 4.0 g/bhp-hr for NOx. The updated standard
is a limit of 2.4 g/bhp-hr for combined NOx and NMHCs
or 2.5 g/bhp-hr with a limit of 0.5 g/bhp-hr on NMHCs
(U.S. EPA 1997). In 2007, standards were introduced, to be
phased in from 2007 to 2010, that limited NMHC emis-
sions to 0.14 g/bhp-hr and NOx emissions to 0.2 g/bhp-hr.

REGULATOR AND STAKEHOLDER ENGAGEMENT

A goal at the outset of this study was to involve the nu-
merous regulators and stakeholders that are involved in
developing, interpreting, and implementing air pollution
regulations. As discussed above, many of the policies ad-
dressed in this report are complicated by their formula-
tion, adoption, execution, and relationships with other
policies. These complications have a direct bearing on inter-
preting regulatory impacts on emissions, air quality, expo-
sure, and health. To gain a deeper understanding of the
regulatory framework, we approached both current and for-
mer employees of many regulators and stakeholders in the
region, including Georgia Power and Southern Company
(Georgia Power is an operating unit of Southern Com-
pany), the U.S. EPA Region IV, and the Georgia EPD for in-
formation on developing air quality policies and
regulating emissions in Georgia and the Southeast (South-
ern Company has another operating unit in Alabama) in
general, and how the specific regulations we studied were
developed in particular. These discussions pointed us to
important additional sources for information — such as
archived Georgia SIPs and Utility Integrated Resource Plans

— and informed our methods, particularly in estimating
counterfactual EGU and mobile-source emissions.

STUDY DESIGN AND METHODS

STUDY DESIGN OVERVIEW

This study approaches accountability by estimating
effects of regulations on multiple outcomes, in particular,
emissions, air quality, and health effects. First, a set of pol-
icies impacting two of the historically largest sources of
anthropogenic emissions in the Southeast — on-road
mobile sources and EGUs — was identified and operation-
ally defined. It is important to note that over the period
studied, emissions from both of those source categories
have decreased appreciably (along with emissions from
most other anthropogenic sources), and they continue to
decrease (Table 2, Appendix Figures A.1 and A.2, available
on the HEI website).

EGU and mobile emissions changes were quantified
according to each of the scenarios in Table 1. For each
program, estimates were made of daily counterfactual
emissions that assume the regulatory program did not go
into place, but that the associated activity levels (e.g., elec-
tricity demand and vehicle miles traveled [VMT]) are the
same as in the base (actual) case. Empirical statistical
methods and a chemical transport model (CTM) were used
to estimate sensitivities of air pollution concentrations to
emissions. These models were run with program-specific
emissions changes to estimate counterfactual daily time
series of air pollutant concentrations and the effects of
each regulatory action on air quality. CTM results were
used to investigate other questions related to account-
ability, including the model’s ability to capture changes in
spatial and pollutant variability in regulatory impact
across the period of interest. Appendices include more
detailed emissions and air quality analyses, employing
empirical, CTM, and satellite methods to investigate
potential bias in mobile NOx emissions (Appendix D) and
pH trends (Appendix E) across the Southeast, which are
briefly summarized in this report.

Poisson generalized linear models were utilized to esti-
mate associations between observed ambient pollutant
levels and daily counts of ED visits for cardiorespiratory
outcomes. Parameter estimates obtained from these
models are combined with the difference between counter-
factual and observed pollutant levels in order to estimate
the difference between observed and counterfactual ED
visits (hereafter “ED visits prevented”) for each pollution-
control scenario. Uncertainties in the emissions change
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estimates, empirical air quality models, and health impact
models are combined via Monte Carlo simulations for a
total uncertainty estimate.

Each of the three major sections in this report (“Study
Design and Methods,” Results,” and “Discussion and Con-
clusions”) is organized in the order of the chain of
accountability, focusing on each of the links in the chain as
appropriate to emphasize the passing of information from
one to the other. Figure 3 shows the flow of information for
the central work of the study.

EMISSIONS

The first link in the chain of accountability (Figure 1)
represents the relationship between regulations and emis-
sions. This relationship can be difficult to estimate
because of the number of factors that influence emissions,
including energy demand (which is impacted by popula-
tion, economic activity, and energy efficiency, etc.), fuel
type (which is impacted by availability and price), regula-
tions on other sources (utilities will trade or buy electricity
from other utilities if it is cheaper than producing it them-
selves), and others.

Two sources of uncertainties were introduced by the
emissions portion of this study: uncertainty in the actual
emissions used to relate regulations to emissions and emis-
sions to air quality, and uncertainty in attributing emis-
sions changes to regulations. The first source has been
addressed previously, though it is still much larger in
mobile-source than in EGU emissions. The second is large
and is assumed to dominate emissions uncertainties in the
modeling.

This section describes the sources (EGU and mobile) for
emissions data and includes a discussion of associated
uncertainties. The final two subsections address the
approaches for estimated changes in emissions attribut-
able to specific regulatory programs for each of the sce-
narios in Table 1.

EGU Emissions Data

EGU emissions data for six southeastern states (Ala-
bama, Georgia, Mississippi, North Carolina, South Caro-
lina, and Tennessee) were downloaded from the U.S. EPA
Air Markets Database (U.S. EPA 2016a). Continuous emis-
sions monitoring (CEM) data, required under the ARP, are

Table 2. Emissions Changes for Various Species and Sources Between Reference Yeara and 2013

Source (y*) /
Species

Emissionsb in y*
(tons/day)

Emissions in 2013
(tons/day)

Decrease
(%)

ANAA EGUc (1995)
NOX 303 43 86
SO2 920 142 85

Regional EGUd (1997)
NOx 2,710 475 82
SO2 5,604 943 83

MOB (1993)
NOx 567 127 78
SO2 15 1 93
PM2.5 30 10 67

CO 4,306 1,421 67
VOC 326 123 62
EC 12 4 61
OC 18 7 67

a Reference years (y*) are selected as the first available year with complete data for each source. 

b Emissions are reported as daily averages.

c Atlanta nonattainment area (ANAA) EGUs are within the 20-county Atlanta nonattainment area,

d Regional EGUs are located in seven Southeastern states (and do not include ANAA EGUs). 
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available online for hourly emissions at the unit level for
large emitters of NOx, SO2, and CO2 beginning in 1995. A
review of the data led to the conclusion that full compli-
ance in the region did not occur until 1997 (Alabama and
Mississippi appear to be missing data for 1995–1996).
These daily emissions were split into two groups: those
from plants within the ANAA and those outside (denoted
REG, for “regional”).

EGU Emissions Data Uncertainty

Uncertainty in EGU emissions is small relative to uncer-
tainty in other data used in this project because CEM data
are measured directly at the source. Napelenok and col-
leagues (2011) used an uncertainty of ±3% for major point
source NOx emissions, and Hanna and colleagues (2001)
used an uncertainty of ±50% in major point sources,
though the work did not assume a universal application of
CEM. Given the use of CEM data in this work, uncertainty
in EGU emissions was assumed to be negligible compared
with other sources of uncertainty, such as that of esti-
mating counterfactual emissions or linking emissions with
changes in air quality.

Mobile Emissions Data

U.S. EPA’s MOVES 2010b (U.S. EPA 2012b) software
was applied to model daily on-road emissions for the

ANAA from 1993–2012. When possible, the MOVES
entries in the default input database were replaced with
Atlanta-specific data from the EPD. The EPD supplied
MOVES-ready IM inputs inferred from registration data in
Atlanta, vehicle population, speed distribution, fuel for-
mulation, road-type distribution, and vehicle-type age dis-
tribution. They provided detailed annual data for 2002,
2008, and 2010. Population change in Fulton County,
which contains the majority of the area of the city of
Atlanta, was used to scale vehicle populations in years for
which detailed annual data were not available, and other
inputs were interpolated linearly between known years.
Vehicle-type age distribution was available for each year of
interest from the EPD. Estimated average annual vehicle
miles traveled was obtained from the Georgia Department
of Transportation database (Georgia Department of Trans-
portation 2017).

While the current study does not focus on non-road
mobile emissions (from sources such as aircraft, construc-
tion equipment, and lawn mowers), they contribute signif-
icantly to total mobile-source emissions. In 2000, non-road
emissions represented 47.7%, 34.2%, 40.6%, and 66.0%
of total mobile-source hydrocarbon, CO, NOx, and PM
emissions, respectively (National Research Council 2004).
Each of these fractions is expected to increase by 2020 as
newer and cleaner on-road vehicles replace older vehicles.

Figure 3. Outline of steps used in the air quality (A) and health impact (B) analyses.
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Presumably, non-road emissions would respond to
changes in fuel composition, but with a much less well-
characterized response, and this was not studied here.

MOVES uses multiple models to account for, for exam-
ple, changing transportation patterns, fuel types, and tem-
perature effects throughout the year on various time scales;
the modeling for this project included daily, monthly, an-
nual, and decadal variability. These models produce results
with unrealistic step functions between days, months, and
years. To account for this, raw daily MOVES outputs used in
empirical models were smoothed using linear models with
terms for linear, square, sine and cosine (period of 1 year),
and time interaction with cosine, plus an indicator for
weekday or weekend (Appendix Figure A.5). This trends
model was used to project 2013 emissions.

Mobile Emissions Data Uncertainty

MOVES inputs and internal models each impart uncer-
tainty on the final emissions value; however, research is
limited as to the biases that may be present in estimated
emissions rates and activities for large fleets made up of
multiple vehicle types (such as Atlanta’s). Snyder and col-
leagues (2014) found that differences in VMT estimates
from two models translated into +45% to �35% uncer-
tainty in emissions. They noted that uncertainty in the
ratios of heavy-duty to light-duty automobiles would affect
certain pollutants, such as PM2.5 and NOx, more than
others, such as CO. Adjusting the percentage of diesel vehi-
cles from 5.2% to 9.2% on one specific type of roadway in
their simulations changed total estimated PM2.5 and NOx by
53% and 29%, respectively. Yazdani Boroujeni and Frey
(2014) investigated road grade parameterizations, and
Sandhu and colleagues (2014) addressed refuse truck
emissions rates. No studies to date have combined uncer-
tainty estimates of each of the models within MOVES to
estimate uncertainty across multiple inputs. Hanna and
colleagues (2001) estimated uncertainty in various air
quality inputs using an expert elicitation and applied
±100% for mobile sources. Using a variety of methods and
comparisons — including fuel and mileage-based emis-
sions factors, ground-based observations, satellite inverse
modeling, and regional chemical transport modeling —
multiple studies have found large variability between
modeled and a priori estimates (Dallmann and Harley
2010; Deguillaume et al. 2007; Konovalov et al. 2006;
Napelenok et al. 2008; Parrish 2006).

Although these uncertainties are large, multiple studies
have shown that modeled emissions capture trends suffi-
ciently as to allow air quality models to provide adequate
estimates of air quality and changes over time (Foley et al.
2015a,b; Gégo et al. 2008; Gilliland et al. 2008; McDonald

et al. 2012, 2013; Simon et al. 2012). For statistical mod-
eling, capturing trends in emissions changes is more
important than the absolute emissions amount. Previous
studies have shown that modeled mobile emissions trends
match expected trends based on ambient air quality obser-
vations (Blanchard et al. 2012; Pachon et al. 2012).

Given previously reported concerns in NOx emissions
estimates, particularly that the estimated emissions from
mobile sources are biased high (Anderson et al. 2014;
Goldberg et al. 2016; Souri et al. 2016), this study included
further analysis using multiple approaches to assess
potential bias (discussed in detail in Appendix D). First,
trends in CEM and (MOVES-modeled) mobile NOx emis-
sions, ambient ground-level measurements (at JST), and
satellite products were compared at monthly and annual
time scales. Each satellite product recorded tropospheric
NO2 columns during its operating period, and the overall
time series of the three satellites covered the period
between 1997 and 2013 (GOME 06/1996–06/2003,
SCIAMACHY 08/2002–03/2012, OMI 10/2004–12/2013)
(Boersma et al. 2004, 2011; European Space Agency 2016).
The satellite crossing times over Atlanta were approxi-
mately 3:00 PM (local time), and these were compared with
daily surface concentrations monitored at the same time.

A second approach compares ratios of exhaust compo-
nents in the emissions to those of ambient observations
(hereafter referred to as the “ratio-of-ratios approach”). For
example, the ratio [NOx:CO]EMISS /[NOx:CO]OBS should be
close to unity if atmospheric losses are similar and remain
relatively constant over time and if the relative emissions
are estimated correctly (after accounting for background
CO). Here, background CO is taken as the concentration at
Yorkville, a SEARCH site 60 km northwest of JST. Two
major assumptions are at play here: first, in the city, mobile
emissions contributions dominate ambient levels of cer-
tain species; second, these species have lifetimes that do
not appreciably affect the ratios between the source and
receptor, or the lifetimes are accounted for in the analysis.

The third approach compares results for different spe-
cies from the Research LINE-source (R-LINE) dispersion
model, a steady-state dispersion model that simulates
physical dispersion processes using wind speed, wind
direction, Monin-Obukhov length for turbulence, surface
friction velocity, and other meteorological parameters to
estimate line-source impacts on ambient air quality
(Snyder et al. 2013). Ten years of annual average concen-
tration fields for PM2.5, CO, and NOx in the 20-county
ANAA were developed using an annual average approach
that accounts for the frequencies of different meteorolog-
ical conditions and emission diurnal changes (Zhai et al.
2016). The emissions used are link emissions based on the
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Atlanta Regional Commission’s 20-county activity-based
travel demand model from the year 2010 at 43,712 links
and previously used by the Atlanta Regional Commission
in the Atlanta Roadside Emissions Exposure Study
(D’Onofrio et al. 2016). Emissions were estimated using
MOVES emission factors changes relative to a 2010 base
year with Atlanta traffic volume and speed and vehicle
fleet composition information. For PM2.5, the R-LINE esti-
mates are calibrated to mobile-source impact estimates
that are estimated using chemical mass balance with gas
constraints based on observational data. Regression
approaches were explored in linear and log-transformed
forms using the jackknife resampling method (Sahinler
and Topuz 2007), which estimates regression parameters
with each available observation data point withheld one at
a time. In total, available observations in 10 years were
used at three sites for PM2.5, five sites for CO, and seven
sites for NOx.

In a fourth approach, NOx concentrations and O3 sensi-
tivities to mobile NOx were estimated using CMAQ in July
2011 for two cases: a base case with actual emissions and
an adjusted case with mobile emissions reduced by 50%.
Modeled and observed concentrations were compared. In
addition to assessing potential biases, this exercise tests
both the impact of the magnitude of NOx emissions on O3
levels and the model’s ability to capture nonlinearities in
the relationship of concentrations to emissions.

Other Emissions Sources

While EGU and mobile sources contribute a large frac-
tion of air pollution emissions to the southeastern airshed,
other sources are important as well, and many have under-
gone concurrent emissions changes caused by regulatory
and other changes (Appendix Figure A.1). Source appor-
tionment studies have shown the importance of multiple
sectors, including other (nonutility) industry, biomass
burning, road dust, and meat cooking (Balachandran et al.
2012; Chen et al. 2012; Hu et al. 2014). An estimate of
changing industrial emissions (IND) of PM2.5 (taken from
the 2002, 2005, 2008, and 2011 National Emissions Inven-
tory, and interpolated between years [U.S. EPA 2016c])
was included in the empirical modeling for this work, but
the other sources were not. Other sources are, however,
captured in the CTM.

Assessment of Impacts of Regulations on EGU Emissions

Variability in EGU emissions is due to numerous factors,
including fuel type, plant size and age, meteorology, eco-
nomic activity (both relating to fuel costs and electricity
demand), population shifts, and distribution efficiency.
With these factors in mind, utilities assess many drivers

that determine which controls to install, plants to build, or
plants to shutter, including compliance, electricity cost to
the consumer, avoidance of New Source Review, relation-
ship with plant co-owners, and profit. In Georgia, each of
these serves as a point of interest to the Public Service Com-
mission, which approves Georgia Power’s pricing structure
and major facility changes. Georgia Power must periodi-
cally submit an Integrated Resource Plan detailing the com-
pany’s reasoning for any changes (Georgia Power Company
2007, 2013). While the Integrated Resource Plan provides
some guidance regarding the reason for closing or retrofit-
ting plants, these actions may be taken in response to mul-
tiple drivers. The analysis here used emissions factors and
dates of required compliance as reported in national and
Georgia rules, supplemented by Georgia Power Integrated
Resource Plans, to attribute emissions changes to specific
regulations. A more detailed discussion of decision-making
processes in the utility industry is provided in Additional
Materials 1 (available on the HEI website).

Gégo and colleagues (2007) estimated emissions
changes based on usage. First, an average emissions ratio
(ERy*) was developed for base year y*. For ANAA emis-
sions, y* = 1995, and for regional emissions, y* = 1997.
Annual ER was preferred over daily ER to yield a more
consistent counterfactual:

Here, is the daily emissions in year y* (in

tons), and represents the gross load (MW-h). The
brackets signify the average over the entire year. It is
assumed that, without controls, ER would remain constant
at the value of ERy*. Daily counterfactual emissions were

calculated by multiplying ERy* by each day’s load: 

The fact that Georgia Power (which operates a majority
of the EGUs in the state) must show that a control tech-
nology is necessary in order to argue for cost recovery from
increased rates on customers, allows for the assumption
that all reduced emissions between the actual case and the
EGUALL case correspond to a combination of control poli-

cies and improvements in efficiency. The approach for
estimating emissions in each case, then, involved splitting

the difference between and into dif-
ferent control programs.

There are two options for tracking electricity demand
from the utility plants of interest: heat input and load.
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Both are a measure of the demand on each plant, and emis-
sions factors from both are functions of the type of fuel.
Three major factors contribute to changing emissions: con-
trols, increased efficiency (less fuel burned for same power
output), and reduced demand. An emissions factor of NOx
per load changes over time because of both controls and
increased efficiency. Changes in an emissions factor of
NOx per heat is less dependent on efficiency. For example,
if 50% of the load were converted from coal to natural gas
and controls were put on the coal, the NOx per load ratio
would change because of controls and increased effi-
ciency, while the NOx per heat ratio would change only
because of the controls. Here, fleet-wide averages (such as
those from the two sectors used in the current study,
Atlanta-area EGUs and regional EGUs) are a better
approach than individual plants because utilities will dis-
pense load among their facilities to produce electricity as
cheaply as legally possible (Additional Materials 1).

The value of as a fraction of  (Appen-
dix Figure B.1) can be interpreted as the fraction of emis-
sions reductions achieved since y*. Lines were fit to this
fraction based on known dates of regulatory compliance
and observed trends in the data. These lines were then
converted back to emissions amounts, and emissions re-
ductions were interpolated to the end of 2013 (it is as-
sumed that older control programs would have continued
in cases when newer programs replaced them). More detail
is provided in Additional Materials 1 on the specific dates
used for each control scenario.

Assessment of Impacts of Regulations on Mobile 
Emissions

Mobile sources have unique features that complicate the
estimation of counterfactuals. First, the ANAA fleet is made
up of vehicles of varying ages, manufacturers, types, and
fuel types that are subject to different regulations. The coun-
terfactual mobile emissions scenarios required alternative
specifications within and outside of MOVES to estimate
counterfactual emissions. MOBIM scenario emissions were
estimated by clearing the IM table from the input database
— functionally, this equates to eliminating the IM program
— and rerunning MOVES for the entire period of interest.
IM was required beginning in 1993 in a 13-county subsec-
tion of the ANAA; the model was rerun for this subset.

The other scenarios required a different approach, and
the following explanation requires a clarification of the
terms. Model year is associated with when the vehicle first
entered the vehicle population, and emission year (EY) is
the year of interest. Emissions factors for automobiles of a
certain model year generally increase with each passing EY
at varying rates depending on the vehicle type, fuel type,

and other factors according to models within MOVES.
Because of updates to automobile engines, changes in fuel
composition, and other changes, cars with later model years
tend to have lower emissions factors as well.

For the MOB scenario (and related EGUMOB scenario),
emissions factors for EY 1993 were applied to all future
years. This assumes that no changes were made to vehicles
produced after 1993 that would impact their emissions
rates. The emissions factors were assigned by pollutant,
fuel type, process type (e.g., running exhaust, refueling
displacement vapor loss), source type (e.g., passenger car,
motorcycle, transit bus), month, day (weekend or
weekday), and model year. For full lists of subsectors
assigned emissions factors, see the MOVES User Guide
(U.S. EPA 2012a). In EY 2000, for example, a model-year
1998 gasoline-powered passenger car is assigned the com-
plementary emissions factor for a model-year 1991 gaso-
line-powered passenger car in EY 1993. This approach was
corroborated by running MOVES with the Rate of Progress
option, which models a scenario with no C by applying 1993
emission rates to all vehicles after this year. Results from
the two approaches were identical.

The approach for the MOBGSP and MOBDSP is similar;
the above method for applying emissions factors for pre-
vious EYs was applied to only vehicles that used the fuel
type of interest. In the MOBGSP scenario, emissions factors
for EY 1999 were applied for all future years, and in the
MOBDSP scenario, emissions factors for EY 2005 were
applied for future years.

AIR QUALITY

This section will discuss the sources of empirical air
quality data and associated uncertainty. Further, it will
describe methods for meteorological detrending, empirical
and deterministic air quality modeling, and uncertainty
propagation from regulation to emissions to air quality.

Air Quality Data

The majority of the air quality and meteorology data
used for this study are from JST (33.78°N, 84.42°W), a
SEARCH site located near downtown Atlanta (Blanchard
et al. 2013). For gaseous species and meteorological vari-
ables, hourly measurements were converted to daily met-
rics using averaging times that vary between pollutants
based on air quality standards and methods used in previ-
ously published literature (Table 3; see also detailed dis-
cussion in Henneman et al. 2015).

In some cases, when data at JST had significant numbers
of missing measurements in a row, meteorological data were
replaced by observations at Hartsfield-Jackson International

EEGUACT EEGUALL
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Airport, which is located about 15 kilometers south of JST.
This was used for all of 1999 for wind speed and tempera-
ture. Rainfall data are from the airport.

Uncertainty in Air Quality Data

Each of the air pollution concentration and meteorolog-
ical measurements has associated uncertainty. Information
on measurements made at SEARCH sites is described in
detail by Hansen and colleagues (2003) and Blanchard and
colleagues (2013). For the purpose of this analysis, the
uncertainties of these measurements were found to be
small compared with uncertainties in other inputs to the
modeling.

Meteorological Detrending

The first of two empirical methods employed in this
work involved meteorological detrending. The goal of

detrending is to remove meteorological effects on air pollu-
tion (i.e., effects that are not linked to emissions) in order to
identify the effects of emission changes at various time
scales (Camalier et al. 2007; Cox and Chu 1993; Kuebler et
al. 2001). Once the portion of the signal that corresponds
to meteorological fluctuations is removed, the resulting
time series is compared to the observations to determine the
variability in the signal that is attributable to meteorological
variability versus other factors (e.g., emissions changes).
The method, including evaluation, is described in detail by
Henneman and colleagues (2015), and in brief here.

Long-term time series of pollutant concentrations C(t)
were decomposed into their components:

ln C t C t C t

C t C t C t

LT S

WH STM WN

      

                     ..                         
(3)

 

Table 3. Daily Pollutant Species and Meteorological Metrics (1999–2013) from JST Converted from Hourly 
Measurements

Species Metric Period

Exclusion Criteriaa 
(for daily aggregation) 

(hr)

Daysb

(n) Missing (%)

Gaseous (ppb)
O3 Maximum of 8-hr mean 12 AM–11 PM — 5,396 1.51
NOx Daily mean 11 AM–7 PM � 5/9 5,073 7.05
CO Daily mean 11 AM–7 PM � 5/9 5,270 3.45
SO2 Daily maximum 12 AM–11 PM � 12/24 5,329 2.37

Particulate (µg/m3)
PM2.5 Daily mean 12 AM–11 PM — 4,975 8.83
SO42� Daily mean 12 AM–11 PM � 12/24 5,151 5.62
NH4+ Daily mean 12 AM–11 PM � 12/24 5,039 7.67
NO3� Daily mean 12 AM–11 PM � 12/24 5,002 8.34
EC Daily mean 12 AM–11 PM — 3,825 29.8
OC Daily mean 12 AM–11 PM — 3,821 29.9

Meteorologyc

SR (W/m2) Daily total 12 AM–11 PM Any, 7 AM–6 PM 4,950 9.29
SRM(W/m2) Daily maximum 12 AM–11 PM — 5,398 1.11
Tm(°C) Daily mean 11 AM–3 PM � 3/5 5,368 1.66
TM(°C) Daily maximum 12 AM–11 PM — 5,425 0.62
WS (m/sec) Daily mean 11 AM–3 PM � 3/5 5,284 3.19
WSmorn (m/sec) Morning mean 7 AM–10 AM � 3/5 5,225 4.27
RH (%) Morning mean 8 AM–11 AM � 3/4 5,363 1.75
RF (1 or 0) Daily factor 12 AM–11 PM — 5,459 0

a If the exclusion criterion (i.e., fraction of hours in the specified period that are missing) is violated on a certain day, the species is recorded as not available 
for that day.

b There were 5,459 total days. 

c — = only one measurement needed per day; RF (1 or 0) = rainfall (1 if rain, 0 if no rain); RH (%) = relative humidity; SR (W/m2) = shortwave radiation; 
SRM (W/m2) = maximum shortwave radiation; Tm (°C) = mean temperature; TM (°C) = maximum temperature; WS (m/sec) = wind speed.
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Superscripts refer to long-term (LT), seasonal (S), week-
day–holiday (WH), short-term meteorology (STM), and
white noise (WN). A log transform was used in the decom-
position above to ensure that model residuals (defined
later) follow assumptions of normality and homoscedastic-
ity (Eskridge et al. 1997; Hogrefe and Rao 2000). Both the
LT and S portions were quantified using a Kolmogorov-
Zurbenko (KZm,p) filter, which is a multipass moving aver-
age filter that has been used in prior air quality data analy-
ses (Kuebler et al. 2001; Rao and Zurbenko 1994; Zurbenko
1991):

where Y is the filtered time series, X is data to be filtered, k
is the number of iterations of a moving average with
window length m, which is equal to 2k + 1, p is the number
of passes, and i is the data point reference. Kolmogorov-Zur-
benko filters are useful for manipulating observation data
because of their versatility in cutoff frequency and ability to
handle missing data (Eskridge et al. 1997). Version 3.0.0 of
the kza package in R was used for this analysis (Close and
Zurbenko 2013). LT was calculated using a KZ365,3 filter and
subtracted from the original time series. Next, a KZ15,5 filter
captured annual variability, and the output was averaged by
day-of-year to produce the S signal, which was also sub-
tracted. These two steps were applied to observations of
meteorological variables as well (except for rainfall, which
was represented as a daily factor variable).

After the LT and S signals were removed from the con-
centration and meteorology time series, all that remained
were values with variability on time scales of less than
about three months (or �s). The concentration � terms
were regressed against �Tm, (�Tm)2, (�Tm)3, �WS, �RH,
RF, TM*�Tm, TM*�RH, �Tm

�1, �WS�1, �RH�1, RF�1,
�Tm

�2, �WS�2, �RH�2, RF�2, weekday indicators,
weekday indicators multiplied by maximum temperature,
month indicators, and holiday indicators. WS is wind
speed, T is temperature, RH is relative humidity, RF is
rainfall, m is mean and M is maximum. Subscripts of �1
and �2 represent lags of 1 and 2 days. The portion of the
signal attributed to weekday and holiday variables is the
WH component of Equation 3, the portion attributed to
meteorological variables is the STM component, and the
model residuals are attributed to WN. The STM signal was
subtracted from the original time series of each pollutant,
yielding a detrended time series independent of influence
from short-term meteorological variability.

Because of O3’s application as a marker for photo-oxidants
in the atmosphere, the detrended O3 components can be
used to measure the emissions-independent photo-oxidative

state of the atmosphere (PS*). PS* was calculated by sum-
ming the S and STM terms from the O3 detrending and
subtracting the mean. This term is important in the empir-
ical models for capturing emissions–air quality relation-
ships in cases where emitted pollutants undergo chemical
transformations in the atmosphere, such as emitted NOx
and VOCs producing O3 in the atmosphere. The code is
available at https://github.com/lhenneman/searchAQ.

Empirical Air Quality Modeling

While meteorological detrending allows for detailed
control of the meteorological impact on observed air pollu-
tion concentrations, it is of interest to directly link emis-
sions to ambient air quality. Linear regression models with
daily concentration as the response and emissions and
meteorological indicators as the covariates were devel-
oped for each of the ten species of interest (Table 4). The
method extends the monthly PM2.5 modeling using EGU
emissions taken by Harrington and colleagues (2012) by
using daily values for multiple pollutants and including
mobile emissions.

An original list of the covariates for each species model
was selected based on literature results in pollutant sensi-
tivities studies (Table 4, first column) (Blanchard and Hidy
2005; Cohan et al. 2005; Liao et al. 2008; Seinfeld and Pan-
dis 2006; Xing et al. 2011). These include emissions terms
(EGU, REG, MOB, and IND) discussed above, including

their interaction with PS* and interactions between NOx

emissions terms and the ammonium nitrate dissociation

constant ( ) from Mozurkewich (1993). Terms for in-

teractions of emissions with were included to ac-

count for enhanced NO3
� at only the coldest temperatures,

and more details of its calculation can be found in the study
by Henneman and colleagues (2017a). Interactions between
pollutant species were generally avoided, except for the
case of mobile NOx and VOC emissions. Four meteorology

indicators were chosen based on the results of the detrend-
ing and included in each model: wind speed, temperature,
relative humidity, and rainfall. Each of these was scaled by
its mean and normalized by its standard deviation. Meteoro-
logical terms in the empirical model are distinct from the
STM component in the detrending model, as these terms
control for variability in pollutant concentrations that is not
attributable directly to emissions in the model, whereas the
STM component is estimated independently of emissions.
The original model for each species is:

Y
m

Xi i jj k

k
 
1 ,                                                         (4)

kNO3
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where i is the ambient species, the �’s are vectors of the
desired regression coefficients, E is the matrix of emission
variables, M is the matrix of meteorology variables, and Î
is the vector of model residuals. Covariates were removed
one at a time in a backward selection, maintaining those
that were statistically significant (P < 0.05). In some cases,
covariates that were deemed physically relevant were kept
in the model even if they were not statistically significant.
An example of this is EGU NOx emissions in the O3 model.
Meteorological covariates were kept in all models.

Two important aspects of the overall analysis stem
from the empirical modeling. The first is the source-spe-
cific ambient air quality sensitivities. These are calcu-
lated by summing the total contribution of each source
to the modeled concentration. For instance, the PM2.5

model included mobile emissions terms and

 The total mobile sensitivity, therefore, is the

sum of the products of these two emissions terms and their
respective regression coefficients. The terms sensitivity

MOB
PM

E 2 5.

MOB
VOC

E PS× *.

Table 4. Covariates Included in Each Species Model, Denoted by Dotsa 

O3 NO2 CO SO2 PM2.5 SO4
2� NH4

+ NO3
� OC EC

R2 0.67 0.45 0.37 0.25 0.42 0.45 0.39 0.45 0.26 0.29

Intercept � � � • � � • � • �

• � � �

• •

•

� • � � • �

• • � • � •

•

� •

• � � �

� � � �

� � � � � �

�

• � �

� �

�

Table continues next page

a Circled dots represent statistically significant (P <0.05) regression parameters.

EEGU
NOx

EEGU
NOx PS *

EEGU
NOx kNO 3

EREG
NOx

EREG
NOx PS *

EREG
NOx kNO 3

EEGU
SO2

EEGU
SO PS2 × *

EREG
SO2

EREG
SO PS2 × *

EMOB
PM2 5.

EMOB
PM PS2 5. *

EMOB
NOx

EMOB
NOx PS *

EMOB
NOx kNO 3
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and contribution are synonymous when considering a
100% change in emissions, and thus can be the same in
that context.

The second outcome of the empirical modeling is daily
counterfactual time series. These are estimated for each of
the scenarios in Table 1 by replacing the actual emissions
in each of the species models with counterfactual emis-
sions specific to each scenario. In the EGUALL scenario, for
example, only EGU emissions in each species model are
replaced by their counterfactual.

Chemical Transport Modeling

CTMs use numerical methods to estimate air pollution
transport and chemistry across a gridded domain. They
provide a number of benefits, including detailed spatial
and temporal coverage and the ability to estimate concen-
trations and sensitivities to model inputs. CTMs are used
for both research (e.g., Souri et al. 2016; Wang et al. 2010;
Xie et al. 2011) and regulatory (e.g., Georgia EPD 2009;
U.S. EPA 2005a,b) applications.

Table 4 (Continued). Covariates Included in Each Species Model, Denoted by Dotsa 

O3 NO2 CO SO2 PM2.5 SO4
2� NH4

+ NO3
� OC EC

�

�

� �

�

�

�

�

�

�

�

�

�

WS • � � � � � � � � �

Temperature � � � � � � � � � �

RH � � � � • � � • � �

RF • � � � � � � � • �

a Circled dots represent statistically significant (P <0.05) regression parameters.

EMOB
VOC

EMOB
VOC PS *

EMOB
SO2

EMOB
SO PS2  *

EMOB
CO

EMOB
CO PS *

EMOB
EC

EMOB
EC PS *

EMOB
OC

EMOB
OC PS *

E EMOB
NO

MOB
VOCx PS× × *

EIND
PM2 5.
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Simulations were performed for the eastern continental
United States (details in Henneman et al. 2017b). The U.S.
EPA Sparse Matrix Operator Kernel Emissions (SMOKE)
platform (version 3.5.1) was used to prepare emissions
using the U.S. EPA National Emissions Inventory 2002 and
2011 for the 2001–2002 and 2011–2012 model years,
respectively (CMAS Center 2013, U.S. EPA 2014a). The
Weather Research Forecast (version 3.6.1) (Skamarock et
al. 2008) was used to generate meteorological fields. Simu-
lations of concentration fields were conducted using the
CMAQ model (version 5.0.2) (Byun and Schere 2006; U.S.
EPA 2014b), with the inline photolysis option and the
Carbon Bond (version 2005) chemical mechanism. The
simulations were performed over the eastern United States
using a grid of 12 km horizontal resolution and 13 vertical
layers. The U.S. EPA NEI 2002 and 2011 platforms
included biogenic and dust emissions, so inline biogenics
and dust were disabled in CMAQ, as well as inline light-
ning. A fixed profile was used as boundary condition.

The CMAQ decoupled direct method was implemented
to examine first-order sensitivities of pollutant concentra-
tions to emissions, which provided insight into the
response of pollutants to emission controls. On-road
mobile and EGU are the two emission sources focused on
here. Sensitivity of concentrations to VOCs, NOx, primary
PM, and the sum of these three pollutants was calculated
for mobile and EGU.

In addition to a base run of four years (2001, 2002, 2011,
and 2012), we conducted cross-simulations to separate
impacts of emission and meteorology. We used 2001 emis-
sions in a simulation using 2011 meteorology (01E:11M),
and likewise, 2011 emissions were combined with 2001
meteorology (11E:01M). By comparing with base cases
(01E:01M and 11E:11M), we could separate impacts of
emissions (11E:01M � 01E:01M) and meteorology
(01E:11M � 01E:01M).

Uncertainty in Counterfactual Concentrations

Uncertainty is inherent in each of the steps discussed so
far. This section discusses how estimates of uncertainty at
each step are estimated and propagated through the
methods described above, and more details are given in
Appendix B (available on the HEI website). The models for
counterfactual concentrations have two major sources of
uncertainty: the sensitivities of concentrations to emissions
and the estimate of emissions changes from actual to coun-
terfactual (�E). It is important in this context to highlight the
difference between uncertainty in emissions estimates and
uncertainty in the change in emissions due to specific regu-
lations; the latter fits into the scope of this work and is
assumed to be larger than the former. Further, capturing the

actual emissions magnitude is less important in the type of
statistical modeling here than capturing trends at various
time scales, from daily to multiyear. In deterministic
models, absolute magnitudes of emissions are important
because they are required for accurate representation in
the interaction chemistry equations in the model.

Counterfactual emissions cannot be evaluated based on
observations. Uncertainty, therefore, is assigned using
information from the averaging applied to calculate the
baseline emissions factor (ERy*). The uncertainty in �EEGU
is estimated as a normal distribution with mean and stan-
dard deviation of the sampled (ERy*). Since MOVES emis-
sions factors are based on multiple models and not on
measured data, the uncertainty in �EMOB is estimated
using a ±50% uniform distribution around the daily
�EMOB, similar to the approach taken in a study by
Napelenok and colleagues (2011).

The second major source of uncertainty — the empirical
sensitivities of concentration to emissions — stems from
uncertainty in the modeled emissions, selection bias in the
covariates in the model, and error in the statistical model.
To estimate this uncertainty, distributions of each regres-
sion parameter in Equation 5 were sampled simultane-
ously using information in the variance–covariance matrix
of the regression.

The two distribution groups, the first from �E and the
second from the sensitivities, were sampled 5,000 times
and used in each of the species models in a Monte Carlo
approach to estimate 5,000 alternative counterfactual out-
comes for EGUMOB. The approach allows for uncertainty
distributions to be estimated for counterfactuals relating to
any combinations of regulatory programs.

Aerosol Acidity

Previous researchers have investigated aerosol acidity lev-
els and discussed how they may change concurrently with
dramatic changes in emissions (Lipfert and Wyzga 1993;
Weber et al. 2016). Acidity (pH) is an important aerosol prop-
erty and has been related to health impacts (Kleinman et al.
1989; Utell 1985). In the present study, aerosol acidity was
investigated using the ISORROPIA II thermodynamic equi-
librium model (Ansari and Pandis 1999; Nenes 1998), along-
side with CMAQ estimates (see Appendix E for details). To
investigate both spatial and temporal variability in empiri-
cal pH, ISORROPIA was applied to data at the four urban–
rural pairs of SEARCH sites: Georgia (Atlanta-Jefferson
Street–Yorkville), Alabama (Birmingham-BHM–Centerville),
Mississippi (Gulfport–Oak Grove), and Florida (Pensacola–
outlying landing field #8). The model used season-averaged
1-in-3-day sampled SO4

2�, NO3
�, NH4

+, base cations
(Mg2+, Ca2+, K+, Na+), and chloride ion (Cl�), which were
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available from 2008 to 2015 (with some exceptions; see
Appendix Table E.S2).

HEALTH IMPACTS

In a typical pre–post accountability study with health
endpoints, the exposure of interest is a binary variable rep-
resenting the presence or absence of an intervention; a
measure of effect is estimated for this variable, controlling
for potential confounders. Since this study assessed the
impact of multiple overlapping pollution-control policies
that were gradually implemented over time, we utilized a
counterfactual approach that incorporated daily counter-
factual ambient pollutant estimates over a 15-year period.
Through these counterfactual air quality time series, we
estimated counterfactual ED visits in the absence of pollu-
tion-control policies and consequently the number and
percentage of ED visits that would have otherwise been
expected without these policies but did not occur.

A key objective of this study was to contrast daily
observed levels of pollutants with their corresponding
counterfactual levels to estimate the number and per-
centage of cardiorespiratory ED visits that were prevented
due to pollution-control policies. Figure 3B summarizes
the main steps in the health impacts analysis. First, we
developed multipollutant health effects models to assess
associations between daily observed ambient pollutant
levels and daily counts of ED visits for several cardiorespi-
ratory outcomes, controlling for a number of time-varying
covariates. Second, from these models we acquired param-
eter estimates for the associations between pollutants and
ED visits. Third, we applied daily observed and counter-
factual ambient pollutant levels to these parameter esti-
mates to produce sets of daily risk ratios. These risk ratios
describe the observed risk of ED visits compared with the
counterfactual risk in the absence of pollution-control pol-
icies. Fourth, we incorporated the daily counts of ED visits
with these daily risk ratios to estimate the difference in the
daily number of ED visits prevented. Finally, these daily
estimates of ED visits prevented were aggregated to esti-
mate ED visits prevented by year and over the entire study
period. Below, we describe the methods used to estimate
the reduction in ED visits prevented in the 5-county
Atlanta metropolitan area from 1999–2013.

Hospital ED Data Set

Data were collected on ED visits for the people living in
the Atlanta, Georgia, metropolitan area between January 1,
1999, and December 31, 2013. Computerized billing
records for patient-level data were pulled from 42 nonfed-
eral acute care hospitals with EDs that serviced the
20-county Atlanta area. A single patient-level data set was

created by combining data obtained directly from indi-
vidual participating hospitals for the period 1999–2004
with a precombined data set from the Georgia Hospital
Association for the period 2005–2013. A comparison of
data received directly from individual hospitals versus
through the Georgia Hospital Association for the 2002–
2004 period indicated minimal differences by hospital in
visits captured between the data sources (data not shown).

Patient variables included date of admission, the primary
International Classification of Diseases 9th Revision (ICD-9)
diagnostic code, date of birth, sex, race, and 5-digit residen-
tial ZIP code. ED visits were included if the patient ZIP code
was located wholly or partially within the 5 primary urban
counties of metropolitan Atlanta (Fulton, DeKalb, Gwinnett,
Cobb, and Clayton). A similar data set was defined for
patients from the larger 20-county Atlanta metropolitan
area, which includes these additional 15 Georgia counties:
Barrow, Bartow, Carroll, Cherokee, Coweta, Douglas, Fay-
ette, Forsyth, Henry, Newton, Paulding, Pickens, Rockdale,
Spalding, and Walton. The majority of the population of the
20-county area (estimated population of 5.4 million in 2013)
resided in the 5-county urban core area (estimated popula-
tion of 3.5 million in 2013).

ED data were thoroughly cleaned prior to analysis. Data
cleaning included extensive discussions with hospital per-
sonnel regarding resolving ambiguities, standardizing
variables, identifying potential inconsistencies, and deter-
mining periods of invalid data for each hospital. Hospital
indicators were generated to distinguish periods of avail-
able and usable data for each hospital.

Health Impact Regression Modeling

We used Poisson generalized linear regression models
accounting for overdispersion in order to estimate the joint
effect of multiple pollutants on ED visits in a time-series
framework. Health outcomes, multipollutant parameter-
izations, and model covariates are described in the fol-
lowing sections.

Selection of Outcomes of Interest

We created combined categories for cardiovascular and
respiratory diseases using subcategories of outcomes
shown to be associated with pollution levels in previous
studies using the same Atlanta ED data (Krall et al. 2016;
Metzger et al. 2004; Peel et al. 2005, 2007; Sarnat et al.
2013). All outcomes were defined using the primary ICD-9
code on patients’ ED visit records. The RD outcome group
included ED visits for upper-respiratory infection (ICD-9
codes: 460–465, 466.0, 477), bronchiolitis (ICD-9 codes:
466.1, 466.11, 466.19), pneumonia (ICD-9 codes: 480–486),
chronic-obstructive pulmonary disease (ICD-9 codes: 491,
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492, 496), and asthma (ICD-9 codes: 493, 786.07). The CVD
outcome group included ED visits for ischemic heart dis-
ease (ICD-9 codes: 410–414), cardiac dysrhythmia (ICD-9
code: 427), CHF (ICD-9 code: 428), and peripheral and
cerebrovascular disease (ICD-9 codes: 433–437, 440, 443–
445, 451–453). We also considered asthma and CHF sepa-
rately as two specific outcomes of interest within the com-
bined outcome groups.

As a check for the adequacy of the health impact model
for control of confounding, we also assessed ED visits for
finger wounds (ICD-9 code: 883) as a health outcome.
Since finger wounds would not be expected to be associ-
ated with air pollution, a nonzero estimate of the impact of
pollution-control policies on ED visits for finger wounds
could be indicative of residual confounding.

Multipollutant Model Parameterization

Multipollutant models were created to assess the acute
health impact of air pollution by estimating the joint effect
of daily ambient pollutant levels on daily cardiorespiratory
ED visits, controlling for potential temporal confounders.
Measured and counterfactual pollutant estimates were
obtained as previously described for nine pollutants of
interest: O3, NO2, SO2, CO, PM2.5, and the PM2.5 compo-
nents SO4

2�, NO3
�, OC, and EC. The purpose of this study

was not to evaluate the associations between individual
pollutants and health outcomes; rather, it was to assess how
changes to broader air quality profiles due to pollution-
control policies may have reduced adverse health out-
comes. Therefore, we used multipollutant analyses to deter-
mine the joint effect of changes in ambient pollutant levels
to best account for multipollutant covariation.

We assessed health impacts using four models with dif-
ferent multipollutant formulations. The primary model
assessed the health impacts of joint reductions of seven
pollutants: PM2.5, O3, CO, SO2, NO2, OC, and NO3

�. In
this 7-pollutant model, EC and SO4

2� were not included:
daily EC levels were highly correlated with OC (r = 0.80),
while SO4

2� was highly correlated with PM2.5 (r = 0.79),
and we removed the pollutant that did not contribute to
the model. The second approach was to use all nine pollut-
ants in the same model, which would assume that all pol-
lutants were predictive of health impacts even when
included in this joint model. The third approach was to
look at the health impacts through changes only in PM2.5,
since this pollutant measure is a mixture affected by a
number of different sources and was strongly associated
with cardiorespiratory outcomes in our data. Finally, we
assessed the health impacts of joint reductions on the five
U.S. EPA criteria pollutants included in this study: PM2.5,
O3, CO, SO2, and NO2.

The temporal relationships between pollutant levels
and health outcomes are unlikely to be the same for all out-
comes. To maintain consistent methodology with previous
research that showed more delayed effects of respiratory
outcomes, 3-day moving averages (average of pollutant
levels same-day, 1 day prior, and 2 days prior [or lag 0–2])
were chosen a priori as the relevant exposure values for RD
and asthma ED visits (Sarnat et al. 2013). For CVD and
CHF ED visits, same-day pollutant values (lag 0) were
used. We preferred stating an a priori lag structure to miti-
gate issues of multiple comparisons and the potential for
data fishing for the strongest result.

Associations between levels of a specific pollutant and a
health outcome may change based on the levels of other
pollutants, possibly due to the effects of atmospheric
chemistry or due to the synergistic effects of exposure to
elevated levels of multiple pollutants. We considered first-
order interaction terms between pollutants as potential
predictor variables, deciding a priori to include either all
pollutant interactions or none of them (as opposed to
choosing only those that met some level of statistical sig-
nificance). Inclusion of these pollutant-interaction terms
impacted our estimates, so interaction terms were used in
our primary analyses.

We also considered the possibility that dose–response
relationships between pollutants and health outcomes
may not be linear. To assess this premise, we compared
models that included cubic polynomial terms for each pol-
lutant with models that only included linear pollutant
terms. Inclusion of the cubic polynomial terms impacted
our estimates, so they were retained in our primary anal-
yses. In sensitivity analyses, we also report results from
models that did not allow for pollutant interaction, models
that did not allow for nonlinearity, and models that did not
allow for either interaction or nonlinearity.

Model Covariates

Prior studies have analyzed the association between
ambient pollutants and ED visits using the same Atlanta
ED data (Darrow et al. 2009; Gass et al. 2015; Krall et al.
2016; Metzger et al. 2004; Peel et al. 2005, 2007; Sarnat et
al. 2010, 2013; Strickland et al. 2010, 2011; Winquist et al.
2012a, 2014, 2016). These studies identified important
covariates and model parameterizations that were neces-
sary for providing optimal control of potential temporal
confounders. All covariates described below were
included a priori based on findings from the time-series
models used in these previous analyses.

Forty-two hospitals contributed ED data for this study;
however, data from each hospital were not necessarily avail-
able over the entire study period of January 1, 1999, to
December 31, 2013, for various reasons (e.g., hospitals
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opening or closing, mergers, or lack of data availability or
integrity for certain periods) (Appendix Table C.4). There-
fore, we included an indicator variable for each hospital
taking the value 1 if the hospital contributed data on a
given day and 0 if the hospital did not contribute.

Meteorological variables can be an important con-
founder of the association between air pollution and mor-
bidity, and they can demonstrate nonlinear associations
with both exposure and outcome (Schwartz and Marcus
1990). Meteorological measurements from Hartsfield-
Jackson International Airport were used for the health
impact models, as they were more representative of the
overall metropolitan area. Cubic polynomials were
included for the 3-day moving average of dew point (Dew)
(lag 0–2). Maximum temperature (TempMax) and min-
imum temperature (TempMin) are important, but
including them both in the model over the same periods
would introduce excess collinearity, so we used staggered
temperature covariates as had been done previously (Win-
quist et al. 2014). Since associations between temperature
and health outcomes were more immediate for maximum
daily temperature, the model included cubic polynomials
for same-day maximum temperature as well as lagged min-
imum temperature (lag 1–2). We also included interaction
terms between the same-day maximum-temperature cubic
polynomials and season (defined as winter = December–
February, spring = March–May, summer = June–August,
fall = September–November).

We utilized a time-stratified formulation to control for
long-term as well as seasonal trends. The underlying idea
of this approach is that if the study period were restricted
to a given month, long-term temporal trends should not be
a source of error. One might conceptualize the time-
stratified approach as replicating a study, month after
month, and then pooling the results of each month-long
study. We controlled for year, month, and weekday (with
holidays separate) all as categorical variables, as well as
the interaction terms year � month and month � weekday.
This was not a true case–crossover formulation, as we did
not include interaction terms for year � weekday and the
three-way interaction for year � month � weekday. There
was little evidence or reason to believe that the effect of
day-of-week differed by year, and inclusion of these addi-
tional terms drastically increased the number of model
parameters and affected model convergence. Indicator
variables were also included for other dates that may have
unique pollutant or ED profiles (day after Thanksgiving,
day after Christmas, and dates of Christmas/Thanksgiving/
Veteran’s Day/New Year’s Day when different from date of
a federal holiday).

The inclusion of the year, month, and year � month
variables effectively sets up a different baseline for cardio-
respiratory ED visits for each of the 180 months of the
15-year study, accounting for temporal confounders not
explicitly included in the model. These confounders could
include long-term changes such as population growth,
demographic changes, trends in health-seeking behavior,
changes in average time spent outdoors, or any other
unidentified long-term trends. This model formulation
also controls for potential seasonal confounders that may
affect both ambient pollutant levels and cardiorespiratory
ED visits. The weekday, month � weekday, and holiday-
related variables add additional control, as human behav-
iors such as driving patterns, exposure to outdoor air
pollution, and health-seeking behaviors may be influenced
by these factors.

The overall model had the following form:

where Yx,t is the daily count of ED visits for outcome x on
day t in a model with i pollutants. Other variables are for
the pollutants (j, k, l), hospitals (n), months (a), years (p),
and seasons (r). The Greek letters (�, �, 	, 
, �, �, 
, �, �, �,
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�, �, �, �) are the regression coefficients for the different
factors affecting pollutant concentrations. Variable defini-
tions are as follows:

• Pollutant: daily pollutant level

• Hospital: Indicator variable taking the value 1 if the
hospital contributed data on a given day and 0 if the
hospital did not contribute

• Weekday: eight-category variable with a separate cate-
gory for federal holidays.

• Holiday: separate non-federal holidays of interest (day
after Thanksgiving, day after Christmas, and dates of
Christmas/Thanksgiving/Veteran’s Day/New Year’s Day
when different from date of a federal holiday)

• Year: categorical variable for year

• Month: categorical variable for month of year

• TempMax: daily maximum temperature

• TempMin: daily minimum temperature

• Dew: daily mean dew point

• Season: categorical variable for season (winter =
December–February, spring = March–May, summer =
June–August, fall = September–November)

Period for Fitting of Parameter Estimates

Initial analyses showed that there were stronger ob-
served associations between pollutants and ED visits in the
first half of the study period (roughly 1999–2005) compared
with the latter half. If the change in the concentration–
response parameters over the course of the study period
occurred, in large part, as a consequence of pollution-
control interventions, then it would introduce bias to esti-
mate the counterfactual number of ED visits in the absence
of pollution-control programs with parameters whose
values were affected by the pollution-control programs.
Conversely, if these changes in estimated associations
between pollutants and ED visits were due to extraneous
factors (e.g., decreased population susceptibility to air pol-
lution health effects) unrelated to pollution-control poli-
cies, then using models fit over the entire study period
may be more appropriate. Peters and colleagues (2009)
observed changing concentration–response estimates
between air pollutants and mortality in Erfurt, Germany;
they hypothesized that this could be a result of changing
source emissions profiles, which in turn could have been a
result of emissions-reducing actions. Since we are uncer-
tain about the cause of these changing associations, any of
these possible explanations should be considered purely
speculative. For these reasons, we decided to fit health
models using data from 1999–2005 as well as models using

data for the entire 1999–2013 study period. Results from
both methods are presented.

Generating Daily Risk Ratios

The counterfactual model formulation allowed us to es-
timate outcomes if only the pollutant levels changed but
all other factors (e.g., meteorology, temporal trends) re-
mained the same. Thus, in order to estimate outcomes un-
der counterfactual scenarios, we applied the counterfactual
pollutant levels while keeping all other parameter values
constant.

For each pollution-control scenario, we took the differ-
ence between daily counterfactual and daily observed pol-
lutant levels and multiplied that by the appropriate
parameter coefficient. This was performed for all linear,
quadratic, and cubic pollutant terms, as well as pollutant
interaction terms. These values were all summed up and
then exponentiated to produce daily risk ratios for each
scenario for each outcome:

where RRt represents the daily risk ratio on day t; PVx,t
represents pollutant values (which include raw measured
pollutant levels as well as squared and cubed values and
two-way products) for pollutant value x on day t; cf is the
counterfactual estimate of that pollutant value; obs is the
observed value; and there are n total pollutant terms. The
�’s are regression coefficients for the relationship between
log daily ED visits and pollutant values. The risk ratio rep-
resents the daily observed risk of ED visits compared with
the daily risk of ED visits in counterfactual scenarios: risk
ratios below 1 describe protective effects of pollution-
control policies.

Estimating ED Visits Prevented by Pollution-Control 
Policies

To obtain estimates for daily counts of counterfactual ED
visits, we divided the daily observed number of ED visits by
these daily risk ratios; these daily estimates were then sub-
tracted from the observed daily ED visits in order to produce
estimates of the daily number of ED visits prevented. These
estimated daily numbers of ED visits prevented were then
aggregated to produce estimates for ED visits prevented
by season, by year, and for the entire study period. We
added together the observed ED visits and the estimates of
prevented ED visits to get estimates of all ED visits that
would have occurred in the absence of pollution-control
policies; the estimated number of ED visits prevented was

RR exp

PV PV
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divided by these counterfactual estimates of ED visits to
estimate the percentage of ED visits prevented. These cal-
culations were conducted for every health outcome and
every combination of tested model parameterizations. The
series of steps utilized in the health impact analysis is
depicted in Figure 3B.

Some of the selected air pollution policies did not take
effect until partway through the study period, and not all
selected policies were fully realized immediately, rather
they involved progressively stricter emissions controls or
increased implementation over time. Indeed, the automo-
bile fleets continue to reduce per-vehicle-mile emissions.
The effect of the air pollution policies on air quality there-
fore was gradual over time. Air pollution reduction was
modest in the early years of the study but substantial in the
final years of the study period when the policies were
more fully implemented and realized. As such, we would
expect the health impacts to be greater in the later years.
One of the advantages of our counterfactual approach com-
pared with a pre–post analysis is the way we can account
for the gradual implementation of pollution policies. Our
primary interest is on the full effect of the policies rather
than the particular way they were gradually implemented
in Atlanta, and therefore our focus is on ED visits pre-
vented over the final two years of the study (2012–2013),
though the impacts of the combined set of policies are also
calculated as a function of time. The 1999–2013 health
impact estimates and the 2012–2013 health impact esti-
mates are addressing two different questions. One question
is: What is the health impact over the period that the health
policies gradually became implemented? The other ques-
tion is: What is the health impact during the period when
the health policies were most fully implemented and the
benefits realized? If pollution policies are sustained in
future years, the second question may be more relevant, but
both questions are interesting and addressed here.

Accounting for Uncertainty

Typically, when accounting for uncertainty of air pollu-
tion health effects (i.e., constructing interval estimates),
that uncertainty results solely from the uncertainty in the
estimation of the model parameters representing the
health effects. For the health analyses here, we consider
two broad layers of uncertainty: (1) the uncertainty in the
estimation of the model parameters representing the
health effects; and (2) the uncertainty in the estimation of
the counterfactual daily time series for each pollutant. We
used Monte Carlo simulations to account for the overall
uncertainty in the health analyses.

We started with 5,000 sets of estimates of daily counter-
factual time series of ambient pollutant levels for every

pollutant in the analysis; the methods have been described
earlier and incorporate uncertainty in both emissions and
the relationship between emissions and ambient pollutant
levels. To account for the uncertainty in the estimated
health model parameters, we used the observed parameter
estimates and their estimated variance–covariance struc-
ture to generate 5,000 sets of estimated coefficient values
for each health outcome, assuming a multivariate normal
distribution.

The 5,000 sets of time series of ambient pollutant levels
were linked with the 5,000 sets of coefficient values in
order to generate 5,000 sets of daily risk ratios. Daily
counts of ED visits were then incorporated in order to pro-
duce 5,000 sets of daily estimates of ED visits prevented,
which were then aggregated to produce 5,000 total esti-
mates of ED visits prevented through pollution-control
policies. We took the 2.5th and 97.5th percentiles to repre-
sent the 95% interval estimate, which incorporates the
uncertainty of both the estimation of the model parameters
representing the health effects and the uncertainty in the
estimation of the counterfactual air pollution time series
for each pollutant in the health model.

Statistical Programs Utilized

All analyses in the health impact modeling were per-
formed through SAS, version 9.3 (SAS Institute, Cary, NC)
and R, version 3.01 (The R Foundation for Statistical Com-
puting 2013) using the following packages: data.table (ver-
sion 1.9.6), MASS (version 7.3-47), and Cairo (version 1.5-9)
(Dowle and Srinivasan 2017; Urbanek and Horner 2015;
Venables and Ripley 2002). Descriptive analyses, data
management, and preliminary analyses were performed in
SAS; additional data management, final analyses, and
graphical output were performed in R (R Development
Core Team 2012).

RESULTS

EMISSIONS

Between 1995 and 2013, ANAA EGU NOx and SO2 emis-
sions decreased, respectively, by 86% and 85%, and between
1997 and 2013, REG EGU emissions decreased by 82% and
83%, respectively (Figure 4, Table 2). Modeled mobile emis-
sions saw large declines of between 61% and 93% for NOx,
SO2, PM2.5, CO, VOCs, EC, and OC (Table 2). While EGU
emissions tended to experience large step changes when
controls were installed and plants shut down or started up,
mobile emissions changes were steadier, as they are driven
by fleet turnover replacing older polluting vehicles with new
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cleaner ones. A notable exception is mobile SO2 emissions,
which fell markedly each time gasoline and diesel fuel
sulfur limits were tightened in Georgia beginning in 1999.

One pattern of interest in EGU emissions is the summer/
winter step functions in years 2000–2008 in the ANAA
emissions, and to a lesser extent in the REG emissions. This
pattern (and similar step functions) is helpful in deter-
mining the effectiveness of controls and regulatory pro-
grams. Similarly, SO2 emissions declined rapidly between
2008 and 2010, when states were preparing for CAIR.

Utility Emissions Responses to Specific Regulations

A comparison between observed EGU (and REG) emis-
sions and the EGUALL (and REGALL) scenario shows
increasing emissions reductions over time. In the EGUALL
scenario, which corresponds to the bold black line in the
plots in Figure 4, counterfactual emissions maintain the
expected seasonal pattern (summertime peaks). Counter-
factual emissions peaked in 2007, when demand was
highest. After 2007, the Great Recession reduced demand.
Demand levels have not reached pre-recession levels since,
though this may be due partly to increased efficiency in
multiple aspects of the electricity industry (production,
distribution, and use) (Craig 2016; Levy et al. 2016).

Reductions attributable to specific programs have
impacted local and regional emissions differently — indi-
vidual programs show reductions of varying fractions of
the counterfactual. For example, large SO2 emissions
reductions attributable to the ARP were estimated for
regional EGUs, but no corresponding reductions were esti-
mated for the ANAA. It is possible, however, that the lim-
ited emissions data before 1997 impact this calculation
somewhat. After 2008, CAIR had an immediate, large

impact on both regional and ANAA SO2 emissions. CAIR
(and the associated GRAQCjjj) is the only policy scenario
that impacted ANAA SO2 emissions.

A focus of the NBP and related programs was the reduc-
tion of NOx emissions in summertime, and the results in
Figure 4 from 2000–2008 reflect this. Large utilities in the
ANAA addressed these regulations by applying controls to
large plants that could be switched on during the summer
time (an example of this is the selective catalytic reduction
devices) and off during the winter (see Table A2-1 in Addi-
tional Materials 1). Other approaches included making
adjustments to the boilers (which would have remained in
effect in the winter time) to reduce NOx emissions and
trading load across units to those that were more efficient,
although it is difficult to evaluate if this occurred.

CAIR and the related state-run programs had the effect
of extending the NBP-related summertime NOx emissions
reductions to the winter. Since demand during the winter-
time in the Southeast is generally lower than in the
summer, NOx reductions attributable to CAIR and related
programs are small. SO2 reductions are the main benefit
from these programs, as the largest changes in SO2 emis-
sions factors occurred after CAIR was promulgated.

Two short periods, in the fall of 2007 and 2008, show
lower than expected ANAA EGU NOx emissions based on
the assessment of regulatory programs. It is possible that
during these periods one or more plants kept their selec-
tive catalytic reactors turned on, but it is not immediately
obvious why they would do this (since controls would
have to be shown to be necessary to the public service
commission for cost recovery). For these reasons, we do
not assign emission reductions during these periods to
specific regulatory programs.

Figure 4. Changes in EGU emissions attributable to specific regulatory actions for NOx and SO2 in the ANAA and Southeast Region. ARP = Acid Rain
Program; CAIR = Clean Air Interstate Rule; NBP = NOx Budget trading Program.
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Mobile Emissions Responses to Specific Regulations

Results of the mobile emissions modeling show large re-
ductions in emissions of NOx, VOCs, and PM2.5 over the pe-
riod of interest (Figure 5). Modeled ANAA mobile NOx, VOC,
CO, and PM2.5 emissions decreased by 78%, 62%, 67%, and
67%, respectively, between 1993 and 2013 (Table 2).

Of the three specific programs investigated, IM pro-
grams had the smallest effect on emissions across all years.
The impact of IM controls diminished slightly over the
period of interest. Gasoline programs had relatively larger
impacts on NOx, VOC, and CO, while diesel programs
impacted PM2.5 emissions the most. Benefits from the
diesel programs did not begin until after 2006, when the
Heavy Duty Diesel Rule came into effect.

The sum of the mobile policies does not describe the
emissions changes estimated in the MOBALL scenario
because of other policies that were implemented between
1993 and 2013 that are not being examined here. These
include the standards established under the 1990 Clean
Air Amendments themselves and the Low Emissions
Vehicle Program implemented in the late 1990s (U.S. EPA
2011). There are other reasons car makers would change

engines that may not be regulation-driven as well (e.g.,
performance measures).

An important aspect of empirical modeling performed for
this work is to assess MOVES’ ability to model the emis-
sions of traffic-related pollutants correctly, including cap-
turing the ratios of emitted species (see Appendix D,
available on the HEI website). We evaluated the potential
bias in mobile NOx emission estimates in multiple ways, in-
cluding empirical trend analysis of NOx using both ground-
and satellite-based observations and air quality modeling
evaluation of multiple models. The results are somewhat
mixed across methods, and some suggest a bias. Briefly,
long-term annual average trends of the satellite-based tropi-
cal NO2 vertical column density and ground-level NO2 con-
centrations follow the same trends as the NOx emissions in
Atlanta. Observations have a higher monthly-to-annual-
average ratio in winter and a slower interannual decreasing
trend compared with emissions (Appendix Figure D.2).
Additionally, no peak point was found in emissions
around 2005 (Appendix Figure D.3). The ratio-of-ratios
method suggests a potential underestimate of emissions;
ratios of ambient NOx concentrations to those of other di-
rectly emitted species (CO and EC) are lower in magnitude

Figure 5. Changes in mobile emissions attributable to specific regulatory actions for NOx, PM2.5, and VOCs in the ANAA. The curved black line at the top
of each plot is the scenario that includes all mobile regulations considered in the current study (MOBALL).
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than are similar relationships in modeled emissions. In ad-
dition, we do find a high bias in our simulated NOx concen-
trations in our air quality modeling at a finer resolution.
However, the evidence here is not strong, and inconsistency
exists between different approaches.

AIR QUALITY

Urban and rural areas across the Southeast have seen
reductions in ambient air pollutant concentrations over the
period of interest (Blanchard et al. 2010; Hidy and
Blanchard 2015). Atlanta has not been an exception;
observed annual averages of all pollutants included in the
current analysis except O3 decreased by 52%–91% between
1999 and 2013 (Table 5). O3 is the exception (mean annual
MD8h O3 decreased 17.4% between 1999 and 2013) due to
its complex chemistry and elevated background levels;
however, the number of days with high O3 levels decreased
over the course of the study (Henneman et al. 2015).

Meteorological Detrending/Change in Concentrations 
over Time

The detrending method for each pollutant was evalu-
ated against a related method detailed in a study by Kue-
bler and colleagues (2001) using 30 independent holdout
tests, each performed by training the models for the signal
components given in Equation 3 (i.e., LT, S, WH, STM, and
WN) on 90% of the data. The method described here

outperformed the method used by Kuebler and colleagues
(2001) in terms of fit (R2) and root mean square error for
most pollutants (Henneman et al. 2015). The discussion fo-
cuses on detrending performed on observations in Atlanta;
results from Birmingham are presented in Appendix A
(available on the HEI website).

For O3 and PM2.5, S, STM, and WN fluctuations make up
the majority of the variance. It was found that meteorologi-
cal fluctuations have a much greater impact on day-to-day
variability than annual or seasonal averages. Past detrend-
ing work has focused on seasonal or annual adjustments for
regulatory purposes (the 8-hr standard in the United States
is written for the fourth highest annual MDA8h) (Camalier
et al. 2007; Kuebler et al. 2001; Rao and Zurbenko 1994).
The focus of previous detrending work has been on O3; the
current study extends methods used in prior analyses to in-
clude multiple gaseous and particulate species (Figure 6).

Results of the detrending show the importance of mete-
orology on daily fluctuations of all species, as the mean
meteorological contribution is, for various species,
between 11% and 40%, and the standard deviation in STM
explains between 11% and 46% of the total observed stan-
dard deviation (Appendix Table A.5). In general, STM as a
fraction of observed (in both the mean and standard devia-
tion) is higher in the wintertime, which can be largely
explained by lower concentrations of most pollutants con-
sidered in the winter.

Table 5. Mean Changes in Ambient Pollutant Concentrations at JST between 1999 and 2013

Species 

1999 2013 Change (%)

Observed Detrended Observed Detrended Observed Detrended

Gaseous (ppb)
O3 46.5 45.9 38.4 39.5 17.4 13.9
NOx 25.8 24.9 10.2 9.3 60.5 62.7
CO 382.9 381.7 183.8 181.7 52.0 52.4
SO2 18.2 18.1 1.7 1.6 90.7 91.2

Particulate (µg/m3)
PM2.5 19.5 18.5 8.9 9.2 54.4 50.3
SO42� 5.6 5.6 1.7 1.8 69.6 67.9
NH4

+ 2.9 2.9 0.8 0.8 72.4 72.4
NO3

� 1.1 1.0 0.6 0.5 45.5 50.0
EC 2.1 1.9 0.7 0.7 66.7 63.2
OC 5.0 4.8 2.4 2.4 52.0 50.0
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A goal of detrending is to relate changes in observed pol-
lutant levels with known changes in emissions. To this
end, observed concentrations were adjusted by subtracting
the S portion of their signal averaged over different periods
(1, 2, 3, 4, 6, and 12 months), and changes in adjacent aver-
aged concentrations were compared using t tests to deter-
mine if the changes were statistically significant. These
changes were then compared to known periods of rapidly

changing emissions (e.g., Plant McDonough’s retrofit from
coal to natural gas [Henneman et al. 2015]). Detrending
decreases the averaging time necessary to observe a statis-
tically significant change in air quality associated with
emissions reductions for a number of pollutants, particu-
larly NOx, SO2, and SO4

2� (Henneman et al. 2015). Trends
in O3 and PM2.5 are more difficult to assess at time scales
under 1 year, because they vary on multiple time scales.

Figure 6. Observed and detrended summer and winter mean gas (above the horizontal line) and aerosol (below) species concentrations at JST. 
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Empirical Emissions–Air Quality Relationships

The empirical models for each pollutant allow for the es-
timation of daily source-specific contributions to measured
concentrations (Figure 7). These contributions (here, synon-
ymous with sensitivities) take into account both the amount
of emissions from a source and chemistry/meteorology (as
parameterized by the statistical models) that lead to chem-
ical reactions in the atmosphere. Source-specific contribu-
tions to measured concentrations at JST vary at multiple
time scales (the monthly averaged plots hide the daily
variability, which is considerable, but not as large as the
monthly variability; Figure 7). In general, contributions
from all sources decreased over the study period, though
many show annual variability. Not all species are impacted
by all three source categories (as determined by the model
selection process). In most species, regional EGU emis-
sions contribute more than local EGU emissions to

observed ambient concentrations at JST. These data cor-
roborate evidence presented by Harrington and colleagues
(2012), who showed that peak PM2.5 contributions come
from power plants between 50 and 300 miles away from
monitors in the eastern United States.

The PS* terms in the model allows for much greater sea-
sonality in emissions contributions than the emissions
exert on their own. For example, seasonality in the mobile
contribution to O3 shows large positive contributions in
the summertime and large negative contributions in the
winter, even though mobile emissions do not vary nearly
as much seasonally.

Contributions from different sources peak at different
times of the year for various reasons. First, source emis-
sions peak in different seasons. Mobile VOC emissions, for
instance, tend to be higher in the winter than in the
summer, and NOx emissions peak in the summer. Biogenic

Figure 7. Contributions of three different sources (ANAA EGU, regional EGU, and mobile) to air pollutant concentrations estimated using terms in 
Equation 5.
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VOC emissions peak in the summer. A second reason is the
proximity of emissions to the monitoring site. Mobile
sources, for instance, emit NOx mainly as NO near ground
level. Here, NO reacts with O3 to form NO2 and O2, thus
serving as a sink for O3 (this reaction is particularly impor-
tant in the winter, when radicals are less prevalent). NOx
emitted from power plant stacks has more time to process
and react in the atmosphere (i.e., photolyze and create
ozone). The importance of aging NOx emissions is reflected
in the difference between regional and EGU contributions
to O3 — the regional contribution is consistently more pos-
itive than that of the local EGUs (Figure 7).

CTM Operational Evaluation

CMAQ-modeled O3 shows decreases in the summertime
and increases in the winter, and PM2.5 shows decreases in
both seasons (Figures 8 and 9). CMAQ-modeled PM2.5 and
its species were evaluated using measurements from U.S.
EPA’s Air Quality System (U.S. EPA 2017) on a monthly
basis. The evaluation uses normalized mean bias and error
(NMB and NME) and the correlation coefficient (r) in com-
parisons with the limit values recommended by Emery
and colleagues (2016).

Dynamic evaluation of CMAQ was conducted using JST
data. Observed and modeled differences of daily concen-
trations were calculated between 2001 and 2011 and com-
pared with each other by pairing them by time. While PM
mass was measured every day throughout 2001 to 2011,
PM species were sampled every three days after 2007.
This leads to sparse data sets of PM species for each
month, with only a few data points available. We then
pooled data by season, that is, by three-month periods, to
facilitate analysis for dynamic evaluation of both PM and
PM species.

The change of concentration could be positive or nega-
tive, while the measured concentration is always positive.
The definitions of NME and NMB are therefore slightly
modified by taking the absolute value in the denominator
to reconcile this difference: that is, 

where Pi is the model predicted value, and Oi is the
observed value. This modification does not impact opera-
tional evaluation and makes NMB and NME from dynamic

evaluation more informative. The definition of r is not
changed: that is,

where  and  are the mean values of model simulation
and observation, respectively. No cutoff was applied for
evaluation in the present study.

CMAQ tends to overestimate PM2.5 from October to
March and underestimate from April to September, consis-
tent with what was observed in a previous study (Simon et
al. 2012). EC, OC, NO3

�, and ammonium contribute to the
cold-month overestimation, and OC, SO4

2�, and ammo-
nium contribute to the warm-month underestimation. (See
Henneman et al. 2017b.)

CTM Emissions–Air Quality Relationships

CMAQ-decoupled direct method sensitivities for both
O3 and PM2.5 show large reductions between the 2001–
2002 period and the 2011–2012 period for on-road mobile
and EGU sources. Results show seasonal and spatial vari-
ability (Henneman et al. 2017b).

Average monthly O3 sensitivities to EGU emissions are
large and positive in the summer of 2001, and almost equally
negative in the winter. By 2011, sensitivities of 2.5 ppb or
more (positive in the summer) are restricted to areas near
large numbers of stationary sources, such as the Ohio River
Valley and plants southwest of Atlanta. The pattern for
reduction in PM2.5 sensitivities is similar (though average
sensitivities are positive throughout the year). There is a
difference, however, in how these reductions were
achieved: the majority of O3 sensitivity reduction is attrib-
utable to lower NOx emissions, whereas the majority of
PM2.5 sensitivity reduction is attributable to SO2 emis-
sions reductions (Henneman et al. 2017b).

Average July O3 sensitivities to mobile sources are large
and positive (on the order of 10 ppb) throughout much of
the Southeast in 2001. In cities and around large roadways,
the sensitivities are negative. In 2011, the pattern is gener-
ally the same, though highways and cities do not stand out
as much. In January, sensitivities become less negative
between 2001 and 2011. Mobile contributions to PM2.5
decrease in summer and winter between 2001 and 2011.
Wintertime PM2.5 sensitivities to mobile emissions in
2001, which were smaller than summertime sensitivities,
became larger than summer sensitivities in 2011. In the
southeastern United States in 2011, only city sources are
prevalent (rural on-road contributions drop to near zero)
(Henneman et al. 2017b).
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Figure 8. CMAQ-modeled O3 concentrations in the eastern United States, showing a decrease in the summer between 2001 and 2011 and an increase in
the winter. 

Figure 9. CMAQ-modeled PM2.5 concentrations, showing a decrease across all seasons between 2001 and 2011. 
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CTM Evaluation

NMB, NME, and r were used to evaluate the modeled
change of O3, PM2.5, and PM2.5 species between 2001 and
2011 in comparison with the observed change on a sea-
sonal basis (Henneman et al. 2017b). Modeled PM2.5 con-
centration changes yield a NMB of �13% to 6.6% at JST,
indicating that CMAQ captures the seasonally averaged
change of PM from 2001 to 2011. In contrast, NME falls in
the range of 53% (in fall) to 86% (in summer). This means
CMAQ simulates PM concentration changes with a high
error, likely due to the NME of PM2.5 concentrations being
consistently higher than 40% in 2001 and 2011. The r is
higher than 0.6 in winter, spring, and fall, and is 0.35 in
summer. The cause of the small bias and high error is
likely the species-specific results; bias in modeled concen-
trations between species tend to cancel each other out.

Using switched emissions and meteorology between the
decades, Henneman and colleagues (2017b) isolated meteo-
rological versus emissions-driven impacts on concentra-
tions from and sensitivities to mobile and EGU sources.
Emissions changes had a greater impact than meteorology
on O3 concentration and sensitivity except at the higher end
of the distribution of changes. Changes in PM2.5 concentra-
tions and sensitivities are relatively insensitive to meteo-
rology, which corroborates findings in the detrending
portion of this study. Further results and discussion of the
operational, dynamic, and diagnostic evaluations are pre-
sented in a study by Henneman and colleagues (2017b).

Empirical and CTM Sensitivities Comparison and 
Evaluations

Empirical models were assessed by calculating the R2 and
comparing the root mean square error to the mean. Statisti-
cally significant relationships with emissions covariates, in
addition to sufficiently high model fit parameters (R2), pro-
vide evidence that the models effectively link emissions and
air quality. A second evaluation of empirical sensitivities
compared them with CMAQ-calculated sensitivities. For
most of the pollutants, positive correlations were found be-
tween most CMAQ-modeled concentrations and observa-
tions and between empirical and CMAQ sensitivities in both
the early (2000–2001) and later (2011–2012) periods (Ap-
pendix Figures A.10–A.19 and Appendix Tables A.7 and
A.8; available on the HEI website). In this section, EGU*
refers to the combined impact of EGU and REG sources. The
focus of this discussion is on the 2011–2012 period (since
CMAQ performance was generally better for this period), but
results from both are presented in Appendix A.

CMAQ-modeled species concentrations were positively
correlated with observations in 2011–2012 for all species (see
Table A.8). Correlation (R2) values ranged from 0.09 (NH4

+)

to 0.69 (O3), and slopes ranged from 0.038 (SO2) to 1.5
(NO3

�). The poor fit for SO2 is expected due to the more
elevated SO2 concentrations’ being strongly tied to large
point sources and the related plume dynamics. Those
plumes are concentrated and near the source have length
scales smaller than can be resolved by the current model
setup. Further, there is a strong dependence on wind speed
and direction — if these are off slightly in the model, the
plume impacts a different area.

One takeaway from the analysis is that the slopes between
the empirical and CMAQ-simulated concentrations and sen-
sitivities are typically between zero and one and that the
intercepts are greater than zero. This means that, on average,
concentrations simulated by CMAQ are biased high com-
pared with observations on low ambient concentration days
and biased low on high concentration days. This issue — a
damped response to various factors, such as emissions or
meteorology — has been observed previously (Bencala and
Seinfeld 1979; Koo et al. 2015; Simon et al. 2012).

Two nitrogen-containing species (NO2 and NO3
�) have

negative correlations for both EGU* and mobile sensitivi-
ties. Part of the reason for this may be that CMAQ-
estimated NO2 is highly biased. Observed NO2 tends to
peak in the wintertime, when a lower boundary layer traps
more NO2 close to the surface. CMAQ-modeled NO2, how-
ever, shows little annual variability in 2011–2012 (it
shows more annual variability in 2001–2002, with greater
peaks in the summertime). EGU* contributions are small
compared with mobile for both CMAQ and empirical
models. The NO2 result is important evidence that mobile
emissions may be biased.

Total correlation (r) over four years of modeling at JST is
between 0.4 (NO2 and NH4

+) and 0.82 (O3) (Appendix Table
A.7). NMB ranges from �34.2 (OC) to 324.2 (NO2). Both
NO2 and CO have very high NMB and NME, which could
signify a problem in the emissions inventory (discussed
separately). However, CMAQ grid resolution may play a
role; the grid cell that includes JST also includes large por-
tions of the downtown Atlanta area, which is home to mul-
tiple large highways. These do not have as large of an
impact on JST, but would drive the average grid cell concen-
tration of primary pollutants up (Sarnat et al. In press).

NMB’s for the majority of the sensitivity comparisons
are negative (Appendix Table A.7); however, it should be
recognized that the empirically derived sensitivities are
not directly observed and are found to be uncertain. This
reflects a well-reported tendency for CTMs to underesti-
mate changes in ambient conditions for given changes in
emissions. Of note is that NO3

� has a low NMB for EGU
sensitivities, a high NMB for MOB sensitivities, and small
negative r values for both. Part of this may be explained by
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the fact that NO3
� concentrations are small for most of the

year, except during cold days in the winter.

A comparison of ozone sensitivities to ambient O3 con-
centrations yields a near-linear relationship (see Figure 5
in Henneman et al. 2017a). Empirical and CMAQ-modeled
sensitivities compare well across the range of observed O3
concentrations, though modeled sensitivities are smaller
at lower O3 concentrations.

The comparison between empirical and CTM model
results is informative because it juxtaposes sensitivities
estimated using methods that are almost completely dif-
ferent (some emissions inputs are similar). A limitation of
this comparison is that the emissions used for the empir-
ical methods are not identical to those used by CMAQ.

Air Pollution Concentration Changes Attributable to 
Regulations

Counterfactual emissions were combined with empir-
ical air quality models to estimate daily counterfactual
concentration time series at JST in Atlanta. Monthly
averaged differences between observed concentrations and
counterfactuals for each scenario show that seasonal vari-
ability in emissions and sensitivities contributes to varying
benefits over the year (Figures 10 and 11). In addition to
seasonal benefits, the majority of the programs show
increasing benefits over the period during which emissions
programs reach their full implementation (Table 6). Bene-
fits of the EGU scenario (Figure 10) are roughly the sum of

the three EGU programs of interest, whereas benefits under
the MOB scenario are not (Figure 11). This is because emis-
sions reductions under the three mobile programs do not
sum to emissions reductions under the MOB scenario due to
the application of controls other than those studied here.

Emissions controls have led to both decreased PM2.5
concentrations and changes in its composition (Table 6,
Appendix Figure A.20). For instance, OC replaced SO4

2�

as the largest fraction of PM2.5 at JST between 1999 and
2013. SO4

2� (70%), NH4
+ (73%), and EC (66%) saw the

greatest reductions from 1999 to 2013; NO3
� (47%) and

OC (52%) saw more modest reductions. The counterfac-
tual approach maintained the original concentration dis-
tributions of PM2.5 species.

The correlation between species and the autocorrelation
within species for both the actual and counterfactual con-
centrations are used to evaluate the approach used to
create counterfactuals. Some changes are expected, since
each species responds differently to emissions. Of the gas-
eous species, correlations are maintained in most compar-
isons, except CO and O3, which become more negatively
correlated (Appendix Table A.6). PM2.5 remains similarly
correlated to all other particulate species, though there are
some differences between species. NH4

+, in particular,
tends to change correlations compared with many gaseous
and particulate species. Overall, results of the correlation
test provide evidence that, even though each species is

Table 6. Changes in Ambient Pollutant Concentrations at JST between 1999 and 2013, Comparing Observed to the 
Counterfactual EGUMOB Scenario

Species

1999 2013

Observed EGUMOB Change (%)a Observed EGUMOB Change (%)a

Gaseous (ppb)
O3 46.5 46.8 1 38.4 39.7 3
NO2 16.5 16.8 2 7.2 19.9 176
CO 383 433 13 183 383 108
SO2 18.2 19.5 7 1.7 19.1 1,043

Particulate (µg/m3)
PM2.5 19.5 19.5 0 8.9 19.1 114
SO42� 5.64 5.49 �3 1.67 4.81 176
NH4

+ 2.95 3.01 2 0.79 2.68 238
NO3

� 1.05 1.21 15 0.56 1.32 133
EC 2.05 2.07 1 0.69 2.07 200
OC 4.96 5.05 2 2.38 3.82 61

a The Change (%) column compares the counterfactual to the observed in each year; positive numbers represent decreases in measured concentrations 
attributable to emissions reductions.
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Figure 10. Monthly air pollution changes for each of the EGU emissions scenarios at JST. Negatives represent reduced air pollution concentrations as a
results of a specific control policy.

Figure 11. Monthly concentration deviations from the observed for each of the mobile emissions scenarios at JST. Negatives represent reduced air pollu-
tion concentrations compared with the counterfactual.
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modeled separately, the majority of the species models
capture the appropriate relationships between species.

For the majority of species, regulations are linked to re-
duced concentrations. Notable exceptions occur in species
that have consistent negative sensitivities with certain
source–species combinations, such as SO4

2� and OC with
NOx. For SO4

2�, for instance, the total sum of all programs
caused a net reduction in concentration at JST (Figure 11).
Benefits of the NBP, however, are negative. This can be at-
tributed to the suppressing impact of NOx on the formation
of SO4

2� aerosol (Brock et al. 2002; Muller et al. 2009).
Mobile emissions were not found to relate strongly to
SO4

2� concentrations, so mobile programs did not cause
any differences between counterfactual and observed. 

Some counterfactual differences yielded changes that
vary between seasons. O3 is the most notable example of
this, particularly in relation to mobile emissions (Figure
10). In the wintertime, NOx titration has the effect of
reducing O3 concentrations. Since the majority of fresh
NOx emissions are NO, ground-level mobile emissions are
more efficient at reducing O3 than are elevated EGU emis-
sions. Further, EGU emissions have more time in the atmo-
sphere to react and convert to NO2, which photolyzes to
form O3. This is manifested in the reductions modeled
from EGU regulation counterfactual differences, which are
negative except for during parts of each winter.

Uncertainty in Counterfactual Concentrations

Uncertainty results are presented here for two pollut-
ants in the EGUMOB, EGUALL, and MOBALL scenarios
(Appendix Figures B.2 to B.11). For the majority of the
counterfactuals, contributors to total uncertainties, in
order of increasing contribution, are statistical model
parameters, EGU emissions changes, and mobile emis-
sions changes. This order may change between species, as
it depends on the number of emissions terms from each
source that are included in each model. Species counter-
factuals see year-round statistically significant differences
compared with the observed, with the exception of O3
(which sees statistically significant decreases in the sum-
mer, and increases in the winter). Under the EGUALL and
MOBALL scenarios, many of the species see statistically
significant changes under just one or the other. Most of the
pollutants have statistically significant changes under
either or both of the EGUALL and MOBALL scenarios.

Aerosol Acidity

Aerosol acidity trend analysis in the Southeast led to the
important finding that, despite large reductions in acidic
aerosol precursors, the pH of fine PM will remain low (see
Appendix E for details). Observational data from eight

SEARCH PM2.5 monitoring sites and the thermodynamic
model ISORROPIA II revealed that, despite substantial
reductions in SO4

2� levels at all sites (except Pensacola,
Florida, which saw a slight increase), pH values remained
low. Seasonal average pH over the study period ranged from
0.8 at Oak Grove, Mississippi, to 2.0 at Yorkville, Georgia,
bringing the site average, based on trend intercept values,
to 1.6. All sites except Centerville, Alabama, exhibited
slight increases in pH. Yearly increases were estimated
between 0.44% and 3.92% for all other sites except Oak
Grove, Mississippi, the only site where the increase was
substantially higher and statistically significant. Compa-
rable trends were also observed with the CMAQ results,
which also showed low pH values with little to no change
in pH between the years 2001 and 2011 (Figure 12).

Total estimated yearly SO4
2� reduction rates at the

SEARCH sites range from �0.22 µg/m3/yr (est: �7%/yr) at
Outlying Landing Field #8, in Florida to �0.52 µg/m3/yr
(est: �11%) at Yorkville, Georgia. The observed reductions
in SO4

2� levels were accompanied by similar estimated
reduction rates in ammonium (�5% to �11%) at the same
sites. The downward trends of NH4

+ and SO4
2� were sta-

tistically significant at all sites except Gulfport and Oak
Grove, Mississippi, and Pensacola, Florida, meaning that
the reduction of SO4

2�  and ammonium was seen
throughout the region. These results are consistent with
similar observations found in another southeastern study
by Saylor and colleagues (2015).

Despite reported reductions in NOx emissions, little
change in ammonium nitrate was observed at any of the
sites; however, with low pH persisting throughout the
region, conditions for NO3

� formation were not favorable,
nor are they likely to change with the slow rates of pH
increase exhibited throughout the region.

This analysis suggests that there will be little change in
pH compared with the substantial SO4

2� reduction rates,
and that has three immediate and important implications:
(1) aerosol acidity will remain high, so health impacts
associated with low pH will remain (though the exposure
to low pH aerosol will be reduced on a mass basis);
(2) NO3

� substitution (i.e., the process by which a near-
equal amount of NO3

� aerosol is formed when the amount
of SO4

2� aerosol decreases) will be limited; and (3) aerosol
chemistry that is driven by the presence of highly acidic
aerosol will continue (e.g., formation of isoprene sec-
ondary organic aerosol [SOA] [Marais et al. 2016; Xu et al.
2015] and mobilization of metals such as copper or iron
[Meskhidze et al. 2003; Weber et al. 2016]). This does not
mean, however, that the pH of rain, or the acidic flux to the
ground, is not responding to controls, as those are more
responsive to the formation of sulfuric and nitric acid,
which are both decreasing.
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HEALTH IMPACTS

Hospital ED Descriptive Data

There were 16,191,785 total ED visits recorded in the
5-county Atlanta metropolitan area from 1999–2013, an av-
erage of roughly 1.08 million ED visits per year. There were
1,637,338 ED visits for RD; 374,126 ED visits for asthma;
416,392 ED visits for CVD; and 105,561 ED visits for CHF
(Figure 13). For the control condition, finger wounds, there
were 154,177 ED visits for this period; there was a mean dai-
ly count of 28 with a standard deviation (SD) of 7.5, and a
slight downward trend over the period.

The number of total ED visits increased from 710,414 in
1999 to 1,237,541 in 2013, a 74.2% increase. The population
of the 5-county Atlanta metropolitan area increased by 24.3%
during the same period, suggesting that part of the increase in
ED visits may be due to greater completeness of hospital data.
From 1999 to 2013, RD ED visits increased by 59.5%, asthma
ED visits increased by 76.0%, CVD ED visits increased by
140.9%, and CHF ED visits increased by 225.0% (Figure 14).

Overall there were 42 hospitals in the database, but the
number of hospitals in the database at each point in time
changed from 1999–2013 (Table 7). Over the 365 days in
1999, there was an average of 28.1 hospitals in our hospi-
tal database; accounting for missing data, an average of

Figure 12. CMAQ-modeled pH concentrations. These were are relatively constant between summers in 2001 and 2011.

Figure 13. ED visits recorded by outcome in the 5-county Atlanta metropolitan area, 1999–2013. RD = respiratory disease, CVD = cardiovascular disease,
CHF = congestive heart failure.
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ED Visits Prevented over Entire Study Period by Year

From the multipollutant Poisson generalized linear mod-
els, we obtained coefficient estimates for the associations be-
tween pollutant parameters and ED visits for RD, asthma,
CVD, and CHF. We then incorporated the difference between
observed and counterfactual pollutant levels to determine
daily risk ratios, which were used to estimate the number of
ED visits prevented by pollution-control policies. From
1999–2013, using concentration–response estimates de-
rived from the 1999–2005 model, an estimated 52,717 RD
ED visits in the 5-county Atlanta metropolitan area were
prevented due to all selected pollution-control policies,
which was 3.1% of all RD ED visits which would have oc-
curred in the absence of these policies. Likewise, an estimat-
ed 38,038 asthma ED visits (9.2%), an estimated 3,057 CVD
ED visits (0.7%), and an estimated 2,104 CHF ED visits (2.0%)
were prevented due to all selected pollution-control policies.

Health impacts of pollution-control policies increased
over the study period as additional policies were enacted
and gradually became more fully realized (Figure 15). Using
health impact models fit from 1999–2005, estimated RD ED
visits prevented increased from 2.5% in 1999 to 6.1% in
2013 (3.1% overall), estimated asthma ED visits prevented
increased from 2.0% in 1999 to 17.0% in 2013 (9.2%
overall), estimated CVD ED visits prevented increased from
0.2% in 1999 to 2.5% in 2013 (0.7% overall), and estimated

27.9 hospitals contributed ED data per day. These numbers
gradually increased to 37.9 hospitals in the database for
2006, with an average of 37.7 hospitals contributing ED data
per day. Hospital numbers largely leveled off after 2006. The
percentage of hospitals in the database contributing data
ranged from 96.9% in 2005 to 100.0% from 2008–2010. The
number of hospitals in the database and the percentage com-
pleteness of data from these hospitals did not appreciably
change between 2004 (the last year of data being obtained di-
rectly from individual hospitals) and 2005 (the first year data
were obtained from the Georgia Hospital Association).

Figure 14. ED visits relative to 1999 levels, by year and category in the
5-county Atlanta metropolitan area, 1999–2013. RD = respiratory disease,
CVD = cardiovascular disease, CHF = congestive heart failure.

Table 7. Average Daily Numbers of Hospitals in the Database and Contributing Data for Each Year of the 
Studya

Year
Hospitals in 

Database
Hospitals Contributing

Data
Percent 

Contributing

1999 28.1 27.9 99.6
2000 32.7 31.9 97.7
2001 33.5 32.5 97.0

2002 34.4 33.4 97.1
2003 35.9 34.8 97.0
2004 37.0 36.0 97.3

2005 37.5 36.3 96.9
2006 37.9 37.7 99.3
2007 36.9 35.9 97.3

2008 37.0 37.0 100.0
2009 37.0 37.0 100.0
2010 37.0 37.0 100.0

2011 37.0 36.9 99.7
2012 37.0 36.8 99.6
2013 35.9 35.1 97.8

a Numbers reflect average of daily values over the course of each year.
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CHF ED visits prevented increased from 0.9% in 1999 to 3.0%
in 2013 (2.0% overall). Using health impact models fit
from 1999–2013, estimated asthma ED visits prevented
increased from 1.3% in 1999 to 7.2% in 2013 (4.3%
overall), and estimated CVD ED visits prevented increased
from 0.3% in 1999 to 2.0% in 2013 (0.8% overall). ED visits
for RD (0.9% estimated prevented overall) and CHF (1.7%
estimated prevented overall) did not meaningfully increase
over this period. To describe the full effect of all selected
pollution-control policies, subsequent results are presented
below for estimates of ED visits prevented over the last two
years of the study (2012–2013), which capture the period of
greatest impact of these policies.

ED Visits Prevented During Period of Fullest 
Implementation of Pollution-Control Policies

From 2012–2013, there were 260,018 recorded RD ED
visits in the 5-county Atlanta metropolitan area. All
selected pollution-control policies were estimated to pre-
vent 16,315 visits, or 5.9% of all RD ED visits that would
have occurred in the absence of these policies (95%
interval estimate: �0.4% to 12.3%) using the health
impact model fit from 1999–2005, or 0.6% (95% interval
estimate: �3.7% to 6.1%) using the health impact model
fit from 1999–2013 (Figure 16). There were 60,731
recorded asthma ED visits, and pollution-control policies
were estimated to prevent 11,985 visits (16.5%; 95%
interval estimate: 7.5% to 25.1%) using the health impact
model fit from 1999–2005, or 6.8% (95% interval estimate:
�0.3% to 13.9%) using the health impact model fit from
1999–2013. There were 69,910 recorded CVD ED visits, and

Figure 15. Estimated percentage of ED visits prevented by the set of pollution-control policies considered in this study by outcome and year in the
5-county Atlanta metropolitan area, 1999–2013. A: 1999–2005 model fit, and B: 1999–2013 model fit. Model formulation: 7-pollutant, all cubic polynomial
and interaction terms included.

pollution-control policies were estimated to prevent 1,662
visits (2.3%; 95% interval estimate: �1.8% to 6.2%) using
the health impact model fit from 1999–2005, or 1.8% (95%
interval estimate: �1.0% to 4.6%) using the health impact
model fit from 1999–2013. There were 18,129 recorded CHF
ED visits, and pollution-control policies were estimated to
prevent 477 visits (2.6%; 95% interval estimate: �6.3% to
10.4%) using the health impact model fit from 1999–2005,
or 1.8% (95% interval estimate: �3.5% to 7.7%) using the
health impact model fit from 1999–2013.

From 2012–2013, there were 16,939 recorded ED visits
for finger wounds in the 5-county Atlanta metropolitan

Figure 16. Estimated percentage of ED visits prevented by the set of pol-
lution-control policies considered in this study by outcome and period of
model fit, 5-county Atlanta metropolitan area, 2012–2013. Model formu-
lation: 7-pollutant, all cubic polynomial and interaction terms included.
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area, and all selected pollution-control policies were esti-
mated to prevent 24 visits, or 0.1% of all finger wound ED
visits that would have occurred in the absence of these
policies (95% interval estimate: �4.8% to 5.3%) using the
health impact model fit from 1999–2005, or 1.6% (95%
interval estimate: �2.2% to 5.5%) using the health impact
model fit from 1999–2013. Unlike the primary outcomes of
interest, estimated effects were not higher using the health
impact model fit from 1999–2005. These analyses, which
showed no strong connection between pollution-control
policies and finger wounds, did not reveal evidence of any
uncontrolled confounding in the health impact model.

Exploration of the Sensitivity of Health Impact Results to 
Model Parameterizations

Estimated relative effects of pollution-control policies
were generally slightly greater for the 5-county Atlanta met-
ropolitan area than for the 20-county Atlanta metropolitan
area using models fit for 1999–2005 (Figure 17A). Compared
with an estimated 5.9% of RD ED visits prevented in the
5-county area, there were an estimated 5.1% of RD ED visits
prevented in the 20-county area (95% interval estimate:
�0.8% to 11.0%). Compared with an estimated 16.5% of
asthma ED visits prevented in the 5-county area, there were
an estimated 13.6% of asthma ED visits prevented in the
20-county area (95% interval estimate: 5.0% to 21.5%).
Compared with an estimated 2.3% of CVD ED visits pre-
vented in the 5-county area, there were an estimated 1.6% of
CVD ED visits prevented in the 20-county area (95% interval
estimate: �2.3% to 5.7%). Compared with an estimated
2.6% of CHF ED visits prevented in the 5-county area, there
were an estimated 2.8% of CHF ED visits prevented in the
20-county area (95% interval estimate: �4.9% to 9.6%). 

The same patterns held for models fit for 1999–2013
(Figure 17B). Compared with an estimated 0.6% of RD ED
visits prevented in the 5-county area, there were an esti-
mated 0.1% of RD ED visits prevented in the 20-county area
(95% interval estimate: �4.2% to 5.3%). Compared with an
estimated 6.8% of asthma ED visits prevented in the
5-county area, there were an estimated 4.7% of asthma ED
visits prevented in the 20-county area (95% interval esti-
mate: �1.7% to 11.0%). Compared with an estimated 1.8%
of CVD ED visits prevented in the 5-county area, there were
an estimated 1.1% of CVD ED visits prevented in the 20-
county area (95% interval estimate: �1.4% to 3.5%). Com-
pared with an estimated 1.8% of CHF ED visits prevented in
the 5-county area, there were an estimated 1.5% of CHF ED
visits prevented in the 20-county area (95% interval esti-
mate: �3.1% to 6.5%).

Results of health impact models were compared based
on parameterizations of pollutant variables: use of either a
linear term or a cubic polynomial for each pollutant, and

the inclusion or exclusion of first-order linear interaction
terms for each pair of pollutants. For models fit from 1999–
2005, for RD and asthma (Figure 18A), the lowest esti-
mated percentage of ED visits prevented was for the model
with only linear terms and no interaction terms, while the
models with cubic polynomials and interaction terms had
the highest estimates for percentage of ED visits prevented.
These patterns were not as apparent for CVD and CHF,
though the models with cubic polynomials and interaction
terms had the highest estimated percentage of ED visits
prevented for CHF and close to the highest estimated per-
centage of ED visits prevented for CVD. For models fit from
1999–2013 (Figure 18B), patterns were similar: models
with only linear terms and no interaction terms had the
lowest estimated percentage of ED visits prevented for
each outcome, while models with cubic polynomials and
interaction terms had either the highest or close to the
highest estimates for ED visits prevented.

Results of health impact models were also compared for a
1-pollutant model (which estimated ED visits prevented
due to the effect of policies on ambient PM2.5), a 5-pollutant
model (which included PM2.5, CO, O3, NO2, and SO2), a 7-
pollutant model (which included PM2.5, CO, O3, NO2,
SO2, OC, and NO3

�), and a 9-pollutant model (which
included PM2.5, CO, O3, NO2, SO2, OC, NO3

�, EC, and
SO4

2�). For models fit from 1999–2005 (Figure 19A), for
all outcomes, the highest estimated percentages of ED
visits prevented were for the 7-pollutant models. For
models fit from 1999–2013 (Figure 19B), the 7-pollutant
models produced either the highest or close to the highest
estimated percentage of ED visits prevented for each out-
come. The fact that the 7-pollutant model produced con-
sistently high estimates of ED visits prevented may suggest
that the difference between results by model is not random
variation, but rather that the 7-pollutant model formula-
tion more fully captured the impact of pollution-control
policies than the other models.

ED Visits Prevented for Specific Policy Scenarios

Estimated percentages of ED visits prevented, using
models fit from 1999–2005, are shown in Figure 20, A–D
for RD, asthma, CVD, and CHF. EGU policies were gener-
ally estimated to have a greater health impact than mobile
policies for preventing RD ED visits, especially the ARP
and the NBP. Those patterns were also similar for asthma
ED visits. For CVD ED visits, the CAIR multipollutant
program was estimated to have the largest impact of any
set of policies. However, these patterns were not similar
using models fit for 1999–2013 (Figure 20 E–H). For all
outcomes, there was considerable overlap in the interval
estimates for the majority of pollution-control scenarios.
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Figure 17. Estimated percentage of ED visits prevented by the set of pollution-control policies considered in this study by outcome, 2012–2013, comparing
results for the 5-county Atlanta metropolitan area (red) with results for the 20-county Atlanta metropolitan area (yellow). A: 1999–2005 model fit, and
B: 1999–2013 model fit. Model formulation: 7-pollutant, all cubic polynomial and interaction terms included.

Figure 18. Estimated percentage of ED visits prevented by the set of pollution-control policies considered in this study by outcome, 2012–2013, for the
5-county Atlanta metropolitan area, comparing models with linear pollutant terms, models including cubic polynomial pollutant terms, and models
including first-order interactions between linear pollutant terms. A: 1999–2005 model fit, and B: 1999–2013 model fit. Model formulation: 7-pollutant model.

Figure 19. Estimated percentage of ED visits prevented by the set of pollution-control policies considered in this study by outcome, 2012–2013, for the 5-county
Atlanta metropolitan area, comparing models with different multipollutant formulations. A: 1999–2005 model fit, and B: 1999–2013 model fit. Model formula-
tion: all cubic polynomial and interaction terms included. The 1-pollutant model included PM2.5; the 5-pollutant model included PM2.5, CO, O3, NO2, and SO2;
the 7-pollutant model included PM2.5, CO, O3, NO2, SO2, OC, and NO3

�; the 9-pollutant model included PM2.5, CO, O3, NO2, SO2, OC, NO3
�, EC, and SO4

2�. 
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Figure 20. Estimated percentage of ED visits prevented by individual pollution-control actions, 2012–2013, for the 5-county Atlanta metropolitan area.
A–D: 1999–2005 model fit, and E–H: 1999–2013 model fit, by cardiorespiratory outcome. Policies regulating EGU emissions are shown in green; policies
regulating mobile emissions are shown in purple. The 95% confidence intervals with all uncertainty included were calculated for all pollution-control
policies, all EGU policies, and all mobile policies; confidence intervals for the individual sets of policies reflect uncertainty in the health impact model.
All = all pollution-control policies; EGU = all electricity generating unit policies; ARP = Acid Rain Program; NBP = NOx Budget Trading program; CAIR =
Clean Air Interstate Rule/multipollutant rule; MOB = all mobile policies; GSP = gasoline programs; DSP = diesel programs; IM = inspection and mainte-
nance programs.
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DISCUSSION AND CONCLUSIONS

Previous discussions of accountability methods and
frameworks have concluded that there is no single
approach that can attribute causality in changes along the
chain of accountability to regulatory actions; each
approach should be judged on its merits — in other words,
ability to answer the question at hand while accounting for
confounding factors and estimating uncertainties — and
limitations (HEI 2010; Pope et al. 2012). To this end, the
present study utilizes multiple methods to investigate rela-
tionships along the chain and compares the results in light
of each method’s strengths and limitations.

EMISSIONS

Uncertainties in emissions estimates are well recognized.
An added complexity in conducting an accountability
assessment is linking regulations to rules and the imple-
mentation of specific controls. Meetings with stakeholders
proved to be an important aspect of this study in assessing
this relationship. Stakeholders in the field emphasized
that decisions made at the utility or facility level reflect
multiple inputs, including regulations (one or more), gen-
erating capacity, fuel cost, and future projections of each of
these. Definitively attributing emissions reductions to spe-
cific regulatory programs at the federal level via complex
control programs, such as those investigated in this report,
proved impossible using the methods involved here. One
would have to both correctly link specific control deci-
sions to a program or programs and account for how the
ensuing external factors (e.g., fuel costs, economic growth,
and other regulations) further affected operating decisions.

Regionally, the most effective regulation at reducing
year-round NOx emissions was the ARP (and related state
programs). During summers beginning in 1999 (and partic-
ularly in 2003 and onward), our analysis attributes large
reductions in NOx to the NBP. CAIR is associated with
smaller reductions, largely because ARP and NBP already
required major reductions prior to CAIR’s promulgation.
The region-wide adoption of natural gas toward the end of
the period of interest impacted NOx emissions, but we
could not attribute the degree of fuel switching exclu-
sively to regulations or changes in fuel cost. The ARP is as-
sociated with moderate reductions in SO2 emissions
regionally, though CAIR is associated with the largest re-
ductions in both the ANAA and regionally, occurring year
2009 and later.

Mobile emissions programs are associated with major
reductions in emissions of all the modeled pollutants. GSP
programs have reduced NOx and VOC emissions the most
over the period, and DSP programs have reduced PM2.5

emissions. IM programs, as modeled by MOVES, have not
had a substantial impact on emissions.

There is evidence from other areas of the country that
current mobile-source NOx emissions estimates may be
biased high by as much as a factor of two. Frost (2016) sug-
gested that CO emissions estimates may be biased as well.
If this is true in the Southeast, or elsewhere, it has major
implications on this work and air quality management
generally. First, it would indicate that regulations targeting
mobile-source emissions have been more effective than is
evidenced by modeled emissions. Second, the amount of
NOx emissions to be further reduced would be lower,
which has implications on how to assess potential future
interventions and regulatory effectiveness. There are other
ramifications (e.g., air quality model evaluation and the
development of air quality sensitivities). We examined this
potential bias in multiple ways, including through our air
quality modeling evaluation, empirical trend analysis of
NOx trends using both ground and satellite-based observa-
tions, and a ratio-of-ratios method. Our results are sugges-
tive of a bias, but the evidence here is not strong and can be
obscured by the more complex chemistry of the large bio-
genic fluxes in the Southeast that, for example, lead to for-
mation of organonitrates, which are not typically
measured and are not observed from space. The ratio-of-
ratios method is suggestive of a potential bias, as the
ambient concentrations of other directly emitted species
(CO and EC) have been reduced proportionally less in rela-
tionship to their emissions. We do find a high bias in sim-
ulated NOx and CO concentrations in our air quality
modeling. On the other hand, the satellite data and ground
level observations follow similar annual trends as the NOx
emissions, which are also similar to those in previous
studies (Blanchard et al. 2016; Pachon et al. 2012;
Vijayaraghavan et al. 2014).

It is hard to overstate the importance of better under-
standing and quantifying mobile-source NOx emissions,
particularly in the light of the major reductions in utility
NOx emissions and the tightening ozone standard. Under-
standing how NOx-limited the region is will be critical to
identifying the most effective strategies to further reduce
O3 (and PM) and in quantifying the degree of further con-
trols on various sources that is required. The empirical
method used here to construct counterfactuals is less sen-
sitive to systematic biases in emissions; the trend is most
important.

AIR QUALITY

O3 results using both empirical and chemical transport
modeling methods suggest that mean annual O3 is not
impacted to a large degree by meteorology. Detrending
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adjustments for O3 were larger for the summertime means,
with seven of the 13 years being attributed adjustments of
3 ppb or more, with a maximum adjustment of 6.9 ppb in
2002 (Appendix Figure A.9; available on the HEI website).
Mean annual counterfactual O3 is consistently higher than
observed, but still follows a cyclical multiyear pattern over
the course of the period. This suggests that, while meteoro-
logical contributions are important on a day-to-day basis —
particularly leading to high and low O3 days — emissions
drive peak and mean levels of O3, as well as variability. The
dip in concentrations in the years surrounding 2009 is of
interest because of the recession, which began in 2008.
Dynamic analysis using CMAQ and empirical modeling
reaffirms that improvements in air quality (specifically,
reductions in the highest O3 levels) between 1999 and 2013
are attributable more to emissions reductions than to meteo-
rological variability.

Blanchard and colleagues (2014) found, using a different
detrending method, that detrending changed the long-term
trend in MDA8h O3 from insignificant to significant at JST
and other SEARCH sites. In general, the annual O3 adjust-
ments from the detrending are smaller in this work than in
previous detrending studies (Blanchard et al. 2014; Camalier
et al. 2007). The present study looks at seasonal averages,
not annual peaks, and finds that detrending does not impact
the assessment of long-term trends in summer (decrease)
and winter (increase). The current work is able to match sta-
tistically significant changes in air pollution concentrations
with periods of emissions changes in utilities (Henneman et
al. 2015).

Direct comparisons of concentrations and sensitivities
between the empirical and CTM methods show that the
two approaches estimate similar emissions–air quality
relationships, with exceptions (in particular, NO2 and
NO3

�). Both models demonstrate that NOx controls have
reduced summertime O3 and increased wintertime O3.
SO4

2� is closely linked to EGU SO2 emissions, and has
been reduced, particularly in response to ARP and CAIR-
related controls. The two models agree best on O3 and
PM2.5 concentrations and sensitivities, providing confi-
dence in model results for two species that have proven
difficult to reduce. Other gaseous and particulate species
show more variability between the models, which asserts
evidence that model users should place less credence in
these results.

Operational and dynamic evaluations of CMAQ show
that the model captures spatial and temporal variability in
multiple air pollutants. One concern raised by the results
is the persistent low bias of OC in the summer and high
bias in the winter, which contributes a large fraction of
total PM2.5 bias. This fraction has increased as other

species of PM (e.g., SO4
2�) have been reduced. High bias

of NO2 and CO in Atlanta may be indicative of a bias in
emissions or due to the grid size. O3 modeling has a rela-
tively low bias, but tends to be biased low on high O3 days.
Recent upgrades to CMAQ (versions 5.1 and 5.2) have been
shown to reduce this bias (Appel 2018; Pleim 2016).

Aerosol acidity, and its change across the period of
emissions reductions, evolved as a potentially important
issue during this research project. Aerosol pH has previ-
ously been linked to ambient aerosol concentrations, com-
position, and toxicity (Kleinman et al. 1989; Weber et al.
2016). The notable finding is that aerosol pH remains low,
despite major reductions in SO2 and NOx emissions, as
studied here. Here, we specifically focused on the trends
in aerosol pH in the Southeast using the data, model appli-
cations, and approaches developed for this study. We find
that, indeed, aerosol pH in the Southeast remains low
(pH’s around 1–3, depending on methods used), and the
aerosol acidity today is similar to what it was a decade ago,
despite the major reductions in the two main acidifying
species — sulfuric acid and nitric acid produced from gas
phase reactions of SO2 and NOx. Further, aerosol pH is not
expected to increase significantly in the near future, in
spite of further NOx and SO2 controls. The result is due
both to thermodynamic considerations and the availability
of ammonia. Aerosol pH has health implications as acidic
aerosols have been linked to health impacts (Kleinman et al.
1989; Utell 1985) and has been linked to the formation of
SOA. On the other hand, the continued low pH is not an
indication of a failure of the controls. There is a significant
reduction in aerosol levels, and the deposition of acidifying
and eutrophying species has been reduced. This improved
understanding of aerosol pH, as well as the potential impact
on SOA formation, is critical to assessing the impact of
future emissions controls in biogenic-rich areas like the
Southeast. A further issue is to examine the potential bene-
fits of how reduced SO4

2� and NO3
� formation may impact

the transport of ammonium, a reactive nitrogen species,
which can lead to harmful ecological impacts downwind.

As mentioned above, it is impossible to validate the
counterfactual concentrations time series directly. Instead,
we have applied multiple tools to evaluate various aspects
of the modeling process. These include comparisons of sen-
sitivities across modeling platforms (empirical and CTM),
assessments of cross-correlations between pollutant spe-
cies, and quantitative measures of uncertainty that account
for potential biases in counterfactual emissions and
emissions–concentration sensitivities. The first two tests
provide confidence that the sensitivities to emissions cap-
ture suitable relationships. The third test confirms that the
differences between observed ambient concentrations and
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counterfactuals are statistically significant for the majority
of pollutants in the EGUMOB, EGU, and MOB cases.

HEALTH IMPACT ANALYSIS

Strengths of Analysis

One major strength of this study is the use of a large hos-
pital database consisting of 42 Atlanta area hospitals. We
had access to patient-level ED data, which were converted
into daily counts for a 15-year period for several cardiore-
spiratory outcomes. There were over 16 million ED visits
recorded in this database from 1999–2013, and the consid-
erable study size (both in ED visit counts and in length of
the study) allowed for assessment of a variety of outcomes,
model parameterizations, and pollution-control scenarios.
In addition, the large suite of air quality variables that were
continuously measured on a daily basis over the 15-year
period allowed for assessment of different multipollutant
model formulations. The Atlanta hospital and pollutant
databases had been used in a number of previous studies
that had established acute relationships between pollut-
ants and ED visits, assessed potential biases, compared dif-
ferent analytical methods, and determined optimal control
for time-varying confounders; lessons learned from these
earlier studies contributed substantially to the improve-
ment of the current study.

Decisions in Modeling Associations Between Pollutants 
and ED Visits

Numerous factors needed to be considered when deciding
on the methodological approaches for the health impact
models. In order to limit concerns over multiple compari-
sons or data fishing, we used a priori decisions for modeling
decisions whenever it was suitable. We used set covariates,
which had been determined through previous studies, in-
cluding the particular formulation of meteorological terms.
We used a priori lag structures, with lag 0–2 used for RD
and asthma and lag 0 used for CVD and CHF, decisions
also based on previous research. The 1-, 5-, and 9-pollutant
models were chosen a priori, and the 7-pollutant model re-
duced concerns about collinearity. We did try models with
or without cubic polynomials and interaction terms since
we were not sure if those factors would affect model re-
sults. However, to avoid picking and choosing convenient
results, we decided a priori to either use cubic polynomi-
als for all pollutants or none, and to either include interac-
tions between all pollutants or none.

There were other modeling decisions in which we were
guided at least partially by results, but this was only done
when these choices were appropriate and consistently
applied. For example, pollutants were more predictive of

ED visits in the first half of the study period. Factors, such
as the greater variability in ambient pollutant levels —
emission reductions have reduced pollutant concentration
averages, peaks, and variability — potentially leading to
more accurately measured associations with ED visits,
may have contributed to this result. Similarly, after early
testing showed that 7-pollutant models, models with cubic
polynomials, and models with interaction terms consis-
tently captured more of the health impact of pollution-
control policies, we used those model parameterizations
for the primary model results. These modeling choices
resulted in consistently stronger results for all outcomes,
suggesting that the difference may be due to a decrease in
model misspecification as opposed to simply random noise.
The 7-pollutant model incorporated the most information
on overall air quality without the larger collinearity issues
of the 9-pollutant model, and the cubic polynomials and
interaction terms additionally added to a more refined
model of the associations between pollutants and ED visits.

The 7-pollutant model with cubic polynomials had a
total of 42 pollutant terms (3 for the cubic polynomial
terms for each of the 7 pollutants, and 21 two-way interac-
tion terms). There were downsides to using this complex
model. For one, within this multipollutant framework it
was difficult to determine the associations between indi-
vidual pollutants and ED visits, or to assess the effects
through reductions of a single pollutant on ED visits. How-
ever, these were never the goals of this particular study;
there is already ample evidence connecting each of these
pollutants to cardiorespiratory outcomes. Furthermore,
trying to assess the effects on health outcomes through
reductions of individual pollutants would invariably not
capture the full impacts of pollution-control policies: even
policies aimed at reducing emissions of individual pollut-
ants would, by affecting atmospheric chemistry, result in
changes to the overall air quality profile.

A general challenge when allowing for multipollutant
interactions and nonlinearity in a model is in its interpre-
tation. However, interpreting model parameters is less of
an issue in this analysis compared with more conventional
analyses. Our goal here is to simply estimate daily risk
ratios for one specified contrast (counterfactual vs. actual
levels) each day by estimating a joint effect. A simpler
model would not meaningfully simplify our interpretation
of the desired joint effect.

Counterfactual Study Design

Effects of interventions are often estimated using study
designs that are framed as natural experiments. The term
natural experiment is somewhat of a misnomer as, by def-
inition, in an experiment the conditions under study are
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manipulated by the investigator rather than by natural
forces. The implication of a natural experiment is that the
results obtained are consistent with what would have been
obtained in an actual experiment if one had been under-
taken. For our study question, we could conceptualize a
natural experiment utilizing a spatial and/or a temporal
contrast. To utilize a spatial contrast we would need to
find a city similar to Atlanta (e.g., similar in population
size, population makeup, ED usage, meteorology, and
traffic), except that this control city would not be subject to
the air pollution-control policies that Atlanta had experi-
enced during the study period (1999–2013). Thus, the pol-
lution levels in the control city should approximate the
counterfactual pollution levels during the intervention
period; that is the pollution levels that would have
occurred in Atlanta in the hypothetical absence of the air
pollution-control policies.

Perhaps more plausible than finding such a control city
would be to use a control period in Atlanta and perform a
pre–post analysis. However, this approach to approximate
the counterfactual is also problematic because of the length
of the intervention period, Atlanta’s changing population
over time, the occurrence of seminal events (e.g., the Great
Recession), and the gradual implementation of air pollution
policies at different time points (e.g., engine emissions stan-
dards for new cars that were phased in over several years).

Rather than use a proxy city or proxy period to represent
the counterfactual pollution levels in Atlanta, our approach
was to incorporate changes in emissions inputs with meteo-
rology and atmospheric chemistry to directly estimate daily
counterfactual levels for selected pollutants in Atlanta
during the study period accounting for model uncertainty.
The commonality of these approaches is that valid causal
inference depends on the accuracy of representing the coun-
terfactual experience — either by design or by analysis.

In our initial analyses we observed stronger health asso-
ciations in the first half of the study period (roughly 1999–
2005) compared with the latter half. This temporal con-
trast of the concentration–response parameters led us to a
broader consideration of the counterfactual experience. That
is, we needed to consider not only how air pollutant levels
were affected by specified pollution-control policies but also
whether these policies affected the health concentration–
response functions. If so, it would be a source of error to
estimate the counterfactual number of ED visits using con-
centration–response parameters that were affected by air
pollution-control policies. On the other hand, the change in
the estimated health associations over time could be due to
extraneous factors unrelated to pollution-control policies
such as changing population susceptibility, model mis-
specification, or chance. This was a challenging issue and

led us to present two sets of results; one using concentra-
tion–response parameters estimated from the 1999–2005
period and the other using concentration–response parame-
ters estimated from the entire 1999–2013 study period.

Use of Single Central Monitor Data to Predict ED Visits 
Across the 5-County Area

We used results from a single central monitor to predict
ED visits across the 5-county Atlanta metropolitan area.
While pollutant data were available from other Atlanta-
area monitors, the Jefferson Street location was the only
site where measurements of all considered pollutants were
colocated for the entire study period. Using data from
other monitors would have involved additional layers of
modeling for actual and counterfactual estimates, which
would be an additional source of error.

The use of a single central monitor could be a potential
study limitation, as pollutant levels measured at the mon-
itor may differ considerably from pollutant levels experi-
enced by the study population. Exposure measurement
error for time-series analyses was assessed in a previous
study in the Atlanta metropolitan area; this study found
that the use of measurements from urban monitors (within
20 miles of the city center) located different distances from
geographical subpopulations produced similar associa-
tions between pollutants and health outcomes (Sarnat et
al. 2010). This suggested that even if measured pollutant
levels differed from ambient pollution levels where individ-
uals are located, daily trends in these measures were corre-
lated enough so that measurements from a single central
monitor could reproduce valid health associations. Sepa-
rately, another analysis using the same Atlanta hospital data
assessed the use of either unweighted averages of pollutant
concentrations over several area monitors or population-
weighted averages of these pollutant concentrations, com-
pared with using data from a single central monitor; all air
quality metrics resulted in similar associations between pol-
lutants and pediatric asthma ED visits (Strickland et al.
2011). In a follow-up analysis that incorporated simulated
measurement error, observed associations between pollut-
ants and ED visits were generally biased toward the null,
and this bias was greater when using single central mon-
itor measurements compared with population-weighted
average concentrations (Strickland et al. 2013).

A study using simulated time-series pollutant data and
Poisson generalized linear models similar to those used in
this study showed that associations between pollutants and
health outcomes were all biased toward the null, though
less for Berkson-type errors, which would result when daily
pollutant measurements were close to the population-
average exposure (Goldman et al. 2011). If the measurements
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differ meaningfully from population average exposures,
this can create biased associations, with the direction most
likely toward null effects (Zeger et al. 2000). The compar-
ison of results from the 5-county analyses with results
from the 20-county analyses supports this hypothesis. The
population of the 20-county area includes people even fur-
ther from the central monitor and whose individual expo-
sure to ambient pollutant levels is likely quite different;
these results show effects that trend toward the null. This
suggests that exposure measurement error could be
resulting in a bias toward the null for this study. If so, the
true impacts of pollution-control policies may be greater
than those estimated for the 5-county analysis.

ED Visits as the Outcome of Interest

Hospital ED visits represent serious adverse health out-
comes: patients are suffering distress that is drastic and
severe enough to seek immediate, potentially life-saving
medical care. Such outcomes would be relatively
uncommon compared with more moderate health effects
of ambient air pollution, such as mild respiratory distress
or minor irritation of the eyes and throat. Figure 21 depicts
many potential effects of air pollution; an analysis

focusing on ED visits would not capture less severe effects
that occur in a larger number of people or less common
effects like mortality attributed to ambient pollutants. The
impact of pollution-control policies on ED visits cannot be
generalized to these other outcomes; however, if an inter-
vention prevents ED visits, it would also likely have addi-
tional health benefits.

Furthermore, this study assessed only impacts of pollution-
control policies on cardiorespiratory outcomes; ambient
air pollution has also been linked to other health problems
such as urinary dysfunction, nervous system damage,
digestive issues, and developmental disorders (Kampa and
Castanas 2008). Finally, this study captured only acute
effects of daily increases in pollutants. Long-term expo-
sure to ambient air pollution can lead to cumulative harm
and ultimately increased rates of mortality, especially
from CVD, stroke, or lung cancer (Götschi et al. 2008;
Laden et al. 2006; Pope et al. 2004; Raaschou-Nielsen et al.
2013; Stafoggia et al. 2014). While this study estimated
that tens of thousands of ED visits in the Atlanta metropol-
itan area had been prevented by pollution-control policies,
this result is only a fraction of the overall health impact of
these policies.

Figure 21. Pyramid of effects of air pollution. (Courtesy of the U.S. EPA 2016b.)
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IMPLICATIONS OF FINDINGS

This work employs detailed analyses and multiple
models applied along the chain of accountability to quan-
tify effects of regulatory actions on emissions, air quality,
and public health. At the first link (connecting regulations
and emissions), stakeholder engagement played a key role
in assessing how regulatory actions and programs were
interpreted and implemented by those in charge of com-
plying with and enforcing them. The discussions and mod-
eling highlighted a difficulty inherent in all accountability
studies in attributing reductions to specific regulations, that
is, that emitters make decisions regarding controls, fuel, and
other factors on a continuous time scale as regulations are
put into place and that they make decisions based on a
number of inputs and objectives. This confounds attributing
changes in emissions exclusively to control programs.
While acknowledging the difficulties in attributing emis-
sions reductions to specific control programs, matching
emissions reductions to known implementation dates
allowed for conclusions to be made regarding the impacts of
specific controls. We strongly recommend that account-
ability studies actively engage stakeholders with intimate
knowledge of the specific region and controls examined.

In connecting emissions changes with air quality changes,
the work shows how results from multiple methods of differ-
ent types (i.e., empirically based statistical vs. deterministic)
can build evidence for causal linkages. Empirical models
that employ a nonlinear measure of atmospheric photo-
chemical state (PS*) to associate changes in ambient concen-
tration with emissions changes allow for the estimation of
nonlinear effects of emissions controls on a daily basis and
are a novel aspect of this work. Both statistical and air qual-
ity model methods highlight the importance of high-quality
long-term data records for accountability studies.

The project highlighted the importance of deterministic
air quality models to the accountability field. Long-term
emissions inventories and meteorological inputs allow for
the comparison of multiple air pollution metrics over wide
spatial areas across long time spans. Further, the use of
CMAQ for a dynamic analysis and comparison with empir-
ical methods shows the adaptability of CTMs to answer a
number of different accountability-related questions.

Policy analysis and emissions modeling showed that the
combined effect of all regulations over the study period
resulted in reduced emissions of multiple pollutants from
both EGU and mobile sources. The ARP, NBP, and related
state programs had the largest effects on EGU NOx emis-
sions, and the ARP and CAIR had the largest effects on SO2
emissions. For mobile sources, gasoline programs begin-
ning in 2000 had the largest impacts on modeled mobile

NOx, and diesel programs had the largest impact on PM2.5.
Modeled mobile emissions, however, continue to have
high associated uncertainties, which carry on to modeled
emissions changes attributable to controls.

Various approaches used to evaluate potential bias in
mobile emissions, including ambient observations, satel-
lite monitoring, air quality modeling, and empirical
methods, yielded mixed results on the question of whether
modeled mobile NOx emissions are biased, though there is
enough information to suggest there is likely a positive
bias to support further study of this issue. This may
explain, in part, the lack of response sometimes seen in air
quality modeling of long-term trends. Further, this would
change the modeled response to emissions and modeling
of future air quality in response to additional controls for
air quality planning and other purposes.

Multiple methods relating air quality to emissions show
that emissions reductions have led to reduced ambient
concentrations of multiple pollutants that have previously
been linked to negative health outcomes. Two statistical
methods — meteorological detrending and empirical
ambient concentration–emissions models — provide evi-
dence that, while meteorological variability is important
on a daily time scale, multiyear trends in ambient air pol-
lution concentrations are driven by anthropogenic emis-
sions (EGU and mobile, in particular) in the southeastern
United States.

Accounting for uncertainty in mobile and EGU emissions
changes and model parameters, emissions programs under
the 1990 C led to statistically significant changes in all of the
air pollutants assessed in this study. Response in O3 was
season dependent; decreases compared with the counterfac-
tual were observed in the summertime, and increases were
observed in the wintertime. Overall, emissions reductions
resulted in a 3% decrease in mean O3.

The lack of response of aerosol pH to SO2 and NOx con-
trols is important in terms of understanding potential health
impacts and the response of future air quality (and climate
drivers) to emissions controls. Acid-catalyzed reactions that
lead to SOA formation will continue; however, the amount
of SOA formed should decrease (as has been observed here
and by Blanchard et al. [2016] and Marais et al. [2016]) as
the total aerosol is reduced, reducing the volume of aqueous
droplets that act as reactors. The continued low pH is not
indicative of a failure to reduce acid deposition. The total
amount of acidifying components in the atmosphere is
reduced, as is the flux of acidifying components to the soil
and water. The impact of the reduced ammonium formation
on downwind deposition of reactive nitrogen should be fur-
ther studied.
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Results of the CMAQ operational and dynamic evalua-
tion highlight important areas in air quality models that
need improvement. For instance, results imply that efforts
are needed for CMAQ to better capture PM concentration
changes in the summer. Continued negative bias in CMAQ
SOA formation leads to increased uncertainty in our
ability to estimate the impact of controls using air quality
models. Further, comparisons with empirical methods
show generally lower sensitivities in CMAQ and should be
a continued focus of research.

Pollution-control policies, by lowering pollutant emis-
sions and ambient pollution levels, were estimated to sub-
stantially reduce cardiorespiratory ED visits in the 5-county
Atlanta metropolitan area. From 1999–2013, all selected
pollution-control policies were estimated to prevent 3.1%
of RD ED visits, 9.2% of asthma ED visits, 0.7% of CVD ED
visits, and 2.0% of CHF ED visits using models fit from
1999–2005. These results do not reflect the full impact of
pollution-control policies, but rather the impact over the
period when these policies were gradually implemented.
The period of the study finding the greatest regulatory
impact on reducing air pollution levels occurred in the
final years of the study. During 2012–2013, all selected
pollution-control policies were estimated to reduce RD ED
visits by 5.9%, asthma ED visits by 16.5%, CVD ED visits
by 2.3%, and CHF ED visits by 2.6% using models fit for
1999–2005. For the 5-county Atlanta population of 3.5
million people, this constituted an estimated 8,157 RD ED
visits prevented each year, 5,992 asthma ED visits pre-
vented each year, 831 CVD ED visits prevented each year,
and 239 CHF ED visits prevented each year. The results for
the combined suite of pollution-control policies were
more robust than those for individual policies, so the rela-
tive effectiveness of these policies should be compared
with caution. The policies described in this study con-
tinue to be implemented, so similar quantities of dramatic
health impacts should still be occurring every year. These
reductions of cardiorespiratory ED visits, while consider-
able, likely capture only a small portion of the overall
impact of pollution-control policies: prevention of mod-
erate cardiorespiratory outcomes, effects on other organ
systems, and reductions on chronic conditions stemming
from cumulative air pollution exposure are not within the
scope of this study.

The use of the chain of accountability to determine the
effect of pollution-control policies on health effects
depends on the argument that the links within the chain
are truly causal. If any of the links in the chain of account-
ability were not causal, then the effect of policies on health
outcomes would be zero. Although we have done our best
to control for extraneous factors, this study is not intended

to be the sole provider of evidence of the causality for
these links. There is an extensive literature — both obser-
vational and experimental — which serves as the founda-
tion for the plausibility of the causal relationships between
pollution-control policies and pollutant emissions,
between emissions and air quality, and between air quality
and health outcomes. This study should be viewed in this
context, with the existing literature serving as support for
our interpretation of results.

Our study represents a vast undertaking that constitutes
a significant step forward in terms of air pollution account-
ability studies. We combined proven and novel methodol-
ogies to link pollution-control policies to emissions levels,
ambient pollutant levels, and health outcomes. The use of
the counterfactual approach allowed for the investigation
of different sets of overlapping policies that were imple-
mented gradually over long periods of time. Yet, this study
would not have been possible without the extensive pol-
lutant and hospital data sets that provided daily data over
a long-term, 15-year study period. The health data were
aggregated from 42 different hospitals capturing daily
counts of ED visits over different ranges of a large metro-
politan area, and this substantial data set allowed for the
partitioning of ED data to assess daily counts of several dif-
ferent health outcomes.

All these factors not only contributed to a thorough eval-
uation of the impacts of pollution-control policies on health
outcomes, but also allowed us to conduct numerous sensi-
tivity analyses in order to evaluate the effects of various
methodological choices. These included (1) health impacts
over different years; (2) health impacts over different geo-
graphical scales; (3) pollutant-health associations over dif-
ferent periods; (4) different numbers of pollutants included
in health impact models; and (5) different formulations of
the health-impact models. Investigation into the details of
key regulatory actions allowed for the attribution of changes
in emissions, ambient pollutant levels, and ultimately
health outcomes to specific pollution-control policies.
Accounting for uncertainty at each step in the study
allowed for a greater ability to address potential concerns
regarding the modeling of counterfactual data.

Testing different modeling choices also resulted in the
confirmation or discovery of potentially important knowl-
edge relevant to air pollution epidemiology. Multipol-
lutant models with nonlinear and interaction terms may be
more effective at capturing the full extent of the relation-
ship between pollutant levels and cardiorespiratory out-
comes. These observed relationships may change over
time, though it can be difficult to determine if the changes
are real or possibly due to factors such as data irregularity
or a change in variance of pollution levels. When exposure
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is measured at a central monitor location, estimated health
impacts may be stronger closer to this location due to
reduced measurement error. Finally, uncertainty in associ-
ations between ambient pollutant levels and health out-
comes is much greater than uncertainty in the associations
between emissions and ambient pollutant levels.

This project has produced a wealth of information that is
likely to be tremendously useful to further assessments of
the impacts of pollution-control policies. We look forward
to the results and methodological advances described in
this study being utilized to inform and guide future air pol-
lution regulatory actions.
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HEI QUALITY ASSURANCE STATEMENT

The conduct of this study was subjected to independent
audits by RTI International staff members Dr. Linda Brown
and Dr. Prakash Doraiswamy. These staff members are
experienced in quality assurance oversight for air quality
monitoring, emission inventories and modeling, data anal-
ysis, and related epidemiological studies. Other partici-
pants on the RTI QA oversight team included Dr. Jeremy

Aldworth, a statistician who reviewed the epidemiological
statistical model codes. 

The QA oversight program consisted of an initial on-site
audit of the research study at Georgia Institute of Tech-
nology and at Emory University for conformance to the
study protocol and standard operating procedures, and a
final remote audit of the final report and the data pro-
cessing steps. The onsite audit was performed by Drs.
Brown and Doraiswamy. The final remote audit was per-
formed by Drs. Brown, Aldworth, and Doraiswamy. The
dates of the audits and reviews are listed below.

April 22–23, 2015 (Audit Phase 1, Georgia Institute of 
Technology and Emory University)

The auditors conducted an on-site audit at the Georgia
Institute of Technology, School of Civil and Environmental
Engineering, and at the Rollins School of Public Health at
Emory University, Department of Environmental Health,
Atlanta, GA. The audit reviewed the following study com-
ponents: progress reports; personnel and staff; adequacy of
equipment and facilities; internal quality assurance proce-
dures; air quality data processing and documentation;
health data processing and quality checks; and backup
procedures. Program codes were inspected to verify proper
documentation. Analytic data sets and codebooks were
examined. The audit included an observation of the dem-
onstration of the script executions, file tree structure on
the server, and model diagnostics. The audit also evalu-
ated future analysis plans for the health data. No errors
were noted, but recommendations were made for docu-
menting model development, assumptions, QA/QC proce-
dures and codes, and developing appropriate backup
procedures for air quality data analysis performed on stu-
dent desktops.

September–December 2017 (Final Remote Audit)

The final remote audit consisted of two parts: (a) review
of final report for the project; and (b) audit of data pro-
cessing steps. The audit of the final report focused on
ensuring that it is well documented and easy to under-
stand, and highlighted key findings and limitations of the
study. This review also provided guidance on specific
aspects of the data processing sequence that could be
reviewed remotely. The audit of the data included
reviewing the scripts for the data reduction, processing
and analysis, model development, and visualization. This
specific portion of the audit was restricted to the central
portion of the research project that focused on detrending,
generation of counterfactuals, and epidemiological anal-
yses. Scripts and input data for the air quality detrending
and model development component were sent to RTI for
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review. The scripts were executed at RTI, and the results
were compared to some of the figures and tables in the
report. For the epidemiological component, scripts were
sent to RTI for review. However, due to restrictions on
health data, a video conference was organized for the audi-
tors to observe code execution and comparison of outputs
obtained with SAS and R. No major quality-related issues
were identified that would impact the findings. Certain
typographical errors and mislabeling of figures in the
report were discovered. Minor editorial corrections and
recommendations for fixing the errors were made. 

Written reports of each activity were provided to HEI.
These quality assurance oversight audits demonstrated
that the study was conducted by a well-coordinated, expe-
rienced team according to the study protocol and standard
operating procedures. Interviews with study personnel
revealed a consistently high concern for data quality. The
final report, except as noted in the comments, appears to
be an accurate representation of the study.

Linda Brown, M.P.H., Dr.P.H., Epidemiologist, Quality
Assurance Auditor

Jeremy Aldworth, Ph.D., Statistician, Quality Assurance
Auditor
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INTRODUCTION 

Accountability research evaluates whether regulatory
and other actions aimed at improving air quality have
resulted in actual decreases in air pollutant concentrations
and improvements in public health. Frequently, researchers
follow the impacts along a chain of accountability that
includes the regulation and its implementation, and
effects on emissions, air quality, exposure, and public
health (Boogaard et al. 2017; Health Effects Institute 2010;
van Erp et al. 2008). In establishing whether a particular
regulatory action has been successful in providing the
intended improvements, it is very useful to establish
mechanistic links between the steps in the chain: Has the
action improved air quality? If so, has it reduced people’s
exposure to air pollutants? And finally, has it in turn led to
improved public health?

Because of the various time scales and geographical
areas covered by regulations, and because the right data
are often not available, along with many methodological
issues, accountability research is challenging. The past
decades have seen an increasing number of accountability
studies. For practical reasons, many early studies focused
on the impacts of local actions taking place over relatively
short time frames, such as measures to reduce traffic in a
city (Dockery et al. 2013; Lee et al. 2007; Peel et al. 2010;
Zhang et al. 2011). Several studies to date have focused on
the impact of long-term policies, such as the impact of the
U.S. Clean Air Act Amendments (Gilliland et al. 2017; Mor-
genstern et al. 2012; Zigler et al. 2016). One of the chal-
lenges in evaluating longer-term regulatory actions is that
studies may be confounded by other simultaneous changes

(for example, improvements in access to healthcare) that
may also affect air quality or health. An accountability
research approach that addresses this challenge is to com-
pare the observed changes in air quality and health after
implementation of the regulation with projected what-if
scenarios — also called counterfactual scenarios — where
researchers estimate what the air quality and health out-
comes would have been without the intervention.

The Health Effects Institute has a long history in
accountability research. HEI has contributed both to the
development of the conceptual framework for account-
ability research and to the funding for a number of studies
designed to assess the health outcomes of actions to
improve air quality (HEI Accountability Working Group
2003). This history is described more fully in the Preface to
this report. Of the first set of nine studies that HEI funded,
a majority evaluated actions that were at a local scale or
implemented relatively rapidly. For example, researchers
studied the effects of banning the sale of coal for heating in
Dublin and other Irish cities (Dockery et al. 2013) or of
reducing emissions from traffic or local and regional
sources during a unique event, such as the Olympic Games
(Peel et al. 2010; Rich et al. 2012; Zhang et al. 2013). HEI
also funded some studies that evaluated longer-term,
national changes, such as air quality improvements after the
reunification of Germany (Peters et al. 2009) and reductions
in emissions from power plants under the Clean Air Act
(Morgenstern et al. 2012). Summaries of these studies have
been published that discuss the advances made, and chal-
lenges encountered, in conducting such research (Boogaard
et al. 2017; Health Effects Institute 2010; HEI Accountability
Working Group 2003; Henneman et al. 2016; Rich 2017; van
Erp et al. 2008).

After assessing the results from this first wave of nine
studies, HEI issued Request for Applications (RFA*) 11-1,
“Assessing the Health Outcomes of Air Quality Actions,”
in 2011. The goals of this RFA were to fund research to
(1) evaluate regulatory and other actions at the national or
regional level implemented over multiple years; (2) eval-
uate complex sets of actions targeted at improving air
quality in large urban areas, including those in the vicinity

Dr. Armistead (Ted) G. Russell’s 3-year study, “Impacts of Emission Changes
on Air Quality and Acute Health Effects in the Southeast, 1993-2012,”
began in January 2013. Total expenditures were $671,913. The draft Investi-
gators’ Report from Russell and colleagues was received for review in Octo-
ber 2016. A revised report, received in May 2017, was accepted for
publication in June 2017. During the review process, the HEI Review Com-
mittee and the investigators had the opportunity to exchange comments and
to clarify issues in both the Investigators’ Report and the Review Commit-
tee’s Commentary. 

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views of these parties, and no endorsements by them
should be inferred. * A list of abbreviations and other terms appears at the end of this volume.
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of major ports; or (3) develop methods to support such
health outcomes research.

In response to RFA 11-1, Dr. Russell and colleagues pro-
posed to quantify how emissions reductions programs and
meteorological variations affect air quality and public
health, using a comprehensive air quality model and new
statistical models. The overall goals were to (1) measure
and model changes in emissions and air quality in the
southeastern United States over a 15-year period (1999–
2013), focusing on six regulatory programs to control air
pollution emissions from power-generating utilities and
from light- and heavy-duty vehicles, taking into account
meteorological trends; and (2) assess the impacts of the reg-
ulatory programs on acute emergency department (ED)
visits in the Atlanta area.

Dr. Russell and colleagues proposed a step-wise ap-
proach, following the stages outlined in the HEI chain of
accountability: First, they would estimate changes in emis-
sions that could be attributed to each of the different air
quality regulations. Second, they would estimate the
changes in air quality associated with each regulation (or
combinations thereof). Third, they would estimate several
counterfactual scenarios — that is, emissions and air qual-
ity over the same period but in scenarios in which the reg-
ulations had not been implemented. Subsequently, in
collaboration with Dr. Paige Tolbert and colleagues at Em-
ory University, they would estimate the potential health
benefits associated with the changes in concentrations due
to these six regulatory programs under the various emis-
sions scenarios (actual and projected).

The HEI Research Committee recommended the proposal
by Russell and colleagues for funding because they thought
it was a strong study design, in particular regarding the
proposed analyses of emissions and air quality data using a
variety of state-of-the-art modeling approaches and the
scenario approach. They also liked the proposed
detrending methods to remove the influence of short- and
long-term variation in meteorology on estimates of air
quality associated with the regulations, an issue in prior
analyses in the Atlanta area (Friedman et al. 2001; Peel et
al. 2010). They also noted that the investigators had exten-
sive experience with emissions and air quality modeling
in the region and had access to a large database of health
outcomes covering a twenty-year period that had been
well studied (see section on Previous Studies in Atlanta
below). The project started in January 2013.

This Commentary provides the HEI Review Committee’s
evaluation of the study. It is intended to aid the sponsors of
HEI and the public by highlighting both the strengths and
limitations of the study and by placing the Investigators’
Report into scientific and regulatory context.

REGULATORY AND SCIENTIFIC BACKGROUND

REGULATIONS AND OTHER FACTORS AFFECTING 
AIR POLLUTANT EMISSIONS

Air pollution in the United States is regulated by the
Clean Air Act, which sets allowable concentrations,
known as National Ambient Air Quality Standards
(NAAQS) for six major pollutants known as the criteria
pollutants (particulate matter [PM], ozone [O3], carbon
monoxide [CO], oxides of sulfur [SOx], oxides of nitrogen
[NOx], and lead). Emissions of air pollutants are controlled
under federal rules and state regulations adopted in
response to federal requirements so that these NAAQS can
be attained. Georgia’s state-specific regulations to reduce
air pollutant emissions are described in its federally man-
dated State Implementation Plans (SIPs). At this time,
Atlanta is out of compliance with the NAAQS for O3; it is
in compliance with the NAAQS for PM �2.5 µm in aero-
dynamic diameter (PM2.5) and has submitted a mainte-
nance plan through year 2024. Federal and state regulatory
programs target emissions from large stationary sources
like power plants or from mobile sources like cars and
trucks. The regulations seek to reduce emissions of air pol-
lutants by mandating changes in fuel composition,
requiring installation of control technologies, or specifying
total or facility-specific emission rates.

Commentary Table 1 briefly describes key rules and reg-
ulations affecting air quality in Atlanta by limiting emis-
sions from electricity-generating units (EGUs) and mobile
sources, and the implementation phases of each rule.
However, regulatory programs are not the only consider-
ation for operators of power-generating utilities or manu-
facturers designing a new vehicle. Factors such as
improved performance and costs of operation or construc-
tion may also be taken into account. For example, fuel
changes may be made to reduce operational costs of EGUs,
and fuel costs can influence consumers to purchase more
efficient motor vehicles. As a result, actual emissions are
difficult to link to specific regulations.

ASSESSING THE IMPACT OF REGULATIONS

The United States Environmental Protection Agency
(U.S. EPA) is required to assess the costs and benefits of the
Clean Air Act as a whole, as well as of individual regula-
tions. To date, the U.S. EPA has released one retrospective
(1997) and two prospective (1999b, 2011) studies of the
overall benefits — including health — of the Clean Air Act
relative to its costs. The U.S. EPA has also released Regula-
tory Impact Assessments (RIAs) estimating the expected
costs and benefits of a number of individual rules and their
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alternatives proposed under the Clean Air Act (e.g., U.S.
EPA 1992, 1998, 1999a, 2000, 2005). In general, these RIAs
compare expected future scenarios with and without regu-
lation (or different versions of the regulation) to assess
whether the proposed rules are likely to be cost-effective
and meet their stated goals. For the Acid Rain Program, the
RIA focused nearly entirely on the costs of implementation
(U.S. EPA 1992). Later RIAs added detailed sections
describing the anticipated effects of the rules on emis-
sions, air quality, and health (e.g., U.S. EPA 1998, 1999a,
2000, 2005). The U.S. EPA uses estimates of avoided mor-
tality, hospital admissions, or other outcomes, and eco-
nomic assumptions about the value of those avoided
outcomes, to characterize the monetary benefits of
improved health from the regulation or intervention. Thus,
predictions of the benefits of all of the federal rules and
programs listed in Commentary Table 1 are available.

To what extent have the rules achieved their expected
goals in reducing emissions, air pollution concentrations,
and adverse health impacts? These are questions that
accountability research attempts to answer and that Rus-
sell and colleagues proposed to address for the various reg-
ulations affecting the Atlanta area. They used a scenario
approach similar to that used for the RIAs but applied it
retrospectively and based their models on actual, observed
changes after the regulations were implemented. The sce-
nario approach has been used in a few previous account-
ability studies (e.g., Morgenstern et al. 2012; Tonne et al.
2008). Most accountability studies of national-scale regu-
lations have used approaches other than the scenario
approach, such as time-series analyses corrected as much
as possible for other long-term trends (e.g., Dockery et al.
2013; Peters et al. 2009); cohort comparisons over a period
that included reductions in air pollutant concentrations
(Gilliland et al. 2017); or causal modeling (Zigler et al.
2016). The counterfactual approach used in the current
study differs from approaches typically used to evaluate
the impact of regulations because the current study did not
rely on the use of a control area (i.e., where regulations had
not been implemented) or a control period (i.e., before reg-
ulations were implemented) as the basis for evaluation. In
addition, the current study assesses both the impact of
changes in emissions on air quality and the impact of
changes in air quality on health.

PREVIOUS STUDIES IN ATLANTA

The study by Russell and colleagues built on previous
work by their group in the southeastern United States,
focusing on emissions and air quality modeling, including
the influence of meteorology. Levels of all of the pollutants
considered in the current study have been measured at the
U.S. EPA Atlanta Supersite Project site near downtown

Atlanta (hereafter referred to as the “Jefferson Street moni-
toring site”) since at least 1998. The Jefferson Street moni-
toring site is also part of the Southeastern Aerosol
Research Characterization Study and Aerosol Research
Inhalation Epidemiology Study networks. This site was
operated by Atmospheric Research and Analysis, Inc.,
with support from the Electric Power Research Institute
and southeastern utilities (Solomon et al. 2003). Data
quality at the sites is verified with independent audits by
outside consultants.

In addition to being of generally high quality, the Jef-
ferson Street monitoring site has been used in extensive
prior research, including comparisons to other nearby sta-
tions (Hansen et al. 2012; Solomon et al. 2003) and has also
been used in previous work attempting to link decreasing
air pollutant levels with emissions reductions (Blanchard
and Hidy 2005; Blanchard et al. 2010). Statistical air
quality models in the current study built on regional and
theoretical studies that separated the long-term and short-
term impacts of meteorology on air quality (Eskridge et al.
1997; Flaum et al. 1996; Kuebler et al. 2001; Rao et al.
1997). The investigators previously used the Community
Multiscale Air Quality modeling system (CMAQ), a model
that is used to externally evaluate the statistical models in
the current study in order to test the sensitivity of O3 and
PM2.5 levels in the southeastern United States to NOx and
volatile organic compound (VOC) emissions (Cohan et al.
2005; Liao et al. 2008; Napelenok et al. 2006).

The health analyses conducted for the current study
built on prior epidemiological analyses performed by the
investigators as part of the Study of Particles and Health in
Atlanta (SOPHIA) (Metzger et al. 2004; Peel et al. 2005;
Tolbert et al. 2000, 2007). The goal of SOPHIA was to study
the relationship between daily air pollutant concentra-
tions and daily ED visits for cardiovascular and respiratory
diseases. In previous publications that cover the period
1993–2000, the investigators reported positive associa-
tions of cardiovascular ED visits with ambient levels of
nitrogen dioxide (NO2), CO, PM2.5, and the organic carbon
(OC) and elemental carbon (EC) content of PM2.5 (Metzger
et al. 2004). They also reported positive associations of
respiratory ED visits with the levels of O3, NO2, CO, and
sulfur dioxide (SO2) (Darrow et al. 2011; Peel et al. 2005).
In a follow-up study that evaluated a longer period and
used multipollutant models, they found that cardiovas-
cular disease ED visits during 1993–2004 remained associ-
ated with the same pollutants as observed previously,
using single-pollutant models, but that CO was the stron-
gest predictor in all multipollutant models tested (Tolbert
et al. 2007). Similarly, multipollutant modeling showed
that respiratory disease was associated with O3 and PM10,
with O3 as the stronger predictor (Tolbert et al. 2007).
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Commentary Table 1. Key Regulations to Control Emissions from Power Plants and Motor Vehicles in the Atlanta Regiona

Nameb Brief Description Implementation Phases

EGU Programs

Acid Rain Program

Title IV of the 1990 Amendments 
to the Clean Air Act Acid 
Rain Program

Cap-and-trade program to reduce SO2 
and NOx emissions and reduce the 
acidity of rain and natural waters

• Phase I (largest power plants): 1995 for 
SO2 and 1996 for NOx

• Phase II (all other plants): 2000

Emissions of Nitrogen Oxides from 
Major Sources (GRAQCyy)

Required major sources of nitrogen 
oxides in the Atlanta and Macon 
nonattainment areas for the 1-hr O3 
standard to install “reasonably 
available control technology” for 
control of NO2

• Older sources in Atlanta exceeding 
50 tons-per-year NO2

• Older sources in Macon emitting at 
least 25 tons-per-year NO2 by May 1, 
2007

• Older sources in Atlanta emitting at 
least 25 tons-per-year NO2 in the 
13-county area by May 1, 2007

• New sources in Atlanta by April 1, 
2004

• New sources in Barrow county 
(Atlanta) by March 1, 2009

Nitrogen Budget Program

NOx Budget Trading Program and 
Associated State Implementation 
Plan Call

Optional cap-and-trade program to 
reduce NOx emissions contributing to 
nonattainment of ozone standards in 
downwind states

• All 20 states in the SIP Call met their 
requirements by 2003

NOx Emissions from Electric Utility 
Steam Generating Units (GRAQCjjj)

NOx emissions limits on EGU sources in 
the 13-county Atlanta nonattainment 
area during the summer (1 May–30 
September)

• Compliance by some units required by 
summer 1999

• More plants added each summer 
between 2000 and 2007

Multipollutant Control of Interstate Air Pollutant Transport

Clean Air Interstate Rule Set up SO2 and NOx trading programs 
and required NOx ozone-season 
controls to reduce pollutant (e.g., 
PM2.5 and ozone) transport across 
state borders

• Implemented and kept in place by 
court decision in 2008

Multipollutant Control for 
Electricity Utility Steam 
Generating Units (GRAQCsss)
(also known as the “Georgia 
Multipollutant Control Rule”)

Year-round controls: SCR to reduce NOx 
and FGD to reduce SO2 from coal-fired 
power plants 

• Dates of compliance for specific 
named plants ranged from December 
31, 2008, to January 1, 2018

Table continues next page

a EGU = electricity-generating unit; FGD = flue gas desulfurization, an SO2 emissions control device; GRAQC = Georgia Rules for Air Quality Control, with 
subscripts referring to sections of the Rules; NMHC = nonmethane hydrocarbon; NO2 = nitrogen dioxide; NOx = oxides of nitrogen; PM = particulate 
matter; PM2.5 = PM �2.5 µm in aerodynamic diameter; RVP = Reid vapor pressure; SCR = selective catalytic reduction; SO2 = sulfur dioxide; VOC = 
volatile organic hydrocarbon.

b Regulations are grouped in five subsets that were evaluated by the investigators. Modified from IR Table 1 and IR Figure 2.
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Commentary Table 1 (Continued). Key Regulations to Control Emissions from Power Plants and Motor Vehicles in the 
Atlanta Regiona

Nameb Brief Description Implementation Phases

Mobile Source Programs

Inspection and Maintenance

Inspection and Maintenance 
(Georgia)

Enhanced emissions and safety testing 
on gasoline-powered cars and light 
trucks registered in 13 counties 
surrounding Atlanta

• 1996

Light Duty Vehicles and Gasoline

Tier 2 Light and Medium Duty 
Vehicle Program

Updated NOx and nonmethane 
hydrocarbon engine emissions 
standards for all passenger cars, light 
trucks, and medium-duty passenger 
vehicles

• Phased in between 2004 and 2009

Gasoline Marketing Rule 
(GRAQCbbb)

Limited RVP to reduce evaporative VOC 
emissions and reduced sulfur content 
in gasoline sold in and around Atlanta 
to reduce sulfur dioxide and sulfate 
emissions and increase SCR efficiency

• Limited RVP to 7.0 psi from June 1–
September 15, starting in 1999

• Reduced seasonal average gasoline 
sulfur content limits (150 ppm in 
1999, 90 ppm in 2003, and 30 ppm in 
2004)

• Overridden by Tier 2 limit in 2006

Diesel

Heavy Duty Diesel Rule Limited sulfur content in fuels to 
increase SCR efficiency and enforced 
reduced NOx and NMHC emissions 
standards on new or rebuilt highway 
heavy-duty engines to reduce O3 levels 
by reducing O3 precursor emissions, 
also required diesel particulate filters

• Fuel sulfur limits of 15 ppm for most 
diesel fuel sold by major refiners for 
use in highway vehicles by June 2006

• Diesel fuel sold in Georgia had less 
than 500 ppm sulfur by 2008 and 
15 ppm sulfur by 2012

• Intermediate NOx and NMHC 
emissions standards enforced 
beginning on model year 2004 
vehicles

• Stronger PM, NOx and NMHC 
standards phased in 2007 to 2010

a EGU = electricity-generating unit; FGD = flue gas desulfurization, an SO2 emissions control device; GRAQC = Georgia Rules for Air Quality Control, with 
subscripts referring to sections of the Rules; NMHC = nonmethane hydrocarbon; NO2 = nitrogen dioxide; NOx = oxides of nitrogen; PM = particulate 
matter; PM2.5 = PM �2.5 µm in aerodynamic diameter; RVP = Reid vapor pressure; SCR = selective catalytic reduction; SO2 = sulfur dioxide; VOC = 
volatile organic hydrocarbon.

b Regulations are grouped in five subsets that were evaluated by the investigators. Modified from IR Table 1 and IR Figure 2.

Other work by researchers at the Georgia Institute of
Technology and at Emory University has assessed the sen-
sitivity of the air pollution exposure assignments and epi-
demiological results to various key assumptions
incorporated into the analyses for the current study. For
example, several studies examined the effect of using a

single monitoring station on exposure assignments and
measurement error when people in fact move around over
the course of the day (Darrow et al. 2011; Goldman et al.
2011; Sarnat et al. 2010, 2013); others examined the effect
of spatial confounding on health outcomes (Flanders et al.
2011, 2017; Strickland et al. 2015).
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The Atlanta region also featured two previous account-
ability studies that showed the importance of controlling
for meteorology in assessments of the impacts of interven-
tions on air quality. An initial, often cited study by
Friedman and colleagues (2001) evaluated the impact of
measures to reduce traffic during the 1996 Summer
Olympic Games in Atlanta. They reported reductions in
the number of asthma and nonasthma pediatric acute care
events in and around Atlanta that were associated with a
modest traffic reduction and a small decrease in O3 con-
centrations. A follow-up study by Peel and colleagues
(2010) looked specifically at the influence of regional
meteorology on air quality and included analyses of the
same summer period in the previous and following years
for comparison. They showed that the observed decreases
in O3 concentrations were regional in nature and were
likely due to favorable weather in the region. Although
they confirmed some health improvements in association
with the lower O3 concentrations during the Olympic
Games period, it was not possible to definitively attribute
the changes in O3 to the traffic interventions (Peel et al.
2010) .  This  work emphasized the importance of
accounting for changes in both the period of the interven-
tion and the population affected by it.

SUMMARY OF THE STUDY

OBJECTIVES

The objectives of the current study were to:

1. Quantitatively assess the impacts of controls on NOx
and SOx emissions from EGUs on air quality in the
southeastern United States.

2. Quantitatively assess the impacts of controls on NOx,
VOC, and CO emissions from light-duty vehicles and
on NOx and PM emissions from heavy-duty vehicles
on air quality in the southeastern United States.

3. Assess the impact of meteorological trends on air
quality in the southeastern United States.

4. Assess the impacts of the regulatory programs on
acute ED visits, with a focus on cardiorespiratory
health outcomes.

5. Evaluate the effects of methodological choices used in
estimating the impact of pollution-control policies.

6. Conduct uncertainty analyses capturing potential er-
ror in parameter estimation at multiple analytical
stages to construct comprehensive confidence inter-
val estimates.

The regions of interest in the southeastern United States
were the 20-county Atlanta nonattainment area for PM and
O3 with a focus on the 5-county metropolitan Atlanta area
(see Commentary Figure 1). The investigators proposed two
approaches to estimating impacts on air quality: (1) a
chemical transport model linking emissions, meteorology,
and air quality over the southeastern United States during
two years near the beginning (2001) and end (2011) of the
study period and (2) an empirical model that was used to
statistically relate air quality to emissions and meteorology
for the full study period and was limited to the metropoli-
tan Atlanta area. The health analysis was done using the
empirical approach, and the chemical transport results
were used to test the sensitivity of the air quality results to
meteorology. Initially, the investigators proposed to ana-
lyze hospital admissions (in addition to ED visits), as well
as impacts on susceptible and vulnerable populations.
During the course of the study, the investigators decided not
to pursue those additional analyses at the recommenda-
tion of the HEI Research Committee. Although potentially
informative, they were considered to be too ambitious to
complete in the available time.

STUDY DESIGN AND METHODS

Study Approach

The study was conducted within the framework of the
chain of accountability (Commentary Figure 2). The investi-
gators sequentially addressed four steps in the chain of ac-
countability, where the results of each step served as inputs
for the next step: (1) identification of regulatory actions;
(2) assessment of their impacts on emissions; (3) assessment
of the changes in emissions on air quality; and (4) ulti-
mately assessment of their impacts on health. The funda-
mental approach taken in this study differed from that of
many previous accountability studies in that it did not rely
on use of a control area (i.e., where regulations had not
been implemented) or control period (i.e., before regula-
tions were implemented) as the basis for evaluation. The
investigators anticipated that it would be difficult either to
define an appropriate control region because the study
area was too large (regulatory programs were implemented
both regionally and nationally) or to define an appropriate
control period because the study period was too long (pro-
grams were implemented over a nearly 15-year period). In-
stead, they therefore compared observed changes in
emissions, air quality, and health following the implemen-
tation of regulations to what would have happened under
different counterfactual scenarios, in which the various
regulatory programs affecting electricity-generating units
(EGUs) and mobile source emissions were assumed not to
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Commentary Figure 1. Map of the 5-county Atlanta (dark grey) and 20-county (light and dark grey) study areas in Atlanta. The data sources were the
Jefferson Street air quality monitoring site (filled circle, center of map) and 42 Atlanta hospitals (open diamonds). The study included all emergency
departments visited by residents of the study area at nonfederal acute care hospitals. The number of participating hospitals varied over the study period as
hospitals opened, closed, or merged.

Commentary Figure 2. Summary of the study approach within the chain of accountability. Major methods connecting the steps on the chain of account-
ability are listed next to the connecting arrows, and major data sources are briefly described in italics inside the boxes. MOVES = U.S. EPA MOtor Vehicle
Emissions Simulator.
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have been implemented. The difference between the coun-
terfactual estimates and the actual air quality and health
outcomes with all regulations in place was interpreted as
the effect of the regulatory program.

Selection of Regulations

The investigators included major regulations that they
thought were likely to affect air pollutant emissions or air
quality in the southeastern United States, including
Atlanta, Georgia (see Commentary Table 1). They evalu-
ated three national program sets to reduce emissions from
power plants (EGUs): the Acid Rain Program, the NOx
Budget Trading Program and the associated State Imple-
mentation Plan Call, and the Clean Air Interstate Rule. In
addition, they evaluated three programs associated with
the Clean Air Act Amendments (CAAA) and Tier 2 Motor
Vehicle Emissions Standards and Gasoline Sulfur Require-
ment: the Georgia Gasoline Marketing Rule, Inspection
and Maintenance, and the 2007 Heavy Duty Highway
Rule. Potential differences among the actual implementa-
tion of the regulation, the reported changes, and factors
other than the regulation were not explored. However, the
investigators did consult with experts in the power-gener-
ating industry and the Georgia Environmental Protection
Division throughout the process to match their scenarios
as closely as possible to reality and to gather feedback on
the interpretation of their results.

Analysis of Emissions and Air Quality

Emissions For each of the major regulatory programs,
Russell and colleagues first used emissions inventories to
compare emissions before each regulation was imple-
mented to those at the end of the study period (in 2013).
Then they estimated actual (i.e., with all regulations in
place) and counterfactual (i.e., without regulation) time
series of daily emissions for the period 1999–2013. They
used measurements where available, and models where
measurements were not available, to compare actual and
counterfactual time-series scenarios of emissions from
1999 through 2013. Commentary Table 2 provides an over-
view of the main and sensitivity analyses conducted. 

For EGUs, they then compared modeled counterfactual
time series of NOx and SO2 emissions to actual emissions
measured at the EGUs. Daily counterfactual EGU emis-
sions were constructed from models that assumed that
each actual megawatt-hour of energy generated resulted in
the same emissions as those measured prior to the promul-
gation of the regulations.

They also compared time series of modeled mobile
source emissions of NOx, VOCs, and PM2.5 between sce-
narios with and without regulations. For the mobile
sources, both actual and counterfactual emissions were
estimated using the MOtor Vehicle Emissions Simulator
(MOVES, version 2010b) (U.S. EPA 2012) because no mea-
surements of mobile source emissions were available. To
construct the counterfactuals for mobile source emissions,
the investigators assumed that emissions from each
vehicle depended on the age of the vehicle and fuel used,
but that changes in control technology had not occurred. 

Air Quality The investigators’ assessment of effects of
regulations on air quality was based on air quality mea-
surements at the Jefferson Street monitoring site (see earlier
section, “Previous Studies in Atlanta”) and the counterfac-
tual emissions estimates. Before doing any air quality
modeling, the investigators compared measured levels of
gaseous (O3, NO2, SO2, and CO) and particulate (PM2.5,
sulfate, nitrate, ammonium, OC, EC, and acidity of PM2.5)
pollutants in the year 1999 to those in the year 2013.

Next, counterfactual air pollutant levels were estimated
using statistical models. The investigators started with daily
time series of measured air pollutant levels from the Jef-
ferson Street monitoring site. They removed meteorological
trends and built statistical models of the relationships of air
pollutant levels to emissions and day-to-day variation in
meteorology. To construct the counterfactual air pollutant
levels, the investigators replaced actual emissions (mea-
sured for EGUs and modeled for mobile sources) in the sta-
tistical models with the counterfactual (modeled) emission
estimates. The investigators compared actual measured air
pollutant levels (i.e., those used to build the statistical
models of air quality and health relationships) to the coun-
terfactual air pollutant level time series to estimate the
effect of regulations on air quality and used these two time
series as inputs in the health analyses.

Sensitivity Analyses Earlier accountability studies in the
Atlanta area had shown that the relationships between pol-
icy changes, air quality, and health could be temporally con-
founded by regional meteorology (see Peel et al. [2010]).
Therefore, to assess the impact of meteorological trends
relative to changes in emissions on air quality, the research-
ers used two approaches: an empirical approach removing
the meteorological influence from their regression models
and a simulation approach comparing chemical transport
model results under different assumptions about emissions
and meteorology. For example, they conducted sensitivity
analyses using a physics-based regional air quality model
(CMAQ) to assess whether changes in emissions or meteo-
rology were more likely to account for differences in the air
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Commentary Table 2. Main Results of Temporal Trend and Sensitivity Analyses for Emissions and Air Quality

Topic Analysis Main Result

Temporal Trends

Emissions

Compared emissions inventory of EGU and mobile 
source emissions in the Southeast and Atlanta area 
between the base year when each regulation was 
promulgated and the year 2013.

EGU and mobile source emissions decreased 
substantially between the late 1990s and 2013, 
with magnitude of change depending on the 
area and pollutant (see IR Table 2).

Compared time series of EGU emissions from 1999 to 
2013 for scenarios with (actual measurements) and 
without (modeled counterfactual) programs affecting 
EGU emissions.

EGU emissions of NOx, and SO2 varied 
seasonally but gradually decreased from year to 
year over the study period; the emissions in 
2013 were about an order of magnitude less than 
those in 1999 (see IR Figure 4).

Compared time series of modeled mobile source 
emissions from 1999 to 2013 for scenarios with and 
without programs affecting mobile source fuels and 
controls.

Mobile emissions of NOx, VOC, and PM2.5 
gradually decreased over the period and the 
emissions in 2013 were less than half those in 
1999 (see IR Figure 5).

Air Quality

Compared measured gaseous and particulate matter 
concentrations at the Jefferson Street monitoring site 
in Atlanta in 1999 and 2013.

Large decreases in air pollutant levels were 
observed for most pollutants measured (see 
IR Table 5).

Compared actual (measured) and counterfactual 
(modeled) time series of air quality at the Jefferson 
Street monitoring site in Atlanta from 1999–2013.

Contributions of EGUs and mobile sources to air 
pollution at the Jefferson Street monitoring site 
decreased from 1999–2013, with larger 
differences for EGUs than mobile sources and 
substantial seasonal variability.

Used multivariate regression models and CMAQ to 
determine whether acidity of PM2.5, a key factor in 
particulate matter formation and dynamics with 
potential health implications, changed over time.

Acidity of PM2.5 remained essentially the same, 
although the amount of acidic particulate matter 
decreased (see IR Figure 12, IR Appendix E).

Sensitivity Analyses of Emissions and Air Quality

Bias in Estimates of Mobile Source Emissions

Investigate the potential impacts of bias in mobile 
source NOx emissions estimates from the MOVES 
model using trend analysis, air quality modeling, 
satellite data, and a ratio-of-ratios analysis.

MOVES may have overestimated NOx emissions; 
needs more study (see IR Appendix D).

Meteorological Impact on Air Quality Trends

Compared measured and meteorologically detrended 
air quality at the Jefferson Street monitoring site.

Downward trend in air pollutant levels remained 
after removing meteorological influence (see IR 
Figure 6) (Henneman et al. 2015).

Evaluated the relative influence of changes in 
emissions and meteorology on differences between 
air quality in 2001 and 2011 in the southeastern 
United States using CMAQ.

Compared with emissions, long-term 
meteorological trends played a negligible role in 
air quality changes between 2001 and 2011 (see 
IR Figure 8: change in O3, and IR Figure 9: 
change in PM2.5) (Henneman et al. 2017b).
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quality results near the start (year 2001) and near the end
(year 2011) of the study period. The CMAQ model output
also allowed them to explore whether acidity, an impor-
tant property of PM in the air, had changed over time. The
investigators also assessed whether bias in the emissions
models could have influenced the main results. 

Analyses of Health Outcomes

Emergency Department Visits The investigators sought
to estimate the numbers of ED visits that might have been
prevented due to the implementation of the various regula-
tory policies affecting EGUs and mobile sources in the
5-county Atlanta metropolitan area from 1999–2013. Their
basic approach was to develop multipollutant models to
describe the relationships between observed daily air pol-
lutant concentrations and ED visits during the study
period, and to use those models to estimate ED visits under
assumption of the counterfactual air quality time series.

Health outcomes of interest were ED visits for respira-
tory disease, cardiovascular disease, asthma, and conges-
tive heart failure. This selection was based on associations
observed in previous studies using the same Atlanta ED
data. Data on ED visits were obtained from 42 hospitals in
the 20-county nonattainment area of Atlanta over the
15-year study period from 1999–2013. Annual ED visits
increased by 74.2% over this period, from 710,414 in 1999
to 1,237,541 in 2013. Data sets for the study period included
about 1.6 million ED visits for respiratory disease and
0.4 million ED visits for cardiovascular disease. During the
same period, the population of Atlanta increased by about
24%. On average, more than 97% of the included hospitals
were reporting data on any given day; the data set included
which hospitals were not reporting data on each day. Vari-
ables for each patient included date of admission, primary
International Classification of Diseases 9th Revision (ICD-
9) diagnostic code, date of birth, sex, race, and 5-digit resi-
dential ZIP code.

To estimate associations of daily exposure to multiple
pollutants with ED visits, the investigators used time-
stratified Poisson generalized linear regression models
(Bhaskaran et al. 2013) that account for overdispersion
(meaning the presence of more variability in the measure-
ments than would be expected based on the Poisson
model). Lags (i.e., time between exposure and the out-
come) were chosen a priori based on previous research
(Sarnat et al. 2013). The investigators used 3-day moving
averages (lag 0–2) of concentrations for respiratory disease
and asthma ED visits and same-day (lag 0) concentrations
for cardiovascular disease and congestive heart failure ED
visits. These lags were generally consistent with those in

an earlier study that showed that both lag time and amount
of smoothing could affect the results, but that lag times of 2
or fewer days were more strongly associated with hospital-
izations than were longer lag times (Katsouyanni et al. 2009).

The investigators explored four alternative pollutant
models:

1. PM2.5 only

2. 5 criteria pollutants (PM2.5, O3, CO, SO2, and NO2)

3. 7-pollutant model (PM2.5, O3, CO, SO2, NO2, OC, and
NO3

�)

4. 9-pollutant model (7 pollutants plus EC [correlation
of 0.80 with OC] and SO4

2� [correlation of 0.79 with
PM2.5])

The 7-pollutant model was chosen for the main analysis
and was conducted in the 5-county data set. The model
included linear and cubic terms for each pollutant and
interactions of each pollutant with each other pollutant in
the model.

Based on previous analyses of ED visits in Atlanta, the
investigators specified a priori several covariates and
model parameters to control for various temporal trends
that might affect the results. They used a time-stratified
design with variables for year, month, and day to account
for changes that were not specifically included in the
model (e.g., in population and demographic patterns).
Hospital indicators were added to the model to distinguish
periods when data were unavailable for each hospital. In
addition, to assess whether changes over time other than
those considered in the study might explain changes in ED
visits, the authors also reported results for the number of
ED visits for finger wounds as a negative control that
should not be affected by changes in air quality. Thus, if
changes were observed in ED visits for cardiovascular or
respiratory diseases, but not for finger wounds, it would
increase the confidence that the observed changes in
health were actually related to changes in air quality.

Next, the investigators estimated the difference between
the actual number of ED visits and the number of ED visits
that would have been expected without regulatory actions
(the counterfactual number) by calculating daily risk ratios:
that is, the ratio of the number of actual ED visits to the
number of ED visits estimated by applying the 7-pollutant
health model to the counterfactual pollutant levels. From
these ratios, and the data on the actual numbers of daily
ED visits, the investigators estimated the number of daily
ED visits prevented that could be attributed to the regula-
tory actions. Effects of regulations on ED visits were mod-
eled for both individual regulations and for groups of
regulations listed in Commentary Table 1.
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Commentary Table 3. Main Results of Sensitivity Analyses in the Epidemiological Modeling and Application of the 
Health Model

Analysis Purpose Main Result

Sensitivity to Epidemiological Model Assumptions

Form of the Model Linking Air Quality to ED Visits
Compare the impacts of the shape of the 
relationships between pollutant levels and ED 
visits (linear vs. cubic, with and without 
interactions among pollutants).

Determine whether assumptions 
about how air quality affects 
health influence the main 
results.

Results were similar for all models 
(see IR Figure 18).

Number of Pollutants
Compare the predicted changes in ED visits using 
models with 1 (PM2.5), 5 (PM2.5, O3, CO, SO2, 
NO2), 7 (5-pollutant model plus OC and nitrate), 
and 9 (7-pollutant model plus EC and sulfate) 
pollutants.

Assess whether including more 
pollutants allows for more 
thorough analysis of the 
impacts of the air pollutant 
mixture as a whole.

Predicted benefits increased with 
increasing number of pollutants 
up to 7, and decreased for the 
9-pollutant model (see IR Figure 19).

Data Used to Fit the Health Model
Compare actual and counterfactual ED visits us-
ing health models of the relationships between 
air quality and ED visits using data from 1999–
2005 (early in the study period) with those using 
data from 1999–2013 (full study period).

Determine whether the results 
were sensitive to the subset of 
data used to fit the health 
model.

Differences between actual and coun-
terfactual scenarios were lower for 
associations estimated using data 
from the entire 1999–2013 period 
than from the period 1999–2005.

Size of Study Area
Compare the difference between counterfactual 
scenarios and actual conditions in 5-county and 
20-county Atlanta areas.

Test for potential impact of ex-
posure uncertainty due to us-
ing a single central air quality 
monitoring site for all analyses.

Modeled impacts in the 20-county 
area were slightly smaller than 
those in the 5-county area (see IR 
Figure 17).

Sensitivity in the Health Impact Assessment Model Application

Impacts of Individual Regulations
Counterfactual scenarios were developed for each 
set of regulations with related goals, the mobile 
source regulations only, the EGU regulations 
only, and the combined effect of all regulations 
considered.

Determine which regulations 
likely contributed the most to 
any differences between actual 
conditions and scenarios 
without that regulation.

Policies affecting emissions from 
EGUs appeared to have a greater 
effect than policies affecting mobile 
sources, although that may have 
been related to different methods 
for the two source types (see IR 
Figure 20).

Result Report Period
Results were presented for the full 1999–2013 
period and for the final years of the study (2012–
2013).

Compare the estimated benefits 
during implementation and 
after all regulations were 
implemented.

Annual reported benefits increased 
over time and were largest at the 
end of the study period (see IR 
Figure 15: complete time series; and 
IR Figures 16–20: 2012–2013 only).

Sensitivity Analyses The investigators also tested the
sensitivity of their models to a number of analytic assump-
tions in the estimation of the number of ED visits (Com-
mentary Table 3). The investigators reported results for the
relationships between air quality and ED visits that were

estimated using data from two periods: 1999–2005 and
1999–2013. The earlier period ended at the end of 2005
because that was when the reporting system for Atlanta-area
hospitals changed. The investigators hypothesized that, if
the models fit to the earlier period better represented the
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relationships between exposures and health impact prior to
full implementation of the regulations, the models from the
earlier period would be more appropriate to estimate the
counterfactual impacts (i.e., without regulation). In con-
trast, they hypothesized that if the relationship between air
quality and health was related to factors other than the regu-
latory actions, then using the health model fit with data
from the full period would be more appropriate. In the
absence of evidence regarding which assumptions were cor-
rect, the investigators reported results for both periods.

In addition, although their main analysis was originally
for a 20-county area, the investigators changed their main
study area to a 5-county area because the HEI Research
Committee overseeing the study was concerned that mea-
surement error due to the use of a single air quality measure-
ment site would be expected to be larger for the 20-county
area than for a 5-county area. The investigators retained
the original 20-county area for sensitivity analysis.

Characterization and Propagation of Uncertainty 
Through the Chain of Accountability

Russell and colleagues estimated uncertainty in each of
the major steps in the chain of accountability in an effort to
understand the contributions of different sources of uncer-
tainty to overall uncertainty in the counterfactual concen-
trations. They used Monte Carlo simulation techniques to
propagate uncertainty from emissions estimates, through
to air quality, and then health outcomes. First, they esti-
mated uncertainties in measured EGU emissions and mod-
eled mobile source emissions, air quality measurements,
and meteorological measurements using a combination of
published values in the literature and their own analytic
evaluations. Second, they sampled distributions of uncer-
tainty in emissions and other inputs to the air quality
models to create a set of 5,000 alternative estimates of
counterfactual time-series concentrations. Third, they esti-
mated uncertainty in the numbers of ED visits using the
5,000 sets of counterfactual air pollutant time-series con-
centrations as alternative inputs to the health models.

The 95% uncertainty intervals for differences between
actual and counterfactual air pollutant concentrations and
ED visits were represented by the range between the 2.5th
and 97.5th percentiles of the simulated distributions. They
conducted this analysis for the six sets of EGU and mobile
source regulatory programs listed in Commentary Table 1,
for EGU regulations and mobile source regulations sepa-
rately, as well as for the combined EGUMOB scenario that
included all major regulatory actions affecting EGUs and
mobile sources over the period of the study. Detailed
methods for uncertainty analysis are available in the Inves-
tigators’ Report Appendix B.

RESULTS

The investigators reported analyses for three of the link-
ages in the chain of accountability (Commentary Figure 2).
First, the investigators reported their confidence in the se-
lection and attribution of observed and estimated changes
in emissions to groups of regulations based on their consul-
tation with regulators and other stakeholders. Second, they
reported that their multivariate air pollutant models esti-
mated large improvements in air quality that were associ-
ated with the observed and estimated decreases in
emissions. Third, they estimated differences between ob-
served and counterfactual (i.e., without regulation) air qual-
ity scenarios for all regulations combined and reported that
those differences translated into substantial and statistically
significant differences in ED visits for asthma. Results for re-
spiratory disease, cardiovascular disease, congestive heart
failure, and finger wounds were consistent with no differ-
ence between observed and counterfactual air quality sce-
narios (although all point estimates were positive, the
confidence intervals included the null) (see Investigators’
Report Figures 15 and 16). Thus, the investigators con-
cluded that emissions reductions associated with regula-
tions as a whole led to lower air pollutant concentrations
(both measured and modeled), and those in turn were asso-
ciated with a reduced number of ED visits for asthma.

Effects of Regulations on Emissions and Air Quality

The current study reported that emissions from EGUs
and mobile sources decreased from the beginning to the
end of the study period (Commentary Figure 3). For exam-
ple, by 2013, measured NOx emissions from EGUs in Atlanta
decreased by 86% (since 1997) and in the southeastern
United States by 82% (since 1995). Over the same periods,
measured EGU emissions of SO2 decreased by 85% in At-
lanta and 83% in the southeastern United States. Mobile
source emissions could not be directly measured, but mod-
eled mobile source emissions controls were estimated to
result in 61% to 93% lower emissions, depending on the
pollutant (NOx, SO2, PM2.5, CO, EC, OC, or VOCs). Using
air quality models, the investigators tried to parse out to
what extent each of the six regulations considered in this
study contributed to these decreases in emissions.

The investigators reported that air pollutant levels mea-
sured at the Jefferson Street air quality monitoring station
were lower in 2013 than in 1999 for all pollutants consid-
ered (NOx, SO2, PM2.5, CO, EC, OC, O3, sulfate, ammonium,
and nitrate; Commentary Figure 3). If observed concentra-
tions at the Jefferson Street site were lower than counterfac-
tuals, the investigators concluded that the decreases in air
pollution were attributable to the regulations.

According to the investigators, the combined effects of
EGU and mobile source controls (EGUMOB) resulted in
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lower annual average concentrations in 2013 relative to the
counterfactual concentrations for NO2, CO, SO2, PM2.5, sul-
fate, ammonium, nitrate, EC, and OC (see Table 6 in Investi-
gators’ Report). The investigators did not report substantial
changes in annual average O3 concentrations or acidity of
PM2.5 related to EGU or mobile source controls. They re-
ported decreases in air pollutant levels related to changes in
emissions from both EGUs (both within and outside of the
Atlanta nonattainment area) and mobile sources (see Figure
7 in the Investigators’ Report). They also reported decreases
in EGU emissions of subsets of each of these pollutants re-
lated to the Acid Rain Program, NOx Budget Trading Program,

and Clean Air Interstate Rule independently. (See Figures 4
and 10 in the Investigators’ Report for time series of the ef-
fects on emissions and air quality, respectively, of the differ-
ent regulations affecting EGU emissions.)

The models also showed decreased concentrations of
PM2.5, NO2, ammonium, CO, SO2, OC, and EC due to pro-
grams to reduce mobile emissions, with the amount of the
improvement increasing over time. Over the study period,
annual average O3 levels decreased, with lower peak O3
levels in summer and higher minimum O3 levels in winter,
whereas nitrate levels decreased in the summer but were
not affected in the winter. Thus, lower concentrations of

Commentary Figure 3. Decreases in source emissions and air pollutant concentrations in Atlanta during the study period. Top: Change from the base years
to 2013 in the Atlanta nonattainment area. Bottom: Changes in air pollutant levels at the Jefferson Street air quality monitoring station between 1999 and
2013. Error bars show the difference in percentage change after removing the influence of meteorology. NH4

+ = ammonium, NO3
� = nitrate, SO4

2� = sulfate.
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all pollutants analyzed were observed, but some were not
lower during the winter season. Both the gasoline fuel
programs and the Heavy Duty Diesel Rule contributed to the
total reductions, although the Inspection and Maintenance
programs appeared to have minimal effect on the pollutants
considered. The mobile source programs reduced emis-
sions of PM2.5, SO2, and NO2 during the period evaluated,
but did not affect sulfate emissions, which are a small part
of the total sulfur emissions. (See Figures 5 and 11 in the
Investigators’ Report for time series of the effects on emis-
sions and air quality, respectively, of the different regula-
tions affecting mobile source emissions.)

When the investigators compared multiple methods for
estimating mobile NOx emissions, they concluded that
NOx emissions throughout the period may have been over-
estimated by MOVES but that the trends in emissions were
accurately predicted. Similarly, while meteorology had an
important influence on air quality on a daily scale, they
concluded that results from the meteorological detrending
and empirical ambient concentration–emissions models
suggested that multiyear trends in ambient air pollution
concentrations at the Jefferson Street monitoring site were
driven by changes in emissions.

Effects of Air Quality Improvements on 
Cardiorespiratory ED Visits

The investigators estimated that the air quality improve-
ments collectively resulting from all regulations were asso-
ciated with substantial reductions in hospital ED visits
(Commentary Figure 4). Using relationships between air
quality and ED visits from 1999–2005, they estimated that in
the 5-county Atlanta area there were a total of 55,794 fewer
cardiovascular and respiratory ED visits over the 1999–
2013 study period than would have occurred without reg-
ulation. Of those ED visits, they estimated that 17,977
(about one-third) would have occurred in the final two
years of the study period (2012–2013) after the regulations
being evaluated were closer to their full implementation.
Estimates of differences between actual and counterfactual
ED visits were generally larger for health models based on
the relationships between air quality and health from
1999–2005 than for health models based on data from
1999–2013. One possible explanation for the differences
was that the air pollution mixture may have changed suffi-
ciently over the study period, leading to changes in the
relationship between air quality and health. The actual
numbers of ED visits that occurred in the later years of the

Commentary Figure 4. Estimated percentage difference between actual and counterfactual ED visits in 2012–2013 for two different models for all pollu-
tion control policies combined. Results are presented for the 5-county Atlanta metropolitan area, by outcome and by period used to estimate the relationship
between air quality and health. Positive percentage differences represent actual ED visits that were lower than those in the counterfactual (without regula-
tion) scenarios. Whiskers represent the 95% confidence intervals. Actual numbers of ED visits in 2012–2013 are listed in parentheses for each outcome. The
health model included 7 pollutants with all cubic polynomial and interaction terms. Finger wounds were analyzed as a negative control for residual bias.
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study period might already reflect impacts of changes in
the air pollution mixture related to the regulatory pro-
grams, and thus could explain the reduction of observed
differences between actual ED visits and the counterfac-
tual estimates when the health models based on the full
period from 1999–2013 were used.

The investigators reported most of their results as per-
centage differences between the actual and counterfactual
(i.e., without regulation) scenarios for several reasons.
First, they reasoned that the main results should be pre-
sented in such a way that they would not depend too
strongly on the definition of the study area and period.
This would allow them to more easily compare results
using two different study area boundaries (5-county or
20-county) and over a long period during which popula-
tion and total ED visits increased. If only the numbers of
ED visits were compared, changes in the difference in ED
visits with and without regulation in the later years com-
pared to the early years could be attributed to control poli-
cies being more fully implemented, the increasing
population of Atlanta, or both. 

Most of the difference in total ED visits between sce-
narios with and without regulation resulted from differ-
ences in asthma ED visits. For the last two years of the
study period the models predicted about 6.8% (health
model using relationships between air quality and health
from 1999–2013) or 16.5% (health model using relation-
ships between air quality and health from 1999–2005)
fewer actual asthma ED visits than would have occurred
without regulation (Commentary Figure 4). The differ-
ences between actual and counterfactual ED visits for car-
diovascular and congestive heart failure were similar to
those for the negative control (i.e., finger wounds) regard-
less of the data used to create the health model. The inves-
tigators reported larger differences between actual and
counterfactual ED visits for policies to reduce EGU emis-
sions than for policies to reduce emissions from mobile
sources, although the emissions estimates were based on
measurements for EGUs and on models for mobile sources.

The investigators stated that the sensitivity analyses
showed that these overall results were unlikely to have
been strongly influenced by major assumptions related to
model parameterization, study area size, or exact levels of
emissions. However, the results were sensitive to the
period used to build the health models. They reported that
the 95% uncertainty intervals for estimates of ED visits
were smaller than the difference between the counterfac-
tuals and the observations and that contributions to uncer-
tainty were larger for statistical model parameters than for
changes in EGU or mobile emissions.

HEI REVIEW COMMITTEE’S EVALUATION

INTRODUCTION

In its independent review of the report, the HEI Review
Committee noted that the study was an ambitious applica-
tion of HEI’s accountability framework as it encompassed a
broad suite of regulatory programs designed to reduce
multipollutant emissions from power plants and mobile
sources in Georgia and nearby states over the period from
1999 to 2013. The Committee thought that the investiga-
tors had tackled an important public health question,
examining whether the regulations had individually or
collectively reduced emissions, improved air quality, and
ultimately reduced ED visits for respiratory and cardiovas-
cular outcomes in the Atlanta area.

DISCUSSION OF DATA AND METHODS

Emissions, Air Quality, and Health Data

The investigators used large, high-quality, and well-
documented data sets of air pollutant emissions in the
southeastern United States and of air quality and ED visit s
in Atlanta. The Committee thought that the size, quality,
and extensive prior evaluation of the data sets in earlier
studies were reassuring and were important starting points
for the current study. They used air quality measurements
from the Jefferson Street monitoring site, which is well
known for both the quality of the data and the long period
it has been in operation.

The investigators indicated that they chose to use air
quality measurements from only the Jefferson Street site be-
cause it was the only site where measurements of all consid-
ered pollutants were colocated for the entire study period
and that bringing in additional monitors would have com-
plicated the analyses and potentially introduced additional
error. They had originally proposed to analyze a 20-county
area, but ultimately decided to analyze the 5-county area in
their main analyses and conduct a 20-county area analysis
as a sensitivity analysis. In discussing their results, the in-
vestigators suggest that their estimates of slightly larger
relative impacts of regulations on ED visits in the 5-county
area than in the 20-county area are evidence that using a
single air pollution monitoring site has biased their results
toward underestimating the true effects in the larger area.
While the exposure measurement error is a plausible hy-
pothesis for the differences observed, the Review Commit-
tee thought a more systematic consideration of other
factors that might account for the differences between the
5- and 20-county results would also provide insight into
these differences.
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The hospital data used in this study have also been exten-
sively vetted and tested for the sensitivity of results in epi-
demiological studies of air quality and health to a large
number of methodological assumptions. For example, the
team at Emory University has used these data in previous
studies on the sensitivity of results in epidemiological
studies of air quality and health to a large number of meth-
odological assumptions, including the appropriateness of
assigning exposures in time-series studies based on air
quality at the Jefferson Street monitoring site (Darrow et al.
2011; Sarnat et al. 2010, 2013; Strickland et al. 2011, 2015).
In developing estimates of the health impacts averted by
reductions in emissions and air pollution, the Committee
agreed that use of relationships between ED Visits and air
quality specific to the Atlanta area was preferable to reli-
ance on relationships observed in other populations that
might have different underlying health status or other char-
acteristics that might change their susceptibility to air pol-
lution exposure.

Evaluation of the Chain of Accountability

A strength of the study was that the investigators sys-
tematically and logically addressed four steps in the chain
of accountability: from the identification of key EGU and
mobile source regulations to estimating their influence on
emissions to the effect of emissions on air quality and
finally to the effect of air quality on ED visits. Another
strength of the study was that the investigators used a log-
ical approach to develop robust counterfactual methods to
estimate the differences between conditions with and
without regulations at each link in the analysis.

The investigators faced several major challenges common
to accountability studies of regulations that take place over
a long period. The regulations went into effect at different
points of time over the study period, and some of the regula-
tions may not have been fully implemented by the end of
the study period. In addition to meteorological conditions
— which were controlled for in the models — a number of
factors including economic conditions can influence tem-
poral changes in air quality and complicate the task of iso-
lating the effect of regulatory actions. Similarly, changes in
hospital ED visits for specific health outcomes can be driven
by multiple factors including changes in population charac-
teristics, in healthcare access, and in treatment practices,
further complicating the task of isolating the effects of
changes in air pollution and regulations.

Characterization of Regulatory Programs and Their 
Impact on Emissions The Committee thought that the
investigators had used a logical and systematic approach to
identifying the key regulatory programs affecting EGUs and
mobile sources, to estimating emissions reductions, and to

apportioning the reductions to legislative or regulatory
programs. The investigators worked with regulated indus-
tries, as well as with the appropriate agencies in charge of
the regulations, to clarify details regarding the actual
implementation of the regulatory programs and other fac-
tors affecting decisions made regarding operation and
facility improvements. The investigators tested the sensi-
tivity of their emissions estimates to a number of assump-
tions and methodological choices. For example, they
explored four different methods of evaluating the potential
for systematic bias in estimates of NOx emissions from
mobile sources. The Review Committee concluded that
these efforts all added to the credibility of the work.

Several large-scale trends could have affected the results
and may not have been fully addressed, so that explana-
tions other than regulation could explain changes in emis-
sions. For instance, the assessment is made more complex
by the significant switch from coal to natural gas over the
last decade, which in part may be a response to regulations,
but likely also was a response to the falling natural gas
prices. Another analysis that would have informed the com-
parison of the results based on the different health models
was a detailed evaluation of possible changes in the compo-
sition of emissions or air pollutants such as PM due to
changes in technology during the study period. The investi-
gators did evaluate acidity (see Commentary Table 2), but
other potential changes in PM composition were not
assessed. It would have been useful to know whether such
changes occurred over the time frame of the study, in par-
ticular in relation to the changes in vehicle technology.

Characterization of the Impact of Emissions on Air 
Quality The Committee liked the investigators’ use and
intercomparison of two different methods — multivariate
regression and the CMAQ chemical transport model — to
estimate the relationship between emissions and pollutant
concentrations and to remove the effects of meteorological
trends on the pollutant concentrations over time. Although
the CMAQ modeling results were not used in the counter-
factual and health analyses, the investigators were able to
compare the two independent approaches to finding rela-
tionships between emissions and air quality. This compari-
son provided evidence that meteorological trends were
effectively removed from the air quality time series and thus
not likely to have influenced the results of the health analy-
sis. The Review Committee agreed with this conclusion.

By developing new detrending methods to remove the
influence of meteorology and other temporal factors (e.g.,
day-of-week or season) on emissions and air quality, the
investigators decreased the potential for temporal con-
founding. The Review Committee thought this was an
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important contribution, both because a previous evalua-
tion of traffic-reduction policies during the 1996 Olympic
Games in Atlanta had shown that regional meteorology
can be an important confounder (Peel et al. 2010) and
because the current study was conducted over a long
period (15 years), when other temporal factors can come
into play.

Other accountability studies have used time-varying
counterfactual models similar to those used in the current
study to evaluate the effects of regulations (Morgenstern et
al. 2012; Tonne et al. 2008). However, either those studies
did not go beyond detailed air pollution modeling of the
impacts on air quality to also address the impacts on health
(Morgenstern et al. 2012) or they evaluated air quality
impacts on health without detailed models of changes in air
quality over time (Tonne et al. 2008). Morgenstern and col-
leagues (2012) applied counterfactuals to EGU emissions
for SO2 using a similar method of building statistical
models of PM2.5 based on meteorology and emissions. The
current study was more comprehensive than these earlier
studies because it addressed in detail and on a daily basis
all the linkages among regulations, emissions, air quality,
and health. The current study also included more detailed
analysis of sensitivity to model assumptions than is typi-
cally done. 

Multipollutant Health Effects Modeling The Review Com-
mittee found the investigators’ approach to the multipollut-
ant modeling to be appropriate and comprehensive. The
Committee thought that the investigators selected a reason-
able set of health outcomes for evaluating ED visits, al-
though omission of mortality outcomes neglects a major
potential benefit of the regulations. In sensitivity analyses,
the investigators explored several multipollutant model
formulations to assess the joint effect of reductions in pol-
lutant concentrations, including varying numbers of pol-
lutants and cubic or interaction terms in the models. In the
current study, the investigators wanted to characterize
more thoroughly the effects of changes in the overall air
quality mixture than they had done in their previous stud-
ies. They used their multipollutant approach as evidence
that “if assumptions about pollutants being independently
and linearly associated with health outcomes are false,
these more detailed models could result in more accurate
and complete assessments of the impact of pollution control
policies.” The Committee was not completely convinced by
this reasoning because they thought overparameterization
was likely, but thought that building models with different
numbers of pollutants for comparison was useful.

Both the model design and choice of time-varying
covariates were selected to control for temporal trends that

might otherwise explain or mask the trends in ED visits
attributed to air pollution trends. The Committee thought
that the addition of a parallel analysis of ED visits for
finger wounds as a negative control — an outcome not
expected to be affected by air pollution — provided useful
insights. 

A strength of the analyses was that, for many decisions,
modeling choices were made a priori based on previous
analyses in these data sets. These choices included the
specific 7 pollutants to consider in the main health model,
the lags (the number of days between the exposure and the
ED visit) for each health outcome, an indicator variable to
adjust for the time-varying contribution of data from dif-
ferent hospitals, multiple terms for meteorological vari-
ables, time terms (day-of-week, month, and year), and
time-interaction terms to control for long-term trends.

In other aspects of the analyses, however, the Com-
mittee had some concerns that the modeling choices were
in part influenced by results. The investigators argued
that the 7-pollutant models most fully captured the joint
effect of air pollution on ED visits. The Review Committee
generally agreed that this was a plausible hypothesis.
However, the Committee thought that it remained unclear
whether the 7-pollutant models were truly a better repre-
sentation of the relationship between air pollution and
health relative to alternative multipollutant models, and
to what extent the models may have been overparameter-
ized or reflected changes in composition of the pollution
mixture.

Another key sensitivity analysis related to the periods
during which data were selected to construct the health
models, that is, the entire study period (1999–2013) versus
the first 7 years of the study period (1999–2005). Results
for ED visits in 2012–2013 using health models based on
those two periods were different; larger estimates of effects
of air pollutant changes on ED visits occurred when data
from the earlier period were used to construct the model. It
was unclear why such differences were found, or whether
they were attributable to modeling artifacts rather than to
true differences in health responses across the respective
periods.

Uncertainty Analyses

The Committee thought the investigators’ efforts to esti-
mate and propagate uncertainty starting with emissions and
through to the health effects estimates were a useful comple-
ment to the many sensitivity analyses conducted in the
development and evaluation of emissions models, air quality
models, and health models. Despite the importance of under-
standing uncertainty in analyses like these, such comprehen-
sive analyses are rarely done. Yet, done well, uncertainty
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analyses can be informative, both for identifying which ele-
ments of the analysis are least well understood and might
benefit from further research and for understanding how
much weight to put on the final analyses as input to deci-
sions. Without propagation of uncertainty through all
steps of the analysis, uncertainty is represented only by
uncertainty in the health effects model parameters and is
very likely to be underestimated.

In this study, the authors used standard Monte Carlo sam-
pling techniques to conduct their analysis. They essentially
treat as known the underlying form of the models used to
(1) predict counterfactual air pollutant concentrations from
emissions and (2) predict the relative risk of ED visits, and
they treat the set of input parameters to those models as
uncertain. The distributions chosen to characterize uncer-
tainty in the parameters were generally standard parametric
distributions (e.g., normal and uniform).

The investigators’ discussion would have benefited from
more assessment of the propagation of uncertainty in the in-
vestigators’ analyses, in particular in relation to some of the
other key assumptions tested — for example, the choice of
period with which to fit the time-series models, which the
investigators’ sensitivity analysis showed are more influ-
ential than the uncertainty analyses in some cases. This re-
ality is a reminder that model uncertainty, which is often
difficult to characterize, can be more influential than the pa-
rameter uncertainties taken into account in the Monte Carlo
analysis conducted in the current study. Although the un-
certainty estimates were not necessarily comprehensive,
and included assumptions that could be considered arbi-
trary, the Committee thought that the investigators’ choices
were reasonable, and inclusion of different periods of anal-
yses was a strength of this study as it highlighted the influ-
ence of different assumptions and approaches. Moreover,
this work set an important example that may be used as a
starting point for future studies.

DISCUSSION OF FINDINGS

Main Findings along the Chain of Accountability

The Committee agreed with the investigators’ basic con-
clusions that emissions of NOx, SO2, CO, VOCs, PM2.5, EC,
and OC from both power plants and mobile sources had de-
creased over the study period, and in later years of the study
period were lower than what would have been expected had
regulatory actions not been taken. However, there was no dis-
cussion about the degree to which the transition in power
plant fuel usage from predominantly coal (four times more
coal than natural gas in 2002) to nearly equal usage of coal
and natural gas near the end of the study period (Cabral
2017) was a result of response to regulatory requirements for

cleaner combustion, or to significant marketplace changes, or
both.

In evaluating the step from changes in emissions to
changes in air quality, the Committee thought the investi-
gators’ method to account for meteorological trends and to
isolate the effect of emissions reductions on air quality was
technically sound, especially given the limitations of data
available for the retrospective study. However, an impor-
tant source of uncertainty was the use of air quality mea-
surements from a single fixed-site monitoring location in
the regression analysis of relationships between emissions
and air pollutant levels and ultimately in the estimation of
the relative risks of ED visits. One fixed site is often not
representative of broader regional areas, in particular in
estimating exposure to emissions from mobile sources for
pollutants with high spatial variability (e.g., NOx) (HEI
Panel on the Health Effects of Traffic-Related Air Pollution
2010; Sarnat et al. 2010). This was a potential concern
raised by both the HEI Research Committee during study
oversight and by the Review Committee during review of
the final report. In previous work, the investigators evalu-
ated the effect of using different monitors and study areas
on exposure estimates in the 20-county Atlanta region.
They showed that air quality improvements were greater at
urban center sites in Atlanta than at more rural sites; how-
ever, the effect of this difference on associations between
health outcomes and air quality within ~30 km of the site,
or within the 5-county area, was negligible (Sarnat et al.
2010). Based on these previous studies, the investigators
thought that the effects of the mobile source regulations
were likely underestimated, because the central moni-
toring site was not able to adequately capture near-source
traffic-related air pollution exposure. In addition, the
effects of using a single monitor in health impact studies
that rely on associations between air quality and health,
like the current study, depend on whether the pollutants
are spatially uniform or locally elevated (Strickland et al.
2011). The Review Committee agreed.

The Committee agreed with the investigators that, for all
regulations combined, there were fewer ED visits for
asthma in later years than would have been expected
without regulatory actions. The Committee also noted lim-
itations in some of the results. In particular, the Committee
thought that the extent of differences in actual and coun-
terfactual ED visits was quite modest for cardiovascular dis-
ease and congestive heart failure despite a pronounced
decrease in air pollution concentrations and that these
results were similar to those for finger wounds (the negative
control). Nevertheless, the results for asthma and respira-
tory ED visits suggest that regulations have improved
health, even if the exact magnitude of the effect is unclear.
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Contribution of Individual Regulations to Changes in Air 
Quality and Health

One of the attractive features of this study was that it
offered the opportunity to examine the effect of individual,
as well as collective, control policies for power plants and
for mobile source emissions on air quality and health. The
Committee appreciated the investigators’ presentation of
results for all programs combined (EGUMOB), for EGU and
mobile source programs separately, and for individual pro-
grams within those categories.

However, the Committee ultimately concluded that for
multiple reasons the results for the combined suite of con-
trol policies were more robust than those for individual pro-
grams. For one, the timing of implementation and effects on
emissions of regulations were not known with equal levels
of certainty for all regulations considered. Further, uncer-
tainties in the health outcome analyses, resulting in part
from overlapping regulatory programs implemented over a
long period, made it difficult to verify the attribution of dif-
ferences between actual and counterfactual scenarios to
specific programs. The Committee suggests that the relative
impact of the individual programs should be interpreted
with caution. Similar challenges have been encountered in
other accountability studies that looked at the impacts of
one specific regulation (Morgenstern et al. 2012) or broad
changes in air quality and health but not individual regula-
tions (Gilliland et al. 2017; Peters et al. 2009).

Despite the uncertainties in estimating impacts of distinct
regulatory programs, the study suggests that relative to their
respective counterfactuals, controls on EGUs have had more
impact than controls on motor vehicles. Estimation uncer-
tainties may partly account for this finding. A single air
quality monitor is expected to better represent impacts of
power plant emissions on air quality (via secondary pollut-
ant formation and more regionally uniform contributions)
than it would represent mobile source impacts that are more
spatially varied. In addition, the level of uncertainty in
modeled mobile source emissions was larger than the level
of uncertainty in measured EGU emissions, and this may
have decreased the ability to estimate emissions reductions
from mobile sources, especially since there were propor-
tionally lower estimated reductions in emissions from mo-
bile sources than in those from EGUs. Another factor in the
relatively lower estimated impact of the mobile source pro-
grams may be that several programs came into effect later in
the study period; for example, the Heavy Duty Diesel Rule
was phased in between 2004 and 2012. Therefore, the full
effect of the mobile source regulations on emissions, air
quality, and health may not have yet been observed as their
effects would continue well beyond 2013 as fleet turn-over
progresses. In addition, the implementation and enforce-
ment of those rules have been uneven (Yang et al. 2017).

Temporal Confounding and Sensitivity of the Results 

As noted above, the estimates of the difference between ac-
tual and counterfactual ED visits were different when the
health effects model was based on data from 1999–2005 rather
than from the full study period of 1999–2013. The Committee
concurred with the investigators’ approach of presenting
the results based on both periods and attempting to charac-
terize the uncertainties. However, the Committee thought
this difference was unexplained and wondered whether the
evident sensitivity of the relationship of ED visits with air
quality to the period of the health effects model reflected
unmeasured temporal confounding. Still, it is possible that
the investigators’ conclusions reflect a stronger weighting
of the results from the earlier period, and perhaps the re-
sults should be weighted more equally since it is not clear
which health model was more appropriate.

The investigators made some plausible arguments for
why the coefficients might have changed from one period
to another, such as changes in composition of the pollutant
mixture and nonlinearities in the relationships between
air quality and health over the range of concentrations. It
would have been useful to test some of these suggestions
with existing data on the composition of the air pollution
mixture. For example, PM2.5 composition measurements
are available from the Jefferson Street monitoring station
and other sources. Also, additional sensitivity analyses
could have been done to directly evaluate the issue of non-
linear relationships.

Some other changes over time may provide alternative
explanations for the differences between the periods ana-
lyzed, including changes in population demographics and
healthcare, and these could have been explored. For
example, the population in the 5-county Atlanta metropol-
itan area grew by 24.2% between 1999 and 2013 (United
States Census Bureau 2013), but the population increased
more slowly than the annual numbers of ED visits at Atlanta
hospitals. In addition, there were changes in healthcare that
could have decreased the number of ED visits, such as the
passing of the Affordable Care Act and better ED visit pre-
vention by, for example, increased availability of medica-
tions to treat asthma or cardiovascular disease. In light of
these concurrent changes, the Committee found that there
were more unanswered questions regarding the link
between health effects and air quality than regarding the
link between emissions and air quality. The Committee also
noted it was unclear what the implications of changes in
healthcare access and treatment practice may have been.

Also, the Committee noted that the investigators used
hospital indicators adjusted for the size of the hospital for
whether any given hospital was reporting on a particular
day (Russell AG, personal communication, 14 March
2018). To address the possible effect of missing data, the
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investigators provided summary statistics on the hospitals,
showing that the number of hospitals reporting did not
change substantially throughout the study period (see Inves-
tigators’ Report Appendix Table C.4, available on the HEI
website). The Committee was reassured by these summary
statistics, although they thought there may have been more
subtle issues with the completeness of the hospital data that
perhaps could only be found by studying subsets of the hos-
pitals in greater detail. The addition of finger wounds as a
negative control was reassuring in this regard; however,
comparison to finger wounds is not likely to account for
changes over time in healthcare or treatments that might be
more directly related to the more serious outcomes of inter-
est for this study. A more nuanced discussion of these poten-
tial sources of confounding would have been valuable.
Therefore, although the investigators were able to control for
temporal confounding due to meteorology, they may not
have fully captured other sources of confounding of the rela-
tionship between air pollution and ED visits in their data.

An ongoing question regarding accountability studies is
whether they can provide information on whether there is
a causal relationship between the regulatory actions and
any observed improvements in air quality and health,
regardless of whether the investigators used causal
methods (Dominici and Zigler 2017). Because they did not
use causal methods, the authors have carefully discussed
their results in terms of estimates of prevented ED visits.
Even so, in the Committee’s view, the term “prevented”
suggests a more definitive conclusion than may be mer-
ited, considering the challenges in accounting for changes
in healthcare access and treatment practices.

Comparison to Regulatory Impact Assessments

One of the purposes of accountability studies is to eval-
uate whether regulatory programs actually produced the
benefits anticipated in the Regulatory Impact Assessments
(RIAs) that justified them in the first place (Henneman et
al. 2016; Rich 2017). As anticipated in the RIAs for the reg-
ulatory programs considered in the current study, the in-
vestigators found reduced emissions, improved air quality,
and reduced health impacts that could be attributed to reg-
ulations to control air pollutant emissions from EGUs and
mobile sources. Unfortunately, direct comparison with the
RIAs was not feasible because the various studies had dif-
ferent spatial and temporal scales, methods, and assump-
tions. For example, the populations, study area, and
number of pollutants considered in the current study were
different from those in the RIAs, and there was little over-
lap in health outcomes. For these and similar reasons, the
comparison of retrospective accountability study results to
RIA predictions is challenging and often not done.

Some commenters have suggested that challenges
related to the comparison of prospective and retrospective
studies could be minimized in the future if important long-
term regulatory programs were to have built-in account-
ability components (Hubbell 2012; Hubbell and Green-
baum 2014; Rich 2017). Prospective study design for
accountability would allow for comparable metrics (e.g.,
air pollution measurements and health outcome records)
with a detailed plan to collect the appropriate data to effi-
ciently evaluate the impacts of the regulation on the envi-
ronment and health.

CONCLUSIONS

The Committee thought that this report by Russell and
colleagues is a valuable addition to the accountability litera-
ture. This is one of few accountability studies to examine
the effects of regulations on emissions all the way through
to health outcomes, using scenarios based on observed data.
Though labor-intensive, this approach is valuable and
worth considering for future accountability studies in the
United States or elsewhere in the world.

Russell and colleagues addressed important questions
raised in RFA 11-1 about (1) our ability to discern the
effects of regulatory and other actions at the national or
regional level implemented over multiple years and
(2) approaches that can be used to evaluate complex sets of
actions targeted at improving air quality in large urban
areas. Specifically, the investigators were able to show that
major regulations targeting power plants and mobile
sources were effective in reducing pollutant emissions,
improving air quality, and ultimately reducing ED visits
(in particular those for asthma) in the Atlanta area. This
was a complex and multifaceted study, and the Committee
thought the methods were appropriate, the analyses were
done correctly, and the report was well written.

The study accomplished its objectives, most notably to
link changes in air quality to regulatory programs. This
was a formidable task and required a series of well-
reasoned decisions. A major strength of this study is that it
followed the accountability framework laid out in a pre-
vious HEI report (HEI Accountability Working Group 2003).
Other strengths were the well-characterized data sets on
air pollutant levels and ED visits, parallel approaches
(empirical modeling and chemical transport modeling) to
construct the counterfactual time series of pollutant con-
centrations, and extensive sensitivity and uncertainty
analysis that were done in the development and applica-
tion of the air quality and health models.

The Review Committee thought this study used counter-
factual scenarios in a novel way in accountability research
by applying them to health analyses, and agreed with the
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major findings of the study that actual emissions, air pol-
lutant levels, and ED visits were lower than for counterfac-
tuals that reflected estimated projections of conditions
under which the regulations had not been implemented. On
the other hand, the Committee also thought the differences
in estimates for ED visits using data from two different
periods suggested there was uncertainty that was not fully
accounted for, and did not fully agree with some interpreta-
tions. For example, the Committee thought the estimated
differences in ED visits for cardiovascular disease and con-
gestive heart failure between with- and without-regulation
scenarios were very small and were not different from
those for finger wounds, whereas the investigators had
assigned the results for cardiovascular disease and conges-
tive heart failure more significance.

Although Russell and colleagues presented results for
individual regulatory programs, the Committee concluded
that the results for the combined suite of control policies
were more robust than those for individual programs.
Actual implementation of the regulations may have been
different from the reported changes, and alternative expla-
nations other than regulation are plausible. For example,
there could have been changes to reduce operational costs
of EGUs or improve motor vehicle efficiency that could
have reduced emissions from those sources.

The investigators’ finding that regulations targeting power
plants had more impact on improving air quality and reduc-
ing ED visits than regulations targeting mobile sources needs
further study. The Committee raised several issues related to
direct comparisons of the impact of the different regulations,
including that there were different levels of uncertainty in
the emissions levels associated with the different sources,
that mobile source programs were implemented later than
the EGU programs, and that rules were unevenly enforced.
The Committee concluded that the relative impact of the in-
dividual programs should be interpreted with caution.

Russell and colleagues reported that the overall results
were robust to the geographical scale of assessment and the
number of pollutants in the health models, and less robust
to the period of assessment. The Review Committee had
more confidence in the link between emissions and air
quality than in the links between regulations and emissions
or between air quality and ED visits, because the investiga-
tors not only statistically linked air quality with changing
emissions, but also used alternative modeling strategies to
rule out other likely causes of changes in air quality (e.g.,
meteorology) as dominating factors.

In the future, other researchers could apply these
methods to the long-term impacts of regulations on health
outcomes in other locations, although it would be recom-
mended to more thoroughly account for changes in med-
ical practice and healthcare access, where possible. In

particular, disentangling the effects of specific regulations
among a suite of regulations remains challenging, and
efforts should continue. This body of work is a strong con-
tribution to HEI’s accountability research portfolio because
it sequentially and carefully addresses multiple links in
the chain of accountability. The results suggesting that
reductions in emissions and improved air quality were
linked to health benefits are important in terms of con-
tinued evaluation of the public health benefits of air pollu-
tion regulation in the context of implementation and
compliance issues that may hamper achievement of the
intended benefits.
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ANAA Atlanta nonattainment area

ARP Acid Rain Program

C Clean Air Act Amendments

CAIR Clean Air Interstate Rule

CEM continuous emissions monitoring

CHF congestive heart failure

CMAQ Community Multiscale Air Quality

CO carbon monoxide

CTM chemical transport model

CVD cardiovascular disease

DSP Heavy-Duty Diesel Rule

EC elemental carbon

ED emergency department

EGU electricity generating unit

EY emission year

EPD Environmental Protection Division

GRAQC Georgia Rules for Air Quality Control

GRAQCbbb Gasoline Marketing Rule

GRAQCjjj NOx Emissions from Electric Utility Steam 
Generating Units

GRAQCsss Multipollutant Control for Electricity 
Utility Steam Generating Units

GRAQCyy Emissions of Nitrogen Oxides from Major 
Sources

GSP Tier 2 Gasoline Program

IM inspection and maintenance

IND industrial emissions

ICD-9 International Classification of Diseases 
9th Revision

MDA8h maximum daily 8-hour

MOB on-road mobile

MOVES U.S. EPA MOtor Vehicle Emissions 
Simulator

NAA nonattainment area

NAAQS national ambient air quality standards

NBP NOx Budget Trading Program

NH4
+ ammonium

NMB normalized mean bias

NME normalized mean error

NMHCs nonmethane hydrocarbons

NO2 nitrogen dioxide

NO3
� nitrate

NOx oxides of nitrogen

O3 ozone

OC organic carbon

PM particulate matter

PM2.5 particulate matter �2.5 µm in aerodynamic 
diameter

PM10 particulate matter �10 µm in aerodynamic 
diameter

PS* emissions-independent atmospheric 
photochemical state

R-LINE research LINE-source dispersion model for 
near-surface releases

RD respiratory disease

REG regional, referring to EGU emissions in 
Alabama, Georgia, Mississippi, North 
Carolina, South Carolina, and Tennessee 
minus those in the ANAA

RFA Request for Applications

RH relative humidity

RIA Regulatory Impact Assessment

SEARCH SouthEastern Aerosol Research and 
Characterization

SD standard deviation

SIP State Implementation Plan

SO2 sulfur dioxide

SO4
2� sulfate

SOA secondary organic aerosol

SOPHIA Study of Particles and Health in Atlanta

SOx oxides of sulfur

STM short-term meteorology

U.S. EPA U.S. Environmental Protection Agency

VMT vehicle miles traveled

VOCs volatile organic compounds
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