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INTRODUCTION 

Accurate estimation of oxides of nitrogen (NOx*) emissions is critical to understanding the impact of 
mobile sources on atmospheric chemistry and human health (Gego et al. 2008; Kim et al. 2009; 
Stavrakou et al. 2008). On-road mobile sources, one of the largest emission sources of health-related 
air pollutants, are typically estimated using bottom-up methods. These methods can have large 
uncertainties due to the complexities of the models used and the uncertainties in both the model inputs 
and parameters, (e.g., uncertainties in determining emission factors and human activity intensity (Kim 
et al. 2009)). However, identifying and quantifying potential biases that may be present in estimated 
emissions rates and activities for large fleets (such as Atlanta’s) that are made up of multiple vehicle 
types is difficult. Snyder et al. (2014) found that differences in vehicle miles traveled (VMT) 
estimates from two models translated into +45% to −35% uncertainty in emissions. They noted that 
uncertainty in the ratios of heavy duty to light duty automobiles would affect certain pollutants, such 
as particulate matter ≤ 2.5 µm in aerodynamic diameter (PM2.5) and NOx, more than others, such as 
carbon monoxide (CO). Adjusting the percent of diesel vehicles from 5.2% to 9.2% on one specific  

 
 
* A list of abbreviations and other terms appears at the end of this appendix.  
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type of roadway in their simulations changed total estimated PM2.5 and NOx by 53% and 29%, 
respectively. Boroujeni and Frey (2014) investigated road grade parameterizations and Sandhu et al. 
(2014) addressed refuse truck emissions rates. No studies to date have combined uncertainty estimates 
of each of the models within MOVES (U.S. EPA MOtor Vehicle Emissions Simulator) to estimate 
uncertainty across multiple inputs. Hanna et al. (2001) estimated uncertainty in various air quality 
inputs using an expert elicitation, and applied ±100% for mobile sources. Using a variety of methods 
and comparisons — including fuel and mileage-based emissions factors, ground-based observations, 
satellite inverse modeling, and regional chemical transport modeling — multiple studies have found 
large variability between modeled and a priori estimates (Dallmann and Harley 2010; Deguillaume et 
al. 2007; Konovalov et al. 2006; Napelenok et al. 2008; Parrish 2006). 

There is evidence from other areas of the country that the mobile source NOx emissions estimates 
may be biased high by as much as a factor of two (Anderson et al. 2014; Fujita et al. 2012; Kim et al. 
2009; SW Kim et al. 2016). Evidence for the magnitude of the overestimate is derived from other 
modeling studies and from satellite-based observations. (Anderson et al. 2014) suggests the 
overestimate may be due to MOVES’s treatment of degrading catalysts in aging automobiles. At the 
recent Community Modeling and Analysis System (CMAS) conference, multiple presentations 
discussed the potential bias issue (e.g., Frost 2016: See 
www.cmascenter.org/conference/2016/agenda.cfm). 

While there is evidence of a potential bias in mobile source NOx (and CO) emissions, there is also 
evidence that modeled emissions capture air pollutant trends accurately enough as to allow air quality 
models to provide adequate estimates of air quality and changes over time (Foley et al. 2015a,b; Gego 
et al. 2008; Gilliland et al. 2008; Simon et al. 2012). For some modeling applications (such as 
statistical models), capturing trends in emissions changes is more important than the absolute 
emissions amount (e.g., the empirical modeling approach taken here). Previous studies have found 
that modeled mobile emissions trends match expected trends based on ambient air quality 
observations (Blanchard et al. 2012; Pachon et al. 2012). 

For other applications, however, a major bias (under or overestimate) of emissions in the 
Southeast or elsewhere has major implications on this work and air quality management generally. 
First, if it is true that the actual mobile source emissions are now lower than estimated, that would 
indicate that the regulations are more effective than believed. Second, and possibly more important, is 
that the amount of NOx emissions to be further reduced is lower, which has implications on how to 
assess potential future interventions and regulatory effectiveness. There are other ramifications (e.g., 
air quality model evaluation). It is difficult to overstate the importance of better understanding and 
quantifying mobile source NOx emissions, particularly in the light of the major reductions in utility 
NOx emissions and the tightening ozone standard. Understanding how NOx-limited the region is will 
be critical to identifying the most effective strategies to further reduce ozone (and particulate matter 
[PM]), and quantify the degree of further controls required and from what sources such reductions 
may come. 

Here we examined this issue in multiple ways, including using air quality modeling evaluations of 
multiple models, empirical trend analysis of NOx concentrations using both ground- and 
satellite-based observations and using a ratio-of-ratios method. Our results are suggestive of a 
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potential bias, but the evidence here is not strong and consistent between the different approaches and 
can be obscured by the more complex chemistry of the large biogenic fluxes in the Southeast, e.g., 
leading to organonitrates, which are not typically measured in ground level monitoring networks, and 
are not observed from space. The satellite data and ground level observations don’t follow the same 
trends as the NOx emissions. The ratio-of-ratios method is suggestive of a potential low bias as ratios 
of the ambient concentrations of NOx to those of another directly emitted species (elemental carbon 
[EC]) have been reduced proportionally less in relationship to their emissions. In addition, we find a 
high bias in our simulated NOx (and CO) concentrations in our air quality modeling as compared to 
observations.  

METHODS 

We use three general approaches in this subanalysis. These include comparing air quality 
modeling results to observations, comparing emissions changes to concentration changes, as well as a 
ratio-of-ratios approach, and direct comparison of observed and modeled trends. Data sources include 
satellite observations, in-situ air quality observations, and emissions inventories. 

Ground-Based Air Quality Data 

Ground-based air quality data used in our analyses are taken from U.S. Environmental Protection 
Committee’s (U.S. EPA) Air Quality System 
(https://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm), and supplemented with data 
from the Southeastern Aerosol Research and Characterization (SEARCH) study. More details can be 
found in Henneman et al. 2017b and in the main body of the report. 

Satellite Data Source 

As part of this analysis, we also include observations from space. Three satellite products are used 
to compare with surface monitoring and emissions in Atlanta, GA (Boersma et al. 2004, 2010). Each 
satellite product recorded tropospheric nitrogen dioxide (NO2) columns during their operating period, 
and the overall time series of the three satellites covered the whole period between 1997 and 2013 
(GOME 06/1996–06/2003, SCIAMACHY 08/2002–03/2012, OMI 10/2014–12/2013). Monthly mean 
tropospheric NO2 columns were downloaded directly from the Web site (European Space Agency 
2016). The satellite crossing times over Atlanta, Georgia, were approximately 3:00 PM (local time). 
Considering the NO2 diurnal variation, we chose daily surface concentrations monitored at 3:00 PM to 
conduct the comparison. On-road mobile emissions (hereafter referred to as mobile) included in the 
analysis were modeled using MOVES 2010b (U.S. EPA 2012) for the 20-county Atlanta PM2.5 
nonattainment area. Electricity generating unit (EGU) emissions were collected from plants located in 
the same region and downloaded from the U.S. EPA’s Air Markets Program Database (U.S. EPA 
2016). The emissions data sets are described in Henneman et al. 2017b). Both interannual temporal 
trends and monthly variations were compared across satellite platforms, ambient concentrations, and 
emissions. 

  

https://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
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Data Analysis Approaches 

Ratio of Ratios Analysis    The ratio-of-ratios (RR) method is used to assess mobile emissions 
trends over time and provides information on potential biases, both by considering how trends deviate 
over time and also how close the RR value is to one. The RR analysis calculates the ratio between two 
pollutant species in emissions to observations. Using NOx and EC as an example, the RR value is 
calculated as follows, 

𝑅𝑅𝑅𝑅 =
�𝑁𝑁𝑁𝑁𝑋𝑋𝐸𝐸𝐸𝐸 �

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�𝑁𝑁𝑁𝑁𝑋𝑋𝐸𝐸𝐸𝐸 �
𝑜𝑜𝑜𝑜𝑜𝑜

 

where the emission ratio (emiss) and the observation ratio (obs) are the ratios of NOx to EC, and RR is 
the ratio of the two ratios. The units used should be consistent between the species, and it is important 
to consider how emissions are reported (e.g., NOx emissions are reported as NO2). We calculated 
temporal trends of three RR values (CO:NOx, NOx:EC, and EC:CO) between different compounds 
over the period from 1999 to 2013 at the Jefferson Street monitoring station (JST) in Atlanta, Georgia. 
Gaseous species were converted from molar ratios (ppb) to mass using atomic mass ratios between the 
species of interest and air (48 g/mol). NOx mass was taken as the mass of NO2 to align with the 
method taken in MOVES emissions modeling (U.S. EPA 2010), as well as how emissions are 
reported in the National Emission Inventory. Assuming the emission estimate being accurate and the 
air degradation rates of the two compounds being the same, the RR value of the two compounds 
would be close to 1. A value higher or lower than 1 suggests either a disparity in air degradation rates 
between the two compounds or a bias in emission estimate, though evidence from this test alone 
cannot verify a bias. 

R-LINE Simulation    The Research LINE-source (R-LINE) dispersion model for near-surface 
releases is a dispersion model developed to line sources impacts on ambient air quality (Snyder et al. 
2013). R-LINE is a steady-state dispersion model that simulates physical dispersion processes using 
wind speed, wind direction, Monin-Obukhov length for turbulence, surface friction velocity, and other 
meteorological parameters. In an application in Atlanta, 10 years of annual average concentration 
fields for PM2.5, CO, and NOx in a 20-county area in Atlanta are developed using an annual average 
approach that accounts for the frequencies of different meteorological conditions and emission diurnal 
changes (Zhai et al. 2016). The emissions used are link emissions of 2010 at 43,712 links based on the 
Atlanta Regional Commission’s 20-county activity-based travel demand model in the Atlanta 
Roadside Emissions Exposure Study (AREES) (Kim et al. 2009). The emissions are adjusted using 
annual variability in the MOVES-modeled emission factors. 

R-LINE estimates are based on mobile sources but are compared to total observations of CO and 
NOx since mobile sources are the major sources of the two species (i.e., mobile sources are estimated 
to consist of 88% and 73% of ground level CO and NOx emissions). For PM2.5, the R-LINE estimates 
are calibrated to mobile-source impacts estimated using chemical mass balance with gas constraints 
(CMB-GC) based on observational data. Regression approaches are explored here in linear and 
log-transformed forms using the jackknife resampling method (Sahinler and Topuz 2007), which 
estimates regression parameters with each available observation data point withheld one-at-a-time. In 
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total, available observations in 10 years were used at three sites for PM2.5, five sites for CO, and seven 
sites for NOx in Atlanta. 

Community Multiscale Air Quality Model Simulations    We conducted Community Multiscale 
Air Quality (CMAQ) version 5.0.2 simulation for 2011 at 36 and 12 km resolution, respectively. 
Detailed information on the 12-km simulation and evaluation data can be found in Henneman and 
colleagues (2017b). The 36-km simulation covered the overall contiguous United States, and the 
emission inventory was compiled based on emission data from the National Emission Inventory using 
the Sparse Matrix Operator Kernel Emissions (SMOKE) model version 3.5.1. The emission data 
source is the same as for the 12-km simulation to exclude the influence of emissions on differences 
between the two simulation results. It should be noted, the high bias in NOx emissions estimates is 
likely greater in later years, thus the choice of using 2011 results, but more recent model applications 
would be preferable and have been used in informing this discussion. However, those simulations 
were not conducted as part of the HEI Accountability study. For example, we conducted detailed 
modeling of the 2013 Southern Oxidants and Aerosol Study intensive period. This period, however, 
was only one month long, so is less complete than the 2011 modeling period used here. Further, we 
considered information from recent regulatory-oriented modeling conducted for the Southeast.  

Ozone sensitivities to NOx are estimated using CMAQ in July 2011 for two cases: a base case 
with actual emissions, and an adjusted case with mobile emissions reduced by 50%. This exercise 
tests both the effect of the magnitude of NOx emissions on NO2 and ozone levels and the model’s 
ability to capture nonlinearities in the concentrations vs. emissions curve. 

RESULTS 

1. Comparison of Observational Trends to Mobile Source and Utility NOx Emissions  
The Long-Term Temporal Trends of Satellite Records are Consistent with Surface NO2 Monitoring    
Given that the satellite product algorithms do not rely on surface NO2 observations (Boersma et al. 
2004, 2011), we first compared the trends of satellite-based vertical column density (VCD) and 
surface NO2 concentrations during the period from 1999 to 2013 (Figure D.1). It was found that 
long-term temporal trends from these two data sources agreed well with each other at both the JST 
and the Yorkville, Georgia (YRK) sites. For instance, both satellite records and surface monitoring 
showed a valley point appearing in 2001, a peak point in 2005, and a continuous decreasing trend 
afterwards at the JST site. Similarly, both data sources indicated a gradually decreasing trend at the 
YRK site during the last decade. We also noticed a higher interannual VCD variability reported by 
SCIAMACHY satellite data compared with OMI satellite data at the JST site during the overlapped 
period, which might be caused by the instrumental and retrieval differences between the two datasets 
(Boersma et al. 2008). 
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Figure D.1. Comparisons of long-term temporal trends between satellite-monitored 
tropospheric NO2 columns and (1) surface-monitoring NO2 concentrations at YRK site; (2) 
surface-monitored NO2 concentrations at JST site. 

Monthly variations were also derived from each data source for intercomparison (Figure D.2). At 
the JST (urban) site, satellite-based monthly variation agrees well with surface monitoring, with both 
showing higher concentrations in winter, and lower concentrations in summer. At YRK (rural site), 
however, surface concentrations show a slightly higher increase ratio in winter than the NO2 VCD, 
likely caused by seasonal changes of planetary boundary layer height and enhanced local emissions 
for heating demand. Generally, the satellite-based NO2 VCD are consistent with the surface-measured 
NO2 in the long-term temporal trends and monthly variations in both urban and rural regions within 
the study area. 
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Figure D.2. Comparisons of monthly variations between satellite-monitored tropospheric 
NO2 columns and (1) surface-monitoring NO2 concentrations at YRK site; (2) 
surface-monitoring NO2 concentrations at JST site; (3) NOx emissions in Atlanta. 

It should be noted that, due to the relatively coarse resolution (0.25 degree), satellite NO2 shows a 
much lower spatial variation. The average NO2 VCD in the urban site was only 45% higher than that 
at the rural site, while the surface-monitoring concentration was 220% higher. Similar results have 
been found in a previous study showing that the satellite records with coarse footprint-pixel sizes 
tended to smooth the NO2 variations between the urban core and outside (HC Kim et al. 2016). 

Comparison Between NOx Observation and Emission Estimates Shows Inconsistent Temporal 
Trends    Inconsistencies in monthly and interannual variations and the longer-term trends are 
found in the comparison between NO2 observations with NOx emissions in Atlanta. Observations have 
a higher monthly-to-annual-average ratio in winter and a slower interannual decreasing trend 
compared with emissions (Figure D.2). Additionally, no peak point was found in emissions around 
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2005 (Figure D.3). Inconsistencies in monthly variation can be caused by seasonal difference in 
meteorological conditions, since NO2 tends to be constrained in a relatively low level in summer by 
rapid photochemical reactions. However, for interannual variation, the influence of meteorological 
factors is limited (Andersson et al. 2007). The inconsistency in interannual variation is highly likely to 
be raised by potential biases inherent in emission estimation. Mobile emissions and EGU are the two 
major sources in Atlanta. Compared with mobile emissions, EGU emission estimates are expected to 
have much less uncertainty, because the emission amounts are determined through a real-time 
monitoring system. Mobile emissions, however, are based on a bottom-up method and could be quite 
susceptible to bias. Bottom-up emission estimates are usually highly uncertain. Large uncertainty 
could be caused by uncertainty in emission factors as well as the activity data that feed into estimation 
(van Aardenne and Pulles 2002). 

 
Figure D.3. Comparisons of NOx/NO2 trends (1) between total NOx emissions (EGU + 
mobile) in Atlanta and surface NO2 concentrations at JST; (2) between total NOx emissions in 
Atlanta and tropospheric NO2 columns. 

2. Ratio of Ratios Analysis 
We calculated a time series of mean RRs of CO:NOx, NOx:EC, and EC:CO, respectively, from 

1999 to 2013 along with the annual 95% confidence interval (Figure D.4). The RR’s are calculated 
first without correction for the CO background and are then calculated when accounting for the CO 
background (CO is naturally produced from the oxidation of biogenic volatile organic compounds 
[VOCs]). If the uncorrected CO concentrations are used, the RRs of EC:CO are all close to 1 (indeed, 
95% confidence intervals of each of the ratios for all years except for 2012 in the YRK-adjusted and 
2009 in the unadjusted values contain 1), suggesting that there is no major bias in the emissions, or 
that the CO and NOx emissions have similar biases.  
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Figure D.4. Temporal trends of the ratios of ratios of CO:NOx, NOx:EC, and EC:CO from 
1999 to 2013. Top: CO is corrected for background using YRK measurements, Bottom: CO is 
taken as raw observations at JST. Shaded areas correspond to a 95% confidence interval around 
the mean, taken from annual distributions of daily values. Vertical axis is on a log scale. (Zhai et 
al. 2016. Creative Commons license: 
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S135223101
6308111&orderBeanReset=true.) 

However, if the CO (and NOx) values are corrected, there is a major bias in emissions CO:NOx 
ratios as compared to ambient concentrations. The correction is conducted using the YRK values as 
the background. In this case, the difference between the JST and YRK observations are used to 
account for the natural (biogenic) background. This is an imperfect comparison because air quality at 
YRK is impacted somewhat by anthropogenic Atlanta emissions (Blanchard et al. 2012), though the 
background values obtained are in alignment with estimates of background CO (e.g., Seinfeld and 
Pandis 2005). After adjustment for the background, the elevated CO:NOx RR in this plot provides 
evidence that NOx emissions are underestimated compared to CO. It should also be noted that there is 
a recent upwards trend in the NOx-to-EC ratio, also suggesting a trend towards an increasing bias in 
the NOx emissions compared to EC emissions estimates.  

The analysis is based on the assumption that air degradation rates between compounds are similar. 
Air quality models can be further applied to provide the modeled RR values for reference. Stronger 
evidences are expected based on the ratio-of-ratios analysis.  

  

https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S1352231016308111&orderBeanReset=true
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S1352231016308111&orderBeanReset=true
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3. R-LINE 
As part of a variety of studies (Sarnat et al. In press; Zhai et al. 2016), we have been applying 

R-LINE to estimate mobile-source emissions and the related air quality impacts in Atlanta. We have 
found that R-LINE simulated values of NOx, CO, and mobile-source derived PM2.5 (we use CMB-GC 
modeling to derive the PM from mobile sources: see Zhai et al. 2016, for details) are biased high in 
these applications, so they have been calibrated to observations. If NOx requires a different adjustment 
than the other pollutants, that would indicate there is a different bias in the emissions of NOx than of 
other pollutants.  

Regression relationships (Figure D.5) indicate an overestimation of R-LINE estimates compared 
to CMB-GC for PM2.5, and observations in Atlanta for daily 1-hour maximum CO and NOx, with 
slopes of 0.54, 0.69, and 0.30 for PM2.5, CO, and NOx, respectively. R-LINE estimates were higher by 
factors of 1.8, 1.3, and 4.2 on average, respectively, for PM2.5, CO, and NOx. The normalized root 
mean square error (NRMSE) and normalized mean bias (NMB) are especially high for NOx (Table 
D.1), indicating the highest bias for NOx. 

 
Figure D.5. Regressions between R-LINE estimates and CMB-GC estimates of mobile 
source PM2.5 and observations for CO and NOx in Atlanta, performed on a linear basis in 
the top row and log basis in bottom row. (Zhai et al. 2016. Creative Commons license: 
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S135223101
6308111&orderBeanReset=true). 

  

https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S1352231016308111&orderBeanReset=true
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S1352231016308111&orderBeanReset=true
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Figure D.6. Near-road measurement location. The concentration field shown is raw 
R-LINE PM2.5 mobile concentrations of 2015 (A 3 km by 3.5 km area in central Atlanta in 
250-m resolution, µg/m3). The black square denotes the JST site location. The diamond denotes 
the near-road site by Georgia Environmental Protection Division, located next to the maximum 
concentration. 

The near roadway estimates from R-LINE model are very high compared to measurements from 
2015 at a near-road site located next to a major highway (I-85/I-75 connector) in Midtown Atlanta 
and next to the peak location, as shown in Figure D.6. The 2015 annual average observations are 
lower than R-LINE estimates by a factor of 3.1 and 7.4, respectively, suggesting large near-road 
biases in R-LINE model results. More importantly, here, is that the bias in NOx estimates are higher 
than for CO and PM2.5, suggesting a higher bias in those emissions estimates. However, R-LINE 
estimates are rather biased across the board, so other factors are likely playing a role.  

 

Table D.1. Error and bias of R-LINE compared to 
CMB-GC mobile source impacts for PM2.5, and 
observations for CO and NOx.  

 NRMSE NMB 
PM2.5 39% 29% 
CO 33% 22% 
NOx 326% 303% 

Zhai et al. 2016. Creative Commons license: 

https://s100.copyright.com/AppDispatchServlet?publisherNa

me=ELS&contentID=S1352231016308111&orderBeanReset

=true. 

 
4. CMAQ Model Assessment: Comparison of Simulated and Observed NOx and Resolution and 
Sensitivity Analysis 

As part of this study, we conducted an evaluation of CMAQ using observations from the eastern 
United States, with a focus on the Southeast. The simulations were conducted at 12 km, though we 
also consider a 36 km simulation here to explore potential biases. We found a tendency for the 
modeled NOx to be biased high (43%), suggesting that NOx emission estimates are biased high. Given 
that EGU NOx is unlikely to have large biases, this would suggest an even larger bias in mobile source 
emissions estimates. Henneman and colleagues (2017b) found an even larger bias in the comparison 
of simulated to observed NO2 at JST over the entire four years modeled in the project (over 300%) 
and also a high bias in nitrate (over 40%), further suggesting a high bias in the emissions estimates.  

https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S1352231016308111&orderBeanReset=true
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S1352231016308111&orderBeanReset=true
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S1352231016308111&orderBeanReset=true
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Table D.2. Model performance for NO2 for the Southeastern U.S. Normalized mean bias 
(NMB), mean normalized bias (MNB), the slope (B) and the semi-95% confidence interval 
range for the slope (Bint) of CMAQ NOx simulation at 36 and 12 km resolutions compared to 
observations. 

 NMB MNB B Bint 
36 km 13% 30% 1.18 0.17 
12 km 24% 43% 1.30 0.13 

 
In addition to emissions biases, a mismatch in spatial resolution could introduce uncertainty and 

bias in the model evaluation. Previous studies have shown that model simulation at coarse resolutions 
can underestimate concentrations of compounds with a relatively short atmospheric life time, such as 
polycyclic aromatic hydrocarbon compounds and black carbon (Shen et al. 2014; Wang et al. 2014). 
To evaluate the CMAQ model and determine how the emissions and model resolutions contribute to 
model uncertainty respectively, we conducted CMAQ simulation at two different resolutions of 12 km 
and 36 km and compared the modeled annual average NO2 concentrations with near-surface 
observations (Figure D.7). In both cases, the predictions trend higher than the observations. Given the 
relatively higher resolution, it is reasonable to believe that spatial variations in NO2 distribution was 
better captured by the 12-km simulation, which resulted in decreased model uncertainty relative to the 
36-km simulation. However, assuming the emissions were accurate, mean bias should also be reduced 
by the 12-km simulation, because most of the observation sites are located in cities or surrounding 
areas where emissions are intensified and varied, and they are poorly captured by coarse resolutions 
such as 36 km. The increased mean bias indicates a potential overestimation of NO2 emissions. 

 

 
Figure D.7. Comparisons of annual average CMAQ-modeled NO2 concentrations with 
observations in the Southeastern United States. 1: model simulation at 36 km resolution, 2: 
model simulation at 12 km resolution. Each plot represents a monitoring site. Black solid lines 
are the 1:1 lines. Black dashed lines show 0.5~2 times range and grey dashed lines show 0.2~5 
times range. Reduced-major-axis regression lines (red solid lines) are also shown. 

12-km CMAQ simulations with the Decoupled Direct Method can provide modeled time series 
with source contributions. The time series of NO2 concentrations is at least two times higher than the 
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observed level at the JST site in both the 2001–2002 and the 2011–2012 periods (see figures in 
Appendix A). Additionally, NO2 is one of the worst fits for EGU and mobile sensitivities compared 
with the empirical model derived in this study. The time series shows the seasonality being essentially 
opposite for CMAQ vs. empirical mobile sensitivities. Generally, these results suggest an 
overestimate of NO2 emissions that is mostly induced by mobile emissions. 

As part of a recent regulatory-oriented modeling study in the Southeast, CMAQ was applied to 
2007 (see Odman and Adelman 2014). They found a 43% high bias in their simulated NO2 and they 
also found a high bias in the wet deposition of oxidized nitrogen, further suggesting a high bias in the 
emissions. It should be noted that this was for a 2007 modeling period, so any further deviation of the 
emissions estimates from actual emissions would likely accentuate the bias.  

DISCUSSION 

In this study, we first confirmed the long-term temporal trends of NOx observations at JST and 
YRK by comparing with satellite-based tropospheric NO2 columns compared with emissions yield 
disparity in temporal trends between observations and emissions. This disparity indicates a potential 
bias in NOx emission estimates. Ratio-of-ratios analysis also suggests a bias, after correction for 
background concentrations. Mobile emissions contribute a large amount of NOx emission in Atlanta, 
as do EGUs, though emission estimates in mobile sources are associated with higher uncertainty, 
hence, the bias of emission temporal trends is very likely caused by bias in the mobile emission 
estimate. 

Using the R-LINE model with mobile emissions only, we simulated annual average 
concentrations of various pollutants in Atlanta. Even considering only mobile emissions, NOx 
concentrations were overestimated by the model. It should be noted that the overestimation of the 
R-LINE model compared to observations can be caused by several factors, such as the formulation of 
the model, the properties of the pollutants, the impact from other sources, and the uncertainties in the 
models and data. However, the results clearly indicate a difference in NOx and the other two species 
(i.e., PM2.5 and CO), with approximately 10 times higher NRMSE and NMB. Besides the difference 
of species properties, the over-estimation of modeled emissions for NOx can be a leading factor, as 
has been found in several studies (Anderson et al. 2014; Fujita et al. 2012; HC Kim et al. 2016; SW 
Kim et al. 2016; Liu and Frey 2015). The overestimation in emissions can lead to large bias in the 
modeling estimates at finer resolutions when used in ambient air quality management and 
epidemiology studies. 

We further assessed the influence of model resolution on NOx concentrations at monitoring sites 
in the southeastern United States. It was found that the finer resolution enhanced modeled 
concentrations at these sites, because most sites are located within or around cities where the 
concentrations are higher than average. Therefore, model performance at the finer resolution (12 km) 
was expected to be more accurate. However, compared with observations, the 12-km simulation 
actually overestimated NO2 concentrations, indicating a potential overestimate of emissions. Modeled 
time series at 12-km resolution showed a similar seasonal trend with observations, but the level was at 
least double the observed. Further research should examine the change in modeled results at 
resolutions finer than 12-km (e.g., 4 km or 250 m) to see to what extent the modeled concentrations 
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could be further enhanced. This may help to determine the amount of overestimation of mobile 
emissions. 

IMPLICATIONS 

Emission inventories play a key role in atmospheric chemical transport models and air quality 
assessment. However, bottom-up emission estimation could introduce large uncertainties, because the 
emission factors — the amount of pollutant emitted per unit activity — vary widely and are highly 
uncertain for some sources such as mobile sources. Based on observation and air quality models, our 
work provides further evidence of a potential overestimate of mobile NOx emissions in the 
southeastern United States, including Atlanta. Further work is needed to better address whether NOx 
emissions from mobile sources are overestimated and, if so, by how much. 

The implications of a bias, high or low, in the mobile source inventory of a factor of about 2 or 
more is large, and is supported by current evidence: 

1. Mobile source emissions controls are being more effective that estimated. 
2. A reduced response is found in photochemical model applications (this is seen in this study, 

and is also found in other dynamic model analyses, (e.g., Dunker et al. 2016).  
3. Potentially most important, the mass of NOx emissions left to reduce is smaller than has been 

estimated, thus further mobile-source controls would not be as effective as potentially 
simulated. This would be particularly important in mobile source-dominated environments 
and is increasingly important as EGUs are controlling NOx emissions. 

4. Estimated responses of ozone and other pollutants to nonmobile sources will also be 
impacted.  

One avenue to better estimate on-road emissions is to reduce the uncertainties being introduced 
into emission factor estimates and conduct further comparisons of emissions of specific cars to 
observations. The emission factor of NOx is a function of engine type, load and age, fuel type and 
quality, driving mode, and emission control, among other things. Influence of each factor on NOx 
emissions should be addressed accurately. On-road monitoring can be carried out to capture emissions 
from a large number of various motor vehicles in different driving conditions. A second approach 
would be long-term monitoring of not only NOx, but also CO2 and other traffic-related air pollutants 
(e.g., CO, specific metals, mobile source VOCs, semivolatile VOCs and/or intermediate-volatility 
VOCs and EC), taking advantage of U.S. EPA’s new near-road network and the advances in 
inexpensive air quality monitors (e.g., for CO2 and CO). This latter approach will not be able to 
provide a direct link between a specific vehicle and its emissions, but will provide fleet-integrated 
emissions. Further application of both fine and coarser scale models to identify model biases in not 
only ambient species, but deposition of related species, is warranted. Finally, satellite data is proving 
to be a very powerful approach to assessing emissions trends, so continued use of such data is 
suggested. 
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ABBREVIATIONS AND OTHER TERMS 

 CMB-GC chemical mass balance with gas constraints 

 CMAQ Community Multiscale Air Quality 

 CMAS Community Modeling and Analysis System 
 CO carbon monoxide 

 EC elemental carbon 

 EGU electricity generating unit 

 JST Jefferson Street monitoring station, Atlanta 

 MOVES U.S. EPA MOtor Vehicle Emissions Simulator 

 NMB normalized mean bias 

 NRMSE normalized root mean square error 

 NO2 nitrogen dioxide 

 NOx oxides of nitrogen 

 PM particulate matter 

 PM2.5 particulate matter ≤2.5 µm in aerodynamic diameter 

 R-LINE research LINE-source dispersion model for near-surface releases 

 RR ratio-of-ratios 

 SEARCH SouthEastern Aerosol Research and Characterization 

 U.S. EPA U.S. Environmental Protection Agency 

 VCD vertical column density 

 VMT vehicle miles traveled 
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 VOC volatile organic compound 

 YRK Yorkville, Georgia site 


