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APPENDIX B. ESTIMATION OF UNCERTAINTY IN EMPIRICAL 

COUNTERFACTUALS 

The models for counterfactual concentrations have two major sources of uncertainty: the 

sensitivities of concentrations to emissions and the estimate of emissions changes from actual to 

counterfactual. Estimates from the distributions of each of these will feed into the model to 

create different realizations of the counterfactuals. This appendix describes how the distributions 

are estimated and sampled. 

Previous attempts to estimate uncertainty included input from Community Multiscale Air 

Quality-modeled (CMAQ*) sensitivities. This approach was insufficient for a few reasons. First, 

CMAQ sensitivities are not directly comparable to empirical sensitivities — CMAQ sensitivities 

(as calculated) represent the total contribution from a source, and empirical sensitivities are 

source- and species-specific. While it is possible to produce species-based sensitivities with 

CMAQ, the empirical sensitivities are estimated using emissions that are highly correlated within 

source and between species; therefore, the total sensitivity from each source is more informative. 

However, combining CMAQ sensitivities with empirical sensitivities requires splitting CMAQ 

sensitivities by species using the empirical fraction, which leads to counterfactuals that do not 

intuitively match expectations. 

 

* A list of abbreviations and other terms appears at the end of this appendix. 

  

Table B.1. Definitions of variables used in the models 
Variable Name Unit 

𝑖𝑖 Ambient concentration species – 
𝑗𝑗 Emissions source-species – 
𝐽𝐽 Emissions source – 
𝐶𝐶𝑖𝑖 Concentration of species i ppb, µg m-3 

ß𝑗𝑗,𝑖𝑖 Empirical sensitivity of species i to source-species j ppb ton-1, µg m-3 ton-1 
𝑠𝑠𝑗𝑗,𝑖𝑖 Empirical total sensitivity of species i to source-species j ppb, µg m-3 
𝑆𝑆𝐽𝐽,𝑖𝑖 Empirical total sensitivity of species i to source J  ppb, µg m-3 
𝑆𝑆𝐽𝐽,𝑖𝑖
∗  Monte Carlo sampled total sensitivity of species i to source J  ppb, µg m-3 
𝑠𝑠𝑗𝑗,𝑖𝑖
∗  Fractioned sample sensitivity of species i to source-species j  ppb, µg m-3 

ß𝑗𝑗,𝑖𝑖
∗  Fractioned sensitivity of species i to source-species j  ppb ton-1, µg m-3 ton-1 
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Statistical Pollutant Sensitivity Models 

In the model used to relate pollutant concentrations to emissions, after controlling for 

meteorology, each ambient pollutant concentration (𝐶𝐶𝑖𝑖, where i is 𝑂𝑂3, 𝑃𝑃𝑃𝑃2.5 etc.) is modeled as a 

function of source-specific species emissions (e.g., 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑁𝑁𝑁𝑁𝑥𝑥, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑆𝑆𝑆𝑆2 , 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀
𝑁𝑁𝑁𝑁𝑥𝑥 , etc., where EGU is 

electricity generating unit and MOB is mobile): 

𝐶𝐶𝑖𝑖 = ß0,𝑖𝑖 + ß𝐸𝐸𝐸𝐸𝐸𝐸 𝑁𝑁𝑁𝑁𝑥𝑥,𝑖𝑖𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 𝑁𝑁𝑁𝑁𝑥𝑥,𝑖𝑖�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑁𝑁𝑁𝑁𝑥𝑥� + ß𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆2,𝑖𝑖𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆2,𝑖𝑖�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑆𝑆𝑆𝑆2 �

+ ß𝑀𝑀𝑀𝑀𝑀𝑀 𝑁𝑁𝑁𝑁𝑥𝑥,𝑖𝑖𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 𝑁𝑁𝑁𝑁𝑥𝑥,𝑖𝑖�𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀
𝑁𝑁𝑁𝑁𝑥𝑥 � + ⋯+ 𝜶𝜶𝜶𝜶 

Where ß0,𝑖𝑖 is the intercept, ß𝑗𝑗,𝑖𝑖 is the sensitivity of 𝐶𝐶𝑖𝑖 to each function 𝑓𝑓𝑗𝑗,𝑖𝑖(∙) of source-specific 

species emissions, 𝐸𝐸:  

𝑓𝑓𝑗𝑗,𝑖𝑖(∙) = 𝐸𝐸𝑗𝑗(𝑎𝑎 + 𝑏𝑏𝑃𝑃𝑃𝑃∗) 

𝑃𝑃𝑃𝑃∗ is the metric for atmospheric photochemical state, a and b are determined in the regressions, 

and b is equal to zero for many of the pollutants. 𝜶𝜶𝜶𝜶 is the contribution of daily meteorology. 

One exception for the definition of 𝑓𝑓𝑗𝑗,𝑖𝑖(∙) is the interaction of mobile oxides of nitrogen (NOx) 

and volatile organic compound (VOC) emissions (𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀
𝑁𝑁𝑁𝑁𝑥𝑥  & 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑉𝑉𝑉𝑉𝑉𝑉 ) in the regression for ozone: 

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 𝑁𝑁𝑁𝑁𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉,𝑖𝑖(∙) = 𝐸𝐸𝑀𝑀𝑂𝑂𝐵𝐵 𝑁𝑁𝑁𝑁𝑥𝑥𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 𝑉𝑉𝑉𝑉𝑉𝑉(𝑎𝑎 + 𝑏𝑏𝑃𝑃𝑃𝑃∗) 

 

Empirical Source-Specific Sensitivities 

Source-specific sensitivities are estimated by multiplying each ß𝑗𝑗,𝑖𝑖 by the associated 

emission term and summing the results, giving units of concentration (keep in mind the 

distinction between the sensitivity to a source 𝑆𝑆𝐽𝐽,𝑖𝑖 and the sensitivity to a source-species 𝑠𝑠𝑗𝑗,𝑖𝑖 — 

see Table B.1). For instance, the sensitivity of 𝐶𝐶𝑖𝑖 to all EGU emissions (we consider EGU NOx 

and SO2 emissions) is: 

𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸,𝑖𝑖 = 𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐸 𝑁𝑁𝑁𝑁𝑥𝑥,𝑖𝑖 + 𝑠𝑠𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆2,𝑖𝑖 = ß𝐸𝐸𝐸𝐸𝐸𝐸 𝑁𝑁𝑁𝑁𝑥𝑥,𝑖𝑖𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 𝑁𝑁𝑁𝑁𝑥𝑥,,𝑖𝑖�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝑁𝑁𝑁𝑁𝑥𝑥� + ß𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆2,𝑖𝑖𝑓𝑓𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆2,𝑖𝑖�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑆𝑆𝑆𝑆2 � 

Counterfactual concentrations are estimated using the 𝑠𝑠𝑗𝑗,𝑖𝑖’s and counterfactual emissions. The 

uncertainty in counterfactual concentrations, therefore, comes from both 𝑠𝑠𝑗𝑗,𝑖𝑖 and emissions.  
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Estimating Uncertainty in Sensitivities 

Each regression parameter in Equation 1 has an associated distribution, and these 

distributions were sampled simultaneously using information in the variance–covariance matrix 

of the regression. 

 

Uncertainty in Emissions 

The estimate of the change in emissions for each intervention is the other source of 

uncertainty in the final model. This is separate from (though not completely independent of) an 

estimate in the uncertainty in total emissions. Uncertainty in total emissions comes from 

uncertainty in instrument measurements for in EGUs and parameterizations in MOVES2010b, 

which was the model for MOB emissions (U.S. EPA 2012). Uncertainty in the change in 

emissions comes from our method to estimate the counterfactuals. 

EGU Emissions 

Uncertainty is estimated from the estimate of standard error in the mean load-based 

emissions factor at the beginning of the period.  

Our estimate of uncertainty in ∆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 will come, primarily from two sources: the estimate 

of the 1995 emissions factor used to estimate the counterfactual, and uncertainty in attributing 

reductions to specific control and/or regulatory program. Uncertainty in the 1995 emissions 

factor (EF1995) for NOx and SO2 will come from sampling a distribution around the mean. This 

distribution (Figure B.1 for NOx) will be sampled from when estimating the 5,000 realizations of 

the counterfactuals for use in the health analysis. The approach is identical for SO2. 

Mobile Emissions 

Uncertainty in mobile emissions is more difficult to estimate than in EGU emissions. The 

approach up to this point has been to sample a ±50% uncertainty around the original estimate of 

∆EMOB. However, this estimate is likely too high based on emissions-concentration estimates in 

prior work at Georgia Tech and others (Blanchard et al. 2012; Pachon 2011), and we are 

investigating alternative estimates of the change in mobile emissions over time. 
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Figure B.1. NOx emissions. Counterfactual emissions are estimated by multiplying the mean 
emissions factor in 1995 (EF1995) by the daily load. A 95% confidence interval around the mean 
EF1995 produces the above distribution of counterfactuals. Note: 2015 data is only through 
March. 

 
Monte Carlo Sampling 

The two distribution groups — the first from ∆E and the second from the sensitivities — 

were sampled 5,000 times and used in each of the species models in a Monte Carlo approach to 

estimate 5,000 alternative counterfactual outcomes for the EGUMOB. The approach allows for 

uncertainty distributions to be estimated for counterfactuals relating to any combination of 

regulatory programs.  
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Figure B.2. Monthly-averaged observed and distributions of counterfactual O3 for three scenarios. 
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Figure B.3. Monthly-averaged observed and distributions of counterfactual NO2 for three scenarios. 
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Figure B.4. Monthly-averaged observed and distributions of counterfactual CO for three scenarios. 
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Figure B.5. Monthly-averaged observed and distributions of counterfactual SO2 for three scenarios. 
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Figure B.6. Monthly-averaged observed and distributions of counterfactual PM2.5 for three scenarios. 
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Figure B.7. Monthly-averaged observed and distributions of counterfactual SO42− for three scenarios  
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Figure B.8. Monthly-averaged observed and distributions of counterfactual NH4+ for three scenarios. 
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Figure B.9. Monthly-averaged observed and distributions of counterfactual NO3− for three scenarios.  
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Figure B.10. Monthly-averaged observed and distributions of counterfactual OC for three scenarios. 
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Figure B.11. Monthly-averaged observed and distributions of counterfactual EC for three scenarios.  
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Abbreviations and Other Terms 

 CMAQ Community Multiscale Air Quality 

 EGU electricity generating unit 

 MOB on-road mobile 

 MOVES U.S. EPA MOtor Vehicle Emissions Simulator 
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