

AVAILABLE ON THE HEI WEBSITE

Research Report 195

Impacts of Regulations on Air Quality and Emergency Department Visits in the Atlanta Metropolitan Area, 1999–2013

Russell et al.

Appendix A. Supplementary Figures and Tables

This Appendix was reviewed solely for spelling, grammar, and cross-references to the main text. It has not been formatted or fully edited by HEI. This document was reviewed by the HEI Review Committee.

Correspondence may be addressed to Dr. Armistead (Ted) Russell, Department of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30322; e-mail: *trussell@ce.gatech.edu*.

Although this document was produced with partial funding by the United States Environmental Protection Agency under Assistance Award CR-83467701 to the Health Effects Institute, it has not been subjected to the Agency's peer and administrative review and therefore may not necessarily reflect the views of the Agency, and no official endorsement by it should be inferred. The contents of this document also have not been reviewed by private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views or policies of these parties, and no endorsement by them should be inferred.

© 2018 Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110-1817

APPENDIX A. SUPPLEMENTARY FIGURES AND TABLES

Introduction

This appendix contains figures and tables that supplement the information in the main body of the report. The meteorological method is described in detail in Henneman and colleagues (2015). Here, we present regression results for the step that relates daily deviations (denoted Δ) to meteorological and day-specific indicators.

Abbreviations and Other Terms

ANAA	Atlanta nonattainment area
CMAQ	Community Multiscale Air Quality
СО	carbon monoxide
EC	elemental carbon
EGU	electricity generating unit
MDA8h	maximum daily 8-hour
MOB	on-road mobile
MOVES	U.S. EPA MOtor Vehicle Emissions Simulator
NBP	NO _x Budget Trading Program
$\mathbf{NH_4^+}$	ammonium
NMB	normalized mean bias
NME	normalized mean error
NO_2	nitrogen dioxide
NO_3^-	nitrate
NO _x	oxides of nitrogen
O_3	ozone
OC	organic carbon
PM _{2.5}	particulate matter ≤2.5 µm in aerodynamic diameter
REG	regional, referring to EGU emissions in Alabama, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee minus those in the ANAA
RH	relative humidity
SEARCH	SouthEastern Aerosol Research and Characterization
SD	standard deviation
SO_2	sulfur dioxide
\mathbf{SO}_4^{2-}	sulfate
SOA	secondary organic aerosol
STM	short-term meteorology
U.S. EPA	U.S. Environmental Protection Agency

SEARCH Sites

- BHM N. Birmingham, Alabama
- CTR Centreville, Alabama
- GFP Gulfport, Mississippi
- JST Jefferson Street, Atlanta, Georgia
- OAK Oak Grove, Mississippi
- OLF Outlying Landing Field #8, Florida
- PNS Pensacola, Florida
- YRK Yorkville, Georgia

Tables

speciesa **∆O**₃ ΔNOx ΔNO_2 ΔCO ΔSO_2 R²(adj.) 0.34 0.45 0.43 0.2 0.3 -0.095* 0.32*** 0.081** -0.26** 0.016 (Intercept) 0.39*** ΔT^{m} 0.082** -0.12** (ΔT^m)² 0.046*** -0.042*** $(\Delta T^m)^3$ -0.029*** -0.018** $T^{M} * \Delta T^{m}$ -0.088*** -0.26*** -0.083*** -0.08*** 0.16*** $T^{M} * \Delta RH$ -0.35*** -0.16*** 0.11** 0.14*** -0.23*** -0.44*** -0.22*** ΔWS -0.4*** ΔRH -0.21*** 0.14*** 0.075*** 0.53*** -0.42*** -0.089*** 0.11*** 0.064*** RF 0.046** -0.042** ΔT^{m}_{-1} -0.076*** 0.056* -0.039** -0.029*** -0.074*** -0.062*** ΔWS_{-1} -0.073*** -0.096*** -0.13*** -0.15*** ΔRH_{-1} -0.057*** -0.018* 0.064*** RF_{-1} ΔT^{m}_{-2} -0.0095* ΔWS_{-2} -0.075*** 0.044** ΔRH_{-2} -0.00077* -0.056* RF₋₂ 0.47*** -0.63*** -0.21** -0.59 Sun 0.17*** 0.42*** Mon 0.47*** 0.2*** Tues 0.45*** Wed -0.46*** 0.19*** 0.088* -0.36*** 0.51*** 0.22*** 0.085* Thu -0.16*** 0.18*** 0.45*** Fri Sat T^M * Sun -0.16*** -0.061*** 0.12*** -0.04** T^M * Mon 0.087*** -0.037** T^M * Tues -0.049*** 0.12*** 0.11*** T^M * Wed 0.1*** T^M * Thu 0.068* 0.12*** T^M * Fri 0.12*** T^M * Sat -0.1***-0.074*** Jan -0.12* Feb -0.17** Mar -0.3*** Apr -0.3*** May -0.34*** Jun -0.35*** Jul -0.34*** Aug -0.36*** Sep -0.22*** Oct -0.13* Nov 0.1* Dec -0.78*** -0.38*** -0.53*** -0.27** 0.17* Holidays (I) -0.48*** -0.28*** 0.19** -0.23*** Holidays (2) -0.26**

Table A.1. Model parameters for scaled and normalized linear detrending model at the JST site for gaseous species^a

^a Δ denotes daily deviations for each pollutant and meteorological variable. RF is a daily factor representing whether or not it rained on a given day; T^M * Δ T^m and T^M * Δ RH are interaction terms between maximum daily temperature and daily deviations of mean temperature and relative humidity; WS is wind speed; -1 and -2 subscripts represent one and two days lags, respectively. Holidays (I) represent stationary holidays, and Holidays (II) represent holidays that are on different days each year. These values were estimated using centered (by the mean) and scaled (by the standard deviations) covariates; therefore, values should be interpreted relative to each other. Significance codes: $P < 0.001^{***}$, $P < 0.01^{**}$, $P < 0.05^{*}$

Table A.2. Model parameters for scaled and normalized linear detrending model at JST for particulate species ^a										
	$\Delta PM_{2.5}$	ΔSO_4	ΔNO ₃	ΔNH_4	ΔOC	ΔEC				
R ² (adj.)	0.4	0.18	0.25	0.2	0.47	0.45				
(Intercept)	0.35***	0.044***	0.036*	0.093***	0.028**	0.087***				
ΔT ^m	-0.08**	-0.1***	-0.25***	-0.14***	0.1***	0.047*				
(ΔT ^m) ²	-0.067***	-0.034***	-0.047***	-0.053***	-0.019***	_				
$(\Delta T^m)^3$	_	_	_	_	_	0.0092**				
T ^M * ΔT ^m	0.36***	0.18***	0.13***	0.26***	0.082***	0.089***				
T ^M * ΔRH	-0.17***	-0.14***	-0.16***	-0.082***	-0.06***	-0.043***				
ΔWS	-0.2***	-0.044***	-0.17***	-0.067***	-0.099***	-0.2***				
ΔRH	0.26***	0.23***	0.18***	0.24***	0.047**	_				
RF	-0.17***	-0.12***	-0.061***	-0.11***	-0.029***	_				
ΛT ^m 1	-0.063**	_	-0.13***	-0.03*	-0.045***	-0.071***				
Δ.W/S 1	-0 19***	-0 073***	_0.12***	-0 072***	-0.069***	-0.097***				
	-0.18***	0.079	-0.068***		-0 12***	_0 11***				
BE 4	_0 1/***	-0.05***	_0.031**	_0.06/***	_0.12	_0.11				
	0.12***	0.005	0.051	-0.0071**	-0.006**	_0.052				
	-0.018	0 06***	0 051***		-0.000	-0.000				
	-0.032	-0.00	-0.031	-0.031	0 0022***	_				
	-0.0040		-0.0021	-0.0021	-0.0022	_				
RF-2	 0 2F***	—	0.16***	 0	 0.071***	0 10***				
Sun	-0.35***	—	-0.10	-0.22***	-0.071***	-0.18				
Nion	-0.37	_	-0.081**	-0.083****	-0.046***	_				
Tues	—	—	—	—	—	_				
vved	—	—		—	—	— 0 01***				
l nu Fri	—	—	0.084	—	—	0.21				
FII Sat	—	—	0.1	—	—	—				
Jal TM * Sup	 0.072*	—	—	 0.049*	—	—				
	0.072*	—	—	0.048	—					
	0.077*	—	—	—	—	0.048				
	—	—	0.021*	—	—	0.000				
TM * Thu	—	—	0.021	—	—	0.078				
TM * Eri	—	—	—	—	—	0.071***				
TM * Cot		_	_			0.071				
	0 12*	_	0.000**	0.000**	_	0.076*				
Jan	-0.13	_	0.099	0.082	_	-0.070				
Mar	-0.15	_	_	_	0.047*	_				
ividi Apr	-0.15		—		0.047	0 11***				
Αμι	-0.27	-0.067	—	-0.001	—	-0.11				
ividy	-0.21	—	—	—	—	-0.097**				
Jun	-0.2***	_	—	—	_	-0.093**				
Jul	-0.13*	—	_	_	—	-0.12***				
Aug	-0.21***	—	—	—	—	-0.13***				
Sep	-0.3***	_	_	_	_	-0.1***				
Oct	-0.27***	_	_	_	_	-0.074*				
Nov	-0.21***	—	—	—	—	-0.072*				
Dec	—	—	0.077*	—	0.086***	—				
Holidays (I)	—	-0.13**	-0.15*	—	-0.091*	-0.29***				
Holidays (2)	_	—	—	_	_	-0.18***				

 Δ denotes daily deviations for each pollutant and meteorological variable. RF is a daily factor representing whether or not it rained on a given day; T^M * Δ T^m and T^M * Δ RH are interaction terms between maximum daily temperature and daily deviations of mean temperature and relative humidity; WS is wind speed; -1 and -2 subscripts represent one and two days lags, respectively. Holidays (I) represent stationary holidays, and Holidays (II) represent holidays that are on different days each year. These values were estimated using centered (by the mean) and scaled (by the standard deviations) covariates; therefore, values should be interpreted relative to each other. Significance codes: $P < 0.001^{**}$, $P < 0.01^{**}$, $P < 0.05^{*}$

Cable A.3. Availability of daily pollutant species and meteorological metrics (2000–2013) from BH	M,
onverted from hourly measurements ^a	

	-		Exclusion		% Missing
Species	Metric	Period	criteria (hours)	# Days	Days
Gaseous (ppb)					
O_3	Max of 8-h mean	12 AM-11 PM	_	4670	8.7
NO _x	Daily mean	11 AM-7 PM	$\geq 5/9$	3610	29.4
CO	Daily mean	11 am -7 pm	$\geq 5/9$	4335	15.2
SO_2	Daily max	12 am -11 pm	$\geq 12/24$	4475	12.5
Particulate ($\mu g/m^3$)					
PM _{2.5}	Daily mean	12 am -11 pm	_	4627	9.5
Meteorology ^b					
SR (W/m^2)	Daily total	12 am -11 pm	Any, 7 AM -6 PM	3684	28.0
SR^{M} (W/m ²)	Daily max	12 am -11 pm	_	4583	10.4
$T^{m}(^{\circ}C)$	Daily mean	11 am -3 pm	$\geq 3/5$	4522	11.6
T ^M (°C)	Daily max	12 am -11 pm	_	4638	9.3
WS (m/sec)	Daily mean	11 am -3 pm	$\geq 3/5$	4512	11.8
WS ^{morn} (m/sec)	Morning mean	7 am -10 am	$\geq 3/5$	4512	11.8
RH (%)	Morning mean	8 am -11 am	$\geq 3/4$	4599	10.1
RF (1 or 0)	Daily factor	12 am -11 pm	—	5046	1.33

^a There were 5114 total days. If the exclusion criteria is violated on a certain day, the species is recorded as not available for that day.

^b SR = shortwave radiation; SRM = maximum shortwave radiation; Tm = mean temperature; TM = maximum temperature; WS = wind speed; RH = relative humidity; RF = rainfall (1 if rain, 0 if no rain).

Table A.4. Model parameters for scaled and normalized linear detrending model at BHM ^a									
	ΔO ₃	ΔNOx	ΔCO	ΔSO_2	$\Delta PM_{2.5}$				
R²(adj.)	0.3	0.38	0.23	0.27	0.38				
(Intercept)	0.45***	0.28***	-0.023	0.032	0.028				
$\Delta T^{m} (^{\circ}C)$	_	0.12***	0.13***	0.21***	_				
$(\Delta T^m)^2 (^{\circ}C)$	0.024*	-0.054***	-0.032**	-0.055***	_				
(∆T ^m) ³ (°C)	-0.0092*	—	—	—	—				
$T^{M} * \Delta T^{m} (^{\circ}C)$	-0.064*	_	0.091**	_	—				
$T^{M} * \Delta RH (\% \Delta^{\circ} C)$	-0.15***	0.27***	—	-0.19***	-0.13***				
ΔWS (m/sec)	_	-0.33***	-0.31***	-0.3***	—				
ΔRH (%)	-0.29***	_	0.17***	—	0.15***				
RF (1 or 0)	—	—	—	—	-0.14***				
ΔT^{m}_{-1} (°C)	0.097***	-0.11***	-0.11***	-0.13***	0.1***				
ΔWS_{-1} (m/sec)	_	-0.092***	-0.096***	-0.085***	-0.07***				
ΔRH_{-1} (%)	-0.074***	-0.16***	-0.14***	-0.15***	0.065***				
RF ₋₁ (1 or 0)	_	_	_	-0.033*	-0.22***				
ΔT^{m}_{-2} (°C)	-0.0088*	-0.013**	-0.01*	_	0.03***				
ΔWS_{-2} (m/sec)	-0.061***	0.041*	_	_	-0.38***				
ΔRH_{-2} (%)	-0.0042***	_	_	0.0021*	-0.0075***				
RF_2 (1 or 0)	-0.07*	_	_	_	-0.15***				
Sun	_	_	_	_	-0.21***				
Mon	-0.27*	_	0.31***	_	_				
Tues	-0.32**	_	0.26***	_	_				
Wed	-0.29*	_	_	_	_				
Thu	_	-0.45***	_	_	0.33**				
Fri	0.3*	-0.9***	-0.3***	_	_				
Sat	_	_	_	_	_				
T ^M * Sun (°C)	0.3***	0.072***	0.058***	_	_				
T ^M * Mon (°C)	0.41***	0.094***	_	_	_				
T ^M * Tues (°C)	0.41***	0.085***	_	_	_				
$T^{M} * Wed (^{\circ}C)$	0.4***	0.071***	0.068***	_	0.029*				
T ^M * Thu (°C)	0.34***	—	—	—	-0.077*				
T ^M * Fri (°C)	0.26***	_	_	_	_				
$T^{M} * Sat (^{\circ}C)$	0.32***	—	—	—	—				
Jan	—	0.19***	0.14**	—	—				
Feb	_	_	0.11*	0.12*	_				
Mar	-0.18**	_	_	_	_				
Apr	-0.32***	_	_	_	-0.094*				
May	-0.53***	-0.12*	_	_	—				
Jun	-0.68***	—	—	—	—				
Jul	-0.81***	-0.12*	—	—	—				
Aug	-0.81***	-0.14*	_	_	_				
Sep	-0.63***	-0.15**	—	—	—				
Oct	-0.36***	_	_	_	_				
Nov	-0.14**	_	-0.12*	_	_				
Dec	_	_	_	_	_				
Holidays (I)	_	_	_	_	-0.24**				
Holidays (2)		-0.22*	-0.19*	—					

^a Δ denotes daily deviations for each pollutant and meteorological variable. RF is a daily factor representing whether or not it rained on a given day; T^M * Δ T^m and T^M * Δ RH are interaction terms between maximum daily temperature and daily deviations of mean temperature and relative humidity; WS is wind speed; -1 and -2 subscripts represent one and two days lags, respectively. Holidays (I) represent stationary holidays, and Holidays (II) represent holidays that are on different days each year. These values were estimated using centered (by the mean) and scaled (by the standard deviations) covariates; therefore, values should be interpreted relative to each other. Significance codes: *P* < 0.001***, *P* < 0.01**, *P* < 0.05*

		Ĩ			e	e	
	Daily		Summe	er	Winter		
	Mean	SD	Mean	SD	Mean	SD	
Gaseous (ppb)							
O ₃	7.96 (21%)	6.76 (18%)	9.68 (19%)	7.71 (16%)	6.35 (21%)	5.48 (19%)	
NO_2	2.24 (21%)	2.7 (19%)	1.39 (17%)	1.62 (15%)	3.24 (26%)	3.55 (25%)	
CO	0.03 (11%)	0.04 (11%)	0.02 (8%)	0.02 (7%)	0.05 (15%)	0.07 (14%)	
SO_2	4.44 (40%)	6.88 (46%)	2.82 (32%)	3.87 (37%)	6.39 (49%)	9.29 (53%)	
Particulate (µg	p/m^3)						
PM _{2.5}	3.1 (24%)	2.86 (21%)	3.56 (22%)	3.32 (21%)	2.82 (25%)	2.68 (24%)	
SO_4^{2-}	0.70 (19%)	0.82 (16%)	1.01 (19%)	1.09 (17%)	0.51 (20%)	0.52 (17%)	
$\mathbf{NH_4^+}$	0.30 (21%)	0.34 (19%)	0.36 (19%)	0.4 (17%)	0.28 (24%)	0.27 (22%)	
NO_3^-	0.20 (25%)	0.31 (27%)	0.06 (18%)	0.08 (18%)	0.41 (35%)	0.44 (34%)	
EC	0.38 (31%)	0.44 (33%)	0.31 (26%)	0.34 (29%)	0.43 (37%)	0.53 (41%)	
OC	1.01 (28%)	0.98 (26%)	0.84 (24%)	0.75 (23%)	1.09 (31%)	1.07 (30%)	

Table A.5. Daily absolute mean contribution and percent of observed standard deviation (SD) explained by STM in meteorological detrending at JST

Table A.6. Cross-species Pearson correlations of observations (upper right) and counterfactual (lower left) ^a										
Counterfac-		Gase	eous		Particulate					
tual / Observed	O ₃	NO_2	CO	SO_2	PM _{2.5}	SO_4^{2-}	$\mathrm{NH_4^+}$	NO_3^-	EC	OC
Gaseous (pp	<i>b</i>)									
O ₃		-0.45	-0.26	-0.05	0.43	0.52	0.39	-0.38	0.09	0.19
NO_2	-0.58		0.68	0.27	0.19	-0.03	0.12	0.50	0.45	0.34
CO	-0.48	0.64		0.21	0.37	0.13	0.27	0.46	0.55	0.46
SO_2	-0.14	0.21	0.13		0.24	0.15	0.18	0.21	0.30	0.23
Particulate ($\mu g/m^3$)									
PM _{2.5}	0.47	-0.02	0.12	0.09		0.76	0.75	0.19	0.62	0.67
SO_4^{2-}	0.63	-0.32	-0.17	-0.01	0.73		0.83	-0.02	0.31	0.31
$\mathrm{NH_4^+}$	0.60	-0.22	-0.15	-0.05	0.71	0.86		0.21	0.40	0.38
NO_3^-	-0.43	0.48	0.47	0.18	0.09	-0.17	-0.06		0.25	0.24
EC	0.02	0.39	0.38	0.17	0.47	0.10	0.18	0.20		0.83
OC	0.10	0.26	0.31	0.10	0.54	0.12	0.18	0.22	0.77	

^a Red shading indicates a change in correlation between observations and counterfactual of more than 0.20. The shading is symmetric across the diagonal grey boxes.

Table A.7. CMAQ model evaluation for four years (2001, 2002, 2011, and 2012) at JST ^a									
	Concentration				EGU		МОВ		
	NMB (%)	NME (%)	r	NMB (%)	NME (%)	r	NMB (%)	NME (%)	r
Gaseous (pp	b)								
O ₃	4.0	19.4	0.82	-26.3	82.4	0.59	-30.9	73.4	0.59
NO ₂	324.2	324.2	0.40	-40.2	110.2	-0.05	89.5	107.5	0.04
CO	154.7	155.2	0.62	-89.3	98.1	0.05	62.6	73.6	0.54
SO ₂	-60	66.2	0.56	-81.4	81.9	0.24	-69.1	71.6	0.37
Particulate (μg/m³)								
PM _{2.5}	-4.7	35.2	0.52	-46.2	57.5	0.57	-5.3	53.1	0.21
SO4 ²⁻	-18.1	46.5	0.49	-16.2	58.4	0.27	_	_	_
NH_4^+	-15.1	52.1	0.40	-38.7	70.5	0.48	-48.1	68	0.13
NO_3^-	40.3	80.6	0.68	-123.4	133.6	-0.19	529.6	822.1	-0.05
EC	51.1	65.5	0.60	_	_	—	-35.4	39	0.63
OC	-34.2	43.8	0.49	228.8	308.3	-0.01	-53.3	98.7	0.02

^a EGU and MOB columns compare empirical sensitivities to CMAQ-modeled sensitivities. The SO_4^{2-} and EC empirical models do not estimate MOB and EGU sensitivities, respectively. *r* is the Pearson correlation coefficient.

T-LL A Q CM										
Table A.8. CM	AQ values as a funct	tion of empirical va	lues in 20)11–2012 ^a						
	Con	centration		EGU*			MOB			
_	Slope	Intercept	R ²	Slope	Intercept	R ²	Slope	Intercept	R ²	
Gaseous (ppl	b)									
O ₃	0.71 (0.02)	15 (0.8)	0.69	1.1 (0.04)	0.26 (0.05)	0.54	0.67 (0.02)	-0.11 (0.2)	0.60	
NO ₂	0.75 (0.06)	26 (0.5)	0.18	-0.22 (0.06)	0.36 (0.03)	0.02	-0.91 (0.1)	18 (0.7)	0.06	
CO	1.2 (0.09)	0.21 (0.02)	0.20	1.6E-3 (2E-3)	4.6E-4 (4E-5)	0.00	0.41 (0.2)	0.16 (0.03)	0.00	
SO ₂	0.038 (0.004)	1 (0.04)	0.12	0.12 (0.02)	0.31 (0.08)	0.06	-0.081 (0.1)	0.085 (0.03)	0.00	
Particulate(µ	g/m³)									
PM _{2.5}	0.4 (0.04)	6.6 (0.4)	0.13	0.21 (0.02)	1.0 (0.05)	0.10	0.4 (0.03)	1.1 (0.01)	0.17	
SO4 ²⁻	0.15 (0.02)	1.4 (0.06)	0.06	0.35 (0.04)	0.59 (0.04)	0.11				
NH_4^+	0.35 (0.04)	0.43 (0.04)	0.09	0.18 (0.02)	0.24 (0.009)	0.07	0.28 (0.03)	0.32 (0.02)	0.11	
NO_3^-	1.5 (0.05)	0.005 (0.04)	0.57	-0.3 (0.1)	0.074 (0.02)	0.01	-4 (0.4)	0.6 (0.03)	0.15	
EC	0.61 (0.05)	1.0 (0.04)	0.20				0.55 (0.04)	0.11 (0.04)	0.23	
OC	0.38 (0.03)	1.5 (0.1)	0.14	0.046 (0.01)	0.015 (4E-4)	0.03	0.14 (0.009)	0.18 (0.02)	0.25	

^a EGU* here encompasses both local EGU and REG in the empirical model. Values presented here are identical to those on Figures A1.10 through A1.19.

Figures

Figure A.2. Daily EGU and REG emissions in the ANAA and in the southeast region.

Figure A.3. Daily gross load for EGUs in the ANAA and the southeastern region. Regional load is plotted with the ANAA load subtracted.

Figure A.4. Monthly-averaged ANAA emissions of key pollutants for EGU and MOB sources.

Figure A.5. Daily mobile emissions of three species as modeled by MOVES (left) and smoothed using the linear model. Blue values are weekend emissions, and black are weekend.

Figure A.6. Detrending differences for BHM (gases).

Figure A.7. Detrending time series for BHM.

Figure A.8. Daily time series of O₃ and PM_{2.5} at JST. O₃ and PM_{2.5} concentrations show variability on a variety of time scales over the study period, including long-term, annual, and daily. Annual O₃ concentration ranges have decreased with little change in the median, and annual PM_{2.5} mean concentrations have decreased.

Figure A.9. Annual average observed, detrended, and counterfactual O₃.

Figure A.10. O₃ daily CMAQ-empirical comparisons (time series on the top, scatter plot on the bottom)

for ambient concentrations, mobile, and EGU sensitivities. EGU* represents the combination of local and regional EGUs.

Figure A.11. NO₂ daily CMAQ-empirical comparisons (time series on the top, scatter plot on the bottom) for ambient concentrations, mobile, and EGU sensitivities. EGU* represents the combination of local and regional EGUs.

Figure A.12. CO daily CMAQ-empirical comparisons (time series on the top, scatter plot on the bottom) for ambient concentrations, mobile, and EGU sensitivities. EGU* represents the combination of local and regional EGUs. Reprinted from Henneman et al. 2017b with permission from Elsevier.

Figure A.13. SO₂ **daily CMAQ-empirical comparisons (time series on the top, scatter plot on the bottom) for ambient concentrations, mobile, and EGU sensitivities.** EGU* represents the combination of local and regional EGUs. Reprinted from Henneman et al. 2017b with permission from Elsevier.

Figure A.14. PM_{2.5} daily CMAQ-empirical comparisons (time series on the top, scatter plot on the bottom) for ambient concentrations, mobile, and EGU sensitivities. EGU* represents the combination of local and regional EGUs. Reprinted from Henneman et al. 2017b with permission from Elsevier.

Figure A.15. SO4²⁻ daily CMAQ-empirical comparisons (time series on the top, scatter plot on the bottom) for ambient concentrations, mobile, and EGU sensitivities. EGU* represents the combination of local and regional EGUs. Reprinted from Henneman et al. 2017b with permission from Elsevier.

Figure A.16. NH₄⁺ daily CMAQ-empirical comparisons (time series on the top, scatter plot on the bottom) for ambient concentrations, mobile, and EGU sensitivities. EGU* represents the combination of local and regional EGUs. Reprinted from Henneman et al. 2017b with permission from Elsevier.

Figure A.17. NO3 daily CMAQ-empirical comparisons (time series on the top, scatter plot on the bottom) for ambient concentrations, mobile, and EGU sensitivities. EGU* represents the combination of local and regional EGUs. Reprinted from Henneman et al. 2017b with permission from Elsevier.

Figure A.18. OC daily CMAQ-empirical comparisons (time series on the top, scatter plot on the bottom) for ambient concentrations, mobile, and EGU sensitivities. EGU* represents the combination of local and regional EGUs. Reprinted from Henneman et al. 2017b with permission from Elsevier.

Figure A.19. EC daily CMAQ-empirical comparisons (time series on the top, scatter plot on the bottom) for ambient concentrations, mobile, and EGU sensitivities. EGU* represents the combination of local and regional EGU. Reprinted from Henneman et al. 2017b with permission from Elsevier.

Figure A.20. Monthly-averaged PM_{2.5} **species composition at JST.** The black line in the Observed (above) and Counterfactual (below) represents observed PM_{2.5}.

References

Henneman LR, Holmes HA, Mulholland JA, Russell AG. 2015. Meteorological detrending of primary and secondary pollutant concentrations: Method application and evaluation using long-term (2000–2012) data in Atlanta. Atmos Environ 119:201–210; doi:10.1016/j.atmosenv.2015.08.007.

U.S. Environmental Protection Agency. 2016. National Emissions Inventory.

U.S. Environmental Protection Agency. 2016c. National Emissions Inventory. *www.epa.gov/air-emissions-inventories/2011-national-emissions-inventory-nei-data*.

Henneman LRF, Liu C, Hu Y, Mulholland JA, Russell AG. 2017b. Air quality modeling for accountability research: Operational, dynamic, and diagnostic evaluation. Atmos Environ 166:551–565. Available: *https://doi.org/10.1016/j.atmosenv.2017.07.049*.