
 
 
 
 

APPENDIX AVAILABLE ON THE HEI WEB SITE 
 
 

Research Report 183 
 

Development of Statistical Methods for Multipollutant Research 
 

Part 2. Development of Enhanced Statistical Methods for Assessing Health 
Effects Associated with an Unknown Number of Major Sources of Multiple 

Air Pollutants 
 
 
 

E.S. Park et al. 
 
 
 

Appendix F. Application to the Harris County Mortality Data from Multiple 
Subregions 

 
 

Note: Appendices available only on the Web have been reviewed solely for spelling, grammar, and cross-
references to the main text. They have not been formatted or fully edited by HEI.  

 
 
 

  
  
 

Correspondence may be addressed to Dr. Eun Sug Park, Texas A&M Transportation Institute, The Texas A&M 
University System, 3135 TAMU, College Station, TX 77843-3135; e-park@tamu.edu. 

 
Although this document was produced with partial funding by the United States Environmental Protection 

Agency under Assistance Award CR–83467701 to the Health Effects Institute, it has not been subjected to the 
Agency’s peer and administrative review and therefore may not necessarily reflect the views of the Agency, and 
no official endorsement by it should be inferred. The contents of this document also have not been reviewed by 
private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect 

the views or policies of these parties, and no endorsement by them should be inferred. 
 

This document was reviewed by the HEI Health Review Committee. 
 

© 2015 Health Effects Institute, 101 Federal Street, Suite 500, Boston, MA  02110-1817 



Appendix F 

HEI Research Report 183, Part 2 F-1 

Appendix F: Application to the Harris County Mortality Data from Multiple Subregions 

 In this section, we illustrate the use of estimated source contributions from spatially-

enhanced multivariate receptor models in the health effects modeling. We defined “subregions” 

within Harris County by dividing the entire county into M (= 9) contiguous subregions 

containing the 9 monitoring sites of Canister VOCs. The following rule was applied to assign 

each census tract in Harris County to one of those 9 subregions. If a monitor is in a census tract 

that tract was assigned to its monitor. Otherwise, the closest monitor to the center of a census 

tract determined the census tract assignment to each subregion. Each subregion plays a role of a 

10-mile buffer defined earlier (i.e., in the analysis near Clinton Drive). The mortality data were 

obtained for each subregion, and aggregated into daily counts. The time series of estimated 

source contributions for each subregion can then be obtained using the enhanced multivariate 

receptor models presented in the previous section.  

 For the health model, the average health outcome in day t and subregion m ( )1, ,m M=   

may be represented as 
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where ,
m
t l kγ −  is the lag l source contribution for day t in subregion m, ( ), timens time df  represents a 

natural cubic spline of time with dftime degrees of freedom, ( ),m
t Tns dfΤ  represents a natural cubic 

spline of temperature with 2 days lag with dfT degrees of freedom, ( ),m
t Dns D df  represents a 

natural cubic spline of dew point temperature with dfD degrees of freedom, and m
tN  is the size of 

the population at risk in subregion m on day t.  
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We fitted the above model to the daily counts of cause-specific mortality data 

(Cardiovascular, IHD, Acute MI, Heart Failure, Stroke, Respiratory, COPD, and Pneumonia), 

temperature and dew point temperature data, and the time series of estimated source 

contributions for each subregion obtained by the enhanced multivariate receptor models. We 

used 24 df (or 4 df/yr) for the smoothing of calendar time, and 4 df for the smoothing of 

temperature and 3 df for dew point temperature, with 2-day lags for temperature and 0-day lags 

for dew point, respectively. Lag days 0–2 were explored for each cause-specific mortality time 

series. Due to a large number of models that needed to be fitted, we used GLM procedure in R 

(R Development Core Team, 2006) in this illustration rather than using MCMC. Table F.1 

presents source-specific effects on various cause-specific daily mortality counts associated with 

an IQR increase of estimated VOCs source contribution. The effects of Refinery on 

Cardiovascular mortality (lag 1), Acute MI (lag 0), Respiratory (lag 0 and lag 2), and COPD (lag 

0) were all significant at α = 0.05. The effects of Petrochemical production on Cardiovascular 

mortality and Pneumonia were both significant at lag 1. The effects of unburned gasoline on 

Acute MI (lag 2) and Heart failure (lag 1) as well as the effect of Vehicle Exhaust on Heart 

Failure (lag 0) were also significant. The effects of Natural Gas were significant for 

Cardiovascular mortality (lag 1), IHD (lag 1), Acute MI (lag 1), Heart Failure (lag 2), and Stroke 

(lag 1), but strangely with negative coefficients.  
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Table F.1. VOC source-specific effects on cause-specific mortality for residents ≥ 65 years 
at the time of death residing in Harris County 

Cause of 
Mortality 

 Source 1 
(Refinery) 

Source 2 
(Petrochem) 

Source 3 
(Gasoline) 

Source 4 
(Natural 

Gas) 

Source 5 
(Vehicle 
Exhaust) 

Cardiova-
scular 

β (lag 0) 0.026 0.009 0.018 −0.013 0.018 
β (lag 1) 0.046 0.033 −0.006 −0.052 −0.005 
β (lag 2) 0.016 0.013 −0.004 −0.023 0.015 

IHD β (lag 0) 0.020 0.031 0.003 −0.007 0.002 
β (lag 1) 0.020 0.033* −0.031 −0.041 0.004 
β (lag 2) −0.001 0.025 0.012 −0.008 −0.007 

Acute MI β (lag 0) 0.060 −0.010 0.004 0.020 0.004 
β (lag 1) 0.044 0.043* −0.032 −0.072 −0.016 
β (lag 2) 0.001 −0.013 0.065 −0.007 −0.022 

Heart 
Failure 

β (lag 0) 0.038 0.009 0.047 −0.049 0.125 
β (lag 1) 0.048 −0.006 0.117 −0.074 −0.026 
β (lag 2) −0.057 −0.018 −0.001 −0.107 0.073 

Stroke β (lag 0) 0.023 0.007 0.021 0.013 0.016 
β (lag 1) 0.061 0.030 −0.012 −0.103 −0.031 
β (lag 2) 0.029 −0.002 −0.024 −0.016 0.018 

Respiratory β (lag 0) 0.077 −0.017 0.016 −0.026 −0.019 
β (lag 1) −0.056 0.046 0.051 −0.001 0.017 
β (lag 2) 0.063* 0.040 0.001 −0.005 −0.031 

COPD β (lag 0) 0.105 0.007 −0.008 −0.060 0.011 
β (lag 1) −0.082 0.005 0.048 0.030 0.025 
β (lag 2) 0.044 −0.013 −0.041 0.011 −0.008 

Pneumonia β (lag 0) 0.017 −0.042 0.021 0.021 −0.049 
β (lag 1) −0.057 0.125 0.046 −0.017 0.057 
β (lag 2) −0.054 0.053 0.087 0.046 −0.034 

Notes: 1. The β coefficient of VOCs contributions from each source type represents the 
estimated log-relative risk per IQR increase of estimated VOCs source contribution; 2. 
Statistically significant effects (at α = 0.05) are denoted in bold; 3. * indicates that the statistical 
significance changed (from insignificant to significant or vice versa) when df for time changed 
from 4/year to 7/year.  

 
 We conducted a sensitivity analysis with varying degrees of freedom for natural splines 

for calendar time (4 df/year and 7 df/year) and weather variables (temperature: 2–6 df, dew point 

temperature 2–6 df). In general, no significant differences were observed. The statistical 

significance of β coefficients in Table F.1 mostly stayed the same except for a very few cases. 

When 7 df/year (instead of 4 df/year) was used for calendar time, β coefficient for petrochemical 
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production for IHD (lag 1) and Acute MI (lag 1) changed to 0.041 to 0.0703 and became 

statistically significant while β for refinery on respiratory mortality (lag 2) changed to 0.0564 

and lost its statistical significance (P value = 0.06). 


