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A B O U T  H E I

 v

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the institute

• Identifies the highest-priority areas for health effects research;

• Competitively funds and oversees research projects;

• Provides intensive independent review of HEI-supported studies and related 
research;

• Integrates HEI’s research results with those of other institutions into broader 
evaluations; and

• Communicates the results of HEI’s research and analyses to public and private 
decision makers.

HEI typically receives half of its core funds from the U.S. Environmental Protection Agency and 
half from the worldwide motor vehicle industry. Frequently, other public and private 
organizations in the United States and around the world also support major projects or research 
programs. HEI has funded more than 280 research projects in North America, Europe, Asia, and 
Latin America, the results of which have informed decisions regarding carbon monoxide, air 
toxics, nitrogen oxides, diesel exhaust, ozone, particulate matter, and other pollutants. These 
results have appeared in the peer-reviewed literature and in more than 200 comprehensive 
reports published by HEI.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Health Research Committee solicits input from HEI sponsors and other stakeholders and works 
with scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and 
oversee their conduct. The Health Review Committee, which has no role in selecting or 
overseeing studies, works with staff to evaluate and interpret the results of funded studies and 
related research.

All project results and accompanying comments by the Health Review Committee are widely 
disseminated through HEI’s Web site (www.healtheffects.org), printed reports, newsletters and 
other publications, annual conferences, and presentations to legislative bodies and public 
agencies.
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Research Report 167, Assessment and Statistical Modeling of the Relationship Between Remotely 
Sensed Aerosol Optical Depth and PM2.5 in the Eastern United States, presents a research project 
funded by the Health Effects Institute and conducted by Dr. Christopher J. Paciorek of the 
Department of Biostatistics at the Harvard School of Public Health, Boston, Massachusetts, and 
Dr. Yang Liu of the Rollins School of Public Health of Emory University, Atlanta, Georgia. This 
research was funded under HEI’s Walter A. Rosenblith New Investigator Award Program, which 
provides support to promising scientists in the early stages of their careers. The report contains 
three main sections.

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the 
study and its findings; it also briefly describes the Health Review Committee’s 
comments on the study.

The Investigators’ Report, prepared by Paciorek and Liu, describes the scientific 
background, aims, methods, results, and conclusions of the study.

The Commentary is prepared by members of the Health Review Committee with 
the assistance of HEI staff; it places the study in a broader scientific context, points out 
its strengths and limitations, and discusses remaining uncertainties and implications of 
the study’s findings for public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of the Health Review 
Committee, an independent panel of distinguished scientists who have no involvement in 
selecting or overseeing HEI studies. During the review process, the investigators have an 
opportunity to exchange comments with the Review Committee and, as necessary, to revise 
their report. The Commentary reflects the information provided in the final version of the 
report.
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This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Christopher J.
Paciorek at Harvard School of Public Health, Boston, Massachusetts, and Dr. Yang Liu at Rollins School of Public Health, Emory University,
Atlanta, Georgia. Research Report 167 contains both the detailed Investigators’ Report and a Commentary on the study prepared by the Insti-
tute’s Health Review Committee.
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Assessment of the Relationship Between Satellite-Based 
Estimates and Measurements of PM2.5 in the 
Eastern United States

INTRODUCTION

Over the past decade, satellite-based estimates of
ground-level pollution have emerged as a poten-
tially important source of information on human
exposure to health-damaging pollutants such as
nitrogen dioxide and fine particulate matter (PM2.5;
PM with an aerodynamic diameter of 2.5 µm or
smaller). Estimates of the concentration of ground-
level PM2.5 can be made from satellite calculations
of aerosol optical depth (AOD) — a measure of light
extinction by aerosols in the total atmospheric
column calculated from measurements of light scat-
tering at various wavelengths. Health effects
researchers have begun to use satellite-based esti-
mates of PM2.5 from AOD calculations in both epi-
demiologic research and risk assessment; however,
the accuracy and precision of estimates provided by
different satellite-based estimators and the circum-
stances in which such estimates might make the
most important contributions remain uncertain.

Dr. Christopher J. Paciorek of the Harvard School
of Public Health submitted an application under
Request for Applications 05-2, “The Walter A.
Rosenblith New Investigator Award,” which was
established to provide support for an outstanding
investigator beginning his or her independent
research career. In his proposed study, “Integrating
Monitoring and Satellite Data to Estimate PM2.5
Exposure and Its Chronic Health Effects in the
Nurses’ Health Study,” Paciorek planned to reana-
lyze data on the chronic health effects of PM2.5 in
the Nurses’ Health Study, a large epidemiologic
cohort study, by integrating AOD measurements
from satellite data with ground monitoring data to
improve the exposure-assessment modeling. The
HEI Health Research Committee urged Paciorek to
focus on the estimates of exposure, rather than the
epidemiologic analysis. Ultimately, HEI funded the

current study, “Integrating Monitoring and Satellite
Data to Retrospectively Estimate Monthly PM2.5
Concentrations in the Eastern United States,”
which began in 2006.

The overall objective of Paciorek’s study was to
assess the ability of approaches that use satellite-
based measurements of AOD from the National
Aeronautics and Space Administration’s (NASA’s)
multiangle imaging spectroradiometer (MISR) and
moderate resolution imaging spectroradiometer
(MODIS) satellites to fill spatial and temporal gaps
in existing monitoring networks in the eastern
United States. To accomplish this, the investigators
developed statistical models for integrating moni-
toring, satellite, and geographic information system
(GIS) data to estimate average monthly ambient
PM2.5 concentrations. They then applied those
models across the eastern United States at various
times during the period from 2000 to 2006 at a fine
spatial resolution. Their goal was to better under-
stand temporal and spatial variation in PM2.5 and
then determine how accurately it could be charac-
terized based on satellite, monitoring, and GIS da-
ta. They developed and applied statistical methods
to quantify (1) how uncertainties in exposure esti-
mates based on ground-level monitoring data
might be reduced by adding satellite-based moni-
toring data and (2) how systematic discrepancies
between a proxy measure — such as AOD as a
proxy for PM2.5 — could be identified and account-
ed for. They also explored the potential for two ad-
ditional sources of information, the Geostationary
Operational Environmental Satellite (GOES) and
the Community Multiscale Air Quality (CMAQ)
atmospheric-chemistry model, to improve PM2.5
exposure estimates for years in which satellite mea-
surements from MISR and MODIS are unavailable.
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APPROACH

The investigators assembled publicly available
data for the eastern United States from satellites,
ground-level air pollution monitors, meteorologic
observations, and land-use databases; these
included NASA’s MODIS and MISR satellites for
AOD measurements, the U.S. Environmental Pro-
tection Agency’s (EPA’s) Interagency Monitoring of
Protected Visual Environments PM2.5 monitoring
network, GOES, the U.S. EPA’s CMAQ model for
emissions-based estimates of PM2.5, the U.S.
National Oceanic and Atmospheric Administra-
tion’s North American Regional Reanalysis data-
base, and the Multi-Resolution Land Characteristics
Consortium.

They then analyzed the relationship between
PM2.5 monitoring data and AOD measurements in
both space and time. First they estimated the corre-
lation between PM2.5 and AOD both before and after
calibration with meteorologic factors and at dif-
ferent temporal and spatial scales in order to under-
stand discrepancies between AOD and PM2.5. Then
they conducted analyses in which (1) AOD data
were included as variables in statistical models to
predict PM2.5 concentrations, and (2) the discrepan-
cies between proxies (such as AOD) and PM2.5 were
determined. They also explored the spatial relation-
ship between AOD and PM2.5 using new methods
they had developed for this purpose.

RESULTS

The investigators report that satellite-based AOD
estimates did not improve PM2.5 predictions for the
eastern United States as compared with predictions
from other geospatial models. Although AOD data
were temporally correlated with PM2.5 measure-
ments, correlations of long-term spatial averages
were relatively weak unless they were adjusted sta-
tistically for the discrepancy between AOD and
PM2.5. Although statistical models that combined
AOD, PM2.5 observations, and land-use and meteo-
rologic variables were highly predictive of PM2.5,
AOD itself contributed little to the predictive power
of those models over and above the other variables.

Further, the investigators report that substituting
PM2.5 estimates from the U.S. EPA’s CMAQ model
for AOD data also did not improve the ability of the
multivariable models to predict the measured PM2.5
data, and that attempts to use data from the GOES

satellite to correct for interference with AOD from
surface reflectance (brightness), a factor that may
affect the relationship of AOD with PM2.5, were
largely unsuccessful. 

Using statistical models that accounted for poten-
tial discrepancies between AOD and PM2.5 at both
large and small spatial scales was an important deter-
minant of predictive ability in this study. Models that
did not account for discrepancies at small spatial
scales had poor predictive ability for measured
PM2.5. The investigators attributed this lack of pre-
dictive ability to the fact that their analysis did not
account for spatial differences in the vertical profile
of the aerosol and to the effects of the variable degree
of reflectance of the Earth’s surface.

Paciorek and his colleague, Yang Liu, concluded
that the inability of AOD data to improve the spatial
prediction of monthly and yearly average PM2.5 in
the eastern United States is a result of the spatial
discrepancy between AOD estimates and measured
PM2.5, particularly at smaller spatial scales. They
stress the importance of explicitly accounting for
such discrepancies in statistical models that use
proxy estimates, such as AOD, in order to distin-
guish the PM2.5 “signal” in the proxy measure
(AOD) from the “noise” contributed by the discrep-
ancy between the proxy and ground-level PM2.5.
They concluded that there is little evidence that
current satellite-based estimates of AOD can improve
the prediction of ground-level PM2.5 at small-to-
moderate scales in the eastern United States, and
they argue that until more evidence regarding the
reliability of satellite-derived AOD data is available,
it is premature to use such data in epidemiologic
studies as a proxy for PM2.5. They note, however,
that more promising results might be obtained in
areas that have levels of ambient PM2.5 higher than
those in the eastern United States, such as some
developing countries, because the AOD signal would
be relatively stronger in such locales than the noise
contributed by background surface reflectance.

INTERPRETATION AND CONCLUSIONS

On the basis of this report, several conclusions
regarding the application of satellite-based estimates
of PM2.5 air pollution in health effects research seem
warranted. First, the use of raw AOD estimates as a
proxy for PM2.5 measurements in health effects
research should be avoided in general. Rather,
approaches that combine information from multiple
sources — remote sensing, model-based estimates,
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and ground-level measurements — may offer the
most promise. Recent studies that have taken the
latter approach have reported that satellite-based
estimates can explain a fair amount of between-city
variability in PM2.5, but that the estimates need to
be combined with other data to explain within-city
variation.

Applications to health effects research should
include, to the extent possible, evaluations of the
relationship between satellite-based estimates and
monitoring data; researchers should try to quantify
the contribution of satellite-based estimates to the
total exposure measurement error in epidemiologic
effect estimates.

Satellite-based estimates can potentially play an
important role in the evaluation of exposure to, and
health effects of, short-term episodes of high levels
of air pollution from vegetation fires or dust events,
especially in areas with limited or no monitoring,
where satellite-based estimates could help define
the spatial extent of the exposure.

In areas of the world where ground-based mea-
surements of air pollution are not likely to be col-
lected for the foreseeable future, satellite-based data
may help address the needs of epidemiologic re-
search and public health–based risk assessment.
Satellite remote sensing may offer promise for pro-
viding information on exposure to PM2.5 at regional-
to-global scales, especially in places with the high-
est levels of pollution and the greatest estimated
burden of disease attributable to it. However, there
are limitations to and outstanding questions about
the accuracy and precision with which ground-
level aerosol mass concentrations can be inferred
from satellite remote sensing, including the level of
global variation in the relationship between AOD
and PM2.5 at specific satellite overpass times during
cloud-free conditions. Addressing these issues will
require a systematic effort that includes measuring
ground-level PM2.5 in selected global regions to
identify the factors that most affect the relationship
between satellite-based and ground-level estimates.
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INVESTIGATORS’ REPORT

Assessment and Statistical Modeling of the Relationship Between Remotely 
Sensed Aerosol Optical Depth and PM2.5 in the Eastern United States

Christopher J. Paciorek and Yang Liu

Department of Biostatistics, Harvard School of Public Health (C.P.); Department of Environmental and Occupational 
Health, Rollins School of Public Health, Emory University (Y.L.)

ABSTRACT

Research in scientific, public health, and policy disci-
plines relating to the environment increasingly makes use
of high-dimensional remote sensing and the output of
numerical models in conjunction with traditional observa-
tions. Given the public health and resultant public policy
implications of the potential health effects of particulate
matter (PM*) air pollution, specifically fine PM with an
aerodynamic diameter � 2.5 µm (PM2.5), there has been
substantial recent interest in the use of remote-sensing
information, in particular aerosol optical depth (AOD)
retrieved from satellites, to help characterize variability in
ground-level PM2.5 concentrations in space and time.
While the United States and some other developed coun-
tries have extensive PM monitoring networks, gaps in data
across space and time necessarily occur; the hope is that
remote sensing can help fill these gaps. In this report, we
are particularly interested in using remote-sensing data to
inform estimates of spatial patterns in ambient PM2.5 con-
centrations at monthly and longer time scales for use in epi-
demiologic analyses. However, we also analyzed daily data
to better disentangle spatial and temporal relationships.

For AOD to be helpful, it needs to add information beyond
that available from the monitoring network. For analyses
of chronic health effects, it needs to add information about
the concentrations of long-term average PM2.5; therefore,
filling the spatial gaps is key. Much recent evidence has
shown that AOD is correlated with PM2.5 in the eastern
United States, but the use of AOD in exposure analysis for
epidemiologic work has been rare, in part because discrep-
ancies necessarily exist between satellite-retrieved esti-
mates of AOD, which is an atmospheric-column average,
and ground-level PM2.5.

In this report, we summarize the results of a number of
empirical analyses and of the development of statistical
models for the use of proxy information, in particular sat-
ellite AOD, in predicting PM2.5 concentrations in the
eastern United States. We analyzed the spatiotemporal
structure of the relationship between PM2.5 and AOD, first
using simple correlations both before and after calibration
based on meteorology, as well as large-scale spatial and
temporal calibration to account for discrepancies between
AOD and PM2.5. We then used both raw and calibrated
AOD retrievals in statistical models to predict PM2.5 con-
centrations, accounting for AOD in two ways: primarily as
a separate data source contributing a second likelihood to
a Bayesian statistical model, as well as a data source on
which we could directly regress.

Previous consideration of satellite AOD has largely fo-
cused on the National Aeronautics and Space Administra-
tion (NASA) moderate resolution imaging spectroradio-
meter (MODIS) and multiangle imaging spectroradiometer
(MISR) instruments. One contribution of our work is more
extensive consideration of AOD derived from the Geosta-
tionary Operational Environmental Satellite East Aero-
sol /Smoke Product  (GOES GASP)  AOD and i t s
relationship with PM2.5. In addition to empirically assess-
ing the spatiotemporal relationship between GASP AOD

This Investigators’ Report is one part of Health Effects Institute Research
Report 167, which also includes a Commentary by the Health Review Com-
mittee and an HEI Statement about the research project. Correspondence
concerning the Investigators’ Report may be addressed to Dr. Christopher J.
Paciorek, Department of Statistics, 367 Evans Hall, University of California,
Berkeley, CA 94720; email: paciorek@stat.berkeley.edu.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award CR–
83234701 to the Health Effects Institute, it has not been subjected to the
Agency’s peer and administrative review and therefore may not necessarily
reflect the views of the Agency, and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by pri-
vate party institutions, including those that support the Health Effects Insti-
tute; therefore, it may not reflect the views or policies of these parties, and
no endorsement by them should be inferred.

* A list of abbreviations and other terms appears at the end of the Investiga-
tors’ Report.
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and PM2.5, we considered new statistical techniques to
screen anomalous GOES reflectance measurements and ac-
count for background surface reflectance.

In our statistical work, we developed a new model struc-
ture that allowed for more flexible modeling of the proxy
discrepancy than previous statistical efforts have had,
with a computationally efficient implementation. We also
suggested a diagnostic for assessing the scales of the spa-
tial relationship between the proxy and the spatial process
of interest (e.g., PM2.5).

In brief, we had little success in improving predictions
in our eastern–United States domain for use in epidemio-
logic applications. We found positive correlations of AOD
with PM2.5 over time, but less correlation for long-term
averages over space, unless we used calibration that
adjusted for large-scale discrepancy between AOD and
PM2.5 (see sections 3, 4, and 5). Statistical models that
combined AOD, PM2.5 observations, and land-use and
meteorologic variables were highly predictive of PM2.5
observations held out of the modeling, but AOD added
little information beyond that provided by the other
sources (see sections 5 and 6). When we used PM2.5 data
estimates from the Community Multiscale Air Quality
model (CMAQ) as the proxy instead of using AOD, we sim-
ilarly found little improvement in predicting held-out
observations of PM2.5, but when we regressed on CMAQ
PM2.5 estimates, the predictions improved moderately in
some cases. These results appeared to be caused in part by
the fact that large-scale spatial patterns in PM2.5 could be
predicted well by smoothing the monitor values, while
small-scale spatial patterns in AOD appeared to weakly
reflect the variation in PM2.5 inferred from the observa-
tions. Using a statistical model that allowed for potential
proxy discrepancy at both large and small spatial scales
was an important component of our modeling. In partic-
ular, when our models did not include a component to
account for small-scale discrepancy, predictive perfor-
mance decreased substantially. Even long-term averages of
MISR AOD, considered the best, albeit most sparse, of the
AOD products, were only weakly correlated with mea-
sured PM2.5 (see section 4). This might have been partly
related to the fact that our analysis did not account for spa-
tial variation in the vertical profile of the aerosol. Further-
more, we found evidence that some of the correlation
between raw AOD and PM2.5 might have been a function
of surface brightness related to land use, rather than
having been driven by the detection of aerosol in the AOD
retrieval algorithms (see sections 4 and 7). Difficulties in
estimating the background surface reflectance in the
retrieval algorithms likely explain this finding.

With regard to GOES, we found moderate correlations of
GASP AOD and PM2.5. The higher correlations of monthly
and yearly averages after calibration reflected primarily the
improved large-scale correlation, a necessary result of the
calibration procedure (see section 3). While the results of
this study’s GOES reflectance screening and surface reflec-
tion correction appeared sensible, correlations of our pro-
posed reflectance-based proxy with PM2.5 were no better
than GASP AOD correlations with PM2.5 (see section 7).

We had difficulty improving spatial prediction of
monthly and yearly average PM2.5 using AOD in the
eastern United States, which we attribute to the spatial dis-
crepancy between AOD and measured PM2.5, particularly
at smaller scales. This points to the importance of paying
attention to the discrepancy structure of proxy informa-
tion, both from remote-sensing and deterministic models.
In particular, important statistical challenges arise in
accounting for the discrepancy, given the difficulty in the
face of sparse observations of distinguishing the discrep-
ancy from the component of the proxy that is informative
about the process of interest. Associations between
adverse health outcomes and large-scale variation in PM2.5
(e.g., across regions) may be confounded by unmeasured
spatial variation in factors such as diet. Therefore, one
important goal was to use AOD to improve predictions of
PM2.5 for use in epidemiologic analyses at small-to-mod-
erate spatial scales (within urban areas and within
regions). In addition, large-scale PM2.5 variation is well
estimated from the monitoring data, at least in the United
States. We found little evidence that current AOD products
are helpful for improving prediction at small-to-moderate
scales in the eastern United States and believe more evi-
dence for the reliability of AOD as a proxy at such scales is
needed before making use of AOD for PM2.5 prediction in
epidemiologic contexts. While our results relied in part on
relatively complicated statistical models, which may be
sensitive to modeling assumptions, our exploratory corre-
lation analyses (see sections 3 and 5) and relatively simple
regression-style modeling of MISR AOD (see section 4)
were consistent with the more complicated modeling
results.

When assessing the usefulness of AOD in the context of
studying chronic health effects, we believe efforts need to
focus on disentangling the temporal from the spatial corre-
lations of AOD and PM2.5 and on understanding the spa-
tial scale of correlation and of the discrepancy structure.
While our results are discouraging, it is important to note
that we attempted to make use of smaller-scale spatial vari-
ation in AOD to distinguish spatial variations of relatively
small magnitude in long-term concentrations of ambient
PM2.5. Our efforts pushed the limits of current technology
in a spatial domain with relatively low PM2.5 levels and
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limited spatial variability. AOD may hold more promise in
areas with higher aerosol levels, as the AOD signal would
be stronger there relative to the background surface reflec-
tance. Furthermore, for developing countries with high
aerosol levels, it is difficult to build statistical models
based on PM2.5 measurements and land-use covariates, so
AOD may add more incremental information in those con-
texts. More generally, researchers in remote sensing are
involved in ongoing efforts to improve AOD products and
develop new approaches to using AOD, such as calibration
with model-estimated vertical profiles and the use of spe-
ciation information in MISR AOD; these efforts warrant
continued investigation of the usefulness of remotely
sensed AOD for public health research.

1. INTRODUCTION

Research in scientific, public health, and policy disci-
plines relating to the environment increasingly makes use
of high-dimensional remote sensing and numerical-model
output in conjunction with traditional observations. The
remote-sensing and model output help to fill in the inevi-
table gaps in space and time between observations. In
some cases, remote sensing or model output might be
accurate enough to be considered error free and to be
treated as equivalent to the observations, but in many set-
tings, the output is better considered as a noisy proxy for
the process of interest. In this case, the output might be
considered to be a combination of signal for the process of
interest and noise, which is sometimes called discrepancy.
In addition to the obvious scientific difficulties posed by
the discrepancy, it poses related statistical difficulties. Pri-
mary among these is how to separate the signal from the
noise, given sparse (and also often noisy) observations and
complicated spatiotemporal dependence structures in
both the discrepancy and in the signal portion of the proxy.
Even assessing the amount and type of information in the
proxy is difficult in the spatiotemporal context.

SATELLITE AOD AS A PROXY FOR PM2.5

In this report we explore these issues in the specific context
of using remote sensing of AOD as a proxy for ground-level
PM2.5. AOD is a measure of the light-extinction capability of
ambient particles in the entire atmospheric column. We report
a number of analyses of the spatiotemporal relationships be-
tween AOD and PM2.5 and of statistical modeling to combine
observations, land-use and meteorologic information, and
proxy values to predict PM2.5 in space and time in the east-
ern United States. Estimating PM2.5 in space and time is im-
portant for public health and public policy because of the

evidence from observational studies that long-term chron-
ic exposure to PM2.5 is associated with adverse health out-
comes, including cardiac events (Pope et al. 2002; Laden
et al. 2006; Miller et al. 2007; Puett et al. 2009). Of course,
these critical studies are just one piece of our understand-
ing of the relationship between PM2.5 and adverse health
outcomes. Observational studies of acute health effects,
natural experiments, and research on animal toxicology
add to our understanding. While the magnitude of any
causal relationship is likely small, the fact that so much of
the U.S. and global populations are exposed to the levels
of particulates implicated in these studies makes the
health effects of PM2.5 in aggregate of major concern and
the subject of governmental regulation.

In the United States, PM2.5 is monitored regularly via a
network of approximately 1000 monitors operated by the
states and other governmental bodies in collaboration with
the U.S. Environmental Protection Agency (U.S. EPA).
Even this extensive effort has major spatiotemporal gaps,
with many monitors reporting every third day rather than
every day, and inevitable spatial gaps, particularly in rural
areas. Some components of PM2.5, such as black carbon,
vary at fine spatial scales, so even in well-monitored urban
areas monitoring does not adequately capture within-city
variability in PM2.5. Satellite AOD, if well correlated with
ground-level PM2.5, carries promise for filling some of
these gaps, particularly in filling the spatial gaps that are
consequential for analyses of chronic health effects.
Numerical-model output is another possibility, though we
focus on it much less in this report. In addition, if methods
could be developed to make use of satellite AOD (or model
output), they would be of particular importance in the
large parts of the world with little monitoring.

A recent review provides an overview of aerosol remote
sensing (Hoff and Christopher 2009). Our report makes use
of AOD products from three satellite instruments. The
MODIS and MISR instruments are aboard the Terra satel-
lite platform and began operation in March 2000. Terra’s
polar orbit gives full coverage of the globe at regular inter-
vals, with retrievals in the eastern United States at a con-
stant daily time point (10:30–10:45 AM local time). MODIS
provides AOD retrievals at a nominal spatial resolution of
10 km, with retrievals in the northeast United States every
1 to 2 days depending on location, although MISR is con-
sidered to be more precise because of its multiangle
viewing ability (Liu et al. 2007a). However, MISR has
lower nominal spatial resolution (17.6 km) and provides
retrievals only every 4 to 7 days, depending on location,
because of its narrow viewing angle. GASP AOD is a
product from GOES, so it is available every half hour
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during daytime, and provides nominal 4-km resolution.
However, the instrument has limitations that reduce the
accuracy of the AOD retrievals, including coarse spectral
resolution, fixed viewing geometry, and lack of a near-
infrared channel for surface characterization. AOD
retrievals from satellites in general suffer from errors in
measurement of true AOD, with these errors primarily
related to cloud and surface contamination.

Another concern, beyond measurement error in
remotely sensed AOD as a retrieval of the true AOD, is that
AOD is at best a proxy for ground-level PM2.5 because of
fundamental differences in the definitions of the two quan-
tities. By definition, AOD estimates the light-extinction
capability of ambient particles in the entire atmospheric
column, while PM2.5 measures the dry mass concentration
of ground-level particles. These definitions give rise to
several key differences between the quantities. First, AOD
is an integrated-column quantity, while public health
interest lies in PM2.5 concentrations at the surface.
Second, AOD values are affected not only by the abun-
dance of particles, but also by atmospheric humidity,
which changes the sizes of hygroscopic particles such as
sulfate, nitrate, and sea salt. AOD has a very robust rela-
tionship with the mass concentration of the particles if the
vertical distribution of particles, meteorology, and particle
size and composition are known (Chin et al. 2004), but in
reality this is almost impossible to achieve in a large spa-
tial domain. Third, AOD values retrieved by polar-orbiting
sensors such as MISR and MODIS are snapshots of atmo-
spheric conditions, while PM2.5 in our analysis is a
24-hour average. Finally, AOD retrievals are made at the
scale of satellite pixels and are areal by nature, which
makes it difficult to compare that data with point-level
PM2.5 measurements.

The hope that satellite AOD can inform PM2.5 estima-
tion and its availability from NASA’s MODIS and MISR
instruments have led to numerous analyses of the relation-
ship between AOD and PM2.5 and of methods to adjust for
differences between the two. A number of studies in recent
years have found correlations between AOD and PM2.5 at
various scales in time, space, and space–time (Wang and
Christopher 2003; Engel-Cox et al. 2004; Liu et al. 2005;
Koelemeijer et al. 2006; van Donkelaar et al. 2006; Liu et al.
2007a; Pelletier et al. 2007). Liu and colleagues (2004a)
proposed to adjust AOD based on the ratio of AOD to PM2.5
as estimated by an atmospheric-chemistry model, and Liu
and colleagues (2005) built a regression model to adjust
AOD based on spatial and temporal patterns, relative
humidity (RH), the planetary boundary layer (PBL) height,
and other factors affecting the relationship between AOD
and PM2.5. More recently, van Donkelaar and colleagues

(2010) estimated long-term average PM2.5 globally using
MODIS and MISR AOD calibrated following the approach
of Liu and colleagues (2004a) combined with screening out
values from a given instrument in regions where that
instrument’s AOD is poorly correlated with ground mea-
surements. Hoff and Christopher (2009) concluded that
there were still significant obstacles to making use of satel-
lite AOD for air quality purposes, in particular the existing
uncertainty in the AOD retrieval itself, high spatial vari-
ability in the AOD–PM2.5 relationship (likely related to
spatiotemporal variability in PM properties), cloud cover,
the inability to estimate AOD over bright surfaces, the
range of spatial and temporal scales for different air quality
needs, and the mismatch of spatial and temporal scales of
AOD and what is needed for health analysis. Our analysis
considers some of these obstacles, analyzing cloud cover
and GASP AOD (see section 3),  developing a new
approach to screen out cloud-induced errors and adjust for
surface reflectance in GOES retrievals (see section 7),
quantifying spatial variability in the AOD–PM2.5 relation-
ship through our empirical calibration (see sections 3, 4,
and 5), and focusing throughout on the importance of spa-
tial and temporal scales and the mismatch of the scales
AOD and PM2.5.

The known scientific reasons for the discrepancy
between AOD and PM2.5 and the aforementioned results in
the literature motivated us to consider a number of impor-
tant issues in the PM2.5–AOD context that also arise in
other environmental contexts in which combining infor-
mation and making use of proxies is desirable. First, spa-
tial and temporal scales are critical. To use AOD as a proxy
for pollution monitoring and epidemiologic purposes, we
need to know how well AOD (or calibrated versions of
AOD) reflects PM2.5 at various spatial scales so that we
know the circumstances in which we can rely on it. Simi-
larly, we need to know how the association between AOD
and PM2.5 changes with temporal scales. Analyses that
report correlations reflecting both spatial and temporal
associations make it difficult to know what aspects of vari-
ability in PM2.5 are captured by AOD. For chronic health
effects, we need to know about spatial correlation without
the influence of short-term temporal variability in both
AOD and PM2.5. Temporal correlations at individual mon-
itoring stations may tell us little about the spatial correla-
tions of long-term averages. Finally, we argue that the true
long-term average of PM2.5 is an integral over a given time
period. The fact that an AOD retrieval is missing may itself
be informative about the PM2.5 level because of the effect
of meteorology on both missingness and PM2.5. Therefore,
associations of long-term average AOD and PM2.5 where
the PM2.5 averages include only values that match AOD
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retrievals, rather than all PM2.5 values representative of
the true long-term mean, are likely overly optimistic esti-
mates of the associations.

Given the emphasis in this report on spatial scale, we
briefly discuss our terminology here. When we refer to
small-scale variation, we mean patterns and processes that
vary over kilometers and tens of kilometers, e.g., reflecting
differences within urban areas and between urban areas
and surrounding rural areas. When we refer to large-scale
variation, we mean variation at the scale of hundreds and
thousands of kilometers, reflecting differences between
large portions of the domain of interest, e.g., differences
between large areas of Pennsylvania, when analyzing our
focal mid-Atlantic region of the United States, or between
regions of the United States. In cases in which we wish to
distinguish scales more carefully, moderate-scale vari-
ability refers to differences at the scale of a few hundred
kilometers, e.g., between-urban-area variations within
regions of the country. Finally fine-scale variation refers to
variations at the scale of meters to a few kilometers,
reflecting within-neighborhood variations. Given that the
monitoring data readily allow us to estimate large-scale
variations (Yanosky et al. 2008, 2009), our hope was that
AOD would help to inform estimation of small-scale pat-
terns (albeit not at the scale of individual kilometers that
are below the nominal resolution of the retrievals) and of
moderate-scale patterns up to a few hundred kilometers.

STATISTICAL MODELING

Our general statistical perspective is to consider that
there is a true underlying spatial surface (process) of PM2.5
for any given temporal aggregation (instantaneous, hourly,
daily, monthly, yearly, multiyear) and that observations are
unbiased estimates of PM2.5 for the time period captured by
the measurement at a location, but not necessarily at nearby
locations. The true surface is likely highly spatially variable
because of the fine-scale effects of roads, point sources,
buildings, etc. This spatial heterogeneity may cause obser-
vations to be very different from those of a local spatial
average, even over tens or hundreds of meters. Our ultimate
objective in exposure estimation is to estimate the true
underlying surface, understanding that we can only hope
for reasonably accurate estimation at some degree of spatial
aggregation. In this report, we attempt to estimate this sur-
face statistically and assess whether AOD can improve our
estimation. Next, we briefly discuss the advantages and
drawbacks of a statistical approach to the problem.

The fine-scale spatial heterogeneity of PM2.5 makes it
difficult to validate AOD as a proxy because of the spatial
scale mismatch between an AOD pixel and PM2.5 observa-
tions at a specific location. An imperfect match might

reflect the spatial misalignment or the discrepancy between
AOD and true PM2.5 averaged over the pixel. This difficulty
helped lead to our use of statistical modeling to comple-
ment exploratory analyses. While there is no gold standard
for estimating areal average PM2.5, our statistical modeling
attempted to improve upon the use of the observations by
adjusting for the effects of local sources and of preferential
placement of monitors in areas with high PM2.5.

A proxy such as AOD might be used simply as an explan-
atory variable in a regression model, but a common
approach in the recent statistical literature, building on the
initial work by Fuentes and Raftery (2005), has been to treat
the proxy as a second data source that reflects the true
underlying surface (of PM2.5 in our case), but with additive
and multiplicative discrepancies. Much of our statistical
work concentrated on how to represent the additive dis-
crepancy and on the need to account for potential small-
scale correlation in the discrepancy. Modeling such correla-
tion can be difficult computationally, and there are serious
inferential issues in statistically decomposing the proxy
into signal plus noise. Although such issues are compli-
cated, we feel that considering them lies at the heart of a
serious attempt to statistically combine information
sources when the proxy is likely to have a complex dis-
crepancy structure. Furthermore, for a proxy like AOD that
can have missing values, some sort of modeling is required
regardless of whether AOD is considered as an outcome or
as an explanatory variable. At the same time, complicated
statistical models contain their own dangers. It can be dif-
ficult to understand how they translate data into inference
and prediction, and results may not be robust to model
misspecification in the face of model assumptions that are
difficult to check and the complexity of real-world data. To
the extent that these concerns are salient, simple use of a
proxy as a regressor, while potentially less informative and
difficult when the proxy has many missing values, may be
safer than more complicated modeling approaches such as
those presented here and in the statistical literature.

In our modeling, we built on work by Yanosky and col-
leagues (2008 and 2009) and Paciorek and colleagues
(2009), and to improve the prediction of PM2.5 concentra-
tions, we made extensive use of covariates representing
land use, topography, emissions sources, and meteorology,
as well as of spatial smoothing, to capture moderate- and
large-scale variation. These efforts relied on the use of pub-
licly available data in a geographic information system
(GIS), albeit at some computational expense. Our perspec-
tive is that given the discrepancy concerns related to AOD,
we need to see that it improves prediction over and above
what is possible in its absence when we make use of these
other sources of information. Statistical modeling satisfied
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this goal, while more straightforward correlation calcula-
tions did not. Of course, unlike in the United States, such
rich information is not available in most countries, but in
countries without sufficient available PM2.5 data, it is also
difficult to assess and account for the discrepancy between
AOD and PM2.5.

OVERVIEW OF THE REPORT

Section 2 gives the specific aims of our work based on
the initial proposal, with revisions to the aims developed
in light of initial results after two years. At that point we
decided to focus more on statistical-modeling techniques
to combine proxies and observations and to develop
methods to calibrate raw reflectance output from GOES as
a new proxy for PM2.5. In section 3 we report on the associ-
ations between GASP AOD and PM2.5 at various spatial
and temporal scales, and we report on a calibration
approach (Paciorek et al. 2008) that builds on Liu and col-
leagues (2005) to account for the discrepancy between
GASP AOD and PM2.5. Section 4 considers the association
between long-term average MISR AOD and PM2.5, in hopes
that long-term averaging of what is considered to be the
most accurate satellite AOD retrieval would provide a
good proxy for chronic PM2.5 exposure. Section 5 presents
our basic statistical model and the results of combining
MODIS and GASP AOD and observations in conjunction
with land-use and meteorologic measurements (Paciorek
and Liu 2009). Section 6 describes how we extended the
methodology of section 5. We address a key shortcoming
in the model’s representation of the proxy discrepancy
term, propose a model-based diagnostic of proxy discrep-
ancy at different spatial scales, and assess model perfor-
mance in simulations. This section also describes how we
applied this methodology using MODIS AOD as the proxy,
as well as using PM2.5 concentrations estimated by the
CMAQ atmospheric-chemistry model as the proxy. Section
7 shows how we developed and assessed a new proxy for
PM2.5 based on GOES reflectance measurements, given
weak-to-moderate correlations of GASP AOD with PM2.5
and the lack of improvement in PM2.5 predictions when
GASP AOD was used (section 5). In section 8, we present
general conclusions from our analyses, discussing the rea-
sons for the discrepancy between AOD and PM2.5 and new
approaches under investigation for improving AOD as a
proxy for PM2.5. Our statistical conclusions focus on the
importance of spatial and temporal scales, concerns about
measurement error in epidemiologic analysis, and the
need for robust statistical-modeling approaches that
account for complicated proxy discrepancy when informa-
tion sources are combined.

2. SPECIFIC AIMS

INITIAL SPECIFIC AIMS

Advances in spatial modeling and GIS technology, com-
bined with the availability and demonstrated utility of satel-
lite proxy data for PM2.5 estimation, present the opportunity
for integrated estimation of PM2.5 for use in health effects
analyses. Bayesian statistical techniques provide a natural
framework for the integration.

In our revised proposal, we proposed using a combina-
tion of satellite and U.S. EPA monitoring data to estimate
PM2.5 concentrations, with the following specific aims:

1. Development of Bayesian statistical models to inte-
grate monitoring, satellite, and GIS data to estimate
monthly ambient PM2.5 concentrations at high spatial
resolution. These techniques were to account for
important challenges such as satellite cloud cover,
irregular temporal data sampling by satellites and
ground monitors, and bias in satellite AOD as a proxy
for PM2.5.

2. Estimation of monthly PM2.5 across the eastern
United States for the period 2000 through 2006 at a
fine spatial resolution (10 km � 10 km or finer).
These estimates were to combine available PM2.5
monitoring data and satellite measurements of AOD
from the MODIS and MISR instruments. The esti-
mated concentrations were to be made available pub-
licly through HEI for potential use in a variety of
analyses of exposures and health effects.

3. Understanding the temporal and spatial heterogene-
ities in PM2.5 and our ability to characterize them
based on satellite, monitoring, and GIS data. In partic-
ular, our aim was to quantify temporal and spatial
variability in PM2.5 and to explore the possibility of
using spatial patterns at one point in time as a proxy
for spatial patterns at other points in time.

4. Using a measurement-error framework, to quantify
the reduction in exposure uncertainty and the poten-
tial reduction in health effects uncertainty provided
by the use of both satellite and monitoring data, and
comparing that exposure uncertainty with the uncer-
tainty associated with using only monitoring data.

5. Assessing the promise of two additional sources of
information to improve exposure estimates for 1995
through 1999, by carrying out a pilot study for the
year 2001. MODIS and MISR data are not available for
the years before 2000, and monitoring data are lim-
ited, so our aim was to assess the potential of GOES
data to estimate PM2.5. We also aimed to assess the
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utility of adjusting the satellite estimates of PM2.5
using vertical-profile information from the CMAQ
atmospheric-chemistry model. If successful, these
pilot investigations could form the basis for future
proposals, leveraging the work done for this proposal.

REVISED SPECIFIC AIMS FOR THE THIRD 
GRANT YEAR

1. Development of a statistical framework for accounting
for systematic proxy discrepancy. We wanted to
develop a general statistical framework to be described
in this report, with the AOD–PM2.5 situation as a key
example.

2. Analysis of GOES raw reflectance data and the devel-
opment of methods to screen and calibrate reflectance
as a proxy for PM2.5. We aimed to directly use GOES
channel 1 reflectance data, adjusting for background
surface reflectance using statistical methods.

3. Assessment of the degree to which CMAQ vertical-
profile information can be used to improve calibra-
tion of AOD to PM2.5.

PROGRESS ON SPECIFIC AIMS

This report summarizes the results of our research.
Here, we briefly summarize our work in the context of
progress on the specific aims. With regard to initial aim 1
and revised aim 1, we developed Bayesian methods to
integrate monitoring, satellite, and GIS and meteorologic
information, in particular proposing a new approach to
accounting for proxy discrepancy (sections 5 and 6). Given
the lack of improvement in predicting PM2.5 concentra-
tions when AOD information was incorporated, we did not
attempt to achieve initial aims 2 and 4. With regard to ini-
tial aim 3, through exploratory data analysis and the statis-
tical-integration models, we considered the relationship
between AOD and PM2.5 in space and time, at various
scales. However, we did not directly consider the use of
spatial patterns at one point in time as a proxy for spatial
patterns at other points in time. For initial aim 5, we car-
ried out extensive assessment of GOES-based GASP AOD
and included GASP AOD in our statistical-integration
models. With regard to revised aim 2, we developed a new
screening procedure for GOES reflectance measurements
and a new method for estimating background surface
reflectance. We also considered the use of corrected reflec-
tance as a proxy for PM2.5. Finally, with regard to revised
aim 3 (also part of initial aim 5) — because of time con-
straints and feedback from HEI’s Research Committee —
we did not explore the use of CMAQ vertical-profile infor-
mation to calibrate AOD, but we made extensive use of

CMAQ-estimated PM2.5 in our statistical discrepancy
modeling work, assessing the direct use of CMAQ PM2.5 as
a proxy for PM2.5 in the eastern United States during 2001.

3. SPATIOTEMPORAL ASSOCIATIONS 
BETWEEN GOES AOD RETRIEVALS AND 
GROUND-LEVEL PM2.5

INTRODUCTION

Epidemiologic studies have provided evidence that
chronic exposure to PM is related to increased mortality, as
well as outcomes such as ischemic heart disease, dys-
rhythmias, heart failure, cardiac arrest, and lung cancer
(Dockery et al. 1993; Pope et al. 2002, 2004; Miller et al.
2007). Studies of the chronic health effects of PM2.5 have
relied on the spatial heterogeneity of PM2.5 concentrations
to estimate the effects. A combination of spatial modeling
and land-use regression can improve estimation of concen-
trations by the use of covariate information to help estimate
concentrations at locations far from monitors and at scales
smaller than can be achieved through smoothing of the
monitoring data (Yanosky et al. 2008). However, efforts
suffer from the sparse spatial representation in the moni-
toring network. Evidence of the health effects of acute expo-
sure to PM2.5 (e.g., Samet et al. 2000; Dominici et al. 2006)
has relied on temporal heterogeneity in PM2.5, but the
every-third- (or every-sixth-) day schedule at many moni-
tors reduces statistical power in such time series studies.

Remote sensing holds promise for adding information
for exposure estimation, particularly spatial information
in areas — primarily suburban and rural — far from moni-
tors and temporal information on days without moni-
toring. Satellite-derived AOD has been correlated with
ground level PM2.5 (Wang and Christopher 2003; Engel-
Cox et al. 2004; Liu et al. 2005; Liu et al. 2007a; Pelletier et
al. 2007), specifically with particles with diameters
ranging from 0.05 to 2 µm (Kahn et al. 1998), which is
roughly the definition of PM2.5 (particles with aerody-
namic diameter � 2.5 µm), the size fraction on which cur-
rent EPA regulatory efforts focus. These correlations occur
despite the mismatch in vertical detail between total-
column aerosol, as estimated by AOD, and ground-level
PM2.5, the level of interest for health effects studies. One
approach to help account for the mismatch has been cali-
bration via a regression model based on season, spatial
location, and meteorologic information (Liu et al. 2005).

Efforts to use AOD as a proxy for PM2.5 have concen-
trated on the MISR and MODIS instruments. These are on
polar-orbiting satellites and sample individual locations in
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the eastern United States via a single snapshot either every
4 to 7 days (MISR) or every 1 to 2 days (MODIS). This infre-
quent sampling combined with a high proportion of
missing retrievals because of cloud cover has resulted in
sparse coverage in space and time, which hinders the use
of the MODIS and MISR instruments in health effects
studies. Geostationary satellites provide much more com-
plete data; the GASP AOD provides observations every
30 minutes on a nominal 4-km grid, which provides finer
nominal resolution than the MODIS or MISR grids. How-
ever, the GASP AOD retrievals are less precise than those
from the polar-orbiting instruments because of the coarse
spectral resolution and fixed viewing geometry of the
sensor (Prados et al. 2007). Since GASP AOD retrievals use
only the visible channel, all atmospheric and aerosol prop-
erties (e.g., size distribution, composition, and scattering
phase function) must be assumed, and only AOD is allowed
to vary in the radiative transfer model. Despite these limita-
tions, GASP AOD retrievals have been reasonably well cor-
related with Aerosol Robotic Network (AERONET) ground
measurements of total-column aerosol (Knapp et al. 2002;
Prados et al. 2007), although the retrievals of MODIS and
especially MISR are more precise (Knapp et al. 2002). To
date, no studies have been done on the relationship
between GASP AOD and ground-level PM2.5.

In this part of the study we assessed the potential of
GASP AOD to act as a proxy for daily, monthly, and yearly
ground-level PM2.5, focusing on these time scales because
of their relevance for epidemiologic studies. First, we
assessed the basic strength of the association between
GASP AOD and PM2.5 in space and time. We built flexible
regression-style models to calibrate daily AOD to PM2.5
based on meteorologic, spatial, and temporal effects. We
compared the association of calibrated AOD with daily,
monthly, and yearly average PM2.5. Our goal was to under-
stand the association of GASP AOD with PM2.5 and to
show how to calibrate GASP AOD to increase its utility,
not to physically interpret our statistical modeling of AOD.
Finally, we assessed whether the absence of an AOD
retrieval was associated with the PM2.5 concentration, to
determine if bias was induced by ignoring the missingness
and simply using the available retrievals.

Note that much of this section of our study was pub-
lished earlier (Paciorek et al. 2008).

DATA AND METHODS

Data

We made use of GASP AOD from GOES-12 (East) imager
data for the year 2004, provided by the U.S. National Oce-
anic and Atmospheric Administration (NOAA). Prados

and colleagues (2007) described the GOES-12 imager data
and GASP AOD algorithm in detail. In brief, AOD was cal-
culated from a single visible channel (520–720 nm) based
on assumptions about surface reflectivity and atmospheric
and aerosol properties, while the cloud mask was deter-
mined from infrared channels 2 (3.9 µm) and 4 (10.7 µm)
and the visible channel. The pixel centroids of the AOD
retrievals are nominally on a 4-km grid, but the distance
between centroids is not generally 4 km. Retrievals were
attempted every half hour, but cloud cover and high sur-
face reflectivity led to many missing observations.

GASP AOD (henceforth referred to as AOD in this sec-
tion) retrievals were available during daylight, from 10:45
through 23:45 Coordinated Universal Time; i.e., Greenwich
Mean Time (UTC). In our core analysis, we followed
NOAA’s criteria for screening valid AOD observations,
which are described in Appendix B (available on the HEI
Web site). That appendix provides sensitivity analyses sug-
gesting we could relax some of these criteria. Negative
retrievals occurred due to errors in the estimation of surface
reflectivity when AOD was low. Unlike Prados and col-
leagues (2007), we made use of negative retrievals in the
hope that they would indicate low AOD. Appendix B shows
that including these retrievals provided useful information.

To assess the relationship between PM2.5 and AOD, we
matched monitoring data from the U.S. EPA Air Quality
System (AQS) to the nearest GOES pixel, omitting a small
number of monitors for which the nearest pixel centroid
was closer to another monitor. Since we used AOD as the
dependent variable in our regression modeling, this step
avoided duplicate AOD values. We then selected days for
which the U.S. EPA monitor reported a PM2.5 concentra-
tion. Our interest was in fine-resolution estimation of PM2.5,
so unlike other analyses we used individual pixels instead
of aggregating AOD across adjoining pixels. We calculated a
daily estimate of AOD as the simple average of the available
retrievals, but considered another approach, described in
Appendix B. We had 99,159 matched daily observations, of
which 46,684 had at least one valid AOD retrieval during
the day of the observation. Table 1 shows summary statis-
tics for the matched AOD retrievals and PM2.5 observations
for days with at least 1 valid AOD retrieval.

We used PM2.5 data with U.S. EPA parameter 88101.
This excluded most PM2.5 data from Interagency Moni-
toring of Protected Visual Environments (IMPROVE) sites,
which are generally in very rural areas. This approach
avoided issues of comparability of the AQS and IMPROVE
observations and focused our calibration efforts on data
from populated areas. We included all observations
regardless of any quality flags in the data record, at the sug-
gestion of U.S. EPA personnel (Michael Papp, 2006, per-
sonal communication) who indicated that all data reported
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to the AQS should be valid data. For simplicity, we used
only data with the parameter occurrence code equal to 1,
thereby including only the primary monitor at a site. The
AQS data are the primary data used for estimating expo-
sure in epidemiologic studies, so we considered them as
the gold standard in this study while acknowledging that
the ground measurements were not error free (instrument
error variance was approximately 1.5 based on colocated
monitors, relative to a trimmed variance of the measure-
ments of 60). We also made use of local land-use and mon-
itoring objective information that the U.S. EPA provides
for many of the monitors.

For meteorologic information, we concentrated on the
PBL (i.e., mixing height) and RH as the key variables that
affect the relationship between PM2.5 and AOD (Liu et al.

2005). The PBL was used to represent the vertical distribu-
tion of PM2.5; most particle-mass loading resides in the
lower troposphere, and the PBL gives an indication of how
much of the column is more actively mixed and relatively
homogeneous. A higher PBL is expected to be associated
with a larger ratio of AOD to PM2.5 because aerosol emitted
from the surface is distributed over a larger volume of air.
The size of hygroscopic particles such as sulfates and
organic carbonaceous species grows with increasing RH,
resulting in greatly increased light-extinction efficiency.
Since PM2.5 is measured as dry particle mass (measured at a
controlled RH of approximately 40%), we expected higher
RH to be associated with a larger ratio of AOD to PM2.5. We
used the North American Regional Reanalysis (NARR)
meteorologic fields; the NARR assimilates available data

Table 1. Summary Statistics for GASP AOD Retrievals (Unitless) and PM2.5 Observations (µg/m3) for 2004 by Day and 
Location for Days with at Least One Valid AOD Retrievala

Geographic Region / 
Time Period Sample Size Median (5%, 95%)

GASP AOD
Contiguous U.S.

All seasons 56,385 0.13 (�0.06, 0.50)
Winter 7,709 0.15 (0.01, 0.44)
Spring 15,719 0.17 (�0.03, 0.52)
Summer 19,099 0.13 (�0.07, 0.55)
Fall 13,858 0.07 (�0.08, 0.40)

Eastern U.S.b
All seasons 46,684 0.13 (�0.06, 0.51)
Winter 6,541 0.15 (0.01, 0.43)
Spring 13,361 0.18 (�0.03, 0.52)
Summer 15,454 0.13 (�0.08, 0.57)
Fall 11,328 0.08 (�0.08, 0.41)

PM2.5 Observations
Contiguous U.S.

All seasons 56,385 10.6 (4.0, 27.4)
Winter 7,709 10.7 (4.2, 25.1)
Spring 15,719 10.4 (4.2, 22.5)
Summer 19,099 11.6 (4.2, 30.1)
Fall 13,858 9.7 (3.6, 27.7)

Eastern U.S.b
All seasons 46,684 11.1 (4.3, 27.3)
Winter 6,541 10.4 (4.5, 21.5)
Spring 13,361 10.7 (4.4, 22.4)
Summer 15,454 12.9 (4.7, 31.0)
Fall 11,328 9.8 (3.8, 27.2)

a Excludes 11 matched pairs for which the PM2.5 observations have concentrations greater than 100 µg/m3. 

b Locations east of 100� W longitude.
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with a state-of-the-art meteorologic model to estimate
meteorologic parameters every 3 hours on a 32-km grid
covering North America. Rogers and colleagues (2006)
reported that the NARR PBL is highly correlated with light
detection and ranging (LIDAR) measurements, although in
urban areas the correlation decreases. We used data from
12:00, 15:00, 18:00, and 21:00 UTC to match the time range
of the AOD retrievals, and we took the inverse-squared
distance-weighted averages of the values from the four grid
points closest to each EPA monitor as simple estimates of
the already-smooth model-output fields at the monitor
sites. See Appendix A for more details on the data sources
and manipulations.

In principle, since AOD is at the half-hourly resolution,
we might have calibrated it to hourly PM2.5 measurements
from the AQS. However, there are far fewer hourly moni-
tors than daily monitors, limiting our ability to calibrate
AOD to hourly PM2.5, and there is no Federal Reference
Method (FRM) for hourly PM2.5. The relationship of
hourly PM2.5 (averaged for the day) to daily FRM measure-
ments can vary by location and season, as was evident in
the AQS data, which suggested the need to calibrate
hourly PM2.5 to daily PM2.5. The need to calibrate occurs
in part because of the loss of semivolatile compounds in
PM2.5 that is observed to occur in continuous PM2.5 mea-
surements. For simplicity and because our interest was in
relationships between PM2.5 and AOD at time scales
longer than hourly (note that the U.S. EPA air quality stan-
dard is a 24-hour average), we restricted our analysis to
daily associations based on data from daily monitors using
the FRM and daily average AOD.

Associations of AOD and PM2.5 were weak in the
western United States (see Spatiotemporal Associations
Between Daily AOD and PM2.5, under Analyses), so most
of our results are reported for the area east of 100� W.

Statistical Calibration Model

We built a statistical regression model to understand the
factors that modify the relationship between AOD and
PM2.5. Using our model, we calculated a calibrated AOD
variable that was more strongly associated with PM2.5.
Ultimately, as part of our larger research effort, the cali-
brated AOD would be used in a statistical prediction
model for PM2.5.

Liu and colleagues (2005) treated PM2.5 as the depen-
dent (response) variable in their regression models, using
the logarithmic transformation of both AOD and PM2.5 to
create an additive model on the log scale. Here, we consid-
ered log AOD as the dependent variable and regressed on
PM2.5 and other factors, treating AOD as observed data. We
took this approach in part because of the high variability in

AOD, reflecting its noisiness as a proxy for PM2.5, and the
varying number of retrievals contributing to average daily
AOD. These issues are difficult to account for if AOD is
considered to be the independent variable. Using the less-
error-prone variable as the independent variable also
helped avoid bias (toward 0) in the estimated regression
coefficient. Furthermore, our goal was to understand AOD
as a proxy for PM2.5. Using PM2.5 as the dependent variable
would have placed the focus on including other variables
that help to explain PM2.5, which is the focus of a large body
of environmental health research, rather than on the assess-
ment of the association of PM2.5 and AOD. In our models,
the PM2.5 values observed at the monitors stood in for true
PM2.5, ignoring any monitor instrument error.

We considered a variety of models, building on Liu and
colleagues (2005) but using smooth regression functions
(Wood 2006) in place of linear functions and indicator
variables for region and season. After a model-comparison
process, described in Appendix B, we arrived at the final
model, in which daily average AOD for location i and day
of year t, , is distributed:

 (1)

Here, µ is an overall mean (simple additive bias). 
  and  are smoothly varying

regression functions that account for additive bias due to
spatial location, si (represented in the Albers equal-area
projection), time (day of year), the PBL, and the RH,
respectively. � is a multiplicative bias coefficient that
scales from units of PM2.5 to unitless AOD, PMit is the
matched PM2.5 measurement, and �2 is the error variance.
We used the simple average of the available AOD retrievals
for each day, , but, as described in Appendix B (available
on the HEI Web site), we also considered a more sophisti-
cated approach. Since there were negative retrievals, we
added 0.6 to each daily mean and then log transformed the
resulting values (the minimum value was �0.5, so adding 0.6
avoided a long left tail after transformation). Using  in
place of  gave similar results, but the residuals were
slightly more skewed. Fitting separate models of the form of
equation 1 for each season, we estimated � to be 0.0018 (95%
confidence interval [CI] 0.0010–0.0027) in winter, an order of
magnitude smaller than 0.0164 (CI, 0.0157–0.0170) in spring,
0.0164 (CI, 0.0158–0.0169) in summer, and 0.0129 (CI,
0.0123–0.0134) in fall. Because of the near-0 coefficient for
winter, we chose to fit models only for spring, summer, and
fall. We fit separate versions of the model (equation 1) for
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each season to facilitate computations with such a large
dataset and to allow the relationships to vary by season.

The model (equation 1) can be fit in the statistical soft-
ware R, using the gam() function, designed for fitting gen-
eralized additive models (Wood 2006). The software uses
penalized splines to parameterize the smooth functions of
time, space, and covariates, allowing for nonlinear rela-
tionships. Multiple penalty terms were estimated from the
data using extensions of generalized cross-validation
(GCV) (Wood 2006), thereby ensuring that the functions
were sufficiently smooth to avoid overfitting and provide
generalizability. However, based on the model compari-
sons described in Appendix B, we restricted the flexibility
of the function of time, which gave fitted functions, ,
with 3 to 4 degrees of freedom for each season.

Having fit the model and estimated the smooth func-
tions, we created a calibrated AOD variable, , by sub-
tracting the values of all the fitted functions from the
observed value, , except for PM2.5:

(2)

Our hope was that by adjusting for factors that modified
the relationship of AOD and PM2.5, the calibrated AOD
(which we note was on a different scale than the raw AOD)
would be more strongly associated with PM2.5 than would
raw AOD and would have a reasonably linear relationship
with PM2.5. Linearity was preserved when we averaged to
longer time scales, as in

(3)

This may produce more robust proxy estimates of PM2.5
that average over short-term fluctuations. We could then
use time-averaged  as one of a collection of covariates to
develop a statistical prediction model with PM2.5 as the
dependent variable (e.g., Yanosky et al. 2008), where the
scaling represented by �0 and �1 could be estimated
within the prediction model.

To address potential overfitting in our regression model,
we divided the data into 10 random sets, each set containing
all the observations over time from approximately one tenth
of the locations. We left the tenth set in reserve for final
testing and used the other nine sets in a cross-validation
approach. We sequentially left out one of the nine sets, fit
the model to the remaining eight sets, and calculated cali-
brated AOD for the observations in the held-out set. Aggre-
gating over the nine sets gave us cross-validated values of
calibrated AOD for the nine sets that we could correlate
with the held-out PM2.5 observations.

ANALYSES

Retrieval Availability

To compare the density of GASP AOD data with that of
MODIS and MISR AOD, we examined the retrievals for
each of the three instruments for all AQS sites in the
eastern United States and for each month calculated the
proportion of days with at least one valid retrieval for each
instrument; we used the sites as a rough reflection of the
population distribution. We matched each of the AQS sites
to the nearest GOES pixel and, on a day-to-day basis, to
pixels within a nominal pixel radius of 12.4 km for MISR
and 7.1 km for MODIS. On average, MISR provided a valid
retrieval only 5% of the days in a given month at a given
location; MODIS, 11%. In contrast, GOES provided a valid
retrieval on average 39% of the days (21% of the days if
only days with at least 5 retrievals were considered),
including winter data but assuming that none of the winter
retrievals were valid because of the lack of association
between GASP AOD and PM2.5 during that season (see
Calibration Model Results, below). If only nonwinter data
were considered, 52% of days had a valid GOES retrieval
(28% when requiring at least 5 retrievals in a day) com-
pared to 12% for MODIS and 5% for MISR.

Spatiotemporal Associations Between Daily AOD 
and PM2.5

Figure 1 plots raw correlations calculated over time for
each pixel–monitor match. The correlations were much
higher in the eastern than in the western United States, as
has been found for both MODIS (Engel-Cox et al. 2004) and
MISR (Liu et al. 2005) retrievals, and as was expected
based on higher surface reflectivity in the (less-vegetated)
western United States. Also, with the exception of Cali-
fornia, a higher proportion of the aerosol in the West is in
the free troposphere, with less local anthropogenic pollu-
tion than in the East (Chin et al. 2007). Correlations varied
by season, with lower correlations (and few retrievals)
during winter and with summer, spring, and fall correla-
tions similar to the all-season results (see Appendix B,
available on the HEI Web site). There were no clear and
substantial relationships between the correlations and
local information about each AQS site, such as land-use
type, population density, monitoring objective, or local
emissions. The results were robust with respect to various
thresholds for the number of AOD retrievals required to
calculate the daily average AOD and the number of days
required to calculate the correlation at a site, although the
correlations were lower when fewer retrievals were
required for a day.
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Because of the low correlations in the western United
States, we restricted our analyses to locations east of
100� W, which includes most of the counties violating the
U.S. EPA air quality standard for PM2.5 with the exception
of those in California.

Correlations over space (Figure 2) were less strong than
those over time, suggesting that AOD can better distin-
guish high from low PM2.5 over time at fixed locations
than over space at fixed times. This may have been related
to spatially varying factors such as average reflectivity,
aerosol type, or local meteorology that obscure, and poten-
tially confound, the relationship between AOD and PM2.5.
The results were again robust with respect to various
thresholds. Our calibration work (see the following sub-
section) suggests that the relationship between AOD and
PM2.5 varied by location, which helps to explain the low
cross-sectional correlations seen here; after calibration
based on location, the associations improved. The correla-
tions again tended to be lower in winter; however, this
cannot be explained by the minimal differences in the
variability of PM2.5 and AOD between winter and the other
seasons. Another possibility is that changes in reflectance
with vegetation loss in winter may not be accurately cap-
tured by the retrieval algorithm.

Calibration Model Results

Here we focus on key results with respect to the impor-
tance of calibration and the relationships between AOD
(either raw or calibrated) and PM2.5 at different temporal
resolutions. We calculated correlations at the daily scale as
well as after averaging across available matched pairs
within a month and within a year for each pixel–monitor
match. As correlations were calculated only for days for
which both the AOD proxy and PM2.5 data were available,

we overstate the predictive ability of AOD for true monthly
and yearly average PM2.5 concentrations, since there were
many days with no AOD retrievals. Our correlation results
measured the ability of the AOD proxies to mirror hetero-
geneity in PM2.5 over space and time.

On the daily scale, model-calibrated AOD (equation 2)
was more strongly correlated with PM2.5 than was the raw
daily log average,  (Table 2). More importantly,
without calibration, we could not average over time and
achieve more robust relationships; we discuss this sur-
prising result below. Requiring a minimum number of

log ita

Figure 1. Temporal correlations at individual sites of daily average PM2.5 concentrations with the average of half-hourly GASP AOD retrievals for all
seasons (left map) and winter only (right map) in 2004. Plots are based on site–days with at least 3 AOD retrievals, and only locations with at least
10 days of matched pairs are shown.

Figure 2. Spatial correlations of GASP AOD with PM2.5 concentrations
by day of year in the eastern United States in 2004. Each correlation
requires at least 3 retrievals per site–day. Only days with at least 30 such
sites are included. Vertical lines divide the seasons.
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AOD retrievals in a day improved associations over the
shorter time periods. However, over the yearly period,
reducing the number of days with matched pairs — as com-
pared with using all days with at least 1 retrieval — resulted
in year-long averages that were less robust and a decrease in
correlations. Therefore, we suggest that analyses that
average to monthly or yearly resolution should include all
available AOD retrievals. Comparisons using the held-out
tenth set indicated that the model-selection process
described in Appendix B resulted in little overfitting.

The reduction in correlations between raw AOD and
PM2.5 when data were averaged over time mirrors the fact
that correlations over time, holding space fixed, tended to
be stronger than correlations over space, holding time
fixed (see the previous subsection, Spatiotemporal Associ-
ations Between Daily AOD and PM2.5 Concentrations).
The within-site relationships between AOD and PM2.5
were positive, but across sites and most noticeably at the
yearly resolution, AOD was only weakly associated with
PM2.5. The most likely explanation is that there were spa-
tially varying confounders that obscured the long-term
average relationship between PM2.5 and AOD, driving
long-term average AOD down where long-term PM2.5 was
high and vice versa. This might have been related to local
effects at the locations of monitors, some of which are pur-
posely sited near local sources, which could increase the
PM2.5 point measurement relative to the AOD value at the
grid cell. While the source of this confounding is unclear,
its effect was marked. The calibration, which was pri-
marily driven by the spatial term (see Appendix B), was
able to account for the confounding. However, we caution
that the correlation of calibrated AOD and PM2.5 at the
yearly level appears to be primarily driven by large-scale
spatial patterns in both variables. The implication is that

calibrated AOD may not help to improve long-term predic-
tions when added to a PM2.5 prediction model that relies
on large-scale spatial smoothing of the monitoring data
plus information from GIS and meteorologic covariates.

In Appendix B, we compare the results with alternative
models considered in our model-selection process, dem-
onstrating that the model has good relative performance.

Figure 3 shows the fitted smooth regression functions of
time, the PBL, the RH, and space for each of the three sea-
sons. We interpret these functional relationships conditional
on PM2.5 being in the model. As expected, for a given con-
centration of PM2.5, AOD increased with increasing PBL,
since a higher PBL meant the AOD retrieval was integrating
over a longer column of air with reasonably homogeneous
PM2.5 concentrations. AOD increased with increasing RH
(when the RH was greater than 60%–70%). The particle-
growth effect of humidity increases the light-extinction
capability of the particles, thereby increasing AOD relative
to ground-level PM2.5, as the latter is measured as dry mass.
This nonlinearity might have occurred because the growth
effect of hygroscopic particles becomes more substantial
with increasing RH (Chin et al. 2002). The wiggliness in the
regression functions for the PBL and RH likely reflects a
moderate amount of overfitting from not fully accounting
for within-site correlation (equation 1). The spatial patterns
indicate that, holding PM2.5 constant, the values for AOD
were low for the Ohio River valley and the Appalachian
Mountains region. The lower-than-expected values for AOD
might have occurred because large local emissions from
power plants in the region increased the ratio of ground-
level PM2.5 to AOD. The spatial patterns might also have
been caused by additional meteorologic factors, variability
in aerosol type, and differences in satellite viewing angle.

Table 2. Correlations of Both Raw and Calibrated GASP AOD with PM2.5 at Different Temporal Resolutions, Excluding 
Winter, for 2004 in the Eastern U.S. 

Temporal Resolution of
Correlations Raw AODa Calibrated AODa 

Any Number of AOD Retrievals in a Day
Daily 0.41 0.50
Monthly averages (at least 3 matched days for each site–month) 0.34 0.62
Yearly averages (at least 10 matched days for each site) 0.17 0.75

At Least 5 AOD Retrievals Each Day
Daily 0.51 0.59
Monthly averages (at least 3 matched days for each site–month) 0.41 0.67
Yearly averages (at least 10 matched days for each site) 0.19 0.69

a The two AOD proxies are (1) raw AOD, calculated using the log average daily AOD, and (2) calibrated AOD. 

log ita  *ita
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Figure 3. Fitted smooth regression relationships for the effects on AOD of time,  (top row); the PBL,  (second row); the RH,  (third
row); and space,  (bottom row), by season for the eastern United States in 2004 based on the statistical model (equation 1). Larger values indicate that
AOD was high relative to PM2.5 for that value of the regression variable. In the spatial plots, red indicates that AOD was high relative to PM2.5, and blue the
converse. On the figures in the first three rows, dashed lines indicate pointwise 95% CIs.
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Note that the fact that the RH and the PBL varied in both
space and time helped avoid concurvity and allowed us to
separate the effects of the RH and PBL from the effects of
space and time.

Association Between PM2.5 and AOD Availability

Missingness of AOD retrievals might be associated with
meteorologic conditions that are also associated with pol-
lution levels. Missing retrievals are primarily caused by
cloud cover, which itself is a function of meteorologic con-
ditions that may be correlated with PM2.5 levels. If days

with few or no AOD retrievals have systematically lower
or higher average PM2.5 than days with many retrievals,
then missingness of AOD is itself informative about PM2.5.
If so, then using only available AOD retrievals could bias
predictions of PM2.5. We investigated this by analyzing the
distribution of PM2.5 as a function of the proportion of
missing AOD retrievals.

The top row of Figure 4 shows the mean PM2.5 by season
as a function of the number of AOD retrievals. In summer,
there was a marked difference in PM2.5 concentrations as a
function of AOD retrievals, with the highest concentrations

Figure 4. Relationship of the number of AOD retrievals in a day with 24-hour average PM2.5 concentrations in the eastern United States for 2004. The
top row shows the average PM2.5 concentration in µg/m3 (with 95% CI) as a function of the number of GASP AOD retrievals by season. Data at the x-axis
value of 15 are for 15 or more retrievals. The middle row shows the smooth regression relationship between the number of AOD retrievals and PM2.5
concentration by season, controlling for location, time, and meteorology (equation 4). The bottom row shows the smooth regression relationship between
the number of AOD retrievals and PM2.5 by season for those days when at least 1 retrieval was made, controlling for location, time, meteorology, and
average AOD (in a model of the form of equation 4), but with a smooth term of average daily AOD also included.



2020

The Relationship Between AOD and PM2.5 in the Eastern U.S.

on days with approximately 5 to 10 retrievals and lower
concentrations for days with few retrievals. Spring showed
a somewhat similar, but less marked pattern, while fall
showed little systematic pattern.

Since PM2.5 varies in space and time, as does missing-
ness, the association between missingness and PM2.5
might have occurred merely because both missingness and
PM2.5 are separately associated with location and time. We
attempted to control for space, time, and meteorology by
fitting the following generalized additive model separately
for the spring, summer, and fall seasons:

(4)

where PMit is the PM2.5 concentration,  is the
number of AOD retrievals for location i and day t, and the
remaining notation follows that of equation 1. In the
middle row of Figure 4 we see the fitted smooth regression
function, , for each of the three seasons, indi-
cating a nonlinear relationship between number of
retrievals and PM2.5 concentrations, with PM2.5 increasing
with increasing number of retrievals, reaching a peak, and
then declining as the number of retrievals increases. This
suggests that after controlling for other factors affecting
PM2.5, there was still a relationship between missingness
and PM2.5.

For those days with at least 1 retrieval, we could also
control for the AOD magnitude. Adding a smooth function
of average AOD, , to model 4 did not remove the
association between missingness and PM2.5 (Figure 4,
bottom row), although it did change the relationships some-
what, with spring and particularly summer showing
increases in PM2.5 with increasing number of retrievals, and
then PM2.5 leveling off with a larger number of retrievals.
Fall showed little relationship between PM2.5 and number
of retrievals after accounting for the observed AOD.

These results suggest that predictive modeling of PM2.5
based on AOD should take the number of retrievals in a
day into account, as it provides additional information
about PM2.5 concentrations. In particular, not accounting
for missingness during the summer is likely to upwardly
bias one’s estimates of PM2.5 because days with few or no
AOD retrievals on average have low PM2.5 concentrations.

DISCUSSION

We report the first comparison of GASP AOD with
ground-level PM2.5, building upon the expanding litera-
ture comparing MODIS and MISR AOD with PM2.5. We
built calibration models that resulted in moderately strong
correlations of calibrated AOD with PM2.5 in the eastern

United States during the spring, summer, and fall. Correla-
tions increased with averaging over longer time periods
when we used the calibrated AOD. We also point out that
the occurrence of missing AOD retrievals was not random
with respect to PM2.5 concentrations, as has also been
reported for MODIS AOD (Koelemeijer et al. 2006).

The higher nominal spatial resolution of GASP AOD
compared to MODIS and MISR AOD did not appear to pro-
vide real improvement in spatial resolution, presumably
because of instrument differences. The daily correlations
of GASP AOD with PM2.5 found in this study were lower
than those found by Liu and colleagues (2005 and 2007a),
who averaged over multiple MODIS and MISR pixels.
However, given the limitations of the GOES instrument,
the fact that the GASP AOD correlations were not too
much lower than those for MISR and MODIS AOD indi-
cates the promise of GASP AOD as a proxy for PM2.5.

Critically important is that the comparisons of daily
matched PM2.5 and AOD data do not take into account the
much greater data density of GASP AOD. The half-hourly
temporal coverage provides much more opportunity for
avoiding clouds at least once during a day and for more
robust estimates of daily pollution by averaging over nois-
iness in the retrievals and over temporal variability in
pollution during the day. To estimate monthly average
PM2.5 concentrations, the greater data density should
result in proxy values that are more representative of
PM2.5 over all the days in the month than would data from
MODIS and MISR, which we assess quantitatively in later
sections of this report. In Appendix B (available on the HEI
Web site), we provide evidence that some of the criteria we
used to select valid GASP AOD retrievals might be relaxed
to provide even more retrievals.

Of perhaps equal importance as its dense temporal cov-
erage, GASP AOD provides the possibility of a long-term
record starting in November 1994, when the GOES-8 satel-
lite retrievals were first available. Dense PM2.5 ground
monitoring only began in 1999, so GASP AOD provides
one of the few proxies for PM2.5 for the period of 1995
through 1998. For epidemiologic work, four years of
improvements in exposure estimation could increase sta-
tistical power to detect health effects.

Note that in the period since the work with GASP AOD
described here was completed and published (Paciorek et
al. 2008), the GOES team has developed several improve-
ments to the GASP AOD retrievals, including correction of
an error in the azimuth angle definition, an improved
method for estimating surface reflectance, improved calcu-
lation of the AOD standard deviation, and inclusion of
scattering angle in the screening criteria. Because of time
limitations and the availability of only 3 months of the
new GASP AOD retrievals, we did not rerun our analyses
based on the newer data.
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4. CALIBRATION AND ASSESSMENT OF 
MISR AOD AS A PROXY FOR LONG-TERM 
AVERAGE PM2.5

INTRODUCTION

Given the poor performance of MODIS and GASP AOD
in helping to predict monthly and yearly average PM2.5
concentrations at smaller spatial scales (see sections 5 and
6) and our inability to consider MISR AOD in the statis-
tical modeling when analyzing only a single year, because
of the limited number of retrievals, we consider here the
relationship between long-term average PM2.5 and MISR
AOD over the eastern United States. Another reason for
doing this is that MISR AOD is considered to be of higher
quality than MODIS or GASP AOD because the MISR is a
multispectral instrument with narrow bandwidth, and it
makes use of multiple viewing angles.

In previous work, Dr. Liu and colleagues derived a
regression model for predicting PM2.5 concentrations from
MISR AOD that included a number of regression terms
relating to meteorologic variables known to affect the rela-
tionship of PM2.5 and AOD (the PBL and RH) as well as
spatial and temporal variability (Liu et al. 2005). Liu and
colleagues (2004a) derived an AOD proxy based on MISR
AOD, corrected for vertical-profile information (at coarse
spatial resolution) based on an atmospheric-chemistry
model, and van Donkelaar and colleagues (2010) extended
the approach to derive a multiyear average AOD proxy
based on both MISR and MODIS global AOD retrievals.

In this study, we considered several regression approach-
es for calibrating PM2.5 and AOD and then assessed the cor-
relation between the resulting AOD proxies and PM2.5
concentrations over the eastern United States for the period
2000 through 2006.

DATA AND METHODS

We considered the period 2000 through 2006 and the
area of the eastern United States east of 100� W longitude;
we omitted the western United States because of the poor
correlations of AOD and PM2.5 in this region found in
other analyses (Engel-Cox et al. 2004; Liu et al. 2005; sec-
tion 3 of this report, but note van Donkelaar et al. 2010).
For PM2.5 observations, as in other analyses, we used data
from the AQS and IMPROVE networks, considering all
monitors with a relatively complete record during the
seven years (at least 300 daily values and no gaps longer
than 60 days), which gave us 503 monitors in the eastern
United States. We related all data sources to a common
4-km grid, which is described in Appendix A and used in
the remainder of this report.

We downloaded meteorologic data products from the
NARR for the seven-year period, extracting the 15:00 and
18:00 UTC observations of the PBL and the RH. These
times matched most closely the time when the satellite
that hosted the MISR instrument passed over the eastern
United States. Since the RH throughout the atmospheric
column may be a more useful quantity for adjusting the raw
AOD retrievals, we calculated the RH based on the NARR
specific humidity (SH) values at pressure levels from 1000
hectopascals (hPa) to 700 hPa (in 25-hPa increments) and
used the simple average of the RH at the NARR pressure
levels, since pressure levels decline approximately linearly
with altitude. Seven hundred hPa corresponds approxi-
mately to 3000 m, so this average approximated the average
RH over the lowest 3000 m of the atmosphere, roughly cor-
responding to the PBL. Given the relatively low elevations
in the eastern United States, we also ignored the variability
in pressure at the surface, which meant that in regions with
higher elevation, we made use of estimated SH values for
below the earth’s surface. Note that surface RH taken
directly from the NARR and average RH calculated from SH,
as above, showed only a moderate correlation of 0.42. The
conversion from SH to RH was done using the NASA stan-
dard atmospheric structure, as coded in the GEOS-Chem
atmospheric-chemistry model, based on the NARR vertical
profiles of temperature and pressure:

(5)

where P is pressure in millibars (mb), SH is specific
humidity as a percentage, SHmb is specific humidity in
mb, T is temperature in Kelvin, and ESAT is the saturation
water vapor pressure in mb.

To assign the PBL and RH values to each cell of the 4-km
grid for either 15:00 or 18:00 UTC, we calculated inverse
distance-weighted (IDW) averages of the NARR values
(which were provided on a 32-km grid) at the four NARR
pixel centroids nearest to each 4-km-grid cell. In our final
models, we used the PBL and RH values at 18:00 UTC
because the correlations with AOD were somewhat higher
for that hour than for 15:00 UTC (0.40 vs. 0.38 for SH-
derived column-average RH, 0.13 vs. 0.08 for ground-level
RH, and 0.24 vs. 0.04 for the PBL).

MISR instruments are aboard the Terra satellite plat-
form, whose polar orbit has been providing full coverage of
the globe at regular intervals, starting in March 2000, with
retrievals in the eastern United States at a constant daily
time point (10:30–10:45 AM local time). MISR AOD
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retrievals are at a nominal spatial resolution of 17.6 km
with retrievals in the eastern United States every 2 to
9 days depending on location (Liu et al. 2005). AOD
cannot be retrieved below clouds, so cloud-filtering algo-
rithms use the infrared portion of the spectrum to detect
and omit obscured observations (Engel-Cox et al. 2004).
Errors and uncertainties in the filtering can lead to erro-
neous AOD retrievals, and high surface reflectivity can
also prevent retrievals. We screened the MISR AOD (ver-
sion 22) retrievals and included only retrievals with AOD
less than 1.5, those classified as successful retrievals under
clear conditions, and those with heterogeneous surface
conditions. We assigned the MISR AOD values to the cells
of the 4-km grid based on the MISR pixel nearest to a given
cell and avoided assigning values to grid cells outside a
given satellite orbit swath. Finally, we associated each
PM2.5 observation with the MISR values assigned to the
cell in the 4-km grid in which the monitor was located.
Table 3 presents summary statistics for daily and long-term
average MISR AOD retrievals and PM2.5 observations.

Koelemeijer and colleagues (2006) considered the cali-
bration

(6)

which on the log scale is equivalent to log AOD* = log
AOD � log PBL � log f(RH), where the function f (•) is
derived from measurements involving the increase of the
aerosol-extinction cross section with the RH. Liu and col-
leagues (2005) developed a prediction model for PM2.5 on
the east coast of the United States, based on MISR AOD
and meteorologic variables that likely modified the rela-
tionship, regressing log PM2.5 on log AOD, log PBL, the
RH, and categorical variables for the distance from the
coast (more or less than 100 km), site location (rural,
urban, or suburban), season, and region (New England,
mid-Atlantic, or south Atlantic).

Based on this previous work, we considered the fol-
lowing calibrations of individual MISR AOD retrievals
with 24-hour average PM2.5 observations matched as
described above, where models 1, 2, and 3 are variants on
the Liu and colleagues (2005) approach and models 4 and
5 on the relationship in Koelemeijer and colleagues (2006).
Note further that log transformations of PM2.5 and AOD
gave us models that more closely satisfied standard regres-
sion assumptions.

1. Model 1: We used log PM2.5 as the outcome and
regressed on log AOD, the RH, dummy variables for
the four seasons, and a smooth regression term for log
PBL. The R2 for this model was 0.30, and the regres-
sion coefficient for log AOD was 0.47.

2. Model 2: We fit a model similar to model 1, but we
added a smooth term for calendar day and a smooth
spatial surface, to attempt to adjust for temporal and
spatial variation in the relationship between PM2.5
and AOD. The R2 for this model was 0.45, and the
regression coefficient for log AOD was 0.45.

3. Model 3: We fit a model as in model 2, but we
excluded log AOD to assess how much of the predic-
tive power of this approach came merely from associ-
ations of PM2.5 with meteorology, time, and space.
The R2 for this model was 0.26.

4. Model 4: We modeled log AOD as the outcome,
regressing on log PM2.5, the SH-derived RH, dummy
variables for the four seasons, and a smooth regres-
sion term for log PBL. The R2 for this model was 0.54,
and the regression coefficient for log PM2.5 was 0.48.

5. Model 5: We fit a model similar to model 4, but we
added a smooth term for calendar day and a smooth
spatial surface, to attempt to adjust for temporal and
spatial variation in the relationship between PM2.5
and AOD. The R2 for this model was 0.59, and the
regression coefficient for log PM2.5 was 0.51.

In contrast to the relationship in Koelemeijer and col-
leagues (2006) (equation 6), we considered a smooth term of
log PBL and a linear term of RH based on graphical assess-
ment. For models 4 and 5, we used the SH-derived column-
average RH because this value was much better correlated
with AOD than surface RH (0.40 vs. 0.13). However, for
models 1, 2, and 3, we used surface RH because PM2.5 was
the outcome variable.

Given that the outcome for models 1, 2, and 3 was PM2.5
concentration, our proxies for predicting PM2.5 from these
models were simply predictions from the fitted model at
the locations of our 503 monitors for all days over the

AODAOD  ,
PBL RH
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Table 3. Summary Statistics for MISR AOD Retrievals 
(Unitless) and PM2.5 Observations (µg/m3) for 2000–2006 
in the Eastern U.S.a for Both Daily Averages (Matched 
by Day and Location) and Long-Term Averages (Matched 
by Location) 

Data 
Source

Sample 
Size Median (5%, 95%)

Daily Values
MISR AOD 35,338 0.10 (0.03, 0.37)
PM2.5 35,338 11.0 (4.0, 27.3)

Long-Term Averages
MISR AOD 73,238 0.13 (0.08, 0.22)
PM2.5 503 13.5 (9.1, 16.7)

a Locations east of 100° W longitude.
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seven years, based on meteorology at the monitor sites on
those days. For models 4 and 5, our goal, as in section 3, was
to fit a model with an approximately linear relationship
between log AOD and log PM2.5 and subtract the influence
of the other variables from log AOD to create a proxy vari-
able that we hoped would be well correlated with and lin-
early related to log PM2.5. The fitted model 4 was

(7)

where AODit, PMit, , and PBLit are the AOD, PM,
RH, and PBL values for location i and day t, and eit is the
error term. represents the season dummy terms,
and is the fitted smooth regression term for log PBL.

Based on this fitted model, our calibrated proxy was

(8)

The calibrated proxy based on model 5 also subtracted
additional spatial and temporal components, .

The daily proxy values for each calibration procedure
were exponentiated to return to the original scale and then
averaged for each location over the seven years.

Exploratory analysis suggested that long-term average
MISR AOD correlated with land use, so we calculated the
proportions of land-cover classes in the cells of the 4-km
grids based on the National Land Cover Database (see
Appendix A for more details). We then assessed the rela-
tionships among MISR AOD, PM2.5, and land cover using
regression models run on the PM2.5, AOD, and land-cover
values assigned to the cells of the 4-km grids, omitting
cells with fewer than 50 AOD retrievals. We focused on
forested areas, defined by summing the proportion of land
in each cell classified as deciduous, evergreen, and mixed
forest and woody wetland.

RESULTS

The correlation of the 503 long-term averages with
average raw MISR AOD, for AOD averages based on at least
20 retrievals, was 0.19 (95% CI, 0.11–0.28); it was 0.26 (CI,
0.18–0.35) when at least 50 retrievals were required. We
next assessed the degree to which matching in time mat-
tered, by considering only monitors for which there were
at least 20 AOD retrievals matched by day with PM2.5
observations: The correlation was 0.32 (CI, 0.23–0.41),
compared with 0.25 (CI, 0.15–0.34) using the same set of

locations but without matching by day. This suggests that
the lack of temporal matching over time did decrease the
utility of AOD information somewhat, since our goal was
to predict true long-term average PM2.5 concentrations.
Recall that we had screened our monitors so that the aver-
ages for the data from these monitors would be good esti-
mates of true long-term average PM2.5. We caution that the
reported 95% CIs are appropriate with regard to each indi-
vidual correlation coefficient (albeit not accounting for
spatial correlation), but they are not particularly helpful
for comparing correlation coefficients because the two sta-
tistics are not independent.

On average, 103 MISR AOD retrievals were associated
with each of the 503 monitors, and the number of
retrievals ranged from 8 to 189. When only the 458 moni-
tors for which there were at least 50 AOD retrievals were
included, the correlation of the model 1 proxy with PM2.5
concentrations was 0.06 (95% CI, �0.03 to 0.15), whereas
for the model 2 and 3 proxies, it was 0.73 (CI, 0.68–0.77).
This suggests that simple calibration with meteorology
was not successful. In contrast, including the spatial term
greatly improved the correlation, but when AOD was left
out of the model, the correlation was the same. This indi-
cates that AOD did not add spatial information to the
proxy and that the correlation was driven by simply esti-
mating the smooth spatial variation in PM2.5. This suggests
that the drop in R2 seen in the calibration models when
AOD was removed was driven by the temporal, rather than
spatial, association of AOD and PM2.5. This comparison
underscores the importance of understanding the marginal
contribution of AOD to the prediction of PM2.5 in such cal-
ibration approaches.

When we considered the models that used AOD as the
outcome, we found that the correlation of the model 4
proxy with PM2.5 was 0.23 (CI, 0.14–0.32), whereas the
proxy for model 5, which included the spatial term in the
calibration, had a correlation with PM2.5 of 0.57 (CI, 0.51–
0.63). Given the results for models 2 and 3, this suggested
that in model 4 AOD in and of itself was of limited help in
predicting PM2.5 and that the improvement in the correla-
tion came from the spatial information in the calibration.
We would have hoped that the spatial surface merely cor-
rected for the large-scale discrepancy between AOD and
PM2.5 and allowed smaller-scale information in AOD to be
used to predict PM2.5. In assessing the models further, we
found that the spatial correlation of the spatial surface esti-
mate fit in model 5,  with PM2.5 was �0.43 (CI,
�0.49 to �0.35), which indicated that the spatial correc-
tion was itself correlated with PM2.5, with larger values of
PM2.5 scaled down on average. This made it hard to assess
the degree to which the information about PM2.5 was
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coming from AOD rather than from PM2.5 being correlated
spatially at large scales with the discrepancy between
AOD and PM2.5. Although we did not assess these MISR
AOD proxies in the context of our statistical prediction
modeling, in our work with MODIS and GASP AOD cali-
brated in this fashion (sections 5 and 6), the AOD proxies
were found not to improve prediction of PM2.5, despite
correlations between proxy values and PM2.5 of the magni-
tude seen here for the model 5 MISR AOD proxy.

Figure 5 shows maps of long-term average PM2.5 and
raw AOD. Given the low correlation between PM2.5 and
raw AOD, the lack of spatial alignment is not surprising.
Figure 6 shows the full surface of raw AOD and indicates
that the areas of low AOD aligned closely with forested
areas, whereas higher AOD was associated with agricul-
tural and developed areas. The correlation between the
proportion of forest in a cell and long-term average AOD
was �0.476 (CI, �0.479 to �0.473). Note that the areas that
were omitted because they had fewer than 50 AOD
retrievals (in the Appalachians and across areas near the
Canadian border and Great Lakes) also tended to have low
average AOD and to be forested. We investigated whether
the association of land use and PM2.5 drove the AOD–
PM2.5 relationship or whether some of the association of
AOD and PM2.5 was driven by surface characteristics that
correlated with PM2.5, rather than by the direct relation-
ship of aerosol and PM2.5. Based on the data from the cells
containing the 503 monitors, we found a correlation of

�0.23 (CI, �0.32 to �0.15) between the forested propor-
tion of the cell and PM2.5, a correlation of 0.26 (CI,
0.18–0.35) for AOD and PM2.5 (as above), and a correlation
of �0.45 (CI, �0.52 to �0.37) between the proportion for-
ested and AOD. This suggests AOD was more strongly
related to land cover (forest vs. nonforest) than to PM2.5
and that the AOD–land cover relationship may have par-
tially driven the AOD–PM2.5 relationship, rather than the
reverse. Regressions of log AOD on PM2.5 and the propor-
tion forested, both individually and jointly, supported this
hypothesis. The R2 was 0.23 when we regressed log AOD
on the forest variable alone and 0.09 with a regression
coefficient of 0.020 (CI, 0.014–0.026) when we regressed
on PM2.5 alone. However, when we regressed on both vari-
ables, the R2 was 0.27 with a smaller regression coefficient
for PM2.5 of 0.013 (CI, 0.008–0.019), suggesting that a por-
tion of the AOD–PM2.5 relationship appeared to be driven
by the effect of land cover on AOD. Fortuitously, both AOD
and PM2.5 were negatively correlated with forest cover: If
the correlations had been in opposite directions, the asso-
ciation of surface reflectance and AOD could have weak-
ened the relationship of AOD and PM2.5. To the extent that
AOD is merely standing in for land cover, we can directly
account for land cover in statistical prediction models of
PM2.5. Of course, spatial misalignment between PM2.5
point observations and the large MISR pixels could have
driven down the AOD–PM2.5 relationship relative to the
AOD–land use relationship, but we note that Figure 5, left

Figure 5. Long-term (2000–2006) average PM2.5 at AQS and IMPROVE monitoring stations (µg/m3) (left map) and long-term average MISR AOD at the
same stations (right map). AOD values based on fewer than 50 retrievals over the seven-year period are omitted. A small number of MISR AOD values are
truncated to 0.225 to accentuate the heterogeneity of values in the right map.
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map, suggests that much of the long-term average PM2.5
variability was at moderate-to-large scales. Further assess-
ment of this issue would involve accounting for the effects
of the vertical profile, the RH, and the PBL on the AOD–
PM2.5 relationship.

In terms of the geographic effects of this phenomenon,
note that the band across the southern United States from
Mississippi through Georgia to North Carolina where AOD
(Figure 5, right map) was low relative to PM2. 5 (Figure 5,
left map) corresponds to relatively forested areas (Figure 6,
middle map). Several areas of high AOD shown in Figure
6, top map, that might not have corresponded to high
PM2.5 (Figure 5, left map) are Iowa, southern Minnesota,
and along the Mississippi River, where Arkansas borders
with Tennessee and Mississippi.

DISCUSSION

Our results suggest that even after calibration with mete-
orologic variables known to affect the AOD–PM2.5 rela-
tionship (Liu et al. 2005), long-term average proxy values
derived from MISR AOD were weakly related to PM2.5.
Spatial calibration, which played an empirical role in our
analysis similar to the role of the atmospheric-chemistry
model in Liu and colleagues (2004a) and van Donkelaar
and colleagues (2010), was critical to improving correla-
tions between AOD proxies and ground-level PM2.5, as
was seen also for GASP AOD (section 3). The atmospheric-
chemistry model used in those studies had a resolution of
2 � 2.5 degrees, and in our work any calibration was nec-
essarily limited by the resolution of the monitoring data.
Thus, such approaches are of limited help in accounting
for smaller-scale discrepancy, which our results suggest is
important in limiting the correlation of AOD and PM2.5. Of
course, discrepancy at the finest scales, that of the pixel
size and below, is a result of the scale mismatch, with areal
AOD values necessarily unable to capture local variability
in point-level PM2.5 observations. But the results here sug-
gest the presence of substantial discrepancy at small scales
that are larger than this finest of scales. We note that our
interest in small-scale information, driven by the desire to
identify health effects within and between cities, rather
than the health effects associated with regional variation in
PM2.5 (Pope et al. 2002; Zeger et al. 2007), pushed the
limits of the available AOD products. It remains unclear
what factors were most important in causing the apparent
discrepancy at these smaller scales, after we corrected for
larger-scale discrepancy. As we discuss in sections 7 and 8,
one open question is whether smaller-scale information on
vertical-profile variation would have helped to explain
and correct for some of the discrepancy.

Figure 6. The relationship of forest cover and MISR AOD. The top map
shows long-term (2000–2006) average MISR AOD at all locations. AOD
values based on fewer than 50 retrievals over the seven-year period are
omitted, and a small number of AOD values are truncated to the range 0.05
to 0.225. The middle map shows the percentage of forest cover in 4-km-grid
cells. The graph shows AOD as a function of the percentage of forest cover
for each cell of a random sample of 5000 grid cells. A small number of
points with AOD values outside the range of 0.05 to 0.225 are not shown.
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In our results, we noted that the spatial variation in
long-term average MISR AOD closely followed patterns of
surface reflectivity, suggesting that surface reflectance con-
tamination was an important contributor to the discrep-
ancy at smaller scales. An associated question was
whether some of the association of AOD and PM2.5 was
driven by the simple correlation of AOD retrievals with
land use and not with AOD acting as a direct assessment of
PM2.5 concentrations at the surface. Similar spatial pat-
terns were seen in the AOD averages and the final proxy of
van Donkelaar and colleagues (2010). Satellite AOD prod-
ucts are known to have difficulty distinguishing aerosol
signals from land signals when aerosol levels are low, so
surface contamination is likely an important factor in the
difficulty in making use of small-scale variation in AOD as
a proxy for PM2.5. In the United States, in particular, the
magnitude of satellite AOD error is large relative to the
signal (Liu et al. 2004b).

van Donkelaar and colleagues (2010) reported more
encouraging results for larger spatial domains. For the
United States, they reported larger correlations than seen
in this study, with the exception of the correlation of PM2.5
with our model 5 proxy. The most important difference
between their results and ours that likely explains much of
the difference in correlations is that they calculated corre-
lations over the entire United States, which has a broader
range of PM2.5 values than the eastern United States and a
simple contrast of generally high values in the East and
low values in the West. This likely led to increases in the
proportion of variation they explained. In addition, their
consideration of long-term averages was based on daily
values of PM2.5 and AOD proxies coincident in time,
which increased correspondence relative to comparing to
true long-term average PM2.5. Interestingly, if we manipu-
late the calibration  in van Donkelaar and col-
leagues (2010), we see that  in our model 5 is

essentially the scaling term, 
 (but without an overall
scaling constant that puts the quantities in units of PM2.5).
The negative correlation of the spatial calibration term for
model 5 with PM (see Results, above, in this section) is
consistent with the apparent positive correlation between

 of their equation 1 and PM2.5 that is evident in Figures 2
and 3 of their report.

5. LIMITATIONS OF REMOTELY SENSED 
AEROSOL AS A SPATIAL PROXY FOR PM2.5

INTRODUCTION

Epidemiologic studies provide evidence that chronic
exposure to PM is related to increased mortality and mor-
bidity (Dockery et al. 1993; Pope et al. 2002; Miller et al.
2007). Studies of the chronic health effects of PM2.5 rely on
spatial heterogeneity of PM2.5 concentrations to identify
the effects. Spatial statistical modeling combined with
land-use regression can improve estimation of concentra-
tions at smaller scales and in areas far from monitors by
using land use and meteorological information (Yanosky et
al. 2008; Paciorek et al. 2009), but efforts still suffer from
the spatial sparsity of the monitoring network.

Remote sensing holds promise for adding spatial infor-
mation for estimating exposures, particularly in areas far
from monitors, which tend to be suburban and rural (e.g.,
Figure 7, described below), although reviewers of this
report have commented that such areas might have more
fine-scale variability than urban areas because of local
sources and topography. Satellite-derived AOD has been
correlated with ground level PM2.5 (Wang and Christopher
2003; Engel-Cox et al. 2004; Liu et al. 2005; Koelemeijer et
al. 2006; Liu et al. 2007a; Pelletier et al. 2007; section 3 of
this report). These correlations occur despite the vertical

PM AOD
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Figure 7. Monthly average MODIS AOD (left map) and ground-level PM2.5 concentrations (µg/m3) (right map). The values are from July 2004 for the U.S.
mid-Atlantic region defined by this study.
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mismatch of total-column aerosol, as quantified by AOD,
and ground-level PM2.5 concentrations, the level of interest
for health studies, and despite the temporal mismatch of
24-hour averages of PM2.5 and daytime (often single-snap-
shot) AOD. These results and success in using AOD to doc-
ument pollution episodes (Wang and Christopher 2003; Al-
Saadi et al. 2005) have led to excitement about using AOD
as a proxy, standing in for PM2.5, or for using it in combina-
tion with ground measurements to better predict PM2.5. Our
work focused on improving empirical prediction, rather
than physical explanation, of the spatial patterns of PM2.5.

Most studies of the AOD–PM2.5 association have fo-
cused on temporal (longitudinal) correlations or have not
distinguished spatial (cross-sectional) from temporal cor-
relations. However, estimating spatial heterogeneity is crit-
ical for estimating chronic exposure to PM2.5. Correlations
of long-term averages using matched daily (or hourly) val-
ues (e.g., van Donkelaar et al. 2006) do not take into ac-
count the large number of missing retrievals, resulting
from orbit patterns, cloud cover, and surface reflectivity,
that can seriously compromise the association between
available AOD and long-term average PM2.5 concentra-
tions. Finally, but critically, simple correlations do not tell
us if AOD improves predictions within a statistical model
that already uses information on meteorology, land use,
and regional variation. We are not aware of any such anal-
ysis of the use of AOD for exposure estimation.

Here we report on both raw empirical results and statis-
tical modeling of the relationship between AOD and PM2.5
and on the ability of AOD retrievals to improve predictions
of ground-level PM2.5 in the eastern United States, focus-
ing on the mid-Atlantic region. We take a public health
perspective, in which good estimates of PM2.5 concentra-
tions over an entire specified spatial region and time peri-
od are needed as an input in epidemiologic analysis. We
first showed positive, but moderate and variable, correla-
tions at various temporal scales. The correlations did not
improve when we looked at longer-term averages over all
the days in a period of time. We introduced a statistical
model that treated AOD as proxy data for PM2.5, estimating
a PM2.5 prediction surface that reflected both the PM2.5
and AOD data. This model was highly sensitive to assump-
tions about the structure of the discrepancy between AOD
and PM2.5. The results suggested that there were systemat-
ic, spatially correlated differences between AOD and
PM2.5 and that AOD should be disregarded in predicting
PM2.5. We confirmed this result using a simpler model,
with PM2.5 data as the gold standard, by regressing PM2.5
on AOD and numerous other predictors, which showed
that the use of AOD in an already successful prediction
model offered no gain in predictive power.

METHODS

Data

All analyses were for the year 2004. Associations of
AOD and PM2.5 were weak in the western United States
(Engel-Cox et al. 2004; Liu et al. 2005; section 3 of this
report), so we focused on the eastern United States. Our
daily exploratory analyses used data east of 100� W longi-
tude. To limit computations with large remote-sensing
datasets, our longer-term analyses, including the statistical
modeling, focused on a mid-Atlantic region encompassing
Pennsylvania and New Jersey (see Figure 7), which con-
tains the major metropolitan areas of New York, Philadel-
phia, Washington DC, Baltimore, and Pittsburgh as well as
large rural areas in the north. The heterogeneity in popula-
tion density and the presence of large point-source emis-
sions from power plants and industrial plants in the
southwestern portion of the mid-Atlantic region provided
a test region with substantial variability in pollution.

We used AOD retrievals from three satellite instru-
ments: MODIS, MISR, and GASP. The MODIS and MISR
instruments are aboard the Terra satellite platform, whose
polar orbit has been providing full coverage of the globe at
regular intervals, beginning in March 2000, with retrievals
in the eastern United States at a constant daily time point
(10:30–10:45 AM local time). Both MISR (primarily version
15, at 558 nm) and MODIS (Collection 5, at 550 nm) pro-
vided retrievals of AOD, a dimensionless measure of light
extinction over the entire vertical column of air through
the atmosphere (also known as aerosol optical thickness),
which were available through NASA. AOD generally
ranged from 0 to 5, with values greater than 1 associated
with heavy haze. MISR AOD retrievals were at a nominal
spatial resolution of 17.6 km with retrievals in the north-
east United States every 4 to 7 days depending on location
(Liu et al. 2005). MODIS provided AOD retrievals at a
nominal resolution of 10 km, with each location covered
every 1 to 2 days (Wang and Christopher 2003, Engel-Cox
et al. 2004). AOD cannot be retrieved below clouds, so
cloud-filtering algorithms use the infrared portion of the
spectrum to detect and omit obscured observations (Engel-
Cox et al. 2004). Errors and uncertainties in the filtering
could have led to erroneous AOD retrievals, and high sur-
face reflectivity could also have prevented retrievals.

GASP AOD (interpolated at 550 nm) was calculated from
GOES-12 (East) imager data; the NOAA provided their most
recent (as of 2007) version. GASP AOD was at a nominal
spatial resolution of 4 km, but retrievals were less precise
than MODIS or MISR AOD retrievals because of the coarse
spectral resolution and fixed viewing geometry of the
sensor (Prados et al. 2007). Retrievals were attempted every
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half-hour during daylight, 10:45 to 23:45 UTC, but again,
cloud cover and high surface reflectivity could have led to
many missing observations. We used daily average GASP
AOD, regardless of the number of retrievals.

We used 24-hour averages of gravimetric FRM measure-
ments from the U.S. EPA AQS with parameter 88101, omit-
ting a small number of IMPROVE monitors, which are
generally placed where few people live. While hourly data
were better matched in time to the MODIS and MISR snap-
shots, the number of hourly monitors was limited and
there is no FRM for hourly measurements. Also, our
interest was in the relationship of PM2.5 and AOD at
monthly and yearly periods.

In our statistical modeling, we used GIS-based and
meteorologic covariates to help explain PM2.5 variation,
following Yanosky and colleagues (2008). Covariates that
could have helped predict PM2.5 at fine spatial scale
included distance to major roads in three road classes
(Class 1, primary road with limited access; Class 2, pri-
mary road without limited access; and Class 3, secondary
and connecting roads, state and county highways). We also
used the point locations of year 2002 primary PM2.5 emis-
sions from the U.S. EPA’s 2002 National Emissions Inven-
tory (NEI). Other covariates were calculated using a GIS at
the resolution of the 4-km grid used in our statistical mod-
eling. These included road density for the three road
classes, population density, and elevation at the cell cen-
troid. As a measure of non-point-source emissions in each
cell, we assigned the density (total emissions divided by
county area) of the area-level primary PM2.5 emissions,
from the 2002 NEI, in the county of the cell centroid. Mete-
orologic variables were based on the NARR (Mesinger et al.
2006) fields, available at 32-km resolution every 3 hours.
For each 3-hour value and each grid cell, we computed the
IDW average of the NARR values from the four NARR
points nearest to the cell centroid. Values were then aver-
aged for the month. Our second statistical model used wind
speed and temperature, but we also considered the RH,
PBL height, mean sea-level pressure, and precipitation.

We also made use of a calibrated AOD variable (see sec-
tion 3), which accounted for systematic effects of the PBL,
the RH, the season, and time-invariant regional variation
that modified and obscured the relationship between daily
PM2.5 concentrations and daily AOD. The calibration was
achieved by regressing daily 2004 AOD values, from across
the eastern United States, on daily PM2.5 and the variables
just mentioned, matched in space and time. By including
time-invariant regional variation, we caused the long-term
average AOD and long-term average PM2.5 to more closely
match at large spatial scales, necessarily increasing corre-
lations of PM2.5 and AOD. We hoped that by including this

spatial term we could adjust for large-scale differences
between AOD and PM2.5, which would allow us to exploit
common patterns of AOD and PM2.5 at smaller spatial
scales, to the extent that they existed.

Table 4 shows summary statistics for the three types of
AOD retrievals and for the PM2.5 observations. Appendix
A provides more details on the data.

Exploratory Analyses

Our goal in the exploratory analyses was to understand
the association between AOD and PM2.5 at different tem-
poral aggregations, to assess the potential of AOD to help
predict chronic PM2.5 exposure. We started by considering
daily associations, when AOD and PM2.5 were matched
such that both types of data were available for a given day
and location, mirroring analyses in the published litera-
ture. We matched available PM2.5 24-hour averages with
AOD retrievals from the pixel nearest the associated PM2.5
monitor for each of the three satellite instruments, omit-
ting a small number of monitors for which the nearest
pixel centroid was closer to another monitor. Our interest
was in fine-resolution estimation of PM2.5. Therefore,
unlike for other analyses, we used individual pixels
instead of aggregating AOD across adjoining pixels.

When considering the prediction of long-term average
PM2.5 for epidemiologic analyses of chronic exposure,
missing AOD retrievals cause researchers to rely on a
subset of days with AOD retrievals (determined by
weather conditions that also affect PM2.5 levels, so AOD
patterns represent only cloud-free conditions) to estimate
monthly or yearly pollution. On average, MODIS, MISR,
and GOES retrievals were available over the land area of
the entire mid-Atlantic region 16%, 4%, and 38%, respec-
tively, of the days in 2004. Also, the MODIS and MISR
AOD snapshots taken every day at the same time might not
have matched average daily ground-level PM2.5 pollution.
To assess the long-term spatial relationship of AOD and
PM2.5, we considered associations of yearly PM2.5 and
AOD, relating average AOD from available retrievals to
average PM2.5 based on all available PM2.5 monitoring
data, not just PM2.5 data matched by day to AOD retrievals.
These associations eliminated temporal correlations
within a site that could obscure the spatial association.
However, simple yearly averaging did not account for the
differential frequency of successful AOD retrievals over
the seasons in the year (which resulted in the over-
weighting of summer AOD values) nor did it allow us to
consider monthly associations, so we also report results at
the monthly level.

For the monthly analyses, we focused on MODIS and
GOES retrievals because of the extremely low availability
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of MISR retrievals, which would have required us to inter-
polate AOD values over very large areas with no retrievals.
Even after we averaged to the month, some locations were
found to have no retrievals, so we used a statistical
smoothing model to estimate an AOD surface for each
month. This model used a computationally efficient
Markov random field (MRF) representation of a thin plate
spline (TPS) (Rue and Held 2005; Yue and Speckman
2010; see also section 6 and Appendix C, available on the
HEI Web site, for more detail) that readily fit the AOD
retrieval data for each month (there were as many as
15,000 observations in a month). We used a heterosce-
dastic residual variance that accounted for the differing
number of retrievals in different locations. While the
model has the flexibility to perform either substantial or
little smoothing, in practice because the AOD values did
not show a lot of white-noise-like behavior, the smoothed
fields looked similar to the raw fields, but with imputed
values where no data were available.

Statistical Modeling

Our exploratory analyses did not account for complica-
tions such as differing numbers of PM2.5 observations and
AOD retrievals by location and heterogeneity in PM2.5 at
scales smaller than the AOD pixels. Most importantly,

because the correlations of AOD and PM2.5 might have
reflected variability in PM2.5 that could have been pre-
dicted by other sources of information, such as land use,
meteorology, or estimation of large-scale regional variation
through spatial smoothing of monitored values, they could
have overstated the usefulness of AOD as a predictor in
light of other readily available information. To address
these issues, we turned to formal statistical modeling, ana-
lyzing the mid-Atlantic region. Both the model described
above and this model were specified in a Bayesian context
and were fit by standard Markov chain Monte Carlo
(MCMC) methods. We did not use MISR data because of
the limited number of retrievals.

Using AOD as Proxy Data Recent statistical efforts have
focused on combining multiple sources of information by
treating the sources as reflecting a true, unknown spatial
process (Fuentes and Raftery 2005; Gelfand and Sahu
2009; McMillan et al. 2010). Accordingly, we fit statistical
models for individual months. PM2.5 and AOD observa-
tions were considered to be separate data sources that
reflected the unknown PM2.5 surface for a given month.
The first stage of the model contained two likelihood terms
representing the probabilistic relationships of the PM2.5
and AOD data to the underlying processes and covariates.

Table 4. Summary Statistics for MISR, MODIS, and GASP AOD Retrievals (Unitless) and 
PM2.5 Observations (µg/m3) for 2004 for Both Daily Averages (Matched by Day and 
Location) in the Eastern U.S. and Monthly Averages of PM2.5 Observations in the Mid-
Atlantic Region 

Data Source Sample Size Median (5%, 95%)

Daily Values, Eastern U.S.a

MISR AOD 4,381 0.09 (0.03, 0.38)
PM2.5 matched to MISR 4,381 10.5 (3.7, 26.2)
MODIS AOD 11,291 0.07 (�0.04, 0.46)
PM2.5 matched to MODIS 11,291 10.2 (3.8, 26.6)
GASP AOD 46,684 0.13 (�0.06, 0.51)
PM2.5 matched to GASP 46,684 11.1 (4.3, 27.3)

Monthly Averages, Mid-Atlanticb

PM2.5, all seasons 1,842 13.0 (8.2, 21.0)
PM2.5, winter 460 11.2 (7.4, 16.8)
PM2.5, spring 463 13.3 (8.8, 19.0)
PM2.5, summer 459 17.0 (11.9, 24.5)
PM2.5, fall 460 11.3 (7.8, 18.3)

a Locations east of 100� W longitude.

b Monthly average AOD values are not included because these values were processed before use in the statistical 
models presented in section 5.
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For PM2.5, for an individual month, we specified the likeli-
hood for the PM2.5 concentration at location i, PMi, as

(9)

where the core of the model was the unknown true pollu-
tion surface that we wanted to estimate, represented on a
4-km grid as Ps, where s indexed grid cells. We represented
the monthly averages of available 24-hour concentration
measurements in terms of the gridded pollution surface,
locating individual observations, yi, within the appro-
priate grid cell, s(i). fk(zk,i) were smooth regression func-
tions that reflected the effects of local covariates, zk, that
affected PM2.5 at scales below 4 km, a decomposition sim-
ilar to that of Beelen and colleagues (2007). In particular, we
used the distance to the nearest Class 1 and Class 2 roads,
forcing the effect to be 0 beyond 500 m (Zhou and Levy
2007). By modeling the effect of nearby roads (and point
emissions; see below), we attempted to account for differ-
ences between AOD and PM2.5 caused by within-pixel het-
erogeneity captured by PM2.5 monitors but smoothed over
in the AOD pixel values. We thus assessed the ability of
AOD to capture spatial heterogeneity of PM2.5 at small
scales (tens of kilometers) but not at fine scales (meters to
kilometers). The error variance, , reflected various com-
ponents of uncorrelated error and accounted for the varying
number of daily observations by location. The likelihood
term for AOD is presented later, in equation 11.

The unknown pollution process on the grid was repre-
sented as

(10)

where µ was an overall mean and hk(wk,s) were smooth
regression functions of grid-scale covariates: the density of
Class 1, Class 2, and Class 3 roads, population density, ele-
vation, and non-point-source area emissions. gs was a
smooth spatial term representing residual spatial structure
unaccounted for by covariates, in particular regional varia-
tion. Since we fit the model individually for each month,
we omitted meteorologic covariates, which tended to be
spatially smooth and whose influence would have been
difficult to separate from gs, causing their influence to be
reflected in the estimate of gs. Also included in the model
was a term that accounted for the effect of point emissions
within 100 km of a monitor. This term represented the
effect of multiple point sources at a given receptor location
(i.e., a monitor or prediction point) as the emission-
strength-weighted sum of a smooth distance effect evalu-
ated for each individual source–receptor pair. The dis-
tance function was a universal function representing the

effect of a single source of unit strength on a receptor as a
smooth function of the distance between source and
receptor. It was estimated from the data based on a new
statistical approach that leveraged the additive structure of
mixed model representations of splines, as described in
Appendix D (see the HEI Web site). This term was used
both as a covariate affecting the individual PM2.5 observa-
tions based on the point location of each monitor (see
equation 9) and as a covariate affecting the gridded pro-
cess, Ps (based on averaging over a subgrid of 16 points
within each cell).

We specified the AOD retrieval in an individual month,
AODs, as reflecting the unknown PM2.5 process,

(11)

up to additive, �0, and multiplicative, �1, bias, with a
smooth regression function of cloud cover, fcloud(zcloud,s),
where zcloud,s was the monthly average proportion of
cloud-free retrievals in the cell, based on the GOES algo-
rithm for retrieving clouds. This was included to help
account for bias from retrievals that were systematically
missing because of clouds (Koelemeijer et al. 2006; section
3 of this report).  reflected various components of
uncorrelated error and accounted for the varying number
of daily retrievals by location. A complicating factor was
that for different satellite orbits on different days, the
MODIS pixels shifted spatially. Therefore, we considered
the overlap of all the pixels in an orbit with the 4-km grid,
assigning to each grid cell, s, the value of the MODIS pixel
in which the cell centroid fell. Taking the retrievals
assigned to each cell, we then calculated a monthly
average for each cell, resulting in as. The pixel locations of
GOES retrievals were constant over time, so we calculated
a monthly average and then assigned each grid cell the
weighted average AOD of the GOES pixels that the cell
overlapped, weighted by the area of overlap. While sim-
plistic, we believe these approaches caused minimal dis-
tortion in the AOD values used in the modeling because of
the reasonably smooth local variation in daily AOD values
from pixel to pixel. Note that we assumed in this model
that any difference between AOD and PM2.5 was spatially
uncorrelated noise, which resulted in an estimate of Ps that
reflected the spatial structure in both PM2.5 and AOD
observations.

Note, however, that maps of monthly average AOD show
strong spatial structure (e.g., Figure 7, left map) with lim-
ited spatially uncorrelated noise (i.e., white noise)
apparent. This spatial structure might have been caused in
part by systematic, spatially correlated differences between
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AOD and PM2.5, rather than having been a reflection of
spatial structure in ground-level PM2.5. Factors likely to
have contributed to such differences, which would have
operated even if AOD had been measured perfectly,
included the spatial structure of pollution aloft above the
PBL and daily spatial patterns of missing retrievals
because of clouds, which would have resulted in an aggre-
gate effect at the monthly level. Of course, AOD is not mea-
sured perfectly (Knapp et al. 2002; Remer et al. 2005), as
reflected in moderate correlations between monthly
average MODIS and GOES AOD and caused in part by spa-
tial variability in surface reflectivity and PM2.5 composi-
tion. The summed effect of all these differences, which we
refer to as systematic discrepancy, could be substantial and
it, rather than pixel-scale white noise, could be the domi-
nant factor explaining the low correlations of AOD with
PM2.5 seen in our exploratory analyses. Models that treat
AOD as a proxy for PM2.5 without accounting for potential
systematic discrepancies might predict spatial patterns of
PM2.5 that do not match reality. We assessed the sensitivity
of our results to assumptions about systematic discrepan-
cies by including an additive spatial bias term, �s, that was
represented at the grid scale and replaced the bias con-
stant, �0, in equation 11. Models with such a term allow
for the possibility that AOD retrievals might be providing
information about spatial processes specific to the
retrievals that does not reflect spatial patterns in ground-
level PM2.5 concentrations. We estimated �s using a penal-
ized TPS approach that penalized complex spatial surfaces,
thereby favoring simple surfaces if the data could be suffi-
ciently explained by a smooth surface (Ruppert et al. 2003).
Such an approach was also used for the other smooth terms
in the model, fit naturally within the Bayesian context with
the level of smoothing determined by the data. For compu-
tational reasons and because the key results are best visual-
ized in model fits of individual months, we fit the model
separately for each of the 12 months.

The advantage of this modeling approach was that it
naturally treated AOD retrievals as data and allowed for
missing retrievals. By considering different assumptions
about spatial bias, we could assess the concordance of spa-
tial patterns of AOD and PM2.5 and investigate the
assumption that the spatial pattern in AOD represented a
signal that was informative about PM2.5.

Using AOD as a Predictor of PM2.5 We also considered
a model in which AOD was used as a predictor on the
right-hand side of a regression-style model and the PM2.5
data were treated as the gold standard. This had the benefit
of directly calibrating PM2.5 to AOD and, if there were
little empirical association, discounting AOD as a pre-
dictor of PM2.5.

In this model, PM2.5 observations were modeled as in
equation 9,

(12)

whereas the unknown smooth pollution process, Ps,t, was
similar to equation 10, but included AOD, As,t, as a predictor:

(13)

This model was fit simultaneously to all 12 months, which
were indexed by the t subscript. For simplicity, we
assumed that gs,t, the residual spatial structure, was not
correlated over time, which eased computations. Previous
work has suggested that month-to-month correlation is
limited and that including correlation would do little to
improve predictions (Paciorek et al. 2009), so this assump-
tion should not have affected our ability to assess whether
AOD could improve PM2.5 predictions. We allowed �1,t to
vary in an unstructured way with time, in case the rela-
tionship of AOD and PM2.5 varied by season (section 3).
We limited the covariates, wk (some of which did not vary
with time), to population density, elevation, area emis-
sions, point emissions, density of Class 3 roads, wind
speed, and temperature. We also included monthly
average cloudiness as a covariate, to help account for bias
resulting from missing AOD retrievals.

One downside to our approach was that it required AOD
values at all locations. We used the MRF representation of
a TPS, described in Exploratory Analyses in section 5, to
smooth the observed AOD retrievals and make predic-
tions, As,t, at unobserved locations. Preprocessing of pixel-
level AOD values to align with the 4-km grid was done as
described previously.

RESULTS

Exploratory Analyses

Correlations between daily PM2.5 and AOD (matched by
day and location) that reflected both temporal and spatial
associations were higher than correlations for individual
days, which reflected only spatial associations (Table 5).
The spatiotemporal associations roughly matched those
that have been used in the literature as evidence of the po-
tential of AOD as a proxy for PM2.5 (e.g., Engel-Cox et al.
2004; Liu et al. 2005; section 3 of this report). Figure 8 il-
lustrates the daily data used to calculate purely spatial as-
sociations, showing the spatial mismatch between MODIS
AOD patterns and PM2.5 levels seen at monitors. In this ex-
ample, the mismatch did not appear to be driven by local
variability in PM2.5, as the levels were fairly consistent

2PM ,�    ( )( ( ) )it it s i t k k i it
k

y N P f z

1 .� �         ( )s t t t s t k k s t s t
k

P A h w g



3232

The Relationship Between AOD and PM2.5 in the Eastern U.S.

Table 5. Correlations for 2004 of Daily AOD with Matched 24-hr PM2.5 for the Eastern U.S. and of Yearly Averages of AOD 
with PM2.5, Matched in Space But Not by Day, for the Mid-Atlantic Region

Raw AOD Calibrated AODa

MODIS MISR GOES MODIS MISR GOES

Daily Values, Eastern U.S.
Temporal plus spatial variation: Overall 
correlation of daily values across all sites 
and days

0.60 0.50 0.38 0.64 0.57 0.40

Spatial variation only: Average of daily 
spatial correlationsb

0.35 0.30 0.23 0.45 0.32 0.29

Yearly Averages, Mid-Atlantic Regionc

Spatial variation only: Correlation of yearly 
averages

0.09 0.25 �0.07 0.49 0.22 0.53

a Calibrated AOD has been adjusted to account for the effects of PBL, RH, season, and regional variation on the relationship between daily 
AOD and PM2.5. 

b Only days with at least 20 matched sites are included. 

c Yearly averages reflect all available AOD retrievals and all available 24-hr average PM2.5 concentrations. Yearly results include only sites with at least 
100 daily PM2.5 observations and exclude one site with high PM2.5 levels outside Pittsburgh that is just downwind of a major industrial facility.

Figure 8. MODIS AOD (from two overpasses; left map) and 24-hour average PM2.5 observations (µg/m3) from a single day, July 20, 2004 (right map). The
maps illustrate spatial mismatch on a day when PM2.5 observations were spatially uniform within metropolitan areas and over broader regions.
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within individual metropolitan areas as well as over larger
regions. Using AOD directly in our analyses did not ac-
count for meteorologic factors and systematic temporal
and spatial variability that modified the relationship be-
tween AOD and PM2.5, so we also considered the calibrat-
ed version of AOD, which somewhat improved the
correlations (Table 5).

Table 5 shows near-0 correlations of yearly average
PM2.5 based on all available 24-hour values (everyday or
every-third-day sampling) with AOD from available
retrievals. Note that for monitors reporting only every
3 days, missing PM2.5 values contributed to noise in the
associations seen here. After calibration, AOD was moder-
ately correlated with PM2.5. The calibration included an
overall spatial term that adjusted for any large-scale
regional mismatch between AOD and PM2.5 that was con-
sistent over the year. This term was responsible for much
of the increase in correlation after calibration, as it neces-
sarily caused the large-scale patterns of long-term average
AOD and PM2.5 to more closely match. We hoped that cor-
recting for such large-scale mismatch would allow us to
explore whether there was independent information in
AOD for predicting smaller-scale patterns of PM2.5, a ques-
tion that we answered in the statistical modeling in this
section.

Correlations were higher in the warmer months, but
were moderate at best (Figure 9). Results were similar
when locations were restricted to those with at least 3 days
in a given month with AOD retrievals. The poor correla-
tions resulted in part from the limited availability of
retrievals, particularly during winter, seen in gray in
Figure 9.

Based on taking the 12 smoothed monthly values for
AOD and averaging to get a yearly value at each location,
Table 6 shows near-0 correlations of raw AOD and mod-
erate correlations of calibrated AOD with yearly average

PM2.5. By averaging using equal weights for each month,
we attempted to account for the varying availability of
retrievals in different seasons. During the warmer part of
the year (avoiding months with few retrievals), correla-
tions of calibrated AOD with PM2.5 increased, but those of
raw AOD did not. If we considered only monitors with at
least 300 observations (shown in the last row of Table 6)
during the year (i.e., monitors reporting daily, with little
missing data), correlations for the calibrated AOD were
similar, whereas for raw AOD they were higher but still
moderate in magnitude. The increased correlations might
have been related to the fact that monitors that sample
daily are more likely to be in locations with high PM2.5
concentrations; that is, these monitors were more likely to
be categorized by EPA as monitors sited to monitor areas of
high PM2.5 concentrations (18% of daily-sampling moni-
tors but only 5% of non-daily-sampling monitors).

Table 6. Correlations (Across Space) of 2004 Yearly and Warm-Season (April–October) Average AOD and Spatially 
Matched PM2.5 (Sites with at Least 100 Daily PM2.5 Observations) for the Mid-Atlantic Regiona 

Raw AOD Calibrated AOD

MODIS GOES MODIS GOES

Correlation of yearly values 0.19 �0.06 0.53 0.44 
Correlation for April–October 0.05 �0.19 0.65 0.70
Correlation of yearly values, daily monitors only 0.43 0.27 0.45 0.40

a Yearly averages are computed from monthly data. For AOD, these are produced by spatial smoothing of the available monthly data, thus filling in missing 
values at the monthly level. Results exclude the site outside Pittsburgh excluded in Table 5. 

Figure 9. Correlations (across space) of monthly average smoothed AOD
with spatially matched PM2.5. The results (from 2004) are for locations in
the mid-Atlantic region with at least five daily PM2.5 values during the
month (thin lines represent raw AOD; thick lines, calibrated AOD). Gray
lines show the proportion of days in a month with a successful retrieval,
averaged over land areas in the region. For consistency, the results
exclude the site outside Pittsburgh excluded from Table 5, but this
exclusion has little effect here.
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Figure 10. Sensitivity of predicted PM2.5 (µg/m3) to the characterization of spatial discrepancy. The left column shows PM2.5 predictions for models in
which AOD and PM2.5 observations are treated as data reflecting a common unknown PM2.5 process, using calibrated MODIS AOD for July 2004.
Approach 1 excludes the spatial discrepancy term, �s, thereby treating AOD as a simple proxy for PM2.5, with simple additive and multiplicative bias. In
approach 2, �s is constrained to be a somewhat smooth process, with a maximum of 55 degrees of freedom (a penalized spline with 55 knots). In approach
3, �s is relatively unconstrained, with a maximum of 755 degrees of freedom. Approach 4 does not use AOD. The right column shows the estimated �s
surfaces for approaches specified in the left column. Approach 1 does not include spatial bias, �s (hence, no top-right subplot), and approach 4 does not
use AOD, so the spatial bias term, �s, is not involved in the model (hence, no bottom-right subplot).

Using AOD as Proxy Data: Sensitivity to Systematic 
Discrepancies

Figure 10 illustrates using MODIS AOD data from July
2004 to make model-based predictions of PM2.5 and esti-
mates of �s (based on equations 9, 10, and 11), allowing

different amounts of complexity in �s, the additive spatial
bias term. When the model omitted the spatial bias term
(row 1), which represents AOD as reflecting PM2.5 with
only simple additive and multiplicative bias, predictions
of PM2.5 strongly tracked the spatial patterns of AOD (i.e.,
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Figure 7, left map). As spatial bias was introduced (row 2)
and more flexibility in the spatial bias term was allowed
(row 3), predictions increasingly tracked the PM2.5 obser-
vations (i.e., Figure 7, right map) and also tracked results
from a model fit without AOD (row 4). The fit of the penal-
ized spline model did not stabilize on a smooth bias sur-
face. When the bias term was forced to be smooth, the
model was unable to adequately represent the AOD data
based on the PM2.5 surface, the smooth bias, and the
white-noise error. This suggests that PM2.5 and AOD obser-
vations shared few common spatial patterns and that true
PM2.5 was best modeled solely based on ground-level
PM2.5 data, with AOD variability modeled separately. This
is seen in row 3, where the model essentially disregarded
AOD in predicting PM2.5 and attributed most of the vari-
ability in AOD to �s. Using GOES AOD or raw AOD with
data for the other 11 months led to similar results. In sum-
mary, systematic discrepancies were considerable and crit-
ical to include, and predictions were very sensitive to
assumptions about the discrepancy term. If the spatial bias
were estimated to be a relatively smooth process, able to be
resolved by having PM2.5 and AOD data in the same
region, the modeling approach would provide a means to
improve PM2.5 prediction: combining the data sources

while accounting for the bias. However, these results sug-
gest the bias process was not smooth and could not be ade-
quately estimated without more dense PM2.5 data, which
were not available and would have largely obviated the
need to use AOD as a proxy.

Using AOD as a Predictor: Effects on Predictive Ability

Predictive ability at both the monthly and yearly resolu-
tions did not improve when we added either calibrated
MODIS or GOES AOD to the models (equations 12 and 13)
already containing the other covariates (Table 7). When we
excluded the other covariates (except the GOES cloud term
for consistency in comparing the AOD and no-AOD
models) and accounted for spatial variability solely based
on spatial smoothing of the observations within the model
framework, the addition of AOD still resulted in essen-
tially no improvement in predictions (Table 7). The results
were similar when data from locations that were most
likely affected by very local sources were omitted (Table 7,
population exposure monitors columns). Sensitivity anal-
yses (results not shown) indicated that AOD had a simi-
larly limited effect on predictive power when raw AOD
was used, when observations were restricted to monitors
in areas with sparse monitoring, or when observations

Table 7. Cross-validation R2 (Mean Squared Prediction Error) for Predictions of Yearly and Monthly Average PM2.5 
from Statistical Prediction Models With and Without Calibrated AOD and Other Predictors of PM2.5 Concentrations 
(After Other Predictors) for the Mid-Atlantic Region for 2004a

Model

Yearly Averagesb Monthly Averages

All Monitors 
(n = 151) 

Population Exposurec 
Monitors 
(n = 130) 

All Monitors 
(n = 1793) 

Population Exposurec

Monitors
(n = 1542)

Models Including Land-Use, Emissions, and Meteorologic Predictors

No AOD 0.580 (1.04) 0.570 (0.93) 0.827 (2.71) 0.839 (2.48)

With calibrated MODIS AOD 0.573 (1.06) 0.564 (0.94) 0.825 (2.73) 0.839 (2.50)

With calibrated GOES AOD 0.572 (1.06) 0.563 (0.95) 0.825 (2.73) 0.838 (2.50)

Models Without Land-Use, Emissions, and Meteorologic Predictorsd

No AOD 0.463 (1.33) 0.456 (1.18) 0.794 (3.22) 0.810 (2.94)

With calibrated MODIS AOD 0.467 (1.32) 0.459 (1.17) 0.794 (3.22) 0.810 (2.94)

With calibrated GOES AOD 0.467 (1.33) 0.458 (1.17) 0.794 (3.22) 0.810 (2.94)

a For a given location, only months for which the location has at least four PM2.5 daily values are included. Results exclude one site with high PM2.5 values 
outside Pittsburgh that is just downwind of a major industrial facility.

b Yearly average results include only locations with at least 6 months of available PM2.5 data.

c The “population exposure” designation assigned to monitors by the U.S. EPA indicates that such monitors are not likely to be affected by large local 
sources. 

d These models do include the GOES cloudiness term, for consistency in comparisons of the AOD and no-AOD models. 
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were restricted to monitors performing daily sampling
(which avoided the extra noise caused by missing monitor
values). Note that the higher predictability of monthly
compared with yearly PM2.5 levels shown in Table 7
occurred because of the importance of temporal variation,
which was easy to estimate based on the monitoring. The
results of including AOD were consistent with the esti-
mates of �1,t, which were small in magnitude, with wide
uncertainty intervals that included 0. Correlations of pre-
dictions with and without AOD were greater than 0.999,
indicating that including AOD in the exposure modeling
when doing an epidemiologic analysis would have negli-
gible impact.

DISCUSSION

We urge caution in assuming that currently available
remotely sensed AOD can help improve exposure estima-
tion for PM2.5. We urge particular caution in using AOD to
estimate spatial heterogeneity of PM2.5 where there is little
ground-level PM2.5 data for ground truthing, because of
the lack of a strong spatial correlation between available
AOD retrievals and long-term average PM2.5. In a setting in
which reasonably dense PM2.5 data were available, our
statistical-modeling results indicated little or no improve-
ment in the prediction of long-term average PM2.5 when
AOD was added. To the extent that raw correlations of
AOD and PM2.5 reflected the ability of AOD to capture
some of the pattern in PM2.5, our results suggest that pat-
terns could be better estimated by simple spatial
smoothing of the available PM2.5 data and regression on
other predictors, rendering the AOD information extra-
neous. Koelemeijer and colleagues (2006) found much
stronger correlations of yearly average MODIS AOD and
PM � 10 µm in aerodynamic diameter (PM10) in Europe;
this may have been related to their focus on rural back-
ground sites, their larger spatial domain, and the greater
variability in their PM10 concentrations.

Remote sensing is of particular interest in developing
countries with little monitoring (e.g., Kumar et al. 2008),
but our results suggest that spatial patterns seen in AOD
may poorly reflect spatial patterns in ground-level PM2.5.
Without evidence of strong correlations over space, as
opposed to purely temporal correlations, the use of AOD to
determine the spatial heterogeneity of PM2.5 may be mis-
leading. Given that our results reflected our focus on a
region of moderate size, it is possible that AOD could be
more helpful for larger regions, although daily spatial cor-
relations over the eastern United States were relatively
weak (Table 5) and previous work showed moderate long-
term correlations at best over the United States (Rush et al.
2004). As we discuss in detail in sections 7 and 8, an

important limitation of our approach was that we did not
make use of vertical-profile information, found elsewhere
to be of use for larger-scale calibration of AOD to PM2.5 (at
2 � 2.5 degrees in Liu et al. 2004a and van Donkelaar et al.
2010). However, our calibrated AOD made use of a large-
scale spatial adjustment to better align AOD and PM2.5, so
it seems unlikely that such large-scale vertical-profile
information would have changed our primary results.
Nonetheless, for capturing larger-scale patterns in larger
spatial domains, AOD that is calibrated based on vertical-
profile information may be more successful (e.g., Liu et al.
2004a; van Donkelaar et al. 2010). Also, AOD might be
helpful for estimating temporal heterogeneity, but missing
AOD retrievals are a major problem.

One might ask whether AOD is useful under specific
conditions or in specific locations, such as for pollution
episodes (e.g., Wu et al. 2006). It is not clear how important
such episodes are for predicting long-term average PM2.5
or how to include such information only under the cir-
cumstances in which it is predictive of PM2.5. If AOD is
useful in some but not all circumstances, the practical
challenge in making use of it is the need of epidemiologists
for exposure estimates without gaps in space or time, often
over large domains and long periods of time.

Systematic discrepancies such as what we saw in the
satellite AOD proxy for PM2.5 can easily be misleading
because the spatial structure seen in the proxy leads one to
think that the patterns reflect real patterns in the process of
interest. In this study, the evidence suggested that much of
this structure did not represent the true structure of PM2.5.
Such systematic discrepancies have arisen in other con-
texts (Campbell 1996; Robinson 2004). It seems likely that
the output of deterministic models used to estimate atmo-
spheric processes, including pollution, such as the output
of the widely used CMAQ model, contain systematic
errors that result in correlated errors in model output,
either because of errors in inputs or because of aspects of
the system under study that are not captured by the model.

Note that since the work with GASP AOD described
here was completed and published (Paciorek and Liu
2009), the GOES team has developed several improve-
ments to the GASP AOD retrieval, including correction of
an error in the azimuth angle definition, an improved
surface-reflectance-estimation method, and improved cal-
culation of the AOD standard deviation, as well as the
inclusion of scattering angle in the screening criteria.
Because of time limitations and the availability of only
3 months of the new GASP AOD retrievals, we did not
rerun the analyses for this study using the newer data.



37

C.J. Paciorek and Y. Liu

37

6. FLEXIBLE SPATIAL LATENT VARIABLE 
MODELING FOR COMBINING INFORMATION 
SOURCES WHILE ACCOUNTING FOR 
SYSTEMATIC ERRORS IN PROXIES

INTRODUCTION

There has been substantial interest recently in com-
bining observations at spatial point locations with proxy
information from remote sensing and the output of numer-
ical models, to improve the prediction of spatial and spa-
tiotemporal surfaces, particularly in the area of air quality.
Building on the work of Fuentes and Raftery (2005), statis-
ticians have proposed a number of modeling approaches,
often termed data fusion, using Bayesian hierarchical spa-
tial models to combine information sources; the goals have
included air-quality management, forecasting pollution,
and exposure prediction for health effects analysis. Criti-
cally, model output and remote-sensing retrievals often
produce surfaces that are highly spatially correlated, but
some of this correlation may represent spatially correlated
error (also termed discrepancy or offset, particularly if the
proxy is not designed to estimate the focal process of
interest but some other related quantity) with regard to the
quantity of interest. For example, a numerical model may
overpredict a pollutant over a wide area because of short-
comings in information on emissions sources, while cloud
or surface contamination may result in spatially correlated
errors in satellite retrievals.

In the statistical formulations of the problem, the possi-
bility of proxy discrepancy has generally been acknowl-
edged, but previous modeling efforts have often placed
strong constraints on the structure of the discrepancy for
reasons of identifiability or computational feasibility.
Fuentes and Raftery (2005) proposed the following general
model with their proxy (numerical-model output) treated
as data via a second likelihood,

(14)

The model relates both the gold-standard observations, Yi,
and the proxy values, Aj (A for auxiliary), to the latent, true
process of interest (the focal process), L(s). Here, we sup-
press any change-of-support manipulations in defining
L(sj) when sj is an area. �(s) and �1(s) are additive and mul-
tiplicative bias terms, and ei and ej are error terms. In gen-
eral, it is difficult to identify both �(s) and �1(s), and
Fuentes and Raftery (2005) used a scalar � 1 and took �(s)
as a simple polynomial in the spatial coordinates. Criti-
cally, since the additive bias has a very low dimensional

representation, this approach assumes that all of the small-
and moderate-scale spatial structure in the proxy is signal
with respect to L(s). In section 5 we used a structure sim-
ilar to this one, with remote-sensing retrievals playing the
role of the proxy, but chose a reduced-rank spline basis for
additional flexibility in modeling the discrepancy. We
found that model fitting was sensitive to the number of
basis functions, with increasingly better fits as the number
of basis functions increased, such that computational com-
plexity prevented fitting a model with enough basis func-
tions to model �(s) adequately. Other recent work has used
such moderately flexible specifications for quantities anal-
ogous to �(s): Fuentes and colleagues (2008) used a small
number of basis functions, whereas McMillan and col-
leagues (2010) used b-splines in two dimensions.

The dangers in limiting the flexibility of the discrepancy
representation are that systematic discrepancy will bias
the prediction of the spatial process of interest in subdo-
mains and that correlated uncertainty will not be properly
acknowledged. In short, spatially correlated discrepancy
in the proxy may look like signal because of the depen-
dence structure, but will cause spurious features in the
prediction surfaces. Gold-standard data can help to assess
the potential for discrepancy at scales resolved by the data.
For large scales (relative to the data density), one can hope
to estimate and adjust for the discrepancy. At smaller
scales, one can at best hope to discount, but not adjust for,
proxy information if the data indicate that the proxy is
poorly related to the focal process. The key to this effort
lies in using a sufficiently flexible model specification for
the spatial discrepancy term.

We propose to use a computationally efficient MRF
specification that is sufficiently flexible to model discrep-
ancies at a variety of spatial scales. This MRF specification
(Rue and Held 2005; Yue and Speckman 2010) approxi-
mates a TPS while retaining the sparse precision matrix
structure of more widely used MRFs, such as conditional
autoregressive (CAR) models based on neighborhood adja-
cencies; sparse structure allows for efficient computation.
For proxy variables that are often very large in dimension
(numerical-model output and remote-sensing observations
on large grids), modeling �(s) efficiently is critical. The
ability of the proposed MRF specification to capture varia-
tion at a range of spatial scales stands in contrast to
(1) reduced-rank basis function approaches (Kammann
and Wand 2003; Ruppert et al. 2003; Banerjee et al. 2008)
that can capture large-scale structure but require many
knots with associated computational slowdowns for small-
scale structure, and (2) traditional CAR models that, while
computationally tractable in capturing small-scale local
variability, show small-scale variation when attempting to
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represent large-scale processes for which small-scale vari-
ability is absent (see MRF Specification later in this sec-
tion). Given the ability of the proposed model structure to
capture or omit variability at various scales, we propose an
approach to assessing the scales of discrepancy as a stan-
dard part of any effort involving data fusion.

The potential for improving prediction using data
fusion, particularly for filling in spatial regions with little
or no data using the rich spatial structure of the proxy, is
appealing and lies behind the recent growth in its interest to
scientists, statisticians, and government agencies such as
the U.S. EPA. While correlation between the proxy and the
gold standard is usually cited as a reason why data fusion is
potentially useful, such correlation does not demonstrate
that including the proxy will improve prediction relative to
a model that spatially smooths the gold-standard data and
that may leverage additional covariates to improve predic-
tive performance. For example, if the proxy only correlates
with the gold standard at large scales, one may well be able
to simply smooth the gold-standard data to capture the
large-scale variation, with little contribution from the proxy.
A complicated proxy error structure, as opposed to unreal-
istic white noise, may be difficult to represent and to
account for and may result in correlated errors in predic-
tions. The additional covariates may be able to account for
small-scale variation and render the proxy less useful even
if it does contain real small-scale information.

Thus, from an applied perspective, our primary concern
is that overly constrained discrepancy terms implicitly
assume that the proxy is useful and data fusion successful;
publication pressures can also contribute to a desire to
demonstrate that data fusion improves prediction. In anal-
yses with constrained representation of the discrepancy,
the change in the predictions resulting from inclusion of
the proxy may primarily reflect discrepancy rather than
increased information. In contrast, in section 5 we found
no improvement in PM2.5 prediction using several satellite
aerosol products, nor did McMillan and colleagues (2010)
in the case of output from the U.S. EPA’s CMAQ model.
Sahu and colleagues (2009) found a statistically significant
regression coefficient for the relationship between CMAQ
output and their process of interest, but the magnitude of
the coefficient was small, and there appears to have been
little evidence that including the proxy improved predic-
tion. Berrocal and colleagues (2009) did find improvement
in the prediction of ozone, relative to ordinary kriging
without covariates, when they included the CMAQ proxy
as a covariate.

Our primary methodological contribution is to present
an approach that allows one to focus on these questions: Is
the proxy useful and data fusion successful? At what

scales is it useful and at what scales does it give erroneous
predictions? Can we use the real information in the proxy
and discount the influence of the discrepancy component?
Our particular applied goal was to assess and, if they were
helpful, use aerosol remote-sensing retrievals and the
output of an atmospheric-chemistry model to better pre-
dict spatial patterns in monthly average PM2.5 concentra-
tions across the eastern United States, improving upon
current spatiotemporal modeling efforts that combine
smoothing with land-use and meteorologic covariates
(Yanosky et al. 2009; Paciorek et al. 2009; Szpiro et al.
2010). Better estimation of ambient concentrations is crit-
ical for understanding chronic health effects (including
those for susceptible subpopulations), air pollution regula-
tion, and risk assessment. We illustrate our methodology
in the following related analyses: (1) spatial analysis of
monthly PM2.5 in 2004 in the mid-Atlantic United States
based on remote sensing of AOD, (2) spatiotemporal anal-
ysis of monthly PM2.5 in 2001 in the mid-Atlantic United
States based on output from the CMAQ model, and (3) spa-
tial analysis of monthly PM2.5 in 2001 in the eastern
United States based on CMAQ output. We assessed
improvements in predictive performance relative to
models that do not make use of the proxy and analyzed the
scales of the discrepancy between proxies and the gold
standard.

MODEL AND METHODS

In this subsection we outline our basic modeling
approach; technical details of the model specification and
MCMC fitting methods are provided in Appendix C, avail-
able on the HEI Web site.

Spatial Latent Variable Model

We propose the basic spatial model,

(15)

where the notation follows equation 14, with L the vector-
ized representation of a spatial latent variable represented
on a fine grid. �y (xy,i) is a regression function (easily gen-
eralizable to a sum of functions) that represents sub-grid-
scale variability, and PY,i and PA,j are rows of mapping
matrices that pick off elements of L to map to the observa-
tions and proxy values. PA may also weight the focal pro-
cess values to account for spatial misalignment of the
proxy and base grid (which is particularly relevant for
irregular remote-sensing grids). By relating point-level
measurements to a grid-based latent process, our model

1 ,

� 

� �

 



  

  

( )

( )

T
i y y i Y i i

T
j j A j j

Y x P L

A s P L e



39

C.J. Paciorek and Y. Liu

39

has some of the flavor (and the computational advantages)
of the measurement-error model of Sahu and colleagues
(2009), though �y(•) allows for modeling of subgrid hetero-
geneity.

We then represent

 (16)

as the sum of multiple regression terms, �L,p(xL,p), where
xL,p is the pth covariate, and the remaining spatial varia-
tion, g(s), where s is a spatial location. �y(•) and �L,p(•)
could be simple linear terms or spline-based regression
terms, to capture nonlinear relationships with covariates.
In such a case, we use the mixed-model formulation of a
penalized TPS (cubic radial basis functions in one dimen-
sion), placed in a Bayesian framework, where the unknown
variance component of the exchangeable basis coefficients
controls the amount of smoothing (Ruppert et al. 2003;
Crainiceanu et al. 2005). When the covariates are able to
represent most of the small-scale variation in the focal pro-
cess, g(•) need only explain large-scale variation, so one
approach is to represent g(•) using a penalized TPS (Kam-
mann and Wand 2003; Ruppert et al. 2003), as we did for
the analyses for the mid-Atlantic region (see these sections
below: Spatial Analysis of MODIS AOD in the Mid-
Atlantic Region and Spatiotemporal Analysis of CMAQ
Output in the Mid-Atlantic Region). Alternatively, when
the knot-based representation of g(•) requires so many
knots that computations bog down, either because of
small-scale process variation or a large domain, g(•) can be
represented as an MRF, as described next for �(•) and used
in the analysis of CMAQ output in the eastern United
States (see Spatial Analysis of CMAQ Output in the
Eastern United States, below).

For �(•), we use the MRF approximate representation of
a TPS, , described in detail in the next
subsection. Q is the MRF weight matrix, with rank m�3 —
hence the use of the generalized inverse. � is a precision
parameter. This representation is the key to our approach
and our conceptualization of the critical bias issue in data
fusion; it allows the discrepancy to represent either
smooth large-scale variation or wiggly small-scale varia-
tion depending on the data, with the MRF approximation
providing for computational feasibility in dealing with
high-dimensional proxy variables. We worked with up to
17,500 pixels (the value of m) in our analyses. Note that
integrating over � produces a spatially correlated proxy-
error process, so the distinction between representing spa-
tial variation in the mean (as in splines) or in the covari-
ance (as in kriging) is artificial.

MRF Specification

MRF models, such as standard CAR models, often use
simple binary weights in which direct neighbors are given
a weight of 1 and all other locations are given 0 weight
(e.g., standard CAR models). However, such models have
realizations with unappealing properties. Rue and Held
(2005) characterized the intrinsic Gaussian CAR model in
one dimension as a discretely observed Wiener process
(i.e., one-dimensional Brownian motion), and Besag and
Mondal (2005) showed that the intrinsic Gaussian CAR
model on a fine two-dimensional grid approaches two-
dimensional Brownian motion (the de Wijs process)
asymptotically as the grid resolution increases. Brownian
motion has continuous but not differentiable sample
paths, so it is not surprising that the process realizations of
standard CAR models are locally heterogeneous, as seen
next, regardless of the value of the variance component for
the process.

A more flexible alternative that has received little atten-
tion but is potentially widely applicable is an MRF whose
weight structure is motivated by the smoothness penalty
that induces the TPS (what we refer to as the TPS-MRF)
(Rue and Held 2005; Yue and Speckman 2010). For a reg-
ular grid, Figure 11 compares the neighborhood and
weight structure of the standard CAR model with binary
weights to that of the TPS-MRF model. Note that the pres-
ence of both positive and negative values in the precision
matrix bears similarity to the oscillations and negative
values in the equivalent kernels for spline smoothing and
Gaussian-process smoothing (Silverman 1984; Sollich and
Williams 2005). In the section Derivation of the MRF
Weight Matrix for the Thin Plate Spline Approximation in
Appendix C (see the HEI Web site), we show the full set of
values that define the weight matrix, Q, for the TPS-MRF,
including the boundary effects. Figure 12 shows the fitted
posterior mean surface under the standard CAR and TPS-
MRF models for a simulated dataset (unitless) whose true
surface is very smooth. Note the local heterogeneity
induced by using the inappropriate CAR model. To dem-
onstrate the need for smooth-process specifications for
proxy error, consider the smooth variation in the CMAQ
output in Figures 16 and 17. (For more details on Figures
16 and 17, see Spatiotemporal Analysis of CMAQ Output
in the Mid-Atlantic Region and Spatial Analysis of CMAQ
Output in the Eastern United States, respectively, in sec-
tion 6 under Simulations.)

Spatiotemporal Latent Variable Model

For a spatiotemporal extension to the model, we allow
gt,t = 1,…,T to vary smoothly in time with a common mean
and autoregressive temporal dependence, while we treat

�    ( ) ( ) ( )L p L pp
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Figure 11. Neighborhood structure and precision-matrix elements for a single row of the precision matrix. The elements are represented spatially relative
to the focal grid cell (a nonboundary cell). Matrix A is for a standard MRF model with binary weights, with the weight only on the nearest neighbors in the
cardinal directions. Matrix B is for an MRF model with weights that are based on the TPS approximation.

Figure 12. Assessment via simulation of the TPS-MRF and standard CAR models. Image A shows the simulated data, which is based on white noise
added to a smooth true surface, image B. Image C shows the posterior mean under the MRF model that approximates a TPS, and image D shows the
posterior mean under a standard CAR neighborhood structure.



41

C.J. Paciorek and Y. Liu

41

�t as exchangeable with a common mean, thus capturing
overall spatial variation. The inclusion of a common mean
in both cases allows for appropriate estimation of long-
term average uncertainty (Stein and Fang 1997).

We start with the basis matrix representation of g(•),

 (Ruppert et al. 2003; Crainiceanu

et al. 2005), where Zg is the basis matrix, bg the coeffi-

cients, and the variance of the coefficients. We then use

an autoregressive model for the coefficient for each knot,

 which after marginalizing

over the mean parameters (one for each knot, exchangeable

across knots), , gives us the representation

, where J is a matrix of 1’s,

R(�) is an autoregressive [AR](1) autocorrelation matrix

parameterized by decay parameter �, and  weights

the exchangeable and autocorrelated contributions to the

variance. If we consider all the coefficients across times

and knots jointly, we have  where 

is blocked.

For the temporal structure of the discrepancy term, a
simple approach is to treat the discrepancy at the time
points, �t, as conditionally independent given a common
mean, �mean. This gives the model,

(17)

with two precision parameters, �1 and � 2. We then margin-

alize over the common mean to derive an improper joint

prior, , for the

discrepancy terms for all the months together, where D�1

is a T by T matrix with the diagonal elements  and

the off-diagonal elements . As an alternative to the spec-

ification above, which was used in our analyses, one could

specify an autoregressive structure of order 1 [AR(1)] in

addition to a common mean, which gives an improper

joint prior with similar structure but with D�1 having the

diagonal elements  and the off-diagonals

, where �� is the correlation parameter.

We used the exchangeable model to analyze the CMAQ
model output for the 12 months of 2001 in the mid-Atlantic

region, for which there appeared to be little autocorrelated
temporal structure to the discrepancy. Given the lack of a
relationship between the remote-sensing retrievals and the
gold-standard observations seen in the individual monthly
analyses (see Spatial Analysis of MODIS AOD in the Mid-
Atlantic Region under Examples, below), we did not carry
out a spatiotemporal analysis for the remote-sensing data.
Note that if we had, computational complexity would have
slowed fitting considerably.

Scenarios for the Spatial Scales of Discrepancy

Discrepancy Scenarios One important goal of including
the spatial discrepancy term is to understand the scales at
which the proxy and the process of interest are well corre-
lated and at which they are poorly correlated. We posit a
range of potential relationships. These represent extreme
scenarios, so in any practical problem, the reality is likely
a combination of scenarios.

• Scenario A (white-noise discrepancy): The spatial
structure in the proxy mirrors that in the focal process,
but there is fine-scale discrepancy at the scale of pix-
els that can be treated as white noise. Under this sce-
nario, there is no need for �(•) given the white-noise
error structure, {ej}. Smoothing over the proxy gives
information about the process of interest.

• Scenario B (small-scale discrepancy): The proxy accu-
rately reflects the focal process at large scales, but there
is smaller-scale correlated discrepancy. Under this sce-
nario, models without a sufficiently flexible discrep-
ancy term may treat the discrepancy as signal since it is
not white noise. If the discrepancy is large enough in
magnitude, one would expect the estimate of �1 to be
attenuated, hindering the use of the large-scale informa-
tion in the proxy. In contrast, with a flexible representa-
tion of �(•), the model can treat the discrepancy as
having short-range spatial dependence, thereby ignor-
ing this component of variation in the proxy. Note that
without dense data, the model cannot correct for the
small-scale discrepancy. Also, unless there are large
spatial gaps in the observations, it’s not clear if using the
proxy to help estimate large-scale variation improves
upon simply smoothing the gold-standard data.

• Scenario C (large-scale discrepancy): The proxy accu-
rately reflects small-scale variation in the focal pro-
cess, but there is large-scale discrepancy. In this case,
one can correct for this large-scale mismatch by esti-
mating �(•) (needing only moderate amounts of gold-
standard data), and one can predict small-scale varia-
tion in the focal process from small-scale variation in
the proxy. This scenario is accommodated by other
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approaches in the data-fusion literature that constrain
the discrepancy to vary only at larger spatial scales.

• Scenario D (uninformative proxy): The proxy and
focal process are at best weakly related at all scales,
and �1 is near 0. In this case, a model without a flexi-
ble discrepancy term may have trouble representing
the proxy reasonably. Without a flexible discrepancy
term in the case of limited gold-standard data, the
focal process prediction may be driven largely by the
proxy, and �1 may be estimated to be far from 0. This
allows the variation in the proxy to be explained by a
spatial process rather than by white noise (with higher
accompanying posterior density, which is analogous
to a penalized likelihood setting), even at the expense
of increasing the error variance for the observations.

Note that in our analyses we saw evidence that scenario
D was in operation for the remote-sensing proxy, whereas
for the numerical-model proxy for the eastern United
States, scenario B held to some degree, albeit with some
large-scale discrepancy as well. Scenario C presumably
requires a highly accurate proxy that is somehow only
biased because of large-scale discrepancy. While
researchers generally hope that a proxy will have high reso-
lution, it’s not clear how realistic that is.

Note that when �(•) is estimated as a large-scale pro-
cess, it is analogous to including spatial variation in the
mean, which could be thought of as correcting for spatial
bias. When �(•) is estimated as a small-scale process, it is
analogous to accounting for spatial variation through the
variance term, with a short spatial range. Given the equiv-
alence between a stochastic process in the mean and inte-
grating over that process to move the variation into the
covariance, we believe the distinction between representa-
tion in the mean and variance was artificial, and therefore
we focus on understanding the scale of the discrepancy. In
all cases within a given subdomain, one can think of the
discrepancy as causing local bias in the predicted surface,
if it is treated as signal.

Spatial Discrepancy Diagnostic To assess the spatial scales
of the discrepancy term, we proposed to use a spatial vario-
gram-based diagnostic introduced by Jun and Stein (2004)
for assessing numerical-model performance relative to
observations. Briefly, a variogram quantifies the strength of
association of spatial data as a function of distance, calcu-
lating and plotting the average squared difference between
observations as a function of the distance between them. Jun
and Stein (2004) calculated variograms for the model
output, observations, and model error (defined as model
output minus observations) and proposed the ratio of the
model-error variogram to the sums of the variograms for

model output and observations as a diagnostic of the spa-
tial variation in the observations captured by the model
output as a function of distance. If the model output and
observations were independent, then the variogram of the
error would be the sum of the variograms for output and
observations, so the ratio would be 1 on average. Our
analog for assessing the discrepancy based on the output of
our statistical model (equation 15) is, as a function of dis-
tance, d,

(18)

which we obtained by plugging the analogous quantities
from our model into the diagnostic proposed by Jun and
Stein (2004), using �1L as our best estimate of the focal
process, scaled to the units of the proxy. The interpretation
is the proportion of the variation in the proxy that is
accounted for by the discrepancy term, as a function of
spatial scale. The diagnostic has the following appealing
extremal properties: When �1 = 0 or if � offsets all the vari-
ation in the focal process at a given scale, R(d) = 1, indi-
cating that all of the variability in the proxy at the scale of
distance d is explained by discrepancy. When � = 0, or has
no variation at a given scale, then R(d) = 0, indicating that
all of the variability in the proxy at the scale is explained
by the process of interest. Ideally, this quantity would be
near 0 for all scales, but if there were more discrepancy at
large than at small scales, we would expect the ratio to
increase with distance, and if there were more discrepancy
at small than at large scales, to decrease with distance.

Marginalization and MCMC Sampling

The models described in the subsections Spatial Latent
Variable Model and Spatiotemporal Latent Variable Model,
under Model and Methods in this section, contain two spa-
tial processes that can trade off in explaining variation in
the proxy. In addition, in these models there is cross-level
dependence between the spatial-process values and the
hyperparameters controlling spatial-process dependence
and variation. This raised concerns about MCMC conver-
gence and mixing if the processes were proposed sepa-
rately or a process and its hyperparameters were proposed
separately. Poor mixing in such situations is common, and
marginalization over the process or joint sampling of a pro-
cess and its hyperparameters (Rue and Held 2005;
Paciorek 2007) is often used, when possible, to improve
mixing. Here, the high dimensionality of the processes
complicated matters further. We specifically proposed
models that allow marginalization over the process values,
with efficient sampling of the process possible off-line
because of the process representation.

1 1

Variog
Variog Variog

�

� � �

 
   

( )
( )

( ) ( )
d

R d
L d L d



43

C.J. Paciorek and Y. Liu

43

In particular, for the spatial model (see Spatial Model
Structure in Appendix C, available on the HEI Web site),
we marginalized first over the MRF for � and then over the
basis coefficients for the regression terms so that we could
use sparse matrix manipulations when sampling the
remaining parameters with the Metropolis algorithm.
When the focal process was represented as a reduced-rank
TPS, its process values were part of this second marginal-
ization, and when the focal process was also represented
as an MRF (Subnational Model Structure in Appendix C),
we marginalized over it in conjunction with �. In the spa-
tiotemporal model, our structure for �t allowed us to inte-
grate over the discrepancy processes and then marginalize
over the basis coefficients so that we could again make use
of sparse matrix computations in sampling the remaining
parameters, as described in Spatiotemporal Model Struc-
ture in Appendix C. Note that even with these efforts, sam-
pling was slow; for the space-only models for the mid-
Atlantic, run times were on the order of 6 hours, while for
the space-only eastern United States models and the spa-
tiotemporal mid-Atlantic models, run times were on the
order of 3 to 5 days. Much of this time was required to
achieve good mixing of the variance components for the
MRF and for the spline basis coefficients without requiring
the use of highly informative priors.

SIMULATIONS

Methods

To assess the characteristics of the model structure and
the decomposition of variability between the discrepancy
term and the focal process, we fit a simplified version of the
spatial model to simulated data under a variety of scenarios:

1. Large- and small-scale discrepancies present with
�1 = 1

2. Large- and small-scale discrepancies with �1 = 0

3. No spatial discrepancy, �1 = 1

4. Large-scale discrepancy only, �1 = 1

5. Small-scale discrepancy only, �1 = 1

6. Sparse observations (n = 40), with some small-scale
discrepancy and a minor amount of large-scale dis-
crepancy, �1 = 1

The data were simulated based on the spatial context of
our mid-Atlantic analyses, with a similar number of obser-
vations, n = 171 (except for scenario 6). We performed the
simulations with linear effects of a small number of land-
use covariates, with the covariates taking the same values
as those in our mid-Atlantic domain, but with some of the
covariates transformed differently in the data-generation
process than in the fitting process. We also simulated

residual spatial surfaces, g(•), and, at two different scales,
discrepancy, �(•), all based on Gaussian-process realizations
(with range parameters chosen to achieve the desired scale
of variability). Note that the surface-generation model dif-
fered from the spatial-process representation in our model.

The model structure was a simplification of the struc-
ture shown in Appendix C (on the HEI Web site). In partic-
ular, we included only the linear effects of covariates. The
proxy was fully observed over the entire 175 � 100 4-km
grid with no misalignment, but we calculated the likeli-
hood only for land-based pixels. The error structure for
both the observations and proxy was a simple homosce-
dastic normal-error structure, except that multiple obser-
vations within a grid cell were modeled as in Appendix C.

Results

In general, the model was able to predict spatial variation
in the true process reasonably well, but it did not exploit the
information in the proxy effectively. Predictive performance
generally decreased when the proxy was included, com-
pared to fixing �1 = 0, with the R2 decreasing from 0.81
when the proxy was ignored to between 0.70 and 0.72 when
it was included in scenarios 1, 4, and 5. In scenario 2, the
model correctly estimated that �1  0 and did not lose any
predictive power. In scenario 3, the R2 also decreased, to
0.70, with the model attributing some of the signal to the
discrepancy term.

This suggests that the added information in the proxy
was offset by the model’s inability to sufficiently screen
out discrepancy in the proxy. Except in scenario 2,
including the proxy as a predictor, rather than a second
likelihood, did improve prediction (to R2 values of 0.84,
0.82, 0.90, 0.87, and 0.83 in the first five scenarios, respec-
tively). In general, assuming � = 0 or that � could be repre-
sented as very smoothly varying in space led to much
worse predictive performance, except in scenario 3, for
which the value of R2 was 0.91 with � excluded and 0.95
with � represented smoothly. The one case in which the
full model outperformed a model that ignored the proxy
was scenario 6, for which the R2 was 0.34 in the full model
and less than 0 in the model without the proxy (i.e., the sum
of squared errors was larger than the empirical variation in
the true focal process values). In scenario 6, using the proxy
as a regressor rather than using the two-likelihood approach
again resulted in better performance, with R2 = 0.49. In all
scenarios, the estimated �1 in the full model and the esti-
mated regression coefficient for the proxy when it was used
as a regression term were attenuated relative to the true
value of 1. Finally, the estimated discrepancy surfaces rea-
sonably matched the true discrepancy (not shown). We
conclude that not including the discrepancy term is dan-
gerous when discrepancy is present, but that the proposed
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model was not able to exploit the signal present in the
proxy to improve prediction when the gold-standard data
were relatively dense.

Figure 13 shows the discrepancy scale diagnostic (see
Spatial Discrepancy Diagnostic under Scenarios for the
Spatial Scales of Discrepancy in this section) for the full
model under each scenario. In general, there appeared to
be some, but imperfect, information in the diagnostic
about the scale of the discrepancy, with the expected rela-
tionship with scale given the data generation for a given
scenario. That is, when there is more discrepancy at large
than at small scales, the ratio should increase with dis-
tance, and when there is more discrepancy at small than at
large scales, it should decrease. However, even when there
was no true discrepancy at a particular scale, the diag-
nostic estimated discrepancy, which was caused by the
attenuated estimates of �1. This suggests that one should
treat the diagnostic as indicative, rather than conclusive,
about the scales of discrepancy. Also, the diagnostic
results suggest caution in interpreting the diagnostic at the
shortest distances, given the observed drop in the diag-
nostic value even for the scenarios with small-scale dis-
crepancy (scenarios 1, 5, and 6; Figure 13).

EXAMPLES

Given our interest in using data fusion to try to improve
exposure estimates and thus gain a better understanding of
the health effects of chronic exposure to PM2.5, and given
the general scientific and public health interest in PM2.5,
we modeled fine PM in the eastern United States and
assessed the use of remotely sensed AOD retrievals and
CMAQ output as proxies for monthly PM2.5. In our first
analysis (see Spatial Analysis of MODIS AOD in the Mid-
Atlantic Region, below), we fit separate spatial models for
the mid-Atlantic region for each month of 2004 with
MODIS AOD as our proxy. In contrast to previous work in
this domain (see section 5) — which used a knot-based
TPS for �(•) and found that the discrepancy was estimated
to be increasingly wiggly as more knots were added, until
fitting became impossible — here we used the TPS-MRF
for �(•). We then considered CMAQ output in the mid-
Atlantic as a proxy and jointly fit all 12 months of 2001
(full CMAQ output was only available to us for that year)
with our spatiotemporal model, as well as with individual
monthly spatial models, to understand the effects of
including temporal correlation (see Spatiotemporal Anal-
ysis of CMAQ Output in the Mid-Atlantic Region, below).
Finally, in our third analysis, we fit separate monthly spa-
tial models for 2001 for the entire eastern United States, to
assess the CMAQ proxy at larger scales and better under-
stand the scale decomposition and discrepancy term (see
Spatial Analysis of CMAQ Output in the Eastern United

States, below). We restricted our analysis to output for
every third day and to only those ground monitors that
reported observations every day or every third day. This
removed temporal misalignment caused by missing PM2.5
observations from monitors that reported less frequently
than every third day.

For simplicity and because we used monthly averages,
we did not transform the outcome, in contrast to other
work on PM2.5 (Smith et al. 2003;Yanosky et al. 2009), but
log or square-root transformations would have been good
alternatives. For regression terms that represent sources, it
makes more sense to employ additivity on the original
scale, whereas for modifying variables, such as meteoro-
logic conditions, log transformation to scale multiplica-
tively makes more sense. Achieving additivity and
multiplicativity in a single model is not easily accom-
plished. Note that the long right tail of CMAQ output
might have been accommodated in the mean for the proxy
through � because the output was spatially correlated,
including the values in the tail. As in Paciorek and col-
leagues (2009), residuals from the various models indi-
cated long-tailed behavior, reasonably characterized by
t distributions with approximately 5 degrees of freedom,
albeit with right skew. Predictive performance suggested
that the influence of outliers was not extreme, but the use
of a t distribution for the observation errors would be
worth exploring. However, this would have been some-
what difficult to do in the context of the additive error
structure we derived based on components of variability in
the PM2.5 measurements (see Appendix C available on the
HEI Web site). Finally, our exploration suggested that the
instrument error variance increased with the magnitude of

Figure 13. Discrepancy scale diagnostic estimated using the full
statistical prediction model fit to data simulated under six scenarios.
These are large- plus small-scale discrepancy (1); uninformative proxy (2);
no spatial discrepancy (3); large-scale discrepancy only (4); small-scale
discrepancy only (5); and sparse data with some small-scale and minor
large-scale discrepancy (6).
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the measurement, which is something that would be worth
considering more carefully for daily modeling than for the
modeling of monthly averages done here.

In the next subsections, we outline our basic model and
highlight the results; the model structure and computa-
tional details are provided in detail in Appendix C. We
report ninefold cross-validation prediction results,
retaining a tenth set to assess the degree of overfitting that
may have been a result of our model selection process
(Draper and Krnjacic 2006). We also show plots that illus-
trate the estimated spatial surfaces of PM2.5 and of the dis-
crepancy and the proposed discrepancy scale diagnostic.

In Table 8, we show correlations of raw observations and
the proxy values, based on monthly and yearly aggrega-
tions. MODIS AOD was moderately correlated with the
observations, whereas CMAQ output in the mid-Atlantic
region was poorly correlated with the observations and
CMAQ output in the eastern United States was moderately
correlated with them. Much of the yearly average correla-
tion for MODIS AOD was induced by the calibration, and
our model results (shown in the following subsection) sug-
gest that the correlations did not translate into improved
prediction. See section 4 for more discussion of this issue.

Data

We used 24-hour average gravimetric FRM measure-
ments from the U.S. EPA AQS with parameters 88101 and
88502, including IMPROVE monitors. For likelihood cal-
culations, monitor locations were associated with the cell
in the 4-km grid in which they fell.

We used MODIS AOD retrievals from 2004, matching
the analysis in section 5. MODIS is on the Terra satellite
platform, whose polar orbit has been providing full cov-
erage of the globe at regular intervals, beginning in March
2000, with retrievals in the eastern United States at a con-
stant daily time point (10:30–10:45 AM local time). MODIS
provided AOD retrievals at a nominal resolution of 10 km

with each location covered every 1 to 2 days (Wang and
Christopher 2003; Engel-Cox et al. 2004). AOD cannot be
retrieved below clouds, so cloud-filtering algorithms use
the infrared portion of the spectrum to detect and omit
obscured observations (Engel-Cox et al. 2004). Errors and
uncertainties in the filtering could have led to erroneous
AOD retrievals, and high surface reflectivity could also
have prevented retrievals.

We obtained CMAQ output for 2001 from a 36-km
model run over the entire United States, provided by
Atmospheric and Environmental Research (AER) and
funded by the Electric Power Research Institute (EPRI).
Hourly CMAQ output was available for a regular 36-km
grid (a Lambert conformal conic projection) with 14 ver-
tical levels. CMAQ relies on meteorologic and emissions-
inventory inputs, and was designed for short-term air
quality applications, so its long-term average output has
received limited evaluation.

We used GIS-based and meteorologic covariates to help
explain PM2.5 variation, following Yanosky and colleagues
(2008). Covariates that may have helped predict PM2.5 at
fine spatial scale included distance to major roads in two
road classes (Class 1 and Class 2), which were calculated for
each monitor location and included as smooth spline terms
�y,p(xy,p), p = 1,2 (see equation 15). Other covariates were
calculated using a GIS at the resolution of the 4-km grid and
modeled using the smooth spline terms �L,p(xL,p), p = 1,…6
(see equation 16). These included road density for three
road classes (Class 1, Class 2, and Class 3), population den-
sity, and elevation at the cell centroid. As a measure of the
non-point-source emissions in each cell, we assigned to the
cell the density (total emissions divided by county area) of
the area-level primary PM2.5 emissions from the U.S. EPA’s
2002 NEI in the county of the cell centroid.

We also used the point locations of 2002 primary PM2.5
emissions from the 2002 NEI. The distance to point-source
emissions (from sources that emitted more than 5 tons per
year) was handled using a term that accounted for the

Table 8. Simple Correlations of Observations and Proxy Values (All Available Values, Not Matched by Day) Using Proxy 
Data for the Pixels in Which PM2.5 Observations Fell

Time 
Scale 

Mid-Atlantic, 2004, 
MODIS AOD 

Mid-Atlantic, 2001, 
CMAQ 

Eastern U.S.a, 2001,
CMAQ 

Monthlyb 0.58 (0.60 uncalibrated) 0.26 0.52
Yearlyc 0.60 (0.26 uncalibrated) 0.095 0.56

a Locations east of 100� W longitude. 

b Only monthly averages for location–months with at least five daily observations are included. 

c Yearly results include only locations having at least 9 months with at least five daily observations. Yearly averages are calculated as the mean of the 
12 monthly averages. 
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effect of point-source emissions within 100 km. This term
represented the effect of multiple point sources at a given
receptor location (i.e., a monitor or prediction point) as the
emission-strength-weighted sum of a smooth distance
effect evaluated for each individual source–receptor pair.
The distance function is a universal function representing
the effect of a single source of unit strength on a receptor as
a smooth function of the distance between the source and
receptor. It was estimated from the data, based on a new
statistical approach that leverages the additive structure of
mixed-model representations of splines, as described in
Appendix D (available on the HEI Web site). This term was
used to describe within-grid-cell variability of monitor
observations and, using an approximation to the integral of
the effect over the entire cell, grid-cell average values.

Meteorologic variables were based on the NARR fields
(Mesinger et al. 2006), which were available at 32-km reso-
lution every 3 hours. For each 3-hour value and each grid
cell, we computed an IDW average of the NARR values
from the four NARR points nearest the cell centroid. We
then averaged the values for the month. Our second statis-
tical model used wind speed and temperature, but we also
considered the RH, PBL height, mean sea-level pressure,
and precipitation.

Table 9 shows summary statistics for the monthly
average PM2.5 observations and CMAQ PM2.5 predictions
used for the three analyses described next. More details on
the data are available in Appendix A.

Table 9. Summary Statistics for Monthly Averages of PM2.5 Observations (µg/m3) and CMAQ-based PM2.5 Predictionsa,b 

Data Source Time Period Sample Size Median (5%, 95%)

PM2.5, mid-Atlantic, 2004 All year 1,955 12.9 (7.9, 20.9)

Winter 485 11.0 (6.9, 16.7)
Spring 488 13.0 (8.5, 19.0)
Summer 489 16.9 (11.6, 24.3)
Fall 493 11.2 (7.4, 18.2)

PM2.5, mid-Atlantic, 2001 All year 2,061 14.0 (9.1, 23.3)

Winter 512 14.2 (8.3, 23.7)
Spring 510 12.9 (8.8, 17.8)
Summer 517 19.3 (10.9, 25.8)
Fall 522 12.9 (9.2, 17.4)

CMAQ, mid-Atlantic, 2001 All year 2,232 16.0 (10.3, 30.0)

Winter 558 16.9 (9.5, 36.1)
Spring 558 14.0 (9.7, 26.8)
Summer 558 17.1 (11.5, 30.0)
Fall 558 15.9 (11.0, 29.0)

PM2.5, eastern U.S.c, 2001 All year 8,309 12.7 (7.1, 21.0)

Winter 1,961 12.2 (6.6, 21.8)
Spring 2,079 12.5 (7.4, 17.8)
Summer 2,096 15.4 (9.1, 23.3)
Fall 2,173 11.6 (6.6, 17.0)

CMAQ, eastern U.S.c, 2001 All year 38,448 13.2 (5.6, 24.4)

Winter 9,612 12.8 (6.3, 26.5)
Spring 9,612 13.0 (5.5, 23.8)
Summer 9,612 13.7 (4.9, 23.3)
Fall 9,612 13.5 (5.9, 24.0)

a Excluding CMAQ grid cells with more than 40% overlap with the Atlantic Ocean or Lake Erie.

b AOD values are not included because these values were processed before use in the statistical models presented in section 6. 

c Locations east of 100� W longitude.
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Spatial Analysis of MODIS AOD in the Mid-Atlantic 
Region

For this analysis, we used the 4-km base grid (175 � 100
4-km cells for the mid-Atlantic region) as the resolution of
L(•), g(•), and �(•). AOD was misaligned with respect to this
grid, and a further complicating factor related to the MODIS
instrument was that for different satellite orbits on different
days, the pixels shifted spatially. Therefore, we considered
the overlap of all the pixels in an orbit over the 4-km grid
and assigned to each grid cell, s, the value of the MODIS
pixel in which the cell centroid fell. Using the retrievals
assigned to each cell, we computed a monthly average for
each cell. More sophisticated approaches are possible
(Mugglin et al. 2000), but for our purposes, this ad hoc
realignment retained the essential character of the AOD
retrievals and reduced computations. Missing AOD
retrievals because of cloud cover were naturally handled
by treating AOD as data, using equation 15. We attempted
to account in part for missingness due to cloud cover (sec-
tion 3) by including in the additive mean for the proxy a
regression term, �a(xa), that is a smooth function of
average cloud cover over the month for each location, from
the GOES cloud screening retrieval, thereby making a
missing-at-random assumption. g(•) was modeled using
the TPS mixed-model representation (Kammann and
Wand 2003; Ruppert et al. 2003). We did not use meteoro-
logic covariates (obtained from the NARR data product), as
these proved to have high concurvity with the estimated
residual spatial variation, g. This concurvity was driven by
the fact that the covariates varied primarily at large scales,
which was presumably caused in part by the coarse 32-km
resolution of the NARR grid.

We considered both raw MODIS AOD and a “calibrated”
MODIS AOD that adjusted off-line for the effects of
boundary layer height and the RH, as well as large-scale
temporal (seasonal) and spatial adjustments, based on a
comparison of daily PM2.5 and AOD values from colocated
monitors and AOD pixels (sections 3, 4, and 5). Given the
poor results with MODIS AOD in this part of the analysis
and the poor results with GASP AOD in other parts of the
analysis (see section 5), we did not include GASP AOD in
our assessment here.

Once the model was fit, the estimated regression coeffi-
cients for the latent PM2.5 as an explanatory variable for
the proxy were essentially 0 (Figure 14A), indicating that
the estimation found no relationship between the proxy
and the estimated latent process, thus discounting the
proxy in predicting PM2.5. The spatial discrepancy plot
(Figure 14E) indicates that at all scales the proxy was
explained by the discrepancy term rather than the latent
process (see the next subsection for more discussion of

Figure 14). These results are consistent with those found
in section 5. Figure 15 shows predictions from the model
when AOD was excluded and when included; the predic-
tions were very similar and consistent with the estimated
values of �1 being near 0. Given this, it is not surprising that
the cross-validative predictive assessment indicated that
including the proxy did not improve predictive perfor-
mance (Table 10). Note that yearly prediction appeared
slightly worse when the proxy was excluded, but this result
was likely within the uncertainty of the predictive assess-
ment, which was difficult to quantify given the correlation
structure of the data. The results were qualitatively similar
when we considered only held-out monitors in more rural
areas, suggesting that AOD retrievals were not adding infor-
mation in areas far from monitors (Table 11).

Spatiotemporal Analysis of CMAQ Output in the Mid-
Atlantic Region

For this analysis, we used the spatial domain described
in the previous subsection, but we used the 12 months of
2001. We used the CMAQ 36-km-square grid over the
domain as the grid resolution of �(•) (19 � 11 cells),
relating L to the proxy on that grid with a mapping matrix
PA that calculated a weighted average of the latent process
values for the 4-km cells falling in each 36-km cell. We
used the spatiotemporal formulation from the subsection
Spatiotemporal Latent Variable Model, under Model and
Methods in this section, to build dependence among the
months for the gt(•) surfaces and to build exchangeable
dependence among the months for the �t(•) surfaces. We
specified a priori independent regression parameters for
each month, represented by �1,t. Given the sensitivity of
the model to the temporal dependence structure reported
at the end of this subsection, we also fit simple monthly
spatial models in the style shown in the subsection Spatial
Latent Variable Model in this section, but otherwise
retained the features discussed here.

For the spatiotemporal analysis, in addition to the tempo-
rally invariant covariates considered in the subsection Spa-
tial Analysis of MODIS AOD in the Mid-Atlantic Region in
this section, we considered the NARR-based meteorologic
covariates. Since the observations did not occur on all the
days in each month, we calculated average values for the
meteorologic variables (using IDW interpolation based on
the four NARR pixels nearest each observation) solely for
the days in the month with observations, averaging the 3-
hour NARR values, for use in the PM2.5 model likelihood.
For prediction and the CMAQ output likelihood, we used
IDW interpolation to the grid-cell centroids, averaging over
all the days in the month. Including meteorology did not
improve prediction, perhaps because it varied only at the
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Figure 14. Boxplots of posterior estimates of the multiplicative bias, �1 (top row) by month, and discrepancy scale diagnostic plots (bottom row), based
on the statistical prediction model (equation 15). Plots are for MODIS AOD as the proxy in 2004 for the mid-Atlantic using the spatial model (far-left
panels); CMAQ output as the proxy in 2001 for the mid-Atlantic using the spatiotemporal model (middle-left panels); CMAQ output as the proxy in 2001
for the mid-Atlantic using the spatial model (middle-right panels); and CMAQ output as the proxy in 2001 for the eastern United States using the spatial
model (far-right panels).

Table 10. Cross-Validation R2 (Root Mean Squared Prediction Error) for Monthly and Yearly Average PM2.5 from 
Statistical Prediction Models, With and Without Proxy Information

Time Scale /
Proxy Inclusion

Mid-Atlantic, 2004, 
MODIS AOD 

Mid-Atlantic, 2001, 
CMAQ, 

Spatiotemporal Model 

Mid-Atlantic, 2001, 
CMAQ, Monthly 
Spatial Models

Eastern U.S., 2001, 
CMAQ

Monthly predictiona

With proxy 0.806 (1.80) 0.640 (2.60) 0.755 (2.14) 0.827 (1.71)
Without proxy 0.808 (1.79) 0.686 (2.42) 0.777 (2.04) 0.826 (1.72) 

Yearly predictionb

With proxy 0.670 (1.00)c < 0d  (1.97)c 0.503 (1.32)c 0.800 (1.21)
Without proxy 0.650 (1.03)c 0.169 (1.70)c 0.584 (1.20)c 0.835 (1.09) 

a Including monthly averages based on at least five daily observations.

b Including yearly averages (averages of monthly values) based on at least 9 months with at least five daily observations.

c Excludes one site outside Pittsburgh just downwind of a major industrial facility. 

d The squared correlation of held-out data and predictions is 0.473, but a graph of the observations vs. predictions is not centered on the one-to-one line, so 
the error sum of squares exceeds the total sum of squares.
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large scales (given the monthly averaging and the resolu-
tion of the NARR grid) at which gt(•) could stand in for it.

For both the spatiotemporal formulation and the indi-
vidual spatial models fit separately to each month, the esti-
mated values of �1 were larger in winter than in summer
(Figure 14B and C). The discrepancy scale diagnostic plot
suggests that more of the variation in the proxy at small
scales was related to the latent process than it was at large
scales (Figure 14F and G). This likely relates to CMAQ
having correctly placed hot spots around the urban areas
(Figure 16). However, the model-estimated discrepancy
surfaces indicated the need to substantially correct the
CMAQ output at larger scales and also to discount the
CMAQ-estimated hot spot in southeastern Pennsylvania
and moderate the hot spot over New York City, as these
were not supported in the observations (Figure 16). Figure
16 also illustrates that CMAQ-estimated PM2.5 showed
similar spatial patterns from month to month (represented
in the exchangeable structure of the monthly discrepancy
processes). This consistency over time contrasted with the
spatiotemporal heterogeneity seen in raw observations,
which suggests that the CMAQ model was not adequately
capturing changing spatial patterns over time. For both
models, cross-validative predictive performance when the
proxy was excluded was as good as or better than it was
when the proxy was included (Tables 10 and 11).

For the mid-Atlantic spatial domain, our spatiotemporal
model appeared to predict less well than simple spatial
models, particularly for the yearly averages, even when the
proxy was excluded (Table 10). Apparently, by forcing the
same covariate relationships for all months and by

smoothing and shrinking the spatial residual terms, gt (•),
we greatly reduced predictive performance. More investi-
gation is warranted to better understand why smoothing
over time did not help with predictive performance, but
presumably it was related to model misspecifications in
the more complicated spatiotemporal model that did not
match the structure of the data.

Spatial Analysis of CMAQ Output in the Eastern 
United States

For this analysis, we used the 4-km grid over the eastern
United States (roughly the area east of 100� W longitude),
giving a grid of 669 � 677 cells for representation of the
covariates available at the scale of the 4-km grid. We used
the 36-km CMAQ grid of 73 � 77 cells for �(•). For this
larger domain with more complexity in the pollution sur-
face, we represented g(•) on this same 36-km grid using
the TPS-MRF representation because the mixed-model
TPS would require a computationally burdensome
increase in the number of basis coefficients. To calculate
the PM2.5 model likelihood, we used the covariate values
for the cell in the 4-km grid that each observation fell in
and used the value of g from the cell in the 36-km grid in
which the observation fell. For the CMAQ model likeli-
hood, the CMAQ value for a given 36-km-grid cell was
related to the covariate effects from the 4-km-grid cells by
weighted averaging with weights based on the overlap
between a CMAQ-grid cell and the cells of the 4-km grid.

We found that �1 was estimated to be large (between 3
and 7), � was strongly negatively correlated with L, and �
had very large negative values to offset the large positive

Table 11. Cross-Validation R2 for Monitors Generally Isolated from Other Monitors, for Monthly and Yearly Average 
PM2.5 from Statistical Prediction Models, With and Without Proxy Informationa 

Time Scale /
Proxy Inclusion

Mid-Atlantic, 2004, 
MODIS AOD 

Mid-Atlantic, 2001, 
CMAQ, 

Spatiotemporal Model 

Mid-Atlantic, 2001, 
CMAQ, Monthly
Spatial Models 

Eastern U.S., 2001, 
CMAQ

Monthly predictionb

With proxy 0.830 (1.73) 0.626 (2.74) 0.721 (2.36) 0.739 (2.12)
Without proxy 0.830 (1.72) 0.588 (2.87) 0.761 (2.19) 0.781 (1.94)

Yearly predictionc

With proxy 0.669 (1.17) < 0d (1.99) 0.254 (1.67) 0.710 (1.58)
Without proxy 0.624 (1.25) < 0d (1.94) 0.395 (1.51) 0.826 (1.22)

a Those in 4-km-grid cells with fewer than 187.5 people per square km, equaling 3000 people per cell.

b Including monthly averages based on at least five daily observations. 

c Including yearly averages based on at least 9 months with at least five daily observations.

d A graph of the observations vs. predictions is not centered on the one-to-one line, so the error sum of squares exceed the total sum of squares.
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Figure 15. Spatial modeling of PM2.5 using MODIS AOD in the mid-Atlantic region in 2004. The figure shows PM2.5 observations (first row); model PM2.5
predictions, excluding AOD (second row); model predictions including AOD (third row); estimated discrepancy in the model with AOD (fourth row); and
AOD values (fifth row) for 4 months in 2004: January, April, July, and October. (Figure 15 continues next page.)
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Figure 15. (Continued).
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Figure 16. Spatiotemporal modeling of PM2.5 using CMAQ output in the mid-Atlantic region in 2001. The figure shows PM2.5 observations (first row);
spatiotemporal model predictions of PM2.5, excluding CMAQ values (second row); model predictions including CMAQ values (third row); estimated
discrepancy in the model with CMAQ values (fourth row); and CMAQ values (fifth row) for 4 months in 2001: January, April, July, and October. Note that
in January, some CMAQ values larger than 50 µg/m3 (up to 75 µg/m3) in the New York City area are truncated to 50 µg/m3. (Figure 16 continues next page.)
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Figure 16. (Continued).
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values of �1L. This appeared to be driven by the CMAQ
model’s overprediction in some urban areas, with CMAQ
estimating the urban-to-rural gradient as being much
stronger than was apparent in the observations. � then
adjusted for the effects of large values of �1 elsewhere in
the spatial domain. To address this in an ad hoc manner
and identify � as the orthogonal variation in the proxy not
accounted for in the latent process, we carried out an ad
hoc orthogonalization of � and L within each step of the
MCMC method. While a formal orthogonality constraint
on � and L was technically appealing, the simple ad hoc
approach was effective in practice, and predictive results
were similar with and without the orthogonalization.
Other approaches to the problem might involve letting �1
vary with covariates such as population density or trun-
cating the very high CMAQ predictions.

Using this orthogonalized specification, the estimated
values of �1 were generally near 1, as one would hope
(Figure 14D). In this larger domain, the variability in the
CMAQ output at larger scales was more associated with the
latent process than was the variability at smaller scales, sug-
gesting that CMAQ was better able to resolve regional vari-
ability than more local variability (Figure 14H). This is
consistent with the discrepancy surfaces shown in
Figure 17, where one can see that the model corrected for
hotspots at the scale of states or portions of states that
showed no evidence of being real hotspots based on the
observations, such as over Iowa and southern Minnesota
and eastern North Carolina. Once again, the use of CMAQ
output as a proxy did not improve predictive ability (Tables
10 and 11). Predictive performance was better than in the
mid-Atlantic domain because of the greater range of natural
variability in PM2.5 over this much larger area. When we
considered the use of meteorologic variables, the relation-
ships were often the opposite of those expected based on
scientific grounds, while prediction was little affected,
once again presumably because of identifiability issues
with respect to the residual spatial term, g.

As a final assessment, we included CMAQ output as a
simple regression term and found the cross-validation R2

(root mean squared prediction error [RMSPE]) to be 0.849
(1.60) for the monthly prediction and 0.849 (1.05) for the
yearly prediction; both values were slightly better than for
modeling without the proxy (Table 10) but suggested that
the CMAQ output provided limited additional information
given the other terms in the model. The slight improve-
ment was matched when restricting predictive assessment
to more rural sites, with a cross-validation R2 (RMSPE) of
0.798 (1.87) for the monthly prediction and 0.834 (1.19) for
the yearly prediction (compare these results to those in
Table 11). The posterior mean regression coefficients for
CMAQ-estimated PM2.5 were between 0.48 and 0.89 for

the 12 months, with the average of those 12 posterior
means being 0.67.

We also considered whether CMAQ might be more
helpful in a setting with sparse observations (such as was
seen in our simulations) by artificially using only
100 monitors for our training dataset. However, we found
that prediction for the remaining monitor locations was
very poor because, with sparse PM2.5 observations, we
were not able to adjust for the CMAQ discrepancy as well
as we could with more dense data. As above, including
CMAQ output as a regressor in this case did help to
improve prediction slightly as compared to a model that
only made use of the observations.

DISCUSSION

Our model is a spatial latent variable model, in which
the two spatial latent variables represent a decomposition
of the proxy into signal, for the process of interest, and
noise. The model calibrates the proxy to the observations
implicitly; to do this well, a sufficient number of gold-
standard observations is required. Identifiability in the
model is an obvious concern given the attempt to decom-
pose the proxy into signal and noise, with the unknown
focal process treated as a regressor in the model, such as is
done in a measurement error model. We fit a penalized
model that identifies the discrepancy and the focal process
based on a tradeoff between goodness of fit for the observa-
tions and for the proxy values and penalization of the
latent spatial processes. This tradeoff is likely quite sensi-
tive to model specification and to the relative richness of
observational and proxy data and could be prone to fitting
effects not fully understood in a complicated hierarchical
setting. As a related comment, it would be worthwhile to
fit a more robust likelihood specification to ensure that
outliers in either the observations or the proxy (of most
concern in our examples with regard to large values of the
CMAQ proxy) do not overly influence the results.

Despite the concerns about identifiability and sensi-
tivity to model structure, our view is that this decomposi-
tion is the fundamental task when using proxies. One
doesn’t know the quality of the proxy and must assess its
quality, ideally as a function of scale. A priori constraints
on the flexibility of the discrepancy process incorporated
into current data fusion approaches make strong assump-
tions about proxy quality, and we believe that such assump-
tions contribute to overoptimism about the usefulness of
proxy information and about the degree of certainty in
resulting predictions based on the data fusion approach.
Our model attempts to assess proxy quality and to make use
of available information in the proxy without prejudging
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whether the spatial correlation in the proxy reflects spatial
signal in the process of interest.

We did our best to account for errors and local vari-
ability in the observations, as well as for spatial and tem-
poral misalignment between observations and the proxy,
to avoid concluding that a proxy was not helpful because
of noise or fine-scale variability in the gold standard, but
we could not completely rule out this possibility. How-
ever, we note that comparisons of daily maps of proxy
values and observations indicated a great deal of mismatch
between the two, particularly on days when the observa-
tions showed large-scale variation but little local variation.
On such days, the patterns in true PM2.5 were well identi-
fied from the observations, yet the proxies often did a poor
job of capturing that variation. For AOD, this might have
been related in part to the reliance on a snapshot at a single
time to try to characterize a full-day average. It is possible
that the proxy variables might have added useful informa-
tion in the absence of our GIS-based covariates, but it
would be difficult to account for local variation in the
observations that was not necessarily reflected in a
gridded proxy without the use of covariates in the model.
Part of the purpose of our covariates was to account for the
local variation that contributed to the discrepancy
between the proxy and observations. Local variation that is
not accounted for in the model structure is likely to mask
any real relationship between the proxy and the true pro-
cess of interest at the grid scale and may lead to a dis-
counting of real information in the proxy.

In our spatiotemporal modeling, we used a simple spa-
tiotemporal structure with the discrepancy process
exchangeable across months but with no month-to-month
temporal correlation, but we also suggest an AR(1) struc-
ture with equal computational feasibility as a potential
alternative in future work. Berrocal and colleagues (2009)
and Sahu and colleagues (2009) specified independence
for their analogous latent processes, while McMillan and
colleagues (2010) used a spatiotemporal b-spline basis. As
seen in our results, modeling the dependence between
months did influence our estimation, with the result being
poorer predictive performance, suggesting that a simpler
spatial model that is more straightforward to fit, interpret,
and understand might be a better choice, though it
wouldn’t capture all the temporal dependence in the data.

This study’s approach was to represent proxy informa-
tion as data through an additional likelihood, extending
the research of Fuentes and Raftery (2005). Berrocal and
colleagues (2009) proposed instead to regress on the proxy.
In our simulations, we found that, relative to the two-like-
lihood model, regressing on the proxy in some cases
improved predictive ability and never decreased it; and it

had the added advantage of greatly reduced computational
complexity. So if one is purely interested in prediction and
not in understanding the structure of the proxy, a simple
regression approach may be best. An important drawback
is that for proxies such as remote-sensing retrievals
affected by cloud cover, missing observations are a
problem. This then requires an imputation of some sort,
which brings one back to modeling the proxy.

The second potential drawback is more subtle and
involves difficulties in decomposing the proxy into scales
when the relationship with the process of interest varies
by scale. If the proxy captures small-scale patterns well but
misses large-scale patterns, then the additive spatial-
process term used in Berrocal and colleagues (2009) could
adjust for this discrepancy, leveraging the proxy to
improve prediction of small-scale variation. A potential
concern arises when the proxy captures large-scale pat-
terns well, but the small-scale patterns in the proxy are
predominantly noise with respect to the process of
interest, a likely scenario in real-world applications. In
such a situation, the model would likely estimate a large
regression coefficient for the proxy because of the associa-
tion of the proxy and the observations at a large scale. The
resulting prediction would be reasonable at the large scale
but would also include all the small-scale spatial discrep-
ancy in the proxy, which would be interpreted by the ana-
lyst as signal, with the proxy assumed to be of high quality
at small scales. The spatial discrepancy term in the model
would not be able to correct for this small-scale discrep-
ancy because the sparsity of the observations wouldn’t
allow for estimation of and adjustment for this discrep-
ancy. In such a situation, we’d like to decompose the scales
of variability in the proxy, but the regression approach
conditions on all the scales of the proxy. Alternatively, the
small-scale discrepancy in the proxy might act as measure-
ment error, causing attenuation in the regression coeffi-
cient, potentially to near 0, limiting any information gain
from the correspondence between the proxy and the pro-
cess of interest that occurs at larger spatial scales.

From an interpretation standpoint, the two-likelihood
approach cleanly distinguishes between discrepancy and
signal, at least in principle. A simpler alternative would be
to explicitly decompose the proxy into two or more scales
and include each component as a separate regression term,
allowing the model to inform which scales are correlated
with the observations. How to do this decomposition is an
open question, but a simple approach would be to succes-
sively smooth the proxy with spatial smooth terms with
fixed degrees of freedom.

We note that CMAQ output at nominal resolutions
(12 km and 4 km) that are higher than those for the output
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Figure 17. Spatiotemporal modeling of PM2.5 using CMAQ output in the eastern United States in 2001. The figure shows PM2.5 observations (first row);
model PM2.5 predictions, excluding CMAQ (second row); model predictions including CMAQ (third row); estimated CMAQ discrepancy (fourth row); and
CMAQ values (fifth row) for 4 months in 2001: January, April, July, and October. Note that in January, some CMAQ values larger than 50 µg/m3 (up to
75 µg/m3) are truncated to 50 µg/m3. (Figure 17 continues next page.)
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Figure 17. (Continued).
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we used is available for some areas and time periods, but
given the apparent small-scale discrepancy seen in this
study, we caution against assuming that model output for
smaller scales can actually resolve small-scale variation in
PM2.5. Similar concerns apply to remote-sensing products
that provide nominally higher resolution: As seen in section
5, the GASP AOD product, available at a nominal 4-km res-
olution, did not help to improve PM2.5 predictions.

7. USING GOES REFLECTANCE MEASUREMENTS 
AS A PROXY FOR GROUND-LEVEL PM2.5

INTRODUCTION

In section 3 we saw that GASP AOD was well correlated
with PM2.5 only after spatial calibration, and the resulting
correlation appears to have been driven largely by a statis-
tical artifact: The spatial calibration surface was itself asso-
ciated with PM2.5. However, there was no evidence that
the calibrated AOD provided information about PM2.5 at
smaller scales. When GASP AOD was included in statis-
tical modeling of PM2.5 (section 5), we saw no improve-
ment in predictive ability. These discouraging results may
have been caused in part by limitations of the GOES
imager and the GASP AOD retrieval algorithm, including
the coarse spectral resolution, fixed viewing geometry, and
the lack of a near-infrared channel to characterize the sur-
face accurately. In this section, we investigate two avenues
for reducing noise to improve the performance of GOES-
derived proxies in predicting ground-level PM2.5.

First, previous work (Prados et al. 2007) and our own
exploratory work have indicated that errors in cloud
screening have led to noisy retrievals, particularly early
and late in the day. The current GASP AOD algorithm
attempts to remove anomalous retrievals in individual
pixels when the standard deviation of GASP AOD in sur-
rounding pixels is large. An alternative approach, which
may be better able to screen out anomalies and avoid
screening out true spatial heterogeneity, is to screen based
on anomalies in time at individual pixels. Aerosol concen-
trations generally change smoothly over time, particularly
over the area of a pixel, so abrupt changes (particularly
increases, because cloud contamination is associated with
high reflectance readings) are more likely to indicate con-
taminated retrievals. In this section, we investigate
screening procedures based on the change in channel 1
reflectance over time, from one half hour to the next.

The current GASP AOD algorithm accounts for vari-
ability in surface reflectance — which varies widely based
on land use and vegetation — by estimating the background
based on the second-lowest channel 1 reflectance mea-
surement over the past 28 days at each pixel and at each
half hour of the day. This approach makes use of all
channel 1 reflectance values, regardless of cloudiness or
the aerosol levels over the 28-day period. To develop a
background estimate that characterized reflectance mea-
surements under low-pollution conditions, we linked the
channel 1 reflectance values with ground-level PM2.5
monitoring data and built statistical models to estimate the
background.

Given our interest in deriving a proxy for ground-level
PM2.5, our approach was to directly use channel 1 reflec-
tance — screened and corrected for background as
described above — as a proxy, avoiding the extra com-
plexity and assumptions (in particular about aerosol size
and chemical composition) involved in the GASP AOD
retrieval algorithm. The hope was to avoid the complica-
tions of assumptions that might actually decrease associa-
tions with ground-level PM2.5.

METHODS

Data and Overview of the GASP AOD Retrieval 
Algorithm

We made use of measurements and derived retrievals
from GOES-12 (East) imager data, provided by the NOAA,
focusing on the times of 12:15 through 21:15 UTC as these
are largely during daylight hours throughout the year.
Prados and colleagues (2007) described the GOES-12
imager data and GASP AOD algorithm in detail. GOES
data were at a nominal spatial resolution of 4-km and were
obtained every half hour during daylight, from 10:45
through 23:45 UTC, as GOES is a geostationary satellite.
NOAA’s data product provides several quantities used in
deriving GASP AOD. Channel 1 reflectance is the normal-
ized total reflectance at a wavelength of 660 nm at the top
of the atmosphere. The GASP AOD algorithm estimates the
“mosaic” as the second smallest channel 1 reflectance
value for a given pixel and half hour of the day over the
previous 28 days, multiplied by the cosine of the zenith
angle. This mosaic (and its normalized version, the clear-
sky composite, which takes the mosaic and divides it by the
cosine of the zenith angle) are the algorithm’s estimate of
reflectance at the top of the atmosphere under low aerosol
conditions. The mosaic is used to estimate surface reflec-
tance under the assumption that it represents surface effects
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combined with background aerosol (assumed AOD of 0.02),
gas absorption, and Rayleigh scattering effects. AOD is then
calculated by subtracting an estimate of the surface reflec-
tance (as well as gas absorption and Rayleigh scattering)
from channel 1 reflectance and using an algorithm that
makes assumptions about particle size, aerosol composi-
tion, and particle single scattering albedo.

NOAA’s original screening criteria for GASP AOD
excluded retrievals with any of the following characteris-
tics: AOD greater than 10, surface reflectance greater than
0.15 or less than 0.01, signal (a variable describing
retrieval sensitivity) less than 0.01, standard deviation of
AOD (based on the focal pixel and its 24 surrounding
pixels) greater than 0.15, clouds detected in the pixel or
any of the surrounding 24 pixels, channel 1 reflectance
less than 0, or solar zenith angle greater than 70� (which is
related to reduced accuracy when the sun is low in the
sky). The cloud mask is determined from infrared chan-
nels 2 (3.9 µm) and 4 (10.7 µm) and the visible channel.

Since our initial work with GASP AOD, described in
sections 3 and 5, the GOES team, in 2009, finalized several
improvements to the GASP AOD retrieval algorithm, in-
cluding the correction of an error in the azimuth angle def-
inition, an improved method for estimating surface
reflectance, and an improved calculation of the standard
deviation of AOD as well as inclusion of scattering angle in
the screening criteria. The retrieval changes did not affect
the channel 1 reflectance values, so they did not have an
impact on our method development. However, the im-
proved retrievals were available only for summer (June–
August) 2004. Therefore, to compare the results of our new
proxy relative to the improved GASP AOD, we used that
time period for the assessment of our new method. We used
24-hour average PM2.5 data from the U.S. EPA AQS, includ-
ing IMPROVE data (parameter codes 88101 and 88502).

Our analysis covered the mid-Atlantic region and a large
region in the southeastern United States centered on
Atlanta and covering Georgia and much of Alabama, South
Carolina, eastern Tennessee, and western North Carolina
(shown in Figure 18). The surface reflectance modeling
was limited to the mid-Atlantic.

More details on the data sources and manipulations are
available in Appendix A.

Temporal Screening for Anomalous Reflectance 
Measurements

The GASP AOD retrieval algorithm has a critical screen-
ing criterion that screens out retrievals for which there is

large local variability in AOD based on a 5 � 5 set of pixels
surrounding and including the focal pixel. In part, this crite-
rion seeks to avoid reporting retrievals that may be affected
by undetected clouds, as cloud screening is more difficult
with GOES than with MISR or MODIS because GOES is less
sensitive in detecting water vapor. Exploratory graphics (not
shown) suggested that it is this screening criterion that often
catches anomalously high values of AOD that would other-
wise be reported as valid retrievals.

Our approach was to consider the time series of channel
1 reflectance values for each pixel for a given day and
screen out temporal, rather than spatial, anomalies.
Figure 19 shows examples of time series plots for indi-
vidual pixels. Examination of a large number of such plots
for summer 2004 in the mid-Atlantic and southeast United
States regions indicated several features of channel 1
reflectance. First, reflectance appeared to be anomalously
high more often in the first and last time periods than in
the other time periods. Next, not surprisingly, high values
tended to be associated with clouds detected by the GOES
cloud screen. Finally, in some pixels on some days, there
were consistently low values of channel 1 reflectance over
successive half hours, whereas, in others, channel 1 reflec-
tance oscillated wildly. Unless a mass of pollution arrived
at a location all at once and then departed, oscillations and
sharp gradients likely represent errors of some sort, prob-
ably due to erroneous cloud screening (and cloud
shadows) rather than real changes in AOD. In particular,
higher values following sharp increases were likely caused
by undetected cloud arrival, while lower values following
sharp decreases may have been caused by the departure of
clouds. Exploratory spatial plotting of the surface of
retrievals in a given half hour (e.g., Figure 18) often
showed areas with very high channel 1 reflectance and
resulting high AOD retrievals (not shown). Large areas
with anomalous values occurred more often early in the
day, whereas later in the day anomalous values were often
scattered in a more heterogeneous fashion amidst lower
values, also noticeable in Figure 18. Similar spatial pat-
terns were found in AOD as well (not shown). Notice that
the anomalous areas were likely to have been caused by
clouds: These areas shifted over time, often had distinct
borders, and were in areas where cloud screening had
screened out many other pixels. NOAA’s AOD standard
deviation criterion screens out many of the anomalously
high values that remain after cloud screening, but addi-
tional high values often remain at the edges of the screened
area and as speckled regions with scattered high values
among both lower values and screened-out pixels.
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Figure 18. GOES channel 1 reflectance for half-hourly observations on August 7, 2004, in the southeastern United States. White areas are those excluded
based on the GOES cloud screen (any clouds in the 5 � 5 grid of pixels surrounding a given pixel) and a solar zenith angle greater than 70�. Values larger
than 0.30 (up to 0.40) are truncated to 0.30 to better visualize the differentiation of lower values.
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Figure 19. Alternate approaches to screening GOES channel 1 reflectance and GASP AOD illustrated in a random selection of 12 pixel–day combinations
(June–August 2004) in the mid-Atlantic region. Channel 1 observations are first screened out based on the presence of clouds (any clouds in the 5 � 5 grid
of pixels surrounding a given pixel) and solar zenith angle (greater than 70�) only. Additional observations are excluded based on our temporal screening
approach. GASP AOD retrievals are screened using NOAA’s original AOD screening approach. Negative AOD retrievals are truncated to 0.
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Given this exploratory analysis and these resulting
hypotheses, we considered the following screening criteria:

1. Avoid the earliest and latest half hours.

2. Avoid channel 1 values greater than a cutoff value, as
most of these are likely related to cloud interference.

3. Avoid channel 1 values for times when a cloud was
detected in the previous or the next half hour in the
same pixel.

4. Avoid values for which the magnitude of the second
difference (the difference of differences of adjacent
measurements in time) exceeds a threshold.

5. Avoid values for which the change since the previous
half-hourly value or with respect to the next half-
hourly value exceeds a threshold.

As our first criterion, we avoided the earliest and latest
half hours (12:15 and 21:15 UTC), as we could not calcu-
late first and second differences or cloudiness in adjacent
time periods for these boundary time points (criteria 3–5).
Also, reflectance tended to be slightly higher on average
during these periods than in the next and previous half
hours, respectively, suggesting more erroneous retrievals.
Figure 20, which illustrates the second criterion, shows
the proportion of cloud detections as a function of binned
channel 1 reflectance values. Note that estimated cloudi-
ness increased with increasing channel 1 reflectance, sug-
gesting that for large values of channel 1 reflectance, cloud
contamination was highly likely. This suggests that even
when clouds were not detected using the GOES cloud
screen, there might have been contamination. We chose to
screen out channel 1 reflectance values greater than 0.2,
but in further studies other values would be worth consid-
ering. The third criterion was a reflection of the possibility

that if a cloud was observed in a pixel in one half hour, the
chance of undetected cloud contamination in neighboring
time points was likely to have been higher.

As noted previously, Figure 19 shows example time
series of channel 1 reflectance. Note the sharp spikes and
large gradients present for many successive triplets or pairs
of half-hourly values. We looked at the variability from half
hour to half hour for pixel–days for which channel 1 reflec-
tance stayed fairly constant for multiple successive time
periods, and, based on that information, we chose cutoffs
for the first and second differences in channel 1 reflectance
(estimates of the first and second derivatives) that seemed
likely to exclude anomalous values for channel 1 reflec-
tance. For the second difference, we chose to exclude
channel 1 reflectance values when the absolute value of the
second difference was larger than 0.07. We calculated the
first difference for each point relative to the previous half
hour and the subsequent half hour. When an observation
was larger than either the previous or next half hour by
0.03 or more, we excluded it, and when an observation
was smaller than either the previous or next half hour by
0.05 or more, we excluded it. The reasoning behind these
choices was that cloud contamination would likely have
led to larger values, so we more strictly screened out
values that were higher than their temporal neighbors.
However, even if the trend were downwards, large changes
suggest that cloud contamination or other issues might be
affecting multiple retrievals over time, so we erred on the
side of excluding values. We started the screening process
by including all channel 1 reflectance measurements so
that we could calculate our five screening criteria. Then,
we applied both our new screening criteria and the fol-
lowing two of the original NOAA screening criteria:
Retrievals were excluded when clouds were detected in
the pixel or in the surrounding 24 pixels or when the solar
zenith angle was greater than 70�, thereby avoiding
retrievals that occurred when the sun was low in the sky
(Prados et al. 2007). We also excluded retrievals with a
scattering angle of less than 50� or greater than 170�, per
NOAA’s revised screening criteria, again seeking to avoid
retrievals that occurred when the sun was low in the sky.

Note that our screening criteria were not based on any
comparison with PM2.5 values but solely on consideration
of the temporal patterns in channel 1 reflectance and the
association of those patterns with the GOES cloud
screening criterion. We could, therefore, directly evaluate
screened channel 1 values relative to PM2.5 observations.
We calculated the correlation of the PM2.5 observations
with both GASP AOD and channel 1 reflectance using the
daily averages of available GOES retrievals in the mid-
Atlantic and southeast regions. For both AOD and channel
1 reflectance, we considered screening out values based on

Figure 20. Proportion of time that clouds were detected in a pixel as a
function of GOES channel 1 reflectance values for the pixel, for the mid-
Atlantic region (2003–2006). The reflectance values were binned for
plotting purposes.
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the original NOAA screening criteria (see Data and Over-
view of the GASP AOD Retrieval Algorithm, under Methods
in section 7) and on our new criteria. Note that, when con-
sidering channel 1 reflectance, this involved screening the
reflectance values based on NOAA criteria involving the
derived AOD retrieval values. GOES pixels and PM2.5 mon-
itor locations were matched in space by finding the GOES
pixel nearest to each monitor. Channel 1 reflectance and
GASP AOD retrieval values for that pixel were averaged
over the day for values not excluded by the screening cri-
teria being used and were then matched by day to the
24-hour average PM2.5 value for the monitor. We didn’t
consider longer-term averages at this stage. We left this to
our modeling of surface reflectance, described next, which
attempted to account for variability in surface reflectance.

Surface Reflectance Modeling

The current GASP AOD algorithm uses the second
smallest value of the channel 1 reflectance for a given pixel
and half hour of the day over the previous 28 days to esti-
mate the mosaic, a proxy for reflectance unaffected by
aerosol in the atmosphere. Our approach was to use the
PM2.5 monitoring data to determine when PM2.5 was likely
to be low for a given pixel and to build a model for the
background surface reflectance based on channel 1 reflec-
tance at those times. We built our model for the mid-
Atlantic region for the time period of April 24, 2003,
through December 31, 2006; the beginning date was when
GOES-12 retrievals first became available.

To estimate PM2.5 at all locations as best as possible, we
first considered only every third day, when most of the
monitors were operating, since many monitors operated
only every third day. For each of these days, we fit a simple
TPS with the amount of smoothing determined via GCV, as
implemented in the gam() function in R. For each point in
the 4-km grid, we predicted PM2.5 and also calculated stan-
dard errors of prediction. Note that for the standard errors
we included only uncertainty in the fitted mean, omitting
the residual variance, in an attempt to estimate uncertainty
in the surface and not in monitor-to-monitor variability. We
did not use covariates such as land-use information in our
model, as our main goal was to find areas and days for
which all the PM2.5 observations were low and to estimate
this background PM2.5 from simple distance-weighted
averaging of the monitor values without attempting to esti-
mate small-scale variability in PM2.5. The assumption was
that on days in which a whole area had low PM2.5 concen-
trations, small-scale variability was limited.

Next, we explored models explaining channel 1 reflec-
tance as a function of diurnal and seasonal variability, since
reflectance is known to change as surface characteristics

change as a result of surface greenness and as the angle of
the sun varies with respect to the surface. We included only
channel 1 reflectance values at locations and on days with
predicted PM2.5 of less than 10 µg/m3 and a 95% predic-
tion interval for PM2.5 values whose upper bounds were
less than 12.5 µg/m3, to avoid fitting the model when we
were less sure that PM2.5 was low. We excluded all channel
1 values that did not pass our new screening approach as
described in the preceding subsection.

We focused on two core models for channel reflectance,

(19) 

and

(20)

where �0 is the intercept, ei,d,h is the error term, d indexes
the days from April 24, 2003, through December 31, 2006;
doy(d) maps these days to the 365 days of the year; i indexes
pixels; and h indexes half hours of observation. Model A
has four smooth functions of time of day, one for each
season, fseason(d)(h), to capture changing diurnal patterns
over the year, while fdoy(doy(d)) captures smooth variation
over the course of the seasonal cycle. In contrast, model B
allows the diurnal cycle to change smoothly over the days
of the year, rather than discretely by season, using a tensor
product of spline terms of day of year and half hour of day,
fjoint(doy(d),h). Both models were fit using the gam() func-
tion in R, based on the default penalized TPS specification
with smoothing chosen by GCV. To reduce computations,
we fit the model using a random subsample of 500,000
observations. The estimated smooth terms in the models
are shown in Figure 21. Having fit the model, we calcu-
lated the fitted values of channel 1 reflectance in the full
dataset, and we subtracted the fitted values from the actual
reflectance values. Using the resulting residuals, we calcu-
lated the average residual for each pixel to estimate the
spatial backgrounds, and , for models A and B,
respectively, having adjusted for temporal variability
through the model fitting. We also considered stratifying
the estimates of the spatial background by season. Some
variation by season was seen, but the basic patterns were
consistent across the seasons. A more sophisticated
approach would have been to fit a spatiotemporal smooth
to the residuals as a function of location and time of year,
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to estimate the seasonally changing background smoothly
rather than as step changes at March 1, June 1, September
1, and December 1.

To assess whether our models captured the main struc-
ture in the variability of channel 1 reflectance under low
PM2.5 conditions, we examined the residuals described
above, assessing with further model fits and exploratory
plots whether there was remaining temporal variability
that varied systematically with longitude or the urban–
rural gradient. We did not find any effects whose magni-
tude approached that of the terms in the models above, so
we were satisfied that the models captured the important
temporal structure in the data without ignoring important
interactions between the temporal structure and other
characteristics of the pixels.

We then assessed the results of the new surface reflec-
tance derivation using data from the mid-Atlantic region
for summer 2004. To assess model A as a means of
adjusting channel 1 reflectance for background surface
reflectance, we took the following step: For each GOES
pixel matching a PM2.5 monitor location (based on finding
the GOES pixel centroid nearest each monitor location),
we calculated a proxy for PM2.5 defined as

(21)

for half-hourly channel 1 reflectance values not excluded
based on our new screening approach. We then averaged
values for each pixel over the half-hour segments of the
day to derive a daily proxy to compare with 24-hour
average PM2.5 values. For model B, the proxy was defined
similarly but with and the tensor product of day of
year and half hour used in place of the additive half-hour

and day-of-year terms used in model A. Note that this
assessment included all days rather than a subset of every
third day.

RESULTS

Temporal Screening

The example time series plots in Figure 19 illustrate
channel 1 reflectance values screened out by our new cri-
teria as points covered by black asterisks. Note that unreal-
istically high reflectance values, as well as values that
were associated with large spikes and large gradients, were
screened out. Table 12 shows spatiotemporal correlations
of channel 1 reflectance and AOD with ground-level PM2.5
based on the original and our new screening criteria. Note
that in addition to applying the NOAA criteria to screen
AOD retrievals and our criteria to screen channel 1 reflec-
tance values, we considered applying our criteria to screen
the AOD retrievals and applying the NOAA criteria to
screen channel 1 reflectance. For the mid-Atlantic region,
our simple screening of channel 1 reflectance produced
correlations nearly as large as the correlation between
GASP AOD and PM2.5. For the southeastern region, while
our screening greatly improved the correlations relative to
the very low correlation of the NOAA-screened channel 1
reflectance, the resulting spatiotemporal correlation was
lower than seen for AOD. For summer average spatial cor-
relations (calculated based on daily values matched in
time) for both regions (Table 12), our screening of channel
1 reflectance produced correlations as strong as those seen
with GASP AOD. Note that much of the improvement from
the screening appears to have come simply from removing
channel 1 reflectance values exceeding 0.2.

A
season doychannel1 doy� � � 
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Figure 21. Effect on channel 1 reflectance of time of day and day of year for the mid-Atlantic region (2003–2006). Shown are the estimated smooth effect
on GOES channel 1 reflectance of time of day by season in model A (equation 19; left panel); the estimated smooth effect of day of year in model A (middle
panel); and the estimated bivariate smooth effect of time of day and day of year in model B (equation 20; right panel). In the left and middle panels,
uncertainty bands are so close to the estimated smooths that they cannot be distinguished from them, except for some values, which would appear at the
very beginning and end of the time-of-day plots in the left panel but are not shown.
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Note also that while we report 95% CIs for the correla-
tions, it’s not clear that these are helpful in comparing cor-
relations between different proxies because the data used
for CIs for a given proxy–PM2.5 correlation are not inde-
pendent of the data used for another proxy–PM2.5 correla-
tion.

Surface Reflectance Modeling

We next assessed the effects of our surface reflectance
modeling in the mid-Atlantic region. Figure 22 shows the
surface reflectance we estimated based on , the tem-
porally averaged residuals from our channel 1 reflectance
model A (equation 19), in comparison with a visual satel-
lite image downloaded from Google maps. Note that the
estimated surface reflectance closely follows the patterns
in the surface image, with darker forested areas and lighter
developed and cropland areas. These patterns also match
the patterns seen on days with low PM2.5 over the entire
region (not shown), suggesting that our approach was
doing a reasonable job in estimating the background sur-
face reflectance.

(not shown) was indistinguishable from ,
whereas estimates of the background stratified by season
were similar to the full-year estimate but with some het-
erogeneity and with the areas in the snow shadow of Lake
Erie (upper-left area of the Figure 22 plots) not estimable
during winter because of a lack of reflectance values not

excluded by screening (not shown). Figure 23 shows the
GOES-reported mosaics at midday for a sample of several
days, which indicate highly spatially and temporally vari-
able estimates that seem unrealistic as proxies for the
background surface reflectance, based on comparison with
land-cover and land-use features.

Table 13 reports the correlations between PM2.5 and our
new channel 1 proxies (making use of both model A and
model B) for the mid-Atlantic region. The correlations are
directly comparable to those in Table 12 because the spa-
tial and temporal domains were the same. We do not
report results from the southeast because of the size of the
computations involved in carrying out the surface reflec-
tance estimation. We found that despite the plausibility of
our estimated surface reflectance and of our screening cri-
teria, the correlation of our surface-corrected channel 1
proxy with PM2.5 was no better than the correlations of
PM2.5 with raw channel 1 reflectance or with GASP AOD,
as shown in Table 12. For the summer average spatial cor-
relations, correlations were lower than they were without
the surface correction. Given that we restricted our models
to days with low PM2.5, a partial explanation for the
decrease in correlation is that we removed the contribu-
tion of the background surface reflectance, which itself
correlates with PM2.5. The reason is that locations that are
brighter on average even on days with low PM2.5 tended to
be more polluted in general, as seen in the last column of

A
•( )ĝ

B
•( )ĝ

A
•( )ĝ

Table 12. Spatiotemporal and Summer Average Spatial Correlations (95% CI) of PM2.5 and GOES Proxiesa Matched by 
Day and Location for the Mid-Atlantic and Southeastern Regions, Summer 2004

Spatiotemporal 
Correlations

Spatiotemporal Correlations
Four or More Proxy 

Values per Dayb
Summer Average Spatial 

Correlationsc

Mid-Atlantic Southeast Mid-Atlantic Southeast Mid-Atlanticd Southeast

AOD, NOAA 
screening 

0.51 (0.48–0.54) 0.54 (0.50–0.57) 0.53 (0.49–0.57) 0.57 (0.52–0.61) 0.51 (0.36–0.63) 0.26 (0.06–0.44)

AOD, our 
screening

0.43 (0.40–0.46) 0.37 (0.33–0.40) 0.52 (0.48–0.55) 0.49 (0.45–0.52) 0.03 (�0.14–0.20) 0.21 (0.03–0.38)

Channel 1, 
NOAA screening 

0.30 (0.27–0.33) 0.06 (0.02–0.10) 0.40 (0.37–0.43) 0.22 (0.18–0.26) 0.40 (0.25–0.53) 0.27 (0.09–0.43)

Channel 1, our 
screening 

0.46 (0.43–0.49) 0.35 (0.31–0.38) 0.53 (0.50–0.56) 0.47 (0.43–0.51) 0.51 (0.37–0.63) 0.28 (0.10–0.44)

a Both AOD and direct use of channel 1 reflectance.

b These columns show correlations only for days and locations for which at least four screened AOD or channel 1 values are available.

c Only locations with at least 9 days of coincident proxy and PM2.5 data are included. 

d Excludes one site outside Pittsburgh that is just downwind of a major industrial facility.
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Figure 22. Estimated surface reflectance for GOES, based on model A (equation 19; left map), and a visual image from Google Maps of roughly the same
area, but with a different map projection (right map). For the model A surface reflectance, some values along the coast and Lake Erie are truncated from
below �0.03 to �0.03. (Aerial image © 2010 TerraMetrics, Inc.; www.terrametrics.com; used with permission.)

Figure 23. GOES-reported mosaic for 4 arbitrary days in 2004 at 17:45 UTC over the mid-Atlantic region. Note that the scale varies for the different
subplots to emphasize spatial contrasts.
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Figure 24. Summer 2004 average PM2.5 concentrations at monitoring stations (left map) and summer 2004 averages of our new GOES channel 1 proxy
(equation 21; right map) matched in space and by day to the monitoring data. Only locations with at least nine daily matches are included. For the left
map, the data from one site near Pittsburgh, with a PM2.5 concentration of 30.5 µg/m3, are truncated to 24, to emphasize the contrasts.

Table 13. This makes sense since the brighter areas are
urban and agricultural areas, and the darker areas are for-
ested. This suggests that some of the correlation of PM2.5
with raw channel 1 reflectance (and possibly with GASP
AOD since it is affected by any uncorrected contamina-
tion from the background surface reflectance) was driven
simply by the fact that GOES measurements of reflectance
correlated with land use, which correlated with PM2.5,
rather than by direct information on aerosols in the reflec-
tance values. Figure 24 compares summer average PM2.5
concentrations at the monitoring stations to summer aver-
ages of our new channel 1 proxy for pixels overlapping

the monitoring sites. The proxy appeared to capture some
of the PM2.5 variation in the western portion of the region,
finding the contrast between the Ohio Valley area and
northwestern Pennsylvania, but it failed to capture the
high PM2.5 concentrations in the southeastern portion of
the region.

Finally, note that the results based on the season-specific
surface reflectance estimate for the summer (not shown)
were very similar, suggesting that our time-invariant esti-
mate of the background surface reflectance did not affect
our results.

Table 13. Spatiotemporal and Summer Average Spatial Correlations of PM2.5 and Surface-Corrected GOES Channel 1 
Proxiesa (95% CI) Matched by Day and Location for the Mid-Atlantic Region, Summer 2004

Spatiotemporal 
Correlations

Spatiotemporal 
Correlations, Four 

or More Proxy 
Values per Dayb 

Summer Average 
Spatial Correlationsc,d

Spatial Correlation 
of Estimated 

Surface Reflectance, , 
with PM2.5

d,e

Channel 1, Model A 0.46 (0.43–0.49) 0.55 (0.52–0.58) 0.29 (0.12–0.44) 0.29 (0.12–0.44)
Channel 1, Model B 0.43 (0.40–0.46) 0.49 (0.45–0.52) 0.27 (0.10–0.42) 0.30 (0.14–0.45)

a Two different models for the surface characterization are used. 

b These columns show correlations only for days and locations for which at least four screened AOD or channel 1 values are available. 

c Only locations with at least 9 days of coincident proxy and PM2.5 data are included. 

d Excludes one site outside Pittsburgh that is just downwind of an industrial facility.

e This calculation uses the same PM2.5 locations and daily averages used in the summer average spatial correlations column (third data column), for 
consistency.

ĝ
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DISCUSSION

Using a statistical model to account for temporal vari-
ability, we introduced methods to screen channel 1 reflec-
tance based on temporal variability at a pixel on a given
day and to estimate the background surface reflectance
based on the average channel 1 reflectance at each location
for times with low PM2.5 levels. The temporal screening
increased correlations between channel 1 reflectance and
PM2.5, in some cases to the level of the correlation between
GASP AOD and PM2.5. However, accounting for the back-
ground surface reflectance to adjust channel 1 reflectance
resulted in decreased average spatial correlations for the
summer, because the background surface reflectance itself
correlated with temporally averaged PM2.5. This suggested
that the GOES reflectance measurements contained two
components that were each modestly informative about
PM2.5: overall surface brightness and information on aerosol
variability over space and time. It appears that some of the
association seen between the satellite reflectance data and
PM2.5 came from spatial variability in the satellite measure-
ments that was not driven by actual aerosol variability. It
seems likely, given the concerns raised here about the esti-
mation of the background surface reflectance in the GASP
AOD retrieval algorithm, that some of the AOD–PM2.5 asso-
ciation was also of this nature.

Note that the results reported here for the 3-month
summer averages only assessed correlations of the various
proxies and PM2.5 when both were observed on the same
day. Assessments based on the long-term average of the
available proxies and the average of PM2.5 over all days
would likely have shown lower correlations because of
missing proxy values, as is described in sections 3 and 4.

NOAA’s GASP AOD algorithm was developed to com-
pute AOD retrievals in a real-time fashion, relying only on
measurements of a single half-hour snapshot. Our
approach relied on having information on neighboring
half-hourly retrievals during a specified day. Our
approach, therefore, involved postprocessing but could be
the basis of an alternative off-line retrieval. Our assess-
ment was based simply on screening and adjusting
channel 1 reflectance directly, rather than making use of
AOD. While we feel that we have developed a useful sur-
face reflectance adjustment, given the issues discussed, it
is not clear that making use of this adjustment in the AOD
retrieval algorithm would improve associations of GASP
AOD with PM2.5, despite the plausibility of our estimated
surface reflectance surfaces. We do feel that removing the
influence of the background would help lead to a better
understanding of the degree to which PM2.5–AOD correla-
tions are driven by information in AOD on true aerosol
variability as opposed to surface characteristics.

One factor that might have prevented larger correlations
was that we did not account for the vertical profile of aero-
sols, which can introduce discrepancy between reflec-
tance and PM2.5 when the atmosphere is not well mixed
and the vertical profile varies spatially. Given the scope of
the project, we did not have the ability to run an atmo-
spheric-chemistry model for the period of interest, and
model output for long runs was not generally available
from other research groups. Efforts to use model output
that provides vertical-profile information at large spatial
scales (e.g., 2 � 2.5 degrees in Liu et al. 2004a and van
Donkelaar et al. 2010) have found success. However —
particularly for the smaller of the two regions examined
here, the mid-Atlantic — accounting for vertical-profile
variation at such a large scale seems unlikely to improve
the correlations substantially, in light of the small-scale
discrepancy seen between our new reflectance-based
proxy and PM2.5. It remains an open question whether
information on smaller-scale variation in the vertical pro-
file would help to resolve some of the discrepancy seen at
smaller scales. Vertical-profile information might be less
important for longer-term averages than for short time
scales affected by individual events that transport large
amounts of PM2.5. However, there may be important local
spatial differences in the profile that persist over time, per-
haps because of differences between rural and urban areas,
coastal effects, topographic effects, or local emissions
sources. The challenge is to obtain sufficiently accurate
information on the vertical-profile variation at smaller
scales for the full spatiotemporal domain being studied in
a given epidemiologic analysis.

8. CONCLUSIONS

In this report we summarize the results of empirical
analyses and of statistical-model development for the use
of proxy information, in particular satellite AOD, in pre-
dicting PM2.5 in the eastern United States. In brief, we had
little success in improving predictions for use in epidemi-
ologic applications. We found positive correlations of
AOD with PM2.5 data matched in time, but lower spatial
correlation for long-term averages, unless we used calibra-
tion that adjusted for large-scale discrepancy between
AOD and PM2.5 (sections 3, 4, and 5). Statistical models
that combined AOD, PM2.5 observations, land-use and
meteorologic variables, and a spatial smoothing compo-
nent (analogous to kriging) were highly predictive of
PM2.5, but AOD added little information beyond that pro-
vided by the other sources (sections 5 and 6). In part this
appears to have been caused by the fact that large-scale
spatial patterns in PM2.5 could be predicted well by
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smoothing the monitor values, while small-scale spatial
patterns in AOD appeared to weakly reflect variation in
PM2.5. Even long-term averages of MISR AOD, considered
the most accurate, albeit the most sparse, of the AOD prod-
ucts over land, were only weakly correlated with and did
not improve prediction of PM2.5 (section 4). Thus, in loca-
tions where PM2.5 observations are sufficiently dense to
support statistical modeling with land-use covariates and
smoothing or kriging, our results suggest that AOD would
not substantially improve exposure predictions. However,
the information contained in a proxy such as AOD might
be sufficient to allow beneficial regression on the proxy
when PM2.5 observation density decreases.

Previous consideration of satellite AOD has largely
focused on MODIS and MISR AOD; one contribution of
our work is a more extensive consideration of GOES-
derived GASP AOD and its relationship with PM2.5. An
advantage of the geostationary GOES data is the uniform,
high temporal frequency of sampling. Given the moderate
correlations of GASP AOD and PM2.5, and the fact that
higher correlations of long-term averages after spatial cali-
bration primarily reflected the necessarily improved large-
scale correlation (section 3), we considered new statistical
techniques to screen anomalous GOES reflectance mea-
surements and account for background surface reflectance
(section 7). While the results appeared sensible, correla-
tions of adjusted reflectance with PM2.5 were no better
than GASP AOD correlations with PM2.5.

To what extent are our results generic to all three instru-
ments, given our extensive work with GOES? MODIS, and
particularly MISR with its multiangle capability, provide
higher quality AOD retrievals than does GOES. However,
our exploratory correlation analysis in section 5 indicated
modest spatial correlation between AOD and PM2.5 for all
three instruments, even after large-scale spatial calibration
that corrected for large-scale discrepancy and necessarily
increased correlations. Our statistical modeling found that
neither MODIS nor GOES AOD improved PM2.5 predic-
tions, raising concerns about the small-scale correspon-
dence of AOD and PM2.5 (section 5), but we note that this
result was only for the mid-Atlantic region and for 2004.
Our analysis of the relationship of long-term average MISR
AOD and PM2.5 over the eastern United States helped to
broaden our results. Here, the limited number of retrievals
from MISR was less of an issue, but we still found discrep-
ancy to be a critical concern and did not find that MISR
AOD improved prediction of long-term average PM2.5 (sec-
tion 4). Ideally, we would have had time to carry out a sim-
ilar analysis using MODIS AOD, although the similar
results for the exploratory analysis of MODIS and MISR in
section 5 suggest that results for MODIS might not have

been appreciably better than what we found for MISR.
Thus, our results suggest that the issue of discrepancy is a
generic one, particularly in contexts such as the eastern
United States, where PM2.5 levels are generally low and
therefore show smaller spatial contrasts than elsewhere in
the world.

STRATEGIES FOR IMPROVING THE USEFULNESS OF 
AOD AS A PROXY FOR PM2.5

In our statistical analyses and modeling, we attempted
to address the inherent differences between AOD and
PM2.5 (described in detail in section 1) to the best of our
ability, but shortcomings in our approach no doubt con-
tributed to the results summarized above. First, we
included the PBL as an indicator of vertical mixing of par-
ticles to roughly account for the variability of the vertical
profiles of particles in space and time, as this affects the
near-surface portion of AOD that more directly relates to
PM2.5 concentrations. Second, we included information
on the lower-atmosphere RH to roughly account for the
influence of particle growth on AOD values. Our correla-
tion analyses did not account for the spatial mismatch
between areal AOD and point-level PM2.5, but our statis-
tical modeling attempted to account for the sub-pixel-scale
effects of roads and emissions point sources on PM2.5
monitor values. Finally — with regard to the temporal mis-
match between AOD snapshots and 24-hour PM2.5 mea-
surements — because our focus was on long-term averages
related to chronic health effects, we extensively examined
monthly, yearly, and longer-term relationships of AOD and
PM2.5. We hoped that with sufficient AOD retrievals the
effects of temporal mismatch would be minimized.

Should analyses of the AOD–PM2.5 relationship match
values in time or use all available values? Our analysis of
MISR AOD suggested higher correlation when AOD and
PM2.5 values were matched by day rather than when all
available values were used (section 4). For PM2.5, long-
term averages are likely an unbiased and highly accurate
estimate of true PM2.5 at the monitoring site, while AOD is
subject to potentially informative missingness because of
cloud cover, as seen in our analysis for GASP AOD (section
3) and in Koelemeijer and colleagues (2006) for MODIS
AOD. Whether an AOD retrieval is missing is likely related
to PM2.5 concentration because PM2.5 is strongly related to
meteorologic conditions. Also, long-term average PM2.5 at
the MODIS and MISR overpass time (10:30 AM in the
eastern United States) might differ from long-term average
PM2.5 over the full 24 hours of the day. However, many
previous analyses have assessed the relationship of PM2.5
and AOD based only on data matched by day or hour. To
avoid overoptimism about AOD as a proxy for long-term
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average PM2.5, we suggest carrying out an unmatched anal-
ysis (which would include all available data) in addition to
any matched analysis. Alternatively, one can supplement a
matched analysis with an assessment of the extent to which
average PM2.5 — on days (or hours) with AOD retrievals —
is representative of true long-term average PM2.5.

Our statistical modeling using the proxy as data strongly
discounted the proxy (sections 5 and 6). The results sug-
gest that unless the raw correlations of proxy and observa-
tions are strong, including the proxy is unlikely to help
prediction. An obvious concern is that limitations in the
PM2.5 observations, rather than just in AOD, played a role.
PM2.5 measurements are not error-free and even when they
are error-free, bias could be induced because of preferen-
tial sampling (Diggle et al. 2010), such as when PM2.5 mon-
itors are overrepresented in highly polluted areas. This
raises concerns about the degree to which observations can
be treated as a true gold standard. Despite these concerns,
we argue that the error in the measurements is likely to
have a simpler structure than that in the proxy, with
simple instrument error combined with very-fine-scale
spatial heterogeneity that is not representative of the PM2.5
process at a broader scale. In contrast, when the PM2.5
observations showed robust (i.e., locally homogeneous)
patterns at moderate scales on individual days, the proxy
variables often failed to capture much of the pattern, sug-
gesting that complicated discrepancy structure is a con-
cern for the proxies. We attempted to account for PM2.5
observational errors and preferential sampling through our
modeling strategy. Similarly, we attempted to account for
fine-scale variation in the point measurements that is nec-
essarily smoothed over in the pixel-based AOD by using
information on the distance from monitors to roads and
point emissions sources. In the absence of a true gold stan-
dard at the pixel scale for the AOD retrievals, this mod-
eling represented our best effort at constructing a gold
standard for PM2.5 exposure, albeit one that was sensitive
to the choice of model structure.

The magnitude of the error in satellite AOD products is
known to be large relative to average aerosol levels present
in the United States, based on comparison with AERONET
(Liu et al. 2004b). This highlights the difficulty in trying to
use AOD to distinguish relatively small differences in
long-term averages of ground-level PM2.5 in different spa-
tial locations. Distinguishing aerosols from the surface
signal is a major challenge for satellite AOD retrievals and
has particular implications for characterizing spatial vari-
ability in PM2.5, with surface contamination likely to be
having effects at multiple scales. For both MISR AOD (sec-
tion 4) and GASP AOD (section 7), we saw evidence that
some of the correlation between raw AOD and PM2.5 might

have been a function of uncorrected surface brightness
related to land use, rather than having been driven by the
detection of aerosol in the AOD retrieval algorithms. We
suggest that future remote-sensing analyses consider the
possibility that land use and its influence on surface
reflectance that is not fully corrected for in the retrieval
algorithm — rather than the direct relationship of PM2.5
and AOD — might partially explain spatial correlations of
PM2.5 and AOD. In section 7 we proposed a statistical
method to estimate long-term average surface reflectance
— based on days with low PM2.5 concentrations — that
might be used in AOD retrieval algorithms.

In developing countries with higher aerosol levels and
more spatial variability, such as China (Jiang et al. 2007),
satellite AOD may be better able to capture spatial patterns
in PM2.5 even at the small scales, because the relative mag-
nitude of the errors caused by uncorrected spatial vari-
ability in surface reflectance would be smaller relative to
the higher aerosol levels. In addition, because it is more
difficult to build models in these areas based on PM2.5
measurements and land-use covariates, AOD may add
more incremental information there than in the models we
fit in our data-rich setting. However, given the potential for
discrepancy, based on first principles (see section 1) and
seen in our analyses, we encourage validation efforts to
support the use of AOD in data-poor settings, perhaps with
carefully targeted monitoring. For some air quality pur-
poses, capturing large pollution gradients at large scales is
likely to be sufficient, while for epidemiologic analysis, as
discussed further in the subsection Using AOD for Public
Health Research, we believe that the important questions
are the magnitude of pollution gradients at smaller scales
and the ability of AOD to resolve these.

In contrast to our empirical statistical calibrations —
including use of the PBL and the RH — another way to
handle some of the inherent differences between AOD and
PM2.5 is to use vertical profiles of atmospheric aerosol sim-
ulated in a model to scale column AOD to its surface por-
tion. The improvements seen when such model profiles
were used (Liu et al. 2004a; Liu et al. 2007a; Liu et al.
2007b; van Donkelaar et al. 2010) are not surprising
because the vertical profile of particles is determined by
the complex interaction of regional and local-scale meteo-
rology, diurnal variation in emissions, pollution transport,
and seasonal change in land-surface characteristics. The
totality of these effects was not easily captured by the sta-
tistical calibration of AOD based on meteorologic variables
that was done in this report, building on Liu and col-
leagues (2005). However, with the relatively dense PM2.5
observations available to us, we were able to achieve
smooth spatial calibration of AOD to PM2.5 to adjust for
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larger-scale spatial discrepancy and assess the impor-
tance of using large-scale calibration in place of model-
simulated profiles. In general, such calibration led to
improved correlations (sections 3, 4, and 5). However, while
we hoped that correcting for large-scale discrepancy
between AOD and PM2.5 would improve overall spatial cor-
relations by unmasking small-scale association between
AOD and PM2.5, we saw little evidence of this. Rather, it
appeared that improvements in spatial correlation were pri-
marily related to the correlation between PM2.5 and the spa-
tial adjustment surface. In effect, we empirically calibrated
AOD so that AOD and PM2.5 were more correlated at the
large scale. It is not surprising then that spatial correlations
increased at this scale, yet the improvement in correlation
seemed related primarily to this scale.

Unfortunately, multiyear full-chemistry model simula-
tions — even at relatively coarse spatial resolution (e.g.,
2 � 2.5 degrees) — as well as data processing and storage
were very expensive at the time of our analysis and beyond
the scope of this project. As a result, we did not test
whether using vertical profiles of aerosol that are simu-
lated in models makes AOD a better proxy for PM2.5. Fur-
ther — at least for the GEOS-Chem model used in Liu and
colleagues (2004a) and in van Donkelaar and colleagues
(2010) — the model resolution of 2 � 2.5 degrees limits the
degree to which this approach can help in improving
small-scale correlations of AOD and PM2.5. It remains an
open question whether information on smaller-scale varia-
tion in the vertical profile would help to resolve some of
the discrepancy between AOD and PM2.5 seen at smaller
scales, or whether other causes of discrepancy, such as
background contamination, are more important. A major
challenge in assessing this question lies in obtaining suffi-
ciently accurate information on the vertical-profile varia-
tion at smaller scales for large domains. Such differences
might be studied with Cloud Aerosol LIDAR and Infrared
Pathfinder Satellite Observations (CALIPSO) satellite data,
although the poor spatial coverage of the satellite would
limit the use of its data in actually mapping the variation.
Because global three-dimensional atmospheric-chemistry
and transport models (CTMs) such as GEOS-Chem can
now be run at 0.5 to 1-degree resolution in the continental
United States, and regional CTMs such as the CMAQ
model estimate vertical profiles of aerosol at 12- to 36-km
resolution, these models are worthwhile areas for research,
although obtaining good emissions inventories may pose a
difficulty. Two reviewers of a draft of this report com-
mented that using CMAQ for the profiles is probably not
the best approach, given that CMAQ was developed ini-
tially for short-term air quality applications and has limita-
tions in terms of emissions inputs and parameterizations.

These may limit its ability to characterize both PM2.5 con-
centrations (seen empirically in section 6) and vertical
profiles of aerosol.

Making use of particle-speciation information is a recent
direction showing promise. Because of its multiangle
design, the MISR instrument is able to distinguish spher-
ical from nonspherical particles and bright from light-
absorbing particles, and it can distinguish particle size to
some degree. This capability allows a rough separation
between secondary particles (spherical particles, such as
sulfate, nitrate, and combustion-related organic carbon)
and natural-source particles (mineral dust). It also allows a
separation between light-absorbing particles (e.g., black
carbon and certain organic carbonaceous species) and non-
light-absorbing particles (e.g., sulfate, nitrate, and sea salt).
Liu and colleagues (2007c) found that MISR AOD can be
decomposed into fractional AODs from each of the MISR-
defined aerosol components just mentioned. They also
found that regression models using fractional AODs as pre-
dictors of PM2.5 performed significantly better than those
using total AOD as the main predictor (Liu et al. 2007b; Liu
et al. 2009). Unfortunately, speciation information is only
available from MISR, and MISR retrievals are substantially
sparser than MODIS or GOES retrievals. Another direction
of recent research has been the work of Drury and col-
leagues (2008), who developed a MODIS retrieval algo-
rithm that makes use of the rich particle-speciation
estimates in a CTM. These retrievals provided a consider-
able improvement over operational MODIS AOD in com-
parisons with time-averaged AERONET AOD observations
in the western and central United States.

Finally, MISR and MODIS retrievals could be performed
at higher nominal spatial resolution with existing data but
with modified algorithms. It is not certain whether such
retrievals would provide higher real resolution that would
improve predictions of PM2.5 or whether the variation in
the retrieved AOD at this scale would be dominated by
discrepancy.

STATISTICAL CONSIDERATIONS

As the work of assessing remote sensing and model-
based proxies continues, it is worthwhile to keep in mind
a danger with proxies that relates to the modeling of dis-
crepancy. Proxies tend to be spatially correlated. A stan-
dard conclusion based on scientific experience with
traditional observational data, which tend to have uncorre-
lated errors, is that spatial correlation is suggestive of
signal. Thus, a proxy that has little signal for the process of
interest may still on its face look informative, because dis-
crepancy is confused with signal. Furthermore, in
assessing a proxy, as we did for AOD (section 3), one
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cannot assume that temporal correlation provided evi-
dence for spatial correlation, particularly for long-term
averages (section 3). We found little evidence that either
the AOD or CMAQ proxies helped improve prediction
when the proxy was modeled as data, despite the correla-
tions between proxy values and PM2.5 observations. We
believe that future efforts that consider remote-sensing
output as proxies for an exposure of interest need to focus
on the question of improved prediction, rather than simply
showing correlation. Much of the reason for the lack of
improved prediction appears to relate to the limited infor-
mation in the proxies about PM2.5 at smaller scales,
namely in the 10- to 200-km range.

We note that our models relied on other predictor vari-
ables such as land use and meteorology, so we were
already leveraging additional information above and
beyond simple smoothing of the observation values, such
as in kriging approaches. Such predictors are of course
spatially correlated, so errors from such modeling tech-
niques are also spatially correlated, but the regression con-
ditioning ensures that the relationship of the predictors
with PM2.5 is calibrated with the observations. Further-
more, we have substantive reason to believe that such vari-
ables are proxies for PM2.5 at fine scales because of their
relationships to emissions and meteorologic effects. We
accounted for larger-scale errors caused by large-scale dis-
crepancies between these variables and PM2.5 in the
residual spatial process (sections 5 and 6). Given this suc-
cess in regressing on other predictors, using a proxy vari-
able as a regressor appears safer from the perspective of
prediction (and helped improve predictions somewhat in
our use of CMAQ-based PM2.5; section 6). However, its
usefulness is derailed when many missing values occur,
and it doesn’t help in understanding the scales of discrep-
ancy in a proxy. A regression approach that resolves scales
may be a fruitful direction for research.

In our statistical modeling (sections 5 and 6), we pro-
posed statistical models to combine proxies and observa-
tions, with the critical component of the model being the
characterization of the proxy discrepancy. Compared to
previous statistical work, we focused on representing the
discrepancy in a form that allowed either large-scale or
small-scale discrepancy to be accounted for, rather than
assuming that all small-scale spatial patterns in the proxy
represented signal for the process of interest. The resulting
decomposition of proxy into discrepancy and signal was
necessarily a difficult task with concerns about statistical
identifiability. Accounting for discrepancy (also called
structural model error) has been receiving increasing
attention in the context of deterministic models (Kennedy
and O’Hagan 2001; Smith 2002; Goldstein and Rougier

2009). The error structures in such models are similarly
complicated and are generally not well identified from
available data because of scale issues and data sparsity.
Another difficulty is in the use of such models for making
predictions into the future, when no data are available to
help characterize systematic model discrepancy; consider
global climate model runs. Traditional statistical models
are based on independent, identically distributed data,
and traditional spatial statistics methods on Gaussian pro-
cesses. In environmental problems, which increasingly
combine deterministic models, remote sensing, and tradi-
tional observations, we need statistical approaches to
bring together these sources of information and deal with
complicated error structures in the proxies and models.
Such contexts raise serious challenges for the specification
of statistical models, with model misspecification difficult
to detect and correct. In effect, our statistical models, par-
ticularly in hierarchical Bayesian settings, are beginning to
behave like complicated deterministic models in which
the behavior of (and biases in) the model system are not
well understood by examining only the relationships of
the components used to build the models.

As discussed, our emphasis on statistical modeling
served several goals: (1) to account for local variations in
PM2.5 that could have obscured the relationship between
pixel-scale AOD and true PM2.5 at that scale, (2) to assess
improvements in predictions from adding AOD retrievals
to state-of-the-art statistical models that use spatial
smoothing (which is analogous to kriging) and land-use
regression components fit to the observational data, and
(3) to assess and account for spatial discrepancy as a func-
tion of spatial scale. Given this emphasis and the afore-
mentioned challenges of complicated statistical models,
we note that the statistical-modeling results were comple-
mented by and consistent with simpler approaches that
did not rely heavily on the form of the statistical model:
correlation analyses (sections 3, 4, and 5), more simple
regression modeling of MISR AOD (section 4), and the use
of AOD as a covariate in statistical models (section 5).

USING AOD FOR PUBLIC HEALTH RESEARCH

Our goal was to use AOD retrievals to improve predic-
tions of PM2.5 concentrations for use in epidemiologic
analyses. In particular, we hoped to fill in spatial gaps in
the monitoring network at small-to-moderate scales. In the
United States, estimation of the large-scale variation in
PM2.5 is straightforward using the observations from the
monitoring network, so there is little need for making use
of AOD at that scale. However, because PM2.5 health
effects are likely small in magnitude, the presence of con-
founding factors is a critical issue in using observational
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data to investigate causality. This is even more problematic
when exposure is poorly ascertained, as the combined
effects of confounding and exposure error are poorly
understood and likely complex. Large-scale variation in
PM2.5 is likely confounded with other variables that vary
at large scales, such as demographic patterns in factors
such as diet, lifestyle, and socioeconomic status (Burnett
et al. 2001; Pope et al. 2002; Cakmak et al. 2003; Zeger et al.
2007). This further supports our interest in better estima-
tion of smaller-scale variation, namely the scale of varia-
tion within and between metropolitan areas. These
concerns about confounding hold true not only in the
United States but in other countries and regions of the
world: Caution is warranted if health effects estimates are
identified from pollution contrasts at the scale of countries
or regions within larger countries. At the small and mod-
erate scales, we found little evidence that AOD was
strongly related to PM2.5 (sections 3, 4, and 7) and no evi-
dence that it was helpful for prediction (sections 5 and 6)
in the eastern United States, an area with relatively low
levels of, and small spatial contrasts in, PM2.5. Therefore,
we believe that a better understanding of the reliability of
AOD as a proxy at such scales, and more generally of the
physical contexts in which AOD can be useful, is needed
before relying on AOD as a proxy for PM2.5 in epidemio-
logic contexts. Analyses and models that treat AOD as a
proxy for PM2.5 should account for the possibility of sys-
tematic discrepancy.

Measurement error is well understood in the statistical
literature in cases with a simple error structure (Carroll et
al. 2006). Exposure estimation for epidemiologic analysis
raises difficult issues because the exposure estimates from
statistical prediction models and from highly structured
(in space and time) proxies such as AOD and CTM output
have a complicated error structure that is difficult to char-
acterize (Zeger et al. 2000; Gryparis et al. 2009). We do not
sufficiently understand how this kind of error affects esti-
mates of chronic health effects. In particular, we do not
know how systematic differences between spatiotemporal
patterns of a proxy and those inferred from ground moni-
tors would affect epidemiologic results, especially bias in
health effects estimation. Furthermore, there is no way to
assess the impact of measurement error in light of the
health effect estimates obtained using a given exposure-
estimation approach, and the complicated error structure
of such approaches does not necessarily lead to attenua-
tion toward the null. We expect that progress on this issue
can be made but that it will rely on characterizing the error
structure in exposure-estimation procedures. For proxies,
this involves the challenge of validating or calibrating
against a gold standard. This would be particularly diffi-
cult in areas with little monitoring, even though these are

precisely the areas where the proxies are needed. How-
ever, targeted monitoring campaigns may provide useful
calibration data.

Our efforts pushed the limits of current satellite tech-
nology for the remote sensing of aerosol. It has only been
10 years since the launch of the MISR and MODIS instru-
ments, which are the first generation of dedicated aerosol
sensors. Current sensors are designed to study global radi-
ative forcing of aerosol, and validation efforts have gener-
ally focused on larger scales than considered here. Current
AOD products generally have large relative retrieval errors
at low aerosol levels such as those generally present in the
United States, in part due to difficulty in distinguishing
aerosols from the background surface reflectance, a critical
issue in terms of our interest in spatial variability in PM2.5.
As a result, urban-scale air pollution monitoring and
public health research using satellite data are for the time
being highly exploratory and far from mature. While our
results suggest caution in using satellite AOD and CMAQ
output to infer urban-scale variation of PM2.5 in epidemio-
logic contexts, much current research focuses on improving
remote-sensing retrievals and CTMs, including the integra-
tion of satellite and in situ measurements into CTMs, so
continued consideration of these tools for public health
research is worthwhile.
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APPENDIX A. Data Description

GIS PROCEDURES

Software and Background

We used ArcGIS 9.2 (Esri, Redlands, CA) to perform spa-
tial analyses on various datasets in order to link together data
with different spatial resolutions and to create variables that
could be used in exploratory statistical analysis and statisti-
cal modeling. “Spatial dataset” is used here to refer to a data-
set that has features, including points, polygons, or lines,
that are associated with both spatial information and non-
spatial attributes. Spatial datasets supported by ArcGIS used
in this project included personal geodatabases, file geodata-
bases, and shapefiles. ESRI software and data were used
under a site license agreement with Harvard University.

Projection

The primary spatial extent of this project was the United
States east of 100� W longitude (the “study area”). Because
of the size of the study area, a continental projection was
used, the USA Contiguous Albers Equal Area Conic projec-
tion, U.S. Geological Survey version. This is referred to as
the study projection. The projection details are as follows:
standard parallels = 29.5, 45.5; longitude of central
meridian = �96; latitude of projection origin = 23; distance
is in meters; horizontal datum = North American Datum of
1983 (NAD1983); ellipsoid = geodetic reference system
(GRS) 80; semimajor axis = 6378137; denominator of flat-
tening ratio = 298.257222.

Base Grid of 4 km

We used ET GeoWizards (www.ian-ko.com) to create a
4-km grid that included south Texas, with a starting point
at 100� W longitude. The size of the grid was 669 � 677,
with the southwest-corner cell centroid at (�417082.6,
310832.93) and the northeast-corner cell centroid at
(2254917.39,3014832.93). Each grid cell was assigned a
unique ID number. Grid cells were intersected with Esri
Data & Maps 8.3 for U.S. counties, Mexico, and Canada to
determine if cells intersected the United States or land sur-
face. Grid cells that intersected the United States were
coded as inUS = 1. Grid cells that intersected land were
coded as landMask = 1. Grid cells with inUS = 1 that also
intersected the area east of 100� W longitude were coded as
dataMask = 1. In general, we did not plot predictions for
cells with dataMask = 0.

For our eastern United States analyses, we used the
entire 669 � 677 grid. For our mid-Atlantic analyses, we
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used a 175 � 100 subset of the grid with the southwest-
corner cell centroid at (1202917.39,1902832.93) and the
northeast-corner cell centroid at (1898917.39,2298832.93).

Grid cells were associated with state and county Federal
Information Processing Standards codes. Cells with cen-
troids that fell inside a county were assigned to that
county. Cells that intersected one or more counties but
with centroids that fell outside all counties were assigned
to the county that intersected the grid cell the most.
Detailed county boundaries were obtained from Esri
StreetMap USA 9.2 (streetmap9_2\census\dtl_cnty.sdc).

DATA SOURCES AND MANIPULATIONS

PM2.5

We downloaded 24-hour averages of PM2.5 data from the
U.S. EPA’s Technology Transfer Network Web site, www.
epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata
.htm. We downloaded AQS data (parameter code 88101)
and IMPROVE data (parameter code 88502) for the years
2000 through 2006. We downloaded AQS data for 2000
through 2005 on September 29, 2006, and for 2006 on June
9, 2009. We downloaded IMPROVE data for 2000 through
2004 on November 10, 2006, and for 2005 through 2006 on
June 9, 2009. For some initial analyses, we also down-
loaded hourly PM2.5 data (parameter code 88101) on Sep-
tember 28, 2006. We included all data regardless of
qualifiers based on a conversation with Michael Papp of
the U.S. EPA (November 13, 2006), who said that data were
only supposed to be submitted if the monitoring agency
believed the data were valid for attainment analysis. We
modified one outlier, at site 29-125-0001 (just southeast of
Belle, Missouri, about 50 miles southwest of St. Louis),
which reported a daily value of 640.6 on September 13,
2001. Given the presence of high concentrations on other
days and values of 50 µg/m3 on days just before this one,
we assumed the true value was 64.6. Data were read from
flat text files into the statistical software, SAS (SAS Insti-
tute Inc., Cary, NC), used under license to the Harvard
School of Public Health.

In some analyses, we used only the primary monitor at a
site with two monitors, to avoid double-counting. In our
statistical modeling described in sections 5 and 6, we
treated each monitor as contributing individual data
points, and the model errors were structured so that only
instrument error contributed to differences in the model
representation of the colocated data points.

Information on the monitoring sites was obtained from
the appropriate rows in the flat text files and converted to a
spatial dataset (personal geodatabase feature class) in the
study projection. The x- and y-coordinates in the study

projection were added as attributes. Separate datasets were
created for the contiguous United States and for the study
area. A spatial join was performed with the 4-km grid, to
obtain the ID of the grid cell where each monitor was
located.

NARR

Data for a number of meteorologic variables were down-
loaded from the NARR (Mesinger et al. 2006) Web site
(www.esrl.noaa.gov/psd/data/gridded/data.narr.html).
The NARR provides estimates of fields based on data
assimilated through a fixed, state-of-the-art meteorologic
model on a 32-km grid with 3-hour sampling intervals.
From the “monolevel” data grouping, we obtained the RH
at 2 m above the surface (file names beginning with
rhum.2m), planetary boundary layer (hpbl), u and v wind
speeds at 10 m above the surface (uwnd.10m, vwnd.10m),
accumulated precipitation (apcp), temperature at 2 m
above the surface (air.2m), and pressure at mean sea level
(prmsl). The RH, winds, and PBL were obtained on
November 18, 2006, and the remaining variables were
obtained on June 17, 2009. We read the netcdf files into the
statistical software R using the ncdf package.

NARR grid points were on an approximate 32-km grid in
the Lambert North American conformal conic projection
with these projection details: false easting = 5632642.
22547; false northing = 4612545.65137; central meridian
= �107; standard parallels = 50, 50; latitude of origin = 50;
datum = NAD1983; and prime meridian = 0. NARR grid
points were converted to a spatial dataset in the study pro-
jection. The ArcGIS point distance tool was used to calcu-
late distance between monitoring sites and NARR points
for all NARR points within 40 km of monitoring sites.
Microsoft Access (Microsoft, Redmond, WA) was used to
join the result to the NARR file on the feature ID (FID) and
to identify the four NARR points nearest to each moni-
toring site. The same procedure was followed to find the
four NARR points nearest to the centroid of each cell in the
4-km grid.

To estimate a meteorologic field value for a 4-km-grid
cell or a monitor location, we generally calculated the IDW
average of field values at the four NARR grid points nearest
to the location of interest, for a given 3-hour time period,
and then calculated a 24-hour average based on the eight
3-hour values (in UTC) coinciding with a calendar day in
the eastern United States.

National Emissions Inventory

We downloaded data from the U.S. EPA’s 2002 inventory
on November 29, 2007, from www.epa.gov/ttn/chief/net/
2002inventory.html. We made use of the county area Tier 1



79

C.J. Paciorek and Y. Liu

79

PM2.5 emissions and of PM2.5 primary point emissions.
Point emissions locations were converted to a GIS spatial
dataset in the study projection. Two obvious spatial errors
were corrected (Norfolk Naval Shipyard in Portsmouth,
Virginia, and Gulf Coast Recycling in Tampa) by geocoding
their addresses provided with Esri StreetMap 9.2 streets.
To normalize the county area emissions, we divided the
emissions by the land area of each county, obtained from
the Census 2000 Summary File 1 (U.S. Census 2000) on
December 14, 2007.

CMAQ Model

We obtained CMAQ output for 2001 from a 36-km
model run over the entire United States, provided by AER
and funded by the EPRI. The model version was the
CMAQ–Model of Aerosol Dynamics, Reaction, Ionization
and Dissolution–Advanced Plume Treatment (MADRID–
APT) version developed by AER. MADRID is a PM2.5
module developed at AER, and APT offers a more accurate
treatment of large-point-source emissions. AER provided
hourly three-dimensional fields of PM2.5 mass and compo-
nents in 2001 at a 36-km horizontal resolution with 14 ver-
tical layers over the United States in CMAQ netcdf format.
Three-dimensional fields of model input (MM5-derived)
pressure, temperature, and layer heights were also pro-
vided, to facilitate calculation of AOD, which we did not
end up doing.

The MADRID module is described in Zhang and col-
leagues (2004), and the APT module is described in
Karamchandani and colleagues (2006).

CMAQ raw data files in netCDF format were read using
Interactive Data Language (IDL). Flat text files for PM2.5
species and meteorologic parameters were created, with
individual files containing information about one species
or parameter for all vertical layers and all hours (UTC) in a
single day.

CMAQ output was provided on a 36-km grid with 6036
pixels in the United States Lambert conformal conic pro-
jection with the southwest-corner pixel at (�2736000,
�2088000) (i.e., this was the southwest corner of the
southwest-most pixel). For our analyses in section 6, we
used a 19 � 11 subset of the grid over our mid-Atlantic
region, with the southwest-corner pixel centered at
(1314000,54000), the northeast-corner pixel at (1962000,
414000), and a 73 � 77 grid over the eastern United States,
with the southwest-corner pixel centered at (�270000,
�1566000) and the northeast-corner pixel at (2322000,
1170000). The projection details were as follows: standard
parallels = 33, 45; central meridian = �97; latitude of
origin = 40; and datum = GRS 80.

We calculated the overlap between CMAQ pixels and
4-km-grid cells as follows: Because projecting the CMAQ
pixels into the study projection resulted in some distor-
tion, with distances between pixel centroids greater than
36 km at higher latitudes, the 4-km grid was converted to
the Lambert projection. The 4-km grid was then inter-
sected with the CMAQ grid using the ArcGIS intersect tool
(ArcToolbox/Analysis tools/Overlay), which created poly-
gons for each CMAQ–4-km-grid cell combination and cal-
culated the area in square meters for each polygon. We
used Microsoft Access for each CMAQ–4-km-grid cell
combination, to calculate the percent of the cell in the
4-km grid covered by the intersection. The result could be
used to calculate a weighted average of variables calculated
at the 4-km-grid resolution for each CMAQ pixel. We also
calculated in R the nearest pixel for each grid cell, by mini-
mizing the distance between pixels and cell centroids.

We calculated the CMAQ pixel nearest to each moni-
toring site as follows: Monitoring sites were projected in
the Lambert projection. We used the ArcGIS 9.2 Near tool
to identify the CMAQ pixel nearest to each monitoring site
and the distance in meters between the two.

MISR

We downloaded MISR data products for 2000 through
2006 from the NASA Langley Research Center (LARC)
Atmospheric Science Data Center (http://eosweb.larc
.nasa.gov). For section 4, we used version 22, downloaded
in June 2009. For section 5, we used version 15, down-
loaded in 2008. The parameters used in this analysis,
including best-estimate AOD in the green band (558 nm),
Retrieval Success Flag, Regional Class, and Type flag, were
extracted from the raw data in hierarchical data format
(HDF) using the EOS_GD_READFIELD function in the IDL
software. The original ancillary geographic product (AGP)
data has a resolution of 1.1 km. For each 17.6-km AOD
pixel, a 16 � 16 = 256 set of 1.1-km pixels was averaged.
Pixels were nominally 17.6-km squares.

MISR paths during an orbit around the globe repeat in
precisely the same locations every 16 days, with identical
pixel locations over time for all orbits of the earth on a given
path. A spatial dataset of pixel centroids for MISR paths 8
through 36 was obtained from the MISR AGP, also down-
loaded from LARC, and projected in the study projection.

We calculated the MISR pixel nearest to each moni-
toring site as follows: Each path was processed separately.
Monitoring sites within 12.4 km (where 12.4 km is the dis-
tance from the center of a 17.6-km square to a corner) of a
path were considered to be associated with the nearest
MISR pixel in that path. The ArcGIS Near tool was used to
identify the FID of the MISR pixel centroid nearest each
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monitoring site. The MISR pixel ID was obtained by
joining to the MISR path spatial dataset on the FID.

We calculated the MISR pixel nearest to each centroid of
a cell in the 4-km grid as follows: A point spatial dataset
containing centroids of 4-km-grid cells was created. Each
path was processed separately. The 4-km-grid cells were
intersected with 12.4-km buffers around each path and
saved as separate spatial datasets. The ArcGIS Near tool
was run for each path to identify the FID of the MISR pixel
nearest to each 4-km-grid cell. The MISR pixel ID was
obtained by joining to the MISR path spatial dataset on the
FID. Microsoft Access was used to combine the results for
each path into one file. Since paths overlapped, each
4-km-grid cell was associated with three to six MISR
pixels, representing multiple paths.

MODIS

We downloaded MODIS collection 5 aerosol data for
2000 through 2006 from the Goddard Space Flight Center
MODIS Level 1 and Atmosphere Archive and Distribution
System (http://ladsweb.nascom.nasa.gov) in February
2007. The parameters used in this analysis, including
Optical_Depth_Land_And_Ocean, Longitude, and Lati-
tude, were extracted from the raw MODIS data in HDF
format in IDL using the EOS_SW_READFIELD function.
MODIS pixels had a nominal resolution of 10 km.

MODIS does not having repeating paths, so pixels do not
occur at the same locations over time and differ from orbit to
orbit. This makes working with the MODIS output difficult.
MODIS data were extracted from HDF files into CSV files
that included latitude and longitude. These files were
added as XY data and converted to file geodatabase feature
classes in the study projection. Each year from 2000 through
2006 was split into 11 to 14 different time periods.

We calculated the MODIS pixels nearest to the centroids
of the 4-km-grid cells at each point in time when MODIS
data were available from that location. After some trial and
error, a procedure was developed for handling the large
MODIS files. The 4-km-grid cells were broken into two
files (north and south). Results were processed using SAS
running on the Harvard School of Public Health high-per-
formance computer cluster (“the cluster”). The SAS code
broke the north results into two separate files. Microsoft
Access was used to import the MODIS CSV files with lati-
tude and longitude into a personal geodatabase table using
Access Import/Export Specifications to specify the field
names. The geodatabase table was added as XY data and
exported to a geodatabase feature class in the study projec-
tion. The FID (ObjectID) associated with each feature was
used as the MODIS pixel ID within each MODIS file. This
ID was renamed MODISn_ID where n was a file number

from 1 through 14. The point distance tool was used to cal-
culate the distance between MODIS pixel centroids and
4-km-grid centroids for pixels within 25 km of the 4-km-grid
centroid. This step was done separately for the north and
the south, and each portion of the country took approxi-
mately 20 minutes to complete. The results were saved as
.dbf files, which could be imported directly into SAS data-
sets. The MODIS feature classes that included the MODIS
IDs were imported to SAS directly from personal geodata-
bases (*.mdb files) on a desktop computer, or were first
exported to .dbf files and then imported to SAS datasets on
the cluster. SAS was used on the cluster to sort the distance
files by MODIS ID; join the distance files to MODIS files;
sort by 4-km-grid FID; join the result to 4-km-grid files con-
taining the 4-km-grid IDs; sort the result by 4-km-grid ID,
orbit, and distance; and finally create a dataset that identi-
fied the MODIS pixel in each orbit nearest to each 4-km-grid
cell. This SAS processing took several minutes for each dis-
tance file. These results could be linked back to the original
extracted MODIS files by year, file name, and MODISn_ID.

For an analysis of 2004 data, we calculated the MODIS
pixels for 2004 within 7.1 km of each monitoring site as
follows: The ArcGIS point distance tool was used to calcu-
late distances between MODIS pixel centroids and moni-
toring sites for MODIS centroids within 7.1 km of each
monitoring site. Microsoft Access was used to join to
MODIS data on the FID.

GOES

Via an FTP site, we obtained from NOAA, courtesy of
Shobha Kondragunta and the NOAA GASP team, GOES-8
(East) data (for the years 2001 through 2002) and GOES-12
(East) data (for the period April 24, 2003, through November
30, 2007). The data included GASP AOD and fields used to
calculate AOD, such as channel 1 reflectance and the cloud
mask information. GOES pixels have a nominal spatial reso-
lution of 4 km. GOES is a geostationary satellite, and mea-
surements are made every half hour during daytime.

The NOAA GASP team updates the AOD retrieval algo-
rithm occasionally; our values were from algorithms cur-
rent at the time of downloading (2001 data: downloaded
March 2006; 2002 data: May 2007 and September 2008;
2003 data: January 2007; 2004 data: September 2006; 2005
data: September 2006; 2006 data: May 2006 and February
2007; 2007 data: December 2007 and June 2008). In 2009,
the team updated their algorithm and applied the algo-
rithm to the period of June through August 2004 for our
use; we downloaded these retrievals in April 2009. GASP
AOD core data processing codes for GOES-8 and GOES-12
data files were provided by the GASP team and adapted for
IDL. GOES pixel centroids provided by the GASP team in
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ASCII format were first imported into ArcGIS and clipped
according to this study’s spatial domain. The selected
GOES pixel coordinates were merged with aerosol data in
the IDL code.

We followed the same procedures for both GOES-8 and
GOES-12. Since GOES is a geostationary satellite, the
pixels for GOES values are at the same locations over time.
GOES pixel centroid coordinates were converted to a spatial
dataset in the study projection, with x- and y-coordinates
in the study projection added as attributes.

We calculated the GOES pixel nearest to each moni-
toring site using the ArcGIS 9.2 Near tool. We calculated
the overlap between GOES pixels and 4-km-grid cells as
follows: In the study projection, the distance between the
GOES pixel centroids varied across the study area. Using
the ArcGIS Thiessen polygons tool (ArcToolbox/Analysis
Tools/Proximity/Create Thiessen Polygons), Thiessen
polygons were created from the GOES pixel centroids, to
approximate the area covered by each pixel. GOES pixels
were limited to those within 200 km of the eastern United
States (east of 100� W longitude). The Thiessen polygons
were intersected with the 4-km-grid cells using the ArcGIS
intersect tool (ArcToolbox/Analysis tools/Overlay), and
the area of intersection for each pixel–grid-cell combina-
tion was saved. In addition, Microsoft Access was used to
identify the 4-km-grid cell that intersected the largest por-
tion of the GOES Thiessen polygon.

GIS-DERIVED VARIABLES

Values of various land-use and related variables were
calculated as follows for each cell in the 4-km grid:

Population Density

Census block boundaries were obtained from the Harvard
Geospatial Library (http://dixon.hul.harvard.edu:8080/
HGL/hgl.jsp) and from www.geographynetwork.com (a few
counties were missing from the Harvard Geospatial
Library data). Census block boundaries were intersected
with 4-km-grid cells. Population was assumed to be uni-
formly distributed throughout a census block. Census-block
areas were obtained from the U.S. Census. These areas may
be slightly different from areas calculated using GIS soft-
ware and census polygons. Using SAS, the fraction of a
census block area that fell inside a 4-km-grid cell was calcu-
lated and multiplied by the total population of the census
block. These results were summed up for each 4-km-grid
cell to provide an estimated population for each cell. Note
that no population data for Canada or Mexico were
obtained, so population estimates for 4-km-grid cells that
crossed the border represented only the U.S. population.

Elevation

The North American Digital Elevation Model — from
the U.S. Geological Survey, EROS Data Center Distributed
Active Archive Center (series name ESRI Data & Maps) —
was converted to the study projection. ArcGIS Spatial
Analyst Extract to Points, with the interpolation option
selected, was used to extract the elevation in meters of the
centroids of the 4-km grids. Elevations were also extracted
for monitoring sites.

Road Density and Distance to Major Roads

Esri StreetMap 9.2 roads for the United States east of
100� W longitude were used. The following types of roads
were exported as three separate feature classes to a file geo-
database in the study projection: from StreetMap USA\
streets\mjr_hwy\, Class 1 (primary roads with limited
access) and Class 2 (primary roads without limited access),
and from StreetMap USA\streets\highways\, Class 3 (sec-
ondary and connecting roads, state and county highways).
Roads in each of the three road-feature classes were inter-
sected separately with the 4-km grid. The resulting attri-
bute tables, which contain the length in meters of each
intersected street segment, were exported to a Microsoft
Access file. Microsoft Access queries were used to sum up
the road-segment lengths by 4-km-grid ID and to combine
the results into one table for export to a comma-delimited
text file. In addition, roads for the entire contiguous
United States from the same source were used to calculate
the distances to the nearest Class 1, Class 2, and Class 3
roads from each monitoring site.

Land Use and Land Cover

We obtained the 2001 National Land Cover Database
from the Multi-Resolution Land Characteristics Consor-
tium (www.mrlc.gov). The database classifies 30-m pixels
using the following categories: open water; developed,
open space; developed, low intensity; developed, medium
intensity; developed, high intensity; barren land; decid-
uous forest; mixed forest; evergreen forest; shrub/scrub;
grassland/herbaceous; pasture/hay; cultivated crops;
woody wetlands; and emergent herbaceous wetlands. Each
pixel was assigned a single category. We used the ArcGIS
Spatial Analyst Combine command to intersect the land-
cover pixels and 4-km-grid cells. In Microsoft Access we
then calculated the proportion of each 4-km-grid cell
described by its land-cover category. For cells along the
Canadian and Mexican borders, the proportions were
based on 30-m pixels inside the United States. At the time
of downloading, working with the data was time-
consuming, so in the process of dividing the region for
downloading, some cells along the western border of the
4-km-grid region were excluded. In addition, a small
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number of pixels along the Missouri–Arkansas border and
the eastern edge of Nantucket were excluded accidentally.
These areas were treated as having missing land cover and
were not used in the analysis in section 4.

CURRENT DATA AVAILABILITY

Although we cannot post the satellite data online because
of the expense associated with hosting such large data files,
data used in this project can be obtained from Dr. Paciorek.
Provision of GOES output may require permission from Dr.
Shobha Kondragunta at NOAA. The same holds for CMAQ
output provided by AER and EPRI. Most of our other data
are publicly available online, but our cleaned and formatted
versions can be made available on request.

APPENDICES AVAILABLE ON THE WEB

Appendices B, C, D, and E contain supplemental mate-
rial not included in the printed report. They are available
on the HEI Web site http://pubs.healtheffects.org.

Appendix B. Additional Analysis of Spatiotemporal
Associations between GOES Aerosol Optical Depth
Retrievals and Ground-level PM2.5

Appendix C. Statistical Details for Flexible Spatial
Latent Variable Modeling

Appendix D. Flexible Buffer Modeling Using Penalized
Splines

Appendix E. R Code for Flexible Buffer Modeling
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satellite remote sensing, atmospheric model simulations,
spatial statistics in air pollution exposure modeling, and
the health impacts of climate change. His ongoing work
includes (1) PM exposure modeling in the northeastern
United States in relation to birth outcomes; (2) an investiga-
tion of improving the accuracy of satellite-derived PM con-
centrations using space-borne and ground-based LIDAR
profiles; (3) coupling satellite observations with ground
monitoring to study the associations between cardiovas-
cular hospital admissions and air pollution in Beijing,
China; and (4) developing environmental public health
indicators related to particulate matter pollution in metro
Atlanta for the CDC Public Health Tracking Network.
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ABBREVIATIONS AND OTHER TERMS

AER Atmospheric and Environmental 
Research

AERONET Aerosol Robotic Network

AGP ancillary geographic product

AOD aerosol optical depth

AQS Air Quality System

AR autoregressive

CALIPSO Cloud-Aerosol LIDAR and Infrared 
Pathfinder Satellite Observations

CAR conditional autoregressive

CI confidence interval

CMAQ Community Multi-Scale Air Quality 
model

CTM chemistry and transport model
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EPRI Electric Power Research Institute

FID feature ID

FRM federal reference method

GASP GOES East Aerosol/Smoke Product

GCV generalized cross-validation

GIS geographic information system

GOES Geostationary Operational 
Environmental Satellite

GRS geodetic reference system

HDF hierarchical data format

hPa hectopascal

IDL Interactive Data Language

IDW inverse distance-weighted

IMPROVE Interagency Monitoring of Protected 
Visual Environments

LARC NASA Langley Research Center

LIDAR light detection and ranging

MADRID–APT Model of Aerosol Dynamics, Reaction, 
Ionization and Dissolution–Advanced 
Plume Treatment

MCMC Markov chain Monte Carlo

MISR multiangle imaging spectroradiometer

MODIS moderate resolution imaging spectrora-
diometer

MRF Markov random field

NARR North American Regional Reanalysis

NASA U.S. National Aeronautics and Space 
Administration

NEI National Emissions Inventory

NOAA U.S. National Oceanic and Atmospheric 
Administration

PBL planetary boundary layer

PM particulate matter

PM2.5 PM with an aerodynamic diameter 
� 2.5 µm

RH relative humidity

RMSPE root mean squared prediction error

SH specific humidity

TPS thin plate spline

U.S. EPA U.S. Environmental Protection Agency

UTC Coordinated Universal Time, i.e., Green-
wich Mean Time
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Health Review Committee

Research Report 167, Assessment and Statistical Modeling of the Relationship 
Between Remotely Sensed Aerosol Optical Depth and PM2.5 in the 
Eastern United States, C.J. Paciorek and Y. Liu

INTRODUCTION

Over the past decade, satellite-based estimates of ground-
level pollution have emerged as a potentially important
source of information on human exposure to health-
damaging pollutants such as fine particulate matter (*PM2.5;
PM with an aerodynamic diameter of 2.5 µm or smaller) and
nitrogen dioxide (NO2). Health effects researchers have now
begun to apply satellite-based estimates in both epidemio-
logic research and risk assessment; however, their ultimate
utility remains the subject of debate regarding the accuracy
and precision of estimates provided by different satellite-
based estimators and the circumstances in which such esti-
mates might make the most important contributions.

Dr. Christopher J. Paciorek of the Harvard School of
Public Health submitted an application under Request for
Applications 05-2, the “Walter A. Rosenblith New Investi-
gator Award,” which was established to provide support for
an outstanding investigator beginning his or her indepen-
dent research career. In his proposed study, “Integrating
Monitoring and Satellite Data to Estimate PM2.5 Exposure
and Its Chronic Health Effects in the Nurses’ Health Study,”
Paciorek planned to reanalyze data on the chronic health
effects of PM2.5 in the Nurses’ Health Study, a large epide-
miologic cohort study, by integrating satellite data with
ground monitoring data to improve the exposure-
assessment modeling. The HEI Health Research Committee
urged Paciorek to focus his study on the estimates of expo-
sure, rather than the epidemiologic study. Ultimately, HEI
funded the current study, “Integrating Monitoring and Sat-
ellite Data to Retrospectively Estimate Monthly PM2.5

Concentrations in the Eastern United States,” which began
in 2006.

This Commentary is intended to aid the sponsors of HEI
and the public by highlighting both the strengths and limita-
tions of the study and by placing the Investigators’ Report
into scientific and regulatory perspective.

SCIENTIFIC BACKGROUND

Epidemiologic studies of the health effects of outdoor air
pollution most often rely on measurements of air pollution
at fixed monitoring sites. Air pollution concentrations have
been measured routinely in North America and Western
Europe since the 1970s to ensure compliance with air
quality standards and directives; currently, these networks
are extensive. In epidemiologic studies, the monitored
levels are typically used either alone or as part of more com-
plex spatiotemporal models that may provide more refined
estimates of exposure among study participants (Jerrett et al.
2005; Szpiro et al. 2011). Nonetheless, sparse spatial and
temporal coverage by existing monitoring networks in some
areas of Europe and North America still limits the scope and
size of potential health effects studies; the large American
Cancer Society (ACS) cohort study of particulate air pollu-
tion and mortality could include less than half of the mem-
bers of the ACS cohort because of limited monitoring data.
In addition, many Canadians live in areas with no ground-
level monitoring (Krewski et al. 2009; Crouse et al. 2012).
Moreover, there is limited information on exposure to par-
ticulate air pollution in most of the world, specifically
including regions thought to have the highest ground-level
concentrations and the largest burdens of disease attribut-
able to air pollution. These regions include large parts of
Asia, Africa, and the Middle East (HEI International Scien-
tific Oversight Committee 2010; Brauer et al. 2012).

Satellite observations of aerosol optical depth (AOD) —
a measure of light extinction by aerosols in the total atmo-
spheric column calculated from measurements of light
scattering at various wavelengths — are of great interest for
estimating ground-level concentrations of PM2.5. The AOD
data, such as those provided by the National Aeronautics
and Space Administration (NASA) from two satellites,
indicate how aerosols modify the radiation exiting the top

Dr. Paciorek’s 3-year study, “Integrating Monitoring and Satellite Data to
Retrospectively Estimate Monthly PM2.5 Concentrations in the Eastern
United States,” began in August 2006. Total expenditures were $297,239.
The draft Investigators’ Report from Drs. Paciorek and Liu was received for
review in December 2009. A revised report, received in August 2010, was
accepted for publication in October 2010. During the review process, the
HEI Health Review Committee and the investigators had the opportunity to
exchange comments and to clarify issues in both the Investigators’ Report
and the Review Committee’s Commentary.

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views of these parties, and no endorsements by them
should be inferred.

* A list of abbreviations and other terms appears at the end of the Investiga-
tors’ Report.
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of the atmosphere after being scattered by the Earth’s atmo-
sphere and surface (Hoff and Christopher 2009).

Remote sensing of ground-level air pollution concentra-
tions using satellite-based measurements is increasingly
viewed by atmospheric scientists and health effects
researchers as a valuable source of information on human
exposure, with potential applications in epidemiologic
research and risk assessment (Liu et al. 2005; Martin 2008).
However, AOD estimates of ground-level PM2.5 are derived
from measurements of the total atmospheric column, and
may need to be combined with other data, such as data from
chemical-transport models, to provide accurate estimates of
ground-level concentrations. (Chemical-transport models
also provide local and temporal estimates of aerosol compo-
sition, which also affects light scattering.) AOD estimates
are affected by factors such as the reflectance of the Earth’s
surface (e.g., from snow- and water-covered surfaces) and
missing observations due to heavy cloud cover (Hoff and
Christopher 2009). In addition, although the spatial resolu-
tion of satellite-based AOD estimates is improving, the most
widely available data are at a resolution of 0.1 � 0.1 degrees
(~10 km � 10 km at the equator). These factors may con-
tribute to measurement error in exposure estimates, which
could lead to either overestimates or underestimates of the
effects of air pollution on adverse health outcomes (Szpiro
et al. 2011).

STUDY SUMMARY

STUDY OBJECTIVES

The general objective of this study was to assess the
ability of approaches that use satellite-based measurements
of AOD to fill spatial and temporal gaps in existing moni-
toring networks in the eastern United States by providing
estimates of spatial patterns in ambient PM2.5 concentra-
tions at monthly and longer time scales.

Specifically, the investigators proposed to do the fol-
lowing:

1. Develop Bayesian statistical models for integrating
monitoring, satellite, and geographic information
system (GIS) data to estimate monthly ambient PM2.5
concentrations at high spatial resolution.

2. Estimate monthly PM2.5 concentrations across the
eastern United States for the period 2000 to 2006 at a
fine spatial resolution (10 km � 10 km or finer) by
combining PM2.5 monitoring data with satellite mea-
surements of AOD from the moderate resolution
imaging spectroradiometer (MODIS) and multiangle
imaging spectroradiometer (MISR) satellites.

3. Develop an understanding of temporal and spatial
heterogeneity in PM2.5 and the ability to characterize
it based on satellite, monitoring, and GIS data.

4. Use a measurement-error framework to quantify the
reduction in exposure uncertainty and the potential
reduction in uncertainty in health effects estimates
arising from using both satellite and monitoring data
relative to the uncertainty arising from using moni-
toring data only.

5. Assess the promise of two additional sources of infor-
mation, the Geostationary Operational Environmental
Satellite (GOES) and the Community Multiscale Air
Quality (CMAQ) atmospheric chemistry model (for
vertical-profile information), to improve exposure
estimates for 1995 through 1999, years for which sat-
ellite measurements are unavailable.

6. Develop a general statistical framework to account for
any systematic discrepancies between a proxy mea-
sure, such as AOD, and PM2.5 measurements.

7. Analyze reflectance data from the GOES satellite and
develop methods to screen and calibrate reflectance
as a proxy measure for PM2.5.

8. Assess the degree to which CMAQ vertical-profile
information can be used to improve calibration of
AOD to PM2.5.

METHODS

Sources and Compilation of Data

The analyses presented in this report utilized data from
the eastern United States obtained from the following:

• U.S. Environmental Protection Agency (EPA) Inter-
agency Monitoring of Protected Visual Environments
PM2.5 monitoring network for ground-level estimates
of PM2.5 (2000–2006);

• U.S. National Oceanic and Atmospheric Administra-
tion’s (NOAA’s) North American Regional Reanalysis
database for meteorologic factors, including tempera-
ture and barometric pressure (2000–2006);

• U.S. EPA National Emissions Inventory of PM2.5 emis-
sions (2002–2006);

• U.S. EPA CMAQ model for emissions-based estimates
of PM2.5 (2001);

• NASA’s MODIS and MISR satellites for AOD measure-
ments (2000–2006);

• NOAA’s GOES satellite for AOD estimates and reflec-
tance measurements (2001–2007); and
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• Multiple sources for GIS-derived variables, including
population density (Harvard Geospatial Library), ele-
vation (U.S. Geological Survey), road density and dis-
tance to major roads (ESRI StreetMap 9.2), and land
use and land cover (Multi-Resolution Land Character-
istics Consortium).

Detailed descriptions of each data source and the proce-
dures used to compile the data from them at the appropriate
spatial and temporal scales for analysis are provided in
Appendix A of the Investigators’ Report.

Statistical Analyses

The overall objective of the statistical analysis was to ana-
lyze the relationship between PM2.5 and AOD in both space
and time. In initial analyses, the investigators estimated the
correlation between PM2.5 and AOD both before and after
calibration with meteorologic factors, and after performing
large-scale spatial and temporal calibrations, to account for
discrepancies between AOD and PM2.5.

In more complex analyses, the investigators used both
raw and calibrated AOD data as variables in statistical
models in order to predict PM2.5 concentrations in two
ways: as a separate data source contributing a second likeli-
hood to a Bayesian statistical model, and as a data source on
which to regress monitor-based PM2.5 measurements. In
additional analyses, they modeled the discrepancies
between proxies, such as AOD, and PM2.5 and explored the
scales of the spatial relationship between the proxy and
PM2.5 using methods they had developed for this purpose.

KEY FINDINGS AND CONCLUSIONS

The investigators report that satellite-based AOD esti-
mates did not improve predictions of PM2.5 concentrations
for the eastern United States as compared with predictions
resulting from the use of other geospatial models. Although
AOD was temporally correlated with PM2.5, correlations of
long-term spatial averages were relatively weak unless they
were adjusted statistically for the discrepancy between
AOD and PM2.5 (see sections 3, 4, and 5 of the Investigators’
Report; later references to sections are also to the Investiga-
tors’ Report).

The investigators split the PM2.5 data, using part of the
data to develop multivariable predictive models and using
the remaining data to test the predictive ability of the
models they developed. Although multivariable models
that combined AOD, PM2.5 observations, and land-use and
meteorologic variables were highly predictive of PM2.5 con-
centrations, AOD contributed little to the predictive power

of those models over and above the other variables (see sec-
tions 5 and 6).

Further, the investigators report that substituting PM2.5
estimates from the U.S. EPA’s CMAQ model for AOD esti-
mates also did not improve the ability of the multivariable
models to predict the measured PM2.5 data. This they attrib-
uted to CMAQ’s smoothing of large-scale spatial patterns in
PM2.5 monitor values (see section 6).

Using statistical models that accounted for potential dis-
crepancies between AOD and PM2.5 at both large and small
spatial scales was an important determinant of predictive
ability. Models that did not account for discrepancies at
small spatial scales had poor predictive ability for measured
PM2.5, a result the investigators attribute to the fact that
their analysis did not account for spatial variation in the
vertical profile of the aerosol (see section 4).

The investigators’ results suggest that, to some extent,
correlations between raw AOD estimates and measured
PM2.5 concentrations may reflect a correlation with land-
surface brightness (as a function of land use) rather than
with actual aerosol levels, because the AOD algorithms esti-
mate poorly the background surface reflectance (see sec-
tions 4 and 7). Their attempts to use data from the GOES
satellite to correct for surface reflectance were largely
unsuccessful (see section 7).

The investigators conclude the following:

• The inability of AOD to improve the spatial prediction
of monthly and yearly average PM2.5 concentrations
in the eastern United States is a result of the spatial
discrepancy between AOD and measured PM2.5, par-
ticularly at smaller spatial scales. They emphasize the
importance of accounting explicitly for such discrep-
ancies in statistical models that use proxy estimates
such as AOD. The objective should be to distinguish
the “signal” in the proxy measure (AOD) with respect
to the process of interest (PM2.5) from the “noise” con-
tributed by the discrepancy between the proxy and the
process of interest. They note that achieving this
objective will be particularly challenging when mea-
sured data are sparse.

• There is little evidence that current satellite-based
AOD estimates can improve the prediction of ground-
level PM2.5 at small-to-moderate scales in the eastern
United States. They argue that, until more evidence
regarding the reliability of satellite-derived AOD data
is available, it is premature to use these data in epide-
miologic studies as a proxy for PM2.5.

• Future research on the application of AOD estimates in
epidemiologic research on the chronic effects of long-
term PM2.5 exposure should attempt to distinguish
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temporal and spatial correlations, so that the spatial
scale of the correlation and the discrepancies between
AOD and PM2.5, may be better understood.

• More promising results might be obtained in areas that
have higher levels of ambient PM2.5 than the eastern
United States, because the difference between the
AOD signal in such locales and the “noise” contrib-
uted by background surface reflectance would be
greater. They note that in developing countries that
have high levels of ambient PM2.5, but may lack sur-
face measurements and land-use data, satellite-based
estimates may add more incremental information.

THE HEI HEALTH REVIEW COMMITTEE’S 
EVALUATION AND INTERPRETATION OF 
THE RESULTS

This report presents a careful analysis of specific appli-
cations of satellite-based AOD to estimate ground-level
concentrations of PM2.5. It is an outstanding example of the
type of detailed work that is required, and should be contin-
ued, to evaluate the performance of satellite-based estimates
for application in epidemiologic research and risk assess-
ment. The statistical approaches used to evaluate the perfor-
mance of the AOD estimator were well conceived and well
executed from both air quality science and epidemiologic
perspectives, and the report reflects a deep understanding
of the operation of the quantitative models that were ap-
plied, as well as the impacts of simplifying assumptions.

The overall objective of the study was to evaluate the
potential of remotely sensed AOD estimates to improve
estimates of PM2.5 in epidemiologic studies, particularly
those relying on spatial variation in pollution and on longer
time scales. However, the investigators found little evidence
that the AOD estimator, as conceived and applied in this
research, improved the estimates of exposure to PM2.5.
They reached this conclusion after carefully considering
alternative approaches, and they were able to provide
some insights regarding the reasons for their admittedly
disappointing results.

Having observed that part of the correlation between
AOD and surface PM2.5 may be due to a correlation between
land use and AOD (attributable to spatial variation in sur-
face brightness), rather than to a direct relationship between
AOD and PM2.5, the investigators argue that their results do
not depend on the specific instrumentation used in the
study, which comprised a variety of sensors that have been
widely used by others. This was a strength of their study.
However, although Paciorek and Liu demonstrate convinc-
ingly that the use of raw AOD estimates as a proxy for

ground-level concentrations of PM2.5 air pollution is unwar-
ranted and potentially misleading, they suggest that alterna-
tive applications of AOD under different conditions may
have merit. For example, other researchers have combined
data from different sensors (MODIS and MISR) and have
developed approaches in which AOD or other satellite esti-
mates are linked with chemical-transport models. These
approaches (Liu et al. 2004; van Donkelaar et al. 2006, 2010)
provide spatially (and temporally) resolved information on
atmospheric vertical profiles and aerosol composition, and
generally show stronger relationships with surface PM2.5, in
the United States and elsewhere, than were reported by
Paciorek and Liu. The authors acknowledge this: The anal-
ysis in this report speaks primarily to the shortcomings of
using raw AOD estimates, which may not apply to the gen-
eral applicability of satellite-based approaches, where
ongoing efforts are underway to improve the technology.

The focus of the study on a single geographic area, the
eastern United States, is another limitation of the study that
the investigators acknowledge. From a continental perspec-
tive, their decision to focus on the eastern United States was
entirely reasonable, given that the satellite-based AOD–
PM2.5 relationship is more poorly correlated in the western
United States, the population density and air pollution
levels are higher in the eastern United States, and a rela-
tively rich database of ground-level measurements in the
eastern United States afforded the opportunity for com-
paring AOD estimates and PM2.5 measurements. However,
the focus on the eastern United States may have produced a
too-limited picture of the potential utility of satellite-based
estimates in other settings. The eastern United States is
characterized by constrained spatial variability and gener-
ally lower levels of PM2.5 from a global perspective, and it
affords an extensive surface-monitoring network and a rich
database of other predictors such as those related to land
use. In a setting such as this, it is perhaps not surprising that
satellite-based estimates added little information. That said,
it is not entirely clear in retrospect that the choice of loca-
tion was a major limitation. Other investigators have
reported a close relationship of AOD-based estimates of
PM2.5 with monitored levels across the United States and in
the eastern United States in particular (van Donkelaar et al.
2006; Kloog et al. 2011; Lee et al. 2011). The relationship
with monitored levels in the eastern United States was
improved when a daily AOD–PM2.5 calibration was used
and when AOD estimates were combined with land-use
data (Kloog et al. 2011; Lee et al. 2011).

This report offers important insights into potential
sources of inaccuracy in the AOD estimator and sounds
appropriate notes of caution concerning the naïve applica-
tion of this technology. However, it does not address what
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might be the most important issue from a global perspective:
Can satellite-based estimates be used for health effects
research instead of monitoring data in locations currently
without extensive PM2.5 surface monitors, such as many
parts of Asia, Africa, and the Middle East, where there is evi-
dence of very high levels of particulate air pollution (World
Health Organization 2006; HEI International Scientific Over-
sight Committee 2010; Brauer et al. 2012)? A systematic
effort is needed to reduce the uncertainties surrounding the
global use of satellite-based estimates, and the methods
employed in this report should be useful in future applica-
tions of this kind.

SUMMARY AND CONCLUSIONS

Looking to the future, several conclusions seem war-
ranted regarding the application of satellite-based estimates
of PM2.5 air pollution in health effects research.

• The use of raw AOD estimates as a proxy for measured
PM2.5 in health effects research should be avoided in
general. Rather, approaches that combine information
from multiple sources — remote sensing, model-based
estimates, and ground-level measurements — may
offer the most promise (Brauer et al. 2012). For exam-
ple, van Donkelaar and colleagues (2010) derive a
scaling factor from the GOES-Chem model that is then
used as input in a land-use regression model. This
approach is similar to that of Yanosky and colleagues
(2009) and is now being applied in cohort studies in
the United States and Canada (e.g., Crouse et al. 2012).
Recent results suggest that it explains a large propor-
tion of between-city variation in PM2.5 but a much
smaller proportion of within-city variation (Hystad et
al. 2011). This difference is perhaps to be expected —
PM2.5 displays little within-city variation. For NO2,
which exhibits considerable within-city spatial varia-
tion, two recent studies show that models that use sat-
ellite-based estimates alone explain only a small
proportion of the variation in NO2 relative to the
amount that can be explained when land-use and
other data are also included in the models (Hystad et
al. 2011; Novotny et al. 2011). It would appear that sat-
ellite-based estimates can explain a fair amount of
between-city variation in PM2.5 (less so for NO2), but
that they need to be combined with other data to
explain within-city variation.

• Applications in health effects research should include
evaluations of the relationship between satellite-based
estimates and monitoring data, and should quantify, to
the extent possible, the contribution of satellite-based
estimates to total exposure measurement error in epide-
miologic effect estimates. Some recent epidemiologic

studies have made efforts to do so (see, for example,
Anderson et al. 2012; Crouse et al. 2012).

• Satellite-based estimates can play — and have played
— an important role in the evaluation of exposure to,
and health effects of, short-term episodes of high lev-
els of air pollution from burning vegetation or dust
events in areas with limited or no monitoring. In such
settings, satellite-based estimates can help define the
spatial extent of the exposure — something that can-
not be done with monitoring data if the network is
sparse — and could be used to quantify ground-level
concentrations. Recent papers illustrate the potential
and the considerable challenges of such applications
(Wu et al. 2006; Henderson et al. 2011; van Donkelaar
et al. 2011).

• Global ground-based measurements of long-term expo-
sure to particulate air pollution are likely to be insuffi-
cient to address the needs of epidemiologic research
and public health–based risk assessment in global lo-
cales where such measurements are not likely to be
collected for the foreseeable future. Satellite remote
sensing may offer promise for providing information
on exposure to PM2.5 at regional-to-global scales, espe-
cially in places with the highest levels of pollution and
the greatest estimated burden of disease attributable to
it. However, as this report makes clear, there are limita-
tions to, and outstanding questions about, the accura-
cy and precision with which ground-level aerosol
mass concentrations can be inferred from satellite re-
mote sensing. A key source of uncertainty is the level
of global variation that exists in the relationship of an-
nual average PM2.5 with columnar AOD at specific
satellite overpass times during cloud-free conditions.
These issues need to be addressed if the promise of sat-
ellite-based technology is to be realized. To do so, a sys-
tematic effort including ground-level measurements of
PM2.5 in selected global regions will be necessary to as-
sess the factors that most affect the relationship be-
tween satellite-based and ground-level estimates.
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