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E. R Code for Flexible Buffer Modeling 
# this function creates the Z matrix for fitting the distance effect 
# using random effects, essentially tricking the lme part of gamm() 
# to do the smoothing for us 
makeZmatrix=function(sourceLocations,maxDistance=500,numKnots=30, 
  sourceStrength=NULL,receptorLocations,gridLocations=NULL, 
  maxNumSources=1000){ 
  # sourceLocations should be a 2-column matrix of source locations 
  # maxDistance is maximum distance in meters at which we model 
  #   any effect of a source on a receptor 
  # numKnots is number of knots to use in penalized spline 
  # sourceStrength is source strength, or NULL if all sources are 
  #   treated equally 
  # receptorLocations is 2-column matrix receptor locations in same 
  #   coordinate system as sourceLocations 
  # gridLocations is 2-column matrix defining a fine grid across the 
  #   study area for plotting purposes 
  # maxNumSources is max number of sources within maxDistance of a 
  #   receptor - need this constrained for allocating space 
  if(is.null(sourceStrength)){ 
    sourceStrength=rep(1,nrow(sourceLocations)) 
  } 
 
  n=nrow(dataLocations) 
  m=nrow(gridLocations) 
  pointDistsReceptor=matrix(0,nr=n,maxNumSegments) 
  pointDistsGrid=matrix(0,nr=nrow(gridLocations),maxNumSegments) 
  pointEmitsReceptor=matrix(0,nr=n,maxNumSegments) 
  pointEmitsGrid=matrix(0,nr=nrow(gridLocations),maxNumSegments) 
 
  receptorLocations=data.frame(receptorLocations) 
 
  # calculate distances to sources and strengths of those sources 
  #   for each receptor location 
  for(i in 1:n){ 
    tmp=rdist(receptorLocations[i,],sourceLocations) 
    ll=length(tmp[tmp<maxDistance]) 
    if(ll){ 
      pointDistsReceptor[i,1:ll]=(tmp[tmp<maxDistance]) 
      pointEmitsReceptor[i,1:ll]=sourceStrength[tmp<maxDistance] 
    } 
    if(i%%1000==0){print(i)} 
  } 
  # calculate distances to sources and strengths of those sources 
  #   for each grid location 
  for(i in 1:m){ 
    tmp=rdist(gridLocations[i,],sourceLocations) 
    ll=length(tmp[tmp<maxDistance]) 
    if(ll){ 
      pointDistsGrid[i,1:ll]=(tmp[tmp<maxDistance]) 
      pointEmitsGrid[i,1:ll]=sourceStrength[tmp<maxDistance] 
    } 
    if(i%%1000==0){print(i)} 
  } 
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  # create fixed effect vectors 
  U=rowSums(pointDistsReceptor*pointEmitsReceptor) 
  Ugrid=rowSums(pointDistsGrid*pointEmitsGrid) 
 
  knots=seq(0,maxDistance,len=numKnots) 
  k=length(knots) 
 
  omega=abs((outer(knots,knots,"-"))^3) 
  diag(omega)=0   
  omega.svd=try(svd(omega)) 
  if(is.null(attr(omega.svd,"class"))){ 
    sqrt.omega=omega.svd$v%*%diag(sqrt(1/omega.svd$d))%*%t(omega.svd$u) 
  } else{ 
    stop("Error: error in SVD; rounded value was numerically p.d.") 
  } 
  # create random effects matrices for receptor locations 
  Z=matrix(0,nr=n,nc=k) 
  for(i in 1:maxNumSources){ 
    Ztmp=abs((outer(pointDistsReceptor[,i],knots,"-"))^3) 
    Z=Z+(Ztmp%*%sqrt.omega)*pointEmitsReceptor[,i] 
  } 
  # create random effects matrices for grid locations 
  Zgrid=matrix(0,nr=m,nc=k) 
  for(i in 1:maxNumSources){ 
    Ztmp=abs((outer(pointDistsGrid[,i],knots,"-"))^3) 
    Zgrid=Zgrid+(Ztmp%*%sqrt.omega)*pointEmitsGrid[,i] 
  } 
 
  # preparatory calculations to ensure zero contribution at exactly 
  #   maxDistance 
  Zmax=matrix(0,nr=n,nc=k) 
  Ztmp=matrix(abs((maxDistance-knots)^3),nr=n,nc=k,byrow=T) 
  Ztmp=Ztmp%*%sqrt.omega 
  for(i in 1:maxNumSources){ 
    Zmax=Zmax+Ztmp*pointEmitsReceptor[,i] 
  } 
 
  Ztmp=matrix(abs((maxDistance-knots)^3),nr=m,nc=k,byrow=T) 
  Ztmp=Ztmp%*%sqrt.omega 
  ZgridMax=matrix(0,nr=m,nc=k) 
  for(i in 1:maxNumSourceLocations){ 
    ZgridMax=ZgridMax+Ztmp*pointEmitsGrid[,i] 
  } 
   
  # ensure zero contribution exactly at maxDistance 
  U=U-maxDistance*rowSums(pointEmitsReceptor) 
  Ugrid=Ugrid-maxDistance*rowSums(pointEmitsGrid) 
  Z=Z-Zmax 
  Zgrid=Zgrid-ZgridMax 
 
  # set up fixed effects vector and random effects matrix for a 
  #   grid of distance values (0,maxDistance) for plotting 
  #   effect of a unit source with distance 
  Upoint=Ugridded=seq(0,maxDistance,len=200) 
  Ztmp=abs((outer(Upoint,knots,"-"))^3) 
  omega=abs((outer(knots,knots,"-"))^3) 
  diag(omega)=0   
  omega.svd=try(svd(omega)) 
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  if(is.null(attr(omega.svd,"class"))){ 
    sqrt.omega=omega.svd$v%*%diag(sqrt(1/omega.svd$d))%*%t(omega.svd$u) 
  } else{ 
    stop("Error: error in SVD; rounded value was numerically p.d.") 
  } 
  Zpoint=Ztmp%*%sqrt.omega 
  Ztmp=matrix(abs((maxDistance-knots)^3),nr=nrow(Zpoint),nc=k,byrow=T) 
  Zpoint=Zpoint-Ztmp%*%sqrt.omega 
  Upoint=Upoint-maxDistance 
   
  return(list(U=U,Ugrid=Ugrid,Z=Z,Zgrid=Zgrid,Upoint=Upoint, 
              Zpoint=Zpoint,Ugridded=Ugridded)) 
}   # end of makeZmatrix() 
 
 
Zlist=makeZmatrix(sourceLocations=sourceLocations,maxDistance=500, 
  numKnots=numKnots,sourceStrength=sourceStrength, 
  receptorLocations=receptorLocations,gridLocations=gridLocations) 
# assume that necessary data objects already exist to be called as 
#   arguments to makeZmatrix 
 
# assume dataset 'dat' exists with outcome and explanatory vars 
 
dat$dummy=as.factor(rep(1,nrow(dat))) 
# needed to trick lme() by having only one group 
 
Z=Zlist$Z # for some reason gamm can't use Zlist$Z directly, so 
          #   need to assign to new matrix 
Zgrid=Zlist$Zgrid 
U=Zlist$U 
Ugrid=Zlist$Ugrid 
Zpoint=Zlist$Zpoint 
Ugridded=Zlist$Ugridded 
Upoint=Zlist$Upoint 
 
# assume that y output vector and Xmat design matrix exists; 
#   X can be replaced with the usual right hand side of a gam() 
#   model formula 
mod=gamm(y~Xmat,random=list(dummy=pdIdent(~-1+Z)),data=dat)  
 
beta.hat <- mod$lme$coef$fixed['XU'] 
b.hat <- unlist(mod$lme$coef$random$dummy) 
 
meanFun=Upoint*beta.hat+c(Zpoint%*%t(b.hat)) 
# this plots an estimate of the contribution of one unit of 
#   traffic on a grid of distances over (0,maxDistance) 
plot(Ugridded,Upoint*beta.hat+c(Zpoint%*%t(b.hat)),xlab='distance') 
 
# code here is for uncertainty calculation; we need to manipulate 
#   the gamm() output to calculate the expression in (D3) in 
#   Section D.2.3) 
# note that the Vp output of mod$gam is (in latex): 
#   \sigma^2 (X^T(\frac{Z^T G Z}{\sigma^2}+I)^{-1}X+S)^{-1} and we 
#   need S, which is the block of \hat{B} (8.3) that corresponds 
#   to the penalized components of any smooth terms in the mean 
#   model 
# also, presumably for numerical reasons, the blocks of the resulting 
#   estimate of S corresponding to unpenalized mean parameters are 
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#   not zero, so we need to enforce this manually 
 
k=0 # need to specify how many design matrix columns there are 
    #   for the smooth terms in the gamm() call mean representation, 
    #   e.g. 299 if specify k=300 for a spatial smooth in mean 
    #   function 
pX=length(mod$gam$coef)  # number of mean model coefficients 
p=pX+numKnots    # total number of coefficients in model 
X=predict(mod$gam,type='lpmatrix')  # design matrix for mean model 
C=cbind(X,Z)  # full design matrix 
Bhat=matrix(0,nr=ncol(C),nc=ncol(C)) # Bhat in (8.3) 
last=pX  # index of end of smooth term design matrix columns for 
         #   __penalized__ coefficients; BE CAREFUL HERE: some 
         #   of the last columns may correspond to unpenalized 
         #   coefficients, in which case these columns should 
         #   not be included here, so that the Bhat block 
         #   corresponding to these coefficients forced to be 
         #   zero; if you have multiple smooth terms in the mean, 
         #   you may need to deal with such columns interspersed 
         #   in X and zero out the corresponding blocks in Bhat  
first=pX-k+1  # index of start of smooth term design matrix columns 
ind=first:last 
tau2=exp(attr(mod$lme$apVar,'Pars')[1])^2 
   # the random effects variance 
varY=Z%*%t(Z)*tau2/mod$gam$sig2  # (Z^T G Z)/sig2 in the notation 
                                 # of Ruppert, Wand and Carroll (RWC)  
diag(varY)=diag(varY)+1 # (Z^T G Z + R)/sig2 in RWC notation; 
#  W^-1 in the notation of Wood (variance of Y divided by 
#  sig2 since Vp is sig2 * everything else  
S=solve(mod$gam$Vp/mod$gam$sig2)-t(X)%*%solve(varY,X) 
   # extract implicit smoothing matrix of the fitted model 
   #   from the Vp output of gam() 
Bhat[ind,ind]=S[ind,ind]  # block corresponding to smooth 
   # terms in mean model (the penalized coefficients); note that 
   # upper left block corresponding to fixed effects is forced to 
   # be all zeroes, as should be any block for unpenalized 
   # coefficients of the smooth terms 
Bhat[(pX+1):p,(pX+1):p]=diag(rep(1/tau2,numKnots)) 
   # block corresponding to random effects should be 
   #   (1/tau2) times the identity 
LtInv=chol((t(C)%*%C+Bhat)/mod$gam$sig2) 
  # Cholesky of precision matrix of fixed and random effects 
Uposition=which(names(mod$gam$coef)=='U') 
T=1000 # number of samples of decay function to 
       #   draw from approximate Bayesian posterior 
smp=backsolve(LtInv,matrix(rnorm(p*T),nr=p,nc=T))    
betaSamples=beta.hat+smp[Uposition,] 
  # pick off random sample of decay function fixed effect 
bSamples=c(b.hat)+smp[(pX+1):p,] 
  # pick off random samples of decay function random effects 
smp=matrix(Upoint,nc=1)%*%matrix(betaSamples,nr=1)+Zpoint%*%bSamples 
qu=apply(smp,1,quantile,c(.025,.975))  # pointwise 95% confidence 
  #  (credible, really) interval for decay function 

 


