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D. Flexible Buffer Modeling Using Penalized Splines

D.1. Introduction

In fields such as exposure science, social epidemiology and health services research, interest
often lies in understanding or accounting for the effect of proximity to sources of exposure to
something that may influence an outcome of interest. Exposure might be to pollution sources,
access to fast food or liquor outlets, or access to recreation or health centers, among others, while
the outcome is often either a pollutant concentration or some measure of health or socioeconomic
outcome (Sallis et al. 1990, Morland et al. 2002, Laraia et al. 2004, Farley et al. 2006). If there is
at most a single exposure for each observation, one could include presence/absence of the
exposure or distance to the source of exposure as a linear term in a regression model, or estimate
the effect of distance to source as a smooth regression term (e.g., Wood 2006). Accounting for
multiple sources is more difficult, and it is commonplace to use a geographic information system
(GIS) to calculate a metric of exposure to sources (such as the sum of source strengths or number
of sources) within a buffer of the location associated with each observation in a dataset (such as a
person’s residence) (e.g., Baxter et al. 2007, Yanosky et al. 2009). This requires choosing a
buffer window size and ignores information on distance. An alternative is to use distance to the
nearest source as the metric, which ignores the effect of remaining sources. Other approaches
apply a weight function, e.g., a Gaussian decay kernel, to downweight values at larger distances;
the methodology introduced here estimates the weight function flexibly based on the data.

Here we introduce a method that can estimate a smooth effect of distance to source,
accounting for multiple sources and weighting by source strength, within the standard mixed
model approach to penalized spline smoothing. The approach is appropriate when the effect of
each source can be considered to be additive and the distance decay is radially symmetric. In
keeping with the theme of this report, the method allows us to combine information about point
emissions sources with other terms in a statistical modeling framework. We illustrate the method
in the models developed in Sections 5 and 6, as well as a separate dataset on ultrafine (UF) and
fine PM in a neighborhood in New York City, in Brooklyn.

D.2. Methods

D.2.1. Basic model

If we have a single source, we can represent a smooth effect of distance to source in the
mixed model formulation of a penalized spline (Ruppert et al. 2003) as

f(d)=2'b (D1)
where Z_ is a spline basis expansion, evaluated as a function of the distance, d, =||s, s, ||,
between the source, at location s, and ith observation (the receptor) at s,, and b is a set of

basis coefficients. The coefficients are then assigned a random effects distribution, or
equivalently, a prior distribution in a Bayesian context. Next suppose that we wish to account for



source strength, e, and that we can assume that the effect of the source on the concentration at
arbitrary distance scales as e- f(d,).
The key contribution is now to recognize that the linear structure of (D1) allows us to sum

over source strengths and basis matrix values but retain the same basis coefficients, allowing us
to represent the effect of multiple sources, j=1,...,J , on a single receptor as

fd)=2 eZib=(Y eZ)b=2b (D2)
J J

for d, ={d,,..,d  } avector of distances from receptor i to the J sources, with Z. the ith row

of a basis matrix constructed as the sum of basis matrices for individual sources, where each
matrix is scaled by its source strength. Thus we can estimate b using the variety of approaches

for estimating random effects based on Z, and interpret (D1) as the smooth effect of distance to

each source individually for a unit of emissions. Z can be precomputed as it is a function only of
the distances between sources and receptors and the source strengths. The representation can be
embedded in an additive or hierarchical model to account for the contribution of point emissions
to pollution concentrations at arbitrary locations, with the distance decay estimated empirically.

In our applications we use a thin plate spline in one dimension, equivalent to a cubic radial
basis function, using a basis matrix constructed as in Ruppert et al. (2003) and Crainiceanu et al.
(2005):

3
Z=(d, =%, 11, m I, = K, I} )’

g =1,.,K

with{x, } isasetof K knots spaced over the range of distances present in a given domain. We

specify the random effects distribution simply as b~ N(0,7°1) . Distributions that penalize

differences of neighboring coefficients, such as the Eilers and Marx (1996) approach are also
possible, but when fit in standard random effects software these require specification of a more
complicated covariance structure. For our mixed model formulation using the cubic radial basis

function, our representation, f(d,)={f(d,,d )}, also includes a fixed effect term (Ruppert et al.
n - Xdﬁd )

In practice, we include in the calculation of Z, and X, only sources within d__ of the

i1’

2003, Crainiceanu et al. 2005), in this case simply {2/ ed B d}

JJi

i=1,..

receptor giving J(7) sources for receptor i. This avoids estimating the decay function at
distances for which we expect sources to have no effect on receptors and limits the computations
involved in computing Z . Computation can also be limited by omitting very small sources.
Having chosen d__ , we choose knots on the interval (0,d__ ), with the inter-knot spacing
increasing with distance to more easily capture sharp initial declines near to sources.

Note that our model assumes the effect of each additional unit of emissions is additive,

contributing an independent incremental effect, and does not interact (e.g., chemically) with
other emissions, although we note that the smooth function, f, to some extent accounts for

interaction of emissions from an individual source, provided this interaction scales linearly with
e,. Thus the model is a simplification for some pollutants, depending on their physical and

chemical dynamics.



Line and area sources may be represented as a fine grid of point sources. Given that the basis
matrix can be precomputed, even a large number of grid points involves only a single slow
calculation, done in advance of all model fitting. In Section D.3.2, we show an example for the
effects of two highways on pollution in a neighborhood in New York City.

D.2.2. Monotonicity and decay constraints

In fitting f(-), we would like to ensure in most cases that the decay function declines
monotonically (leaving aside the effect of source height in pollution contexts) and that at d_

the function is zero. The former can be enforced using monotonic splines to build Z . The
particular formulation we have considered is the monotonic b-spline, which consists simply of
enforcing that b, >b for k>m where the knot indices are ordered with increasing d and knots

are equally spaced (He and Shi 1998). This constraint can be enforced in a Bayesian context
within an MCMC by only proposing (or rejecting other proposals) coefficient values that respect
monotonicity. Alternatively we transform the coefficients to ensure the constraint is satisfied
with the new parameters being the log transformed differences in the coefficients for adjacent
knots. This transformation helps move about the space in MCMC more efficiently than
attempting to propose only sets of coefficients that respect monotonicity. To ensure that the

emissions effect at d__ is zero, simply place a knot at ¢ and fix the coefficient for that knot

to be zero. Note that we have not found a simple way to enforce monotonicity when fitting in the
random effect context.

For source effects that decay rapidly to zero, one concern is oversmoothing the function as it
approaches zero and in concert undersmoothing the function at distances at which there is no
effect of the source, where we estimate the function to be near zero. The basic problem is
nonstationarity in the true decay function, with a sharp gradient at short distances and little or no
gradient at longer distances, a feature that standard spline representations do not handle. Our
experience in practice with ultrafine PM in the Brooklyn data is that we estimate a sharp drop up
to distances of about 100m and then an essentially flat function, with wiggles that are likely an
effect of undersmoothing. When we enforce montonicity, the resulting estimate oversmooths the
decay function as it approaches zero, with the estimated function flattening out more and more as
the distance approaches d__ . Thus, while monotonicity is conceptually appealing, the practical
results have been discouraging. An ad hoc solution is to avoid monotonicity, estimate the decay

function roughly using a large d__ and, after identifying the likely point at which the decay

nears zero, set d__ near this value, so that one forces zero effect at larger distances. In our

experience this has avoided much of the oversmoothing, while also avoiding undersmoothing at
larger distances.
With regard to the decay to zero constraint when we do not force monotonicity, we enforce

this a priori based on manipulation of the Z matrix. In particular, first construct Z__, which is

max 2

the Z one would obtain if all sources within d_  ofa given receptor were placed exactly d_

units away from every receptor. Then take Z* = Z — Zmax , which ensures that the effect of a



source exactly d__ units from a receptor is zero. Note that we also modify X, similarly as
j’; = )?d —d e I(d <d_).Henceforth, I will refer to X, and Z" assimply X and Z.
i S joJ Ji max

max

D.2.3. Fitting the representation

To fit the model, if there were a single dominant source for each receptor, avoiding the
summation in (D2), one could simply use gam() in R using the vector of emissions as the ’by’
variable. This takes the form of a varying coefficient model in which the effect of emissions
varies by distance. Instead, we can fit the model based on the mixed model representation as
follows.

One option is to use MCMC in a fully Bayesian context in a conceptually straightforward
manner. Alternatively, we would like to be able to fit the model in the standard mixed effects
framework. If the source term (D2) enters into the mean in an additive fashion, we can fit using

standard mixed effects software, precomputing Z and specifying that b~ N(0,77) . However,

often one fits a model on log-transformed outcomes, particularly when a pollutant is the
outcome. Given that our approach represents the effect of multiple sources as adding over

individual sources, this suggests that f = X B+ Zb should enter as log(f( B+ Zb) . The first

issue is that we have forced the effect to be zero for locations with no sources within d__, but

we cannot take the log of zero. The second is that we cannot enter the log of a random effects
term into standard software. Therefore, consider including in the mean for log outcome the term,

log(f( B, + Zb+ 1) , such that for locations near no sources (for which X B+ Zb=0), the
contribution to the log outcome is zero. Equivalently, exponentiating both outcome and the

source term, we have that the source term simply multiplies the mean of the outcome by one.
Next, note that we have the approximation, log(1+ x)= x by Taylor expansion around zero. This

suggests that in the log-transformed model, we can include X B+ Zb as simple linear terms.

Uncertainty about the fitted f(-) in the Bayesian context is easily estimated using samples of

b from the posterior. For the mixed model formulation, we follow Ruppert et al. (2003, p. 103)
and Wood (2006, p. 189) in using an empirical Bayes style approach, treating the estimated

observation error variance and the variance component for b, 72, as known, fixed at their point
estimates. Consider estimating the joint covariance of 6 = {ﬁ,l;fuu} where [§ represents all the
fixed effects coefficients in the model, including the linear term for the distance decay effect,
B,,and l;fuu includes all the random effects in the model, including the coefficients for our
distance decay smooth, b. Collecting the fixed and random effects design matrices as

C=(XZ), an estimate of Cov(0) is
C'C+BY
—0 | > (D3)

o

where 62is an estimate of the observation error variance and B is a block diagonal matrix with
the first block all zeroes, representing the prior precision (inverse variance) of 3, and the second



block the inverse of the variance matrix for the random effects. In the simple setting with only
random effects for our distance decay, the second block is a K X K matrix, -/ . Empirical

Bayes style pointwise intervals for f(-) on a fine grid can then be calculated by drawing

samples, { ﬁ;,b*} , centered around { B, ,[;} with variance the appropriate subblock of Cov(6)

and calculating quantiles of f, = X d’hﬁ; + ZhT b" for d, ona fine grid over (0,d__). To estimate
prediction uncertainty for the collective influence of multiple sources at arbitrary location s,, one

can proceed in similar fashion using X, B+ Z'b".
d,il~d i

D.3. Examples

We illustrate the methodology in two examples. The first is the use of our representation to
capture the effects of point source PM; 5 emissions in our general modeling framework (Sections
5 and 6). The second is an analysis of ultrafine and fine PM in the Williamsburg neighborhood of
Brooklyn, New York City, where a team of researchers led by Dr. Jonathon Levy and former
graduate student Leonard Zwack at Harvard School of Public Health collected data using mobile
backpack monitors over several weeks of field work in the vinicity of the Williamsburg Bridge
and Brooklyn-Queens Expressway interchange (Zwack et al. 2011).

D.3.1. Modeling point source PM, ; emissions in the mid-Atlantic and eastern U.S.

Here B, and b are fit using MCMC methods as part of our full MCMC for the models

described in Section 6, with these coefficients integrated over in fitting the model as described in
Appendix C. We considered point sources emitting more than 5 tons with d__ =100 km for our

mid-Atlantic analyses, limiting to those emitting more than 10 tons with d__ =50 km in our

eastern U.S. analyses to reduce computations. Given the drawbacks of the monotonic spline
approach, outlined in Section D.2.2 and seen in the Brooklyn example, we have not enforced
monotonicity. Note that in some our fits this has resulted in functions sufficiently non-monotone
as to be of concern. Fig. D1 shows the monitor and point source locations providing information
for the estimation.

To illustrate the decay functions we estimate, Fig. D2(a) shows the posterior mean for f(-)

for each of 12 months, scaled to represented the effect of a single 1000 ton source as a function
of distance to the receptor for the eastern U.S. analysis (Section 6). There is a suggestion of a
yearly cycle with a more shallow decay during the summer months and steeper decay in the
winter and transitional periods, although the 95% pointwise credible intervals indicated for a
single month (March) as an example (Fig. D2(b)) are large enough that we cannot draw any
definitive conclusion about this pattern. For a few of the months, some scientifically implausible
non-monotonicity is evident as the distance gets larger than 20 km, but this falls within the
uncertainty bands (as illustrated in Fig. D2(b)) and is relatively small in magnitude relative to the
dropoff at small distances. With the number of terms in the model, concurvity between the
source term and other GIS-based covariates in the model make it difficult to conclude that the



estimated distance decay represents the real physical structure of decay in PM, s away from the
source, but the term plays a role in explaining variability in the PM, s observations and the form
of the estimated functions appears reasonable from a scientific perspective.

D.3.2. Modeling road source ultrafine PM and PM; s emissions in Brooklyn

Data are available from mobile backpack-based monitoring providing approximately 5000
single minute averages in a several square kilometer area of Williamsburg, Brooklyn over 10
weekdays (9 a.m. to 5 p.m.) during a two week period, June 12-26, 2007. Interest focuses on the
effects of two major roadways in the area: the Brooklyn-Queens Expressway (BQE) and the
Williamsburg Bridge and its approach road. Weather data were available from a single fixed site
on the edge of the area, near the Brooklyn base of the bridge.

Our basic model for the Brooklyn data was

logY = X/ B+g(s,)+log(f(d)+1)+e,
where g(s,) accounts for large-scale spatial variation in pollution over the area, fit using a thin
plate spline, and in X, 8 we include linear terms for wind speed, relative humidity, and

temperature and dummy variables for individual days of observation. f(d,) represents the joint

effect of multiple sources. More sophisticated modeling outside the scope of this report includes
accounting for short-term temporal trends and residual temporal autocorrelation (Zwack et al., in
prep.). To fit the model using mixed model software, we approximate the distance decay effect
as

log(f(d)+1)= f(d)= Xﬁ,ﬁd +Z'b
d, .,/ (Section D.2.3).

Most observations in this dataset were with wind speeds less than two m/s; we subset the data
to exclude observations under higher wind conditions to more plausibly model the effect of each
source as being radially symmetric. We treat the expressway and bridge as line sources (each
carriageway of these divided highways is treated as a separate line source), discretizing each line
source as a series of point along the length of each roadway, separated by 10 m. We ignore
traffic volume as volume is roughly constant over this daytime sampling period, and low volume
periods often correspond to low vehicle speeds in the afternoon rush hour, suggesting that

volume may not be a good proxy for emissions. Note that by using the log transformation, f(d,)

for d ={d

i

can be interpreted as the percentage change in mean Y for a single 10m road segment on a single
carriageway. For UF, we truncate original values larger than 150,000 and for PM; s, values larger
than 75.

We fit the model using both MCMC and mixed model software, the latter in R using the
function gamm() which calls Ime() for the random effects fitting. Fig. D3(a,d) shows the
estimated percentage change in pollution as a function of distance from a single 10 m segment of
major roadway. As expected based on physical principles, the effect of UF drops off more
sharply than for PM, 5, with negligible effects beyond 100 m for UF. Note that for UF, the results
for the random effects fit are very similar to those using MCMC, except the uncertainty is
somewhat less, presumably because the estimated intervals condition on the fitted variance



components. For PM; s, the random effects approach estimates the variance component to be
zero and the point estimates of the decay functions are different but within the context of wide
uncertainty. Fig. D3(b,e) shows the combined effect of the distance decay and the spatial residual
term on pollution on the log scale modeled over the entire neighborhood based on the MCMC fit,
while Fig. D3(c,f) isolates the effect of the distance decay term. Note that in Fig. D3(c), the
influence of the slight non-monotonicity seen in Fig. D3(a), summed over many 10 m segments,
results in a unrealistic dip in the roadway effect (darkest blue areas). We also fit models using
monotonic b-splines, described in Section D.2.2, but the estimated decay functions (not shown)
oversmoothed in comparison to Fig. D3(a).

D.4. Discussion

We have presented a methodology for empirical estimation of source decay effects in a
spatial context based on a spatial array of source and receptor locations. When radial symmetry
is appropriate and with sufficient spatially distributed monitoring data, the model could serve in
place of a deterministic model to estimate pollution dispersion. We believe the methodology may
be more broadly useful than pollution exposure contexts, in particular for research in which the
effect of an exposure, broadly defined, is expected to decay with distance. Social epidemiology
and health services research are potential areas of application.

We note that in place of the estimated decay functions shown here, some sort of
parameterized decay function might be used, but caution that such a parameterization would
involve a nonlinear function of a decay parameter, without the ability to do the summation over
sources in closed form, thereby increasing computation and requiring estimation via nonlinear
least squares or other algorithms. In contrast, our approach can be fit with standard random
effects software and the decay is determined from the data, without the need to decide upon a
suitable decay function in advance.

We have considered a parameterization that enforces monotonicity, but this approach cannot
be easily fit with random effects software and showed a tendency to oversmooth. However, non-
monotone estimates of the decay function can cause undesirable artefacts in the estimated
exposure surfaces when aggregated over multiple sources.

The major drawback of our statistical approach to estimating the source contributions from
multiple sources is that the model does not account for the directional effects of wind in the
pollution context. For this, one approach would be to use an asymmetric distance function rather
than our spherically symmetric spline representation. Ideally one would have an asymmetric
distance function that is relatively simply-parameterized and allows the distance decay to be
sharp in the upwind direction and with a much longer dropoff in the downwind direction, with a
parameterized contribution of wind direction and strength. One would also like a model that
handles conditions of little or no wind and of strong winds. Clearly, ellipsoidal type
representations such as bivariate Gaussian densities for correlated random variables will not do
the trick because they are symmetric in the "upwind’ and *’downwind’ directions.

If we were not concerned with changing wind speed and merely wanted to capture a long-
term average effect of prevailing wind direction, one possibility would be to combine a spline
representation of distance decay with a von Mises distribution, the extension of a Gaussian

distribution to the circle, multiplying ZI.T b by h(6) where 6, is the direction from source to



receptor and /4(+) is the von Mises density. Unfortunately this immediately loses the key linearity

property of (D1) that allows for summation over multiple sources. Further extension to
introducing dependence on wind speed complicates matters further. Wind speed dependence
might be induced by having the log of the von Mises variance be a regression on wind speed and
possibly replacing the smooth distance decay function with a parameterized exponential or
squared exponential decay in which the decay parameter varies with wind speed.
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Figure D1. Locations of PM, s monitors reporting in 2001 (black) and point sources emitting more than 10
tons of primary PM; 5 emissions in 2002 based on the National Emissions Inventory (grey) in the eastern U.S.
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Figure D2. (a) Posterior means of the distance decay functions, f(-), scaled to estimate the effect of a single

1000 ton source as a function of source-receptor distance for each of 12 months, distinguished by season, for
PM, 5 in the eastern U.S. in 2001. (b) Example of 95% pointwise credible intervals for a single month
(March); other months show a similar or moderately smaller amount of uncertainty.
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Figure D3. For the effects of large roadways in the Williamsburg section of Brooklyn, New York, posterior
means and pointwise 95% credible intervals for the distance decay functions, f(), for UF (a) and PM; 5 (d),

scaled to represent the percentage change in pollution from a single 10 m road segment as a function of
source-receptor distance. Results based on the random effects fit using gamm() in R are shown in red (thick
line in the greyscale version). Posterior mean log pollution surfaces in units of 10g(c0unt/cm3) for UF (b) and
log },Lg/m3 for PM, 5 (e). Posterior mean incremental influence of the distance decay effect on log pollution for
UF (c) and PM, 5 (f). In (b), (c), (e), and (f), the grey dots indicate the two carriageways for each of the
Williamsburg Bridge and approach road (upper left of each subplot) and BQE (middle, slanting slightly from
left to right).
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