
HEI Research Report 167 Paciorek Appendix C Available on Web 

 
 

 

APPENDIX AVAILABLE ON THE HEI WEB SITE 

 

 

Research Report 167 

 

Assessment and Statistical Modeling of the Relationship Between Remotely 

Sensed Aerosol Optical Depth and PM2.5 in the Eastern United States 

 
Christopher J. Paciorek and Yang Liu 

 

 

Appendix C. Statistical Details for Flexible Spatial Latent Variable Modeling 

 

 

 

 
 

Correspondence may be addressed to Dr. Christopher J. Paciorek, Department of Statistics, 367 Evans Hall, 

University of California, Berkeley, CA 94720; e-mail: paciorek@stat.berkeley.edu. 

 

 

Although this document was produced with partial funding by the United States Environmental Protection 

Agency under Assistance Award CR–83234701 to the Health Effects Institute, it has not been subjected to the 

Agency’s peer and administrative review and therefore may not necessarily reflect the views of the Agency, and 

no official endorsement by it should be inferred. The contents of this document also have not been reviewed by 

private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect 

the views or policies of these parties, and no endorsement by them should be inferred. 

 

 

This document was reviewed by the HEI Health Review Committee 

but did not undergo the HEI scientific editing and production process. 

 

 

© 2012 Health Effects Institute, 101 Federal Street, Suite 500, Boston, MA  02110-1817 



 1 

C. Statistical Details for Flexible Spatial Latent 
Variable Modeling 

C.1. Derivation of the MRF weight matrix for the thin plate spline approximation 

Rue and Held (2005, Sec. 3.4.2) give a basic overview of the second-order, two-dimensional 
intrinsic Gaussian MRF that approximates a thin plate spline, but do not provide the details 
regarding the boundary condition effects that allow one to construct the full weight matrix,  Q . 
Here we provide the details, following the development in an unpublished manuscript by Y. Yue 
and P. Speckman, also given in Y. Yue’s unpublished Ph.D. dissertation from the Department of 
Statistics at the University of Missouri, Columbia.  

A thin plate spline minimizes a penalized likelihood where the penalty term for a function, 
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Taking the MRF as an approximation to   g(!)  on a regular grid of size 
  
m
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2
, a discretized 

approximation to   J (g)  is  
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i, j
 is found as the first order backward difference operator in the vertical 

direction applied to the first order backward difference operators in the horizontal direction.  
The difference calculations are done for every cell on the grid and summed to approximate 

the integral in (C1). Note that they cannot be calculated for cells on the lower and lefthand 
boundaries of the rectangular grid, nor can they be calculated for some of the terms for the cells 
in the second row from the bottom or second row from the left, hence some of the indices of 
summation in (C2) do not start at one. Then, to equate the elements of  Q  with the coefficients of 
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}  in (C2), note that the discretized penalty can be expressed as 
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Note that 
  g

T
Qg = 0  for the constant function and any linear functions of the two coordinates, so 

the rank of  Q  is   m! 3 , and the prior puts infinite variance on the intercept and linear terms in 
the two coordinates.  

Working out the algebra, for a given cell,  k , we can write the set of neighbors and the 
elements of that cell’s row in  Q  in a spatial representation where the center element is 
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kk
 and 

the non-zero 
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kl
 values are represented in terms of the relative positions of the cells of 
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 and 
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 on the grid. We see that the neighbor structure and elements of  Q  corresponding to cells in 

the interior and various categories of cells near the boundary, are: 
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where (a) is for an interior cell, at least two cells away from any boundary, (b) is for a cell two 
cells from one boundary and one cell from another boundary, (c) is for a cell one cell from each 
boundary, (d) is for a cell on one boundary and one cell from another other boundary, (e) is for a 
cell on one boundary and two or more cells from another boundary, and (f) is for a cell in one of 
the four corners.  

Note that Yue and Speckman (unpub.) provide a computational shortcut for computing  Q  as  
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where 
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(1)  and 
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(2)  are the one-dimensional first and second order  n! n  structure (weight) 
matrices provided in Rue and Held (2005, pp. 95, 110):  
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C.2. Spatial model structure 

Our basic model is a model with two likelihoods and additive mean terms, in particular  
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L
 the collection of combined coefficients for the regression 

smooths and the spatial term, as well as including an intercept for  Y . Similarly, 
 
Z

a
b

a
 represents 

the influence of explanatory variables for the proxy unrelated to latent PM2.5 (cloud cover in the 
case of the AOD model). !  are site-specific effects that account for correlation between 
monitors placed at the same site. We denote the variance of !  using the generalized inverse to 
indicate that the prior is proper in an   m! 3  dimensional space, fixing the mean and coefficients 
for linear terms of the spatial coordinates to zero. In our sampling, the three parameters are 
identified by the likelihood for  A , so we sample these parameters implicitly as part of !  and 
therefore omit a separate intercept for  A . Given the limited number of observation locations, we 
use five knots for each regression smooth and 55 knots for the spatial residual. Knots were 
placed either uniformly over the range of covariate values or at equally-spaced quantiles to 
achieve reasonable spread over the covariate spaces, but given the use of penalized splines, 
results should be robust to the exact placement of knots. !  is the prior covariance matrix of  b  
(non-informative for the fixed effect components and with exchangeable priors amongst the 
coefficients for a given regression smooth term, following Ruppert et al. (2003)).  
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Note that the impropriety in the prior for !  carries over into this marginal likelihood for  A , 
resulting in   m! 3 rather than  m  in the exponent of !  and in 
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A

"1  being singular, with three zero 

eigenvalues, but our subsequent calculations all involve 
  
!

A

"1  so no inversion is needed. 
Equivalently, we do not have a legitimate data-generating model for  A  because of the prior 
impropriety, with information in three of the linear combinations in the quadratic form in the 
exponent of the marginal likelihood contributing zero to the marginal likelihood because the 
variance for those combinations is infinite. We can avoid calculating the non-existent 
determinant of  Q  because this is a constant with respect to the model parameters. Note that the 
impropriety is analogous to that in the marginal likelihood obtained from integrating over the 
mean in a simple normal mean problem with an improper prior for the mean.  

We can then integrate over the joint distribution for 
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which we use to sample !  via blocked Metropolis. Depending on the model, in some cases we 
use a single block and in other cases subblocks. We use adaptive MCMC to tune the proposal 
covariance matrix throughout the chain (Andrieu and Thoms 2008)  

The key computational impediments involve the determinant of 
  
V
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"1 , which can be calculated 
based on sparse matrix operations since both of its components are sparse; note that in our 
models 
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 is a simple mapping matrix assigning elements of !  to the proxy values, but might be 
used more elegantly to realign between different grids, in which case it would still be sparse but 
with non-zero weights reflecting the overlap of cells between the different grids. Next 
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dense matrix whose size corresponds to the number of basis coefficients, which can be 
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computationally burdensome when we use a large number of knots for 
 g

 or the total number of 
knots used for all the regression smooth terms is large. Finally, we must compute 
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Given the posterior for the remaining parameters (C3), we can derive the closed form normal 
conditional distribution for ! , which has mean and variance, 
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Sampling from this distribution efficiently involves sparse matrix calculations similar to those 
just described.  

Posterior samples of !  and  b  can be drawn off-line from the conditional distributions 
indicated above; we choose to draw them every 10 MCMC iterations.  
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 is modeled using a diagonal heteroscedastic variance, 
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in advance from co-located monitors, to enhance identifiability and because it has a small 
contribution to the overall error variance. For monitors not co-located with another monitor, we 
integrated over the prior for the !  values for those sites, which added a term, 
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we sampled the values of !  for sites with co-located monitors within our primary MCMC to 
avoid introducing off-diagonal elements into 
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computational efficiencies in the calculations outlined above. For models involving CMAQ, 
which is available for all days, as the proxy, we take 
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We use several covariates calculated at the grid level for individual cells: elevation at the cell 
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centroids, population density, and total length of roads in three road classes. Area PM2.5 
emissions from the 2002 EPA National Emissions Inventory (NEI) are calculated as density of 
emissions per county and the value for the county of the grid cell centroid is assigned to the grid 
cell. Population density, road density, and area emissions are log-transformed to reduce sparsity 
and pull in extremely large values in the right tail, and we truncated the values of some outlying 
covariates to reduce extrapolation problems. We used the NEI point source emissions strength 
and location data in the flexible buffer modeling described in Appendix D, creating a basis 
matrix that contributes columns to 

 
Z

L
. For the observation likelihood, we calculate the source 

strength-weighted sum of distance-weighted contributions from PM2.5 primary source point 
emissions within a maximum distance (100 km) for each monitor, omitting sources emitting less 
than five tons in 2002. For the proxy likelihood and for prediction on the grid, we take a subgrid 
of 16 points within each grid box and calculate the average sum of contributions from the point 
emissions within 100 km of the points in the subgrid, as a simple approximation to the true 
integral of the point emission effect over the grid cell.  

Some CMAQ pixels overlap four km cells both on land and those in the ocean or Great 
Lakes with the cells primarily over water having undefined covariate values for some covariates. 
We treat the CMAQ value in a CMAQ pixel as reflecting the weighted average of   L(!)  from 
only the land-based four km grid cells, with weights in 

 
P

A
 summing to one for each CMAQ 

pixel. Exploratory analysis indicated that CMAQ-estimated PM2.5 in pixels on the land-water 
boundary was often high, such that not normalizing the weights to sum to one distorted our 
model fitting. The problem is that not normalizing reduces the contribution from  L  to the mean 
of the CMAQ proxy, increasing the discrepancy between the proxy values and  L  in cases (such 
as the New York City area) where the CMAQ proxy is much larger than the estimated grid cell 
values that are driven by monitors with lower values. We do not include CMAQ values in the 
likelihood for pixels with 60% or more overlap with four km cells that do not intersect land in 
the U.S.  

In general, our prior distributions for hyperparameters were non-informative, with normal 
priors with large variances (and also lower and upper bounds to prevent the MCMC from 
wandering in flat parts of the posterior) for location parameters and uniform scale parameters on 
the standard deviation scale (Gelman 2006), with large upper bounds. In all cases, the posterior 
distributions were much more peaked than the prior distributions and away from the bounds, 
except for some of the variance components for the coefficients of the regression smooths, which 
we restricted to avoid overly wiggly smooth terms. Furthere exploration of why these smooths 
tend toward less smooth functions than expected scientifically and on whether simple linear 
relationships would suffice and might even improve out-of-sample prediction would be 
worthwhile.  

We ran the MCMC for 10,000 iterations during the burn-in and 25,000 subsequently, 
retaining every 10th iteration to reduce storage costs. We found reasonable convergence and 
mixing based on effective sample size calculations and trace plots. We did not run multiple 
chains for a given month and validation set because of our use of multiple months and validation 
sets, noting that predictive performance also helps to justify the adequacy of our fitting.  
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C.3. Spatio-temporal model structure 

The spatio-temporal model structure builds on the spatial model structure but with 
autoregressive structure for the basis coefficients, 

  
b

g ,t
,t = 1,…,T = 12 , of the monthly spatial 

residual surfaces, 
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t
(!) , and an exchangeable structure for monthly discrepancy terms, 
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,t = 1,…,12 , as well as month-specific 
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 with independent non-informative priors. 

Calculations based on sparse matrix routines follow those described for the spatial model but 
with  D!Q  in place of  !Q . Because of the increase in dimensionality, it is difficult to work 
with grids as large as in the spatial model. Our spatio-temporal model works with the  19!11 
CMAQ grid, giving us a  19!11!12 = 2508  dimensional ! . A major cause of slowdown is that 
our  b  vector is now much higher dimensional, as it includes  55!12 = 660  basis coefficients for 
the 12 residual spatial surfaces. Given the increase in sample size (albeit not locations), we use 
10 rather than 5 knots for the regression smooth terms, allowing for the possibility of estimating 
additional nonlinearity. We ran the MCMC for 10,000 iterations during the burn-in and 50,000 
subsequently, retaining every tenth iteration to reduce storage costs, again finding reasonable 
convergence and mixing.  

C.4. Subnational model structure 

Spatio-temporal modeling of small-scale spatial variation for the eastern U.S. is 
computationally challenging, so we fit separate spatial models for each month. We represent !  
and 

 g
 as TPS-MRFs on the  73! 77 = 5621  dimensional CMAQ grid over the eastern U.S., each 

with its own precision parameter. Covariate effects are represented on the original four km base 
grid (now of dimension  669! 677 = 452,913 ). Pre-computation of 
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 in advance of the MCMC 

involves the large matrix multiplication of a basis matrix and an averaging matrix that represents 
the weighted average of four km cells within each CMAQ pixel based on the amount of overlap. 
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Y
 also represents the product of a mapping matrix and the original basis matrices for the 

covariates. Note that we rely on the covariates to represent small-scale variation in residual 
spatial variability, such that representing 

 g
 on the 36-km CMAQ grid is sufficient. Posterior 

assessment indicates that 
 g

 is quite smooth, supporting this approach. Given the relatively large 
sample size, for this model we again use 10 rather than 5 knots for each regression smooth term.  

Our integration over !  now involves integration over  !
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,  

followed by analogous calculations as in the original spatial model to integrate over  b  and 
determine the marginal posterior (up to the normalizing constant) for the remaining parameters 
and the conditional normal posterior for !  given the remaining parameters and the data. Note 



 8 

that 
 
P

Y
 and 

 
P

A
 simply map from the CMAQ grid cells to the observations and CMAQ values.  

For our point source emissions covariate, computational demands required that we consider 
only point sources emitting more than 10 tons per year within 50 km of a given location, with 
our integral approximation using a subgrid with four, rather than 16, points within each four km 
cell.  

We ran the MCMC for 10,000 iterations during the burn-in and 20,000 subsequently, 
retaining every 10th iteration to reduce storage costs, again finding reasonable convergence and 
mixing. 
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