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B. Additional Analysis of Spatio-temporal Associations 
between GOES Aerosol Optical Depth Retrievals and 
Ground-level PM2.5 

B.1. Data availability and raw correlations 

Defining potential retrievals as those occurring at times with solar zenith angle less than 70°, 
Fig. B1 shows the spatial pattern of available retrievals for the U.S. There are few retrievals 
satisfying the criteria in the northern US during fall and winter, due to high levels of cloudiness 
and surface reflectivity. During summer and spring, the spatial differences in availability occur at 
small spatial scales. Note that during spring and summer, the number of potential retrievals in 
each season is relatively constant across the eastern United States, but for fall and winter, the 
number of potential retrievals in each season ranges from approximately 1400 in the extreme 
south (southern Florida) to 600 in the extreme north (northern Minnesota).  

Fig. B2 shows the retrieval success by time of day and season for locations in the eastern 
U.S. (east of 85° W to focus on an area in a single time zone). This indicates that there are 
pronounced daily cycles with a low proportion of retrievals at mid-day compared to morning and 
afternoon.  

Fig. B3 shows temporal correlations across space separately for all four seasons. The results 
are similar to the full-year results (Fig. 1), although with some indication of low correlations in 
the southeastern U.S. in the spring.  

B.2. Time series estimates of daily AOD and associated uncertainty 

One estimate of daily AOD is the simple arithmetic average of the available AOD retrievals. 
Section 3 focuses on this estimate because of its simplicity and because the estimator described 
below does not substantially improve the calibration, as discussed in Section B.3. However, in 
other settings, accounting for correlation in estimating long-term averages may be important. 
Here we outline the approach.  

The disadvantage of using the simple arithmetic average is that it does not account for the 
temporal correlations between half-hourly values. Standard statistical theory indicates that a 
better estimator (one with less variability) can be obtained by accounting for the correlations and 
that an estimate of the uncertainty of the estimated daily average AOD should account for the 
temporal correlation as well.  

We want to estimate the integrated AOD across the time period during which observations 
are available. Letting   a(h)  represent AOD as a function of the time of day, we wish to estimate 
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of the integrated value is the so-called block-kriging estimator, which relies on calculating 
covariances between intervals and single points in time (when applied to this temporal setting). 
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A numerical approximation is to predict   a(h)  at a set of times, say a fine grid of times covering 
the interval 
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the solar zenith angle is less than 70° and where we extend the time window by half the time 
interval between observation times (15 minutes) so that all prediction times are within 15 
minutes of a possible retrieval. We then approximate the integral as the average of the 
predictions at each time point on the fine grid based on a time series model  
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. The BLUP must account for the correlation 

between AOD at different times; by doing so, the prediction â(h
i
)  is a weighted average of AOD 

values from nearby times. The overall estimator weights observations that are widely separated 
from other observations more than observations for which the most recent and nearest times in 
the future have available AOD values, as these provide somewhat redundant information. After 
exploratory analysis using time series of AOD for days with at least 10 observations, an AR(1) 
time series model appears appropriate for most days and locations. It appears that the 
autoregressive parameter in the AR(1) model varies slightly as a function of the number of AOD 
observations available but 

 
! = 0.3 seems to be a good compromise value for the correlation 

between observations one-half hour apart. This correlation is lower than one would expect for 
the true aerosol optical depth over time; we suspect the low autocorrelation is due to noisiness in 
the satellite-retrieved AOD as an estimate of true AOD. The kriging model assumes the AOD 
observations over time at the prediction grid times (which include the observation times as well) 
follow a normal distribution, 
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(UNC Department of Statistics, unpublished), one can also derive the full prediction covariance 
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proportionality comes from leaving out a term,  !
2 , common to all the predictions. Our estimate 
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Because of the relatively low autocorrelation of 
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resulting estimates of â
d

 do not vary substantially from a
d

, though the relative variances 
(ignoring  !

2 ) are somewhat different than   1 / n , the variance estimator for a
d

 (also ignoring 

 !
2 ).  

B.3. Model selection process 

To arrive at the final model (3.1), we considered a variety of models, comparing models 
based on qualitative assessment of the fitted smooth functions and on quantitative comparison of 
the cross-validated correlations of calibrated AOD with PM2.5.  

In Section 3, we used the simple arithmetic average, a
it

, with homoscedastic (i.e., constant 
variance) error. As an alternative, we first consider a model that uses the more sophisticated time 
series-based estimator of daily AOD, â

it
 (B1):  
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2 ).  (B3) 
This approach accounts for the pattern of missing retrievals using weighting derived from the 
autocorrelation structure, downweighting retrievals that are close in time to other retrievals and 
upweighting retrievals that are isolated from other retrievals. The heteroscedastic variance 
accounts for the varying levels of certainty in the daily AOD estimates caused by having 
different numbers of AOD retrievals in a day (and by the time pattern of available retrievals). 
V (â

it
)  is derived in (B2).  !

2  accounts for the inherent noise in the relationship between AOD 
and PM2.5 that would be present even without any missing retrievals. The term  !

2  is the 
proportionality constant that is missing from (B2) and, with  !

2 , is estimated in the model fitting. 
Table B1 (column (c)) includes a tabulation of the correlations from the time series approach for 
comparison with calibration based on the simple arithmetic average. The correlations improve 
only marginally and fitting (B3) is much more computationally intensive, so the final model in 
Section 3 used the simple arithmetic average.  

To investigate whether linearity in the relationship of PM2.5 to AOD is a reasonable 
assumption and to consider whether using PM2.5 or log PM2.5 in the model is preferable, we 
compared models with the same format as the final model but using a smooth regression function 
of pollution, either 

  
f

PM
(PM

it
)  or 
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)  in place of 
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. We found a reasonably 

linear relationship of loga
it

 with PM2.5 on the original scale while the association of loga
it

 with 
log PM2.5 was not linear, which would complicate the construction of the calibration model (3.2-
3.3). Further justifying the linearity of PM2.5 in the final model, the model using 
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explained only slightly more of the variability in loga
it

 than when using the linear term.  
The final model fits 

  
f

t
(t)  as a smooth function of time, with about four effective degrees of 

freedom for each season. We also fit a model allowing a much less smooth function of time, 
which can account for short-term changes in the relationship between AOD and PM2.5. This 
model overfits, with lower correlations between calibrated AOD and PM2.5 (about 0.04 lower 
than those shown in Table B1). We also considered removing 

  
f

t
(t)  from the model entirely. 

This change slightly reduced correlations compared to the final model. While we continue to 
include time in the model, we note that accounting for temporally-varying bias seems to be of 
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limited importance, probably because any factors that change the relationship over time do not 
affect the entire eastern U.S. all at once, while 

  
f

t
(t)  can only represent changes over time 

affecting the entire spatial domain.  
Next we considered different approaches to including the meteorological functions in the 

model. In the basic model, we used the average of RH and PBL over UTC times 12:00, 15:00, 
18:00, and 21:00 to roughly match the time range of AOD retrievals. We also considered the use 
of RH and PBL as the average of only using UTC times 15:00 and 18:00 and as the value only at 
UTC time 18:00, to more closely match the period of maximum PBL during each day (PBL 
increases rapidly during late morning, so times of 15:00 and 18:00 are generally the highest 
values during a given 24-hour period). Both of these specifications had very little effect on the 
correlations, nor did using log PBL (following Liu et al. 2005) in place of PBL.  

We also considered a simplified model with only a spatial bias function,  
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which has the benefit of not requiring one to obtain meteorological information for the 
calibration. Table B1 demonstrates that the simple model performs well compared to the final 
model. While Fig. 3 and model assessment results (not shown) indicate that time, RH and PBL 
are significant predictors of AOD, they do not explain enough variability in AOD such that the 
calibration model improves substantially by including these functions. The much greater 
importance of the spatial function than the meteorological functions may be related to the 
confounding effect we discuss in Section 3.  

Spatial variation in the relationship between AOD and PM2.5 may be related to varying 
reflectivity, particularly between rural, vegetated areas and urban areas. As a proxy for 
reflectivity, we considered adding smooth regression functions of road density and population 
density but found they had little impact on the model fit, with the functions estimated to be 
essentially flat, indicating no relationship with AOD. Road and population density were 
calculated as follows. In the larger project of which this is a part, we have divided the eastern 
U.S. into four km square grid cells and estimated the population density in each cell from the 
2000 U.S. Census, as well as the density of roads in each cell based on the ESRI StreetMap 9.2 
product. Using the cell whose centroid was closest to the AOD pixel centroid, we assigned road 
and population density estimates to each matched pair. This level of aggregation serves to reflect 
local land use characteristics, which seems appropriate for the AOD data at the pixel resolution, 
but may not be the most appropriate for capturing fine-scale features that affect PM2.5 
concentrations at monitors.  

We considered whether the multiplicative bias, !  in the final model, might vary spatially, 
fitting the model  
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fitting an average effect, ! , and also a spatially-varying bias,   !(s) . This model can also be fit 
with the gam() function in R, but we note that one should be cautious with such a model because 
of the potential non-identifiability in distinguishing   g(s)  from   !(s) . The fitted model indicates 
that there is substantial spatially-smooth variation in the multiplicative scaling, with the standard 
deviation of the fitted   !(s)  across the sites equal to 0.0049, 0.0043 and 0.0068 for spring, 
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summer and fall respectively, which is substantial variation relative to the the estimates, ˆ! , of 
0.016, 0.016, and 0.013 for the three seasons. Fig. B4 shows the estimates of   g(s)  and   ! + !(s) , 
with evidence that the spatial patterns change somewhat between seasons. The overall patterns in 
the additive spatial function are similar to those estimated in the base model with the lower than 
expected AOD over the Appalachian Mountains/Ohio Valley, while the variability in the 
multiplicative scaling shows no particular interpretable pattern. Based on the multiplicative 
model, one could try to use the following calibration  

 ait
! =

1

"̂ + "̂(s)
logait # µ̂ # ĝ(si )# t

f̂ (t)#
PBL
f̂ (PBLit )# RH

f̂ (RHit )( ).   

However, when !̂ + !̂(s) " 0 , the model is indicating there is little relationship between AOD 
and PM2.5 and there are some extreme calibrated values, 

 
a

it

! . Instead, in our use of calibrated 
AOD in the larger project, we plan to allow for spatially-varying multiplicative bias directly in 
the statistical model rather than in the calibration step used to preprocess the AOD retrievals.  

B.4. Assessing the usefulness of AOD observations of uncertain quality 

The processing of AOD retrievals produces a number of quality flags that may be used to 
screen out retrievals of poor quality, which might be biased or merely very noisy estimates of 
true AOD. These standard criteria used by NOAA to screen the retrievals are to require the 
following conditions for a valid retrieval: AOD value less than 10, AOD standard deviation less 
than 0.15, surface reflectivity greater than 0.01 and less than 0.15, channel 1 visible reflectivity 
greater than zero, aerosol signal greater than 0.01, and no clouds detected by the cloud screening 
in a 5 by 5 array of cells centered on the pixel of interest (Cloudsum=25). In addition, our 
analyses make use of the data from times and locations with a solar zenith angle less than 70°. 
Retrievals are generally less accurate at high zenith angle, as is the case for other remote sensing 
techniques, because of limitations of the plane-parallel radiative transfer model (Dahlback and 
Stamnes 1991), which ignores the earth’s curvature.  

Given the availability of the gold standard PM2.5 data, for which we would like GASP AOD 
to serve as a proxy, we can consider relaxing or making more stringent these standard quality 
criteria. The goal is to see if stronger associations with PM2.5 can be obtained, or if equivalent 
associations can be obtained but with an increase in the number of usable retrievals. Note that we 
need to be cautious of finding stronger associations with stricter criteria merely because the 
stricter criteria result in removing AOD-PM2.5 pairs that while less strongly associated are still 
associated with PM2.5, which in a statistical prediction model would amount to throwing away 
proxy data with useful, albeit more variable, information. Since our focus is on potential 
relaxation of the criteria, we address this by comparing correlations calculated based only on 
matched pairs for days with at least one AOD retrieval under the stricter standard criteria.  

We consider relaxing the following individual quality flag criteria one at a time: 1.) AOD 
standard deviation less than 0.30 rather than 0.15; 2.) Cloudsum>20 rather than Cloudsum=25; 
3.) Cloudsum>15 rather than Cloudsum=25; 4.) solar zenith angle <  75° rather than zenith 
angle <  70°; 5.) solar zenith angle <  80° ; 6.) solar zenith angle <  85°; 7.) surface reflectivity 
<20 rather than <15; and 8.) surface reflectivity <25. Comparing only matched pairs for days 
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with at least one AOD under the standard criteria, Table B2 shows correlations of AOD and 

 
PM

2.5
 for the various criteria, excluding winter. The results suggest that relaxing the standard 

deviation criterion produces lower associations; this criterion serves to screen out retrievals when 
neighboring pixels have very different retrieved values, potentially because of cloud 
contamination. In contrast, relaxing the cloudsum criterion has limited effect when more than 20 
of the pixels in the surrounding 5 by 5 array are cloud free, suggesting little information is added 
or lost from augmenting daily AOD averages based on these additional retrievals. Further 
relaxation of the cloudsum criterion appears to result in loss of information. Relaxing the surface 
reflectivity criterion decreases correlations. In contrast, relaxing the zenith angle criterion 
increases the associations between the AOD proxies and PM2.5. Even relaxing so far as to include 
observations with zenith angle less than 85° seems to increase associations in all but the yearly 
averaging, for which the association decreases but not significantly so. One note of caution is 
that Prados et al. (2007) found higher mean square error in GASP AOD compared to AERONET 
AOD early and late in the day compared to the middle of the day (although correlations were no 
lower during these times), providing empirical evidence that GASP AOD may be less accurate as 
a estimate of AOD at high solar zenith angles.  

Table B3 shows the increase in the number of retrievals and the number of days with several 
thresholds for the number of retrievals under the various criteria, indicating that the relaxed 
criteria admit a sizable increase in retrievals.  

We can also consider correlations between AOD and PM2.5 for new matched pairs that 
become available when relaxing the criteria, namely locations for which there was no AOD 
retrieval on the day under the stricter criteria. These new matched pairs are almost always based 
on a single AOD retrieval during the day, so a point of comparison is the correlation between the 
calibrated AOD under the standard criteria and PM2.5 for days with only one matched pair, which 
is 0.38. The correlations for the new matched pairs are 0.37 and 0.35 when increasingly relaxing 
the cloudsum criterion; 0.30 when relaxing the standard deviation criterion; 0.33, 0.33, and 0.27 
when increasingly relaxing the zenith angle criterion; and 0.26 in both cases of relaxing the 
reflectivity criterion. Given the calibration results in Table B2, it’s somewhat surprising that 
relaxing the cloudsum criterion seems to outperform relaxing the zenith angle criterion when 
considering only new daily observations made available because of the relaxed criteria. In all 
cases, the positive correlations suggest that there is information about PM2.5 available in the 
discarded observations that do not satisfy the standard criteria.  

Next we consider making the zenith angle criteria more strict. Not surprisingly given that 
relaxing this criteria seems worthwhile, making it more strict decreased the correlations between 
the AOD proxies and PM2.5 (generally by about 0.02). We also considered setting all negative 
AOD values to zero or excluding negative observations, the latter following Prados et al. (2007). 
Setting the negative values to zero slightly decreased correlations while excluding such 
observations markedly decreased correlations (generally by about 0.04), so we suggest using the 
negative values as reported rather than truncating or excluding them when one’s goal is use of 
AOD as a proxy for PM2.5.  
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Table B1. Correlations between various GASP AOD proxies and PM2.5 at different temporal resolutions in 
the eastern U.S. in 2004, excluding winter. The four AOD proxies are: (a) raw AOD, calculated using the log 
average daily AOD; (b) calibrated AOD (3.2) in Section 3 based on a

it
; (c) calibrated AOD (B3) based on â

it
 

from a time series model (B1); and (d) calibrated AOD (B4) based on a
it

 from the simplified model without 
time, PBL and RH. Correlations are shown both when using matched pairs for days with any number of 
AOD retrievals and restricting to days with at least five retrievals.  

temporal resolution of 
correlations  

(a) Raw AOD 
log a

it
( )  

(b) Calibrated 

AOD a
it

*( )  

using log a
it

  

(c) Calibrated 

AOD a
it

*( )  

using log â
it

  

(d) Calibrated 

AOD a
it

*( )  
based on (B4)  

 any number of AOD retrievals in a day 
daily  0.41  0.50  0.51  0.50  
monthly averages (at least 3 
matched days for each site-
month) 

0.34 0.62 0.63 0.63 

yearly averages (at least 10 
matched days for each site)  

0.17   0.75  0.76  0.74 

 at least five AOD retrievals each day 
daily  0.51  0.59  0.60  0.60 
monthly averages (at least 3 
matched days for each site-
month)  

0.41  0.67  0.69  0.67 

yearly averages (at least 10 
matched days for each site)  

0.19  0.69  0.71  0.67 
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Table B2. Correlations between GASP AOD and PM2.5 under different criteria for AOD validity for different 
temporal resolutions for the eastern U.S. in 2004. All values are based on matched pairs for which there is at 
least one daily retrieval under the strictest (the standard) criteria. p-values from paired t-tests are indicated 
as (*) p<0.01; (**) p<0.001; (***) p<0.0001. Each test compares the squared model residuals from the 
regression of PM2.5 on the AOD proxy based on the standard criteria (i.e., the top row results) to the squared 
model residuals from the regression of PM2.5 on the AOD proxy based on one of the alternative criteria, to see 
if the mean squared residuals are substantially different under the alternative criteria. The monthly and 
yearly columns are based on calibrated AOD. 

 daily, raw AOD  daily, calibrated 
AOD  

monthly averages 
(at least 3 matched 
days for each site-
month)  

yearly averages (at 
least 10 matched 
days for each site) 

Standard criteria  0.408  0.502  0.617  0.745 
Relax std. dev. criterion  0.402*  0.486***  0.598***  0.743 
Relax Cloudsum criteria (>20)  0.411*  0.502  0.617  0.746 
Further relax cloudsum (>15)  0.410  0.498*  0.612  0.738 
Relax zenith angle (<75°)  0.423***  0.520***  0.629***  0.747 
Further relax zenith angle (<80°)  0.428***  0.530***  0.638***  0.751 
Further relax zenith angle (<85°)  0.427***  0.532***  0.637***  0.739 
Relax reflectivity criterion (<20)  0.379**  0.494***  0.600***  0.722*** 
Relax reflectivity criterion (<25)  0.379**  0.492***  0.594***  0.716*** 
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Table B3. Percentage increase in number of retrievals under different criteria for GASP AOD validity in the 
eastern U.S. in 2004, excluding winter, all compared to the standard criteria. Note that these only reflect 
retrievals that match PM2.5 data and are meant only to give a rough estimate of the effect of the criteria on 
the number of retrievals.  

 Number of 
half-
hourly 
retrievals  

Number of 
days with at 
least one 
retrieval  

Number 
of days 
with at 
least three 
retrievals  

Number of 
days with at 
least five 
retrievals 

Relax std. dev. criterion  21  11  10  42 
Relax Cloudsum criterion (>20)  9  11  7  33 
Further relax Cloudsum (>15)  13  15  11  38 
Relax zenith angle (<75°)  14  11  9  38 
Further relax zenith angle (<80°)  24  15  15  49 
Further relax zenith angle (<85°)  34  23  20  58 
Relax reflectivity criterion (<20)  24  14 15  50 
Relax reflectivity criterion (<25)  28  15  17  54 
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Figure B1. The proportion of potential GASP AOD retrievals by season that satisfy the GASP 
AOD screening criteria in 2004. A potential retrieval is defined as one with solar zenith angle 
less than 70°.   
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Figure B2. Proportion of potential GASP AOD retrievals (defined as those with solar zenith angle less than 
70°) that satisfy the GASP AOD screening criteria, by season in the eastern U.S. in 2004. Decreased retrieval 
success at the beginning and end of the day for spring and summer are in part a function of NOAA’s data 
storage and reporting system. 



 13 

winter

!0.6

!0.4

!0.2

0.0

0.2

0.4

0.6

0.8

spring

tmp$x

tm
p
$
y

summer

!0.6

!0.4

!0.2

0.0

0.2

0.4

0.6

0.8

fall

tm
p
$
y

Figure B3. Temporal correlations at individual sites between daily average PM2.5 and the average of half-
hourly GASP AOD retrievals by season for 2004. Plots are based on site-days with at least three AOD 
retrievals, and only locations with at least 10 days of matched pairs are shown.  
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Figure B4. Fitted spatial functions for model (B5) by season: additive functions, ĝ(s)  (top row) and 

multiplicative scaling functions, !̂ + !̂(s)  (bottom row). In the grayscale version the ’<’ symbols indicate 
areas with negative values.  

 


