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A B O U T  H E I

 v

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the institute

• Identifies the highest-priority areas for health effects research;

• Competitively funds and oversees research projects;

• Provides intensive independent review of HEI-supported studies and related 
research;

• Integrates HEI’s research results with those of other institutions into broader 
evaluations; and

• Communicates the results of HEI’s research and analyses to public and private 
decision makers.

HEI typically receives balanced funding from the U.S. Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the 
United States and around the world also support major projects or research programs. HEI has 
funded more than 330 research projects in North America, Europe, Asia, and Latin America, the 
results of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, 
diesel exhaust, ozone, particulate matter, and other pollutants. These results have appeared in 
more than 260 comprehensive reports published by HEI, as well as in more than 1000 articles in 
the peer-reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Health Research Committee solicits input from HEI sponsors and other stakeholders and works 
with scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and 
oversee their conduct. The Health Review Committee, which has no role in selecting or 
overseeing studies, works with staff to evaluate and interpret the results of funded studies and 
related research.

All project results and accompanying comments by the Health Review Committee are widely 
disseminated through HEI’s Web site (www.healtheffects.org), printed reports, newsletters and other 
publications, annual conferences, and presentations to legislative bodies and public agencies.
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Research Report 183, Part 3, Modeling of Multipollutant Profiles and Spatially Varying Health 
Effects with Applications to Indicators of Adverse Birth Outcomes, presents a research project funded 
by the Health Effects Institute and conducted by Dr. John Molitor of the College of Public Health 
and Human Sciences, Oregon State University, Corvalis, and his colleagues. The report contains 
three main sections.

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the 
study and its findings; it also briefly describes the Health Review Committee’s 
comments on the study.

The Investigators’ Report, prepared by Dr. John Molitor and colleagues, describes 
the scientific background, aims, methods, results, and conclusions of the study.

The Critique is prepared by members of the Health Review Committee with the 
assistance of HEI staff; it places the study in a broader scientific context, points out its 
strengths and limitations, and discusses remaining uncertainties and implications of 
the study’s findings for public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of the Health Review 
Committee, an independent panel of distinguished scientists who have no involvement in 
selecting or overseeing HEI studies. During the review process, the investigators have an 
opportunity to exchange comments with the Review Committee and, as necessary, to revise 
their report. The Critique reflects the information provided in the final version of the report.
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HEI’s Research Program to Develop Methods for Analyzing 
Multiple Air Pollutants and Health Outcomes

INTRODUCTION

Air pollution is a complex mixture of gaseous, liquid,
and solid components that varies greatly in composi-
tion and concentration across the United States and
around the world owing to differences in sources,
weather, and topography. Air pollution also varies from
day to day and by season within a region. Although it is
clear that people are exposed to complex mixtures of
pollutants emitted by diverse sources, the U.S. Clean
Air Act — and most existing air quality guidelines and
standards to protect public health — focuses on con-
trolling a common set of pollutants individually (called
criteria pollutants in the United States). Given this reg-
ulatory approach, it is perhaps not surprising that the
majority of data on ambient air pollution levels and on
human exposures and their health effects have focused
on individual pollutants.

Since the air we breathe is a mixture, the scientific
community has considered the possibility that the ob-
served adverse health effects associated with individual
pollutants may be partly attributable to the combined
effects of multiple pollutants. However, the challenges of
determining whether effects are additive, synergistic, or
less-than-additive, and of identifying possible effect
modifiers in epidemiologic studies, are substantial
(Mauderly and Samet 2009). Often, a high degree of
correlation exists among levels of different pollutants
emitted from similar sources or generated through sim-
ilar atmospheric processes; and there may be nonlinear
interactions among pollutants in relation to health out-
comes. These issues complicate and may even preclude
the use of conventional linear regression approaches.
Exposure measurement and exposure modeling errors
contribute additional complications; pollutants that are

measured relatively easily (i.e., more frequently and
accurately because their concentrations are well above
detection levels) will tend to dominate the estimation,
even if their effects are less strong than those of other
pollutants.

HEI issued Request for Applications (RFA) 09-1,
“Methods to Investigate the Effects of Multiple Air Pollu-
tion Constituents” in 2009 because it was clear that ad-
vancing scientific understanding would require improved
statistical methods to determine how the health effects
of a pollutant mixture as a whole differ from the effects
of individual pollutants within the mixture.

GOALS OF THE RESEARCH PROGRAM

RFA 09-1 solicited research proposals that would ad-
dress the methodologic difficulties associated with inves-
tigating the health effects of multiple pollutants through
the development of innovative statistical methods. HEI
primarily sought applications for research in which exist-
ing statistical approaches (including those from fields
outside epidemiology) could be modified, extended, or
combined, and then applied to a real-world exposure
and health problem, rather than proposals for the devel-
opment of purely theoretical statistical approaches. RFA
09-1 defined two specific objectives:

1. The research should support the development of
innovative statistical methods for studying the
combined effects of individual pollutants within
complex pollutant mixtures. Analytic approaches
could include improvements to existing multivari-
ate methods and the development of strategies
for their application or the proposal of new ap-
proaches. Of particular interest were multivariate
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methods adapted to studying highly correlated
pollutants and methods to detect the presence of
interactions between two or more pollutants and
to evaluate their combined effects. All methods
proposed were required to include validation of
the approach either by using simulation studies or
by conducting a thorough sensitivity analysis with
widely available data sets.

2. The research should support the development of
innovative statistical methods for studying health
effects of air pollution mixtures in animal models
and human populations. Of par ticular interest
were methods for characterizing mixtures emitted
by specific pollutant sources or groups of sources.

The RFA welcomed proposals for methods that
would explore how the effects of a pollutant mixture
as a whole differ from the effects of individual pollut-
ants within the mixture. Applicants were expected to
employ methods that would be able to analyze both
highly correlated pollutant concentration variables and
assess the potential effects of measurement error
within the chosen statistical framework.

BACKGROUND

At the time the RFA was issued, adequate statistical
methods designed for analyzing the relationships
among multiple pollutants and health effects were un-
available. In order to better understand the health ef-
fects of exposure to the mixture of air pollutants that
people actually breathe, to delineate the contribution
of individual pollutants or mixtures to adverse health
effects, and to address emissions from the sources of
those pollutants more cost-effectively, approaches that
would go beyond the single-pollutant framework were
clearly needed. A 2004 report from the National Re-
search Council (NRC) Committee on Air Quality Man-
agement in the United States called for changing the
entire air quality management system to a multipollut-
ant approach. The report recommended that the U.S.
Environmental Protection Agency (U.S. EPA) consider
multiple pollutant scenarios in the National Ambient
Air Quality Standards (NAAQS) review and standard
setting process: “Although the committee does not be-
lieve that the science has evolved to a sufficient extent
to permit the development of multipollutant NAAQS,
it would be scientifically prudent to begin to review and

develop NAAQS for related pollutants in parallel and
simultaneously” (NRC 2004).

The U.S. EPA responded to the NRC report by un-
dertaking a number of activities in support of multipol-
lutant research and a NAAQS targeted specifically to
multipollutant mixtures. In late 2006, the Agency
hosted the first of several workshops on multipollutant
research and commenced efforts to develop a multi-
pollutant NAAQS in 2010 (U.S. EPA 2006, 2011). In
2007, the U.S. EPA also began development of its first
two-pollutant Integrated Science Assessment for nitro-
gen dioxide (NO2) and sulfur dioxide (SO2), which
was finalized in December 2008.

Following the NRC recommendations, HEI also in-
cluded multipollutant research as part of its research
agenda, specifying in its Strategic Plan for 2005–2010 the
health effects of air pollution mixtures as a priority re-
search and review topic. Specifically, this plan called for
HEI to “undertake targeted research programs on PM
(particulate matter) and gases and on air toxics, two im-
portant mixtures within the broader air pollution mix-
ture”. Following the discussions about research needs at
the U.S. EPA workshops, HEI issued RFA 09-1 in 2009.

At the time, some existing multipollutant modeling
approaches were available to researchers in the fields
of epidemiology and air pollution exposure. The pro-
cess of attributing measured concentrations of multiple
pollutants to the emissions from specific categories of
sources, known as source apportionment, had been
evolving and had become increasingly standardized
during the early 2000s (Thurston et al. 2005). When
statistically feasible, researchers also employed varia-
tions on linear regression, such as multivariate regres-
sion models, which simultaneously incorporated
covariates for multiple pollutants. Both approaches are
briefly described here.

SOURCE APPORTIONMENT

When strong correlations among pollutants in given
mixtures preclude the use of multiple individual expo-
sure variables in conventional health effects models,
source apportionment is used to analyze the mixture of
pollutants over time and space. It is a latent-variable
method, usually applied in models that include multiple
variables, at least one of which is unobserved (or latent).
Factor analysis is a special type of latent-variable mod-
el used in source apportionment where the analysis
assumes that multiple variables are linked together
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through their association with a small number of latent
variables, called factors. Source apportionment is the
process of attributing emission sources to factors based
on the composition of the factor. For example, a factor
analysis of roadside particulate pollution data may yield
a factor in which levels of copper and iron are high and
vary together ; in a source apportionment, this factor
might be attributed to tire and brake wear given what
we know about the composition of tires and brakes.

Using source apportionment to classify mixtures —
based on source-specific markers in a mixture — can
also link health effects with emissions from specific
sources (such as facilities or activities). This approach
uses the resulting quantification of components that
comprise the different source mixtures in a given envi-
ronment to evaluate their individual or combined con-
tributions to health effects.

However, source-apportionment techniques are not
capable of assessing the effects of interactions among
the different source-apportioned mixtures, and they
may not take into account the underlying biological
plausibility of any given mixture to affect health. In addi-
tion, when HEI issued RFA 09-1, many researchers
were using source-apportionment methods and multi-
variate-receptor models as “black box tools” and were
not linking them sufficiently to rigorous statistical prac-
tice or demonstrating an understanding of method lim-
itations. Moreover, the inherent uncertainty of variables
generated through source apportionment, due in part
to errors in the measurement of individual pollutant
concentrations, was not reflected in the estimates of
their associations with the health outcomes, thus ren-
dering reproducibility and comparison among different
studies difficult.

MULTIVARIATE REGRESSION MODELS

When data sets contain measurements of many con-
stituents of air pollution obtained at different places and
time points together with information about health
outcomes, and when there is sufficient variability in
these data, multivariate analyses of the association be-
tween constituents and health outcomes may be possi-
ble. Such analyses are aimed primarily at estimating the
effects of specific constituents of interest while account-
ing for the potential effects of confounding. Moreover,
multivariate regression models can be used to detect
whether the effects of various pollutants are additive or

not. However, there are limitations to the value of sim-
ply introducing a number of pollutant variables and in-
teraction terms simultaneously into a regression analysis
and carrying out multivariate rather than univariate re-
gressions. For example, high degrees of correlation
among covariates render the results statistically unsta-
ble and difficult to interpret, and stepwise methods are
inadequate in the presence of strong collinearity.

STUDIES FUNDED UNDER RFA 09-1

The three studies funded under RFA 09-1 represent
a variety of statistical approaches and of data sets used
to test them. The studies by Dr. Brent Coull and Dr. Eun
Sug Park and their colleagues are described in Parts 1
and 2 of Research Report 183, and were published in
2015. The study by Dr. John Molitor and colleagues is
described in Part 3 in this volume. The studies are de-
scribed briefly below.

Statistical Learning Methods for the Effects of Multiple 
Air Pollution Constituents, Brent Coull, Harvard T.H. 
Chan School of Public Health (Principal Investigator)

Coull and colleagues developed a new analysis
framework based on methods that simultaneously
quantify variability in health outcomes and exposure
data for multiple pollutants in order to identify the mix-
ture profiles (groupings of pollutants and concentra-
tions) most highly associated with the health outcomes.
They developed and applied these methods using sim-
ulations, pollutant concentration and health outcomes
data from the “Maintenance of Balance, Independent
Living, Intellect, and Zest in the Elderly of Boston”
(MOBILIZE) study cohort of senior citizens living in the
Boston area, and toxicologic data from canine studies.

Development of Enhanced Statistical Methods for 
Assessing Health Effects Associated with an Unknown 
Number of Major Sources of Multiple Air Pollutants, 
Eun Sug Park, Texas A&M Transportation Institute 
(Principle Investigator)

Park and colleagues developed enhanced statistical
methods to jointly assess source factors and health effects
using multivariate source-characterization and source-
apportionment models together with a health outcomes
analysis. The investigators’ approach incorporated the
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uncertainty in the source apportionments into the esti-
mation of the source-related health effects. They applied
their methods to data sets for daily pollutant concentra-
tions and acute health outcomes in Phoenix, Arizona, and
Houston, Texas, and compared the results with those ob-
tained using conventional methods of estimation.

Modeling of Multipollutant Profiles and Spatially Varying
Health Effects with Applications to Indicators of Adverse
Birth Outcomes, John Molitor, Oregon State Universi-
ty (Principal Investigator)

Molitor and colleagues developed and applied statisti-
cal methods to examine associations among geographi-
cally based patterns of air pollutant concentrations, birth
outcomes, and socioeconomic status. The investigators
used a large data set of pollutant concentrations (includ-
ing NO2 and PM � 2.5 µm in aerodynamic diameter)
and data on birth outcomes from Los Angeles County,
California. They first used Bayesian statistical methods to
identify clusters of specific mixtures of pollutants and
pollutant concentrations frequently found together in
census units, and then associated those pollutant profiles
with data on socioeconomic status and health outcomes
using regression methods.
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This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. John Molitor at
the College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, and colleagues. Research Report 183, Part 3, con-
tains both the detailed Investigators’ Report and a Critique of the study prepared by the Institute’s Health Review Committee.
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What This Study Adds
• Advanced statistical methods are needed 

to investigate health effects of air pollution 
mixtures. Molitor and colleagues extended 
their cluster methods to include 
continuous exposures and successfully 
implemented them to analyze 
multipollutant mixtures.

• Their approach was aimed at identifying 
spatial clusters of air pollution exposures 
— and other covariates such as socio-
economic status — and estimating health 
outcomes associated with those clusters. 
The approach is flexible, for example, the 
number of clusters does not need to be 
predefined, and uncertainty related to 
cluster allocation is accounted for.

• Future work is necessary to fully evaluate 
the methods, including simulation studies, 
comparison to traditional statistical 
methods, application in other settings, and 
inclusion of more pollutants.

Modeling of Multipollutant Profiles and Spatially Varying 
Health Effects

INTRODUCTION

Although it is clear that people are exposed to
complex mixtures of pollutants emitted by diverse
sources of air pollution, air quality standards
worldwide are geared toward control of individual,
or small sets of, pollutants. Consequently, most ep-
idemiologic studies of air pollution and health to
date have focused on estimating the adverse effects
associated with ambient exposure in single-
pollutant models. Employing multipollutant models
using conventional statistical approaches frequent-
ly produces results that are difficult to interpret
because air pollutant levels are often highly corre-
lated. Therefore, advanced statistical methods are
needed to investigate the health effects of air pollu-
tion mixtures.

HEI issued Request for Applications (RFA) 09-1,
“Methods to Investigate the Effects of Multiple Air
Pollution Constituents,” to solicit research pro-
posals that would address these methodologic chal-
lenges through the development of innovative
statistical methods. Three studies were funded
under RFA 09-1 that represent a variety of statis-
tical approaches and applications. The studies by
Dr. Brent Coull and Dr. Eun Sug Park and their col-
leagues are described in Research Report 183, Parts
1 and 2. For the current study, Dr. John Molitor and
colleagues proposed to develop and apply statis-
tical methods to examine associations between spa-
tial patterns of correlated air pollutants and
outcomes of health and poverty.

APPROACH

The investigators built on their previous work to
develop Bayesian clustering methods to identify
spatial clusters of air pollution exposures — and of
other covariates such as socioeconomic status —
and to estimate the association of health outcomes

with those clusters. They use the term profile to
define a set of pollutants (or more generally expo-
sures). Their approach has three components: a prior
for cluster allocation, a profile assignment submodel
to assign exposure profiles to clusters, and a health
effects submodel to link clusters of exposure profiles
to the health outcome. The Bayesian models
described by Molitor and colleagues are mostly fit
using Markov chain Monte Carlo techniques. Their
Bayesian framework allows a supervised (joint) esti-
mation (meaning that they allowed the relationship
between health outcomes and exposures to inform
the formation of the clusters).
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An important feature of these clustering methods
is that they are flexible. For example, the number of
clusters does not need to be predefined. In addition,
these methods quantify the uncertainty related to
the clustering allocation and propagate it in the
health analyses. To group exposure profiles into
clusters, Molitor and colleagues used Dirichlet-pro-
cess mixture modeling techniques and combined
the resulting clusters with multilevel regression
models to estimate health outcomes. Subsequently,
they developed postprocessing Bayesian model-
averaging techniques to find clusters that best rep-
resent the data and to assess uncertainty in the
cluster allocation.

The investigators conducted analyses using three
applications to demonstrate these methods on mea-
sures of poverty and adverse birth outcomes in Los
Angeles County using census and birth certificate
data.

A maximum of four pollutants were considered,
including PM2.5 and NO2.

MAIN RESULTS AND INTERPRETATION

In its independent review of the study, the HEI
Review Committee concluded that the investigators
extended their cluster methods to include contin-
uous exposures and successfully implemented
these methods to analyze multipollutant mixtures.
Their analyses demonstrated that their approach
can be applied to real-world data sets and that they
produced results that were largely concordant with
a priori expectations. Results indicate that the
effects of pollutants, as well as socioeconomic status
variables, vary spatially and that they vary in a com-
plex interconnected manner. The Committee
thought the difficult subject matter was made much
more accessible through the investigators’ approach
to presenting their results. For example, the Com-
mittee liked the spatially-varying maps of effects,
which they believe are a useful and effective tool to
communicate results.

The Committee appreciated the flexibility of the
clustering approach. The explicit inclusion of spatially-
varying contextual factors (e.g., socioeconomic status
variables) as inputs to the clusters, in a way similar
to the treatment of air pollutants, was considered

unique and can potentially provide new insight
into understanding vulnerable and susceptible pop-
ulations.

The methods developed by Molitor and col-
leagues are complex. The investigators have put
their models in a unified Bayesian framework as
one way to allow a supervised (joint) estimation. In
general, there are several important practical fea-
tures of supervised modeling approaches that are
worth considering. For example, there is a potential
for feedback due to unbalanced data and misspecifi-
cation of the models. The clusters identified are
dependent on the health outcome, and changing the
health outcome will generally change the definition
of the clusters to some extent.

In addition, typically, they are computationally
demanding.

The Committee noted that effects of the various
data simplifications were not studied, such as the
aggregation of exposure from the individual to the
census tract or census block group level.

Finally, the Committee thought it would have
been worthwhile to understand how the methods
perform under known conditions and to compare
the methods to traditional statistical methods for
which the research community has already devel-
oped a deep understanding of their properties and
performance.

CONCLUSIONS

Dr. Molitor and colleagues developed methods to
address an important question in multipollutant
research, that is, what are the combined effects of
various constituents of an air pollution mixture.
The Committee concluded that the multipollutant
methods developed show promise, but that the full
extent to which they will be useful remains to be
seen. Future work is necessary to fully evaluate
these methods, including simulation studies, com-
parison to traditional statistical methods, applica-
tion in other settings, and inclusion of more
pollutants. Such analyses could help to determine
the degree to which these new methods will lead to
a better understanding of how pollutant mixtures
contribute to health effects, and ultimately, to better
decisions about how to control them.
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INVESTIGATORS’ REPORT

Part 3. Modeling of Multipollutant Profiles and Spatially Varying Health 
Effects with Applications to Indicators of Adverse Birth Outcomes

John Molitor, Eric Coker, Michael Jerrett, Beate Ritz, and Arthur Li

College of Public Health and Human Sciences, Oregon State University, Corvallis, OR (J.M., E.C,); School of Public Health,
University of California–Los Angeles, CA (M.J., B.R.); Department of Information Science, City of Hope National Cancer
Center, Duarte, CA (A.L.)

ABSTRACT

The highly intercorrelated nature of air pollutants
makes it difficult to examine their combined effects on
health. As such, epidemiological studies have traditionally
focused on single-pollutant models that use regression-
based techniques to examine the marginal association
between a pollutant and a health outcome. These rela-
tively simple, additive models are useful for discerning the
effect of a single pollutant on a health outcome with all
other pollutants held to fixed values. However, pollutants
occur in complex mixtures consisting of highly correlated
combinations of individual exposures. For example, evi-
dence for synergy among pollutants in causing health
effects has been recently reviewed by Mauderly and Samet
(2009). Also, studies cited in the Ozone Criteria Document
(U.S. Environmental Protection Agency [U.S. EPA*] 2006)
confirmed that synergisms between ozone and other pol-
lutants have been demonstrated in laboratory studies
involving humans and animals. Thus, the highly corre-
lated nature of air pollution exposures makes marginal,
single-pollutant models inadequate. This issue was raised

in a report by the National Research Council (NRC 2004),
which called for a multipollutant approach to air quality
management.

Here we present and apply a series of statistical ap-
proaches that treat patterns of covariates as a whole unit,
stochastically grouping pollutant patterns into clusters
and then using these cluster assignments as random effects
in a regression model. Using this approach, the effect of a
multipollutant pattern, or profile, is determined in a man-
ner that takes into account the uncertainty in the cluster-
ing process. The models are set in a Bayesian framework,
and in general, Markov chain Monte Carlo (MCMC) tech-
niques (Gilks et al. 1998). For interpretation purposes, a
best clustering is derived, and the uncertainty related to
this best clustering is determined by utilizing model aver-
aging techniques, in a manner such that consistent cluster-
ing obtained by the estimation process generally yields
smaller standard errors while inconsistent clustering is
generally associated with larger errors.

These multivariate methods are applied to a range of dif-
ferent problems related to air pollution exposures, namely
an association of multipollutant profiles with indicators of
poverty and to an assessment of the association between
measures of various air pollutants, patterns of socioeco-
nomic status (SES), and birth outcomes. All of these
studies involve an examination of regional-level exposures,
at the census tract (CT) and census block group (CBG)
levels, and individual-level outcomes throughout Los
Angeles (LA) County. Results indicate that effects of pol-
lutants vary spatially and vary in a complex intercon-
nected manner that cannot be discerned using standard
additive linear models. Results obtained from these
studies can be used to efficiently use limited resources to
inform policies in targeting areas where air pollution
reductions result in maximum health benefits.

This Investigators’ Report is one part of Health Effects Institute Research
Report 183, Part 3, which also includes a Critique by the Health Review
Committee and an HEI Statement about the research project. Correspon-
dence concerning the Investigators’ Report may be addressed to Dr. John
Molitor, College of Public Health and Human Sciences, Oregon State Uni-
versity, 157 Milam Hall, Corvallis, OR 97331-6406; e-mail: John.Molitor
@oregonstate.edu.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award CR–
83467701 to the Health Effects Institute, it has not been subjected to the
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INTRODUCTION

Air pollution studies traditionally rely on standard
regression-based methods that adjust for individual-level
confounders such as indicators of SES and then examine
the effect of one or more pollutants on a health outcome
using a linear additive model (Kutner et al. 2004). The air
pollution effect is generally measured linearly, with a
regression coefficient that indicates the change in the out-
come of interest (e.g., log odds of preterm birth) for every
unit change in exposure to the air pollutant in question.
These traditional approaches typically estimate a single
global effect of air pollution, that is, the effect of a change
in the exposure to an air pollutant on the health outcome,
assuming that such effect is constant throughout the entire
region in question. Such an analysis, while standard in the
literature, is inadequate as effects of air pollution vary spa-
tially, often affecting vulnerable subpopulations more than
wealthy ones, as aspects of neighborhoods such as heavily
trafficked roadways, food access, crime rates, and poorer
access to health centers may make these subpopulations
more vulnerable to the harmful effects of individual pol-
lutants or to elevated levels of toxic components such as
diesel exhaust. Further, pollutants occur in complex com-
binations, not as single-pollutant exposures. Standard
regression approaches expanded to accommodate multiple
pollutants with a series of interaction terms and associated
regression coefficients make inference unwieldy. Teasing
out the combined effect of multiple pollutants becomes
cumbersome and is limited by a lack of power necessary to
adequately estimate coefficients corresponding to a large
set of interaction terms.

In this report, we develop and apply advanced Bayesian
statistical modeling framework to examine the joint effects
of multiple exposures on health. Our overall approach
clusters joint patterns of air pollution exposures, denoted
as an air pollution profile, and relates these clusters of ex-
posures to health outcomes. The methods utilize recently
developed powerful Bayesian dimension-reduction clus-
tering techniques that characterize the pollutant patterns.
The multipollutant profile approach adopts a global point
of view, where inference is based on the joint pattern of
pollution exposures.

SPECIFIC AIMS

The current study involved building and applying
sophisticated multilevel Bayesian models to analyze air pol-
lution profiles throughout LA County. The models were
estimated using stochastic MCMC methods (Gilks et al.
1998) and were developed in a manner that made them

applicable to a wide variety of settings where investigators
are interested in examining associations between patterns of
covariates (e.g., air pollution, SES) and health outcomes
(e.g., measures of adverse birth outcomes). Our aims are as
follows:

1. Further develop and apply sophisticated Bayesian clus-
tering methods based on well-established Dirichlet-
process techniques (Dahl 2006; Escobar 1994; Neal
2000) to characterize profiles of pollutants or other pat-
terns of covariates relevant to the study of health
effects.

2. Associate multipollutant profiles found in Aim 1 to
health outcomes using cluster assignments as random
effects in a regression model. This regression approach
allows for adjustment of relevant confounders, thus
enabling researchers to examine the residual effect of
pollutant patterns on health after taking into account
variables related to risk factors such as smoking or
SES. This approach will properly take into account
uncertainty in the clustering process.

3. Utilize ways to assess a best clustering and then assess
the uncertainty related to this best clustering by model
averaging (Raftery et al. 2003) through clustering
obtained via the stochastic estimation process. As a
result of this model averaging, consistent clustering
results in lower standard errors, and haphazard incon-
sistent clustering is associated with higher errors. This
approach represents a compromise between highly
interpretable hard clustering methods that obtain a
single best clustering and stochastic fuzzy clustering
approaches that produce a less interpretable, though
perhaps more accurate, output consisting of poten-
tially thousands of different clusterings.

4. Analyze real data sets assessing associations between
air pollution exposure profiles and poverty, and ana-
lyze associations between multipollutant profiles
with measures of adverse birth outcomes, all in LA
County. The results obtained are examples of how to
use the developed methodologies, but they contain
substantively relevant findings suitable for publica-
tion in applied health-related journals.

METHODS AND STUDY DESIGN

As part of this project we enhanced previous work to
develop an advanced Bayesian statistical modeling frame-
work to examine the joint effects of multiple exposures on
health. Our overall approach was to cluster joint patterns
of air pollution exposures, denoted as an air pollution pro-
file, and potentially relate these clusters of exposures to
health outcomes. The methods developed would then
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utilize recently developed powerful Bayesian dimension-
reduction clustering techniques to characterize the pol-
lutant patterns. The multipollutant profile approach
adopted a joint point of view, where inference was based
on the joint pattern of pollution exposures. The method-
ology consisted of the following key components:

1. A profile assignment submodel, which assigns single
multipollutant profiles to clusters. We utilized
advanced Dirichlet-process mixture-modeling tech-
niques to group multivariate exposure profiles into
clusters, allowing the number of clusters to vary. Fur-
ther, postprocessing techniques were developed to
find clusters that best represented the data, and
Bayesian model averaging modeling techniques were
used to assess uncertainty and estimate relevant
cluster-specific parameters.

2. A health effects submodel, which links clusters of
exposure profiles to a health outcome of interest via a
regression model. Thus the exposure clusters were, in
some cases, informed also by the health effects. The
health effects submodel can be used to cluster covari-
ates on multiple domains, so, for example, indoor
exposures can be clustered separately from outdoor
exposures, or confounders can be clustered into risk
groups that are separate from the risk groups formed
by the air pollution variables. In the multiple-
domains model, all domains contributed to explain
the health effects through easier to interpret domain-
specific clusters.

3. A prior for cluster allocation was developed that
allowed patterns of similar exposure levels to be
grouped in a manner that generally resulted in spa-
tially contiguous clusters. In our application, we uti-
lized a spatial stick-breaking construct that works well
with the flexible Dirichlet-process mixture-modeling
framework proposed.

We formulated the model in a Bayesian context, and,
ideally, all components of the modeling framework,
including the health effects submodel, would be fitted
jointly using MCMC methods (Gilks et al. 1998). The
Bayesian clustering aspect of the proposed modeling
framework has a number of advantages over traditional
clustering approaches in that it allows the number of clus-
ters to vary, allows comparison of different clusters of pro-
files, can incorporate a priori known structures as well as
separate exposure domains, uncovers clusters based on
their association with an outcome of interest, and fits the
model as a unit, allowing an individual’s health outcome
to influence cluster membership. Some of these methodol-
ogies have been previously developed where the method
was illustrated on an analysis of epidemiological profiles

using data from a children’s health survey, and these pro-
files were used to predict the mental health status of the
child (Molitor et al. 2010).

More technically, we first constructed an allocation sub-
model of the probability that an area is assigned to a partic-
ular cluster. The basic model we used to cluster profiles is
a standard discrete mixture model, the kind described in
Jain and Radford (2004) and Neal (2000). Mixture models
have been applied to a wide range of applications such as
classification and density-estimation problems (Everitt
1984; Everitt and Hand 1981; McLachlan and Basford 1988)
and latent class analysis (Lazarsfeld and Henry 1968). Our
mixture model incorporated a Dirichlet-process prior on the
mixing distribution. (For further background information
regarding mixture models with Dirichlet-process priors,
see Green and Richardson 2001.) Mathematically, we
denoted for each area, i, covariate profiles with the form
xi = (x1, x2, …, xP), where each covariate, xp, p = 1, …, P,
within each multipollutant profile denotes a measure of
exposure for pollutant p in basic experimental unit, i. (Note
that the basic experimental unit may be a person in some
examples, or a residential area in other applications.) Pro-
files are grouped into clusters, c, and an allocation variable,
zi = c indicates the cth cluster to which area, i, belongs,
where C denotes the maximum number of clusters.

CONTINUOUS EXPOSURES

Air pollution exposures will generally be characterized
using continuous distributions, such as (log)normal. In
this case our basic mixture model for assignment is then

where will typically denote a normal or a

lognormal distribution with location and scale parameters
µc and �c. Using this setup, we are assuming, as is done in

latent class analysis (McHugh 1956), that exposures are
conditionally independent given cluster assignment.
Unconditionally, they are of course dependent, as a pro-
file’s overall covariate pattern will affect the cluster to
which the profile is assigned, and thus the probability that
a particular covariate takes on a certain value. However,
this conditional independence assumption can be relaxed
by simply specifying a multivariate normal distribution for

f (xip), p = 1, …, P, as, where  denotes

a covariance matrix.
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The mixture weights corresponding to a maximum of C
clusters, denoted as � = (�c, c = 1, …, C). We place a stick-

breaking prior (Green and Richardson 2001; Ishwaran and
James 2001) on the mixture weights, �, using the following
construction. We define a series of independent random
variables, V1, V2, …, VC�1, each having distribution Vc ~

Beta (1, �). This generative process is referred to as a stick-
breaking formulation since one can think of V1 as repre-

senting the first portion broken from a stick of length 1,
leaving a remainder of (1�V1), and then a portion V2 being

broken off, leaving a remainder of (1�V1)(1�V2), and so on.

Then, we specify prior cluster assignment probabilities as

. Since we have little

a priori information regarding the specification of �, we
place a noninformative uniform prior on this parameter.
This parameter is important, since it determines the degree
of clustering that takes place, and we want this to be
driven by the data as opposed to prior beliefs.

Note that we set the maximum number of clusters, C, at
20, but allowed clusters to be empty. As such we have
approximated the standard Dirichlet-process infinite
cluster model with a finite one (see, for example, Ohlssen
et al. 2007). The advantage of this construction is that it
can be easily coded in standard Bayesian modeling soft-
ware, such as WinBUGS (Spiegelhalter et al. 2003).

CATEGORICAL EXPOSURES

Exposures may be irregularly distributed, for example,
exposure data may contain some extremely high or low
exposure values, and we may therefore choose to catego-
rize the exposures. In this case, we will have Mp categories

for the pth exposure. We denote with �c the probability of

assignment to the cth cluster and let  denote the
probability that the pth covariate in cluster c is equal to x.

In other words, for each cluster, c, the parameters,  p =
1, …, P define the prototypical profile for that cluster. Our
basic mixture model for assignment is

COMBINATIONS OF CATEGORICAL AND 
CONTINUOUS EXPOSURES

In some instances, it will be desirable to model certain
exposures categorically and other exposures using contin-
uous distributions. In this case we can model categorical
exposures with latent underlying continuous distribution,
with threshold parameters used to determine the appro-
priate exposure category. This latent-variable approach to
modeling categorical and continuous data has been used
successfully in other contexts. (See, for example, Albert
and Chib 1993.)

FINDING CLUSTERING THAT BEST FITS THE DATA

One important aspect of our flexible Bayesian modeling
framework is that our model implementation allows the
number of air pollution exposure clusters to change from
iteration to iteration of the MCMC sampler, and this added
flexibility leads to a rich output that requires careful inter-
pretation. Therefore, we have developed procedures to
process the output of our method to make useful, interpre-
table inference.

There are two main areas of interest, namely: (1) find the
partition (grouping of exposures) that is most supported by
the data, and (2) assess uncertainty associated with clus-
ters of this best partition in a manner which exploits the
entire MCMC output of the sampler. Regarding the former,
we wish to find the general, typical, or best way in which
the stochastic algorithm groups profiles into clusters based
on multidimensional exposure patterns. This problem has
been addressed in the literature by many authors in the
context of mixture models (see, for example, Dahl 2006).
The technique involves constructing a probability matrix
with cells indicating the percentage of time that two expo-
sure profiles fall into the same cluster, and then examining
which partition of exposure profiles obtained at each itera-
tion of the sampler best matches this probability matrix.
This best partition will often have important substantive
meaning as it indicates which exposure patterns tend to
group together.

Given this typical or best grouping of exposure patterns,
we wish to examine the uncertainty associated with expo-
sure clusters in this best partition in a manner that exploits
the entire MCMC output of the sampler by exploiting
modern Bayesian model-averaging techniques. This is
important, since every data set (including noisy ones) will
exhibit a best clustering, and it is important to examine,
with proper consideration for uncertainty, the characteris-
tics associated with the exposure clusters present in any
chosen partition of the data set. Therefore, at each iteration
of the sampler, we average exposure cluster parameters for
all exposure profiles within a particular cluster in the best
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partition defined above. This approach yields a posterior
distribution for various cluster parameters that averages
over all the different clustering of profiles produced by the
MCMC algorithm. These posterior distributions can then
be used to assess which pollutants are most important
within a particular exposure cluster, and for some models,
assess the level of association between the exposure
cluster and the health effect in question.

MODELING APPROACHES: DATA ANALYSIS

Our approach has been demonstrated in a variety of con-
texts, which has led to substantively relevant analyses
associating pollution profiles and other relevant informa-
tion to deprivation and health-related outcomes. As such,
we present work funded by this grant into investigations
covering three main applications:

1. Associations between air pollution profiles and pov-
erty;

2. Spatially varying effects of PM2.5 on term low birth
weight (TLBW) (see Appendix A); and

3. A place-based approach to examining associations
between multipollutant exposure profiles and TLBW.

We chose to put the work corresponding to application 2
in Appendix A, as it represents single-pollutant modeling
but lays the framework for what is done in application 3.
We have chosen to disseminate all of this work to peer-
reviewed scientific journals. The material presented below
consists of work that has already been published, or is cur-
rently under review.

ASSOCIATIONS BETWEEN AIR POLLUTION PROFILES 
AND POVERTY IN LOS ANGELES COUNTY

Introduction

Growing health disparities exist in the United States be-
tween people with high SES and people who have a lower
SES or among people of color. These disparities translate
into higher rates for mortality, morbidity, and disability for
the lower SES groups and for people of color (Brulle and
Pellow 2006). Although these health disparities are fre-
quently attributed to individual health behaviors such as
smoking, individual factors account for only a fraction of
the overall inequalities between these groups (Lantz et al.
2001). As such, social epidemiology research has focused
on the effects of SES on many health outcomes (Kim and
Durden 2007), on differential access to health and social ser-
vices (Shumka and Benoit 2007), and on neighborhood or
community characteristics that may promote or adversely

affect health (Do et al. 2008). Researchers and policy mak-
ers concerned about environmental justice also investigate
whether disadvantaged groups experience higher environ-
mental exposures. These studies generally report that ar-
eas with a greater proportion of residents with incomes
near or below the poverty line, or who are not white, face
higher single and cumulative environmental exposures
(Brulle and Pellow 2006; Marshall 2008; Morello-Frosch et
al. 2001, 2002, 2011a). Environmental justice researchers
argue that such socially disadvantaged groups bear a
greater environmental exposure burden and are more sus-
ceptible to the effects of these exposures due to factors
such as psychosocial stressors, underlying health condi-
tions, and occupational exposures (Institute of Medicine
1999). These disparities in environmental exposures are
increasingly recognized as potential determinants of
health inequities (Finkelstein and Jerrett 2007; Morello-
Frosch and Jesdale 2006).

Methods

Here, we applied our air pollution profile approach that
examines associations between several components of air
pollution exposures and poverty. Consistent with the
methods described previously, we addressed these prob-
lems by using, as its basic unit of inference, a profile con-
sisting of a joint pattern of air pollution exposure values.
These profiles were grouped into clusters and associated
with poverty levels in LA County census tracts (CT),
which are small, relatively stable geographic areas for
which the U.S. Census Bureau publishes sample data; a CT
usually has a population between 2500 and 8000 people.
The multipollutant profiles examined consisted of
regional estimates of air pollution concentrations for
nitrogen dioxide (NO2), particulate matter � 2.5 µm in
aerodynamic diameter (PM2.5), diesel on-road exposure,
and diesel off-road exposure. Briefly, NO2 estimates were
obtained via a land use regression (LUR). The variables
used for NO2 model selection included land use informa-
tion (e.g., commercial and industrial), road network,
traffic, population distribution, physical properties, and
remote sensing-derived greenness and soil brightness.
Methods are described in detail by Su and colleagues
(2009a,b). The model was based on field measurements at
201 locations in LA. The measurements were obtained in
two seasons during summer 2006 and winter 2007, each
for a two-week period representing the seasonal mean.
These measurements were averaged to represent the
annual mean. Some monitors were stolen or vandalized,
leaving 181 sites for the analysis. Sixteen measurements
were chosen at random to use as cross-validation sites. The
measurements from the remaining 167 sites then were
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used as the dependent variables in a spatial LUR model
with traffic, land use, population, and physical geography
as predictors of pollution concentrations. The model was
highly predictive; the R2 between the field measured and
predicted pollutant concentration was 86% with similar
performance at the out-of-sample cross-validation sites
predictions. To estimate PM2.5 exposure, we interpolated
from 23 state and local district monitoring stations in the
LA basin for year 2000 with a universal kriging algorithm
(Jerrett et al. 2005).

On-road and off-road diesel exposures were estimated
through the Assessment System for Population Exposure
Nationwide, a model known as ASPEN (Version 1.1), with
a Gaussian dispersion that accounted for meteorological
conditions, wind speed, and atmospheric chemistry (U.S.
EPA 2000).

All exposure concentrations were obtained at the CT
level. The number of people living below the poverty level
were obtained for each CT from the U.S. Census Bureau for
the year 2000.

While the air pollution profile approach has already
been described previously, the specific implementation is
described below.

Exposure Profile Assignment Submodel Our basic data
structure consists of, for each CT, i, a covariate profile, xi =
(x1, x2, …, xP), where each covariate, xp, p = 1, …, P, within
each multipollutant profile denotes a measure of exposure
for pollutant p in area i. We first construct an allocation
submodel of the probability that any given area is assigned
to a particular cluster. Profiles of areas are grouped into
clusters, and an allocation variable, zi = c, indicates the cth

cluster to which area, i, belongs. Our assignment submodel
is then

where f(xi |µc, �c), denotes a multivariate normal distribu-

tion with location parameters  and cova-

riance matrix �c.

Because it is possible that clusters will be empty, we
cannot assign noninformative, flat, priors to cluster parame-
ters. Therefore, we adopt an empirical Bayes approach and
assign a prior for the mean of each pollutant across clusters

as , where each vp is set to the observed

empirical average, x̅p, but each �p is set equal to the square
of the empirical range squared as suggested in Richardson

and Green (1997). Similarly, we assign a Wishart prior for

the precision matrices as  where ρ = P.
Since under this formulation the mean of the Wishart dis-

tribution is  we set R to the empirical vari-

ance, namely, . Note in our model formulation cluster
hyperparameters are assumed to come from distributions
centered on empirical averages. Thus cluster-specific
parameters are used to represent subgroups that deviate
from a single empirically derived population.

Poverty Submodel This submodel uses the allocation
variables defined for the exposure profile submodel above,
namely, for each CT, i, zi = c, c = 1, …, C, indicates the
cluster to which individual i belongs. However, in this
submodel, the cth cluster is assigned a random-effect
parameter that measures the cluster’s influence on the out-
come (on the logistic scale) denoted as 	c. Since it is pos-
sible for a particular 	c to be associated with an empty
cluster, these parameters must be assigned a proper prior.
Therefore we assign to each 	c a proper t density function
with 7 degrees of freedom and scale 2.5 as a prior, as dis-
cussed in Gelman and colleagues (2008), which corre-
sponds to the baseline case of one-half of a success and
one-half of a failure for a single binomial trial with proba-
bility p = logit�1(	c). Our response model, which links the
clusters with the number of individuals living below the
poverty line, yi for CT, i, is simply yi ~ Bin(ni, pi), with

where 
i ~ N(0, �2) represents unexplained CT-level varia-
tion in the outcome not explained by air pollution expo-
sures, ni indicates the number of individuals in CT, i, and
pi indicates the probability that a randomly chosen indi-
vidual in CT, i, is living below the poverty line.

At each iteration of the sampler, we define, V	 =

, and V
 = Var(
i) across all regions, so we can

then obtain a posterior distribution for the overall amount
of variation in poverty explained by air pollution clusters
versus unexplained, residual error, defined as

� = V	/(V	 + V
). (5)

Note that the posterior distribution for � is not based on the
best clustering referred to earlier, but rather represents the
ratio obtained by model averaging through the entire
MCMC output, thus properly taking into account uncer-
tainty regarding cluster assignment and the number of
clusters used.

       

  1
 , ,                                      (3)

C

i c i c c
c

f f


 x x� � �

   

1, , P
c c c� � �

 ,  p p p
c N� � �

    

1 , ,c Wish R� �
 

    

1 1,cE R  

ˆR 


      logit ,                                                       (4)
ii z ip 	 
 

 
izVar 	



9

J. Molitor et al.

9

At each iteration of our algorithm, CTs are grouped into
a relatively small number of clusters with a set of parame-
ters associated with each cluster. However, as cluster
membership and the number of clusters used changes from
iteration to iteration, the iterative process will create, for
each CT, a unique posterior distribution for each parameter
of interest, such as air pollution risk and modeled expo-
sure parameters (NO2, PM2.5, on-road and off-road diesel).
This feature of using shared cluster parameters estimated
at each iteration of the model-fitting process to form
unique posterior distributions at the “individual” level is
well known as Bayesian partitions models. For an over-
view of these models see Denison and Holmes (2001).

Results

Since we are interested in the joint distribution of expo-
sures, we examine the best clustering obtained using the
profile-based Bayesian modeling approach with the
number of individuals living below the poverty line per
CT as the outcome. The best clustering is displayed in
Figure 1, with mean values and posterior credible inter-
vals (CIs) listed in Table 1 and graphically displayed in
Figure 2. In Table 1, clusters are sorted according to pov-
erty risk. Table 1 includes the value of � = V	/(V	 + V
) that
indicates the proportion of variance explained by the air
pollution clusters relative to the residual error. Clusters

Figure 1. Best clusters as defined in Methods.
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Table 1. Modeled Values for Air Pollution Clusters and Poverty Risk a  

Cluster n

Air Pollution Clustersb

Poverty
Risk

NO2
ppb (95% CI)

PM2.5
µg/m3 (95% CI)

Road Diesel
µg/m3 (95% CI)

Off-Road Diesel
µg/m3 (95% CI)

1 192  15.50 (14.94 to 16.13)  17.00 (16.63 to 17.39)     0.45 (0.43 to 0.49) 1.12 (1.04 to 1.20) 0.05 (0.04 to 0.06)
2 12  22.08 (19.70 to 24.19)  19.33 (18.16 to 20.34)     1.37 (0.96 to 1.81) 1.82 (1.22 to 3.06) 0.08 (0.05 to 0.13)
3 203  22.18 (21.40 to 22.90)  20.18 (19.89 to 20.45)     0.96 (0.90 to 1.01) 1.09 (1.04 to 1.16) 0.10 (0.10 to 0.11)
4 543  21.82 (21.55 to 22.09)  21.22 (21.10 to 21.33)     0.60 (0.59 to 0.62) 1.08 (1.06 to 1.10) 0.11 (0.10 to 0.11)
5 72  16.77 (15.56 to 18.02)  12.02 (10.92 to 13.27)     0.33 (0.29 to 0.38) 0.62 (0.53 to 0.73) 0.13 (0.12 to 0.16)

6 178  19.95 (19.38 to 20.61)  18.46 (18.16 to 18.77)     0.59 (0.56 to 0.65) 1.54 (1.41 to 1.67) 0.16 (0.15 to 0.18)
7 285  26.69 (26.22 to 27.14)  21.68 (21.55 to 21.81)     1.21 (1.15 to 1.26) 1.29 (1.26 to 1.33) 0.23 (0.22 to 0.25)
8 479  24.18 (23.90 to 24.47)  21.70 (21.63 to 21.77)     0.72 (0.70 to 0.74) 1.42 (1.39 to 1.46) 0.25 (0.24 to 0.26)
9 38  20.64 (19.42 to 21.84)  16.67 (16.07 to 17.30)     0.90 (0.74 to 1.08) 7.91 (6.53 to 9.27) 0.28 (0.24 to 0.32)

10 36  32.60 (30.42 to 34.81)  21.94 (21.58 to 22.31)     2.49 (2.10 to 2.89) 1.80 (1.60 to 2.03) 0.34 (0.29 to 0.38)

Overall 
mean

22.33 20.25  0.77 1.36 0.17

a Percentage of poverty explained by air pollution clusters: � = 0.79 (0.47 to 0.97). Bold rows indicate clusters with statistically significant poverty risks. 

b 95% CI = 95% credible interval. 

with statistically significant associations with poverty are
displayed in Figure 3.

In Table 1, the value of ρ = 0.79 (0.47–0.97) reveals that
variation in air pollution exposures throughout LA County
coincide with variation in poverty levels. If we examine
the clusters significantly associated with poverty in Figure
3, we see that populations living in the port neighborhoods
of LA and Long Beach mainly suffer from nonroad diesel
impacts, probably from goods movement vessels (cluster
9). Further, the roadways (cluster 7) exhibit higher than
average concentrations of NO2, PM2.5, and road diesel,
while the high-traffic area of downtown LA (cluster 10)
exhibits higher than average concentrations of all pollut-
ants. These results reveal that people who live in the port
neighborhoods of LA and Long Beach, the main artery near
those neighborhoods, the LA downtown core area, and the
central areas not only suffer from poverty but also face sig-
nificant pollution impacts from multiple air pollutants.

In general, the results depicted in Table 1 and Figure 2
reveal that areas with higher concentrations of air pollu-
tion exposures are associated with higher levels of poverty.
However, the association between air pollutants and pov-
erty is not entirely linear. For example, cluster 9 (LA and
Long Beach ports) has a higher poverty risk than cluster 7
(roads), 0.28 (0.24–0.32) versus 0.23 (0.22–0.25). While the
marginal CIs for cluster risks just barely overlap, the joint

probability that the risk for cluster 9 is greater than cluster
7 is significant as Pr(p9 > p7) = 0.99. As one might expect,
cluster 9 with its higher poverty risk has much higher con-
centrations of off-road diesel emissions, 7.91 µg/m3 (6.53–
9.27), compared with cluster 7, 1.29 (1.26–1.33), with its
lower poverty risk. However cluster 9 has lower concentra-
tions of NO2 (ppb), PM2.5 (µg/m3), and on-road diesel
(µg/m3), with exposure values and CIs of 20.64 (19.42–
21.84), 16.67 (16.07–17.30), and 0.90 (0.74–1.08) com-
pared with exposure values for cluster 7 of 26.69 (26.22–
27.14), 21.68 (21.55–21.81), and 1.21 (1.15–1.26). Thus,
what is different between clusters 9 and 7 cannot be sum-
marized by an additive effect of all pollutants, but is
instead related to a contrast between off-road diesel and
other pollutants. Similar remarks can be made for other
clusters. For example, the relatively higher poverty risk
cluster 10 (downtown) has higher concentrations of NO2,
on-road diesel emissions, and off-road diesel emissions,
32.60 (30.42–34.18), 2.49 (2.10–2.89), and 1.80 (1.60–2.03),
compared with lower emission concentrations corre-
sponding to the relatively lower poverty risk cluster 8 (cen-
tral LA, off-roads), 24.18 (23.90, 24.47), 0.72 (0.70, 0.74),
and 1.42 (1.39–1.46). The concentrations of PM2.5, however,
are nearly the same and not statistically different, with
values of 21.94 (21.58–22.31) for cluster 10 versus 21.70
(21.63–21.77) for cluster 8, despite differences in poverty
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Figure 2. Best cluster summaries (Nclusters = 10). These boxplots are color coded to indicate profile cluster distributions considered high exposures (red),
average exposures (green), and low exposures (blue). Black lines indicate overall averages. Left vertical panels: (top) poverty risk associated with each
cluster, (center) average poverty risk associated with each cluster, (bottom) number of CTs in each cluster. Right vertical panels: (top four) cluster means for
each pollutant, (bottom four) cluster standard deviations for each pollutant.



1212

Modeling of Multipollutant Profiles and Spatially Varying Health Effects

Figure 3. Best clusters with a statistically significant association with poverty.
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levels. Therefore, while it might be generally true that
increased poverty is associated with increased air pollu-
tion exposures, the nature of these associations in LA
County is complex and nonlinear.

Discussion

There has been increased interest in the air pollution lit-
erature in the examination of the combined effect of air
pollution and SES. In this section of the report, we exam-
ined the joint effects of air pollution mixtures to help iden-
tify vulnerable populations in LA County. The results
showed a general relationship between elevated levels of
air pollution exposures and poverty. The results also
revealed that the relationship is complex in that poverty
levels do not increase linearly with increased levels of
exposure, as is assumed when such relationships are
examined using linear additive regression models. The
approach employed here examined the combined effects
of several air pollutants on poverty, revealing vulnerable
populations were not always subject to elevated levels of
different exposures uniformly, but rather different combi-
nations of exposure levels were associated with different
subgroups of poverty populations.

The approach used here clusters exposure profiles into
risk groups that were then associated with poverty. The
flexible MCMC-based parameter estimation techniques
allowed the assignment of exposure profiles to risk groups
and the number of risk groups to vary throughout the run
of the sampler. The results displayed exploratory best clus-
tering of profiles along with more robust results obtained
from the model averaging through the clustering patterns
obtained from the sampler. The approach identifies cumu-
lative environmental hazard inequalities within a region at
the CT level. It further extends the framework that identi-
fied cumulative environmental risks at the regional level
(Su et al. 2009c).

Not surprisingly, the results often display a decidedly
nonlinear pattern, as some clusters display extremely high
values for one pollutant but average or below average
values for other pollutants. Unlike a conventional linear
model approach, the clustering approach applied here
allows one to examine the manner in which pollutants
vary together.

The empirical results we observed here are broadly con-
sistent with the literature on environmental hazard in-
equalities in the United States (see Morello-Frosch et al.
[2011a] for a recent review). Substantial evidence now sug-
gests that numerous environmental hazards, including air
pollution, are worse in poor neighborhoods and places
with high proportions of racial or ethnic minority groups.
In an international context, the findings from this study fit

within a fairly consistent pattern, suggesting that air pollu-
tion and other environmental risks remain unequally
distributed with an inverse social gradient. Even in eco-
nomically advanced countries with many income and so-
cial equalization programs, universal access to health care,
and some of the highest life expectancies, air pollution and
other environmental risks remain unequally distributed
with an inverse social gradient. Unequal distributions of
traffic pollution by race and SES have been documented, al-
beit with more mixed results than in the United States.
Pearce and colleagues (2006) used atmospheric dispersion
modeling to demonstrate a relationship between traffic pol-
lution and disadvantaged social groups in New Zealand,
finding higher levels of air pollution in areas of relatively
high poverty. In England, Brainard and colleagues (2002)
found that carbon monoxide (CO) and NO2, both markers
of traffic pollution, related strongly to racial and ethnic mi-
nority status and to poverty. In Sweden, Chaix and col-
leagues (2006) investigated the distribution of NO2 in
relation to young children. They reported higher concen-
trations of NO2 for children living in poorer housing and
neighborhoods. A Canadian study based on a LUR predic-
tion of NO2 in Toronto reported that lower SES was related
to higher air pollution exposures, but there were excep-
tions that contrasted with the U.S. literature (Jerrett and
Finkelstein 2005). For example, in Toronto racial minority
groups tended to be less exposed to pollutants than were
other groups, probably due to the city’s role as a gateway
city for highly-educated immigrants. Dwelling values also
took an unexpected positive sign, which may have been
partly explained by the dense urban structure of the down-
town area and the relatively high traffic and land rents in
this district. Similar diversions from the pattern were re-
ported in an Italian study (Cesaroni et al. 2010). These sub-
tle differences highlight the need to examine the specific
intricacies of place, but also to employ methods used in
this paper, which may elucidate more subtle patterns and
relationships.

In this section, we have demonstrated the profiling
method in exploring the joint distribution of poverty and
several important air pollutants. Such an investigation is
important, since, at present, current public health protec-
tions do not take into account these cumulative exposures
and susceptibilities, which may be significant contributing
factors to observed health inequalities that follow social
gradients.
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A PLACE-BASED APPROACH TO EXAMINING 
ASSOCIATIONS BETWEEN MULTIPOLLUTANT 
EXPOSURE PROFILES AND TLBW

Introduction

Increased prevalence of TLBW has been linked with in-
creasing exposures to various outdoor air pollutants in-
cluding NO2, nitric oxide (NO), and PM2.5 (Geer 2014; Ritz
and Wilhelm 2008). Yet most of this evidence has relied
heavily on single-pollutant exposure modeling that does
not account for multipollutant mixtures (Ritz and Wilhelm
2008). A few studies (Brauer and Tamburic 2009; Gouveia
et al. 2004; Wilhelm et al. 2011a) have examined exposures
to multipollutant mixtures in air as they relate to adverse
birth outcomes, however, these studies are limited in their
ability to infer which pollutant or combination of pollut-
ants are most hazardous regarding associations with birth
outcomes (Ritz and Wilhelm 2008), nor have they investi-
gated the spatial patterning of multipollutant-related birth
outcome risks.

A large body of evidence indicates the existence of large
within-city variations in air pollution concentrations and
recent research further demonstrates that pollutant con-
centrations and their chemical components and sources
are correlated spatially within urban regions (Geer 2014;
Hasheminassab et al. 2014; Houston et al. 2014; Levy et al.
2013). Moreover, air pollution in complex urban environ-
ment such as LA has been characterized by highly local-
ized pollutant concentration gradients and complex
chemical mixtures (particularly related with distances
from major roadways). The variety of factors that deter-
mine such complex gradients and pollutant mixtures in
urban regions include local traffic volumes and conges-
tion, the types of fuel and engines, operating conditions of
emitting sources, background ambient air pollution levels,
local meteorology, chemical reactions between pollutants,
types of land use, and local topographies (Austin et al.
2012; Boehmer et al. 2013; Cho et al. 2009; Zhang and Bat-
terman 2013). The chemical species itself is also an impor-
tant determinant regarding pollutant spatial dispersal and
thus variations in exposure levels within urban communi-
ties. For instance, particulate matter (PM) pollution is
often observed to have a more homogenous distribution
over an urban area compared to nitrogen oxides (NOx) that
display a much larger degree of heterogeneity in an urban
environment (Geer 2014). Thus, it can be expected that
NOx exposure gradients are more likely to be locally influ-
enced by distance to major roadways, while PM exposure
gradients are less likely to be influenced by distance from
roadways compared to NOx. However, different PM frac-
tion sizes are likely to be dispersed differentially based on

distances from major roadways (Buonocore et al. 2009;
Kuhn et al. 2005; Zwack et al. 2011).

Despite such marked differences in terms of spatial het-
erogeneity among PM concentrations, different PM frac-
tion sizes, and NOx species, there remains a large degree of
correlation among the various air pollutants (Levy et al.
2013). Correlations among various outdoor air pollutants
are problematic within the context of standard regression
techniques when relating chronic exposures with respect
to health outcomes (Mauderly et al. 2010), particularly
because health effects estimates may become unstable
under such circumstances. This has created a major epide-
miologic impediment in our knowledge of multipollutant
health effects and thus hampers our ability to disentangle
whether and which pollutants act individually or together
(either in synergism or antagonism) to contribute to health
risks (Mauderly and Samet 2009).

Not only are outdoor air pollutants highly collinear with
the potential for interaction on health effects, but the rela-
tive toxicity of individual pollutants such as fine PM may
or may not differ by distance to major roadways based on
differences in the physicochemical characteristics of the
particulates (Buonocore et al. 2009; Cho et al. 2009; Kuhn
et al. 2005; Wagner et al. 2012). Recent evidence suggests
that birth outcomes may be particularly sensitive to var-
ious components and sources of PM pollution (Bell et al.
2010; Laurent et al. 2014; Wilhelm et al. 2011b). Further,
the potential toxicity of various multipollutant mixtures
may well be differential across an urban environment
(Geer 2014).

It is also well recognized that disadvantaged socioeco-
nomic and demographic groups in urban settings are more
likely to live in closer spatial proximity to sources of major
traffic-related air pollutants and off-road air pollutants
(i.e., industrial), and are thus exposed to higher concentra-
tions of outdoor air pollutants and complex urban air pol-
lution mixtures (Geer 2014; Su et al. 2012). However, the
general positive relationship that has been observed
between increased sociodemographic disadvantage and
higher traffic and off-road sources of outdoor air pollution
exposures may be nonlinear and spatially correlated, as
recent research data from LA County in this report would
suggest. Also, air pollution and birth outcomes research
studies have generally been limited in terms of accounting
for spatial clustering of multiple neighborhood-level vul-
nerabilities (i.e., race–ethnicity, poverty, and housing con-
ditions, etc.) that could confound or interact with
localized multipollutant exposure–response relationships
(Geer 2014; Morello-Frosch et al. 2011b; Ponce 2005).
Since health research data indicates that neighborhood
contextual factors can influence the spatial patterning of
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adverse birth outcomes (English et al. 2003; Messer et al.
2006; Metcalfe et al. 2011), we included contextual census
block group (CBG)-level variables as clustering covariates.
A CBG is the smallest geographical area for which the U.S.
Census Bureau publishes sample data; it usually has a
population between 600 and 3000 people.

The work in this section addresses spatial patterns of
multipollutant exposure profile clusters and their relative
association with TLBW. This place-based approach is in-
tended to highlight the distinct spatial patterning of multi-
pollutant effects and how these exposures occur within
the context of clustered indicators of neighborhood-level
contextual factors such as SES, housing characteristics,
and neighborhood race and ethnicity composition, which
may confound or exacerbate relationships between multi-
pollutant exposures and adverse health effects.

Methods

Institutional Review Board Approval Human subjects
research was approved through the University of Cali-
fornia, Los Angeles’ Office of the Human Subjects Protec-
tion Program, the California Committee for the Protection
of Human Subjects, and the University of Southern Cali-
fornia’s Office for the Protection of Research Subjects.

Study Population and Birth Outcomes Electronic birth
certificates from the California Department of Public Health
were collected for data on birth weight and individual-level
covariates. Data was available for births between 1/1/1995
and 12/31/2006 in LA County (N = 1,518,676). We restricted
the birth certificate data set to the years 2000–2006 (N =
804,726) to better align with our available air pollution esti-
mates (described below). Individual data from the birth
records included length of gestation, maternal age, race and
ethnicity, education, total number of previous maternal
births, and residential address, along with information on
the infant and birth (abnormalities, birth season, gestational
age at birth, birth weight, and baby’s sex). The data set was
restricted to singleton births without apparent abnormali-
ties, while births with extreme gestational days (less than
140 days or greater than 320 days) or birth weight (< 500g or
> 5000g) were excluded from the analysis as such extreme
values are likely attributable to recording errors. We defined
TLBW as full term (� 259 gestation days) infants with a
birth weight < 2500g. Geocoding of residential addresses is
explained in Goldberg and colleagues (2008).

Exposure Estimation Two separate LUR models esti-
mated individual-level exposures for PM2.5, NO, and NO2
(Beckerman et al. 2013ab; Su et al. 2009b). LUR exposure
predictions for NO and NO2 were based on traffic volumes,

truck routes and road networks, land use data, satellite-
derived vegetation greenness and soil brightness, truck
route slope gradients, and air monitoring data collected
during 2-week time periods in the summer of 2006 and the
winter of 2007 (Su et al. 2009b). The PM2.5 exposure esti-
mates were based on a LUR model that utilized long-term
governmental monitoring data of PM2.5 measurements and
a combination of remote sensing data and atmospheric
modeling (Beckerman et al. 2013b). A machine learning
deletion/substitution technique (Beckerman et al. 2013a)
assessed as many as 70 covariates to develop the final
PM2.5 LUR model, such as land use data (i.e., agricultural,
barren, all developed land, high-density development,
green space, water, and wetland), long-term traffic counts
(1990–2001), and road networks from the year 2000 (Beck-
erman et al. 2013a; Jerrett et al. 2013). All of the available
data from the LUR model estimates were then averaged over
CBGs in order to develop geographically bounded (or place-
based) air pollution exposure profiles. Data aggregation at
the CBG-level of the individual estimates was performed
since we were interested in assessing between neighbor-
hood multipollutant exposure-related TLBW risks.

Bayesian Profile Regression We implemented the pro-
file regression using the PReMiuM package in R (Liverani
et al. 2014), which implements the approach described
previously but uses an infinite cluster version of the
Dirichlet-process model. Since we were interested in
obtaining clustering that best fits the data for subregions
within the LA County area, we utilized a feature of the
PReMiuM package that excludes the outcome variable
from the profile regression model (Liverani et al. 2014). We
relied on hard clustering (Fang et al. 2011) in the sense
that the best clustering assignments derived from the
Bayesian averaging process were used as input variables
for the multilevel random-effects model. Briefly, for each
CBG, j, a covariate profile is defined as xj = (x1, x2, …, xp),
where every covariate, xp, p = 1, …, P, within each profile
signifies a level of exposure for covariate p in region j. The
primary model for cluster profiles was defined by a multi-
variate normal mixture model.

We performed three separate profile regressions in order to
develop a set of three separate exposure profiles clusters to be
fit in the TLBW risk model. The first clustering procedure de-
veloped multipollutant-only exposure profile clusters, while
the second developed contextual-only exposure profile clus-
ters. Lastly we fit the pollutants and contextual variables
jointly. The covariate pollutants for our multipollutant-only
exposure profile regression included average CBG concen-
trations for NO2, NO, and PM2.5. The contextual-only expo-
sure profile regression included CBG-level race–ethnicity
(% nonHispanic white, % nonHispanic black, and % His-
panic), median household income, and percentage of
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homes older than 1950. Even though our multivariate
model appropriately adjusts for individual-level maternal
race–ethnicity, CBG-level racial and ethnic composition is
included as a contextual covariate because some birth out-
comes research indicates that area-level racial and ethnic
composition may act as a contextual risk factor for TLBW
— separate from an individual’s race–ethnicity (Debbink
and Bader 2011). Furthermore, while our multivariate
model also adjusts for individual-level SES (i.e., maternal
education), we similarly used a contextual SES variable in
the clustering procedure, under the same rationale that
area-level SES acts as a contextual risk factor for TLBW
(Grady 2006, 2011). Furthermore, the percentage of older
housing for CBGs is included since disparities in housing
quality, housing characteristics, or both may act as an im-
portant contextual risk factor in TLBW risk (Ghosh et al.
2013; Grady 2011). Finally, our last profile regression clus-
tering procedure fit each of the aforementioned pollut-
ants and contextual variables jointly, which we denote as
contextual–multipollutant exposure profile clusters. Each
of these exposure profile clusters were then analyzed as
random effects in two separate multilevel risk models de-
scribed in turn. Given computational challenges, we pre-
clustered exposure profiles and then used the R-INLA
(integrated nested Laplace approximations in R) package
to implement the Bayesian multilevel random-effects
model described in Equation 6. R-INLA estimates Bayesian
posterior marginal distributions (Rue et al. 2009, 2014)
without relying on computationally intensive MCMC tech-
niques, which is important given the dimensionality of our
data set. Thus, a fully joint Bayesian modeling approach
was not taken in this application.

Multilevel Risk Model Our multilevel logistic regression
model was set in a Bayesian framework with the multipol-
lutant exposure profile clusters used as a random-effect
variable in the regression equation, along with spatially
structured and independent error terms fit as random
effects. The model specification is summarized below:

where pi denotes the logit probability of TLBW (yi = 1) for

individual i, V�� represents the individual-level and CBG-
level covariate fixed effects, 

represents the random effects for the multipollutant clusters,
and

denotes random effects for contextual clusters. We use the
notation k[i] to denote the pollutant profile group k to
which individual i belongs and l[i] to denote the contextu-
al group l to which individual i belongs. Thus, each multi-
pollutant random error term represents the variation in
TLBW prevalence in the multipollutant profile clusters
and likewise each contextual random error term represents
the variation in TLBW in the contextual cluster.

Here Sj and 
j denote spatial and independent residual
error terms, respectively, with the restriction 
jSj = 0
imposed for indefinability reasons. While the independent
error term is defined in the standard way as 
j ~ N(0, �2),
the spatial error term is defined as

where the weights wj,k are elements of the zero-one neigh-
borhood adjacency matrix defined to be equal to one when
CT’s i,k are adjacent and zero otherwise. This approach is an
implementation of the Besag-York-Mollé model (Besag et al.
1991) and has been successfully employed in a variety of
exposure–health association studies. (See, for example,
Molitor et al. 2007.) Our second multilevel model employed
a random effect for the joint contextual–multipollutant pro-
file clusters using the same basic model delineated above,
but we have one set of random effects, �joint.

Individual-level covariates adjusted for in our statistical
model were maternal factors including age (< 20 years, 20–
24 years, 25–29 years, 30–34 years, � 35 years), race–
ethnicity (nonHispanic white, nonHispanic black, His-
panic, Asian, and Other race), highest education level
attained (< 9 years, 9–12 years, 13–15 years, and � 16
years), parity, along with infant factors such as gestational
days, gestational days squared, and sex (male or female).

Given the large size of our data, we preclustered expo-
sure profiles and then used the R-INLA package to imple-
ment the Bayesian multilevel random-effects model
described earlier in equation 6. R-INLA estimates Bayesian
posterior marginal distributions (Rue et al. 2009, 2014)
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without relying on computationally intensive MCMC tech-
niques, which is important given the dimensionality of our
data set.

Assessing Uncertainty in Multipollutant Random 
Effects Since our analysis is set in a Bayesian framework,
we are able to assess the uncertainty with respect to rela-
tive TLBW random-effects estimates attributable to multi-
pollutant profiles. To assess uncertainty we calculated the
posterior probabilities that a profile’s random effect was
greater than zero. The specific posterior probabilities were
subsequently mapped in ArcGIS to explore the spatial dis-
tribution of these random effects on TLBW risks.

Results: Separate Multipollutant and Contextual Clusters

The study population included birth weight data on
804,726 full term births between 2000–2006, with an
overall TLBW prevalence of 2.07% (95% CI: 2.04–2.11, n =
16,694). Our study also included complete information on
air pollution estimates for 899,554 individuals, with
estimated individual average and interquartile range (IQR)
for NO2, NO, and PM2.5 of 22.49 ppb (IQR: 19.68–25.30),
21.84 ppb (IQR: 16.05–26.11), and 16.94 µg/m3 (IQR:
15.96–18.18), respectively.

There was extensive evidence for correlation between
average CBG-level data for the pollutants and contextual
variables considered in our study (Figure 4). Correlation

Figure 4. Correlation matrix of CBG-level air pollutants and contextual variables.
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between mean CBG-level NO2 and NO was highly positive,
while positive correlations between PM2.5 and NO2 and
between PM2.5 and NO were much weaker. Correlation be-
tween CBG median income and NO2 and NO were moder-
ately negative, while the negative correlation between
PM2.5 and median income was weak. The correlation be-
tween percentage of homes older than 1950 with median
income was negative, while correlations between study air
pollutants and older housing were all positive; however,
positive correlations were much stronger between the NOx
species and older housing compared to PM2.5 and older
housing. Percent Hispanic had the strongest positive corre-
lations for all study pollutants, whereas percent nonHispan-
ic white was negatively correlated with study pollutants.
Percent nonHispanic black and percent Hispanic were sim-
ilarly positively correlated with percentage of older homes

per CBG, whereas percent nonHispanic white was negative-
ly correlated with percentage of older homes.

Formation of Multipollutant Clusters The multipollutant
profile regression identified 15 distinct multipollutant
exposure profile clusters from the 6280 CBGs for which
there were complete air pollution data. Summary statistics
for mean and IQR CBG-level concentrations for each pol-
lutant are provided in Table 2, with graphical summaries of
each pollutant further summarized in Figure 5A. According
to Figure 5A, the high NO2 concentration clusters (red box-
plots) were cluster numbers 3, 7, 10, 11, and 15, whereas
high NO concentration clusters were clusters 3, 7, 10, 11,
13, 14, and 15. The high PM2.5 concentration clusters were
clusters 7, 8, 9, 10, 11, and 15. Just four of the 15 pollutant
profile clusters exhibited high exposure concentrations for

Table 2. Summary Statistics of CBG-level Pollutant Concentrations for Multipollutant Exposure Profile Clusters

Pollutant 
Cluster 

CBG
(n) PM2.5 µg/m3 (IQR) NO2 ppb (IQR) NO ppb (IQR)

1 283 13.99 (13.01 to 15.00) 19.98 (18.53 to 21.53) 11.63 (9.80 to 13.53)
2 224 14.29 (12.78 to 14.93) 21.67 (18.99 to 24.53) 19.95 (15.58 to 24.45)
3 550 14.95 (14.65 to 15.26) 26.46 (24.67 to 28.05) 25.52 (20.79 to 28.72)

4 166 11.74 (10.29 to 13.21) 13.98 (12.96 to 13.40) 8.47 (6.91 to 10.27)
5 684 16.03 (15.43 to 16.53) 20.76 (19.72 to 21.83) 19.99 (18.66 to 21.27)
6 1289 17.06 (16.56 to 17.53) 21.96 (19.88 to 24.20) 17.27 (14.28 to 20.32)

7 579 17.56 (17.02 to 18.03) 28.55 (26.96 to 36.27) 34.35 (30.09 to 37.70)
8 358 19.29 (18.88 to 19.65) 16.74 (15.42 to 18.23) 13.17 (11.39 to 15.31)
9 223 17.49 (17.10 to 17.93) 14.81 (13.16 to 16.92) 12.90 (10.14 to 15.43)

10 1667 18.22 (17.87 to 18.53) 23.48 (21.99 to 24.97) 24.71 (22.07 to 27.37)
11 58 17.32 (16.99 to 17.48) 38.82 (35.73 to 40.38) 58.50 (52.65 to 65.57)
12 29 10.36 (9.33 to 11.01) 11.38 (6.52 to 15.29) 13.18 (7.92 to 18.60)

13 58 16.71 (16.24 to 16.99) 14.98 (14.18 to 15.84) 28.15 (22.00 to 33.17)
14 21 17.37 (16.60 to 18.19) 15.76 (14.99 to 16.72) 75.67 (64.46 to 94.39)
15 91 22.95 (22.12 to 23.91) 28.75 (27.10 to 30.37) 25.61 (23.71 to 27.85)

Overall (N = 6280) 16.94 (15.96 to 18.18) 22.49 (19.68 to 25.30) 21.84 (16.05 to 26.11)
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Figure 6. Spatial distributions of exposure profile clusters. A: multipollutant exposure profile clusters; B: contextual exposure profile clusters; 
C: joint contextual–multipollutant exposure profile clusters. (Figure continues next page.)

each pollutant considered, which were clusters 7, 10, 11,
and 15, whereas profile clusters 1, 2, 4, 5, and 12 exhibited
low concentrations of exposure for all pollutants (blue
boxplots). In addition, the spatial distributions of each
multipollutant profile cluster is mapped in Figure 6A. The

clusters with elevated concentrations for all pollutants
were located within Central LA and South-Central LA
(clusters 7, 10, and 11) and portions of East LA County
(cluster 15).
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Formation of Contextual Clusters The contextual pro-
file regression further identified 14 distinct exposure pro-
file clusters. According to Figure 5B, the low income
contextual clusters (blue boxplots) were cluster numbers
2, 5, 6, 7, 8, 9, 11, and 12, whereas high income clusters
(red boxplots) were contextual clusters 1, 3, and 4. The
high percentages of older housing stock were clusters 1, 2,
6, 7, 8, 10, 11, 13, and 14, whereas contextual clusters 3, 4,
5, 9, and 12 had low percentages of older housing stock.
The clusters with elevated percentage nonHispanic black
were clusters 5, 6, 11, 12, 13, and 14. For nonHispanic
white we find elevated percentages within clusters 1, 3, 9,
and 10. The clusters with elevated percentage Hispanic
include clusters 6, 7, 8, 9, and 12. The spatial distributions
of each contextual profile cluster is mapped in Figure 6B.

Regression Results

Fixed Effects Results The fixed effects for contextual
factors and individual-level variables are summarized in
Table 3. Individual-level covariates associated with the

odds of TLBW were sex of infant, maternal parity, age,
race–ethnicity, education level, gestational days, and ges-
tation squared. A decrease in median household income
and an increase in the percentage of homes older than
1950 were each independently associated with increased
odds of TLBW (data not shown).

Multipollutant Cluster Random Effects For each multi-
pollutant cluster, the prevalence of TLBW along with the
random-effect estimates and their respective probabilities
for an effect above zero are presented in Table 4. According
to the random effects portion of our multilevel hierarchical
model, after adjusting for the individual and contextual
covariates indicated above, mothers residing in cluster 7
had the highest probability (96.8%) of having a random
effect above zero. Mothers from clusters 10, 11, and 15 had
an 80.8%, 85.4%, and 89.4% probability of having random
effects above zero, respectively. All other cluster-specific
effects were characterized by probabilities below 80% for
an effect above zero (Table 4).

(Figure 6 continued from previous page.)



2222

Modeling of Multipollutant Profiles and Spatially Varying Health Effects

Table 3. Fixed Effects Odds Ratios of TLBW for Contextual CBG-Level and Individual-Level Covariates (N = 804,726)

Individual-Level Covariates Odds Ratio 2.5% Quantile 97.5% Quantile

Female 1.45 1.40 1.49
Parity 0.59 0.57 0.61
Maternal age

< 20 yr 1
20–24 yr 0.97 0.92 1.03
25–29 yr 0.91 0.85 0.96
30–34 yr 0.91 0.86 0.97
� 35 yr 1.07 1.00 1.14

Maternal education
0–8 yr 1
9–12 yr 0.90 0.86 0.95
13–15 yr 0.75 0.71 0.80
� 16 yr 0.67 0.62 0.71

Race and ethnicity
nonHispanic white 1
Hispanic 1.08 1.02 1.15
nonHispanic black 2.16 2.01 2.32
Asian 1.41 1.31 1.52
Other 1.82 1.68 1.97

Gestation (days) 0.32 0.30 0.33
Gestation-squared 1.0019 1.0018 1.002

Table 4. Prevalence of TLBW for Multipollutant Clusters and Model Results for Multipollutant Exposure Profile Cluster 
Random Effects (N = 804,726)

Cluster 
Births

(n)
TLBW

(n)
% TLBW
(95% CI)a

Cluster Effect Size
(95% CI)a

Probability
(Cluster Effect > 0)

1 23,946 381 1.59 (1.44 to 1.76) �0.117 (�0.245 to 0.009) 0.033
2 35,297 623 1.77 (1.63 to 1.91) �0.127 (�0.242 to �0.012) 0.015
3 70,534 1,400 1.98 (1.88 to 2.09) �0.017 (�0.119 to 0.084) 0.368

4 18,364 282 1.54 (1.37 to 1.72) �0.030 (�0.173 to 0.111) 0.336
5 73,794 1,796 2.43 (2.33 to 2.55) 0.037 (�0.063 to 0.136) 0.766
6 154,954 3,017 1.95 (1.88 to 2.02) 0.015 (�0.077 to 0.107) 0.625

7 89,022 2,100 2.35 (2.26 to 2.46) 0.092 (�0.005 to 0.188) 0.968
8 42,117 750 1.78 (1.66 to 1.91) �0.040 (�0.153 to 0.072) 0.240
9 20,628 339 1.64 (1.48 to 1.83) �0.027 (�0.159 to 0.103) 0.340

10 246,348 5,384 2.19 (2.13 to 2.24) 0.040 (�0.050 to 0.131) 0.808
11 3,950 96 2.43 (1.99 to 2.96) 0.099 (�0.086 to 0.281) 0.854
12 3,202 67 2.09 (1.65 to 2.65) 0.032 (�0.174 to 0.236) 0.621

13 4,296 65 1.51 (1.19 to 1.93) 0.003 (�0.199 to 0.201) 0.512
14 1,056 13 1.23 (0.72 to 2.11) �0.039 (�0.292 to 0.211) 0.380
15 17,218 381 2.21 (2.00 to 2.44) 0.089 (�0.050 to 0.226) 0.894

a 95% CI = 95% credible interval.
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The spatial distribution of multipollutant profile cluster
probabilities for random effects above zero are mapped in
Figure 7A. The map indicates that multipollutant profile
clusters with the highest probabilities (depicted as red
CBGs) for deviations above the overall TLBW log odds are
concentrated within LA County’s urban core of Central LA,
South-Central LA, and parts of East LA. The map clearly
depicts the influence that major roadways are likely to
have on the log odds of TLBW infants. With respect to
exposures to multipollutant mixtures, the certainty of ele-
vated TLBW risk is confined to CBGs within close prox-
imity to major roadways.

Contextual Cluster Random Effects According to the
random-effects results, after adjusting for the individual
and contextual covariates indicated above, mothers resid-
ing in contextual cluster 7 had the highest probability
(96.1%) of having a random effect above zero, while all
other cluster-specific effects were characterized by proba-
bilities below 80% for an effect above zero. The spatial dis-
tribution of contextual profile cluster probabilities are
mapped in Figure 7B. This map indicates that contextual
profile clusters with the highest probabilities for devia-
tions above zero are predominantly located within the ur-
ban core of LA County, including Central and South
Central LA.

Results: Joint Contextual–Multipollutant Clusters

As demonstrated earlier, there were considerably strong
correlations between contextual variables and air pollu-
tion concentrations. Thus our final clustering procedure
included both the contextual variables (% of homes older
than 1950, median income, and % nonHispanic black, %
nonHispanic white, and % Hispanic) and the three pol-
lutant variables (PM2.5, NO2, and NO) clustered together.
This final clustering procedure resulted in a total of 20 con-
textual–pollutant clusters, which are summarized graphi-
cally in Figure 8. These joint contextual–multipollutant
profile clusters were analyzed in a separate multilevel
model fit as random effects as described earlier, and results
are shown in Table 5. The cluster map of these joint clus-
ters (Figure 6C) and associated probabilities (Figure 7C)
further displays the spatial distribution of the random
effects for the joint contextual–pollutant clusters. This
map indicates that when contextual and multipollutant
variables are clustered jointly, the spatial pattern of TLBW
risk changes substantively. CBGs with TLBW-related
cluster-specific risks are similarly localized within Central
LA, South Central LA, and East LA, and the high risk clus-
ters expand into neighborhoods surrounding the ports of
LA and Long Beach.

Figure 7. Spatial distribution of TLBW probabilities that random effect deviates from zero. A: multipollutant random effects posterior probabilities; B: con-
textual random effects posterior probabilities; C: joint contextual–multipollutant random effects posterior probabilities. (Figure continues next page.)
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(Figure 7 continued from previous page.)
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Discussion

Our clustering procedure and subsequent multilevel lo-
gistic regression analysis provides concentration estimates
for pollutant mixtures and TLBW risk estimates for place-
based air pollution mixtures within LA County. We found
that CBGs in Central LA, South-Central LA, and CBGs in
East LA that are adjacent to major highways exhibited the
highest concentrations in terms of area-level exposure to
multiple pollutants. Furthermore, we found that CBGs in
Central LA, South-Central LA, and East LA consistently
had the most hazardous air pollution mixtures as they re-
late to TLBW. We also identified exposure profiles of clus-
tered contextual variables that suggested that populations
vulnerable to TLBW risks attributable to neighborhood fac-
tors were concentrated in the center of LA and South-Cen-
tral LA County. Importantly, we further observed that
indicators of neighborhood disadvantage and hazardous

air pollution mixtures tended to be linked. Moreover, evi-
dence from our study indicates that the urban environ-
ment of LA County is a complex one in terms of spatial
disparities for multipollutant exposures and concurrent
adverse neighborhood conditions, which are likely to be
drivers of racial–ethnic and socioeconomic disparities in
TLBW risks.

Explanations as to why our multilevel–multipollutant
analysis observed distinct spatial patterning of mixed air
pollution–birth outcome risks could be attributable to spa-
tially clustered factors that influence highly localized pol-
lutant mixtures, such as distance to major roadways
combined with local traffic volumes, traffic congestion,
and the types of traffic-emitting sources of air pollution.
Evidence from our study would suggest that indeed dis-
tance to major roadways is likely to enhance TLBW risk
with respect to elevated pollutant concentration mixtures.

Table 5. Prevalence of TLBW for Multipollutant Clusters and Model Results for Joint Contextual-Multipollutant 
Exposure Profile Cluster Random Effects (N = 804,726)

Cluster 
Births

(n)
TLBW

(n)
% TLBW
(95% CI)a

Cluster
Effect Size
(95% CI)a

Probability 
(Cluster Effect > 0)

1 51,623 791 1.53 (1.43 to 1.64) �0.124 (�0.221 to 0.028) 0.006
2 63,817 943 1.48 (1.39 to 1.57) �0.180 (�0.275 to 0.085) 0.001
3 7,109 175 2.46 (2.13 to 2.85) 0.026 (�0.123 to 0.174) 0.635
4 35,726 649 1.82 (1.68 to 1.96) �0.155 (�0.261 to �0.049) 0.002

5 59,269 1,176 1.98 (1.87 to 2.10) �0.042 (�0.133 to 0.049) 0.181
6 107,507 2,807 2.61 (2.52 to 2.71) 0.121 (0.041 to 0.202) 0.998
7 40,293 840 2.08 (1.95 to 2.23) 0.011 (�0.085 to 0.107) 0.588
8 132,335 2,815 2.13 (2.05 to 2.21) 0.076 (�0.003 to 0.156) 0.970

9 106,813 2,053 1.92 (1.84 to 2.01) �0.026 (�0.107 to 0.056) 0.268
10 37,864 765 2.02 (1.88 to 2.17) �0.024 (�0.122 to 0.073) 0.310
11 1,038 23 2.22 (1.48 to 3.31) 0.043 (�0.188 to 0.270) 0.642
12 43,896 926 2.11 (1.98 to 2.25) 0.005 (�0.090 to 0.099) 0.537

13 16,051 287 1.79 (1.59 to 2.01) �0.108 (�0.235 to 0.017) 0.044
14 7,989 205 2.57 (2.24 to 2.94) 0.080 (�0.061 to 0.219) 0.868
15 1,186 30 2.53 (1.77 to 3.60) 0.061 (�0.163 to 0.282) 0.705
16 50,933 1,195 2.35 (2.22 to 2.48) 0.088 (�0.005 to 0.180) 0.968

17 601 23 3.83 (2.56 to 5.69) 0.109 (�0.129 to 0.345) 0.816
18 18,101 523 2.89 (2.66 to 3.14) 0.004 (�0.107 to 0.180) 0.525
19 5,740 86 1.50 (1.21 to 1.85) �0.060 (�0.238 to 0.114) 0.249
20 16,835 382 2.27 (2.05 to 2.51) 0.106 (�0.021 to 0.232) 0.949

a 95% CI = 95% credible interval.
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Firstly, our data analysis demonstrates that the highest risk
multipollutant clusters (clusters 7 and 11) were character-
ized by the smallest median maternal residential distances
to major roadways when compared to all other cluster-
specific median distances to major roadways. Hence, these
results present evidence that proximity to major sources of
traffic-related air pollution is likely to at least partially
explain the spatial patterning of multipollutant TLBW
risks within LA County.

Our study further illustrates the importance of exam-
ining the spatial patterning of multipollutant effects. For
example, the CBGs that intersect major interstate high-
ways, such as I-110, I-710, and I-10, were characterized by
multipollutant mixtures with the highest effect sizes as
well as the highest probabilities for TLBW. Moreover, there
was apparent spatial clustering of higher risk multipol-
lutant profiles among the interchanges where these major
interstate highways converge at the center of LA County.
This is suggestive of highly localized traffic and emission
patterns that are distinctive to these major highways and
their intersections.

An important implication from our findings is that
exposure to pollutant mixtures with respect to PM2.5 —
particularly its physical and chemical properties — is
worthy of further examination in terms of gradients in
health effects. Pirani and colleagues (2015) recently con-
ducted a time-series analysis to study the variation in
respiratory mortality across exposure profile clusters using
a Bayesian profile regression approach similar to that
applied in our study. Their study found that days charac-
terized by high concentrations of secondary particulates
(e.g., nitrates and sulfates) imparted the highest risk of
respiratory mortality in comparison with all other PM2.5
constituent mixtures.

In a multivariate analysis we also found that the age of
housing stock was significantly associated with TLBW, in
that a larger proportion of older homes (older than 1950)
was related to a higher prevalence of TLBW (data not
shown). While the adverse effects estimated for the age of
housing stock are relatively modest in comparison to the
other contextual variable considered in our study (race–
ethnicity, median household income), this finding should
be explored further in future studies. Our finding could be
explained by previous research indicating that housing
characteristics are associated with elevated exposure to
both indoor and outdoor air pollution sources (Ghosh et al.
2013; Heroux et al. 2010; Houston et al. 2004; Meng et al.
2005; Spengler et al. 1994) and TLBW (Ghosh et al. 2013;
Grady 2011). In the LA area, older homes have been associ-
ated with higher PM (Houston et al. 2014) and NO2 expo-
sures (Spengler et al. 1994). Older homes are also
associated with a higher prevalence of gas stoves in the

home (Eisner and Blanc 2003) and may be more likely to
lack exhaust ventilation in homes that use gas stoves (Coker
et al. 2015). Additionally, older homes are more likely have
exposure to lead (i.e., lead contaminated drinking water has
been associated with lead piping, solder, and piping mate-
rials [Brown and Margolis 2012]), and lead exposure is
implicated as an environmental risk factor for adverse birth
outcomes such as low birth weight (Andrews et al. 1994;
Centers for Disease Control and Prevention 2014; González-
Cossío et al. 1997; Jelliffe-Pawlowski et al. 2006). Impor-
tantly, additional research data suggests that lower income
and nonwhite households are more likely to live in older
housing stock (Adamkiewicz et al. 2011; Houston et al.
2004), which was the case in our study as well.

Importantly, our findings are consistent with previous
studies that found variation in effects on birth weight
between various air pollutants or sources of air pollution
(e.g., traffic-related versus natural background sources). In
LA County, Laurent and colleagues (2014) examined the
relation between various components and sources of fine
PM air pollution; they found statistically significant differ-
ences with respect to different PM-related components
and sources for effects on TLBW. Likewise, Wilhelm and
colleagues (2011b) observed differences in the exposure–
response relationship between PM2.5 and TLBW based on
the source of PM2.5 exposure (e.g., gasoline versus geologic
sources) within LA County. Each of these studies suggest
that the pollutant, or combination of pollutants (i.e., con-
stituents of PM pollution), related to traffic exposure were
most hazardous in terms of TLBW risks. Findings from our
study would suggest the same.

It is also clear from our results that multipollutant
health risks, in this case TLBW, are related to racial and
ethnic disparities in exposure since populations in the
highest risk CBGs were predominantly people of color,
socioeconomically deprived, and tended to live in older
housing stock. While we did adjust for individual-level
race–ethnicity and SES in our model, we still found that
TLBW occurred predominantly in minority neighbor-
hoods. The implications of this finding is that disparities
in multipollutant exposures in particular may be an
important driver of disparities in environmentally-driven
adverse birth effects. Another notable finding in our study
is that while some high SES neighborhoods were found to
have high percentages of older housing stock, these neigh-
borhoods tended to have the lowest concentration pollu-
tion mixtures. Moreover, higher SES neighborhoods with
older housing are likely to have better maintained homes
with air conditioning, which may lend itself to homes with
fewer leaks that would allow the penetration of outdoor air
pollutants indoors.
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Our approach of jointly fitting contextual variables with
multiple pollutants proved to alter the spatial patterning of
TLBW cluster-related risks substantively. For instance,
while CBGs surrounding the ports tended to have average
multipollutant-only TLBW risk, the areas surrounding the
ports exhibited a significantly increased risk of TLBW
once contextual factors were clustered with the pollutants.
This result would suggest that neighborhoods surrounding
the ports are particularly vulnerable to air pollution expo-
sure due to neighborhood sociodemographic and housing
factors. Additionally, once contextual factors were clus-
tered with pollutants a similar pattern of varying TLBW
risk was seen in areas of South Central LA.

There are several noteworthy limitations and strengths
in our findings. Much like other air pollution and birth
weight studies, we relied on imperfect exposure estima-
tion. A major limitation lies in the lack of additional pol-
lutants to include in the multipollutant model, aside from
the three pollutants considered in our study. There are sev-
eral other hazardous air pollutants — particularly traffic-
related pollutants — that would potentially better explain
the spatial patterning of the pollutant–TLBW risks. Fur-
thermore, our study lacked speciation data for PM expo-
sures, hence we are limited in our ability to attribute a
particular source of air pollution most likely to be impli-
cated in causing excess risk of TLBW. The spatial pattern-
ing of our results does provide strong evidence to implicate
traffic pollution from major roadways. A major strength of
our study lies in the large sample size and the fact that we
relied on population-wide data, rather than a nonrandom
selection of a study population based simply on proximity
to major sources of air pollution. Moreover, our study de-
sign allowed us to examine exposure to multiple pollutants
that are highly correlated with each other. In addition, given
that we were able to cluster correlated pollutants to examine
health effects, we were able to reduce the dimensions of sta-
tistical comparison, compared to typical fixed-effects mod-
els that attempt to examine joint effects. Also, we adjusted
for individual covariates and area-level poverty factors asso-
ciated with adverse effects on birth weight (English et al.
2003), and we further accounted for some residual con-
founding (at the CT level [Williams et al. 2007]) that is likely
to be present (e.g., for example due to maternal smoking
during pregnancy).

IMPLICATIONS OF FINDINGS

Our results go beyond the findings one would obtain
from analyzing air pollution associations with health out-
comes using standard, additive regression models. These
kinds of standard approaches have value, but fail to provide

the kind of subtleties that researchers and policymakers
desire when one is interested in how combinations of pol-
lutants associate with health and in determining how
effects of single pollutants and pollutant mixtures vary
spatially throughout a large geographical area.

Part of the problem with using standard regression
methods to analyze high- or even moderate-dimensional
data sets is the fact that many of the regression methodolo-
gies were developed in a low-dimensional setting (Fisher
1922). Main effects and interaction terms are included in
the model in an additive manner, which works well when
there are only a small number of covariates to consider.
However, in epidemiologic studies, the number of air
pollutant variables and SES covariates can be large, and
the additive nature of the standard regression approach
becomes unwieldy, as hundreds or even thousands of
terms are needed to capture the complex manner in which
the covariates interact with each other in determining the
overall effect. Here we have expanded on well-established
Dirchlet-process clustering methods (Dunson 2009; Neal
2000) to create a set of methodologies that enables one to
obtain meaningful estimates of how pollution mixtures and
SES covariates jointly affect health outcomes, at both the
region-wide and the local level. The local nature of the asso-
ciations is important, as it allows policy makers to target
areas where reduction of air pollution exposures is most
beneficial in terms of reduction of adverse health outcomes.

Traditional epidemiologic approaches to assessing asso-
ciations between air pollution exposures and health out-
comes are generally univariate in nature. Results may
indicate that an association between, say, NO2 and low
birth weight exists in the study area in question. However,
as demonstrated in this report, the effects of air pollutants
vary across a large geographical region. If limited funds are
available to affect changes regarding exposure levels, then
policy makers may decide to focus on areas where such
changes are most effective in affecting health outcomes.
Further, since exposures exist in complex mixtures, it is
desirable to identify typical combinations of exposures
and where they exist, along with the likelihood that such
typical mixtures are highly associated with adverse health
outcomes. The Discussion sections of this report detail
how our methods benefited in making inferences on these
kinds of spatially-depended associations between expo-
sures and health outcomes using real data sets. While great
progress had been made, our work is not complete. We
would like to explore how policies aimed at reduction of a
single pollutant will affect concentrations of other pollut-
ants, and how these new pollution profiles affect health
outcomes. Also, much work can be done exploring how
grouping of regions to pollution clusters changes over
time. We will use the work done here as a platform for fur-
ther exploration in addressing these important issues.
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CONCLUSION

The methodology utilized and advanced in this report,
profile regression, like standard regression, consists of a
flexible modeling framework. Profile regression provides
extensions to standard regression that can be used to
address many problems dealing with multiple correlated
exposures and their health effects. Much of the estimation
framework has already been detailed in previous work
(Molitor et al. 2010), which describes the relevant iterative
parameter estimation procedures and compares the profile
regression method to other approaches via extensive simu-
lation studies.

However, an important goal of this project is to create
methods that will prove to be useful in generating real,
substantively relevant results. Three applications (one in
Appendix A) are provided that give model-based solutions
to different real-world multipollutant problems. These
three sections form the basis of three papers that are of
both methodological and substantive value. The substan-
tive value of these papers is derived from the fact that the
data sets used did not previously exist in their current
form, and were created, with great effort from both meth-
odological and substantive collaborators on this project,
for the purpose of conducting the multipollutant analyses.
They thus represent new results and do not just reproduce
findings from previous work.

Since our work is data driven, we did not hand pick data
sets that would make our approaches look favorable when
compared with other methods. Instead, we forced our-
selves to analyze and address the questions laid out in the
beginning of the project, even if this created unexpected
computational challenges. This was particularly true for
the place-based application, where a unified fully
Bayesian approach was not feasible. Note however, that a
fully Bayesian approach was used for the first application,
studying air pollution profiles and poverty.

Regarding the applications, one should not infer that
our methods can only analyze the exact kinds of data pre-
sented. In particular, a small number of pollutants were
analyzed, due to data availability. Nevertheless, our
approach is likely capable of handling dozens of expo-
sures, where both exposures and outcomes can be pre-
sented as either continuous or categorical. However, our
approach would likely struggle to handle data sets that
contain millions of records. Scaling up our approaches to
elegantly handle such big data is an ongoing area of our
research and is a big ongoing area of research in the field of
Bayesian methods and statistics in general.

It should be noted that while general statements can be
made regarding the efficiency of certain parameter estima-
tion procedures, one must be wary of making statements

suggesting that a particular model is correct. In this report,
we followed the edict of the late Prof. George Box who
famously stated, “Essentially, all models are wrong, but
some are useful” (Box and Draper 1987), and we built
models that are relevant to the problem at hand. Neverthe-
less, the models detailed in these model-based sections
can be viewed as templates that can be taken, perhaps with
some modification, by other researchers and applied to
their work.
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a b s t r a c t

Air pollution epidemiological studies suggest that elevated exposure to fine particulate matter (PM2.5) is
associated with higher prevalence of term low birth weight (TLBW). Previous studies have generally
assumed the exposure–response of PM2.5 on TLBW to be the same throughout a large geographical area.
Health effects related to PM2.5 exposures, however, may not be uniformly distributed spatially, creating a
need for studies that explicitly investigate the spatial distribution of the exposure–response relationship
between individual-level exposure to PM2.5 and TLBW. Here, we examine the overall and spatially
varying exposure–response relationship between PM2.5 and TLBW throughout urban Los Angeles (LA)
County, California. We estimated PM2.5 from a combination of land use regression (LUR), aerosol optical
depth from remote sensing, and atmospheric modeling techniques. Exposures were assigned to LA
County individual pregnancies identified from electronic birth certificates between the years 1995-2006
(N¼1,359,284) provided by the California Department of Public Health. We used a single pollutant
multivariate logistic regression model, with multilevel spatially structured and unstructured random
effects set in a Bayesian framework to estimate global and spatially varying pollutant effects on TLBW at
the census tract level. Overall, increased PM2.5 level was associated with higher prevalence of TLBW
county-wide. The spatial random effects model, however, demonstrated that the exposure–response for
PM2.5 and TLBW was not uniform across urban LA County. Rather, the magnitude and certainty of the
exposure–response estimates for PM2.5 on log odds of TLBW were greatest in the urban core of Central
and Southern LA County census tracts. These results suggest that the effects may be spatially patterned,
and that simply estimating global pollutant effects obscures disparities suggested by spatial patterns of
effects. Studies that incorporate spatial multilevel modeling with random coefficients allow us to identify
areas where air pollutant effects on adverse birth outcomes may be most severe and policies to further
reduce air pollution might be most effective.
& 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Extensive evidence indicates that prenatal exposure to outdoor
air pollution is associated with risk of term low birth weight
(Brauer et al., 2008; Fleischer et al., 2014; Ghosh et al., 2013, 2012;

Hyder et al., 2014; Padula et al., 2012; Parker et al., 2011; Ponce,
2005; Proietti et al., 2013; Ritz and Wilhelm, 2008; Shah and
Balkhair, 2011; Stieb et al., 2012; Wilhelm et al., 2011; Wu et al.,
2011). While TLBW contributes to racial–ethnic and socioeconomic
health disparities in the United States, air pollution is thought to
be an important place-based factor in the complex geography of
and susceptibly to TLBW (Jerrett and Finkelstein, 2005; Morello-
Frosch and Shenassa, 2006). It is reasonable to consider, however,
that air pollution exposure–response effects on adverse birth
outcomes, such as TLBW, vary spatially within an urban setting.

http://dx.doi.org/10.1016/j.envres.2015.06.044
0013-9351/& 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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First and foremost, air pollutant mixtures or components of PM
air pollution can be autocorrelated spatially within urban environ-
ments – depending on local-scale air pollution sources, the intensity
of emissions, and meteorology (among other factors) (Hajat et al.,
2013; Molitor et al., 2011; Su et al., 2012). As a result, the intrinsic
toxicity of PM2.5 mixtures is likely to be spatially dependent. For
instance, Laurent et al. (2014) found that various components and
sources of fine PM air pollution, which exhibit strong spatially
varying characteristics, produced statistically significant gradients in
PM-related TLBW risk in LA County. Similarly, Wilhelm et al., (2011),
found that the exposure–response between PM2.5 and TLBW varied
by PM2.5 source type (e.g. gasoline versus geologic sources) within
LA County. Furthermore, Pedersen et al. (2015) studied eight Eur-
opean birth cohorts and found that the exposure–response between
PM2.5 was dependent on its chemical composition, with OR esti-
mates for sulfur PM2.5 of 1.24, compared to 1.08 for overall PM2.5.
Such local-scale intra-urban differences in particulate air pollution
exposure and health effects patterns may therefore lead to in-
equalities with regard to PM-related adverse birth outcome risks
(Baxter et al., 2007). Further, a wide range of contextual neighbor-
hood factors and individual factors that are spatially correlated, from
socioeconomic status (SES), demographics (i.e. racial segregation),
exposure to violence (Messer et al., 2006), access to healthy food
(Lane et al., 2008) or green space (Hystad et al., 2014), housing
characteristic, and psychosocial, may contribute to variations in
susceptibilities to air pollution that are not fully accounted for in
standard regression models relying on fixed covariate effects (Mor-
ello-Frosch and Shenassa, 2006). Few studies, however, have been
conducted to examine whether there is a spatial patterning – or a
"risk-scape" (Morello-Frosch and Shenassa, 2006) – for PM-related
birth outcomes. While previous health research has evaluated the
spatial dependency of PM-related chronic health effects such as
cardiovascular disease and asthma (Boehm Vock et al., 2014; Choi
et al., 2009; Fuentes et al., 2006; Jerrett et al., 2005; Krewski et al.,
2009; McConnell et al., 2010; Samoli et al., 2004; Shankardass et al.,
2009), no studies have modeled the spatial dependency of in-
dividual-level PM2.5 exposure–response relationships on birth
outcomes.

Several recent studies examined the spatial variation in PM2.5

effects on TLBW between different countries or between US states.
A large collaborative multi-site international study found a sub-
stantial degree of heterogeneity in estimates for entire pregnancy
exposure–response between study sites, despite the use of similar
exposure assessments and statistical models in the studies (Dad-
vand et al., 2013; Parker et al., 2011). Hao et al. (2015) found
substantial differences between states in the U.S. in terms of the
magnitude and direction of effects of PM2.5 on TLBW. Another
multi-state U.S. study also found that the size of exposure–re-
sponse estimates for PM2.5 and TLBW depended upon study site;
with odds ratios ranging from between 0.942 (95% CI: 0.817, 1.09)
in Utah to as high as 1.72 (95% CI: 1.55, 1.93) in New York state (per
10-unit increase in PM2.5 exposure) (Harris et al., 2014). Ad-
ditionally, Williams et al. (2007) demonstrated, through im-
plementation of a multilevel linear random coefficient model, that
adverse effects on average birth weight in a population varied by
census tract due to hazardous air pollution emitting industrial
sites. The observed statistically significant differences in effect size
between census tracts remained significant even after adjusting
for the number of hazardous sites per census tract, individual level
confounders, and contextually relevant census tract level con-
founding factors (Williams et al., 2007).

Despite the recent evidence suggesting that air pollution-re-
lated adverse effects on birth weight may vary spatially, no studies
have explicitly examined spatial variation in effects within a dense
metropolitan region such as LA county, which we are targeting in
our paper. Our guiding hypothesis is that modeling of the spatially

varying coefficients will show differences in TLBW according to LA
County census tracts and thus provide evidence for localized PM2.5

exposure–response. Specifically, the magnitude of effect will be
higher in some census tracts when compared to the global mean
exposure–response for all of urban LA County. Our approach goes
beyond the commonly employed estimation of an overall average
PM2.5 effect on birth weight and will allow us to describe a spa-
tially-patterned deviation from the average effects, thus pin-
pointing potential 'hotspots' within LA County where the magni-
tude and probability of PM2.5 effects are likely to be strongest.

In our paper we utilize an existing land use regression (LUR)
PM2.5 exposure model within a multi-level Bayesian framework;
implemented with spatially-dependent random coefficients. This
information may be useful from a policy perspective to create
targeted public health interventions for LA County.

2. Methods

2.1. Study population and birth outcomes

Data on infant birth weight were derived from electronic birth
certificates provided by the California Department of Public
Health, for LA County births between 1/1/1995 and 12/31/2006
(N¼1,522,084). The birth records provided information on ma-
ternal characteristics such as age, race/ethnicity, education, total
number of previous maternal births, and residential address, as
well as characteristics of the infant (abnormalities, birth season,
gestational age at birth, birth weight and baby sex). Human sub-
jects research was approved through the University of California,
Los Angeles' Office of the Human Subjects Protection Program, the
California Committee for the Protection of Human Subjects, and
the University of Southern California Office for the Protection of
Research Subjects. Similar to previous studies, we restricted the
dataset to singleton births with no recorded abnormalities (Ghosh
et al., 2013, 2012; Wilhelm et al., 2011). Additionally, we excluded
births with extreme gestational days (less than 140 days or greater
than 320 days), births that were not full term (o259 gestation
days), and births with birth weight less than 500 g or greater than
5000 g due to concerns about recording errors. For our final ana-
lyses, we further excluded births without complete information on
the full set of study covariates (n¼19,017). Finally, since we are
interested in estimating within-city spatial variation in PM2.5 ef-
fects, the spatial analysis further excluded rural sub-region of LA
County, thus leaving a final study population of N¼1,356,304. A
detailed description of methods for geocoding residential ad-
dresses are described elsewhere (Goldberg et al., 2008).

2.2. PM2.5 exposure assessment

A PM2.5 LUR model developed previously by (Jerrett et al., 2013)
was used to estimate individual exposures to PM2.5 at each mother
residential address. Such estimates are intended to best represent
spatially resolved long-term exposure to annual levels of PM2.5

between 1995-2006, rather than pregnancy period-specific ex-
posure. This PM2.5 LUR model has been used previously to ex-
amine chronic long-term exposure to PM2.5 and related health
effects over time, in a large cohort study of California adults (Jer-
rett et al., 2013). This LUR method has been described in previous
publications and the reader is referred to Beckerman et al. (2013)
and Jerrett et al. (2013) for greater detail. Briefly, the predicted
concentrations of PM2.5 were based on covariate data from the
following sources: (1) daily observations of PM2.5 air monitoring
collected between 1998–2002 at government monitoring sites
throughout California, which was supplemented with remotely-
sensed PM2.5 data covering the time period between 2001 and
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2006 (Beckerman et al., 2013); (2) data on traffic and road net-
works from 1990 to 2001; (3) land use data from the year 2001;
(4) population density data from the 2000 US Census; and
(5) numerical output from remote sensing modeling coupled with
atmospheric modeling (Van Donkelaar et al., 2010). A deletion/
substitution/addition algorithm was then implemented to develop
the final model covariates with a cross-validated R2 value of 0.65.

2.3. Covariates

Since this study is a methodological extension of previous work
for the LA County area (Ghosh et al., 2012; Wilhelm et al., 2011),
we applied similar covariates as in the previous studies to evaluate
PM2.5 in relation to risk of TLBW. Individual-level covariates were
maternal age at delivery (o20 years, 20–24 years, 25–29 years,
30–34 years, Z35 years), maternal race (non-Hispanic White,
non-Hispanic Black, Hispanic, Asian, and Other race), maternal
years of education (o9 years, 9–12 years, 13–15 years, and Z16
years), parity, gestational days, gestation days-squared (Ghosh
et al., 2012; Wilhelm et al., 2011) and sex of the infant.

2.4. Statistical analysis

2.4.1. Standard analysis
While our main objective was to evaluate the spatial de-

pendency of PM2.5 effects on TLBW, we initially examined “global”
(or L.A. County-wide) associations between PM2.5 and TLBW using
crude-unadjusted and multivariate adjusted logistic regressions
techniques. The intent of implementing a global fixed effects
model is to replicate exposure–response relationships between
increasing PM2.5 exposure and increasing prevalence of TLBW as
demonstrated from previous research. The crude and multivariate
models were implemented as a generalized linear model (glm)
using the binomial family with the logistic function in the R sta-
tistical computing environment (R-version 3.1.2) (see Supple-
mental Materials for code describing the specific models employed
in R (Everitt and Hothorn, 2010)). For consistency, the multivariate
model utilized same fixed effects covariates as for the multilevel
model described below.

2.4.2. Multilevel spatial modeling
The focus of the present study was to expand on previous work

by implementing a multilevel spatial logistic regression model that
would assess whether exposure–response relationships vary within
L.A. County. Along with the fixed effects on the covariates, we si-
multaneously included a random effect coefficient for the census
tract-level effect of PM2.5 on log-odds of TLBW. The random air
pollution effect coefficient is composed of a global intercept plus
independent and spatial residual error terms via the Besag–York–
Molly (BYM) model (Besag et al., 1991). Because this model includes
both spatial and independently structured error terms, the data
determined the extent of spatial smoothing employed, without re-
quiring strong assumptions regarding residual spatial dependency.
Further, this approach yields both a countywide global mean effect
as well as census tract-level random coefficients indicating sub-
regional (or census tract) effects of PM2.5 on TLBW.

The variance structure of the spatial component of the BYM
model requires specification of a spatial zero-one weight matrix of
dimension J by J , where J is the number of census tracts. Each
element i j, of the weight matrix is one if census tract i and j are
adjacent to each other, and zero otherwise. The ‘spdep’ package
(spdep package version 0.5-77 obtained September 30 2014) in R
(Bivand et al., 2013; Bivand and Piras, 2015) was used to construct
this neighborhood weight matrix and we assigned neighbors based
on queens adjacency, which is defined as any neighboring census
tract with a shared edge or vertex for a given area (i.e. census tract).

In fitting the model, we took advantage of the computational
efficiency of Integrated Nested Laplace Approximations (INLA,
version 0.0-1420281647) estimation techniques as implemented
in the well-established R-INLA package (Rue et al., 2015), which
has been used in several recent studies of large dimensions
(Bennett et al., 2014; Castelló et al., 2013; Lee et al., 2013; Lee and
Mitchell, 2014). The INLA approach avoids the computational
burden related to typical Markov Chain Monte Carlo techniques
(Gilks et al., 1998) often used to fit Bayesian spatial models and
allows accurate approximations to posterior marginal distribu-
tions of the model parameters (Grilli et al., 2014).

In the implementation of our model using R-INLA, the sub-re-
gional-level air pollution effects consist of an overall fixed effect
(that represents the overall mean effect) plus spatial and in-
dependent random residual effects as defined in the BYM model.
(Rue et al., 2014, 2009; Martino and Rue, 2009). Hence, each Sub-
Regional air pollution effect is then obtained as the sum of the
overall fixed effect plus spatial and non-spatial census tract-level
residual terms via the linear combination feature in R-INLA. This
allows us to obtain a posterior distribution for each Sub-Regional-
level air pollution effect, jβ , and to examine the spatial distribution
of these effects throughout L.A. County.

The full model specification is presented in Eqs. (1) and (2)
below. Our first-level logistic-regression model is,

y V xlogit 1i z ii
( ) η β= ‵ + ( )

where yi denotes the logit probability of TLBW for individual i, Vη′
represents individual-level covariates Vand associated fixed effect
coefficients η′, zi

β represents sub-regional random effects of ex-
posure, and xi denotes individual-level PM2.5 exposure. Note that
z ji = indicates the census tract j to which individual i belongs, so
if, say, individual 3 is in census tract number 12, then z 123 = , and

z 123
β β= . There are therefore j J, 1, ,jβ = … effects of PM2.5 on log-

odds of TLBW corresponding to each census tract, j.
We model the effects of PM2.5 on TLBW for each census tract, j,

as

S 2j j j0β γ ϵ= + + ( )β

where 0γ is the overall region-wide PM2.5 effect, and Sj and jϵβ

denote spatial and independent residual error terms, respectively,
with the restriction S 0j j∑ = imposed for indefinability reasons.
While the independent error term is defined in the standard way
as N 0,j

2ϵ σ∼ (β
β ), the spatial error term is defined as,
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where the weights wj k, are elements

of the zero-one neighborhood adjacency matrix defined to be
equal to one when census tracts i k, are adjacent and zero other-
wise. This approach has been successfully employed in a variety of
exposure/health association studies. (see, for example, Molitor
et al. (2007).)

2.5. Mapping

Estimates of the posterior quantities correspond to the adjusted
random air pollution effects from the multilevel model were im-
ported into ArcGIS 10.1 (ESRI, Redlands, CA) and merged with
census tract boundary shapefiles to create exposure–response
census tract-level 'effect maps'. In addition to mapping the mul-
tilevel adjusted census tract mean effects, the R-INLA package
includes the 'inla.pmarginal' function that computes probabilities
from the posterior distribution of the marginal random effects as
obtained from the linear combinations described above. This en-
abled us to map the marginal probabilities that a given census
tract random effect coefficient lies above zero, P 0j( )β > . Similarly,
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we mapped the probability that a given census tract random effect
coefficient is above the adjusted global mean effect, P jβ β( > ¯).
Computation of these probabilities help illustrate where associa-
tions between PM2.5 and TLBW are most likely to occur (see
Supplemental Materials for requisite R-INLA code needed to obtain
posterior probabilities). Thus, our 'effect maps' depict probabilities
that the PM2.5 census tract-specific exposure–response ( jβ ) lies
above zero (or an OR above 1) and the probability that a census
tract-specific air pollution effect deviates from the overall average
P j( )β β( > ¯ ).

3. Results

3.1. Descriptive analyses

Between 1995-2006 the overall prevalence of TLBW was 2.1%
and the average PM2.5 exposure was 17.04 mg/m3 (interquartile
range¼16.25, 18.21). The spatial distribution of PM2.5 concentra-
tions indicated that exposures were highest within the urban core
of LA County, specifically the southern, eastern, and northwest
portions of urban LA (Supplemental Materials, Fig. S1). Risk factors
that were associated with TLBW included maternal age, race, level
of education, parity, gestation length (days), gestation squared, sex
of the infant (Table 1), and were adjusted for in the following
models.

3.2. PM2.5 regression analyses

3.2.1. Standard logistic model
The final statistical analyses included 1,356,304 births from

2,033 LA County census tracts. In unadjusted fixed effects logistic
regression, the odds of TLBW was 23.2% higher (OR¼1.23 [95%CI:
1.16, 1.30]) per 10 mg/m3 increase of PM2.5. After adjusting for
maternal age, race-ethnicity, education, parity, and infant gesta-
tion and sex, a 10 mg/m3 increase in PM2.5 exposure remained as-
sociated with statistically significant increased odds of TLBW
(OR¼1.17; 95%CI¼1.10–1.24)(Table 2). The fully adjusted model
results along with the model covariates are provided in detail

within the Supplementary Material (Table S1, Supplementary
Material).

3.2.2. Multilevel spatial model
The multilevel spatial model provides PM2.5 coefficients on

TLBW at a global county-wide level (Table 2) and at the census
tract neighborhood level. The overall mean PM2.5 exposure–re-
sponse estimate for our multilevel spatial model was similar in
magnitude to the fixed effect logistic regression result
(ORspatial¼1.19 versus ORfixed¼1.17). The two maps presented in
Fig. 1 and Fig. 3 present the probability that a given census tract air
pollution effect (with outcome on log-odds scale) is above zero
(Fig. 1) and the probability that a given census tract effect is above
the estimated overall mean effect (Fig. 3), while Fig. 2 presents the
mean PM2.5 random effect per census tract.

For the probability effect map in Fig. 1, the census tracts in dark
brown have a 495% probability of an effect that is above zero
(P 0j( )β > .). Thus, these areas represent census tracts where the

PM2.5 exposure–response with TLBW is most likely to be positive.
The dark brown neighborhoods in Fig. 3 have a 495% probability
for an effect above the county-wide (or “global”) mean effect.
Hence, these areas represent census tracts that are most likely to
exhibit a PM2.5 exposure–response that is greater in magnitude
compared to the estimated mean exposure–response relationship,
which we are considering to be 'hotspots' within the context of
our study. The hotspots appear to be concentrated in census tracts
within central and south-central LA County (Fig. 3).

Table 1
Demographic characteristics overall and by TLBW and crude odds ratios for TLBW (N¼1,359,284).

Parameter Overall (N¼1,359,284) TLBW Cases (N¼27,714) Non cases (N¼1,331,570) Crude TLBW
n % or mean (95% CI) n % (95% CI) n % (95% CI) OR (95% CI)

Gestational age (days) Mean¼278.91 (278.92, 278.89)
Sex of infant
Male 688,568 50.66 (50.57, 50.74) 11,890 42.90 (42.32, 43.49) 676,678 50.82 (50.73, 50.90) 1.00
Female 670,716 49.34 (49.26, 49.43) 15,824 57.10 (56.51, 57.68) 654,892 49.18 (49.10, 49.27) 1.38 (1.34, 1.41)
Maternal age
o20 years 143,265 10.54 (10.49, 10.59) 4090 14.76 (14.34, 15.18) 139,175 10.45 (10.40, 10.50) 1.00
20–24 years 318,122 23.40 (23.33, 23.47) 6959 25.11 (24.60, 25.62) 311,163 23.37 (23.30, 23.44) 0.76 (0.73, 0.79)
25–29 years 364,301 26.80 (26.73, 26.86) 6581 23.75 (23.25, 24.25) 357,720 26.86 (26.79, 26.94) 0.63 (0.60, 0.65)
30–34 years 322,341 23.71 (23.64, 23.79) 5674 20.47 (20.00, 20.95) 316,667 23.78 (23.71, 23.85) 0.61 (0.59, 0.64)
Z35 years 211,255 15.54 (15.48, 15.60) 4410 15.91 (15.48, 16.35) 206,845 15.55 (15.47, 15.60) 0.73 (0.69, 0.76)
Race–Ethnicity
White 249,759 18.37 (18.31, 18.44) 3605 13.01 (12.61, 13.41) 246,154 18.49 (18.42, 18.55) 1.00
Hispanic 852,886 62.75 (62.66, 662.83) 16,260 58.67 (58.09, 59.25) 836,626 62.83 (62.75, 62.91) 1.33 (1.28, 1.38)
Black 107,237 7.89 (7.84, 7.93) 4175 15.06 (14.65, 15.49) 103,062 7.74 (7.69, 7.79) 2.77 (2.64, 2.89)
Asian 94,764 6.97 (6.93, 7.01) 2097 7.57 (7.26, 7.88) 92,667 6.96 (6.92, 7.00) 1.55 (1.46, 1.63)
Other 54,638 4.02 (3.99, 4.05) 1577 5.69 (5.42, 5.97) 53,061 3.98 (3.95, 4.02) 2.03 (1.91, 2.15)
Maternal education
0–8 years 206,487 15.19 (15.13, 15.25) 4194 15.13 (14.71, 15.56) 202,293 15.19 (15.13, 15.25) 1.00
9–12 years 666,565 49.04 (48.95, 49.12) 14,867 53.64 (53.06, 54.23) 651,698 48.94 (48.86, 49.03) 1.10 (1.06, 1.14)
13–15 years 232,319 17.09 (17.03, 17.15) 4453 16.07 (15.64, 16.51) 227,866 17.11 (17.05, 17.18) 0.94 (0.90, 0.98)
Z16 years 253,913 18.68 (18.61, 18.75) 4200 15.15 (14.73, 15.58) 249,713 18.75 (18.69, 18.82) 0.81 (0.78, 0.85)
Parity
0 522,598 38.45 (38.36, 38.53) 13,257 47.84 (47.25, 48.43) 509,341 38.25 (38.17, 38.33) 1.00
Z1 836,686 61.55 (61.47, 61.64) 14,457 52.16 (51.57, 52.75) 822,229 61.75 (61.67, 61.83) 0.68 (0.66, 0.69)

Table 2
Association between PM2.5 exposure and TLBW using standard and multilevel
spatial regression methods (N¼1,356,304).

Standard modela Spatial multilevel modela

Exposure OR (95% CI)b OR (95% CI)c

PM2.5 (per 10 mg/m3) 1.17 (1.10, 1.24)d 1.19 (1.02, 1.39)

a Adjusted for sex of the infant, gestation age of infant, gestation age squared,
maternal age, maternal race, maternal education level, and parity.

b OR per interquartile range¼1.03 (95% CI: 1.02, 1.04), IQR¼1.96 mg/m3.
c OR per interquartile range¼1.05 (95% CI: 1.03, 1.08), IQR¼1.96 mg/m3.
d For all of LA County, including rural areas, OR¼1.17 (1.10–1.24).
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Fig. 2. Census tract PM2.5 effects for TLBW (mean) after adjusting for maternal age, race-ethnicity, education, parity, and infant gestationþgestation squared, and infant sex.

Fig. 1. Probability map for census tract PM2.5 effects for TLBW (P 0j( )β > ) after adjusting for maternal age, race-ethnicity, education, parity, and infant gestationþgestation
squared, and infant sex.
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Fig. 3. Probability map for census tract PM2.5 effects for TLBW (P jβ β( > ¯)) after adjusting for maternal age, race-ethnicity, education, parity, and infant gestationþgestation
squared, and infant sex.

Fig. 4. Mean probabilities for census tract random effect above mean by LA County health districts.
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3.2.3. LA health district summaries
LA County is composed of 26 health districts created from ag-

gregates of census tract boundaries for the purposes of health as-
sessments. Therefore, to highlight the observed spatial patterns in
Fig. 3, from the posterior distribution of the marginal random ef-
fects we calculated and mapped the average probabilities for LA
County health districts with respect to tract-level probabilities
above the overall mean PM2.5 coefficient. These numerical sum-
maries are simply descriptive since they were acquired by calcu-
lating the mean tract-level probabilities. Health districts of LA urban
core, including Central, Compton, Hollywood-Wilshire, Inglewood,
South, Southeast, and Southwest health districts, are characterized
by the highest probablities that the air pollution effect coefficients
are above the overall mean coefficient (Fig. 4). Thus the map sug-
gests effect ‘hotspots’ are concentrated within these health districts,
which are generally lower income and non-white in terms of race-
ethnicity (see Supplemental Materials, Figs. S2 and S3).

4. Discussion

4.1. Key findings

We applied Bayesian multilevel spatial modeling to examine
whether the exposure–response relationship between PM2.5 and
TLBW varies spatially. Consistent with previous findings from LA
County (Ghosh et al., 2012; Ritz et al., 2007; Wilhelm et al., 2011),
we observed an overall relationship between increasing PM2.5

exposure and increasing risk of TLBW. More important, we ob-
served substantive variations across census tracts within LA
County in the exposure–response between PM2.5 and TLBW.
Higher probabilities for positive PM2.5 effects were mostly con-
centrated in central LA and south central LA sub-regions. Relative
to the mean regional PM2.5 effect on the log odds of TLBW, several
census tracts located in central LA and south-central LA exhibited
higher exposure–response relationships in terms of effect size
and posterior probabilities for effects above the mean
(P jβ β( > ¯))40.95). These observations suggested that PM2.5 related
adverse effects on birth weight may be modified by place.

A number of plausible explanations may account for the spatial
patterning in the exposure–response between PM2.5 exposures
and TLBW observed in our study. Firstly, regionally varying and
spatially correlated neighborhood contextual factors may enhance
exposure gradients within an urban setting and other spatially
structured individual factors may further create susceptibility to
adverse birth outcome by interacting with PM2.5. Regionally
varying and overlapping aspects of neighborhoods with the po-
tential to enhance exposure to air pollutants or susceptibility to air
pollution related health effects may include (but are not limited
to): built environment factors (i.e. age of homes, homes set back
further from the curb along heavily trafficked roadways) (Ponce,
2005; Ramachandran et al., 2003); spatially correlated variation in
the types of PM2.5 sources (e.g. large truck traffic) and thus PM2.5

component mixtures (Laurent et al., 2014; Wilhelm et al., 2011);
the presence of older and higher pollution emitting vehicles, and
neighborhood SES (Ponce, 2005). For example, Singer and Harley
(2000) observed that older vehicles tended to emit higher air
pollutant levels relative to newer vehicles within the LA area, and
that vehicular emissions tended to be higher in low income areas
compared to higher income areas (even for vehicles of the same
age). Individual-level differences that display spatial clustering
may also partially explain spatial patterns in birth outcomes risks;
such as psychosocial (Ghosh et al., 2010), occupational (Horner
and Mefford, 2007; Ritz et al., 2007), or nutritional factors (Je-
drychowski et al., 2010; Lane et al., 2008), as well as individual

home environments (i.e. home insulation or access to air con-
ditioning (Ghosh et al., 2013; Jerrett et al., 2005; Ponce, 2005)). For
instance, Ritz et al. (2007) found that parous women in LA without
an occupation outside the home during the last 6 weeks of the
pregnancy who were highly exposed to traffic-related air pollution
had higher odds for preterm birth than exposed parous women
working outside the home, illustrating the potential impact of
exposure misclassification when using a home address. In another
study we conducted in LA (Ponce, 2005) individuals' access to
health insurance and their race, as well as neighborhood level
factors such as SES and the physical environment (i.e. proximity to
air pollution-related traffic and winter season) acted in concert to
increase susceptibility to adverse pregnancy outcomes across LA
county census tracts. Taken together this suggests a rather com-
plex set of individual- and neighborhood-level social, cultural and
environmental contributors to adverse birth outcomes that vary
over space and may act on different biologic pathways to impair
growth of the fetus resulting in TLBW, as suggested by the spatially
varying effects estimated in our study.

In addition to spatial clustering of neighborhood and individual
determinants and effect measure modifiers for birth outcomes,
multi-pollutant mixtures in urban areas may create gradients in
effects between Sub-Regions (Levy et al., 2013; Novák et al., 2014).
While multi-pollutant mixtures may be more toxic in terms of birth
outcomes, our study did not explicitly account for pollutant mix-
tures. While inclusion of a spatial random effects term may have
mitigated this limitation to some extent � since multiple pollutant
profiles have been observed to be clustered spatially (Austin et al.,
2012) – this is an important limitation of this study. Furthermore, it
cannot be ruled out that neighborhood-level and individual-level
susceptibility and pollutant mixtures co-occur and together con-
tribute to the observed spatially varying effect estimates seen in our
study. Within regions of CA, such geographic-based susceptibility
may be particularly acute. For instance, countywide studies in three
California counties (Alameda, LA and San Diego) found that, while
concentrations of individual pollutants such as diesel PM, NO2, and
PM2.5 were statistically significantly higher within socio-
economically disadvantaged compared to less disadvantaged com-
munities, when cumulative exposures to diesel PM, NO2, and PM2.5

were considered, the relationship between SES and exposure was
stronger (Su et al., 2012). Overlap of environmental and SES risk
factors that can enhance neighborhood-level susceptibility has been
reported previously (Jerrett and Finkelstein, 2005; Morello-Frosch
and Shenassa, 2006).

4.2. Spatial dependency, air pollution, and birth outcome studies

A multilevel spatial hierarchical modeling approach is estab-
lished as a flexible means of addressing spatial structure in the
exposure–response relationship between air pollution and health
effects (Boehm Vock et al., 2014; Dominici et al., 2000; Lee et al.,
2013) and may therefore highlight notable localized effects
(Chakraborty, 2012; Dominici et al., 2000; Earnest et al., 2007). A
major statistical advantage gained in using this approach to
modeling a spatially-structured exposure–response relationship is
to maximize statistical power by using data in all sub-regions to
inform the analysis, rather than calculating separate regression
models for each sub-region (Gelman and Hill, 2006). Multilevel
modeling approaches which incorporate spatial smoothing allow
information from nearby regions to potentially exert more weight
and influence compared to distant regions (Banerjee et al., 2004;
Zhuoqiong, 2000).

A strength of our approach is the inclusion of individual-level
pollutant effect estimates that are modeled with spatial structure at
the census-tract level. Some air pollution and birth outcome studies
have accounted for spatial dependency in the residuals, but still
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assume a global effect due to exposure (Berrocal et al., 2011; Cas-
telló et al., 2013; Thompson et al., 2014; Williams et al., 2007). A
spatial correlated autoregressive (CAR) model has been applied by
(Berrocal et al., 2011) to examine the effect of CT-level PM2.5 on
continuous birth weight in North Carolina. An important distinction
between the present study and Berrocal et al (2011) is that we
applied a spatially structured random air pollution effect term,
whereas Berrocal et al (2011) implemented a random intercept and
did not explore the possibility of geographic disparities in the PM
exposure–response relationship. A study by Thompson et al. (2014)
examined the exceedance probability of very LBW risks in relation
to proximity to National Priorities List Superfund Sites in Texas by
modeling the spatially structured error term using Poisson regres-
sion. This study, however, used aggregated outcomes for a given
geographic area and did not include individual-level air pollution
estimates of exposure. A study conducted in Spain that examined
municipal-level risks of PTB and LBW with proximity to different
types of industries modeled spatially varying effects using Poisson
regression with a spatial error term and an unstructured error term
(Castelló et al., 2013). A major difference in the Castelló et al. (2013)
study is that these researchers, again, used aggregated outcome
data and did not relate birth outcomes with individual-level esti-
mates of air pollutant exposures. A study by Williams et al. (2007)
applied a linear hierarchical random effects model with spatially
unstructured random coefficients and found substantial variation
across census tracts regarding the estimated effects of maternal
residential proximity to hazardous air pollution sites for reducing
average birth weight. Our results also found varying effects by
census tract; however, Williams et al (2007) did not use air pollu-
tion estimates but rather the proxy measure of spatial proximity to
hazardous air pollution emitting sites and did not apply spatial
structure to the random coefficients. While it is clear from these
studies that multilevel modeling is capable of revealing important
spatial processes regarding air pollution-related reductions in birth
weight; our work goes beyond previous findings by not only ap-
plying spatial structure to pollutant effects but illustrating spatially
varying effects while adjusting for individual level confounders.

4.3. Study limitations

Our study is limited by the presence of unmeasured con-
founders. Most notably we lack information on maternal smoking
or maternal exposure to indoor smoking. However, our previous
research (Ritz et al., 2007) found that adjustment for maternal or
household smoking did not alter the strength of air pollution effects
on adverse birth outcomes in LA County. Our study also did not
account for spatially varying housing characteristics (e.g. age of
housing stock, substandard housing, or lack of air conditioning) that
could potentially exacerbate gradients in intra-urban exposures;
even between neighborhoods with similar ambient PM concentra-
tions (Baxter et al., 2007; Burgos et al., 2013; Clougherty et al., 2011;
Jerrett and Finkelstein, 2005; Lv and Zhu, 2013; Meng et al., 2005;
Ramachandran et al., 2003; Reid et al., 2009). Additionally, PM-re-
lated birth outcome risks may be modified by individual-level or
neighborhood-level susceptibility factors that are often spatially
patterned, such as SES, racial–ethnic status, maternal body mass
index, maternal nutrition status, and other adverse neighborhood
conditions, e.g., poor access to healthy foods or green spaces
(English et al., 2003; Hystad et al., 2014; Jedrychowski et al., 2010;
Kannan et al., 2006; Lakshmanan et al., 2015; Lane et al., 2008;
Laurent et al., 2014; Ponce, 2005; Schempf et al., 2009).

While the PM2.5 LUR estimates in our study best represents the
spatial contrasts of chronic exposures at maternal residences
throughout LA county, our estimates lacked the temporal resolution
to consider exposures during specific pregnancy time periods. This
limitation may obscure important biologic differences with regard

to birth outcome risks associated with different trimester exposure
windows. Studies that have relied upon nearest site monitors for
PM2.5 estimation (Ghosh et al., 2012; Wilhelm et al., 2011) are better
equipped to capture the temporal contrasts in maternal exposures,
however, these studies lacked the spatial resolution to assess spa-
tially varying effects of PM2.5. For instance, while PM2.5 may be
fairly homogenous over a large region, it is likely that local-scale
sources of PM2.5 pollution carry greater importance when examin-
ing spatially varying TLBW effects (Laurent et al., 2014, 2013).
Therefore, it was determined that the value in obtaining high spatial
resolution was an acceptable temporal tradeoff, given the nature of
our research question. Furthermore, we are confident in the ability
of our exposure model to assess TLBW risks since our overall fixed
effect PM2.5 exposure–response estimate was consistent in terms of
effect size when compared with previous research findings (Dad-
vand et al., 2013; Ghosh et al., 2012; Hyder et al., 2014; Laurent
et al., 2014; Stieb et al., 2012; Wilhelm et al., 2011). For example, in
the present study, we found an OR of 1.03 per IQR increase in ma-
ternal PM2.5 exposure (Table 2). Ghosh et al. (2012) estimated ma-
ternal PM2.5 concentrations, using an inverse distance weighting
procedure based on governmental air monitoring stations for the
years 2000-2006 in LA County, and found an OR of 1.04 per inter-
quartile range (IQR) increase for entire pregnancy PM2.5 exposure.
Recently, Laurent et al. (2014) estimated an OR of 1.025 per IQR
increase in maternal PM2.5 exposure for LA County births between
2001 and 2008. Notably, Laurent et al. (2014) found that gasoline
PM2.5 exposure imparted the highest risk of TLBW compared to all
other sources of PM2.5 within LA. In a separate PM2.5 and birth
outcomes study, (Dadvand et al., 2013) pooled multiple PM2.5 and
TLBW analyses from seven different country study sites, despite
large heterogeneity between the country-specific PM2.5 effect esti-
mates, they estimated a 10% (95%CI: 3%, 18%) adjusted increased
odds of TLBW for a 10-unit increase in PM2.5 exposure, which is
comparable to our finding of a 17% increase per 10-unit increase in
PM2.5 exposure (Table 2).

4.4. Public health implications

Findings from our research is highly relevant to environmental
health disparities and regulatory policy. First of all, our study im-
plies that uniform regulatory standards geared towards reducing
public health impacts from air pollution may not be sufficiently
protective of susceptible sub-populations, and that such policies
may need to be spatially tailored to protect these sub-populations.
Secondly, our approach could identify 'hotspots' to help guide
spatially targeted public health interventions intended to protect
susceptible sub-populations from outdoor air pollution health ef-
fects (e.g., for example, by installing HEPA filters and air con-
ditioning to reduce indoor exposures). Lastly, while our study
found large within-county differences in effect estimates and thus
the potential for PM2.5 effect 'hotspots', additional data on po-
tential modifying factors by neighborhood (i.e. PM2.5 composition
or neighborhood food environment) are needed to more fully
explain the causes for this apparent spatial variation in the ex-
posure–response relationship between PM2.5 and TLBW.

5. Conclusion

We found that maternal exposure to PM2.5 was associated with
higher odds of TLBW in LA County. Moreover, our results indicate
that the spatial patterning of the exposure–response relationship
for PM2.5 and TLBW needed to be considered. While previous re-
search conducted in LA County has found variation of pollutant
effects on adverse birth outcomes based on neighborhood factors
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such as SES, our results take these previous findings a step further
by identifying neighborhood TLBW 'hotspots' most likely to be
affected negatively by air pollution. Also, compared to global effect
estimates, our findings suggest the potential value of modeling
spatial random air pollution effect coefficients in identifying dis-
proportionately impacted communities as well the relative prob-
ability of localized exposure–response estimates. Finally, addi-
tional research is needed in hotspot areas to explore which spa-
tially-based factors may help to better understand these differ-
ences between neighborhoods.

Acknowledgments

Research described in this article was conducted under contract
to the Health Effects Institute (HEI), an organization jointly funded
by the United States Environmental Protection Agency (EPA) (As-
sistance Award No. R-82811201) and certain motor vehicle and
engine manufacturers. The contents of this article do not ne-
cessarily reflect the views of HEI, or its sponsors, nor do they ne-
cessarily reflect the views and policies of the EPA or motor vehicle
and engine manufacturers.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.envres.2015.06.044.

References

Austin, E., Coull, B., Thomas, D., Koutrakis, P., 2012. A framework for identifying
distinct multipollutant profiles in air pollution data. Environ. Int. 45, 112–121.
http://dx.doi.org/10.1016/j.envint.2012.04.003.

Banerjee, S., Carlin, B.P., Gelfand, A.E., 2004. Hierarchical Modeling and Analysis for
Spatial Data. Chapman & Hall/CRC, Boco Raton, Florida.

Baxter, L.K., Clougherty, J.E., Laden, F., Levy, J.I., 2007. Predictors of concentrations of
nitrogen dioxide, fine particulate matter, and particle constituents inside of
lower socioeconomic status urban homes. J. Expo. Sci. Environ. Epidemiol. 17,
433–444. http://dx.doi.org/10.1038/sj.jes.7500532.

Beckerman, B.S., Jerrett, M., Martin, R.V., van Donkelaar, A., Ross, Z., Burnett, R.T.,
2013. Application of the deletion/substitution/addition algorithm to selecting
land use regression models for interpolating air pollution measurements in
California. Atmos. Environ. 77, 172–177. http://dx.doi.org/10.1016/j.
atmosenv.2013.04.024.

Bennett, A., Yukich, J., Miller, J.M., Vounatsou, P., Hamainza, B., Ingwe, M.M.,
Moonga, H.B., Kamuliwo, M., Keating, J., Smith, T.A., Steketee, R.W., Eisele, T.P.,
2014. A methodological framework for the improved use of routine health
system data to evaluate national malaria control programs: evidence from
Zambia. Popul. Health Metr. 12, 1–11. http://dx.doi.org/10.1186/
s12963-014-0030-0.

Berrocal, V.J., Gelfand, A.E., Holland, D.M., Burke, J., Miranda, M.L., 2011. On the use
of a PM2.5 exposure simulator to explain birthweight. Environmetrics 22,
553–571. http://dx.doi.org/10.1002/env.1086.

Besag, J., York, J.C., Molli’e, A., 1991. Bayesian image restoration, with two appli-
cations in spatial statistics (with discussion). Ann. Inst. Stat. Math. 43, 1–59.

Bivand, R., Hauke, J., Kossowski, T., 2013. Computing the Jacobian in Gaussian
spatial autoregressive models: an illustrated comparison of available methods:
computing the Jacobian in spatial autoregressive models. Geogr. Anal. 45,
150–179. http://dx.doi.org/10.1111/gean.12008.

Bivand, R., Piras, G., 2015. Comparing implementations of estimation methods for
spatial econometrics. J. Stat. Softw. 63, 1–36.

Boehm Vock, L.F., Reich, B.J., Fuentes, M., Dominici, F., 2014. Spatial variable selec-
tion methods for investigating acute health effects of fine particulate matter
components. Biometrics 71, 167–177. http://dx.doi.org/10.1111/biom.12254.

Brauer, M., Lencar, C., Tamburic, L., Koehoorn, M., Demers, P., Karr, C., 2008. A Co-
hort study of traffic-related air pollution impacts on birth outcomes. Environ.
Health Perspect. 116, 680–686. http://dx.doi.org/10.1289/ehp.10952.

Burgos, S., Ruiz, P., Koifman, R., 2013. Changes to indoor air quality as a result of
relocating families from slums to public housing. Atmos. Environ. 70, 179–185.
http://dx.doi.org/10.1016/j.atmosenv.2012.12.044.

Castelló, A., Río, I., García-Pérez, J., Fernández-Navarro, P., Waller, L.A., Clennon, J.A.,
Bolúmar, F., López-Abente, G., 2013. Adverse birth outcomes in the vicinity of
industrial installations in Spain 2004–2008. Environ. Sci. Pollut. Res. 20,
4933–4946. http://dx.doi.org/10.1007/s11356-012-1444-5.

Chakraborty, J., 2012. Cancer risk from exposure to hazardous air pollutants: spatial
and social inequities in Tampa Bay, Florida. Int. J. Environ. Health Res. 22,
165–183. http://dx.doi.org/10.1080/09603123.2011.628643.

Choi, J., Fuentes, M., Reich, B.J., 2009. Spatial–temporal association between fine
particulate matter and daily mortality. Comput. Stat. Data Anal. 53, 2989–3000.
http://dx.doi.org/10.1016/j.csda.2008.05.018.

Clougherty, J.E., Houseman, E.A., Levy, J.I., 2011. Source apportionment of indoor
residential fine particulate matter using land use regression and constrained
factor analysis: Indoor-source apportionment using LUR and factor analysis.
Indoor Air 21, 53–66. http://dx.doi.org/10.1111/j.1600-0668.2010.00682.x.

Dadvand, P., Parker, J., Bell, M.L., Bonzini, M., Brauer, M., Darrow, L.A., Gehring, U.,
Glinianaia, S.V., Gouveia, N., Ha, E., Leem, J.H., van den Hooven, E.H., Jalaludin,
B., Jesdale, B.M., Lepeule, J., Morello-Frosch, R., Morgan, G.G., Pesatori, A.C.,
Pierik, F.H., Pless-Mulloli, T., Rich, D.Q., Sathyanarayana, S., Seo, J., Slama, R.,
Strickland, M., Tamburic, L., Wartenberg, D., Nieuwenhuijsen, M.J., Woodruff, T.
J., 2013. Maternal exposure to particulate air pollution and term birth weight: a
multi-country evaluation of effect and heterogeneity. Environ. Health Perspect.
121, 267–373. http://dx.doi.org/10.1289/ehp.1205575.

Dominici, F., Samet, J.M., Zeger, S., 2000. Combinine evidence on air pollution and
daily mortality from the 20 largest us cities: a hierarchical modelling strategy. J.
R. Stat. Soc.: Ser. A (Stat. Soc.) 163, 263–302.

Earnest, A., Morgan, G., Mengersen, K., Ryan, L., Summerhayes, R., Beard, J., 2007.
Evaluating the effect of neighbourhood weight matrices on smoothing prop-
erties of conditional autoregressive (CAR) models. Int. J. Health Geogr. 6, 54.
http://dx.doi.org/10.1186/1476-072X-6-54.

English, P.B., Kharrazi, M., Davies, S., Scalf, R., Waller, L., Neutra, R., 2003. Changes in
the spatial pattern of low birth weight in a southern California county: the role
of individual and neighborhood level factors. Soc. Sci. Med. 56, 2073–2088.
http://dx.doi.org/10.1016/S0277-9536(02)00202-2.

Everitt, B., Hothorn, T., 2010. A Handbook of Statistical Analyses Using R, 2nd ed.
CRC Press, Boca Raton.

Fleischer, N.L., Merialdi, M., van Donkelaar, A., Vadillo-Ortega, F., Martin, R.V., Be-
tran, A.P., Souza, J.P., O’Neill, M.S., 2014. Outdoor air pollution, preterm birth,
and low birth weight: analysis of the world health organization global survey
on maternal and perinatal health. Environ. Health Perspect. 122, 425–430 110.
1289/ehp.1306837.

Fuentes, M., Song, H.-R., Ghosh, S.K., Holland, D.M., Davis, J.M., 2006. Spatial asso-
ciation between speciated fine particles and mortality. Biometrics 62, 855–863.
http://dx.doi.org/10.1111/j.1541-0420.2006.00526.x.

Gelman, A., Hill, J., 2006. Data Analysis Using Regression and Multilevel/Hier-
archical Models, 1st edition. Cambridge University Press, Cambridge; New York.

Ghosh, J.K.C., Wilhelm, M.H., Dunkel-Schetter, C., Lombardi, C.A., Ritz, B.R., 2010.
Paternal support and preterm birth, and the moderation of effects of chronic
stress: a study in Los Angeles County mothers. Arch. Women's Ment. Health 13,
327–338. http://dx.doi.org/10.1007/s00737-009-0135-9.

Ghosh, J.K.C., Wilhelm, M., Ritz, B., 2013. Effects of residential indoor air quality and
household ventilation on preterm birth and term low birth weight in Los An-
geles County, California. Am. J. Public Health 103, 686–694. http://dx.doi.org/
10.2105/AJPH.2012.300987.

Ghosh, J.K.C., Wilhelm, M., Su, J., Goldberg, D., Cockburn, M., Jerrett, M., Ritz, B.,
2012. Assessing the influence of traffic-related air pollution on risk of term low
birth weight on the basis of land-use-based regression models and measures of
air toxics. Am. J. Epidemiol. 175, 1262–1274. http://dx.doi.org/10.1093/aje/
kwr469.

Gilks, W.R., Richardson, S., Spiegelhalter, D.J., 1998. Markov Chain Monte Carlo in
Practice. Chapman & Hall/CRC, Boca Raton, FL.

Goldberg, D.W., Wilson, J.P., Knoblock, C.A., Ritz, B., Cockburn, M.G., 2008. An ef-
fective and efficient approach for manually improving geocoded data. Int. J.
Health Geogr. 7, 60. http://dx.doi.org/10.1186/1476-072X-7-60.

Grilli, L., Metelli, S., Rampichini, C., 2014. Bayesian estimation with integrated
nested Laplace approximation for binary logit mixed models. J. Stat. Comput.
Simul., 1–9. http://dx.doi.org/10.1080/00949655.2014.935377.

Hajat, A., Diez-Roux, A.V., Adar, S.D., Auchincloss, A.H., Lovasi, G.S., O’Neilles, M.S.,
Sheppard, L., Kaufman, J.D., 2013. Air pollution and individual and neighbor-
hood socioeconomic status: evidence from the multi-ethnic study of athero-
sclerosis (MESA). Environ. Health Perspect. 121, 1325–1333. http://dx.doi.org/
10.1289/ehp.1206337.

Hao, Y., Strosnider, H., Balluz, L., Qualters, J.R., 2015. Geographic variation in the
association between ambient fine particulate matter (PM2.5) and term low birth
weight in the United States. Environ. Health Perspect. [Advanced Publication],
1–28. http://dx.doi.org/10.1289/ehp.1408798.

Harris, G., Thompson, W.D., Fitzgerald, E., Wartenberg, D., 2014. The association of
PM(2.5) with full term low birth weight at different spatial scales. Environ. Res.
134, 427–434. http://dx.doi.org/10.1016/j.envres.2014.05.034.

Horner, M.W., Mefford, J.N., 2007. Investigating urban spatial mismatch using job –

housing indicators to model home – work separation. Environ. Plan. A 39,
1420–1440. http://dx.doi.org/10.1068/a37443.

Hyder, A., Lee, H.J., Ebisu, K., Koutrakis, P., Belanger, K., Bell, M.L., 2014. PM2.5 ex-
posure and birth outcomes: use of satellite- and monitor-based data. Epide-
miology 25, 58–67. http://dx.doi.org/10.1097/EDE.0000000000000027.

Hystad, P., Davies, H.W., Frank, L., Van Loon, J., Gehring, U., Tamburic, L., Brauer, M.,
2014. Residential greenness and birth outcomes: evaluating the influence of
spatially correlated built-environment factors. Environ. Health Perspect. 122,
1095–1102. http://dx.doi.org/10.1289/ehp.1308049.

Jedrychowski, W., Perera, F., Mrozek-Budzyn, D., Flak, E., Mroz, E., Sochacka-Tatara,
E., Jacek, R., Kaim, I., Skolicki, Z., Spengler, J.D., 2010. Higher fish consumption in

E. Coker et al. / Environmental Research 142 (2015) 354–364362



4444

Modeling of Multipollutant Profiles and Spatially Varying Health Effects: Appendix A

pregnancy may confer protection against the harmful effect of prenatal ex-
posure to fine particulate matter. Ann. Nutr. Metab. 56, 119–126. http://dx.doi.
org/10.1159/000275918.

Jerrett, M., Burnett, R.T., Beckerman, B.S., Turner, M.C., Krewski, D., Thurston, G.,
Martin, R.V., van Donkelaar, A., Hughes, E., Shi, Y., Gapstur, S.M., Thun, M.J.,
Pope, C.A., 2013. Spatial analysis of air pollution and mortality in California. Am.
J. Respir. Crit. Care Med. 188, 593–599. http://dx.doi.org/10.1164/
rccm.201303-0609OC.

Jerrett, M., Burnett, R.T., Ma, R., Pope, C.A., Krewski, D., Newbold, K.B., Thurston, G.,
Shi, Y., Finkelstein, N., Calle, E.E., Thun, M.J., 2005. Spatial analysis of air pol-
lution and mortality in Los Angeles. Epidemiology 16, 727–736. http://dx.doi.
org/10.1097/01.ede.0000181630.15826.7d.

Jerrett, M., Finkelstein, M., 2005. Geographies of risk in studies linking chronic air
pollution exposure to health outcomes. J. Toxicol. Environ. Health A 68,
1207–1242. http://dx.doi.org/10.1080/15287390590936085.

Kannan, S., Misra, D.P., Dvonch, J.T., Krishnakumar, A., 2006. Exposures to airborne
particulate matter and adverse perinatal outcomes: a biologically plausible
mechanistic framework for exploring potential effect modification by nutrition.
Environ. Health Perspect. 114, 1636–1642.

Krewski, D., Jerrett, M., Burnett, R.T., Ma, R., Hughes, E., Shi, Y., Turner, M.C., Pope, C.
A., Thurston, G., Calle, E.E., Thun, M.J., Beckerman, B., DeLuca, P., Finkelstein, N.,
Ito, K., Moore, D.K., Newbold, K.B., Ramsay, T., Ross, Z., Shin, H., Tempalski, B.,
2009. Extended follow-up and spatial analysis of the American Cancer Society
study linking particulate air pollution and mortality. Res. Rep. Health Eff. Inst.
140, 5–114, discussion 115–136.

Lakshmanan, A., Chiu, Y.-H.M., Coull, B.A., Just, A.C., Maxwell, S.L., Schwartz, J.,
Gryparis, A., Kloog, I., Wright, R.J., Wright, R.O., 2015. Associations between
prenatal traffic-related air pollution exposure and birth weight: modification
by sex and maternal pre-pregnancy body mass index. Environ. Res. 137,
268–277. http://dx.doi.org/10.1016/j.envres.2014.10.035.

Lane, S.D., Keefe, R.H., Rubinstein, R., Levandowski, B.A., Webster, N., Cibula, D.A.,
Boahene, A.K., Dele-Michael, O., Carter, D., Jones, T., Wojtowycz, M., Brill, J.,
2008. Structural violence, urban retail food markets, and low birth weight.
Health Place 14, 415–423. http://dx.doi.org/10.1016/j.healthplace.2007.08.008.

Laurent, O., Hu, J., Li, L., Cockburn, M., Escobedo, L., Kleeman, M.J., Wu, J., 2014.
Sources and contents of air pollution affecting term low birth weight in Los
Angeles County, California, 2001–2008. Environ. Res. 134, 488–495. http://dx.
doi.org/10.1016/j.envres.2014.05.003.

Laurent, O., Wu, J., Li, L., Chung, J., Bartell, S., 2013. Investigating the association
between birth weight and complementary air pollution metrics: a cohort study.
Environ. Health 12, 18. http://dx.doi.org/10.1186/1476-069X-12-18.

Lee, D., Mitchell, R., 2014. Controlling for localised spatio-temporal autocorrelation
in long-term air pollution and health studies. Stat. Methods Med. Res. . http:
//dx.doi.org/10.1177/0962280214527384

Lee, D., Rushworth, A., Sahu, S., 2013. A Bayesian localised conditional auto-re-
gressive model for estimating the health effects of air pollution. University of
Glasgow, University of Southhampton.

Levy, I., Mihele, C., Lu, G., Narayan, J., Brook, J.R., 2013. Evaluating Multipollutant
Exposure and Urban Air Quality: Pollutant Interrelationships. Neighborhood
Variability, and Nitrogen Dioxide as a Proxy Pollutant. Environ. Health Perspect
. http://dx.doi.org/10.1289/ehp.1306518.

Lv, J., Zhu, L., 2013. Effect of central ventilation and air conditioner system on the
concentration and health risk from airborne polycyclic aromatic hydrocarbons.
J. Environ. Sci. China 25, 531–536.

Martino, S., Rue, H., 2009. Implementing Approximate Bayesian Inference using
Integrated Nested Laplace Approximation: a manual for the inla program.

McConnell, R., Islam, T., Shankardass, K., Jerrett, M., Lurmann, F., Gilliland, F., Gau-
derman, J., Avol, E., Künzli, N., Yao, L., Peters, J., Berhane, K., 2010. Childhood
incident asthma and traffic-related air pollution at home and school. Environ.
Health Perspect. 118, 1021–1026. http://dx.doi.org/10.1289/ehp.0901232.

Meng, Q.Y., Turpin, B.J., Korn, L., Weisel, C.P., Morandi, M., Colome, S., Zhang, J.J.,
Stock, T., Spektor, D., Winer, A., Zhang, L., Lee, J.H., Giovanetti, R., Cui, W., Kwon,
J., Alimokhtari, S., Shendell, D., Jones, J., Farrar, C., Maberti, S., 2005. Influence of
ambient (outdoor) sources on residential indoor and personal PM2.5 con-
centrations: analyses of RIOPA data. J. Expo. Anal. Environ. Epidemiol. 15,
17–28. http://dx.doi.org/10.1038/sj.jea.7500378.

Messer, L.C., Kaufman, J.S., Dole, N., Herring, A., Laraia, B.A., 2006. Violent crime
exposure classification and adverse birth outcomes: a geographically-defined
cohort study. Int. J. Health Geogr. 5, 22. http://dx.doi.org/10.1186/
1476-072X-5-22.

Molitor, J., Jerrett, M., Chang, C.C., Molitor, N.T., Gauderman, J., Berhane, K.,
McConnell, R., Lurmann, F., Wu, J., Winer, A., Thomas, D., 2007. Assessing un-
certainty in spatial exposure models for air pollution health effects assessment.
Env. Health Perspect. 115, 1147–1153.

Molitor, J., Su, J.G., Molitor, N.-T., Rubio, V.G., Richardson, S., Hastie, D., Morello-
Frosch, R., Jerrett, M., 2011. Identifying vulnerable populations through an ex-
amination of the association between multipollutant profiles and poverty.
Environ. Sci. Technol. 45, 7754–7760. http://dx.doi.org/10.1021/es104017x.

Morello-Frosch, R., Shenassa, E.D., 2006. The environmental “Riskscape” and social
inequality: implications for explaining maternal and child health disparities.
Environ. Health Perspect. 114, 1150–1153. http://dx.doi.org/10.1289/ehp.8930.

Novák, J., Hilscherová, K., Landlová, L., Čupr, P., Kohút, L., Giesy, J.P., Klánová, J.,
2014. Composition and effects of inhalable size fractions of atmospheric aero-
sols in the polluted atmosphere. Part II: in vitro biological potencies. Environ.
Int. 63, 64–70. http://dx.doi.org/10.1016/j.envint.2013.10.013.

Padula, A.M., Mortimer, K., Hubbard, A., Lurmann, F., Jerrett, M., Tager, I.B., 2012.

Exposure to traffic-related air pollution during pregnancy and term low birth
weight: estimation of causal associations in a semiparametric model. Am. J.
Epidemiol. 176, 815–824. http://dx.doi.org/10.1093/aje/kws148.

Parker, J.D., Rich, D.Q., Glinianaia, S.V., Leem, J.H., Wartenberg, D., Bell, M.L., Bonzini,
M., Brauer, M., Darrow, L., Gehring, U., Gouveia, N., Grillo, P., Ha, E., van den
Hooven, E.H., Jalaludin, B., Jesdale, B.M., Lepeule, J., Morello-Frosch, R., Morgan,
G.G., Slama, R., Pierik, F.H., Pesatori, A.C., Sathyanarayana, S., Seo, J., Strickland,
M., Tamburic, L., Woodruff, T.J., 2011. The international collaboration on air
pollution and pregnancy outcomes: initial results. Environ. Health Perspect.
119, 1023–1028. http://dx.doi.org/10.1289/ehp.1002725.

Pedersen, M., Gehring, U., Beelen, R., Wang, M., Giorgis-Allemand, L., Andersen, A.
M.N., Basagaña, X., Bernard, C., Cirach, M., Forastiere, F., de Hoogh, K., Gražu-
levičienė, R., Gruzieva, O., Hoek, G., Jedynska, A., Klümper, C., Kooter, I.M.,
Krämer, U., Kukkonen, J., Porta, D., Postma, D.S., Raaschou-Nielsen, O., van
Rossem, L., Sunyer, J., Sørensen, M., Tsai, M.-Y., Vrijkotte, T.G., Wilhelm, M.,
Nieuwenhuijsen, M.J., Pershagen, G., Brunekreef, B., Kogevinas, M., Slama, R.,
2015. Elemental constituents of particulate matter and newborn’s size in eight
European cohorts. Environ. Health Perspect. . http://dx.doi.org/10.1289/
ehp.1409546

Ponce, N.A., 2005. Preterm birth: the interaction of traffic-related air pollution with
economic hardship in Los Angeles neighborhoods. Am. J. Epidemiol. 162,
140–148. http://dx.doi.org/10.1093/aje/kwi173.

Proietti, E., Röösli, M., Frey, U., Latzin, P., 2013. Air pollution during pregnancy and
neonatal outcome: a review. J. Aerosol Med. Pulm. Drug Deliv. 26, 9–23. http:
//dx.doi.org/10.1089/jamp.2011.0932.

Ramachandran, G., Adgate, J.L., Pratt, G.C., Sexton, K., 2003. Characterizing Indoor
and Outdoor 15 Minute Average PM 2.5 Concentrations in Urban Neighbor-
hoods. Aerosol Sci. Technol. 37, 33–45. http://dx.doi.org/10.1080/
02786820300889.

Reid, C., O’Neill, M., Gronlund, C., Brines, S., Brown, D., Diez-Roux, A., Schwartz, J.,
2009. Mapping community determinants of heat vulnerability. Environ. Health
Perspect. . http://dx.doi.org/10.1289/ehp.0900683

Ritz, B., Wilhelm, M., 2008. Ambient air pollution and adverse birth outcomes:
methodologic issues in an emerging field. Basic Clin. Pharmacol. Toxicol. 102,
182–190. http://dx.doi.org/10.1111/j.1742-7843.2007.00161.x.

Ritz, B., Wilhelm, M., Hoggatt, K.J., Ghosh, J.K.C., 2007. Ambient air pollution and
preterm birth in the environment and pregnancy outcomes study at the uni-
versity of California, Los Angeles. Am. J. Epidemiol. 166, 1045–1052. http://dx.
doi.org/10.1093/aje/kwm181.

Rue, H., Martino, S., Chopin, N., 2009. Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations. J. R. Stat.
Soc. Ser. B Stat. Methodol. 71, 319–392. http://dx.doi.org/10.1111/
j.1467-9868.2008.00700.x.

Rue, H., Martino, S., Lindgren, F., Simpson, D., Riebler, A., Krainski, E., 2015. INLA:
Functions which allow to perform full Bayesian analysis of latent Gaussian
models using Integrated Nested Laplace Approximaxion.

Rue, H., Martino, S., Lindgren, F., Simpson, D., Riebler, A., Krainski, E., 2014. Func-
tions which allow to perform full Bayesian analysis of latent Gaussian models
using Integrated Nested Laplace Approximaxion [WWW Document]. URL
〈http://inla.googlecode.com/hg-history/default/rinla/DESCRIPTION〉.

Samoli, E., Analitis, A., Touloumi, G., Schwartz, J., Anderson, H.R., Sunyer, J., Bisanti,
L., Zmirou, D., Vonk, J.M., Pekkanen, J., Goodman, P., Paldy, A., Schindler, C.,
Katsouyanni, K., 2004. Estimating the exposure–response relationships be-
tween particulate matter and mortality within the APHEA multicity project.
Environ. Health Perspect. 113, 88–95. http://dx.doi.org/10.1289/ehp.7387.

Schempf, A., Strobino, D., O’Campo, P., 2009. Neighborhood effects on birthweight:
an exploration of psychosocial and behavioral pathways in Baltimore, 1995–
1996. Soc. Sci. Med. 68, 100–110. http://dx.doi.org/10.1016/j.
socscimed.2008.10.006.

Shah, P.S., Balkhair, T., 2011. Air pollution and birth outcomes: a systematic review.
Environ. Int. 37, 498–516. http://dx.doi.org/10.1016/j.envint.2010.10.009.

Shankardass, K., McConnell, R., Jerrett, M., Milam, J., Richardson, J., Berhane, K.,
2009. Parental stress increases the effect of traffic-related air pollution on
childhood asthma incidence. Proc. Natl. Acad. Sci. USA 106, 12406–12411. http:
//dx.doi.org/10.1073/pnas.0812910106.

Singer, B.C., Harley, R.A., 2000. A fuel-based inventory of motor vehicle exhaust
emissions in the Los Angeles area during summer 1997. Atmos. Environ. 34,
1783–1795. http://dx.doi.org/10.1016/S1352-2310(99)00358-1.

Stieb, D.M., Chen, L., Eshoul, M., Judek, S., 2012. Ambient air pollution, birth weight
and preterm birth: a systematic review and meta-analysis. Environ. Res. 117,
100–111. http://dx.doi.org/10.1016/j.envres.2012.05.007.

Su, J.G., Jerrett, M., Morello-Frosch, R., Jesdale, B.M., Kyle, A.D., 2012. Inequalities in
cumulative environmental burdens among three urbanized counties in Cali-
fornia. Environ. Int. 40, 79–87. http://dx.doi.org/10.1016/j.envint.2011.11.003.

Thompson, J.A., Bissett, W.T., Sweeney, A.M., 2014. Evaluating geostatistical mod-
eling of exceedance probability as the first step in disease cluster investiga-
tions: very low birth weights near toxic Texas sites. Environ. Health Glob. Ac-
cess Sci. Source 13, 47. http://dx.doi.org/10.1186/1476-069X-13-47.

Van Donkelaar, A., Martin, R.V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., Ville-
neuve, P.J., 2010. Global estimates of ambient fine particulate matter con-
centrations from satellite-based aerosol optical depth: development and ap-
plication. Environ. Health Perspect. 118, 847–855. http://dx.doi.org/10.1289/
ehp.0901623.

Wilhelm, M., Ghosh, J.K., Su, J., Cockburn, M., Jerrett, M., Ritz, B., 2011. Traffic-re-
lated air toxics and term low birth weight in Los Angeles County, California.
Environ. Health Perspect. 120, 132–138. http://dx.doi.org/10.1289/ehp.1103408.

E. Coker et al. / Environmental Research 142 (2015) 354–364 363



45

J. Molitor et al.

45

Williams, B.L., Pennock-Román, M., Suen, H.K., Magsumbol, M.S., Ozdenerol, E.,
2007. Assessing the impact of the local environment on birth outcomes: a case
for HLM. J. Expo. Sci. Environ. Epidemiol. 17, 445–457. http://dx.doi.org/
10.1038/sj.jes.7500537.

Wu, J., Wilhelm, M., Chung, J., Ritz, B., 2011. Comparing exposure assessment
methods for traffic-related air pollution in an adverse pregnancy outcome

study. Environ. Res. 111, 685–692. http://dx.doi.org/10.1016/j.
envres.2011.03.008.

Zhuoqiong, He, Sun, Dongchu, 2000. Hierarchical Bayes estimation of hunting
success rates with spatial correlations. Biometrics 56, 360–367. http://dx.doi.
org/10.1111/j.0006-341X.2000.00360.x 360–7.

E. Coker et al. / Environmental Research 142 (2015) 354–364364



4646

Modeling of Multipollutant Profiles and Spatially Varying Health Effects

ABOUT THE AUTHORS

John Molitor is a biostatistician and mathematical epidemi-
ologist with specializations in the modeling of associations
between air pollution exposures and health outcomes and
in the field of genetic epidemiology. He has particular
expertise in the development and application of advanced
statistical methods to examine the joint effects of multiple
pollutants on health. He has a Ph.D. in mathematical sta-
tistics from the University of Missouri, completed post-
doctoral work at the University of Southern California,
worked as a Lecturer at Imperial College, London, and is
currently an associate professor of biostatistics in the Col-
lege of Public Health at Oregon State University.

Eric Coker has several years of experience in the field of
environmental epidemiology. He is currently a Ph.D. candi-
date at Oregon State University; his academic research
examines air pollution effects on birth outcomes. Mr. Coker
concurrently works as a practicing epidemiologist at the
New Mexico Department of Health, Santa Fe, where his
work involves data analysis for the National Environmental
Public Health Tracking Network (Centers for Disease Con-
trol and Prevention). He also has an M.S. degree from the
University of Washington, where his research focused on
developing a reference spectral library for the measurement
of air pollutants (NO2, SO2, and VOCs) using ultraviolet
differential optical absorption spectroscopy. For his M.S.
degree from the University of California–San Francisco,
Coker examined the relationship between placental
malaria infection and low-birth-weight infants in Uganda.

Michael Jerrett was the first to graduate from the collabora-
tive M.A. program in political science and environmental
studies at the University of Toronto in 1987. He subse-
quently completed a Ph.D. in geography at the University of
Toronto and then worked for two years as a postdoctoral fel-
low in environmental health with John Eyles at McMaster
University. Building on his specialties, Michael currently
assesses air pollution–health associations in the United
States and Canada, with special reference to geographic ex-
posure models and social–spatial effect modifiers. He also
pursues research in environmental accounting focusing on
the determinants of and evaluation of environmental costs
and benefits. He has designed and analyzed local, provin-
cial, state, and national-level health and environment data-
bases in North America, Europe, and Asia. He is currently
Professor and Chair, Department of Environmental Health
Sciences, UCLA Fielding School of Public Health.

Beate Ritz joined the faculty of the School of Public Health
at the University of California–Los Angeles (UCLA) in
1995 and is currently professor and vice chair of the Epide-
miology department. She also holds co-appointments in
the Environmental Health department at the UCLA School
of Public Health and in the Neurology department at the
UCLA School of Medicine. Ritz received her M.D. and a
Ph.D. in medical sociology from the University of Ham-
burg, Germany, in 1983 and 1987; she was a research fellow
and resident at the Psychiatric University-Hospital in Ham-
burg from 1987–1989, and received doctoral training and a
Ph.D. degree in epidemiology in 1995 from UCLA.

Her research focuses on the health effects of occupational
and environmental toxins such as pesticides, ionizing
radiation, and air pollution on chronic diseases including
neurodegenerative disorders (Parkinson’s disease), can-
cers, and adverse birth outcomes and asthma.

Arthur Li is a biostatistician who works at the City of Hope
National Cancer Center research hospital in Los Angeles,
California. He is a cofounder of Stats and More, a company
devoted to statistical analysis. He has in-depth experience
in the analysis of biomedical data and is an expert in data
management. He is author of the book Handbook of SAS
DATA Step programming (2013).

OTHER PUBLICATIONS RESULTING FROM THIS 
RESEARCH

Coker E, Liverani S, Ghosh JK, Jerrett M, Beckerman B, Li
A, Ritz B, Molitor J. 2016. Multi-pollutant exposure pro-
files associated with term low birth weight in Los Angeles
County. Environ Int 91:1–13; doi:10.1016/j.envint.
2016.02.011. Available: www.sciencedirect.com/science/
article/pii/S0160412016300460.

Coker E, Ghosh J, Jerrett M, Gomez-Rubio V, Beckerman B,
Cockburn M, et al. 2015. Modeling spatial effects of PM2.5
on term low birth weight in Los Angeles County. Environ
Res 142:354–364.

Molitor J, Su JG, Molitor N-T, Rubio VG, Richardson S,
Hastie D, et al. 2011. Identifying vulnerable populations
through an examination of the association between multi-
pollutant profiles and poverty. Environ Sci Technol
45:7754–7760; doi:10.1021/es104017x.



47

J. Molitor et al.

47

ABBREVIATIONS AND OTHER TERMS

CI credible interval

CO carbon monoxide

CT census tract

CBG census block group

IQR interquartile range

LA Los Angeles

LUR land use regression

MCMC Markov chain Monte Carlo

NO nitric oxide

NO2 nitrogen dioxide

NOx nitrogen oxides

NRC National Research Council

PM particulate matter

PM2.5 particulate matter � 2.5 µm in aerodynamic 
diameter

QA quality assurance

RFA request for applications

R-INLA integrated nested Laplace approximations 
(in R)

SES socioeconomic status

TLBW term low birth weight

UCLA University of California–Los Angeles

U.S. EPA U.S. Environmental Protection Agency
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Research Report 183, Part 3, Modeling of Multipollutant Profiles and Spatially Varying 
Health Effects with Applications to Indicators of Adverse Birth Outcomes, J. Molitor et al.

INTRODUCTION

Air pollution is a complex mixture of gaseous, liquid,
and solid components, which varies greatly in composi-
tion and concentration across time and space owing to dif-
ferences and proximity to sources, weather, and topography.
Although it is clear that people are exposed to complex
mixtures of pollutants emitted by diverse sources, the U.S.
Clean Air Act and air quality guidelines and standards
worldwide are geared toward control of individual, or
small sets of, pollutants. Consequently, most epidemio-
logic studies of air pollution and health have focused on
estimating the adverse effects associated with ambient
exposure to a single pollutant; in some cases, results are
adjusted for exposure to other pollutants as possible con-
founders, mostly in two- and three-pollutant models.
Single-pollutant research is relatively easier to conduct,
and the results are easier to interpret in comparison to
multipollutant approaches, which pose many challenges
(Dominici et al. 2010). Of particular interest is the com-
bined effect of various constituents of an air pollution mix-
ture, and whether the combined effect differs from the
effects of those individual pollutants within the mixture:
combined pollutants may elicit health effects that are syn-
ergistic, additive, or less than additive.

Employing multipollutant models using conventional
statistical approaches frequently produces results that are
difficult to interpret because air pollutant levels are often
highly correlated. Therefore, more sophisticated statistical
methods are needed to investigate the health effects of air
pollution mixtures.

To address these important questions, HEI issued a Re-
quest for Applications (RFA*) 09-1, “Methods to Investigate
the Effects of Multiple Air Pollution Constituents,” which
solicited research proposals that would address these
methodologic challenges through the development of inno-
vative statistical methods. The RFA primarily sought pro-
posals in which existing statistical approaches (including
those from fields outside of epidemiology) could be modi-
fied, extended, or combined, and their usefulness illus-
trated by application to real-life data, rather than the
development of purely theoretical approaches and use of
simulations only. (See the Preface for more detail on the
scientific background for the RFA development.)

Three studies were funded under RFA 09-1 that represent
a variety of statistical approaches and applications. The
studies by Dr. Brent Coull and Dr. Eun Sug Park and their
colleagues are described in Research Report 183, Parts 1 and
2. For the current study, Dr. John Molitor and colleagues
proposed to develop and apply statistical methods to
examine associations between spatial patterns of correlated
air pollutants and outcomes of health and poverty.

The development of new methods typically follows a
series of steps before the methods can enter general use
(see sidebar — Process of Statistical Methods Development
and Evaluation). The work conducted by Molitor and col-
leagues addressed the first three steps in this methods
development process, along with having an application in
complex real-world settings. Their report focuses on these
real-world applications.

Originally, Molitor and colleagues proposed using two
datasets to demonstrate the methods, the UCLA Environ-
ment and Pregnancy Outcome Study (Ritz et al. 2007), and
RIOPA (Turpin et al. 2007; Weisel et al. 2005).

Over the course of the study, they decided to focus their
applications solely on measures of poverty and adverse
birth outcomes in Los Angeles County using census and
birth certificate data.

This critique provides the HEI Health Review Commit-
tee’s evaluation of the study. It is intended to aid the spon-
sors of HEI and the public by highlighting both the strengths
and limitations of the study and by placing the Investigators’
Report into scientific and regulatory perspective.

Dr. John Molitor’s 2-year study, “Modeling of Multi-Pollutant Profiles with
applications to RIOPA data and to indicators of adverse birth outcomes
using data from the UCLA Environment and Pregnancy Outcome Study
(EPOS)” began in September 2010. Total expenditures were $232,000. The
draft Investigators’ Report from Molitor and colleagues was received for
review in December 2014. A revised report, received in May 2015, was
accepted for publication in June 2015. During the review process, the HEI
Health Review Committee and the investigators had the opportunity to
exchange comments and to clarify issues in both the Investigators’ Report
and the Review Committee’s Critique.

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views of these parties, and no endorsements by them
should be inferred.

* A list of abbreviations and other terms appears at the end of the Investiga-
tors’ Report.
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Process for Statistical Methods 
Development and Evaluation

• Formulate problem

• Develop conceptual framework for statistical models 
and specify parameters of interest including, where 
appropriate, development of statistical theory

• Write software to estimate parameters based on the 
conceptual framework

• Conduct preliminary tests in simulated data sets with 
known attributes

• Conduct preliminary tests in a well-studied data set, if 
available

• Test in a simplified real-world setting

• Test in a complex real-world setting

• Other investigators apply methods in settings that 
differ from those with which the method was 
developed and tested

APPROACH

The aims of the study by Dr. Molitor and colleagues
were:

1. Develop Bayesian clustering methods to characterize
profiles of pollutants or other patterns of covariates
(e.g., socioeconomic status [SES]) relevant to the
study of health effects.

2. Associate multipollutant profiles found in Aim 1 to
health outcomes using cluster assignments as random
effects in a regression model, while accounting for
relevant confounders and taking into account uncer-
tainty in the clustering process.

3. Develop ways to assess a best clustering and then
assess the uncertainty related to this best clustering
by Bayesian model averaging.

4. Analyze real datasets assessing associations between
multipollutant profiles and measures of poverty and
analyze associations between pollutant profiles with
adverse birth outcomes, all in Los Angeles (LA)
County.

The investigators built on their previous work (Molitor
et al. 2010) to develop Bayesian clustering methods to
identify spatial clusters of air pollution exposures — and
of other covariates such as SES — and to estimate the asso-
ciation of health outcomes with those clusters. They use
the term profile to define a set of pollutants (or more

generally exposures). Their approach has three compo-
nents: a prior for cluster allocation, a profile assignment
submodel to assign exposure profiles to clusters, and a
health effects submodel to link clusters of exposure profiles
to the health outcome. The Bayesian models described by
Molitor and colleagues are mostly fit using Markov chain
Monte Carlo techniques. Their Bayesian framework allows
a supervised (joint) estimation (meaning that they allowed
the relationship between health outcomes and exposures to
inform the formation of the clusters).

An important feature of these clustering methods is that
they are flexible. For example, the number of clusters is
allowed to vary (up to a prespecified maximum number),
while most other clustering approaches require a pre-
defined and fixed number of clusters in order to proceed
with the estimation. In addition, these methods quantify
the uncertainty related to the clustering allocation and
propagate it in the health analyses. To group exposure pro-
files into clusters, Molitor and colleagues used Dirichlet-
process mixture modeling techniques and combined the
resulting clusters with multilevel regression models to
estimate health outcomes. Subsequently, they developed
postprocessing Bayesian model-averaging techniques to
find clusters that best represent the data and to assess
uncertainty in the cluster allocation. They set the max-
imum number of clusters at 20, and the methods allow
clusters to be empty.

Parts of the methods are implemented in the PReMiuM
R statistical software package by Liverani and colleagues
(2015); others use WinBUGS, or R-INLA (the R package for
integrated nested Laplace approximations).

Molitor and colleagues conducted analyses using three
applications to demonstrate these methods using different
data sources in LA County (see Critique Table 1 for an
overview). The scientific questions considered in each
application differ per application because of differences in
exposure and health outcomes, but also because of the
level of analysis and the exposure contrasts. In application
1, the study team investigated associations between expo-
sure clusters based on four pollutants and the number of
people living below the poverty level at the census tract
(CT) level. In application 2, the study team investigated
the associations between individual-level PM2.5 (particu-
late matter � 2.5 µm in aerodynamic diameter) and term
low birth weight using a multilevel spatial logistic regres-
sion model to assess whether the associations vary within
CTs. Note that this application does not represent multi-
pollutant modeling, and is therefore included as an
appendix at the suggestion of the HEI Review Committee.
In application 3, the study team investigated associations
between exposure clusters based on three pollutants and
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term low birth weight at the census block group (CBG)
level, taking into account contextual clusters as well (e.g.,
SES-related variables: race–ethnicity, median household
income and percentages of homes older than 1950).

THE HEALTH REVIEW COMMITTEE’S 
EVALUATION

In its independent review of the study, the HEI Review
Committee concluded that the investigators extended their
cluster methods to include continuous exposures and

successfully implemented these methods to analyze multi-
pollutant mixtures. The Committee welcomed that large
parts of the methods have been implemented in R pack-
ages, which can be freely used. The availability of user-
friendly software is a key component of any wider adop-
tion of a new approach beyond the statistical community.
The Committee noted that the approach taken by the
authors in applications 1 and 3 addressed an important
question in multipollutant research, that is, what are the
combined effects of various constituents of an air pollution
mixture. Their approach was aimed at identifying spatial
clusters of air pollution exposures — and other covariates

Critique Table 1. Overview of Molitor’s Applications in LA County

Application # Exposure Information
Outcome 

Information Unit of Analysis 

1 NO2: land use regression model, using 181 sites from a 
two-week period in summer 2006 and winter 2007 in 
Los Angeles (Su et al. 2009).

PM2.5: universal kriging methods using 23 regulatory 
sites in LA for 2000 (Jerrett et al. 2005).

On- and off-road diesel: using a U.S. EPA based 
computer simulation model ASPEN (U.S. EPA 2005). 

NO2 and PM2.5 predictions targeted at census tract 
centroids. 

Number of people 
living below 
poverty level

Census data 2000

Census Tract (CT)a 
(N = 2,038)

2 
(In Appendix A)

PM2.5: land use regression model using 112 regulatory 
sites for 1998–2002 in California (Jerrett et al. 2013).

PM2.5 predictions targeted at individual residential 
address level.

Term low birth 
weight (< 2500 g)

Birth certificate data 
for the years 1995–
2006

Individual 
(N = 1,356,304)

3 NO2 and NO: same land use regression model as in 
application 1.

PM2.5: same land use regression model as in application 
2.

Pollutant exposure predictions targeted at individual 
residential address level, averaged within census block 
group.

Five contextual variables: percentage Hispanic, 
percentage nonHispanic black, percentage nonHispanic 
white, median household income, percentage of homes 
older than 1950 (Census data 2000).

Term low birth 
weight (< 2500 g)

Birth certificate data 
for the years 2000–
2006 (N = 804,726)

Census Block Group 
(CBG)b (N = 6,280)

a CT = Census Tract. This is a small, relatively stable geographic area for which the U.S. Census Bureau publishes sample data; it usually has a population 
between 2500 and 8000 people.

b CBG = Census Block Group. This is the smallest geographical area for which the U.S. Census Bureau publishes sample data; it usually has a population 
between 600 and 3000 people.
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such as SES in application 3 — and estimating health out-
comes associated with those clusters. Their analyses dem-
onstrated that their approach can be applied to real-world
data sets and that they produced results that were largely
concordant with a priori expectations. Results indicate
that the effects of pollutants, as well as SES variables, vary
spatially and that they vary in a complex interconnected
manner. The Committee thought the difficult subject
matter was made much more accessible through the inves-
tigators’ approach to presenting their results. For example,
the Committee liked the spatially-varying maps of effects,
which they believe are a useful and effective tool to com-
municate results.

The Committee appreciated the flexibility of the cluster-
ing approach; for example, the fact that the number of clus-
ters does not need to be predefined (other than the
specification of a maximum allowable number of clusters)
and that the clustering algorithm was incorporated into a
Bayesian framework. This approach gives the investigators
a way to quantitatively estimate the uncertainty of the
clustering approach. This has advantages over many other
clustering methods because it removes some of the ad hoc
aspects associated with this type of modeling (Hastie
et al. 2009).

The approach developed by the Molitor team considers
different scientific questions than most other air pollution
studies capturing within-city spatial variability in expo-
sures. For instance, in application 3, it explicitly included
spatially-varying contextual factors (e.g., SES variables) as
inputs to the clusters, in a similar way as air pollutants
were treated. The effects of individual and neighborhood
SES on health are increasingly well documented, as it is
understood that there are relationships between air pollu-
tion and SES, making it an important factor in air pollution
epidemiologic studies. In many settings, low-SES commu-
nities are disproportionately exposed to air pollution, and
those communities may be more susceptible to air pollu-
tion owing to other underlying disparities (Clark et al.
2014; O’Neill et al. 2003). Note that some studies report
opposite associations: higher SES has been associated with
higher air pollution levels, for example in New York and
Rome, highlighting the importance of investigating the
SES–air pollution associations in a specific setting (Hajat et
al. 2013; Cesaroni et al. 2010). Typically, air pollution
studies treat SES as a confounder and adjust for it in a fairly
simple way, by using an individual or neighborhood SES
variable and treating this as a fixed covariate effect in the
health model. Somewhat more complex methods are some-
times used to combine different SES variables, for example,
using principal component or factor analysis (Cesaroni et al.
2010; Shmool et al. 2014). The use of spatially-varying con-
textual variables as inputs to the clusters in the current

study is unique; it can potentially provide new insight into
understanding vulnerable and susceptible populations. It
is notable that in application 3 the investigators incorpo-
rated contextual variables into their risk analyses in two
different ways: by estimating separate contextual clusters
in addition to the air pollutant clusters, and by clustering
jointly on both the contextual and pollutant measures.
These two different approaches led to different maps of
effects, suggesting that there is still more to be learned
about vulnerable and susceptible populations.

The methods developed by Molitor and colleagues are
complex and computationally demanding. The investiga-
tors have put their models in a unified Bayesian frame-
work as one way to allow a supervised (joint) estimation
(meaning that they allowed the relationship between
health outcomes and exposures to inform the formation of
the clusters). The other two studies funded under RFA
09-1 (Coull et al. 2015; Park et al. 2015) also have used
Bayesian methods in supervised modeling approaches.
However, in general, there are several important practical
features of supervised modeling approaches that are worth
considering. Typically, they are computationally demand-
ing. Computational demands, in fact, led the Molitor team
to decide to not pursue a full Bayesian supervised modeling
approach in application 3 where the clustering was done be-
fore the health outcomes were incorporated (while a full
Bayesian supervised modeling approach was conducted in
application 1). Computational feasibility is a key compo-
nent of any wider adoption of a new approach and can be
especially difficult to achieve when modeling multiple
pollutants. Another consideration of supervised models is
that the clusters identified are dependent on the health
outcome, and changing the health outcome will generally
change the definition of the clusters to some extent. This
feature may be less intuitive than unsupervised models be-
cause those assign one exposure per participant that can
then be used to model a number of different health out-
comes. Finally, the potential for feedback between the ex-
posure and health models must be acknowledged.

While feedback is an inherent feature of all supervised
models, its presence could influence the health effect esti-
mates when the amount of data available for the health out-
come and the exposure data is unbalanced, in concert with
misspecification of either or of both the exposure and health
models. Unsupervised approaches, in which exposures (or
in this case, the clusters) are estimated first and then incor-
porated in subsequent health models, avoid feedback. In
many air pollution epidemiology settings, the amount of
exposure data available is far less than the amount of health
data, and this imbalance can exacerbate potential bias from
feedback caused by model misspecification. Indeed, the
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number of exposure measurements was small compared
with the size of the study population in the applications.
The Committee noted that in the current analyses this
imbalance of exposure and outcome data was not a feature
of the supervised modeling itself because the investigators
aligned the exposure predictions with the health data before
clustering. However, they did not explicitly acknowledge
the impact of exposure measurement error due to using
exposure predictions in their health analyses. In recent lit-
erature dealing with correction for exposure measurement
error in epidemiologic studies, many investigators have
intentionally chosen an unsupervised (e.g., two-stage)
approach when their exposure modeling focus is on spatial
prediction of pollutants from spatially misaligned monitors
(e.g., Bergen et al. 2013; Gryparis et al. 2009; Szpiro et al.
2013). The exposure measurement error correction method-
ology for spatially-varying pollutants in multipollutant
research is in its infancy (Bergen et al. 2016), thus it is not
surprising that Molitor and colleagues did not address this
in their work. Similarly, the importance of, and implica-
tions for supervised modeling in studies that focus on using
clustered exposures for inferences about health effects is an
important future research topic.

Often in applications of complex methods, data simpli-
fications are required to make the problem tractable, and
there is always the potential that important information is
lost with such steps. One feature the Committee noted was
the aggregation of air pollution exposure from the individ-
ual level to the CT (application 1) or CBG level (applica-
tion 3). The scientific question considered in application 1
lends itself to a CT-level analysis because the outcome is
defined at that level, so the unknown impact of exposure
aggregation in application 1 is whether the approach to
summarizing residence-level pollutant predictions ad-
opted by the investigators affects the findings. In applica-
tion 3, the investigators stated that their interest was in
between-neighborhood effects, but the data are all avail-
able at the individual level. The Committee wondered
about the magnitude of potential bias from aggregation of
the exposure to the CBG level, especially for air pollutants
that have documented substantial variation at small spa-
tial scales (e.g., NO, NO2). Another simplification adopted
by the investigators in application 3 was to precluster the
pollutants and contextual variables prior to fitting the mul-
tilevel health analysis. In addition, the number of joint
contextual–multipollutant clusters reported appears to be
the maximum number the investigators allowed in the
clustering algorithm, so several key properties of the clus-
tering methods — namely that the number of and specific
details of the clusters are variable and that the cluster se-
lection is supervised by the outcome — were not present

in this example. The Committee noted that the effects of
the various data simplifications were not studied.

The Committee thought that this project was unusual as
a statistical methods development project because the
report focuses exclusively on the applications of the
methods; it gives limited attention to the methods them-
selves and does not follow the typical methods develop-
ment process steps (see sidebar introduction). Most of the
methods were previously developed by the investigators
and can be found in a previous publication (Molitor et al.
2010). In addition, the published version of application 1
includes a few more modeling details (Molitor et al. 2011).
The primary advances in the current study include the
types of covariates that can be included in the profile
regression, use of R-INLA for some of the computations,
and the approaches to presenting the results. While some
simulation studies were done as part of Molitor and col-
leagues (2010), none were presented for the applications
presented in the current report. The Committee thought it
would have been worthwhile to understand how the
methods perform under known conditions and to compare
the methods to traditional statistical methods for which
the research community has already developed a deep
understanding of their properties and performance. Cur-
rently, it remains unclear how well the methods used by
Molitor and colleagues perform. Without such a compar-
ison it is also difficult to quantify the degree to which their
work has led to the identification of important new
insights.

Partly because of the unusual focus, the Committee
came to the overall conclusion that the methods developed
by Molitor and colleagues show promise, but that the full
extent to which they will be useful remains to be seen. The
Committee did not expect that this work alone would
resolve what practical improvements in understanding
would be achievable with the application of this method-
ology in different settings. Yet, there remain open ques-
tions about the relative merits of the methodology as well
as the specific data requirements and the amount of com-
plexity the methods can or cannot handle. The Committee
also noted that the available data had a limited set of pol-
lutants the investigators considered (four pollutants at
most), which captures only part of the air pollutant mix-
ture. Moreover, some of the included pollutants have gen-
erally similar spatial patterns (e.g., NO2 and NO). Future
work is necessary to further evaluate the methods in this
report. In particular, it would be useful to apply them in a
broader range of settings and pollutants, including in loca-
tions other than Los Angeles, which is characterized by
general high levels of air pollution as well as high spatial
contrasts within the city.
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SUMMARY AND CONCLUSIONS

Dr. Molitor and colleagues developed methods to
address an important question in multipollutant research,
that is, what are the combined effects of various constitu-
ents of an air pollution mixture. Their approach was aimed
at identifying spatial clusters of air pollution exposures —
and other covariates such as SES — and estimating health
outcomes associated with those clusters. The investiga-
tors’ analyses demonstrated that the methods can be
applied to real-world data sets and that they produced
results that were largely concordant with a priori expecta-
tions. In its independent review of the study, the HEI
Review Committee concluded that the investigators
extended their cluster methods to include continuous
exposures and successfully implemented these methods to
analyze multipollutant mixtures. They appreciated the
flexibility of the clustering approach; for example, the
number of clusters does not need to be predefined and
uncertainty related to cluster allocation is accounted for.
The explicit inclusion of spatially-varying contextual fac-
tors (e.g., SES variables) as inputs to the clusters, in a treat-
ment similar to that of air pollutants, was considered
unique and can potentially provide new insight into
understanding vulnerable and susceptible populations.
The Committee concluded that the multipollutant methods
developed show promise, but that the full extent to which
they will be useful remains to be seen. Future work is neces-
sary to fully evaluate these methods, including simulation
studies, comparison to traditional statistical methods,
application in other settings, and inclusion of more pollut-
ants. Such analyses could help to determine the degree to
which these new methods will lead to a better under-
standing of how pollutant mixtures contribute to health
effects, and ultimately, to better decisions about how to
control them.
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