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A B O U T  H E I

 v

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the institute

• Identifies the highest-priority areas for health effects research;

• Competitively funds and oversees research projects;

• Provides intensive independent review of HEI-supported studies and related 
research;

• Integrates HEI’s research results with those of other institutions into broader 
evaluations; and

• Communicates the results of HEI’s research and analyses to public and private 
decision makers.

HEI receives half of its core funds from the U.S. Environmental Protection Agency and half 
from the worldwide motor vehicle industry. Frequently, other public and private organizations in 
the United States and around the world also support major projects or certain research 
programs. HEI has funded more than 280 research projects in North America, Europe, Asia, and 
Latin America, the results of which have informed decisions regarding carbon monoxide, air 
toxics, nitrogen oxides, diesel exhaust, ozone, particulate matter, and other pollutants. These 
results have appeared in the peer-reviewed literature and in more than 200 comprehensive 
reports published by HEI.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Health Research Committee solicits input from HEI sponsors and other stakeholders and works 
with scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and 
oversee their conduct. The Health Review Committee, which has no role in selecting or 
overseeing studies, works with staff to evaluate and interpret the results of funded studies and 
related research.

All project results and accompanying comments by the Health Review Committee are widely 
disseminated through HEI’s Web site (www.healtheffects.org), printed reports, newsletters and 
other publications, annual conferences, and presentations to legislative bodies and public 
agencies.
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Research Report 152, Evaluating Heterogeneity in Indoor and Outdoor Air Pollution Using Land-
Use Regression and Constrained Factor Analysis, presents a research project funded by the Health 
Effects Institute and conducted by Dr. Jonathan I. Levy of the Harvard School of Public Health, 
Boston, Massachusetts, and his colleagues. This research was funded under HEI’s Walter A. 
Rosenblith New Investigator Award Program, which provides support to promising scientists in 
the early stages of their careers. The report contains three main sections.

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the 
study and its findings; it also briefly describes the Health Review Committee’s 
comments on the study.

The Investigators’ Report, prepared by Levy and colleagues, describes the scientific 
background, aims, methods, results, and conclusions of the study.

The Critique is prepared by members of the Health Review Committee with the 
assistance of HEI staff; it places the study in a broader scientific context, points out its 
strengths and limitations, and discusses remaining uncertainties and implications of 
the study’s findings for public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of the Health Review 
Committee, an independent panel of distinguished scientists who have no involvement in 
selecting or overseeing HEI studies. During the review process, the investigators have an 
opportunity to exchange comments with the Review Committee and, as necessary, to revise 
their report. The Critique reflects the information provided in the final version of the report.
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H E I  S TAT E M E N T

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Jonathan I. Levy
at the Harvard School of Public Health, Boston, Massachusetts, and colleagues. Research Report 152 contains both the detailed Investigators’
Report and a Critique of the study prepared by the Institute’s Health Review Committee.
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Evaluating Heterogeneity in Indoor and Outdoor 
Air Pollution Using Land-Use Regression and 
Constrained Factor Analysis

BACKGROUND

Epidemiologic studies of exposure to air pollu-
tion have typically relied on data from centrally
located ambient air quality monitors. However,
such data are not sufficient for capturing the spatial
variability of pollutant concentrations at the local
scale, in particular at the within-city, or intra-
urban, scale at which traffic-related air pollution is
both highest and most variable. The ideal approach
would be to measure each individual’s personal
exposure to traffic-specific pollutants over time, but
this is difficult, intrusive, expensive, and generally
not feasible for very large populations. Investigators
have consequently sought ways to predict, or to
model, individual-level exposures from more
readily available data.

Numerous studies have had to rely on a variety of
surrogates for such exposures: measured levels of
individual pollutants previously associated with
traffic emissions (e.g., carbon monoxide, nitrogen
dioxide [NO2], fine particulate matter with an aero-
dynamic diameter � 2.5 µm [PM2.5], benzene, and
elemental carbon [EC]) and various measures of
traffic density or of proximity to traffic. More com-
plex techniques, such as land-use regression (LUR)
models, have been increasingly developed to take
advantage of data available from geographic infor-
mation systems (GIS) — nearby land-use patterns,
traffic, physical site characteristics, housing, and
other variables — that have been hypothesized to
provide additional information useful for pre-
dicting concentrations of traffic-related pollutants.
Each type of surrogate has limitations in predicting
levels of personal exposures to traffic-related pol-
lutants. HEI Special Report 17, a critical review of
the literature on traffic-related air pollution, found,

in particular, that many of the simpler surrogates do
not perform well. The resulting error in individuals’
exposures can in turn affect the size and signifi-
cance of health outcome findings from observa-
tional epidemiologic studies.

Dr. Jonathan I. Levy of the Harvard School of
Public Health was awarded funding from HEI under
Request for Applications 04-5, the Walter A. Rosen-
blith New Investigator Award. In his application,
“Using Geographic Information Systems (GIS) to
Evaluate Heterogeneity in Indoor and Outdoor Con-
centrations of Particle Constituents,” Levy had pro-
posed an approach to extend and improve upon
existing GIS-based methods for predicting intra-
urban exposures. An underlying goal of his study
was therefore to explore ways to reduce exposure-
measurement error and to improve the accuracy
and precision of the associations reported in epide-
miologic studies of air pollution.

APPROACH

Levy and colleagues conducted a study linked to
a prospective birth cohort study of factors that might
contribute to the development of asthma, the Asth-
ma Coalition for Community, Environment, and So-
cial Stress study in Boston, Massachusetts. Among
the several factors under investigation were indoor
and outdoor exposures to air pollutants, including
those potentially related to traffic. Levy and col-
leagues collected detailed air quality measurements
at a set of homes selected to reflect a range of poten-
tial exposures to traffic and of neighborhoods broad-
ly representative of Boston. From 2003 through
2005, the investigators collected short-term NO2
and PM2.5 samples simultaneously indoors and out-
doors at each home during two seasons. The particle
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filters used to collect the samples were analyzed for
EC and for individual elements using two different
analytical methods. The investigators also obtained
hourly NO2, PM2.5, EC, and meteorological data for
the study period from centrally located Massachu-
setts Department of Environmental Protection moni-
tors, to provide data on the variation in background
pollutant levels over time. 

The investigators collected several additional
types of data to support development of their LUR
models. They utilized existing GIS data on road net-
works, traffic counts, and population density to
characterize proximity to and potential density of
traffic in the vicinity of each home. They obtained
additional data on local land use and on the age of
each home, its living area, building materials,
heating system, and whether or not it had air condi-
tioning. Investigators administered a standardized
questionnaire to participants at each home to obtain
data on occupant behaviors and home characteris-
tics that have been shown previously to indicate
indoor sources of pollutants or to influence ventila-
tion in the home. 

Levy and his colleagues then undertook a series
of systematic analytic approaches to predicting
concentrations of PM2.5, EC, and NO2 measured at
each of the homes in the study and to under-
standing their potential sources. Using multiple
variables drawn from their indoor and outdoor resi-
dential monitoring data, GIS-based land-use data,
and questionnaire data, they first developed sepa-
rate GIS-based LUR models to predict concentra-
tions of PM2.5, EC, and NO2 measured outdoors and
indoors at the residences. Second, using con-
strained factor analysis, a source apportionment
technique, they analyzed the particle components
and NO2 measurements to identify potential source
categories for pollutants measured outdoors and
indoors at the homes in the study. The third step in
their approach was to apply LUR analysis to the
results of their source apportionment analyses; that
is, they developed additional LUR models designed
specifically to help explain variability in the source
categories identified from their source apportion-
ment analysis. By evaluating the extent to which
they could successfully predict sources using par-
ticular GIS, land-use, and questionnaire data col-
lected for the study, the investigators sought to
corroborate their initial interpretations of the
source apportionment analysis.

Finally, using simulation techniques, they con-
ducted an analysis to assess how a variety of pos-
sible surrogates for indoor exposures, representing
different levels of exposure-measurement error,
could influence epidemiologic estimates of the rela-
tionship between indoor pollutant concentrations
and reports of wheeze (a possible indicator of
asthma) in a child’s first year of life. They compared
the performance of their indoor LUR models for
PM2.5, NO2, and EC to that of surrogates based on
single variables that had performed well in their
model development process (“good exposure surro-
gates”) and to that of surrogates based on traffic
indicators that had not performed well in their anal-
ysis, but that had been used in studies reported by
other investigators (“poor exposure surrogates”).
They ran their simulations using three scenarios for
the strength of the “true” associations between indi-
vidual exposure and wheeze. 

RESULTS 

Levy and his colleagues reported that their final
multivariate outdoor LUR models performed rea-
sonably well; the models were able to explain most
of the variability in outdoor residential concentra-
tions of EC, NO2, and PM2.5 (52%, 56%, and 76%,
respectively). EC and NO2 had stronger relation-
ships with indicators for local traffic than did
PM2.5. The variation in pollutant levels over time,
represented by measurements at the central site
monitor and seasonal terms, explained more of the
variability in PM2.5 (68%) than in EC (30%) or NO2
(33%), a finding consistent with other studies.

They reported less success in the ability of their
LUR regression models to predict indoor concentra-
tions of the three pollutants. The indoor LUR
models could explain only 20%, 21%, and 36% of
the variation in indoor NO2, EC, and PM2.5 levels,
respectively. They found identifying traffic terms
with strong explanatory power to include in their
models to be particularly challenging. When venti-
lation terms were introduced into the models, the
explanatory power of the models increased slightly,
to 25%, 32%, and 40%, respectively. The investiga-
tors reported that the ratios between the indoor and
outdoor concentrations of individual particle con-
stituents varied substantially among the different
constituents, which later enabled some distinctions
to be made between their potential indoor and out-
door sources. 
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From their source apportionment analysis using
outdoor pollutant concentrations, Levy and his col-
leagues indentified five broad source categories:
long-range transport; brake wear and local traffic;
diesel exhaust; fuel oil combustion; and road dust
and resuspension. Their analysis of measured
indoor pollutant concentrations suggested six pos-
sible source categories, three interpreted to have
origins outside the home — long-range transport,
fuel oil/diesel combustion, and road dust and resus-
pension — and three interpreted to have indoor ori-
gins — indoor combustion, indoor smoking, and
indoor cleaning. 

Levy and colleagues had mixed success in their
efforts to use LUR models to explore more fully the
potential predictors for the source categories they
had identified. In general, the LUR models they
developed to predict the outdoor source categories
had weaker explanatory power than those they had
developed earlier to predict the levels of individual
pollutants. The one exception was the investigators’
LUR model for long-range transport, which was able
to explain 69% of the variation observed. The
strong performance of this model was consistent
with that of the earlier LUR model for outdoor
PM2.5, since long-range transport was most closely
associated with PM2.5 measured at the central site
monitor. The LUR model for predicting long-range
transport indoors also performed the best. Most of
the variation (68%) in the source category was
explained by a term representing a combination of
PM2.5 data from the central site monitor and a vari-
able obtained from the questionnaires that was
indicative of greater ventilation in the homes (i.e.,
open windows). The LUR models for the remaining
indoor source factors had very little explanatory
power, in most cases substantially less than the LUR
models for outdoor source factors. 

From their simulation analysis, Levy and col-
leagues reported that the risks of wheeze estimated
using exposures to individual pollutants based on
their indoor LUR models were closer to the “true”
risks than those estimated using either the simpler
“good” or “poor” surrogates for exposure. That is,
there was less bias and less uncertainty in the pre-
dicted risk estimates relative to the known risks used
in the simulation. The models for NO2 and PM2.5
performed better than the one for EC. The investiga-
tors inferred from this simulation analysis that their
LUR models predicted individual exposure levels

with less exposure-measurement error than the in-
dividual surrogate approaches, and thus enhanced
the power of the simulated epidemiologic study to
detect the underlying association between wheeze
and the pollutants.

CONCLUSIONS 

Levy and his colleagues took advantage of a small
but rich data source related to a study of childhood
asthma in a major U.S. city to explore important
exposure questions that are of broad interest to
environmental health science. They undertook a
number of challenging methodologic approaches to
improving predictions of personal exposure to pol-
lution from indoor and outdoor sources and thus to
improving epidemiologic estimates of the effects of
traffic-related air pollution on health. Their report
marks one of the first efforts to combine LUR
models with source apportionment analysis to char-
acterize potential exposures to both indoor and out-
door sources. The HEI Health Review Committee
praised the evident care and competence demon-
strated by the investigators in their work.

The investigators’ LUR analyses of outdoor pol-
lutant levels performed reasonably well, explaining
most of the variation in concentrations of PM2.5 and
to a lesser extent in NO2 and EC. Their results were
consistent with previously published findings
showing that broader-scale temporal variation, rep-
resented by measurements at the central site mon-
itor, is an important determinant of local PM2.5
levels. Spatially distributed factors, such as traffic,
population density, and other land-use covariates,
were more influential in predicting EC and NO2
variation in the models. 

Development of LUR models to predict indoor
concentrations, as a closer proxy for personal expo-
sure, proved to be a much greater challenge. The
predictive value of the indoor LUR models was gen-
erally poor; however, the authors’ exploration of the
possible explanations and implications of this
finding is thorough and informative. Their findings
that the indoor LUR models’ performance was
poorer when important indoor sources were present
is noteworthy, as is the finding that the performance
of an indoor LUR model can be improved by the rel-
atively straightforward addition of a proxy term for
ventilation taken from questionnaire data (i.e.,
“open windows”).
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An ultimate, and the most innovative, goal of the
study was to see if LUR modeling and source appor-
tionment analysis together would provide additional
insight about the sources contributing to outdoor and
indoor concentrations of pollutants and help explain
why their contributions might differ at individual
homes. The analyses did provide some confirmation
for the investigators’ major source interpretations
(long-range transport, traffic, fuel oil combustion).
However, they were most successful at explaining
variation in sources that are already reasonably well
understood. In particular, both the outdoor and
indoor LUR models performed best at predicting
variability in the source identified most closely with
PM2.5 concentrations at the central site monitor,
long-range transport. As for the indoor LUR models
developed to predict individual pollutant concentra-
tions, incorporating a proxy for ventilation improved
the performance of the indoor LUR models designed
to predict variation in this source.

The ultimate challenge for studies of this nature
is to provide some demonstration that the increased
sophistication of the modeling provides a sufficient
improvement over simpler approaches to warrant
the additional data and computational require-
ments it imposes. The investigators’ simulation
analyses, in which they explore the implications for
the power of epidemiologic studies of using dif-
ferent surrogate measures of individual exposure,
are a useful step in that direction. Their conclusion
that even the relatively poor estimates of exposure
provided by the LUR models might reduce measure-
ment error and thus improve effects estimates in
future studies warrants further scrutiny. Even when
a poor surrogate is outperformed by a prediction
model, the surrogate may be the epidemiologist’s
“best buy” if the extent of improved performance is
outweighed by the costs of collecting the data nec-
essary for the prediction model.
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INVESTIGATORS’ REPORT

Evaluating Heterogeneity in Indoor and Outdoor Air Pollution 
Using Land-Use Regression and Constrained Factor Analysis

Jonathan I. Levy, Jane E. Clougherty, Lisa K. Baxter, E. Andres Houseman, 
and Christopher J. Paciorek

Harvard School of Public Health, Department of Environmental Health (J.I.L., J.E.C., L.K.B.); 
Harvard School of Public Health, Department of Biostatistics (E.A.H., C.J.P.)

ABSTRACT

Previous studies have identified associations between
traffic exposures and a variety of adverse health effects,
but many of these studies relied on proximity measures
rather than measured or modeled concentrations of specif-
ic air pollutants, complicating interpretability of the find-
ings. An increasing number of studies have used land-use
regression (LUR*) or other techniques to model small-
scale variability in concentrations of specific air pollut-
ants. However, these studies have generally considered a
limited number of pollutants, focused on outdoor concen-
trations (or indoor concentrations of ambient origin) when
indoor concentrations are better proxies for personal expo-
sures, and have not taken full advantage of statistical
methods for source apportionment that may have provided
insight about the structure of the LUR models and the in-
terpretability of model results. Given these issues, the pri-
mary objective of our study was to determine predictors of
indoor and outdoor residential concentrations of multiple
traffic-related air pollutants within an urban area, based on
a combination of central site monitoring data; geographic

information system (GIS) covariates reflecting traffic and
other outdoor sources; questionnaire data reflecting indoor
sources and activities that affect ventilation rates; and fac-
tor-analytic methods to better infer source contributions.

As part of a prospective birth cohort study assessing
asthma etiology in urban Boston, we collected indoor
and/or outdoor 3-to-4 day samples of nitrogen dioxide
(NO2) and fine particulate matter with an aerodynamic di-
ameter � 2.5 µm (PM2.5) at 44 residences during multiple
seasons of the year from 2003 through 2005. We performed
reflectance analysis, x-ray fluorescence spectroscopy
(XRF), and high-resolution inductively coupled plasma–
mass spectrometry (ICP–MS) on particle filters to estimate
the concentrations of elemental carbon (EC), trace ele-
ments, and water-soluble metals, respectively. We derived
multiple indicators of traffic using Massachusetts High-
way Department (MHD) data and traffic counts collected
outside the residences where the air monitoring was con-
ducted. We used a standardized questionnaire to collect
data on home characteristics and occupant behaviors. Ad-
ditional housing information was collected through prop-
erty tax records. Ambient concentrations of pollutants as
well as meteorological data were collected from centrally
located ambient monitors.

We used GIS-based LUR models to explain spatial and
temporal variability in residential outdoor concentrations of
PM2.5, EC, and NO2. We subsequently derived latent-source
factors for residential outdoor concentrations using confir-
matory factor analysis constrained to nonnegative loadings.
We developed LUR models to determine whether GIS cova-
riates and other predictors explain factor variability and
thereby support initial factor interpretations. To evaluate in-
door concentrations, we developed physically interpretable
regression models that explored the relationship between
measured indoor and outdoor concentrations, relying on

This Investigators’ Report is one part of Health Effects Institute Research
Report 152, which also includes a Critique by the Health Review Committee
and an HEI Statement about the research project. Correspondence concern-
ing the Investigators’ Report may be addressed to Dr. Jonathan I. Levy, 715
Albany St., Talbot 4W, Boston, MA 02118; jonlevy@bu.edu.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award CR–
83234701 to the Health Effects Institute, it has not been subjected to the
Agency’s peer and administrative review and therefore may not necessarily
reflect the views of the Agency, and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by pri-
vate party institutions, including those that support the Health Effects Insti-
tute; therefore, it may not reflect the views or policies of these parties, and
no endorsement by them should be inferred.

* A list of abbreviations and other terms appears at the end of the Investiga-
tors’ Report.
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questionnaire data to characterize indoor sources and ac-
tivities. Because outdoor pollutant concentrations mea-
sured directly outside of homes are unlikely to be available
for most large epidemiologic studies, we developed regres-
sion models to explain indoor concentrations of PM2.5, EC,
and NO2 as a function of other, more readily available data:
GIS covariates, questionnaire data reflecting both sources
and ventilation, and central site monitoring data. As we did
for outdoor concentrations, we then derived latent-source
factors for residential indoor concentrations and developed
regression models explaining variability in these indoor la-
tent-source factors. Finally, to provide insight about the ef-
fects of improved characterization of exposures for the
results of subsequent epidemiologic investigations, we de-
veloped a simulation framework to quantitatively compare
the implications of using exposure models derived from val-
idation studies with the use of other surrogate models with
varying amounts of measurement error.

The concentrations of outdoor PM2.5 were strongly asso-
ciated with the central site monitor data, whereas EC con-
centrations showed greater spatial variability, especially
during colder months, and were predicted by the length of
roadway within 200 m of the home. Outdoor NO2 also
showed significant spatial variability, predicted in part by
population density and roadway length within 50 m of the
home. Our constrained factor analysis of outdoor concen-
trations produced loadings indicating long-range trans-
port, brake wear and traffic exhaust, diesel exhaust, fuel oil
combustion, and resuspended road dust as sources; corre-
sponding LUR models largely corroborated these factor in-
terpretations through covariate significance. For example,
long-range transport was predicted by central site PM2.5 and
season, brake wear and traffic exhaust and resuspended
road dust by traffic and residential density, diesel exhaust
by the percentage of diesel traffic on the nearest major road,
and fuel oil combustion by population density.

Our modeling of the concentrations of indoor pollutants
demonstrated substantial variability in indoor–outdoor re-
lationships across constituents, helping to separate con-
stituents dominated by outdoor sources (e.g., S, Se, and V)
from those dominated by indoor sources (e.g., Ca and Si).
Regression models indicated that indoor PM2.5 was not in-
fluenced substantially by local traffic but had significant
indoor sources (cooking activity and occupant density),
while EC was associated with distance to the nearest desig-
nated truck route, and NO2 was associated with both traf-
fic density within 50 m of the home and gas stove usage.
Our constrained factor analysis of indoor concentrations
helped to separate outdoor-dominated factors from indoor-
dominated factors, though some factors appeared to be in-
fluenced by both indoor and outdoor sources. Subsequent

factor analyses of the indoor-attributable fractions from in-
door–outdoor regression models provided generally con-
sistent interpretations of indoor-dominated factors. The
use of regression models on indoor factors demonstrated
the limited predictive power of questionnaire data related
to indoor sources, but reinforced the viability of modeling
indoor concentrations of pollutants of ambient origin. In
spite of the relatively weak predictive power of some of the
indoor-concentration regression models, our epidemiolog-
ic simulations illustrated that exposure models with fairly
modest R2 values (in the range of 0.3 through 0.4, corre-
sponding with the regression models for PM2.5 and NO2)
yielded substantial improvements in epidemiologic study
performance relative to the use of exposure proxies that
could be applied in the absence of validation studies.

In spite of limitations related to sample size and avail-
able covariate data, our study demonstrated significant
outdoor spatial variability within an urban area in NO2
and in several constituents of airborne particles. LUR tech-
niques combined with constrained factor analysis helped
to disentangle the contributions to temporal variability of
local, long-range transport, and other sources, ultimately
allowing exposures from defined source categories to be
investigated in epidemiologic studies. For the indoor resi-
dential environment, we demonstrated substantial vari-
ability in indoor–outdoor relationships among particle
constituents; then, using information from public databas-
es and focused questionnaire data, we were able to predict
indoor concentrations for a subset of key pollutants. Con-
strained factor analysis methods applied to the indoor en-
vironment helped to separate indoor sources from outdoor
sources. The corresponding indoor regression models had
limited predictive power, reinforcing the complexity of
characterizing the indoor environment when only limited
information about key predictors is available. This finding
also underscores the likelihood that these regression mod-
els might characterize indoor concentrations of pollutants
with ambient origins better than they can the indoor con-
centrations from all sources. Our findings provide direc-
tion for future studies characterizing indoor exposure
sources and patterns, and our epidemiologic simulation
reinforced the importance of reducing measurement error
in a context where many traffic-related air pollutants are
influenced by both indoor and outdoor sources. The com-
bination of analytical techniques used in our study could
ultimately allow for more refined exposure characteriza-
tion and evaluation of the relative contributions of various
sources to health outcomes in epidemiologic studies.
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INTRODUCTION

There is a growing body of literature demonstrating the
use of GIS to relate traffic exposure to asthma and other
respiratory outcomes. In the United States and Europe,
children living or attending school near truck routes and
highways show more asthma symptoms (Brauer et al.
2002; Zmirou et al. 2004; Gordian et al. 2006), asthma hos-
pitalizations (Edwards et al. 1994; Lin et al. 2002), respira-
tory illness (Brauer et al. 2002), allergic rhinitis (Duhme et
al. 1996), and reduced lung function (Brunekreef et al.
1997). Other studies have linked proximity to major roads
with excess risk of mortality from all causes (Finkelstein et
al. 2004), from stroke (Maheswaran and Elliott 2003), or
from cardiopulmonary disease (Hoek et al. 2002).

While this literature has been consistent and robust, it
has a few key limitations. First, proximity measures can
represent a variety of air pollutants or other near-roadway
exposures, including noise, and can also be correlated
with socioeconomic status and other nonphysical environ-
mental stressors. Without identifying specific agents or
sources, it is difficult to infer causality or determine appro-
priate interventions. The same proximity measure may
represent different air pollutants in different locations, or
may represent the same pollutant at different levels of ex-
posure, making it difficult to determine generalized rela-
tionships. In addition, there are many proximity measures
(e.g., distance to nearest major road, length of road seg-
ments within a defined radius, vehicle miles traveled
within a defined radius), and it remains unclear which are
most appropriate for capturing variability in any specific
pollutant or location, especially in the absence of valida-
tion sampling.

Some studies have moved beyond proximity measures
by using LUR or other techniques to model smaller scale
variability in pollutant concentrations within urban areas
(Jerrett et al. 2005). These studies generally involve the si-
multaneous collection of pollution measurements at mul-
tiple sites (in many cases, focusing on integrated NO2,
given its association with traffic exhaust and the availabil-
ity of low-cost passive samplers); they also involve using
covariates related to traffic density and meteorology as
predictors of the measured concentrations. For NO2, mod-
els have generally been able to explain a majority of its
spatial variability with a subset of key traffic predictors
(Brauer et al. 2003; Gilbert et al. 2005, 2007; Ross et al.
2006, 2007; Sahsuvaroglu et al. 2006; Arain et al. 2007;
Rosenlund et al. 2008; Su et al. 2008). For example, in
Hamilton, Canada, an LUR study of 100 samplers placed
concurrently during a single 2-week period reported that co-
variates for traffic density, roadway proximity, and land use

explained 76% of the variability in NO2 concentrations
(Sahsuvaroglu et al. 2006). Similarly, 79% of the variabili-
ty in NO2 concentrations for 39 samplers placed concur-
rently in San Diego, California, was explained by traffic
density, length of road segments, and distance to the coast
(Ross et al. 2006), and 54% of the variability in NO2 con-
centrations across 67 samplers placed concurrently in
Montreal, Canada, was explained by distance to roadways,
length of road segments, and population density (Gilbert et
al. 2005). Given the influences of meteorology and atmo-
spheric chemistry, these relationships between NO2 and
land-use characteristics can vary over time, so other NO2
studies have analyzed measurements taken at the same lo-
cations over multiple sampling sessions. However, rather
than focusing on temporal variability, these studies devel-
oped LUR models that predicted average concentrations
across seasons (Arain et al. 2007; Jerrett et al. 2007; Mads-
en et al. 2007; Rosenlund et al. 2008).

A growing number of studies have moved beyond NO2
and have considered other pollutants that are potentially
related to traffic. Nitric oxide (NO) has been measured in
studies using similar LUR methods (Beelen et al. 2007;
Henderson et al. 2007; Madsen et al. 2007; Su et al. 2008),
and, as anticipated, its concentrations have generally dis-
played more spatial heterogeneity than the concentrations
of NO2. EC has been considered in fewer studies (Beelen et
al. 2007; Henderson et al. 2007; Morgenstern et al. 2007;
Nethery et al. 2008), most of which were conducted within
Europe, where diesel vehicles are more common, and pro-
duced a stronger association with EC than found in the
United States. Other LUR models have considered PM2.5
(Henderson et al. 2007; Moore et al. 2007; Morgenstern et
al. 2007; Ross et al. 2007; Nethery et al. 2008). Although
PM2.5 is generally influenced more by regional transport
than by local combustion, some models of annual average
concentrations found traffic density and land-use factors
to be significant, indicating some spatial variability after
adjustment for temporal factors.

Although these studies have helped to explain the spa-
tial variability of multiple traffic-related pollutants, there
are some notable limitations in the literature. First, most
studies either collected all measurements at a single point
in time or collected a small number of repeated measure-
ments at the same sites. These study designs reduce com-
plexities in separating spatial and temporal variability and
are practical approaches for ambient monitoring with pas-
sive samplers. However, for multipollutant studies that
rely on active samplers at residences, simultaneous sam-
pling at all sites may not be possible. The number of in-
struments available may be limited, and residential
monitoring can be time-consuming and labor-intensive.
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More generally, the pollutants measured in LUR studies
may or may not be the causal agents for health outcomes,
and without additional monitoring, it is not clear whether
the pollutants more commonly measured (such as NO2
and NO) are reasonable proxies for the causal agents in
traffic exhaust. While many traffic-related pollutants are
highly correlated, relationships among them can differ by
site and setting, given differences in traffic composition
and in how specific pollutant concentrations vary with
distance from sources (i.e., distance-dependent relation-
ships) (Zhou and Levy 2007).

A further limitation of proximity-to-roadway measures
and LUR studies is the implicit assumption that residen-
tial outdoor (or near-roadway) concentrations of pollutants
reasonably approximate personal exposure to pollutants.
Residential indoor concentrations are consistently better
predictors of personal exposure than are residential out-
door concentrations (Clayton et al. 1993; Ozkaynak et al.
1996; Koistinen et al. 2004; Johannesson et al. 2007), given
the time people spend indoors and the strong influence of
ventilation and indoor sources on indoor concentrations.
The predictive power of residential outdoor concentra-
tions can be related to a number of factors, including the
ventilation characteristics of the homes being sampled, the
presence and type of indoor sources, the traffic intensity,
and the variability in each of these factors across a given
cohort. For pollutants with strong indoor sources, such as
NO2 (which is greatly affected by gas stove use) (Levy et al.
1998; Zota et al. 2005), residential outdoor concentrations
may be a weaker proxy than for pollutants lacking indoor
sources. For example, one recent study found no differenc-
es between the personal exposures to PM2.5 and NO2 of
adults living on high- or low-traffic streets because of the
influence on exposures of time-activity patterns, indoor
sources, and ventilation (Van Roosbroeck et al. 2008). Sig-
nificant differences in exposure to EC were seen, but as
this study was conducted in Europe, where diesel-pow-
ered vehicles are more prevalent than in the United States,
the results may not generalize to the United States. A relat-
ed study of 14 Dutch children found that the contrast in
exposure, expressed as the ratio of the geometric mean per-
sonal exposures for children living near major roadways to
those of children living at urban background locations,
was greater for EC than for NO2 (van Roosbroeck et al.
2006).

Unlike for outdoor concentrations of pollutants, few
studies have attempted to use LUR-style models to predict
indoor concentrations or personal exposures. A recent
model developed to explore personal exposures for preg-
nant women (Nethery et al. 2008) found that land-use terms
did not predict EC or PM2.5 exposures. While land-use

terms partially predicted NO2 exposures, the presence of a
gas stove explained far more variability in personal expo-
sures. As part of the Multi-Ethnic Study of Atherosclerosis
and Air Pollution (MESA Air), Cohen and colleagues
(2009) are using indoor–outdoor monitoring coupled with
GIS information to develop personal exposure models, but
only for exposures to air pollution of ambient origin. For
young children who spend a substantial amount of time
inside the home, indoor residential concentrations may be
a good surrogate of personal exposure, but it is unclear
which combination of outdoor-source, indoor-source, and
ventilation factors would best predict indoor concentra-
tions of various pollutants.

Because of the importance of factors that can modify in-
door concentrations, such as ventilation and indoor sourc-
es, the exposure misclassification induced by using
proximity measures in an epidemiologic study could be
significant, as these represent uncertain proxies for con-
centrations of specific outdoor air pollutants, which them-
selves represent uncertain proxies of personal exposures.
This exposure misclassification reduces the ability of epi-
demiologic studies to detect significant effects. Moreover,
the misclassification may be differential with respect to
particular subpopulations if the outdoor concentration–
personal exposure relationship differs by housing charac-
teristics that are in turn linked to socioeconomic status or
other health risk factors. While numerous studies have
evaluated the influence of exposure misclassification on
epidemiologic results (Wacholder et al. 1993; Brenner
1996; Spiegelman et al. 1997), exposure misclassification
has not been thoroughly evaluated in proximity-to-road-
way or LUR studies.

A primary aim of LUR is to examine the contribution of
local (versus urban- or regional-scale) sources to measured
concentrations of pollutants. The approach provides in-
sights similar to those of source apportionment, differenti-
ating the contribution of local traffic from that of other
sources. A common approach to source apportionment in-
volves the use of factor analysis and related statistical
techniques, often applied to particle-constituent data
(Thurston and Spengler 1985; Laden et al. 2000; Lall and
Thurston 2006; Ogulei et al. 2006; Pekney et al. 2006; Zhao
et al. 2006; Rizzo and Scheff 2007; Lee et al. 2008). Unlike
LUR studies, many source apportionment studies rely on
temporally dense measures at a limited number of fixed
monitoring sites, in which common temporal variations
provide insight about predominant sources. While this ap-
proach facilitates determination of key source categories, it
does not provide insight about intraurban spatial variabili-
ty, as does LUR. Some recent source apportionment stud-
ies have begun to incorporate more sampling sites, to
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account for some spatial and temporal variability in PM2.5
composition. However, most have relied on a small num-
ber of monitoring sites spread over a large geographic area
(Ito et al. 2004; Chan et al. 2008), and source apportion-
ment studies covering a greater number of sites have not
drawn inferences about spatial variability in source contri-
butions (Larson et al. 2004). Thus, while factor analysis
studies have developed key insights about broad source
contributions, they have generally not been formally inte-
grated with LUR or other techniques that could facilitate
the determination of source-specific exposures across in-
dividuals for epidemiologic studies. A recent study (Ryan
et al. 2007) used receptor modeling to determine diesel-
source signatures, which were then used in LUR models,
but did not consider other source categories or capture the
residential indoor environment. Combining GIS-based
LUR with factor analysis could increase the interpretabili-
ty of each method, providing greater insight about how
source contributions may vary over space and time within
an urban area. This combined analysis can, in principle,
apply to both outdoor and indoor environments. In the lat-
ter case, the analysis would involve applying both land-
use terms and information from a home-activities ques-
tionnaire to outputs from a factor analysis in order to dif-
ferentiate the contributions of outdoor and indoor sources,
respectively.

SPECIFIC AIMS

Given these issues, the primary objectives of our study
were to examine distributions of indoor and outdoor resi-
dential concentrations of multiple traffic-related air pol-
lutants in an urban setting, using GIS-based covariates,
home-activities-questionnaire data, and LUR and factor
analytic methods to better infer source contributions. Our
specific aims were as follows:

1. Using monitoring data collected as part of a birth
cohort study in Boston, Massachusetts, to develop
GIS-based LUR models with which to explain spatial
and temporal variability in residential outdoor con-
centrations of PM2.5, EC, and NO2.

2. Using constrained factor analysis on particle-constit-
uent concentrations and NO2 measures, to determine
source types contributing to variability in residential
outdoor concentrations.

3. To apply LUR modeling techniques to factor scores
estimated through constrained factor analysis on resi-
dential outdoor concentrations, to determine whether
GIS covariates and other predictors explain factor

variability and thereby support initial factor interpre-
tations.

4. Using indoor and outdoor residential monitoring
data, to develop physically interpretable regression
models exploring indoor–outdoor relationships for
EC, PM2.5, NO2, and particle constituents, relying on
questionnaire data to characterize indoor sources and
ventilation.

5. To develop GIS-based LUR models including terms
for indoor sources and ventilation that would be
available for all participants in an epidemiologic
cohort and that could be used to explain spatial and
temporal variability in residential indoor concentra-
tions of PM2.5, EC, and NO2.

6. Using constrained factor analysis on particle-constit-
uent concentrations and NO2 measures, to determine
source types contributing to variability in residential
indoor concentrations.

7. To apply LUR modeling techniques to factor scores
estimated using constrained factor analysis on resi-
dential indoor concentrations, to determine whether
GIS covariates and other predictors explain factor
variability and thereby support initial interpretations
of factor loadings with respect to indoor- and outdoor-
source types (i.e., initial factor interpretations).

8. To use a simulation framework to assess the degree to
which the exposure misclassification resulting from
the use of a proxy variable for exposure might influ-
ence epidemiologic study findings.

We hypothesized that (1) we would observe significant
outdoor spatial variability in EC and NO2 but not in PM2.5;
(2) the combined application of LUR and factor analysis to
outdoor concentrations would provide interpretable LUR
models for multiple latent sources (including traffic and
nontraffic terms); (3) indoor–outdoor relationships would
vary across homes and pollutants and would be partly ex-
plained by questionnaire data; and (4) combined LUR and
factor analysis approaches would be applicable to indoor
residential concentrations measures and could help to sep-
arate the contribution of indoor and outdoor sources to in-
door residential concentrations.

METHODS AND STUDY DESIGN

PARTICIPANT SELECTION

The air pollution measurements and home characteris-
tics and occupant behavior data were collected from 2003
to 2005 as part of the Asthma Coalition for Community,
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Environment, and Social Stress (ACCESS) study, a pro-
spective birth cohort study that recruited pregnant women
throughout the Boston metropolitan area with the over-
arching goal of assessing the potential role of social factors
(maternal stress, exposure to violence), genetic factors, and
environmental factors (traffic-related pollution and indoor
allergens) in the etiology of asthma. The study was ap-
proved by the Human Studies Committees at the Brigham
and Women’s Hospital and the Harvard School of Public
Health, and all participants signed consent forms for both
the overall cohort study and for participation in the air
pollution substudy. All consent and information materials
were made available in both English and Spanish.

For the air pollution portion of the study, sampling was
conducted at a subset of homes, with the aim of develop-
ing models to explain between-home variability and, ulti-
mately, to permit extrapolation of findings to the full
cohort (or other geographically and demographically simi-
lar populations). The target sample size was 40 homes, each
to be sampled in both the heating season (December–March)
and the cooling season (May–October). This target sample
size was based on both logistical considerations and the
sample size in previous LUR studies that have demonstrat-
ed robust regression models linking outdoor concentrations
of the pollutants of interest with traffic characteristics
(Briggs et al. 2000; Brauer et al. 2003). Ultimately, 44 homes
were included in the air pollution substudy.

To ensure that a range of exposures were observed with-
in our subsample and to maximize our statistical power,
we selected participants following a predesignated sam-
pling scheme. The homes of all participants enrolled in the
cohort study at the time our sampling began were first in-
dividually geocoded with ArcGIS 9.1 software (Redlands,
CA) using the year 2000 U.S. Census TIGER (topologically
integrated geographic encoding and referencing system)
files and City of Boston 2002 street parcels data. We then
calculated GIS-based estimates of traffic density, with the
goal of choosing participants who would capture heteroge-
neity in traffic exposures both across all participants and
within neighborhoods of interest. Using the Spatial Ana-
lyst extension of ArcGIS 9.1, traffic-density scores were
calculated for 50-m raster cells, using traffic-volume data
(provided by the MHD) for all road segments within 100 m
of the participant home. For kernel-weighted traffic scores,
a kernel technique (the quadratic inverse-distance weight-
ing function) was applied to more heavily weight road seg-
ments near the cell’s center. The result was a 100-m,
kernel-weighted traffic-density score for each candidate
home. While alternative traffic measures could have been
explored and were ultimately used in our LUR modeling,
we focused on a single measure for selecting participants

that was commonly used in prior studies and that was ex-
pected to capture key aspects of proximity to traffic. Based
on their traffic density scores, homes were divided into
tertiles and selected to represent a range of traffic densities
and neighborhoods, with an aim to oversample in neigh-
borhoods where recruitment was occurring, but also to in-
clude representative sites across Boston to ensure
generalizability of the study.

Cohort recruitment for the ACCESS study was not com-
plete when air pollution sampling began in 2003. In partic-
ular, certain neighborhoods targeted for future recruitment
(through community health centers, hospitals, and Wom-
en, Infants, and Children [WIC] programs) were not yet ad-
equately represented in the database. To capture these
additional neighborhoods and to expand the available
sample size, we added a convenience sample of partici-
pants from outside of the cohort (42% of our participants).
As shown in Figure 1, the noncohort participants filled in
some spatial gaps and helped us avoid concentrating a dis-
proportionate number of measurements in East Boston,
where early cohort recruitment was focused. There were

Figure 1. Map of the air pollution sampling sites with both indoor and
outdoor concentration data.
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some demographic and behavioral differences between co-
hort and noncohort participants, which are described in
more detail in the Results section, under Participant Char-
acteristics. Because the cohort recruitment ultimately ex-
panded beyond the original design, to capture a broader
array of neighborhoods and a range of socioeconomic sta-
tuses, we expected that our inclusion of noncohort partici-
pants, whose demographic and behavioral characteristics
differed from those of the original cohort participants,
would make our models more, rather than less, applicable
to the full cohort and to other populations of interest.

SAMPLING PROTOCOL

The sampling was conducted in both the cooling (May–
October) and heating (December–March) seasons to cap-
ture seasonal effects on concentrations. Indoor and out-
door 3-to-4-day samples of NO2 and PM2.5 were collected
simultaneously at each home in both seasons. This sam-
pling period was selected empirically to avoid limit-of-
detection (LOD) issues and sampler overload. When possi-
ble, two consecutive measurements were collected at each
home in each season, providing 1-week average concentra-
tions and minimizing weekday versus weekend effects.
Thus, four indoor samples and four outdoor samples
would optimally be collected for each home; however, be-
cause of losses to follow-up and logistical issues, two con-
secutive measurements were not always collected. Not all
homes could be sampled in the same time period because
of limited sampling equipment. Note that in this report, we
define “sampling session” as a measurement period within
a given season, for which there is either one or two mea-
surements, and for which questionnaire data describing
activities during the session are available.

PM2.5 samples were collected using a Harvard Personal
Environmental Monitor (PEM), a size-selective inertial im-
pactor attached to a Medo linear-piston vacuum pump (Ha-
nover Park, IL) running at 4 L/min. Particles were captured
on 37-mm Teflon filters, and an elutriator (10 cm long, 5 cm
in diameter) was attached to the inlet of each PEM. Sam-
pling, preparation, and analysis procedures followed stan-
dard protocols, which have been described previously
(Marple et al. 1987). NO2 samples were collected using
Yanagisawa (Avantec MFS, Dublin, CA) passive filter badg-
es, which absorb NO2 in a triethanolamine solution on a cel-
lulose fiber filter (Yanagisawa and Nishimura 1982).

Indoor samples were taken in the main living space of
the home, away from windows, stoves, and heat sources.
Outdoor samples were taken on a freestanding tripod
whenever possible, located away from the home and imme-
diate sources of emissions (e.g., driveways, grills, locations

where smokers gather). When an appropriate outdoor space
was not available, to avoid the building envelope, samplers
were extended from a window on a three-foot sampling
arm made of polyvinyl chloride piping. A four-inch-deep
stainless steel rain dish was placed over both indoor and
outdoor samplers to reduce interference by curious chil-
dren living in the homes and by rain, snow, and wind.
Pumps and continuous-monitoring equipment were placed
inside a soundproofed plastic enclosure, minimizing the
intrusiveness of the sampling, important given the place-
ment of the samplers. Additional measurements included
indoor and outdoor temperature and humidity monitored
with a HOBO device (Onset Computer Corporation, Pocas-
set, MA) and continuous traffic counts recorded directly on
the most heavily trafficked road within 100 m of the home
using a TRAX I Plus traffic counter (JAMAR Technologies,
Horsham, PA). Traffic counts were generally conducted in
the cooling season only, as the tubing used by the TRAX I
Plus does not perform well in snow (given potential mois-
ture entry and damage caused by snowplows).

LABORATORY ANALYSIS

NO2 samples were analyzed using spectrophotometry. EC
concentrations were estimated using reflectance analysis on
the Teflon particle filters, a nondestructive process that pro-
vides measurements highly correlated with concentrations
measured using thermal-optical methods (Kinney et al.
2000). We used the M43D smoke stain reflectometer (Diffu-
sion Systems Ltd., London, UK) with the absorption coeffi-
cient calculated in accordance with ISO 9835, as described
previously (Cyrys et al. 2003).

To allow for source apportionment, elemental analysis
was conducted by XRF on the particle filters (Dzubay et al.
1988). The analyses were conducted according to standard
operating procedures at the Desert Research Institute labo-
ratories (DRI; Reno, NV) and included their quality-control
and quality-assurance measures (Chow and Watson 1998;
Watson et al. 1999). Subsequent to XRF analysis, the filters
were analyzed by high-resolution ICP–MS, to estimate
concentrations of water-soluble metals (PQ Excell; Thermo
Elemental, Franklin, MA). The Wisconsin State Laboratory
of Hygiene (Madison, WI) conducted the ICP–MS analysis
following previously documented protocols (ESS INO
Method 400.4; U.S. Environmental Protection Agency
[U.S. EPA] Method 1638) as described in more detail else-
where (Sutton and Caruso 1999). The ICP–MS analysis
was conducted to yield constituent concentrations at low-
er LODs (though capturing only the water-soluble fraction
of each constituent) and to provide a comparison with XRF
outputs. Note that the ICP–MS analyses were run on a
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magnetic-sector ICP–MS, using appropriate element/iso-
tope-specific mass resolution settings that ensured that all
recognized isobaric interferences were mass resolved.

QUESTIONNAIRE DATA

A standardized questionnaire was administered at the
end of each sampling period to gather housing characteris-
tics and occupant-behavior data. Our questionnaire was
derived from a questionnaire used in the Inner-City Air
Pollution substudy within the Inner-City Asthma Study
(Wallace et al. 2003) and the U.S. EPA’s Residence Survey
and Daily Follow-Up Questionnaire (Williams et al. 2003).
Home information included location and building type,
year built, and type of heating and cooking fuel. Occupant
activities included smoking, opening windows, time spent
cooking, cleaning activities, and use of candles, air fresh-
eners, and air conditioning. Each factor indicates possible
indoor pollution sources or influences on air exchange,
penetration efficiencies, or resuspension of pollutants.
The questionnaire administered to all air pollution study
participants is provided as Appendix D (available on the
HEI Web site). Additional information (including heating
fuel type, number of rooms in the home, and building age)
was gathered from the prenatal questionnaire adminis-
tered to all ACCESS cohort members; the same question-
naire was also administered to noncohort participants in
the air pollution study (provided as Appendix E, available
on the HEI Web site).

ADDITIONAL DATA COLLECTION

During each sampling period, field staff completed field
logs noting the locations of the indoor and outdoor moni-
tors, the building type, the presence of key sources within
100 m of the monitor (e.g., idling vehicles, construction ac-
tivities, evidence of grilling or smoking), carpeting or clut-
ter in the apartment, and other observed factors that may
have influenced indoor or outdoor concentrations or re-
suspension. Digital photos were taken of all monitors to
corroborate monitor-placement data.

For our regression analyses, we needed data to account
for temporal variability in background concentrations of
pollutants and for meteorology because we could only
sample at a limited number of homes at a time. We there-
fore gathered central site monitoring data from a Massa-
chusetts Department of Environmental Protection
(MassDEP) monitor in the Roxbury neighborhood of Bos-
ton, centrally located within our sampling zone (Figure 1).
This was also the only monitor in Boston that had hourly
data for NO2, PM2.5, and EC; however, we used data from
other area monitors to test the sensitivity of our findings to
choice of central site monitor. Hourly NO2 was measured

at the Roxbury MassDEP monitor using the TECO 42C with
a chemiluminescence analyzer. Hourly PM2.5 was mea-
sured using the Met-One BAM (Met One Instruments,
Grants Pass, OR) with a PM2.5 sharp cut cyclone beta-at-
tenuation mass monitor. The MassDEP monitor measured
EC by optical absorption with the Magee Scientific
AE22ER aethalometer (Magee Scientific Co., Berkeley,
CA), whereas we used reflectance analysis to estimate EC
from our particle filters. The relationship between aetha-
lometer and reflectance measures of EC has previously
been shown to differ by season in Boston, with aethalome-
ters reading higher in the summer and lower in the winter
(Allen 2006). We consider this potential seasonal bias for-
mally in our regression models.

We gathered meteorological data from the same central
site, including hourly wind speed and direction, to derive
indicators of meteorological conditions that may modify
source–concentration relationships. To provide covariates
more applicable to the traffic sources of interest, we esti-
mated mean wind speed and direction during daytime
hours (6 am–9 pm) when higher traffic volume was expect-
ed. We additionally created several wind parameters in re-
lation to traffic sources (e.g., percent of sampling hours
when the home is downwind from the nearest road), such
that the statistical significance of the wind parameter in

 

Table 1. Meteorological Covariates and Other Potential 
Modifiers of Traffic–Pollution Relationships in 
LUR Models

Units Distributiona

Home Characteristics
Obstructed from road Yes / No 57% / 43% 
Obstructed from major 
road

Yes / No 84% / 16% 

Sampling Period Characteristics
Hours downwind 
from major road

Percent
(%)

0% / 50% / 
100% 

Average wind speed
during daytime sampling 
hours (6AM–9PM)

m/sec 3.0 / 5.2 / 11

Daytime hours with 
winds < 2 m/sec

Percent
(%)

0% / 0% / 37% 

Weekend sampling 
days

Percent
(%)

0% / 40% / 67% 

Floor (monitor 
height)

(Categorical: 
1, 2, 3+)

34% / 34% / 
31% 

Snow during 
sampling period

Yes / No 3% / 97% 

a Values represent minimum/median/maximum for continuous variables 
or the percentage within various categories for categorical variables, 
estimated across measurements.



13

J.I. Levy et al.

13

the regression model implies source importance. We cal-
culated the percent of daytime hours with mean wind
speed below 2 m/second and the harmonic mean mixing
height for the sampling period, estimated from twice-daily
measurements of mixing height obtained from the Nation-
al Climatic Data Center. Snowfall during the sampling pe-
riod, which could have physically obstructed the sampler,
was also considered. Site characteristics examined as pos-
sible modifiers of the source–concentration relationship
included the presence of an obstruction (generally a build-
ing) between the monitor and nearest road and nearest ma-
jor road and monitor height (either the level of the ground

or the floor at which the outdoor sampling occurred). Me-
teorological covariates and other potential modifiers of
traffic–pollution relationships are summarized in Table 1.

Road networks and traffic data were obtained from the
MHD. Because different aspects of traffic (including densi-
ty, roadway configuration, and average vehicle speed) may
affect emission rates, pollutant mix, and dispersion, and
because different indicators have been predictive of con-
centrations or health outcomes in different studies, we
opted to create a suite of traffic indicators (Table 2) captur-
ing varying aspects of traffic. We built raster-based cumu-
lative density scores (vehicle-meters/m2/day) for average

Table 2. Traffic Indicators Examined for GIS-Based LUR Modelsa

Indicator Minimum Median Maximum

Cumulative Density Scores (Vehicle-Meters/m2/Day)
Unweighted traffic density

Within 50-m buffer 4.1 43.9 197.5
Within 100-m buffer 3.8 55.9 186.7
Within 200-m buffer 10.7 64.3 570.7
Within 300-m buffer 12.7 73.1 479.2
Within 500-m buffer 26.7 80.9 347.3

Kernel-weighted traffic density 
Within 50-m buffer 4.3 29.5 194.0
Within 100-m buffer 5.8 52.8 168.3
Within 200-m buffer 11.7 59.0 479.4
Within 300-m buffer 12.1 66.0 927.8
Within 500-m buffer 23.1 73.5 440.4

Density of larger roads (> 8500 cars/day) within 200-m buffer 0 5.2 21.9

Summary Measures
Total roadway length (m)

Within 50-m buffer 63.3 427.9 940.6
Within 100-m buffer 498.4 1074.3 1,931.4
Within 200-m buffer 1950.5 3395.3 7,468.9
Within 300-m buffer 4529.3 6632.2 16,353.6

Total ADT � length within 200-m buffer 
(vehicle-meters/day)

1.24E6 8.97E6 7.31E7

Distance-Based Measures (m)
Distance to nearest larger road (> 8500 cars/day) 15.0 64.2 353.8
Distance to nearest major road (> 13,000 cars/day) 16.7 66.4 373.4
Distance to nearest highway (> 19,000 cars/day) 34.9 216.4 1,394.6
Distance to nearest designated truck route 91.7 608.6 2,951.1

Characteristics of Nearest Major Road
ADT (vehicles/day) 8900 8,900 117,720
ADT/distance to major road (vehicles/day)/m 23.8 236.0 764.4
Diesel fraction (%) 1.4% 5.9% 14.5%
Average daily truck traffic (vehicles/day) 125 703 12,637
Average daily truck traffic / distance to major road (vehicles/day)/m 0.57 21.4 61.6

a Distributions are based on sampled sites (N = 44).
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daily traffic (ADT) counts within radii of 50 to 500 m from
each home. Because roadway segments nearer to the home
may have greater influence on concentrations, we also ex-
plored inverse-distance quadratic functions (kernel-
weighted buffers) for the same radii, which capture stan-
dard Gaussian dispersion concepts. As traffic counts on
smaller residential roads were sparse within the MHD data
set for our modeling domain, we created cumulative densi-
ty scores including only larger roads (above 8500
cars/day), summary measures of total roadway length
within radii of 50 to 300 m from each home, and the prod-
uct of roadway length and ADT counts within 200 m of
each home. We considered the distance to various road-
way types, including to the nearest larger road (greater
than 8500 cars/day), major road (greater than 13,000
cars/day), highway (greater than 19,000 cars/day), and des-
ignated truck route. To explore the influence of major
roads on nearby neighborhoods, we created indicators of
the roads’ ADT and diesel traffic (estimated using axle-
length data collected by the TRAX I Plus) and weighted
each by the home’s distance to the road.

We developed and examined, in a subset of analyses,
two meteorology-weighted covariates hypothesized to bet-
ter capture the effect of local traffic sources:

1. Total roadway length within 100 m of the home,
divided into eight directional wedges from the home
(using the Aspect function in ArcGIS 9.1), weighted
by the percent of time during each sampling period
when the predominant wind was from each direction

2. A similar wind-direction-weighted term, using total
traffic (roadway length � vehicles/day) within 100 m
of the home, rather than roadway length

We considered other GIS covariates that may be associ-
ated with traffic or other local pollution sources. Measures
of population and area (m2) at the block-group level were
used to estimate block-group population density and mean
population density within 200 m of the home. These met-
rics can serve as proxies of traffic density or of residential
combustion activities. NLCD-50 land-use categories and
elevation data were downloaded from the U.S. Geological
Survey’s National Land Cover Dataset and the National El-
evation Dataset, respectively (both at http://gisdata
.usgs.gov). From field logs compiled during the sampling
period, we constructed covariates for smoking or grilling
near the outdoor monitor and for construction within 100
m of the home. We used U.S. Census 2000 data to deter-
mine the number of homes using residential fuel oil within
200 m of the sampled home, as a proxy for the intensity of
local home-heating-oil use.

Finally, we gathered an array of housing characteristics
through the City of Boston, Brookline, Cambridge, and
Somerville property tax records. This information was
meant to supplement questionnaire data and to potentially
make it possible to develop indoor exposure models with-
out having to administer questionnaires, which would
streamline the model-building process. Covariates avail-
able included land-use type, year the property was built,
living area, building style and materials, type of heating
system, and presence or absence of air conditioning.

QUALITY CONTROL AND QUALITY ASSURANCE

Field blanks were collected totaling approximately 10%
of the number of samples. Field blanks were transported
and handled like regular samples, but the filters were not
attached to pumps. For NO2, PM2.5, and EC, these samples
were used to determine background contamination and for
the calculation of method LODs. Sample concentrations
for each pollutant were blank corrected using the mean
field blank value, when this value was significantly differ-
ent from zero at the 95% level. The method LODs were cal-
culated to be three times the standard deviation of the field
blanks. For the elemental concentrations determined by
XRF and ICP–MS, the laboratories provided concentration
uncertainties equaling one standard deviation of error esti-
mates based on analytical precision, for each element and
sample. As in previous studies reporting aerosol elemental
concentration data, three times this measure of uncertainty
was considered to be the LOD for each element and sample
(Long and Sarnat 2004). Precision was determined using
duplicate samples (with a target of 10% of samples) and
calculated as the mean relative difference, or the average of
the absolute difference of a pair of duplicates divided by
its mean. Finally, questionnaire responses were evaluated
for completeness and, where applicable, validated with
data available through the City of Boston, Brookline, Cam-
bridge, and Somerville property tax records.

ADDITIONAL AIR POLLUTION SAMPLING

One of the inherent limitations of our analysis (and any
intensive multipollutant residential investigation) is that
only a limited number of measurements could be collected
concurrently, complicating the distinction between spatial
and temporal variability. This issue is particularly signifi-
cant in the development and interpretation of latent-
source factors derived from particle-constituent data, as
the correlations observed across constituents may be influ-
enced by the sampling design.
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To examine whether our factor analysis findings may
be influenced by our study design, we analyzed samples
collected as part of a toxicological study at the Harvard
School of Public Health, which collected particle samples on
multiple days but at a single site (near Huntington Avenue in
Boston, a significant source of traffic emissions). Most prior
studies using factor analysis to examine source apportion-
ment have primarily leveraged temporal variability at fixed-
site monitors, rather than spatial variability across urban lo-
cations. Use of the Huntington Avenue site data therefore al-
lowed for a qualitative comparison of whether similar
factors (e.g., sources) would have been identified in urban
Boston using a traditional (single-site) factor analysis study
design, as were identified in an approach using data from
residences distributed across the city.

For this temporal analysis substudy, 5-hour, daily-inte-
grated measures of PM2.5 were collected between 10 am
and 4 pm from January to February 2008, using the Har-
vard Ambient Fine Particle Concentrator (HAPC) system.
This system uses three successive stages of virtual impac-
tors with cut points in the range of 0.15 µm, which enrich
the mass concentration by a factor of about 30 (Sioutas et
al. 1995) without substantially changing its physicochemi-
cal characteristics (Sioutas et al. 1997). Ambient PM2.5
samples were collected from a sampling manifold located
downstream of the HAPC size-selective inlet, on 47-mm
Teflon filters at a flow rate of 30 L/min. Concentrated am-
bient particle (CAPs) samples were collected from a post-
concentrator sampling manifold located at the entry to an
attached animal-exposure chamber, on 47-mm Teflon fil-
ters at a flow rate of 3 L/min. To evaluate EC and organic
carbon (OC), samples were collected from the same mani-
fold location but on quartz fiber filters and at a flow rate of
2 L/min.

Both ambient-particle and CAPs filters were analyzed
following protocols identical to those described for the pri-
mary study, including XRF and ICP–MS analyses in se-
quence (see Laboratory Analysis, under Methods and
Study Design). In principle, the ambient-particle samples
from this substudy were most directly comparable to the
outdoor (ambient) samples collected in the main study.
However, because the sampling periods for the substudy
were short (5-hour), leading to potential LOD issues for the
ambient-particle samples, and because particle composi-
tion has been shown to be minimally affected by concen-
tration (Sioutas et al. 1997), the CAPs filters provided a
stronger basis for comparison. The quartz filters were ana-
lyzed for EC and OC concentrations using thermal-optical
transmittance (Sunset Laboratory, Tigard, OR).

STATISTICAL METHODS AND DATA ANALYSIS

In this section, we describe our data analysis strategy,
starting with an overview of the logical flow of these anal-
yses. We first conducted exploratory indoor–outdoor mod-
eling for individual pollutants (see Indoor–Outdoor
Concentration Modeling in this section) to estimate effec-
tive penetration efficiencies, identify potential indoor
sources, and characterize pollutants as dominated by ei-
ther indoor or outdoor sources. For outdoor concentrations
(see LUR Modeling — Outdoor NO2, EC, and PM2.5 in this
section), we developed LUR models predicting concentra-
tions of three commonly modeled pollutants (PM2.5, EC,
and NO2). We subsequently extended these models for
PM2.5, EC, and NO2 to indoor concentrations (see LUR
Modeling — Indoor NO2, EC, and PM2.5 in this section),
adding questionnaire data and ventilation proxies as pre-
dictors. We then moved beyond these three pollutants by
applying constrained factor analyses to capture latent-
source effects both outdoors and indoors (see Constrained
Factor Analysis in this section). We developed LUR mod-
els for outdoor factor scores (see LUR Modeling — Outdoor
Factor Scores in this section), and modeled indoor factor
scores using outdoor-source terms as well as questionnaire
data and ventilation proxies (see LUR Modeling — Indoor
Factor Scores in this section). Finally, we developed a sim-
ulation approach to determine the implications of expo-
sure misclassification on epidemiologic study findings
(see Exposure Misclassification Analysis in this section).

INDOOR–OUTDOOR CONCENTRATION MODELING

In these analyses, we use the core principles of the
mass-balance model to examine relationships among in-
door and outdoor pollutant concentrations, indoor sourc-
es, and ventilation. Our initial analyses of indoor
concentrations were compared against the paired residen-
tial outdoor measurements, to better understand the effects
of ventilation characteristics and indoor-source contribu-
tions. Subsequent indoor-concentration models (see LUR
Modeling — Indoor NO2, EC, and PM2.5, below) relied on
central site monitoring data, GIS covariates, and question-
naire data to predict concentrations, given that measure-
ments at each home (indoors or outdoors) would be
unavailable for all participants in most large cohort stud-
ies. The first set of models fulfilled two key purposes: (1) it
identified candidate source variables for subsequent mod-
els, and (2) it allowed characterization of pollutants as pri-
marily influenced by either indoor or outdoor sources. As
such, these analyses served as precursors to the indoor
LUR and factor analysis models for indoor constituents.
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The relationship between indoor and outdoor concen-
trations is theoretically characterized, under steady-state
conditions, with a single-compartment mass-balance mod-
el, as in equation (1):

(1)

where Cinij is the indoor concentration of pollutant j for
sampling session i; Pj is the penetration efficiency (dimen-
sionless) for pollutant j; ai is the air-exchange rate for sam-
pling session i (h�1); kj is the decay rate for pollutant j
(h�1); Coutij is the outdoor concentration; Qij represents
the various individual indoor-source terms; and Vi is the
house volume (m3). Note that, for some indoor analyses,
we averaged both samples within each sampling session
rather than all individual samples, because the question-
naire data capture source activities for the entire week.
Within the formulation of equation (1), the subscript i cap-
tures both participant and time period. The quantity Pjai /
(ai + kj) is also called the “infiltration factor” (FINFij) and
represents the fraction of Coutij that penetrates indoors in
each home. Therefore FINFij � Coutij describes the ambient
contribution to the indoor concentration, and (Qij / Vi) / (ai
+ kj) represents the contribution of indoor sources.

While our study measured indoor and outdoor concentra-
tions and collected questionnaire data that could proxy for
indoor-source terms, air exchange rate (AER) measurements
were not logistically feasible. Thus, we needed to develop a
reasonable proxy of ventilation. FINF is directly associated
with AER, especially if P and k are relatively less variable
across homes, so a proxy variable for the infiltration factor
provides similar information as a proxy variable for AER.
This has been corroborated in previous Boston-area residen-
tial studies, which documented strong relationships be-
tween FINF and AER (Long and Sarnat 2004).

Prior studies have used sulfur indoor–outdoor (I/O) ra-
tios to represent the infiltration factor, as there are general-
ly few residential indoor sources of sulfur (see, for
example, Sarnat et al. 2002). Equation (2) below illustrates
that, in the absence of indoor sources, the mass-balance
model in equation (1) reduces to an expression linking in-
door concentrations to outdoor concentrations via the in-
filtration factor. 

(2)

where  are the individual infiltra-
tion factor, and the indoor and outdoor concentrations of
sulfur, respectively. We empirically tested the assumption
that there were no significant indoor sources of sulfur by
regressing indoor sulfur concentrations against outdoor
sulfur concentrations, and by testing whether the intercept
was significantly different from zero. In addition, we
examined whether any questionnaire information with a
plausible link to sulfur emissions significantly predicted
indoor concentrations. For our models, we created categor-
ical infiltration-factor indicators, rather than using the
actual sulfur I/O ratio, because of the ratio’s instability at
higher values and uncertainty about P and k (both their
mean values and variance across homes), and because effec-
tive penetration efficiencies vary by particle constituent.

With this information, we used a sequential model-
building approach for our indoor–outdoor analyses. First,
for all particle constituents and NO2, we regressed Cinij on
Coutij. For a subset of our indoor–outdoor analyses, our
primary objective was to identify potential indoor sources
of pollutants for subsequent regression analyses, so we
next introduced potential indoor sources and source-relat-
ed activities. For other indoor–outdoor analyses, our pri-
mary objective was to determine the fraction of indoor
concentrations attributable to indoor sources, so for these
analyses we instead regressed Cinij on the product of Coutij
and a categorical infiltration factor. Each model also con-
tained an independent linear indoor-source term.

To minimize potentially spurious associations, we fo-
cused on a subset of questionnaire information that had a
logical causal connection to the generation or resuspen-
sion of investigated pollutants, although we examined a
broader array of correlations to determine the consistency
and coherence of our data set. For example, gas stoves
have been shown to be a source of NO2 (Lee et al. 1998)
and other combustion pollutants, with their effect influ-
enced by the presence or absence of a pilot light as well as
the amount of time spent cooking per day. Cooking activi-
ty, especially frying, grilling, and burning food, has been
associated with PM2.5 and numerous particle constituents
(Ozkaynak et al. 1996). Humidifier use has been associated
with elevated PM2.5, especially for those elements charac-
teristic of the “tap water fingerprint” (e.g., Ca, Cl, K, Si, and
S) (Highsmith et al. 1992). Candle use is a potential source
of EC (Wallace 2005). Some cleaning activity variables (e.g.,
vacuuming) could indicate either removal or sources of sus-
pended particles, especially for crustal elements (Wallace
1996). We created an occupant-density variable (number of
occupants/number of rooms) to capture resuspension relat-
ed to foot traffic and greater overall source activity relative
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to home volume, and we considered the number of occu-
pants and the number of rooms as separate covariates.

After investigating indoor pollutant sources, we consid-
ered our categorical infiltration factor as a potential modi-
fier of indoor-source terms, following the general structure
of the mass-balance model shown in equation (1). The re-
sulting structure of our pollutant-specific models follows
equation (3) below:

(3)

where Ventilationi is the categorical variable derived from
the individual infiltration factors (FINFiS). Due to the lim-
ited statistical power of our study, we could not incorpo-
rate multiple source terms with interactions, but we
explored this model for insight on influential sources and
the modifying influence of Ventilationi on indoor- and out-
door-source terms.

LUR MODELING AND CONSTRAINED 
FACTOR ANALYSIS

While the evaluation of indoor–outdoor relationships
based on home-specific measurements is informative,
characterizing exposures for a large epidemiologic study
necessitates development of models of outdoor or indoor
concentrations based on information that could be readily
obtained for all cohort participants. Our model-building
approach differed somewhat by setting (indoors versus
outdoors), pollutant, and outcome (individual pollutants
versus factor scores), but included many common features.
Because we had many potential predictors and a relatively
small sample size, in all analyses we introduced covariates
in a predefined sequence to limit spurious associations.
We selected candidate variables in an initial model-building
step to restrict the number of covariates introduced into
multivariate regressions. Finally, for all models, we exam-
ined the implications of alternative statistical approaches to
selecting covariates. As described below, differences in the
model-building approach across settings, pollutants, and
outcomes were principally related to the nature of the de-
pendent and independent variables of interest.

LUR Modeling — Outdoor NO2, EC, and PM2.5

We did not develop LUR models for each individual
particle constituent, for parsimony and to minimize the
likelihood of spurious associations. Instead, we focused
initially on three pollutants previously examined in LUR
models — NO2, EC, and PM2.5 — and subsequently built

LUR models for latent-source factors derived using parti-
cle constituent data.

For our LUR models of outdoor NO2, EC, and PM2.5, we
built models separately for each pollutant, allowing differ-
ent aspects of traffic, meteorology, and site-specific factors
to predict concentrations of different pollutants. We first
regressed residential outdoor concentrations against cen-
tral site monitoring data for the specific hours that each
residential sample was collected, and we used the residu-
als from this regression to select candidate spatial covari-
ates. We selected candidate traffic indicators and
modifiers based on their nonparametric univariate correla-
tions with the residuals from the regression, with a gener-
ous significance criterion (P < 0.3) to avoid eliminating
covariates that might be significant in multivariate but not
univariate models.

Because traffic indicators can be highly correlated, how-
ever, we also considered a secondary covariate selection
method, using a form of classification and regression tree
(CART) analysis. We used the tree command in the statisti-
cal computing software R to group observed concentra-
tions by applying an impurity criterion, to minimize
within-group variance while maximizing between-group
differences. We compared concentration groups created
using the traffic indicators as predictors, yielding the indi-
cators that best distinguished high- and low-pollution lo-
cations. As we wished to treat the traffic indicators as
continuous, rather than binary, variables in our final LUR
models, we did not use the outputs from the classification
analysis directly, but those indicators selected by both cor-
relation and classification methods were considered the
strongest candidates for inclusion.

We then followed a stepwise multivariate modeling ap-
proach in which we included the following, in order: cen-
tral site monitoring data, candidate traffic indicators,
meteorological and site-specific modifiers as interaction
terms with traffic indicators, and additional outdoor sourc-
es (e.g., grilling or smoking noted near the outdoor monitor,
land-use type). While some additional terms may capture
traffic-related effects, given high correlations between traffic
and land-use patterns, we opted to emphasize more directly
interpretable terms, and therefore focused first on the traffic
indicators in Table 2. Multivariate regression models fol-
lowed the general form of equation (4), below, with a maxi-
mum P value of 0.1, to retain variables at each stage.

(4)
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where Coutijt is the measured concentration of pollutant j
at location (home) i during time t; Cambientjt is the mean
concentration of pollutant j at the central site during time
t; Trafficij represents the different traffic indicators listed
in Table 2 at location i, selected separately for each pollut-
ant; Modifierijt is the value of meteorological or site charac-
teristics (listed in Table 1) that can alter the association
between traffic indicators and Coutijt; and Other sourcesijt
represents additional source terms at home i for pollutant j
during time t. Unlike in the modeling described above and
in equation (1), in this model, we used all individual ob-
servations rather than aggregating them by sampling ses-
sion, given that we were not utilizing questionnaire
information here and aimed to preserve statistical power
for subsequent factor analyses and regression modeling.

For these models, we examined the quantile–quantile
(Q–Q) plots and Anderson-Darling test statistics for all
three pollutants, to determine whether to log-transform
concentrations prior to selecting covariates. Although log-
transformation could potentially complicate comparisons
between the models or with the subsequent factor analysis
models, we wanted to initially consider the most statisti-
cally robust formulation of the models, to allow for com-
parisons with models that may have greater physical
interpretability. We tested the sensitivity of our findings to
the effect of log-transformation.

Finally, as part of the model-building process, we exam-
ined scatterplots and distributions of key covariates and
removed outliers and influential points that indicated ei-
ther likely measurement error or observations that were
not reflective of the preponderance of the data. We used
the data set with influential points removed for our final
models but tested the implications of their inclusion for
covariate significance and directionality.

LUR Modeling — Indoor NO2, EC, and PM2.5

For our LUR modeling of indoor concentrations of NO2,
EC, and PM2.5, we followed an approach that was slightly
different from the one for outdoor concentrations or for our
indoor–outdoor analyses. Our primary objective with this
analysis was to explain variability in indoor concentra-
tions of NO2, EC, and PM2.5 using terms that would likely
be available for all participants in an epidemiologic study,
since we then planned to use these models in the exposure
misclassification analysis detailed under Statistical Meth-
ods and Data Analysis. Thus, we did not use concentrations
measured outside of participant homes, but instead used
publicly available traffic data and other source data, along
with questionnaire responses. Because the questionnaire
data spanned the entire sampling session, measurements

were averaged within sampling sessions, and the theoreti-
cal functional form of these regression models was

(5)

where Cinij is the indoor concentration of pollutant j for
sampling session i; Cambientij is the mean concentration
of pollutant j at the central site during sampling session i;
Qij represents the various indoor-source terms, Trafficij
represents the different traffic indicators listed in Table 2
at location i, selected separately for each pollutant; and
Ventproxyij represents publicly available information or
questionnaire responses found to be predictive of AERs.
This model differs from the model represented by equation
(3) in its use of central site monitoring data and GIS-based
traffic covariates, rather than concentrations measured
outside the home, and in its use of generally available data
to represent ventilation, rather than measured indoor–out-
door sulfur ratios.

To implement this approach, we therefore have three cat-
egories of covariates that need to be developed from gener-
ally available data — traffic sources, indoor sources, and
ventilation. For the traffic sources, we allowed the traffic
terms to be selected separately within each model through
a model-fitting process (as opposed to the ventilation and
indoor sources, which were represented by terms selected
in earlier models, as described in more detail below). While
we could have restricted our models to the use of the traffic
terms found to be optimal for our outdoor LUR model, in
theory, traffic proxy variables that could predict concentra-
tions at a specific site outside the home might be different
from those that could predict concentrations at a specific
site inside the home. As done previously, we chose the op-
timal traffic term based on the lowest P value.

Because we had many candidate traffic variables and a
relatively small sample size, comparison of models on the
basis of P values could have been problematic, both be-
cause multiple variables could have similar significance
levels and because observed relationships could be due to
chance. To provide a general indication of the weight of ev-
idence for each traffic term and the amount of uncertainty
in choosing the best model, we adopted a Bayesian ap-
proach to estimate the probability that a model using a giv-
en traffic covariate was the best model. Of note, while an
identical approach could also be applied to the outdoor
LUR models and the outdoor and indoor factor analysis
LUR models, we focus here on the indoor models for the
sake of brevity, as the conclusions are comparable. For the
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same reason, we did not apply the classification analysis
from the outdoor LUR models to the indoor LUR model.

We used equations (6) through (8) to calculate the poste-
rior model probabilities for each pollutant (George and
McCulloch 1997; Chipman et al. 2001).

(6)

where Mk is the model with traffic term k when all of the
other variables (e.g., ambient concentrations, indoor
sources) are in the model; Y is the observed indoor concen-
trations for one of the pollutants; P(Mk|Y) is the posterior
model probability of Mk given Y; l(Y|Mk) is the marginal
likelihood of Y given Mk; and P(Mk) is the prior probability
that Mk is the true model. We assumed the same prior
probability, P(Mk), for all traffic terms, which was equal to 

(7)

where Yi is the residual, from sampling session i, from
regressing indoor concentrations on ambient concentra-
tions and indoor-source terms; Xik is the residual from
regressing traffic term k on ambient concentrations and
indoor-source terms; n is the number of observations; and
c is a parameter that scales the prior variance of the regres-
sion coefficients of the traffic terms in the model, thereby
reflecting prior uncertainty about these coefficients. The
parameter c appears in the marginal likelihood (equation
7) when the coefficients are integrated over, and results
can be sensitive to the choice of c. Based on a review of
possible values for c in Chipman and colleagues (2001), we
specified that c = n, so that c was large enough to acknowl-
edge reasonable uncertainty in the effect estimates, while
still attributing very low prior probabilities to very
unlikely effect estimates. We also conducted sensitivity
analyses by calculating the posterior probabilities across a
range of prior uncertainties (the value of c ranged from 5 to
100) (Chipman et al. 2001).

The posterior probabilities then needed to be normal-
ized as shown in equation (8) (and multiplied by 100 to
calculate a percentage).

(8)

In a sensitivity analysis, we considered another model,
in which M0 (equation 9) is the model without a traffic
term. We assumed P(Mk) of and  for M0 and Mk
(models with the traffic term), respectively. This assumed
an equal chance of traffic affecting indoor concentrations
as not, a semiarbitrary assumption meant to evaluate the
implications of a high prior probability of no significant
traffic impact. Using the  weights in the model selec-
tion inherently penalizes for testing many traffic terms in a
small data set. The posterior probabilities of M0 for each
pollutant were calculated as shown by equation (9) and
normalized utilizing equation (8).

(9)

To minimize possible spurious associations when con-
sidering indoor sources, we allowed into the model only
those indoor-source terms that were previously predictive
of indoor concentrations in models with outdoor concen-
trations of pollutants that had been measured directly out-
side sample homes (described above in Indoor–Outdoor
Concentration Modeling under Statistical Methods and
Data Analysis).

Finally, we incorporated ventilation effects. While in-
door–outdoor sulfur ratios were used to indicate the infil-
tration factor in the indoor–outdoor analyses (described in
Indoor–Outdoor Concentration Modeling), this information
would not be available for all participants in a large epide-
miologic study. To develop an alternative ventilation term,
we first performed a sequential model-building process to
explain variability in the infiltration factor we derived from
indoor–outdoor sulfur ratios, using questionnaire data and
property tax records. Only variables with a logical causal
connection to the infiltration factor were considered (i.e.,
season, floor level, multiunit versus single-family dwell-
ings, age of home, home air-conditioning use, opening of
windows). We considered the infiltration factor both as a
continuous and categorical variable, to identify the covari-
ate or combination of covariates available across epidemio-
logic study participants that would best predict infiltration
factors.

For the indoor–outdoor modeling, concentrations were
aggregated by sampling session. Although many homes
were visited in both the heating and cooling seasons, sea-
sons were broadly defined and spanned up to 6 months,
with questionnaire information and occupant activities
varying across seasons. Given these factors and our limited
statistical power, we opted to treat multiple observations
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for the same household as independent measurements. As
described above for the outdoor LUR models (LUR Model-
ing — Outdoor NO2, EC, and PM2.5, under Statistical
Methods and Data Analysis), for the indoor NO2, EC, and
PM2.5 LUR models, we removed a small number of outliers
and influential points, and we evaluated the implications
of their inclusion for our final models.

Constrained Factor Analysis

To develop the factor scores for both indoor and outdoor
concentrations, we used a constrained factor-analytic ap-
proach that produces only positive factor loadings, as in
nonnegative matrix factorization (NNMF) (Hoyer 2004) or
positive matrix factorization (PMF). We selected this ap-
proach for our urban setting, because chemical mass-bal-
ance models would require more precise knowledge of the
number of sources and their profiles (signatures) than is
currently available (Bruinen de Bruin et al. 2006), and tra-
ditional factor analysis has the familiar rotation problem
in which different rotation methods lead to different inter-
pretations. We originally considered a Bayesian approach,
with informative priors regarding the constituents that
should be found together for a given source type, but found
a general lack of convergence in fitting these models, in
part due to a mismatch between the priors and the under-
lying data. Thus, the computational complexities of the
Bayesian approach offered little advantage over more tra-
ditional frequentist approaches.

NNMF factors a data matrix into a product of two matri-
ces having nonnegative entries, which is similar to what a
singular value decomposition does, but it lacks an under-
lying probability model that would justify standard infer-
ence procedures and the appropriate handling of missing
data. However, the most important aspect of NNMF, non-
negative loadings (i.e., sources never subtract from con-
centrations), is maintained simply by fitting a factor
analytic model while constraining the source loading ma-
trix to nonnegative entries. This leads to a locally unique
solution, thus solving the multiple-rotation problem of tra-
ditional factor analysis, while guaranteeing numerical sta-
bility and appropriate asymptotic statistical properties.
Using maximum likelihood estimation, we fit the follow-
ing factor analysis model (with F factors):

(10)

where z is a vector of z-scores corresponding to J constit-
uent concentrations, � is a J � F matrix of positive real
numbers, and is a diagonal J � J matrix with positive
entries on the diagonal. To facilitate finding a global max-
imum, the likelihood function that corresponds to the

model above was maximized using the simulated
annealing (SANN) algorithm described by Belisle (1992)
and implemented using the R function optim. Missing
observations in z were addressed by subsetting the � and

matrices in a manner consistent with the observed data.
That is, the submatrices of � and  corresponding to the
observed data were used to construct the multivariate
normal variance-covariance matrix corresponding to the
vector of observed data. This approach entails an assump-
tion that the missing data mechanism does not depend on
the observed data.

This constrained factor analysis model uses a multivari-
ate normal likelihood function, which raises the question of
whether our data adhere to this assumption. Houseman and
colleagues (2006) describe a method of checking the nor-
mality of a multivariate random vector having arbitrary cor-
relation structure. Briefly, if Y is a multivariate vector
having mean µ(�) and parameterized covariance matrix �(�)
(where � represents a vector of regression and variance com-
ponent parameters), then for a broad class of orthogonal pro-
jections P (including the identity matrix), Q–Q plots of the
elements of  (“Cholesky residuals”)
will adequately capture departures from normality. P is
chosen to diagnose specific types of nonnormality (e.g., for
best linear unbiased predictors of random coefficients in
mixed effects models), but in this case we can take P to be
the identity for an omnibus normality check. Results from
our normality checks are presented in Appendix F (avail-
able on the HEI Web site) and emphasize that, while our
data do not adhere to multivariate normality, other transfor-
mations of the data adhere even less to a normal distribu-
tion, and our factor analyses can be expected to be unbiased,
although inefficient without transformation.

For both indoor and outdoor concentrations, we restrict-
ed the factor analysis to a subset of pollutants. We consid-
ered the LOD for particle constituent data to be three times
the individual sample SEs reported by the laboratory, as
done previously (Long and Sarnat 2004), and excluded
constituents for which fewer than 60% of the samples
were above the LOD. We also excluded constituents not pre-
viously associated with one of our hypothesized outdoor-
source factors of interest, which included coal combustion,
fuel oil, and traffic characteristics. As a result, some contrib-
utors to PM2.5 concentrations known to be present in Bos-
ton (e.g., sodium and chlorine related to sea salt) were not
included, producing a factor analysis more focused on spe-
cific interpretable factors of interest and reducing statistical
demands on our relatively small sample size.

To select particle constituents for factor analysis given
our source factors of interest, we first reviewed the out-
door-source apportionment literature, focusing on a subset

z ~ MVN 0,  + ′( )� � �

�

�

�
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of studies with measurements taken in a similar geographic
area (i.e., the eastern United States) or in a laboratory or sim-
ilarly controlled setting, within the past 10 years. Table 3
lists the constituents included in our factor analysis of out-
door concentrations, their hypothesized sources, and the
studies that reference them. Of note, Cd, Ce, and Tl are not
included in Table 3, as these were not source-specific trac-
ers in the studies listed, but were included in our factor
analyses because they have been significant in other factor
analyses (Zhao et al. 2006, 2007; Yakoleva et al. 1999; Hop-
ke et al. 2003) and had enough measurements above the
analytic LOD.

We applied a similar constrained factor analysis ap-
proach to the filters collected as part of a toxicological study
(see Additional Air Pollution Sampling, under Methods
and Study Design), to assess whether similar correlation

structures and factor interpretations (e.g., sources) would
likely be observed if repeated outdoor samples were col-
lected over time at one urban Boston location, during one
season. For comparability, we used the same constituents
used in our primary outdoor-concentration factor analysis,
although NO2 data were not available and EC concentra-
tions were based on thermal-optical methods rather than
reflectance.

For the indoor-concentration factor analysis, we exam-
ined the same list of constituents. This approach may have
omitted some important indoor constituents, but it im-
proved the comparability of the indoor and outdoor factor
analysis results. Also, as few investigators have conducted
factor analyses of indoor pollutants, we had little informa-
tion to support the inclusion of more constituents, and we
concluded that a shorter candidate constituent list should

Table 3. Hypothesized Sources of Particle Constituents Included in Factor Analyses of Outdoor Concentrationa 

Traffic Local / Regional Long-Range Transport

Motor
Vehicle

Brake and
Tire

Soil and
Road Dust Diesel

Fuel
Oil

Coal / 
Secondary

Steel 
Making

Wood/ 
Vegetative 

EC 1, 12 2, 3, 4, 10 3
Al 2, 3, 4, 5, 6 2
As 2
Ba 12 7, 11 11
Ca 1, 10, 12 1, 3, 5, 6, 9, 11, 12 3, 10
Cr 11 11 2
Cu 7, 11 2, 11 3
Fe 1, 8, 12 11 1, 2, 3, 5, 6, 11, 12 4 4, 8, 9
K 1 5, 6  3, 4, 6
La 8
Mg 11
Mn 11 2, 11, 12 4 4, 8, 9
Mo 11
Ni 2, 3, 5, 8, 12 8
P 10 10
Pb 8 11 4, 8
S 8, 12 10 2, 8
Sb 7, 11
Se 2, 6, 8
Si 1, 3, 4, 6
Sr 14
V 12 3, 5, 8, 12
Zn 1, 5, 8 7, 11 11 3 4, 8, 9

a Bold text indicates more frequent references. Numbers correspond to references as follows: 1 (Zhao et al. 2006); 2 (Ogulei et al. 2006); 3 (Qin et al. 2006); 4 
(Rizzo and Scheff 2007); 5 (Li et al. 2004); 6 (Lee et al. 2008); 7 (Iijima et al. 2008); 8 (Hammond et al. 2008); 9 (Pekney et al. 2006); 10 (Spencer et al. 2006); 
11 (Schauer et al. 2006); 12 (Lall and Thurston 2006).
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reduce the likelihood of spurious correlations and uninter-
pretable factors. Potential indoor sources for these constit-
uents are listed in Table 4. Note that indoor concentrations
are also influenced by the outdoor concentrations of pol-
lutants (Table 3). Whereas the studies represented in Table
3 were selected from the source apportionment or factor
analysis literature, there were fewer such publications re-
lated to indoor concentrations. To select studies, we con-
ducted a literature survey using the keywords “indoor,”
“source apportionment,” and “PM2.5” and included both
studies directly identified through this approach and stud-
ies cited by these publications, some of which were not
strictly source apportionment studies. As a result, NO2 is
included in Table 4 but not Table 3, as previous outdoor-
concentration factor analyses did not include NO2, but
multiple indoor monitoring studies did evaluate sources
of NO2. Those constituents included in Table 3 but not in
Table 4 were not clearly linked to any identifiable indoor
sources in our literature search. It should also be noted
that the multiple-source categories (e.g., resuspension and
soil) in Table 4 are somewhat vaguely defined. The indoor
source apportionment studies reported fewer distinctive

source profiles than did the studies of outdoor sources,
and some studies found combinations of constituents in-
doors that the investigators were unable to attribute to spe-
cific sources (Meng et al. 2007; Yli-Tuomi et al. 2008),
reinforcing the difficulty of source attribution in the in-
door residential environment.

For the constrained factor analyses, models allowing
two to nine factors were produced, and factor loadings
were examined to produce an optimal factor analysis mod-
el. In constrained factor analysis, there is no unambiguous
approach to determine F, the appropriate number of fac-
tors. Formal criteria include the Kaiser–Guttman (K–G)
criterion used in scree plots (Yeomans and Golder 1982)
(with number of eigenvalues of the correlation matrix
greater than one), cross-validation estimates of a cost or
loss function (Hastie et al. 2001), and well-known mea-
sures of model parsimony such as the Akaike information
criterion and the Bayesian information criterion (BIC),
which approximate cross-validation estimates. As the
SANN algorithm was computationally demanding, we fo-
cused on the K–G criterion and the BIC to guide selection

Table 4. Hypothesized Sources of NO2 and Particle Constituents Included in Factor Analyses of Indoor Concentrationa 

Indoor Combustion Other Indoor Sources

Smoking Cooking
Gas

Stove Candles
Resuspension /

Soil
Tap

Water

Personal Activities / 
Personal Care Products / 

Cleaning Products

NO2 7 7, 9 15
EC 3, 7, 14 14 7 16
Al 12 8 2, 5
Ca 3, 12 2, 3, 12 1, 3, 8, 10 11 3, 6
Cd 13 5
Cu 3 5, 8, 14
Fe 3, 14 4, 12 1, 3, 10
K 2, 3, 10, 14 1, 3, 10 11 3, 6
Mn 4
Ni 5
P 5, 8
Pb 3 16 3 5
S 14 3 3 11 5
Se 3
Si 3 2, 3, 6 1, 3, 8 11 5, 6
V 5
Zn 3, 14 3 16 3 3, 5

a Bold text indicates more frequent references. Numbers correspond to references as follows: 1 (Yli-Tuomi et al. 2008); 2 (Zhao et al. 2007); 3 (Zhao et al. 
2006); 4 (Larson et al. 2004); 5 (Hopke et al. 2003); 6 (Yakoleva et al. 1999); 7 (Lai et al. 2006); 8 (Koistinen et al. 2004); 9 (Lee et al. 1998); 10 (Wallace 
1996); 11 (Highsmith et al. 1992); 12 (Ozkaynak et al. 1996); 13 (Clayton et al. 1993); 14 (Brunekreef et al. 2005); 15 (Lee and Wang 2006); 16 (US 
Environmental Protection Agency 2001).
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of F, but validated the choice using cross validation on tra-
ditional factor analysis. To conduct this cross validation,
we used 20-fold cross validation, 40-fold cross validation,
and n-fold cross validation (jackknife) to estimate the aver-
age negative log-likelihood (cost), with � and  obtained
from traditional factor analysis on each iterated training
set. While we used these various statistical criteria to in-
form selection of F, we also used our judgment regarding
the physical interpretability of the factors, given differenc-
es in F determined using the BIC and K–G criteria.

LUR Modeling — Outdoor Factor Scores

For the application of LUR models to outdoor factors
(outdoor factor LUR models), as for the outdoor-concentra-
tion LUR models for NO2, EC, and PM2.5 (see LUR Model-
ing — Outdoor NO2, EC, and PM2.5, under Statistical
Methods and Data Analysis), we aimed to develop parsi-
monious and physically interpretable models. However, in
this case, we also hypothesized that significant LUR pre-
dictors would corroborate initial factor interpretations
(which included sources other than traffic). Given this aim
and lacking central site data for PM2.5 constituents, we in-
troduced covariates individually into the model, following
an approach that differs slightly from that used for NO2,
EC, and PM2.5.

For all factors, using a stepwise forward regression pro-
cess, we first included central site data, maintaining the
best fit of temporally varying PM2.5, EC, or NO2 concentra-
tions. When modeling factors rather than individual pol-
lutants, it is less obvious which temporally varying central
site pollutant (if any) would be temporally related to each
factor, but inclusion of a central site concentration and a
binary season variable allowed for a reasonable assessment
of temporal variability.

For factors hypothesized to be directly related to traffic,
we considered traffic indicators followed by other source
and population terms, and for those factors hypothesized
to be related to sources other than traffic, other source and
population terms were tested first. This sequencing reflect-
ed concerns about spatial covariance between predictors, a
desire to maximize the physical interpretability of our re-
gression models, and concerns related to our small sample
size. As this sequencing could potentially bias our selection
of LUR-model terms to explain each factor, we considered
other model-building approaches in our sensitivity analy-
ses, described below. For parsimony, we allowed only one
covariate of each type (e.g., traffic indicators, population
characteristics) and one interaction term per model.

Candidate variables for the LUR models were selected us-
ing univariate regression models predicting raw factor scores
from covariates in four categories (central site concentrations,

season, traffic indicators, and local source/population
terms). For source categories in which no covariates at-
tained statistical significance (using a generous signifi-
cance criterion of P < 0.25 in this initial screening step),
we considered the best candidate available as determined
by P value and univariate R2 value.

For the final model, we used the general form of equa-
tion (11) below, with a maximum P value of 0.25 to retain
variables prior to testing interactions. Thereafter, P values
below 0.1 were required for a covariate to be retained in
the final models, with the exception of insignificant main
source terms if they were significant in interaction terms.

(11)

where Factorijt is the loading on factor j at home i during
time t; Cambientjt is the mean concentration of PM2.5, EC,
or NO2, measured at the central site during time t, using
the best-fit pollutant for each factor j; Seasonjt is a dummy
variable for the heating or cooling season, considered sep-
arately for each factor; Trafficij represents the different
traffic indicators listed in Table 2 at location i, selected
separately for each pollutant; Population/Local sourcesijt
includes population density terms, fuel oil use, construc-
tion, and grilling or smoking near the outdoor monitor;
and Sourceijt � Modifierijt represents possible interactions
between any significant source terms (traffic or other local
sources) and meteorological or site characteristics (listed
in Table 1) that alter the association between these source
terms and factor scores.

We conducted multiple sensitivity analyses on the final
multivariate models. As in our prior LUR applications, we
were concerned about the robustness of covariate selec-
tion. We tested this robustness in two ways: (1) by replac-
ing selected traffic and source terms in each model with
other candidate covariates in the same category, and (2) by
performing random forest covariate selection using the
randomForest package in R. This latter approach is a well-
known enhancement of the CART procedure used via the
tree algorithm (described in LUR Modeling — Outdoor
NO2, EC, and PM2.5, under Statistical Methods and Data
Analysis) and represents another statistical approach for
covariate selection. As previously, due to the similarity in
findings and the desire for parsimony, we did not apply all
approaches to all models, but examine here the informa-
tion value of the random forest algorithm.
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The random forest algorithm (Breiman 2001) uses a
bootstrap approach to fitting regression trees while simul-
taneously estimating prediction error (measured as the
square of observed minus predicted). It thus generates pre-
dictions that account for nonlinearities and interactions
between covariates. Covariate importance is assessed by
permuting each covariate with respect to the outcome vari-
able and to the remaining covariates and comparing the re-
sulting prediction errors. That is, the covariate whose
importance is to be assessed is shuffled, holding the other
data fixed. Then the regression tree is traversed with the
resulting data set to obtain a different outcome prediction
with a different prediction error. If the covariate were an
important partial predictor, the loss of information result-
ing from the permutations would produce a larger predic-
tion error. We applied the random forest algorithm using
10,000 bootstrap iterations with six covariates (the approx-
imate square root of 33 total covariates) selected per boot-
strap. The random forest algorithm does not produce
interpretable models, but ranks candidate covariates by
strength of association with the outcome, and thus can cor-
roborate univariate covariate selection.

In addition, we examined the robustness of model fit
and covariate selection across seasons using interaction
terms. As in prior LUR models, we removed outliers and
tested model robustness to influential points, considering
regression models both with and without these observa-
tions. Finally, due to high correlations across covariates
and possible differences in covariate selection depending
on the model-building process, we performed backwards
elimination, to ensure that selected terms retained signifi-
cance independent of other covariates in the model.

LUR Modeling — Indoor Factor Scores

For the application of the LUR-style models to the in-
door factor scores, we followed a model-building approach
that paralleled our approach to the LUR models for the
outdoor factor scores (see the previous section, LUR Mod-
eling — Outdoor Factor Scores) and incorporated aspects
of the indoor–outdoor regression analyses (see Indoor–
Outdoor Concentration Modeling, under Statistical Meth-
ods and Data Analysis, above). For indoor concentrations,
one of the difficulties in interpreting factors is that concen-
trations reflect a combination of outdoor sources, indoor
sources, and ventilation, such that constituents may be
correlated with one another without being produced from
a common source (e.g., constituents from different indoor
activities may be elevated under low-ventilation condi-
tions). Given these complexities, we conducted our analy-
sis in two stages:

1. For our primary analysis, we performed the con-
strained factor analysis using indoor concentrations
of NO2 plus all particle constituents included in the
outdoor-concentration factor analysis, and we con-
structed GIS-based regression models to explain vari-
ability in these factors. While this approach should in
principle capture both indoor and outdoor sources, it
relies on concentrations that are a combination of
indoor and outdoor sources and may result in factors
and models that are difficult to interpret.

2. To better isolate indoor-source contributions, we
regressed the indoor pollutant concentrations individ-
ually against the corresponding outdoor concentra-
tions, modified by a categorical marker for ventilation,
the infiltration factor. The residuals from these regres-
sions were interpreted as the portions of pollutant con-
centrations attributable to indoor sources, which we
examined in a separate constrained factor analysis and
subsequent regression models.

Note that the residual factor analyses referred to in the
second point above could not be directly applied in an epi-
demiologic context (as they depend on residential outdoor
measurements, which would not be available for all mem-
bers of a cohort). However, they may inform interpretation
of indoor-concentration factor analyses and provide insight
about indoor sources. More generally, these analyses repre-
sent multiple layers of models that rely on a relatively small
data set. Given this fact, the number of candidate indoor and
outdoor sources, and the limited number of studies deter-
mining the signatures of indoor sources, we consider these
analyses to be exploratory in nature.

For each analysis, the constrained factor analysis ap-
proach was as described in Statistical Methods and Data
Analysis; in each stage, factor loadings were examined us-
ing the K–G criterion, cross validation, BIC measures of
model parsimony, and factor interpretability to arrive at
the appropriate numbers of factors. However, preliminary
examination of the concentration data for indoor constitu-
ents indicated a number of highly influential values,
which impaired the interpretation of our factor analyses.
Some of these observations may have reflected laboratory
errors, while others may have reflected true but highly in-
fluential points that would mask the overarching associa-
tions in our data. In this analysis, we had the advantage of
having indoor- and outdoor-concentration data that were
collected simultaneously, which could help us identify ob-
servations that that were not consistent with basic indoor-
concentration modeling principles (equation 1). We there-
fore regressed indoor concentrations on outdoor concen-
trations and removed influential points based on Cook’s
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distance > 4/(n � P). The updated dataset was used for the
constrained factor analyses for both constituent concentra-
tions and indoor-attributable concentration residuals.

Similarly, as was done for the factor analysis LUR mod-
els of outdoor concentrations, the factor analysis LUR-
style models of indoor concentrations were constructed
using a forward stepwise model-building process. To min-
imize spurious associations, we constrained our candidate
outdoor-source terms to those found to be significant for at
least one factor in outdoor factor analysis LUR models.
This strategy is slightly different from what we used for
our indoor LUR models of EC, NO2, and PM2.5, in which
we constrained the indoor-source indicators and allowed
the outdoor-source terms to be selected in the model. We
used this approach because we wanted to maintain consis-
tency with our outdoor factor analysis LUR models, to fa-
cilitate joint interpretation of factors, and to explore the
predictability of factors representing indoor sources.

We included central site monitoring data to adjust for
temporal variability. Questionnaire-based indoor-source
covariates were then incorporated into the model. They in-
cluded indicators for indoor combustion (i.e., cooking or
gas stove use for more than one hour per day, stovetop fry-
ing or grilling, presence of a pilot light, burning of candles
or incense, and burning of food), occupancy as a broad in-
dicator of indoor-source activity (including occupant den-
sity, number of people, and number of rooms), indoor
resuspension (i.e., sweeping, vacuuming, and dusting,
presence of carpeting, and wearing shoes indoors), and in-
door cleaning activities. Note that we considered a some-
what larger set of questionnaire-based indoor-source
covariates in this analysis than in the indoor–outdoor
analysis of EC, NO2, and PM2.5, given the somewhat ex-
ploratory nature of the indoor factor analysis and our de-
sire to examine constituent source signatures.

Candidate covariates were selected as the best-fit terms
from each source category, using Pearson correlations of
period-specific factor scores against outdoor-source terms
in four categories (long-range transport/meteorology, traf-
fic-related sources, population characteristics, and other
outdoor sources) and indoor-source terms in four catego-
ries (indoor combustion, occupancy, resuspension, and
cleaning activities). Covariates with univariate associa-
tions significant at P < 0.3 were considered as candidates
for multivariate models.

For the multivariate models, we applied a manual, for-
ward stepwise model-building process. For parsimony,
and in light of our small sample size, we allowed only one
covariate per source category and tested the modification
of both indoor and outdoor sources by the previously de-
termined proxy for ventilation (as described in LUR Mod-
eling — Indoor NO2, EC, and PM2.5, under Statistical

Methods and Data Analysis). We used a maximum P value
of 0.2 to retain covariates prior to testing for interactions.
After testing for interactions, a P value below 0.1 was re-
quired to retain each term, except for nonsignificant main
effects for covariates with significant interaction terms.

We examined the sensitivity of model results to various
permutations in our analytic methods. First, we tested
whether hypothesized source indicators explained addi-
tional variability in final models. Second, we tested the ro-
bustness of the covariate selection approach by comparing
its results to the covariates selected using random forest
methods, as was done for our outdoor factor analysis LUR
models. Third, we tested each regression model for robust-
ness to repeated measures using random effects by house-
hold. Fourth, due to high correlations across covariates
with a small sample size, we sequentially removed each
term from the final models, to ensure that all terms re-
tained significance independent of other covariates. Simi-
larly, we reversed the order of terms introduced into the
model, to ensure that the terms independently met the re-
tention criteria. Fifth, we compared the final models re-
sulting from this forward stepwise process to those
produced using backwards elimination in a stepwise pro-
cess beginning with all candidate covariates with P < 0.25,
applying the same retention criteria at each step. Finally,
we reexamined the relationships between selected covari-
ates and factor scores, to ensure that results were robust to
influential points.

EXPOSURE MISCLASSIFICATION ANALYSIS

Subsequent to the completion of our LUR models for
residential indoor NO2, PM2.5, and EC (see LUR Modeling
— Indoor NO2, EC, and PM2.5, under Statistical Methods
and Data Analysis), we wanted to quantify the implica-
tions, in terms of epidemiologic results, of using exposure-
surrogate models with varying measurement errors. We in-
cluded the LUR models we developed — which can be
considered as a validation study evaluating various expo-
sure surrogates in a multivariate context — as well as mod-
els with less explanatory power that might be applied in
the absence of validation studies, based on indicators of
traffic exposure or indoor sources. We therefore consid-
ered exposure models within three different categories:

1. Our indoor-concentration LUR models that included
terms for ambient concentrations, GIS-based traffic
indicators, indoor-source terms, and ventilation char-
acteristics (referred to below as “LUR models”).

2. Exposure models using a single indoor-source term or
traffic indicator that was used in our LUR models
(referred to below as “good exposure surrogates”).
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3. Models using traffic indicators that were poor predic-
tors of measured indoor concentrations in our study,
but that have been used previously in the literature.
This category represents those variables that could
potentially be selected in the absence of validation
data but that do not strongly predict exposure
(referred to below as “poor exposure surrogates”).

To conduct this analysis, we constructed a hypothetical
epidemiologic study linking indoor pollutant concentra-
tions and recurrent wheeze in the first year of life. We then
calculated the estimated bias and quantified the estimated
inflation of the SEs caused by the use of the various expo-
sure models and determined the power of the study to de-
tect statistically significant associations between exposure
and health.

Data-Generation Step

First, we constructed a simulated epidemiologic data set,
including exposure and health outcomes data, which was
the “data-generation” step. In this step, we used “true” in-
door concentrations to estimate health outcomes derived
from “true” odds ratios (ORs). We then constructed an epi-
demiologic data set that included variables that could be
used to predict indoor concentrations at all homes in the ab-
sence of measured concentrations. Because neither the true
indoor concentrations nor the true ORs could be ascertained
from empirical data, a simulation approach was necessary.

We assumed that the structure of this simulated epide-
miologic study was similar to that of the ACCESS cohort
study, with air pollution measurements collected for 1
week for a subset of participants in order to develop expo-
sure models for all participants. The simulated study,
therefore, followed a main study/validation study design,
in which the main study included health outcome, ques-
tionnaire information, and GIS information for all partici-
pants, and the validation study included a subset of those
participants whose homes were measured for concentra-
tions of indoor pollutants.

To develop this simulated epidemiologic data set, we
first sampled with replacement from the 193 ACCESS
homes with complete data at the time of our analysis, to
create 4500 simulated data sets consisting of 1000 homes
each (the target sample size for the ACCESS cohort study).
The participant data included all terms used in potential
exposure models. For each of these homes, we applied our
LUR models to each week of the baby’s first year of life, to
estimate indoor concentrations of pollutants, accounting
for changing ambient concentrations, seasonal differences
in ventilation characteristics, and other key covariates. As
our LUR models only explained a portion of between-
home variability in measured concentrations, we added

normally distributed random variation with mean zero
and standard deviation equal to the square root of the re-
sidual variance from our LUR models. These modeled con-
centrations were considered to be the “true” exposures in
these homes — the gold standard — that our various expo-
sure-surrogate models were intended to estimate.

Within each data set, we also used our LUR models to
generate 1-week average indoor pollutant concentrations
for a subset of 53 participants, representing the simulated
validation studies. This structure was necessary for subse-
quent investigation of alternative exposure models, and
conformed to the actual sampling duration and number of
air pollution sampling sessions with complete data in our
study. We generated simulated concentrations (i.e., we per-
formed model-based resampling) to conform to the as-
sumption that the validation study was a subset of the
main study. Normally distributed random variation was
added to these simulated concentrations as described
above.

We then needed to simulate health outcomes for each
participant and data set, given simulated indoor concen-
trations. We focused on recurrent wheeze in the first year
of life, an outcome of interest for the ACCESS cohort study
and other similar investigations. The probability of recur-
rent wheeze can be characterized by equation (12).

(12)

where Pi is the probability of recurrent wheeze in the first
year of life for subject i; �0 is the baseline risk of recurrent
wheeze, which we initially assumed to be 11.5% (Marbury
et al. 1996); �x is the coefficient corresponding to reported
ORs for the pollutant in question; and  is the
average indoor concentration of NO2, PM2.5, or EC during
the first year of life. We considered ORs of 1.05, 1.50, and
2.00 per interquartile range (75th–25th percentiles)
increase in indoor NO2, PM2.5, or EC concentrations, con-
sistent with the literature (Brauer et al. 2002; Belanger et
al. 2003; Ryan et al. 2005).

Using the gold standard indoor concentrations in the
first year of life and equation (12), we randomly assigned a
binary outcome to each participant. This approach as-
sumed that there were no other factors affecting the health
outcome. We made this assumption for simplicity, to avoid
having to posit distributions for other variables and associ-
ations of those variables with health outcomes, as well as
to maintain our focus on the impact of the various the air
pollution exposure estimates.
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Simulation of Epidemiologic Findings

The “data-generation” phase of the analysis resulted in
4500 simulated data sets consisting of 1000 children each.
We assigned each child a health outcome (wheeze yes or
no) and an exposure from each of the different surrogate
exposure models (including the gold standard). Although
the health outcomes were generated using “true” expo-
sures, these were simulated and, in reality, this informa-
tion would not be available to investigators. Actual studies
would need to rely on a variety of different surrogate expo-
sure models — exemplified by our LUR models, good ex-
posure surrogates, and poor exposure surrogates. Note
that, rather than using individual exposure surrogates di-
rectly, we produced predicted levels of specific pollutants
in each case, so that the health estimates derived from
good or poor exposure surrogates were on a comparable
scale to those estimated with our LUR models.

Thus, the exposure misclassification analysis involved
the following: (1) using the generated 1-week average in-
door-pollutant concentrations in the simulated validation
studies to fit the different surrogate exposure models; (2)
using each fitted-model relationship to predict indoor con-
centrations in the first year of life for all study participants;
and (3) regressing the predicted indoor concentrations de-
rived from each exposure model on the binary health out-
comes. In step 1, we fit the exposure model using the
simulated validation data. For the LUR models, we used
the regression model structures defined in LUR Modeling
— Indoor NO2, EC, and PM2.5, under Statistical Methods
and Data Analysis. The exposure models for good expo-
sure surrogates and poor exposure surrogates were fit as

(13)

where, for each pollutant, Cinwi and Cambientwi are the
1-week average indoor and ambient concentrations,
respectively, from the validation study; �0, � 1, and �2 are
the regression coefficients; Si is one of the exposure surro-
gates; and the � term accounts for random error.

In step 2, we used these exposure models to predict the
indoor pollutant concentrations for each subject in his or
her first year of life. Carrying out this procedure for each
surrogate exposure model gives us a different predicted in-
door concentration for each subject from each model. Fi-
nally, we used logistic regression to associate the binary
health outcomes with the predicted indoor concentrations,
providing an estimated health effect coefficient and SE for
each OR and data set.

To assess the simulation results, we quantified the over-
all bias in the health effects estimates as the mean of the

estimated health effect coefficients (across the 4500 simu-
lated data sets) minus the true health effect coefficient
(corresponding to ORs of 1.05, 1.50, and 2.00). We estimat-
ed the SE for each of the 4500 individual bias estimates to
determine whether the estimated bias is significantly dif-
ferent from zero in each case. In addition, we used the esti-
mated median SE (as opposed to the mean, given skewed
distributions) to compare the SE of each surrogate expo-
sure model to that of the gold standard. The estimated root
mean square error (RMSE) was also calculated as shown in
equation (14), to quantify the accuracy of the estimated co-
efficients:

(14)

where n = the number of simulated data sets;  = the
estimated health effect coefficient for simulation s; and

= the true health effect coefficient (corresponding to
an OR of 1.05, 1.50, or 2.00). A 95% confidence interval
was then calculated for each , and the proportion of
those simulations with significant positive associations
was tabulated. Finally, to examine the robustness of our
simulations, the models’ coverage probabilities — the pro-
portion of simulations for which the 95% confidence
interval contained — were calculated.

We tested the sensitivity of our conclusions by rerun-
ning the analyses with baseline risks of twice and half the
original assumption of 11.5% (i.e., for wheeze in the first
year of life). In addition, we conducted a sensitivity analy-
sis on the additional residual variability we originally in-
corporated when generating the indoor pollutant
concentrations in the first year of life. This variability, de-
fined with a standard deviation equal to the square root of
the residual variance from our LUR models, may have
been overestimated in that it was based on the model re-
siduals from the weekly concentrations, which theoretical-
ly included both temporal and spatial variability.
However, the temporal variability should have been re-
duced when the validation study models were applied to
predict yearly, rather than weekly, concentrations. Thus,
we ran the analyses with this variability reduced by half.
We also ran the simulations using a true OR of 1.00, to de-
termine whether the proportion of significant positive as-
sociations was approximately 2.5%, as would be
anticipated under a two-sided test with a significance level
of 5%.

As a final step, we derived the approximate relationship
between the statistical power of our simulated study using
the true exposure (i.e., the gold standard, X) and its power us-
ing a surrogate measure of exposure (W) from an alternative

C C Sin ambient iwi wi
= × ×� � � �0 1 2 +  +  + 

RMSE
n X Xs

s

n

= −( )
=
∑1

1

2

� �̂

�̂Xs

�̂X

�̂Xs

�X
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model. Using a one-sided test, the power to detect a signif-
icant positive association based on a surrogate model giv-
en the power of the true exposure model is

(15)

where � is the normal cumulative distribution function; R2

is the coefficient of determination from the fitted exposure
model; and c is the critical value under the normal distribu-
tion function (1.64 for a one-sided test with a significance
level of 5%, and 1.96 for 2.5%). The derivation of this equa-
tion is in Appendix G (available on the HEI Web site).

RESULTS

PARTICIPANT CHARACTERISTICS

In total, sampling occurred at 44 sites. One site provided
only outdoor measurements, 5 sites provided only indoor
measurements, and the remaining 38 sites provided both
indoor and outdoor measurements (Figure 2). Logistical
considerations (e.g., lack of access to electricity) precluded
the collection of outdoor measurements at 5 sites; and the 1
site lacking indoor measurements was included to increase
outdoor spatial coverage of the study and the availability of
duplicate samples. We collected questionnaire data at all 43
sites for which we had indoor measurements. Note that all
subsequent discussion about participant characteristics in
this report focuses on these 43 homes, which were distribut-
ed among 39 households; participants in 4 of the house-
holds moved and allowed us to sample in their new home.

Across the sampling sites, a total of 67 sampling sessions
were conducted, with 23 homes monitored in both seasons,
16 in the cooling season only, and 5 in the heating season
only. Within these 67 sampling sessions, a total of 98 measure-
ments were collected (Figure 2), with 37 sessions including

only one 3-to-4-day measurement, 29 sessions including
two 3-to-4-day measurements, and 1 session including
three 3-to-4-day measurements. Because of our multiday
sampling strategy, none of the 98 measurements were
weekend only, but 39 were weekday only.

As indicated in Figure 3, our approach for selecting par-
ticipants successfully yielded both variability in proximity
to roadways (measured by kernel-weighted traffic volume
within 100 m of the home) and coverage across neighbor-
hoods. Although the study included a disproportionate
representation of cohort members in some neighborhoods,
such as East Boston (see Figure 1), variability in exposure
and spatial coverage was enhanced by the inclusion of a
convenience sample of noncohort participants. In general,
the traffic exposure was at the lower end of values across the
surface generated for the entire Boston area, although the
higher values were generally found near major highways
where relatively few residences are found (Figure 3).

The distributions of basic home characteristics for all sites,
for cohort and noncohort members, are summarized in
Table 5. Of the 43 homes with indoor measurements, 25 (58%)
were homes of cohort members, and 18 (42%) were not. The
age and type of home are similar for both groups, with pre-
dominantly older multifamily housing. The noncohort mem-
bers have slightly larger apartments, but the mean number of
rooms (fewer than 5 rooms) remains relatively small.

SUMMARY STATISTICS — OUTDOORS

In total, across 44 sampling locations, we conducted 67
sampling sessions consisting of 98 multiday segments, of
which 90 contained at least 1 outdoor measurement (Fig-
ure 2). Because of laboratory errors and filter losses during
the analysis phase, our maximum sample size for data on
the constituents of outdoor PM2.5 was 79.

For these outdoor samples, there were 33 pollutants
with both hypothesized links to sources of interest and at

Power R Power c cW X≈ +⎡⎣ ⎤⎦−
−

� �( ( ) )2 1

Figure 2. Distribution of samples by site, session, and season.
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Figure 3. 100-m kernel-weighted traffic scores for sampled homes and the Boston urban area (vehicle-meters/m2/day). Darker shading indicates higher
traffic density. The triangle represents the central site monitor in Roxbury, Massachusetts.

Table 5. Distributions of Basic Home Characteristics for All Participants, Cohort Members, and Noncohort Members

Total 
(N = 43)

Cohort Members
(n = 25)

Noncohort Members
(n = 18)

Categorical variables (%)
Type of housing

Single-family home 5 4 6
Multifamily home 56 60 50
Apartment building 39 36 44

Year built
Before 1900 20 16 27
1900–1949 56 52 61
1950–1969 12 16 6
1970–later 12 16 6

Continuous variable (mean [SD])
Number of rooms 4.2 (1.7) 3.7 (1.2) 4.8 (2.1)
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least 60% of observed values above the method LOD for
this study (at least three times the analytical SE); these
were used in our subsequent factor analyses. These 33 pol-
lutants include NO2 and EC (measured by reflectance),
23 particle constituents measured by ICP–MS analysis,
and 8 elements measured by XRF (all but 2 of which were
also measured by ICP–MS). This implies 27 distinct pol-
lutants, though ICP–MS and XRF may not yield identical

information, so all 33 are retained. The concentrations of
the constituents included in factor analyses, along with to-
tal PM2.5, are summarized in Table 6. Significant variabili-
ty was observed across all included constituents.

It should be noted that the sample size differed slightly
by constituent. For the ICP–MS analysis, portions of two
sample batches were affected by laboratory errors, and a
subset of elements from those batches was unreportable.

Table 6. Summary of Outdoor Concentrations, with Percent Above Analytic LODa for Constituent Measures

n Mean Median SD Minimum Maximum % > LOD

PM2.5 (µg/m3) 83 13.76 12.44 5.27 6.07 31.25 100
EC (m�1 � 10�5) 79 0.63 0.58 0.438 0.084 3.81 100
NO2 (ppb) 61 17.59 15.82 7.34 5.21 39.93 100

Constituents Measured by ICP–MS (µg/m3)
Al 69 0.011 5.00 � 10�3 0.014 �7.47 � 10�4 0.069 60
As 78 3.17 � 10�4 2.56 � 10�4 2.49 � 10�4 1.46 � 10�5 1.22 � 10�3 70
Ba 63 0.024 1.69 � 10�3 0.049 8.15 � 10�5 0.196 89
Ca 79 0.067 0.0294 0.162 �0.061 1.32 62

Cd 79 5.64 � 10�5 3.92 � 10�5 5.34 � 10�5 5.34 � 10�5 2.80 � 10�6 95
Ce 79 1.31 � 10�5 7.32 � 10�6 3.16 � 10�5 7.0 � 10�8 2.81 � 10�4 96 
Cr 78 1.56 � 10�4 1.06 � 10�4 3.65 � 10�4 3.88 � 10�6 3.29 � 10�3 93
Cu 79 9.97 � 10�4 8.35 � 10�4 9.43 � 10�4 9.09 � 10�6 7.61 � 10�3 96 

Fe 79 0.011 9.05 � 10�3 7.56 � 10�3 4.22 � 10�4 0.037 99 
K 73 0.061 0.039 0.069 3.14 � 10�3 0.411 84
La 79 1.15 � 10�5 7.76 � 10�6 1.73 � 10�5 4.0 � 10�8 1.52 � 10�4 96 
Mg 79 8.13 � 10�3 6.43 � 10�3 6.42 � 10�3 1.02 � 10�3 0.042 92 

Mn 79 6.86 � 10�4 5.43 � 10�4 8.06 � 10�4 5.44 � 10�5 6.60 � 10�3 99 
Mo 79 1.13 � 10�4 8.98 � 10�5 1.02 � 10�4 4.07 � 10�6 6.77 � 10�4 88 
Ni 79 1.16 � 10�3 9.81 � 10�4 8.73 � 10�4 1.81 � 10�5 4.66 � 10�3 96 
P 79 3.82 � 10�3 3.12 � 10�3 2.64 � 10�3 �1.76 � 10�4 0.015 98 

Pb 79 7.63 � 10�4 5.80 � 10�4 6.15 � 10�4 1.81 � 10�5 2.99 � 10�3 98 
S 79 0.994 0.782 0.811 0.047 5.49 99 
Sb 79 2.39 � 10�4 1.98 � 10�4 1.64 � 10�4 1.37 � 10�5 8.17 � 10�4 100
Se 79 3.73 � 10�4 3.05 � 10�4 3.58 � 10�4 �7.00 � 10�6 2.12 � 10�3 73 

Sr 67 6.36 � 10�4 2.23 � 10�4 1.04 � 10�3 �1.75 � 10�4 6.87 � 10�3 64
Tl 79 6.50 � 10�6 5.09 � 10�6 8.30 � 10�6 �3.0 � 10�7 6.96 � 10�5 99
V 79 2.72 � 10�3 2.10 � 10�3 2.06 � 10�3 1.21 � 10�4 0.011 100

Constituents Measured by XRF (µg/m3):
Ca 79 0.029 0.025 0.016 0.010 0.113 99
Fe 79 0.066 0.065 0.024 0.015 0.123 98
K 79 0.055 0.046 0.051 8.48 � 10�3 0.446 100
P 79 0.065 0.054 0.048 1.50 � 10�3 0.397 99

S 79 1.46 1.26 1.30 0.063 11.26 100
Si 78 0.051 0.036 0.065 8.89 � 10�3 0.549 74
V 79 5.09 � 10�3 3.60 � 10�3 5.04 � 10�3 1.08 � 10�3 0.038 98
Zn 79 0.014 0.011 0.017 4.08 � 10�3 0.152 98

a 3 times the laboratory-based concentration uncertainties.
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Among the constituents included in our factor analyses,
this problem most significantly influenced samples sizes
for Al, Ba, Sr, and K. For the XRF analysis, one implausibly
large value was removed for Si, but no other data were un-
reportable. One batch of NO2 samples did not meet our
data quality criteria, and the results for that batch were not
reported.

As a measure of quality assurance for the constituent
measurements included in Table 6, we examined the mean
relative difference for duplicate samples. For this analysis,
we included both indoor and outdoor samples, to increase
the sample size. Because of budgetary constraints, the
number of duplicate samples was smaller for the ICP–MS
analysis than for the XRF analysis, so the mean relative dif-
ferences for those constituents analyzed by ICP–MS are
correspondingly more uncertain. As indicated in Table 7,
the mean relative difference varied by constituent but was
generally on the order of 10% to 30%, indicating reason-
able quality assurance.

Strong correlations were observed across a number of
outdoor constituents, suggesting possible common sources
(Table 8). For example, EC was most strongly correlated
with S, P, and Ca, all of which are characteristic of lubricat-
ing oil from diesel vehicles (Spencer et al. 2006). Sulfur
was also highly correlated with Se, generally indicative of
a coal signature (Table 3). Additional strong correlations
included Al and Ba, generally related to road dust and oth-
er traffic contributions; Ni and V, a fuel oil signal; and K,
Sr, and Cu.

For elements analyzed by both XRF and ICP–MS, corre-
lations between the two measures varied. Ca and Fe were
relatively weakly correlated (r = 0.08 and 0.49, respective-
ly) (Table 8). For K, S, and V, the correlations between XRF
and ICP–MS were higher (r = 0.73, 0.92, and 0.71, respec-
tively), possibly because these elements are typically
found as water-soluble species.

LUR MODELS FOR OUTDOOR EC, PM2.5, AND NO2

We found, upon examining Anderson-Darling statistics,
that PM2.5 and EC concentrations were lognormally distrib-
uted and were therefore transformed prior to covariate selec-
tion (P = 0.11 and 0.25, respectively, after log-transformation,
compared to 0.005 and 0.04 prior to log-transformation). In
contrast, NO2 values were normally distributed and not
transformed (P > 0.25 without transformation).

Outdoor PM2.5 was highly correlated with central site
PM2.5 (R2 = 0.68 in log–log regression), as illustrated in
Appendix A, indicating a predominance of temporal vari-
ability and relative spatial homogeneity in PM2.5 across
the urban area. In multivariate regressions that included

Table 7. Mean Relative Difference for Duplicate Samples 
of Total PM2.5, NO2, and Constituents Included in 
Factor Analyses

Mean Relative 
Difference (%)

PM2.5 13
EC 24
NO2 22
Al 55
As 18

Ba 31
Ca 40
Cd 20
Ce 16
Cr 38

Cu 41
Fe 28
K 34
La 20
Mg 28

Mn 16
Mo 34
Ni 30
P 28
Pb 29

S 17
Sb 24
Se 32
Sr 31
Tl 11

V 24
Ca-XRF 26
Fe-XRF 28
K-XRF 12
P-XRF 14

S-XRF 4
Si-XRF 24
V-XRF 27
Zn-XRF 17
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central site data, the best traffic indicator was total road-
way length within 100 m of the home, which retained sta-
tistical significance in multivariate models (Table 9). Final
multivariate model results indicate that the traffic–PM2.5
relationship was not significantly altered by any of our
candidate modifiers. Other combustion sources (smoking
or grilling) and population density significantly contribut-
ed to concentrations (overall R2 = 0.76).

EC showed relatively poor associations with central site
data overall (Appendix A), though this was partly attribut-
able to seasonal differences in the relationship, with vary-
ing slopes and stronger correlations during the cooling
season (Spearman r = 0.66) than the heating season (r =
0.37). In the final multivariate model (R2 = 0.52), EC was
best predicted by total roadway length within 200 m of the
home, and the association between EC and traffic was in-
creased under low-wind-speed conditions (Table 9). Dur-
ing the cooling season, residential EC concentrations were
somewhat lower and displayed stronger associations with

central site data. Approximately 30% of the variability in
EC was explained by temporal terms, and 14% by the traffic
term (spatial component). The interaction of traffic with
hours of low wind speed, which incorporated both spatial
and temporal variance, accounted for an additional 8%.

NO2 was weakly associated with central site concentra-
tions (R2 = 0.21) (Table 9), suggesting significant spatial
heterogeneity within urban residential areas (Appendix
A). The final multivariate model (R2 = 0.56) included total
roadway length within 50 m of the home, significantly at-
tenuated by an obstruction (e.g., a building) between the
monitor and nearest major road (Table 9). Season had a sig-
nificant effect, beyond the effects captured by central site
monitoring data, and concentrations were positively asso-
ciated with population density (Table 9). Spatial terms
(traffic, obstruction between the monitor and nearest major
road, and population density) together accounted for ap-
proximately 23% of NO2 variability. Temporal terms (cen-
tral site concentration, season) accounted for about 33% of
NO2 variability.

Table 9. Multivariate LUR Model Results for Outdoor PM2.5, EC, and NO2 

ln(PM2.5) (µg/m3) ln(EC) (m�1 � 10�5) NO2 (ppb)

Predictor 
Type Model 

 � 
(P Value)

 Sequential 
R2 Model

�
(P Value) 

Sequential 
R2 Model

� 
(P Value)

Sequential 
R2

Intercept 0.205
(0.32)

— �0.907
(< 0.0001)

—  �12.50
(0.009)

—

Central site 
concen-
tration

ln(Central 
Site
[PM2.5])

0.776
(< 0.0001)

0.68 ln(Central
site [EC])

0.103
(0.59)

0.03 Central
site (NO2)

 1.06 
(< 0.0001)

0.21

ln(Central
site [EC])
� cooling 
season

0.82
(0.004)

0.26

Traffic
indicator

Roadway
length 
(100 m)

1.48 � 10�4

(0.02)
0.70 Roadway

length 
(200 m)

1.10 � 10�4 
(0.01)

0.40 Roadway
length
(50 m) 

 0.0144
(0.002)

0.22

Traffic
indicator 
� modifier

N/A N/A N/A Roadway
length
(200 m)
� % 
hours 
with still
winds

4.38 � 10�4 
(0.02)

0.48 Roadway
length
(50 m) � 
monitor 
obstructed
from 
nearest 
major road

 �0.0094
 (0.005)

0.31

Other 
sources / 
land use 

Smoking 
or grilling 

0.156
(0.01)

0.73 Cooling 
season

�0.268
(0.057)

0.52 Cooling 
season

 4.93
(0.001)

0.44

Population 
density

9.24 � 10�6

(0.01)
0.76 Population

density
4.01 � 10�4 

(0.001)
0.56
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A one-at-a-time exclusion cross validation was per-
formed to assess the internal consistency of model results.
The Spearman correlation between estimated and measured
log PM2.5 was 0.80, 0.66 for log EC, and 0.66 for NO2 (P <
0.0001 in all cases), indicating acceptable internal validity.

Because we had many candidate covariates and a rela-
tively small sample size, we conducted a range of sensitiv-
ity analyses in which we considered the following factors:
alternative traffic indicators, central site monitoring data,
site-specific monitors, and other model decisions. The re-
sults of these sensitivity analyses are described below.

Selection of Traffic Indicators

Sensitivity analyses (Appendix B) indicated that other
traffic indicators could not be substituted to create a com-
parable model for PM2.5. For EC, diesel-based measures
derived from our traffic counter could explain slightly
more variability, with R2 values of approximately 0.54, but
were available for only a subset of locations (n = 34) and
were therefore not considered for the primary model. For
the full sample, no indicator was exchangeable with road-
way length within 200 m of the home. In addition, the in-
teraction term of traffic modified by low wind speeds
remained significant in several cases in which the main ef-
fect of traffic did not maintain significance. For NO2, sen-
sitivity tests supported the finding that shorter buffer
lengths were most effective at predicting variability in
NO2. The use of longer buffer lengths did not result in a
comparable model, but kernel-weighted traffic density
within 50 m of the home could be substituted effectively
for total roadway length within 50 m of the home, as could
unweighted cumulative traffic density within 100 m of the
home. Similar to EC, a diesel-based term provided slightly
greater explanatory power for NO2, but it was not available
for the full sample.

Accuracy of Traffic Data

To validate raster-based traffic indicators, we considered
base cell sizes from 10-to-50-m square. We found that base
cells in this size range, as compared to the default 25-m
square cell size, had little influence on traffic indicator val-
ues. Because of concerns about data quality, where possi-
ble we verified MHD traffic counts against traffic data
obtained from the Massachusetts Executive Office of Trans-
portation, the ESRI Business Analyst (ESRI; Redlands, CA),
and the traffic counts we collected on the largest road with-
in 100 m of each home (using the JAMAR TRAX I device).
Correlations across traffic metrics derived from the differ-
ent sources were generally above 0.7.

Selection of the Central Site Monitor

We considered several alternatives to the use of the Rox-
bury central site monitor concentrations for temporal cor-
rection, including using other available urban monitors
individually, the average concentration from all urban
monitors available for each sampling period, and the mean
concentration at a background monitor 10 miles south of
the Roxbury central site monitor (available for summer
months only). Given the size of our domain and the small
number of central site monitors with hourly concentration
data located within the domain, a kriged surface was not
feasible. No alternative to the Roxbury central site sam-
pling period mean explained greater variability in concen-
trations or significantly altered traffic–pollution
relationships in multivariate models. As indicated in Ap-
pendix A, correlations among urban central site monitors
were generally high, with the exception of monitors placed
in nonrepresentative locations.

Selection of Meteorological and Site-Specific Modifiers 
for EC and NO2

All EC models showed a significant, positive effect of
low wind speeds on the traffic–pollution relationship.
Sensitivity analyses indicated that other wind variables
(mean daytime wind speed, percent of day downwind
from road) were significant and could be substituted for
percent of low wind speed hours, losing only marginal ex-
planatory power (R2 = 0.52 and 0.49, respectively). These
similar findings for wind speed and direction could be ex-
pected, as wind speed and direction at our central site
were highly correlated, with higher wind speeds from the
west (data not shown).

For NO2, no modifier could replace the term of obstruc-
tion between the monitor and nearest major road in the fi-
nal model. Because the presence of an obstruction could
theoretically proxy for distance to the nearest major road,
we replaced the term with distance to the nearest major
road, but we found highly nonsignificant results, indicat-
ing that obstruction does not likely serve as a proxy for dis-
tance in this data set.

Exploration of Log-Transformation of PM2.5 and EC Data

The selection of the 100-m roadway length term and other
predictors for the PM2.5 model was not dependent on log-
transformation. Using untransformed PM2.5 data, we
achieved an R2 value of 0.73, and all predictors retained sig-
nificance. For untransformed EC data, the traffic term of total
roadway length within 200 m of the home and all other pre-
dictors retained significance, with an R2 value of 0.51.
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Inclusion of a Categorical Variable for Season

Because the season term might have been extraneous in
models including central site monitoring data, thereby
producing models that might have been difficult to inter-
pret, we explored the effect of removing season from the fi-
nal EC and NO2 models. For EC, removing the season term
caused the central site monitor coefficient to drop by half
and to no longer be significant, while the effect of low
wind speed increased by almost 50%, and overall model
fit declined. Because overall explanatory power was re-
duced when the season term was removed, and because of
known seasonal differences in the relationship between
our reflectance measures and central site aethalometer da-
ta, we opted to retain both the season covariate and season-
specific coefficients in the final model.

For NO2, dropping the season term decreased the effect
of the central site monitor by approximately 50%, but did
not affect overall model fit or other parameters. Thus, al-
though NO2 was higher at the study residences during the
cooling season, the effect was captured in part by the cen-
tral site monitor; because the term did not significantly al-
ter other parameters, we opted to leave it in the final
model. Finally, we tested the addition of a season term to
the PM2.5 model and found no effect on the central site
monitor term or overall fit, although the influence of other
combustion sources (i.e., smoking or grilling) was in-
creased by approximately 35%, indicating possible sea-
sonal differences in these source activities. Because traffic
was the source of primary interest, however, and because
the season term did not improve overall fit or alter the ob-
served influence of traffic, we opted to maintain the origi-
nal, more parsimonious PM2.5 model.

Robustness to Within-Site Autocorrelation

Because many homes were monitored during two sea-
sons, we examined the effect of within-site autocorrelation
using random effects by household. Autocorrelation by
site did not influence model fit or parameter estimates for
any model for all pollutants.

Robustness to Outlier Inclusion or Exclusion

For PM2.5, our examination of scatterplots and distribu-
tions led us to remove three observations that reflected
likely measurement error or nonrepresentative data. In
one of these cases, the pump was unplugged within 30
minutes of monitor deployment. In the other two cases,
ADT was quite high given close proximity to a major high-
way. These observations were also removed for EC, along
with one very high EC outlier and one observation with
extremely high wind speeds (given the potential influence
of wind speed on local source contributions). The two

very-high-traffic sites and the high-wind-speed observa-
tion were also removed for NO2. In all cases, inclusion of
these outliers and influential points did not have a materi-
al influence on our findings, with all covariates retaining
significance and directionality.

CONSTRAINED FACTOR ANALYSIS FOR OUTDOOR 
CONCENTRATIONS

Comparing across models with varying numbers of fac-
tors (F), the BIC was minimized with F = 2 (with a local
minimum at F = 5), while F = 8 was optimal by the K–G cri-
terion. The cross-validation cost function was minimized
at F = 3. We selected a five-factor model as a reasonable
compromise among these various approaches, offering rea-
sonably good physical interpretability of the factors. We
evaluated interpretability by examining the consistency
between factor interpretations and the hypothesized
sources in Table 3, and we examined Pearson correlations
among factors, measured concentrations, and source indi-
cators. The five-factor model yielded the loading matrix
shown in Figure 4, with darker shading representing high-
er factor loadings. Constituents with the “XRF” suffix are
from XRF analyses; others are from ICP–MS.

As depicted in Figure 4, more constituents loaded
strongly onto Factor 1 than onto any other factors, includ-
ing S and Se, which are associated elsewhere with power
plant emissions (Table 3). Other constituents with high
loadings on Factor 1 are not directly associated with power
plant emissions, but reflect industrial sources not found
within urban Boston (e.g., iron and lead as potential mark-
ers of steel manufacturing) as well as traffic. These obser-
vations would seem to indicate a factor that corresponds
with higher total PM2.5, potentially driven by meteorologi-
cal conditions or long-range transport. Given the large
number of constituents, including constituents with few
known sources close to our monitoring region, we inter-
preted Factor 1 as long-range transport.

Factor 2 was dominated by Cu, Sr, K, and Sb, with small
but positive NO2 loading. As indicated in Table 3, many of
these constituents are associated with vehicular brake or
tire wear, while NO2 may indicate local combustion sourc-
es, including motor vehicles. Thus, we hypothesized that
this factor was brake wear and local traffic.

Factor 3 shows heaviest loadings for EC, Ca, S, and P. As
mentioned earlier, this combination is commonly associat-
ed with lubricating oil from diesel exhaust, while EC itself
has been more broadly associated with diesel combustion.
We therefore interpreted this factor as diesel exhaust.

Ni and V, common fuel oil combustion markers, load
heavily on Factor 4. Finally, Al, Ca, Cd, Mn, and Tl load
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strongly on Factor 5. Many of these constituents have been
associated with soil and road dust resuspension (Table 3).

Mean factor scores by location are presented in Figure 5.
These maps emphasize that spatial patterns differ some-
what across the factors, although the values in these fig-
ures are not adjusted a priori for meteorology and other
temporally varying terms.

To evaluate the robustness of our factor interpretations,
in light of the complexities associated with samples that

vary over both space and time, we conducted an identical
constrained factor analysis on a separate set of PM2.5 filters
collected over time at one location within a single season
(see Additional Air Pollution Sampling, under Methods
and Study Design). Results from this analysis generally
corroborated the structure and interpretation of our prima-
ry factor analysis, while pointing out uncertainties associ-
ated with the interpretation of our brake wear and road
dust terms (Appendix C).

Figure 4. Factor loading matrix for outdoor concentrations using a five-factor model. Pollutants and particle constituents are sorted by their position in
a hierarchical clustering dendrogram, to optimize visual interpretation by placing correlated constituents together.
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Figure 5. Distribution across sampled sites of site-averaged outdoor-concentration factor scores.
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LUR MODELS FOR OUTDOOR LATENT VARIABLES

Univariate associations between raw factor loadings for
outdoor concentrations and candidate source terms in four
categories are presented in Table 10. Factors 1 and 4 (inter-
preted as long-range transport and fuel oil combustion)
demonstrated the most significant associations with cen-
tral site monitors and season of measurement, with Factor
1 showing higher values in the cooling season and Factor 4
showing higher values in the heating season. Factor 2 was
significantly, but negatively, associated with central site
NO2; given that we could not interpret this term, we did
not consider it going forward.

Different candidate traffic terms were optimal across the
five factors, with generally modest associations in univariate
comparisons. Multiple additional local sources or popula-
tion terms had univariate P values of less than 0.25 and were
considered as candidate variables in our multivariate mod-
els, with the recognition that some significant univariate
terms may serve as proxies for other sources or represent
spurious correlations if they are not adjusted for other terms.

Results of our forward stepwise modeling process are
summarized in Table 11, with sequential R2 values from
each step indicating the marginal explanatory power of
each new term included. The multivariate LUR models
largely supported our hypothesized factor interpretations.
Factor 1 (long-range transport) was strongly predicted by
central site PM2.5 and season, producing the best fit of any
of our models (R2 = 0.69) and also the strongest relation-
ship with central site monitoring data. Other candidate
terms did not retain significance or improve model fit, sug-
gesting little local-source impact.

In contrast, Factor 2 (brake wear and local traffic) re-
tained no central site monitoring terms in the multivariate
model. Local roadway length weighted by wind direction
was moderately predictive and was more influential dur-
ing the cooling season. In addition, an inverse relationship
was observed with high-density residential land use.

Factor 3 (diesel exhaust) was positively associated with
central site PM2.5 and was higher during the heating sea-
son, and additional variability was explained by the per-
centage of diesel traffic on the nearest major road, an effect
modified by monitor height (the building floor from which
the outdoor sampler was mounted).

Factor 4 (fuel oil combustion) was predicted by central
site NO2 (a strong marker for heating season and tempera-
ture) and population density within 200 m of the home,
with population density exerting a greater effect under
low-wind conditions, suggesting influential local sources.
Residential fuel oil use was not significant in the final
model, but was highly correlated with population density;
therefore, we would not expect to retain both in multivari-
ate models.

Factor 5 (road dust and resuspension) was positively as-
sociated with the heating season and with high-density
residential land use, an effect modified by an obstruction
(e.g., a building) between the monitor and nearest road.

Sensitivity Analyses

The robustness of final covariate selection for the outdoor
factor analysis LUR models in Table 11 was examined by re-
placing traffic and source covariates in each model with can-
didate terms from each category in Table 10. In no case did
other indicators improve significance or overall model fit.

For all factors, the random forest algorithm indicated
that the covariates previously selected to predict each fac-
tor were informative. Most deviations in our models, rela-
tive to factor rankings from the random forest algorithm,
were due to our model-building approach, which was de-
liberately constrained to preserve power and interpretabil-
ity. For example, for the first factor (long-range transport),
central site PM2.5 and EC were the two most informative
predictors indicated by the random forest algorithm,
though our model-building criteria led us to include only
one best central site term (PM2.5) in our model. The ran-
dom forest algorithm is insensitive to multicollinearity, so
both PM2.5 and EC (which were significantly positively cor-
related with one another) were selected by the random forest
but would not both be included in an interpretable regres-
sion model. Similarly, for all other factors, all significant
model terms were among the 10 most important terms indi-
cated by the random forest algorithm. Note that while the
random forest algorithm selects the “optimal” predictors,
providing a robust indication of variable importance, our
simpler LUR approach yields more interpretable models.

Prior to constructing our primary regression models (Ta-
ble 11), we removed a small number of influential points
(one observation was removed from the models for Factors
2, 3, and 5; no observations were removed for Factors 1
and 4). All model coefficients were statistically significant
with inclusion of these influential points. In addition, after
reviewing plots of factor scores against selected covariates,
we tested the effect of removing additional outliers and po-
tential influential points. For Factors 1, 3, and 5, no clear
outliers were observed. Factor 4 had one outlier, but re-
moving it did not affect model fit. Factor 2 (brake wear and
local traffic) contained a cluster of high concentrations in
one neighborhood; because these scores may have been
driven by a unique local source not captured in our data,
we tested the effect of their removal. The traffic term
weighted by wind direction retained significance, though
its interaction by season did not, likely because the six
high observations that were removed were all cooling sea-
son values, thus reducing between-season variability.
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Table 10. Candidate Variables for Outdoor Factor Analysis LUR Models, by Univariate Association with Raw Factor 
Scores, Adjusted for Repeated Measures by Householda 

Factor: Interpretation / 
Covariate Type Variable(s)

Univariate
Coefficient

Univariate
(P Value)

Univariate
r2

Factor 1: Long Range Transport
Central site PM2.5 (µg/m3)

NO2 (ppb)
EC (µg/m3)

0.130
29.1
1.53

(< 0.0001)
(0.21)

(< 0.0001)

0.57
0.02
0.33

Season Cooling season* 0.951 (< 0.0001) 0.25

Traffic terms Distance to designated truck route (m) 1.15 � 10�4 (0.37) 0.01

Local sources / population Smoking/ grilling near outdoor monitor* 0.440 (0.09) 0.04

Factor 2: Brake Wear and Local Traffic
Central site NO2 (ppb) �27.5 (0.06) 0.25
Season Cooling season* 0.213 (0.11) 0.03

Traffic terms Roadway length within 100 m weighted 
by wind direction (m)

Roadway length within 200 m (m)

3.06 � 10�3

�6.4 � 10�5

(0.24)

(0.25)

0.02

0.02

Local sources / population Fuel oil use within 200 m (per 10,000 users)
Construction within 100 m*
Population density within 200 m (pers/km2)
High density residential land use*

1.66 � 10�8

0.238
�1.91 � 10�5

�0.241

(0.05)
(0.18)
(0.10)
(0.07)

0.05
0.03
0.04
0.04

Factor 3: Diesel Exhaust
Central site PM2.5 (µg/m3) 0.024 (0.01) 0.08
Season Cooling season* �0.103 (0.35) 0.01

Traffic terms Diesel fraction on nearest major road (%)
Distance to nearest larger road (m)

2.88
�6.60 � 10�4 

(0.14)
(0.25)

0.05
0.02

Local sources / population Construction within 100 m* 0.116 (0.44) 0.009

Factor 4: Fuel Oil Combustion
Central site NO2 (ppb)

EC (µg/m3)
68.5
0.36 

(0.0009)
(0.19)

0.14
0.02

Season Cooling season* �0.509 (0.009) 0.09

Traffic terms Roadway length within 100 m (m)
Roadway length within 200 m (m)
Roadway length within 300 m (m)
Distance to nearest truck route (m)

4.09 � 10�4

2.34 � 10�4

1.25 � 10�4 
�2.03 � 10�4

(0.11)
(0.004)
(0.0002)
(0.14)

0.03
0.11
0.16
0.03

Local sources / population Fuel oil use within 200 m (10,000 users)
Construction within 100 m*
Block group population density (pers/km2)
Population density within 200 m (pers/km2)
High density residential land use*

3.4 � 10�8

�0.433
5.06 � 10�5

6.95 � 10�5

0.496

(0.006)
(0.10)
(0.001)

(< 0.0001)
(0.0096)

0.09
0.04
0.13
0.22
0.08

Factor 5: Road Dust and Resuspension
Central site PM2.5 (µg/m3)

NO2 (ppb)
EC (µg/m3)

�0.0070
11.3

�0.127

(0.16)
(0.05)
(0.09)

0.03
0.05
0.04

Season Cooling season* �0.133 (0.01) 0.08

Traffic terms Roadway length within 100 m (m)
Distance to highway (m)

9.09 � 10�5

�1.05 � 10�4
(0.19)
(0.23)

0.02
0.02

Local sources / population High density residential land use*
Construction within 100 m*

0.138
0.079

 (0.009)
(0.25)

0.09
0.02

a Candidate covariates have univariate P < 0.25; for source categories with no significant covariate, we considered the best candidate (by P value, univariate 
r2). Sources marked by an asterisk (*) are binary indicators.
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Table 11. Multivariate LUR Model Results for Outdoor Concentration Factor Scores, Adjusted for Repeated Measures 
by Householda 

Factor: Interpretation /
Covariate Type Variable(s)

Univariate
Coefficient

Univariate
(P Value) Seq R2 b

Factor 1: Long-Range Transport
Central site PM2.5 (µg/m3) 0.129 (< 0.0001) 0.63
Season Cooling season* 0.527 (< 0.0001) 0.69
Traffic terms —
Local sources / population —
Modified traffic and local sources —

Factor 2: Brake Wear and Local Traffic
Central site —
Season —
Traffic terms Roadway length within 100 m weighted by 

wind direction (m)
0.00369 (0.16) 0.02

Local sources / population High density residential land use* �0.362 (0.006) 0.11
Modified traffic and local sources Roadway length within 100 m weighted by 

wind direction � cooling season (m)
0.00329 (0.04) 0.16

Factor 3: Diesel Exhaust
Central site PM2.5 (µg/m3) 0.050 (0.001) 0.08
Season Cooling season* �0.268 (0.06) 0.13
Traffic terms Diesel fraction on nearest major road (%) 6.07 (0.03) 0.26
Local sources / population —
Modified traffic and local sources Diesel fraction on nearest major road 

� floor of building (%)
�1.72 (0.06) 0.32

Factor 4: Fuel Oil Combustion
Central site NO2 (ppb) 59.7 (0.002) 0.14
Season —
Traffic terms —
Local sources / population Population density within 200 m 

(pers/km2)
5.3 � 10�5 (0.0003) 0.31

Modified traffic and local sources Population density within 200 m
� percent hours of wind < 2 m/sec 
(pers/km2)

2.1 � 10�4 (0.02) 0.41

Factor 5: Road Dust and Resuspension
Central site —
Season Cooling season* �0.144 (0.008) 0.08
Traffic terms —
Local sources / population High density residential land use* 0.240 (0.002) 0.16
Modified traffic and local sources High density residential land use

� monitor obstructed from nearest road*
�0.145 (0.08) 0.20

a Sources marked by an asterisk (*) are binary indicators.

b Values in bold are final multivariate R2 values for each model. 



41

J.I. Levy et al.

41

Finally, to test for correlation across variables and impli-
cations for covariate significance, we performed back-
wards elimination on final models to ensure that
covariates retained significance independent of other pre-
dictors in the model. In all cases, terms retained signifi-
cance and the original models were retained.

SUMMARY STATISTICS — INDOORS

Across the 43 sampling locations where indoor measure-
ments were collected, 92 of the multiday sampling events
contained at least one indoor particulate matter sample. Be-
cause of laboratory errors and other filter losses during the
analysis phase, our maximum sample size for indoor PM2.5
constituent data was 88. Summary statistics for indoor con-
centrations of the 33 constituents included in our factor
analyses, along with total PM2.5, are presented in Table 12.

Table 12. Summary of Indoor Concentrations, with Percentage Above Analytic LODa for Constituent Measures

N Mean SD Median Minimum Maximum % > LOD

PM2.5 (µg/m3) 92 20.1 12.0 16.8 3.6 74.9 100
EC (m�1 � 10�5) 88 0.58 0.46 0.50 0.0029 3.2 100
NO2 (ppb) 74 19.1 10.7 16.6 4.9 61.1 100

Constituents measured by ICP–MS (µg/m3):
Al 78 0.011 0.027 4.2 � 10�3 �3.1 � 10�3 0.20 68
As 84 4.6 � 10�4 1.3 � 10�3 1.8 � 10�4 2.7 � 10�6 0.010 65
Ba 77 0.019 0.051 1.1 � 10�3 �3.8 � 10�6 0.33 86
Ca 84 0.060 0.081 0.033 �0.026 0.56 67

Cd 85 9.3 � 10�5 2.1 � 10�4 4.8 � 10�5 �1.1 � 10�6 1.5 � 10�3 98
Ce 85 1.4 � 10�4 4.0 � 10�4 1.3 � 10�5 �3.2 � 10�7 2.2 � 10�3 97
Cr 85 7.9 � 10�4 4.1 � 10�3 1.1 � 10�4 �1.4 � 10�6 0.037 98
Cu 85 8.4 � 10�4 9.5 � 10�4 5.9 � 10�4 5.8 � 10�7 7.0 � 10�3 98

Fe 85 7.9 � 10�3 7.4 � 10�3 6.3 � 10�3 �4.8 � 10�5 0.044 97
K 81 0.076 0.081 0.041 �1.7 � 10�4 0.38 91
La 85 9.2 � 10�5 2.5 � 10�4 1.1 � 10�5 �1.0 � 10�7 1.3 � 10�3 96
Mg 85 0.011 0.013 7.5 � 10�3 �2.4 � 10�4 0.11 97

Mn 85 5.7 � 10�4 4.1 � 10�4 4.9 � 10�4 �3.3 � 10�6 2.3 � 10�3 98
Mo 85 6.4 � 10�5 5.2 � 10�5 6.0 � 10�5 �4.0 � 10�5 2.9 � 10�4 68
Ni 85 9.5 � 10�4 8.8 � 10�4 7.0 � 10�4 �1.7 � 10�5 6.6 � 10�3 96
P 85 0.023 0.086 4.0 � 10�3 �1.8 � 10�4 0.68 99

Pb 85 1.5 � 10�3 6.1 � 10�3 5.9 � 10�4 �2.3 � 10�6 0.056 99
S 85 0.80 0.59 0.63 �6.3 � 10�4 4.0 100
Sb 85 3.3 � 10�4 1.5 � 10�3 1.3 � 10�4 9.3 � 10�7 0.014 99
Se 85 2.4 � 10�4 3.7 � 10�4 1.2 � 10�4 �2.0 � 10�4 1.9 � 10�3 62

Sr 77 5.4 � 10�4 1.1 � 10�3 2.4 � 10�4 �5.3 � 10�4 7.6 � 10�3 69
Tl 85 8.0 � 10�6 1.3 � 10�5 5.1 � 10�6 �3.7 � 10�8 8.5 � 10�5 100
V 85 2.0 � 10�3 1.7 � 10�3 1.5 � 10�3 �3.1 � 10�9 0.010 100

Constituents measured by XRF (µg/m3):
Ca 88 0.046 0.074 0.033 1.8 � 10�3 0.68 99
Fe 88 0.047 0.022 0.045 3.5 � 10�3 0.14 92
K 88 0.078 0.079 0.053 4.8 � 10�5 0.48 100
P 88 0.070 0.093 0.044 1.7 � 10�3 0.75 98

S 88 1.13 0.76 0.89 6.0 � 10�4 5.0 99
Si 88 0.090 0.28 0.043 4.0 � 10�3 2.6 73
V 88 3.7 � 10�3 3.5 � 10�3 2.8 � 10�3 3.0 � 10�4 0.027 91
Zn 88 0.014 0.016 9.3 � 10�3 7.2 � 10�4 0.11 96

a 3 times the laboratory-based concentration uncertainties.
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The indoor samples were influenced by analytical issues
similar to those described for the outdoor samples (see
Summary Statistics — Outdoors, under Results), resulting
in lower sample sizes for NO2 and for selected elements
from the ICP–MS analysis.

In general, the correlations among indoor concentra-
tions (Table 13) were slightly weaker than among outdoor
concentrations (Table 8). Some of the strong correlations
found within the outdoor measurements held for the in-
door measurements, especially for constituents hypothe-
sized to be predominantly of outdoor origin (e.g., S and Se,
Ni and V). However, other correlations that were signifi-
cant for outdoor measurements did not hold for indoor
measurements (EC was not significantly correlated with S,
P, or Ca), while some new correlations emerged for indoor
measurements that were not seen for outdoor measure-
ments (such as the strong positive correlations between Ca
and Mg, Pb and Zn, and Fe and S). This provided a general
indication that indoor sources and the differential effects
of ventilation were altering the correlation structures
among particle constituents so that the correlations related
to the indoor environments were different from those relat-
ed to the outdoor environments.

Finally, we considered the distribution of questionnaire
responses related to indoor sources and other aspects of
the indoor environment, to determine whether sufficient

heterogeneity existed in key activities to observe the influ-
ence of indoor sources. As indicated in Table 14, for many
of the hypothesized sources of interest, such as cooking
and cleaning activities, there was adequate heterogeneity
within the study population in the frequency of these ac-
tivities. In addition, although basic home characteristics
were similar for cohort and noncohort members (Table 5),
multiple activity patterns differed significantly (Table 14).
Cohort members used air conditioning more frequently
and opened windows less, had greater occupant density,
and tended to clean and cook more, although noncohort
members were more likely to have gas stoves. Thus, a com-
parison of these groups can provide another means to eval-
uate the influence of occupant activity patterns on I/O
ratios, and the inclusion of both groups may make our
findings more generalizable.

INDOOR–OUTDOOR RELATIONSHIPS AND 
PREDICTORS

To develop a better understanding of which pollutants
may have their indoor concentrations most influenced by
infiltration from the outdoors, which pollutants may be
most influenced by indoor sources, and which are influ-
enced by a combination of factors, we considered the rela-
tionship between measured indoor and measured outdoor
concentrations. We first examined the distribution of I/O

Table 14. Distributions of Selected Household Activities for All Sampling Sessions with Complete Questionnaire Data for 
All Participants, Cohort Members, and Noncohort Members

Total
(N = 61)

Cohort 
Members 
(n = 38)

Noncohort 
Members 
(n = 23)

Categorical variables (%)
Cleaning activitiesa (% 2+ activities/wk) 67 82 43
Humidifier use (% Yes) 18 24 9
Candle use (% Yes) 26 24 30
Cooking time (> 1 hr/day) 34 47 13

Gas stove prevalenceb 69 59 86
Gas stove use (> 1 hr/day)b 25 32 14
Opening of windows (% Yes) 62 53 78
Air conditioning use (% Yes) 25 37 13

Continuous variables (mean [SD])
Number of occupants spending > 4 hrs in the home 3.7 (2.0) 4.6 (1.8) 2.2 (1.2)
Occupant density (people/room) 0.99 (0.58) 1.3 (0.46) 0.43 (0.14)

a Dusting, cleaning, and vacuuming.

b Data missing for 2 sampling sessions.
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ratios for particle constituents and NO2. As indicated in
Figure 6, lower median I/O ratios were exhibited for pol-
lutants such as V, S, and Se, all of which would be antici-
pated to be dominated by outdoor sources. In contrast,
median I/O ratios greater than 1 were exhibited for constit-
uents such as Ca, K, and Cd, all of which have been associ-
ated previously with indoor sources (Table 4). Figure 6
also illustrates the presence of a number of extreme values,
some of which may reflect analytical noise in the pollutant
concentrations, while others may be indicative of signifi-
cant indoor sources.

To more formally evaluate the relationship between in-
door and outdoor concentrations in a mass-balance con-
text, we regressed outdoor concentrations against indoor
concentrations and examined the strength of association.
We developed both univariate models and models that in-
corporated ventilation (using the I/O sulfur ratio to create a
categorical variable for estimating the infiltration factor, as
described in Indoor–Outdoor Concentration Modeling, un-
der Statistical Methods and Data Analysis), and we built

models with the inclusion and exclusion of influential
points. As indicated in Table 15, the majority of variability
in indoor concentrations of pollutants such as V, S, and Se
was explained by outdoor concentrations with a simple ven-
tilation term, providing further indication that these were
outdoor-dominated constituents. Conversely, for constitu-
ents such as Ca and Si, the R2 value was extremely low, and
the influence of indoor sources was likely to be substantial.
Interestingly, for both P and K, the indoor–outdoor R2 value
was substantially greater for XRF outputs than for ICP–MS
outputs. This observation suggests that some indoor sources
of P and K may differ in their solubility relative to outdoor
sources (i.e., in the outdoor environment, P and K are gener-
ally found in highly water-soluble compounds).

When we added individual indoor-source terms to the
indoor–outdoor regression models described in Table 15,
we gained additional insight about the degree to which
questionnaire data on source activities explained concen-
trations of individual constituents (data not shown). These
results potentially help in the interpretation of our indoor

Figure 6. Distribution of I/O ratios for particle constituents and NO2. Solid lines indicate the median, boxes indicate the interquartile range, whiskers
indicate the 10th and 90th percentiles, and X’s indicate the 5th and 95th percentiles.
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factor analysis models. Because of the large number of con-
stituent–source combinations and the resultant likelihood
of spurious associations, we do not consider these models
as definitive, but they do provide some initial insight. For
example, occupant density was most strongly associated
with Cr and NO2, with positive associations also seen with
Fe, Mg, P, and Tl (data not shown). While not all of these
pollutants have a connection with resuspension and other
direct effects of higher occupant density, one might expect
a higher level of many indoor activities to be associated
with greater indoor occupant density. Interestingly, occu-
pant density was negatively associated with multiple out-
door-dominated constituents (e.g., V, S), potentially
indicating that this covariate also captures some residual
ventilation effects. A number of constituents were positive-
ly associated with candle burning, with the greatest signifi-
cance for Al and Ba, although there was no association with
EC and a negative association with NO2, complicating the
interpretation of these findings. Frying or grilling of food
was positively associated with La, K, and NO2, but nega-
tively associated with many other constituents, again in-
cluding multiple outdoor-dominated constituents.
Multiple pollutants were significantly positively associat-
ed with gas cooking or the presence of a pilot light, al-
though NO2 was not (however, the association with NO2
was in the anticipated direction in both situations). In gen-
eral, some of these findings do not strongly agree with the
hypothesized sources in Table 4, indicating some of the
challenges in building indoor factor analysis LUR models.

Note that the findings described in the previous para-
graph would be slightly different if we had utilized session-
average concentrations of pollutants as opposed to individ-
ual observations. We used the latter approach above to
maximize our sample size and to provide inputs consistent
with our factor analyses, but the former approach is more
closely aligned with the time horizons of the questionnaire
data and is more directly applicable to the exposure mis-
classification analysis. We focused on the three pollutants
used in the exposure misclassification analysis (EC, NO2,
and PM2.5). When using session-average concentrations, our
study found no indoor-source terms significantly predicting
indoor EC concentrations. For NO2, gas stove usage demon-
strated near significance (P < 0.2) and was carried forward as
a candidate variable in regression models for indoor NO2.
For PM2.5, both cooking activity and occupant density were
positively associated with indoor concentrations, after con-
trolling for outdoor concentrations, and were considered for
subsequent LUR models.

One way to develop additional insight about the influ-
ence of indoor-source activities is to compare indoor–out-
door pollutant relationships for cohort versus noncohort
participants. As illustrated in Tables 5 and 14, activity pat-
terns differed substantially between these groups in spite of

Table 15. Regression Analysis of Indoor Concentrations 
on Outdoor Concentrations of Particle Constituents and 
NO2, with and Without a Categorical Ventilation Terma

Pollutant

Indoor–Outdoor 
Model
R2 (n)

Indoor–Outdoor 
Model with 

Ventilation Term R2 (n)

V-XRF 0.72 (67) 0.89 (67)
S-XRF 0.83 (71) 0.87 (71)
Sr 0.56 (68) 0.80 (52)
V 0.75 (68) 0.79 (68)

P-XRF 0.72 (70) 0.73 (70)
Pb 0.72 (71) 0.73 (71)
S 0.70 (68) 0.71 (68)
Sb 0.70 (67) 0.70 (67)

Ni 0.61 (66) 0.62 (66)
As 0.59 (66) 0.63 (66)
Ba 0.52 (51) 0.59 (51)
Se 0.56 (68) 0.58 (68)

Mn 0.54 (69) 0.55 (69)
Fe 0.51 (72) 0.54 (72)
Fe-XRF 0.41 (70) 0.53 (70)
K-XRF 0.49 (72) 0.51 (72)

Zn-XRF 0.36 (70) 0.41 (70)
Cu 0.40 (67) 0.40 (67)
EC 0.20 (71) 0.36 (71)
Cd 0.22 (68) 0.30 (68)

Mo 0.29 (67) 0.30 (67)
Mg 0.21 (70) 0.27 (70)
Tl 0.12 (69) 0.20 (69)
La 0.01 (68) 0.17 (68)

P 0.03 (68) 0.17 (68)
Ce 0.00 (69) 0.16 (69)
NO2 0.14 (56) 0.16 (56)
Ca 0.02 (69) 0.15 (69)

Si-XRF 0.04 (70) 0.13 (70)
K 0.07 (58) 0.09 (58)
Al 0.09 (59) 0.09 (59)
Ca-XRF 0.05 (73) 0.06 (73)
Cr 0.00 (70) 0.02 (70)

a Outliers have been removed using Cook’s distance > 4/(n � P). Pollutants 
are listed, in decending order, by their R 2 value in the regression model 
with a ventilation term. 
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similar structural characteristics of their homes. As a re-
sult, the median I/O ratios of PM2.5 and NO2 were greater
in cohort than noncohort homes (Figure 7). This indicates
a greater influence of indoor sources and lower AERs in
the homes of cohort participants. Similarly, the homes of
cohort participants had higher median I/O ratios for parti-
cle constituents with hypothesized indoor sources and
with low R2 values (e.g., Ca, Cr, K, Si) (Table 15), while the
homes of noncohort participants had higher median I/O
ratios for constituents likely to be dominated by outdoor
sources (e.g., Ni, S, Se, V) (Table 7; other data not shown).

Finally, to inform the structure of our indoor-concentra-
tion LUR models, we developed models to predict the in-
filtration factor (using the I/O sulfur ratio as a proxy, as
described in prior publications, and supported by the
strong relationship between its indoor and outdoor con-
centrations, as shown in Table 15). We first used information
from tax assessor databases and other publicly available da-
ta, to determine the degree to which FINF could be predicted
without contacting any study participants. We then added
terms related to occupant activities during the sampling
week from questionnaire data. As described earlier in this
report, only variables with a logical causal connection to
FINF were considered: For publicly available data, these in-
cluded season, floor level of the home, whether homes were
multiunit or single-family dwellings, and the age of the
home; for questionnaire data, these included home air con-
ditioning use and the opening of windows. We developed
regression models both with FINF as a continuous variable

and with FINF dichotomized at the median, given the possi-
bility that small measurement errors could significantly in-
fluence the I/O ratio and related FINF values.

In this analysis, when FINF was treated as a continuous
variable for linear regressions (Table 16), season was the
only significant publicly available term; FINF was lower in
the heating season than in the cooling season, as anticipat-
ed. The addition of questionnaire data increased the pre-
dictive power of the model, with opening of windows

Figure 7. Distribution of I/O ratios for PM2.5, NO2, EC, and S stratified
by cohort and noncohort homes. Solid lines indicate the median, dotted
lines indicate the mean, boxes indicate the interquartile range, whiskers
indicate the 10th and 90th percentiles, and X’s indicate the 5th and 95th
percentiles.

Table 16. Predictors of FINF (Proxied by the I/O Sulfur Ratio) Based on Publicly Available and Questionnaire Data

Linear Regression
(Continuous FINF)

Logistic Regression
(Dichotomized FINF)

Publicly 
Available Data

Publicly Available 
Data and 

Questionnaire Data
Publicly 

Available Data

Publicly Available 
Data and 

Questionnaire Data

R2 0.21 0.38
Area Under Curve 0.82 0.86
Predictors � (SE) � (SE) OR (95% CI) OR (95% CI)

Season (reference: cooling) �0.13 (0.04)a �0.05 (0.07) 0.11 (0.03–0.43)a 0.17 (0.02–1.7)
Floor (reference: 1st level) 0.04 (0.06) 0.01 (0.06) 4.0 (0.72–22) 5.0 (0.71–35)
Housing type 

(reference: single family)
0.01 (0.07) 0.00 (0.06) 0.52 (0.08–3.6) 0.22 (0.02–2.1)

Year home built 
(reference: before 1950)

�0.05 (0.06) �0.03 (0.06) 0.12 (0.02–0.86)a 0.15 (0.02–1.4)

Open windows (reference: no) N/A 0.17 (0.06)a N/A 7.2 (0.98–54)a
Air conditioning use 

(reference: no)
N/A �0.07 (0.06) N/A 0.19 (0.02–1.5)

a Indicates P < 0.1.
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during the sample period as the only statistically signifi-
cant term. In fact, when opening of windows was includ-
ed, season lost statistical significance. Similarly, when
FINF was dichotomized for logistic regressions (Table 16),
season and the year that the home was built were signifi-
cant predictors in a model without questionnaire data, but
when questionnaire data was included, only opening of
windows retained statistical significance (P < 0.1). We
therefore concluded that questionnaire information about
open window status was the best available predictor of
FINF for our cohort and that, given a lack of significance for
other terms and our use of categorical variables for ventila-
tion, this covariate could be used directly for our regres-
sion modeling. Of note, the use of open windows as a
ventilation proxy agrees with a similar study conducted in
Boston (Brown 2006) that found higher AERs in homes
with open windows. Moreover, this study concluded that
an open-windows covariate may better estimate the ex-
change of indoor and outdoor air than measured AERs for
multiunit buildings, such as those in the current study.
This is because measured AERs cannot distinguish be-
tween make-up air from adjacent apartments and air from
outdoors (Brown 2006).

LUR MODELS FOR INDOOR EC, PM2.5, AND NO2

For comparability to our outdoor-concentration model-
building approach, and for applicability to our exposure
misclassification analysis, we first constructed LUR models
for indoor concentrations of EC, PM2.5, and NO2, using traf-
fic and other GIS terms along with indoor source data, ambi-
ent monitoring data, and ventilation data. We initially
considered models without ventilation terms, to focus on
the most significant “main effects” of traffic, presented in
Table 17. The unweighted cumulative traffic density within

50 m of the home was associated with higher indoor NO2;
gas stove usage and ambient NO2 were nearly significant.
A diesel-traffic indicator predicted indoor EC, with lower
concentrations of EC associated with homes located fur-
ther from a designated truck route. Ambient EC also pre-
dicted indoor EC, which appeared to have no significant
indoor sources. No traffic variable significantly predicted
indoor PM2.5, which was best explained by ambient PM2.5,
cooking time, and occupant density.

To consider the robustness of the traffic-variable selec-
tion for each pollutant, the posterior probabilities of mod-
els using the different traffic variables were calculated and
grouped based on the GIS algorithm used to create each
one (Table 18). Models with posterior probabilities greater
than three times the prior probability (4.2%) included un-
weighted cumulative traffic density within 50 m of the
home, which yielded the highest probability (26.5%) for
NO2, and distance from a designated truck route (14.3%),
for EC. ADT had the highest posterior probability in the
PM2.5 models (8.34%), but that probability was less than
twice the prior probability, and other measures had com-
parable probabilities. We calculated these posterior proba-
bilities using a range of c values (5–100) (see equation 7)
with similar results (not shown).

In the Bayesian analysis results, shown in Table 18, all
posterior probabilities were under 30%, emphasizing the
difficulty in choosing the correct model with a small data
set and many correlated predictors. For NO2, models de-
scribing traffic closer to the home (buffers of 50–100 m)
generally had the highest probabilities, agreeing with pre-
vious studies showing outdoor NO2 levels decreasing with
increasing distance from the road (Roorda-Knape et al.
1999; Gilbert et al. 2003). For EC, the highest-probability
traffic terms were related to truck traffic, as anticipated

Table 17. Identification of Traffic Indicators Contributing to Indoor Concentrations After Adjustment for Ambient 
Concentrations and Indoor Source Termsa

Pollutant R2 Model � (SE) P value

NO2 (ppb) 0.20 Ambient concentrations 0.66 (0.35) 0.06
Gas stove usage 5.0 (3.0) 0.11
Unweighted traffic density within 50-m buffer 0.06 (0.03) 0.02

PM2.5 (µg/m3) 0.36 Ambient concentrations 0.99 (0.25) < 0.01
Cooking time 5.1 (2.9) 0.08
Occupant density 5.2 (2.2) 0.02

EC (m�1 � 10�5) 0.21 Ambient concentrations 0.26 (0.09) < 0.01
Distance to nearest designated truck route �7.2 � 10�5

(4.2 � 10�5)
0.01

a Only covariates with P < 0.2 are shown.
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(Table 18). In contrast, the traffic model with the highest
probability (ADT) was not significant for indoor PM2.5. No
PM2.5 model yielded probabilities over 10%, suggesting
little differential information value across covariates. This
finding was not unexpected, as PM2.5 exhibits less spatial

heterogeneity than do EC and NO2, and because outdoor
PM2.5 was largely explained by temporal terms (Table 9).

To account for multiple testing, sensitivity analyses
were conducted to compare the posterior probabilities for
models with and without a traffic term (Mk and M0, respec-
tively), assuming an equal chance of traffic affecting in-
door concentrations as not (data not shown). For all
pollutants, the models without a traffic term had high
probabilities (77.3% for NO2, 84.3% for PM2.5, 84.6% for
EC), reflecting both the presumed prior probabilities and
the relatively small amount of variability explained by traf-
fic terms. The highest probabilities for those models with
the traffic term were 6.02% (using unweighted cumulative
traffic density within 50 m of the home) for NO2, 1.31%
(using ADT) for PM2.5, and 2.21% (using distance from a
designated truck route) for EC. This observation indicates
the difficulty of relating traffic variables to indoor pollut-
ant concentrations in homes within urban areas with less
spatial variation than metropolitan regions that include ur-
ban, suburban, and rural sites. It also indicates the strong
effects of indoor sources and ventilation. Small sample
size and multiple testing also contribute to the difficulty of
definitively identifying which (if any) traffic terms should
be considered.

As described earlier, open windows appears to serve as
the best ventilation proxy where AERs and I/O concentra-
tion ratios cannot be measured. Although this term would
theoretically modify both indoor- and outdoor-source con-
tributions, we apply it here only to outdoor-source contri-
butions, due to our limited statistical power, reduced
sample size with session-averaged concentrations, and sta-
tistical instability resulting from the modification of in-
door sources (related to our use of many categorical
indoor-source terms). The final indoor LUR models, in-
cluding only the interaction terms with P < 0.2, are shown
in Table 19. For NO2 and EC, traffic variables were signifi-
cantly positively modified by open windows. For PM2.5,
the effect of ambient concentrations was also significantly
greater in homes with open windows. Including a ventila-
tion proxy increased the R 2 value from 0.20 to 0.25 for
NO2, from 0.36 to 0.40 for PM2.5, and from 0.21 to 0.32 for
EC. (The table only shows the R2 values after the inclusion
of the ventilation proxy.)

CONSTRAINED FACTOR ANALYSES FOR INDOOR 
CONCENTRATIONS

As described in LUR Modeling — Indoor Factor Scores,
under Statistical Methods and Data Analysis, we first con-
structed constrained factor analyses based on the mea-
sured indoor concentrations of the particle constituents
listed in Table 3 (along with Cd, Ce, and Tl), for which a

Table 18. For Indoor LUR Models, GIS-Based Traffic 
Variables Grouped by Algorithm Used to Create Them and 
Their Posterior Probabilitiesa

NO2 PM2.5  EC

Cumulative Traffic Density Scores 
(Vehicle-Meters/m2/Day)

Density of larger roads
Within 200 m 2.39 3.48 3.02

Unweighted traffic density 
Within 50-m buffer 26.5 3.08 2.97
Within 100-m buffer 2.15 2.90 2.95
Within 200-m buffer 2.23 4.07 3.18
Within 500-m buffer 2.46 5.33 3.82

Kernel-weighted density 
Within 50-m buffer 6.64 3.13 3.12
Within 100-m buffer 10.3 3.16 3.00
Within 200-m buffer 1.93 3.02 3.44
Within 300-m buffer 2.25 4.30 3.75
Within 500-m buffer 3.25 5.40 3.39

Summary Measures (m)

Total roadway length
Within 50 m 5.76 3.48 3.36
Within 100 m 2.31 4.40 3.41
Within 200 m 2.30 5.18 2.95
Within 300 m 2.42 5.78 4.33

Distance-Based Measures (m)

Distance to nearest:
Larger road (> 8500 cars/day) 3.90 5.43 3.57
Major road (> 13,000 cars/day) 3.93 6.28 3.65
Highway (> 19,000 cars/day) 2.01 2.97 3.72
Designated truck route 2.16 4.37 14.3

Characteristics of Nearest Major Road
ADT 2.04 8.34 5.04
ADT/distance to major road 2.27 3.00 3.45
Diesel fraction 2.09 2.84 3.77
Trucks per day 2.45 2.87 8.63
Trucks per day/distance to 
major road

4.06 3.16 2.96

Population Density (for Census Block Containing 
Sampling Site)
 Population density 2.18 4.06 4.19

a Covariates with posterior probabilities 3 times (12.6%) greater than the 
prior probability (4.2%) are presented in bold.
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six-factor model provided the most reasonable compro-
mise among BIC, K–G criterion, and cross-validation ap-
proaches and had reasonable physical interpretability. The
loading matrix is shown in Figure 8, with darker shading
representing higher factor loadings.

More constituents loaded strongly onto Factor 1 than
onto other factors; these constituents included S and Se,
which are associated with coal combustion and with few
hypothesized indoor sources. Other constituents with high
loadings on Factor 1 (e.g., Pb, Mn) are not normally associ-
ated with coal combustion but reflect broader-scale out-
door combustion sources, including industries not present
in our region. We therefore interpreted this factor to repre-
sent outdoor concentrations of sources that covary strong-
ly over time, given the modifying influence of ventilation,
and define it as long-range transport.

Factor 2 was dominated by Ni and V, common markers of
fuel oil combustion, similar to Factor 4 in the outdoor-con-
centration factor analysis model (Figure 4). Factor 2 also in-
cluded other outdoor-dominant pollutants with expected
local sources (e.g., traffic, home heating), such as EC, Sb,
and Mn, so we consider this factor as fuel oil/diesel combus-
tion. Factor 3 showed heavy loadings on Al and Ba, which
we previously proposed were associated with road dust and
resuspension, with a potential influence of brake wear
(Schauer et al. 2006). However, multiple indoor-source

terms were significantly associated with both Al and Ba,
and indoor–outdoor relationships were weak for some of
the pollutants loading on this factor (Table 15). We defined
Factor 3 as road dust and resuspension, but this may have
reflected a combination of indoor and outdoor sources.
Factor 4 included heavy loads on La and Ce and weaker as-
sociations with K, Ca, and Mg. Given relatively weak in-
door–outdoor relationships for these pollutants and an
indication that some of them are associated with gas cook-
ing and candle burning, we defined Factor 4 as indoor
combustion. Factor 5 was dominated by Cd, Tl, EC, and K,
most of which have been associated with indoor smoking
in previous studies (see Table 4). Factor 6 showed a heavy
loading of P, which has been associated with indoor clean-
ing (Koistinen et al. 2004).

LUR MODELS FOR INDOOR LATENT VARIABLES

Using a stepwise model-building structure, we devel-
oped regression models for the indoor-concentration latent
variables as a function of covariates representing indoor
and outdoor sources as well as ventilation and time-vary-
ing factors. The initial step in this analysis was to develop
candidate predictors in various source categories, focusing
on the outdoor-source indicators previously found signifi-
cant in the outdoor factor analysis LUR models (Table 11)

Table 19. Indoor LUR Models Accounting for Effect Modification by Ventilation as Proxied by Open Windowsa

Pollutant R2 Model � (SE) P Value

NO2 (ppb) 0.25 Ambient concentrations 0.79 (0.35) 0.03
Gas stove usage 6.8 (3.1) 0.04
Unweighted traffic density within 50-m buffer
� Open windows = Yes

0.07 (0.03) 0.01

Unweighted traffic density within 50-m buffer
� Open windows = No

�0.03 (0.06) 0.62

PM2.5 (µg/m3) 0.40 Ambient concentrations
� Open windows = Yes

0.98 (0.32) < 0.01

Ambient Concentrations
� Open windows = No

0.64 (0.32) 0.05

Cooking Time 6.2 (2.9) 0.04
Occupant Density 6.5 (2.3) 0.01

EC (m�1 � 10�5) 0.32 Ambient concentrations 0.38 (0.09) < 0.0001
Distance to nearest designated truck route
� Open windows = Yes

�9.2 � 10�5

(4.1 � 10�5)
0.03

Distance to nearest designated truck route
� Open windows = No

1.0 � 10�4

(5.9 � 10�5)
0.86

a Only interaction terms with P < 0.2 are shown.
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as well as central site monitoring data and questionnaire-
based indoor-source covariates. As indicated in Table 20,
the candidate variables agreed in some cases with initial
factor interpretations, although generally only for hypoth-
esized outdoor sources. For example, Factor 1 (long-range
transport) was significantly correlated with central site
PM2.5, much more strongly so than were the other factors.
Factor 2 (fuel oil/diesel combustion) was higher during the
heating season and most strongly correlated with central
site NO2, roadway length, and high-density residential
land use. Factor 4 (indoor combustion) was associated
with number of people living in the home and several in-
door combustion activities. The other factors did not corre-
late well with initial factor interpretations.

When these candidate variables were used in forward
stepwise modeling, the results were generally consistent
with univariate correlations (Table 21). Predictive power
was greatest for Factor 1 (long-range transport), which was
predicted only by temporally varying central site PM2.5
and season (sequential R2 = 0.71). Indoor-source activity or
outdoor sources representing spatial variability did not
improve model fit, reaffirming our original interpretation.
Although population-density terms displayed univariate
significance for Factor 2 (Table 20) and predicted outdoor
concentrations of a fuel oil factor (Table 11), only central
site NO2 and roadway length within 300 m retained signifi-
cance (Table 21). Frying and grilling retained significance as
a predictor of Factor 4 (indoor combustion). As expected,

Figure 8. Factor loading matrix for indoor concentrations using a six-factor model. Pollutants and particle constituents are sorted by their position in a
hierarchical clustering dendrogram, to optimize visual interpretation by placing correlated constituents together.
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Table 20. Pearson Correlations Between Candidate Source Terms and Factorsa Derived from Indoor 
Concentrations (P < 0.3)

Candidate 
Source Terms

Pearson Correlation (P Value)

Factor 1: 
Long-Range 
Transport

Factor 2: 
Fuel Oil / 

Diesel 
Combustion

Factor 3: 
Road Dust 

and 
Resuspension

Factor 4: 
Indoor 

Combustion

Factor 5: 
Indoor 

Smoking

Factor 6: 
Indoor 

Cleaning 

Outdoor sources
Long-range / meteorology

Central site PM2.5 0.83 (< 0.0001) 0.20 (0.08) 0.35 (0.02)
Central site NO2 0.29 (0.01)
Cooling season 0.50 (< 0.0001) �0.18 (0.09) 0.17 (0.12) 0.21 (0.05)

Traffic-related sources
Roadway length within 100 m 0.14 (0.22) �0.16 (0.18) 0.22 (0.06)
Roadway length within 200 m �0.25 (0.03) 0.22 (0.06) 0.25 (0.03)
Roadway length within 300 m �0.18 (0.12) 0.34 (0.003)
Diesel fraction 0.16 (0.28) 0.35 (0.02)
Distance to nearest truck route �0.20 (0.09)

Population density
High density residential area �0.22 (0.06) 0.19 (0.10) �0.21 (0.07)
Block group population density�0.14 (0.22) 0.31 (0.006) �0.22 (0.06)
Population density in 200 m �0.12 (0.29) 0.34 (0.003) �0.18 (0.12)
Fuel oil use within 200 m �0.13 (0.28) 0.17 (0.14) 0.13 (0.26) �0.20 (0.09)

Other outdoor sources
Construction �0.21 (0.09)
Outdoor grilling / smoking 0.17 (0.15) �0.13 (0.26) �0.14 (0.26) 0.17 (0.16)
Floor (monitor height) 0.26 (0.02) 0.12 (0.18)

Indoor Sources 
Occupancy

People / rooms �0.14 (0.19) 0.28 (0.01) �0.16 (0.15) 0.15 (0.18)
Number of rooms 0.22 (0.04) 0.24 (0.02)
Number of people 0.13 (0.25) �0.29 (0.008) 0.29 (0.007)

Indoor combustion
Candle burning �0.14 (0.21) 0.20 (0.07) 0.15 (0.17)
Pilot light �0.18 (0.13)
Frying / grilling �0.13 (0.25) �0.20 (0.07) 0.17 (0.13)  0.17 (0.12)
Gas cooking �0.27 (0.03) 0.25 (0.03) 0.17 (0.16) �0.16 (0.20)
Burnt food �0.14 (0.20) �0.14 (0.19) �0.13 (0.24)

Indoor resuspension
Carpeting 
Dusting �0.17 (0.12) 0.16 (0.15)
Sweeping 0.13 (0.23) �0.22 (0.05) 0.14 (0.19) 0.12 (0.28)
Vacuuming 0.22 (0.04) �0.11 (0.30) �0.19 (0.08)
Wearing shoes 0.16 (0.14)

Indoor chemical
Cleaning �0.16 (0.13) 0.19 (0.08) �0.13 (0.24)
Washing furniture, upholstery �0.20 (0.07) 0.17 (0.11) 0.15 (0.18)

a Factor interpretations (e.g., long range transport, etc.) are based on constituent loadings.
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given poor univariate performance (Table 20), the remain-
ing factors had indoor models with poor predictive power
and poor physical interpretability.

Sensitivity Analyses

Given the generally poor performance of many of the re-
gression models in Table 21, we conducted a series of sensi-
tivity analyses to better understand whether this
performance was related to our model-building process or
other issues. First, because of our complex model-building
process with many candidate variables, we tested the sensi-
tivity of results to permutations in our analytic methods. We
tested whether hypothesized source terms explained addi-
tional variability in final models, but that was not the case. In
addition, we tested covariate selection by examining terms
selected by the random forest algorithm, which indicated

that covariates previously selected for each factor were in-
formative relative to other covariates. For example, for Fac-
tor 2 (fuel oil/diesel combustion), population density was
among the highest-rank covariates selected by the random
forest algorithm, reinforcing its significance within our out-
door factor analysis model. For Factor 6 (indoor cleaning),
both cleaning and vacuuming were among the highest-rank
covariates selected by the random forest algorithm, in spite
of their lack of significance in the final multivariate model
shown in Table 21. The random forest algorithm identified
few covariates that were predictive of Factors 3 through 6,
reinforcing the weak model performances for indoor-domi-
nated factors shown in Table 21.

Next, we tested all models for robustness to repeated
measures using random effects by household, which elim-
inated a few covariates but produced only modest changes

Table 21. Regression Models for Effects of Source Terms on Factorsa of Indoor Concentrations

Candidate 
Source Terms

Factor 1: 
Long-Range 
Transport

Factor 2: 
Fuel Oil / Diesel 

Combustion

Factor 3: 
Road Dust and 
Resuspension

Factor 4: 
Indoor 

Combustion

Factor 5:
Indoor 

Smoking

Factor 6: 
Indoor 

Cleaning 

 �
(P Value)
(n = 74)

Seq 
R2

 �
(P Value)
(n = 74)

Seq 
R2

 �
(P Value)
(n = 74)

Seq 
R2

 �
(P Value)
(n = 71)

Seq 
R2

 �
(P Value)
(n = 74)

Seq 
R2

 �
(P Value)
(n = 71)

Seq
R2

Outdoor Sources

Central site 
PM2.5 � open 
windows

0.094
(< 0.0001)
(no inter-
action)

0.68 7.83 � 10�3

(0.55)
5.53 � 10�3

(0.03)

0.12

0.18

Central site NO2 53.5
(0.02)

0.09

Cooling season 0.324
(0.01)

0.71

Roadway length 
within 100 m

2.50 � 10�3

(0.06)
0.24

Roadway length 
within 300 m

7.91 � 10�5

(0.005)
0.18

Diesel fraction on 
nearest road within 
100 m

6.00
(0.02)

0.12

High density
residential area

�0.138
(0.03)

0.05

Indoor Sources

Occupants �0.130
(0.008)

0.08

Frying / grilling 0.083
(0.02)

0.25

Sweeping 0.352
(0.08)

0.31 0.123
(0.09)

0.08

Model R2 0.71 0.18 0.08 0.31 0.24 0.08

a Factor interpretations (e.g., long range transport, etc.) are based on constituent loadings.
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to the final models. Because of high correlations among co-
variates and our small sample size, we sequentially re-
moved each term from the final models, to ensure that
each term retained significance independent of other cova-
riates. Similarly, we reversed the order of terms introduced
into the model, ensuring that all terms independently met
the retention criteria. No covariates were eliminated based
on these criteria. Next, we compared final models con-
structed using forward selection to those produced using
backwards elimination, using candidate covariates with P
< 0.25 and applying the same retention criteria at each
step. We produced similar models by both methods, and
our forward-selection models offered comparable or better
interpretability in all cases. Finally, we again plotted the
relationship between selected covariates and factor scores,
to ensure that results were robust to influential points.
Several remaining outliers were identified in this way, but
their removal did not significantly alter results. Final mod-
els are reported with these outliers retained.

Our poor performance in predicting indoor-attributable
factors may be associated with limitations in our question-
naire data, but could also be related to the fact that some of
the factors may represent indoor and outdoor sources that
are correlated because of ventilation characteristics, in-
door activities that are correlated with home or occupant
characteristics that also predict outdoor-source proximity,
or correlations that are due to chance. We therefore con-
structed a second factor analysis using the residuals from
the regression models in Table 15, in which indoor con-
centrations were regressed against the corresponding out-
door concentrations, modified by a categorical ventilation
marker. The optimal model, based on BIC, K–G, and cross-
validation criteria, included six factors, as presented in
Figure 9.

In this model, Factor 1 includes many constituents of
predominantly outdoor origin, such as S, Se, Ni, and V, al-
though this modeling approach aimed to remove outdoor
contributions to indoor concentrations. This factor likely
represents residual outdoor sources, potentially due to the
simple categorical ventilation term used. Factor 2 includes
La and Ce, similar to Factor 4 from the indoor-concentra-
tion factor analysis (Figure 8), thus we also define this fac-
tor as indoor combustion. Factor 3 shows heavy loadings
of Al and Ba, previously characterized as road dust and re-
suspension. Similar to Factor 1, this factor may include
some residual contributions from outdoor sources, given
our simple categorical ventilation term, or may represent in-
door sources. Factor 4 is dominated by P, as is Factor 6 from
the indoor-concentration factor analysis (Figure 8), which
has been associated with indoor cleaning. Ca and Mg load
heavily on Factor 5; the indoor-concentration factor analysis

did not include a distinct factor for these crustal elements,
which may be associated with indoor resuspension. Final-
ly, Factor 6 shows heavy loadings of Tl and Cd, which
were previously associated with indoor smoking. The gen-
eral concordance between the groupings identified by the
indoor-concentration factor analysis (Figure 8) and the in-
door–outdoor residual factor analysis (Figure 9) suggests
that we have reasonably identified indoor sources. The re-
sidual contribution of outdoor sources indicates the diffi-
culty of isolating indoor and outdoor contributions.

We subsequently explored whether regression models
for the indoor-attributable factors in Figure 9 provided
more informative interpretations than the regression mod-
els for the indoor-concentration factors. Following a simi-
lar forward stepwise regression modeling procedure, we
found modest improvements in interpretability for some
factors, but in most cases, predictive power was poor and
the physical interpretability remained limited (results not
shown).

IMPLICATIONS OF EXPOSURE MISCLASSIFICATION

As described in Exposure Misclassification Analysis,
under Statistical Methods and Data Analysis, our simulat-
ed epidemiologic study and corresponding exposure mis-
classification analysis were based on our indoor LUR
models for EC, NO2, and PM2.5 (Table 19) along with alter-
native exposure models capturing indoor concentrations
(both good exposure surrogates and poor exposure surro-
gates).

The distributions of the simulated ORs from the various
LUR and exposure models and from the gold standard (the
yearly indoor pollutant concentrations generated by our
model) are shown in Figure 10 (NO2), Figure 11 (PM2.5),
and Figure 12 (EC). For the exposure models using poor
exposure surrogates, only results for the surrogate distance
to the nearest major road are shown because they are repre-
sentative of those observed across this category of models.
For each of the three pollutants, the range of observed ORs
obtained using the models with poor exposure surrogates
was very large, with medians of approximately 1.00 re-
gardless of the true OR. This finding was expected given
the weak relationships between the traffic terms in these
models and measured indoor concentrations. For exposure
models using good exposure surrogates (e.g., unweighted
traffic density within a 50-m buffer, gas stove usage), the
ranges were smaller and the median estimated ORs were
closer to the true health effect. The previously developed
LUR models for NO2 and PM2.5 performed well in compar-
ison to the gold standard, but somewhat more poorly for
EC (Figure 12).
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Figure 9. Factor loading matrix derived using residuals from a regression model of indoor concentrations on outdoor concentrations, modified by a cat-
egorical ventilation marker, using a six-factor model. Pollutants and particle constituents are sorted by their position in a hierarchical clustering dendro-
gram, to optimize visual interpretation by placing correlated constituents together.
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Figure 10. Distribution of estimated ORs per interquartile increase in concentration using various models of simulated indoor NO2 concentrations
given different true ORs. White boxes indicate a true OR of 1.05, crosshatched boxes indicate a true OR of 1.50, and grey boxes indicate a true OR of 2.00.
Solid lines indicate the median, boxes indicate the interquartile range, and whiskers indicate the 10th and 90th percentiles. The gold standard is defined
as the simulated average annual indoor concentrations at every home.

Figure 11. Distribution of estimated ORs per interquartile increase in concentration using various models of simulated indoor PM2.5 concentrations
given different true ORs. White boxes indicate a true OR of 1.05, crosshatched boxes indicate a true OR of 1.50, and grey boxes indicate a true OR of 2.00.
Solid lines indicate the median, boxes indicate the interquartile range, and whiskers indicate the 10th and 90th percentiles. The gold standard is defined
as the simulated average annual indoor concentrations at every home.
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We can more formally evaluate model performance by
examining estimated biases, median SEs, and RMSEs for
the surrogate exposure models for each of the pollutants.
These performance measures are shown in Table 22, for
NO2; Table 23, for PM2.5; and Table 24, for EC. Results are
shown for each hypothetical true health-effect estimate

(�x) associated with an interquartile increase in pollutant
concentrations. The corresponding ORs (i.e., 1.05, 1.50, and
2.00) are included to provide interpollutant comparisons.
The results from these tables suggest that, for all pollutants,
the estimated bias is generally small for the LUR models, an
expected finding given our simulation framework (using

Figure 12. Distribution of estimated ORs per interquartile increase in concentration using various models of simulated indoor EC concentrations given
different true ORs. White boxes indicate a true OR of 1.05, crosshatched boxes indicate a true OR of 1.50, and grey boxes indicate a true OR of 2.00. Solid
lines indicate the median, boxes indicate the interquartile range, and whiskers indicate the 10th and 90th percentiles. The gold standard is defined as the
simulated average annual indoor concentrations at every home.

Table 22. Estimated Bias, Median SE, and RMSE for Each Exposure Model of Indoor NO2 Concentrations Given Different True 
Health Effect Estimates (�X) and Corresponding ORs

Surrogate
Model

�X (OR)

0.004 (1.05) 0.04 (1.50) 0.06 (2.00)

Bias 
Median 

SE RMSE Bias 
Median

SE RMSE Bias 
Median

SE RMSE

Distance to nearest major road �0.011 0.022 1.31 �0.030 0.024 1.37 �0.059a 0.026 1.37
Unweighted traffic density 
within 50-m buffer

�0.002a 0.013 0.283 �0.012a 0.015 0.107 �0.030a 0.017 0.389

Gas stove usage
0.007 0.028 0.344 0.009 0.032 0.497 0.016 0.035 0.717

LUR model �0.001a 0.010 0.012 �0.001a 0.012 0.012 �0.003a 0.015 0.016
Gold standardb 0.000 0.006 0.006 0.000 0.008 0.008 0.000a 0.009 0.009

a Statistically significantly different from zero based on standard error of bias estimates (P < 0.05).

b Gold standard is defined as the simulated indoor concentrations at every home.
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these LUR models to generate the gold standard). However,
the bias was statistically significantly different from zero
based on the standard error of bias estimates (P < 0.05) in
nearly all cases and was negative in all cases, albeit rela-
tively small in magnitude.

For the other exposure models, the biases were somewhat
greater, although the degree and statistical significance with
respect to simulation variability depended on the pollutant,
model, and OR. For NO2 (Table 22), the gas stove usage
model was positively biased but not significantly so. The
unweighted traffic-density model was significantly nega-
tively biased at all ORs. For PM2.5 (Table 23), the bias was
not statistically significant for the models using distance to
nearest major road or occupant density; however, the mean
biases were large for models using distance to the nearest

major road for all ORs and for the occupant density model at
an OR of 1.05. For EC (Table 24), the distance to the nearest
designated truck route model was downwardly biased but
only significantly so at an OR of 1.5.

Using the LUR models, the median SEs were approxi-
mately twice that of the gold standard median SEs for NO2
and PM2.5, but were about 4 times the gold standard medi-
an SEs for EC (Tables 22, 23, and 24). For the other expo-
sure models, we observed SEs 2-to-5 times those of the
gold standard for all three pollutants. Similarly, the RMSEs
were approximately 1.5-to-2 times larger using the LUR
models than they would be if the true exposures were
known (i.e., the gold standard) for NO2 and PM2.5, but
were 3-to-4 times larger for EC.

Table 23. Estimated Bias, Median SE, and RMSE for Each Exposure Model of Indoor PM2.5 Concentrations Given 
Different True Health Effect Estimates (�X) and Corresponding ORs

Surrogate
Model

�X (OR)

0.004 (1.05) 0.03 (1.50) 0.05 (2.00)

Bias
Median

SE RMSE Bias
Median

SE RMSE Bias
Median

SE RMSE

Distance to nearest 
major road

0.051 0.030 3.66 �0.049 0.029 6.01 �0.054 0.031 15.8

Occupant density �0.005 0.017 0.161 �0.003 0.020 0.270 0.002 0.020 0.581
LUR model �0.001a 0.012 0.012 �0.003a 0.012 0.013 �0.007a 0.013 0.015
Gold standardb 0.000 0.007 0.007 0.000a 0.007 0.007 0.000 0.008 0.008

a Statistically significantly different from zero based on standard error of bias estimates (P < 0.05).

b Gold standard is defined as the simulated indoor concentrations at every home.

Table 24. Estimated Bias, Median SE, and RMSE for Each Exposure Model of Indoor EC Concentrations Given Different 
True Health Effect Estimates (�X) and Corresponding ORs

Surrogate 
Model

�X (OR)

0.17 (1.05) 1.37 (1.50) 2.35 (2.00)

Bias
Median

SE RMSE Bias
Median

SE RMSE Bias
Median

SE RMSE

Distance to nearest 
major road

1.28 1.35 52.1 �1.99a 1.45 64.5 �0.960 1.61 55.8

Distance to nearest 
designated truck route

�0.006 1.57 11.8 �1.30a 1.67 40.1 �0.930 1.82 38.4

LUR model �0.008 1.36 1.37 �0.140a 1.43 1.45 �0.320a 1.54 1.56
Gold standardb 0.004 0.321 0.324 0.000 0.352 0.354 0.010 0.404 0.400

a Statistically significantly different from zero based on standard error of bias estimates (P < 0.05).

b Gold standard is defined as the simulated indoor concentrations at every home.
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The inflation of SEs as well as the bias in the health-effect
coefficients had a noticeable influence on the power to de-
tect significant associations (Table 25). At a true OR of
1.05, even the gold standard exposure measurements only
produced significant effects in 8% to 10% of realizations,
with even lower percentages for the various surrogate
models. The performance of the LUR model for NO2 was
favorable compared to that of the gold standard, with 93%
significant positive results at an OR of 1.5, and 99% at an
OR of 2.0. This could be attributed in part to the fact that
this model had an R2 value of 0.42 when all simulated data
sets were pooled. Recall that the R2 values reported in this
section refer to the models predicting pollutant concentra-
tions in the first year of life and are therefore different from
the values from models predicting shorter-term average
concentrations presented in Table 19. For NO2, there was a
substantial drop-off in the percent of significant positive
results for all of the surrogate models, with the gas stove
usage model yielding the best results (29% and 49% sig-
nificance for ORs of 1.5 and 2.0, respectively).

The LUR model for PM2.5 (R2 value of 0.28 across all re-
alizations) had 60% significant positive results at an OR of
1.5, and 90% at an OR of 2.0 (Table 25). The occupant-den-
sity model performed reasonably, with 64% significant
positive results at a true OR of 2.0. The LUR model for EC
had an R2 value of 0.05 for annual average concentrations
across all realizations. This resulted in a worse perfor-
mance relative to PM2.5 and NO2, with only 27% signifi-
cant positive results even at an OR of 2.0.

Table 25 also shows that the proportion of significant
positive associations under a true OR of 1.00 was close to

2.5% in all cases, indicating reasonable SEs for all models,
using a two-sided test with a significance level of 5%. Our
SE calculations did not account for overdispersion in the
logistic regression model, potentially resulting in inaccu-
rate SEs (Carroll et al. 1995). However, the robustness of
the naïve SEs can also be illustrated by the coverage prob-
abilities, which were approximately 0.95 at all three true
ORs (greater than 1) for the LUR models and gold standard,
and at a true OR of 1.05 for the individual surrogates (re-
sults not shown). Thus, the naïve SEs may be somewhat
inflated but are reasonable using the LUR models in our
simulations.* The coverage probability was low, however,
at the larger true ORs for the individual surrogate models.

When we considered some key sensitivity analyses, we
found the results were not sensitive to the baseline risk
chosen during the data generation process (results not
shown). The reduction by half in the error incorporated
when generating  and caused a narrower dis-
tribution in ; however the general conclusions re-
mained the same (results not shown).

Cin yeari Cinwi
�̂X

Table 25. Percentage of Significant Positive Results for Each Exposure Model of Indoor NO2, PM2.5, and EC 
Concentrations Given Different True ORsa

Surrogate
Model

NO2 
(True OR)

PM2.5
(True OR)

EC
(True OR)

1.00 1.05 1.50 2.00 1.00 1.05 1.50 2.00 1.00 1.05 1.50 2.00 

Distance to nearest major road 2.73 2.60 9.36 9.36 2.58 2.67 3.76 4.80 2.60 2.82 2.73 2.49
Unweighted traffic density 
within 50-m buffer

2.69 3.58 22.9 33.1

Distance to nearest designated 
truck route

2.24 3.22 8.13 13.7

Gas stove usage 2.44 3.80 29.1 48.8

Occupant density 2.22 3.84 35.7 63.8
LUR model 2.36 5.51 92.5 98.9 2.69 4.40 59.7 89.8 2.60 3.29 14.1 27.2
Gold standardb 2.56 10.3 100 100 3.31 7.93 99.0 100 2.00 7.89 97.5 100

a
 Blank spaces indicate an exposure model not considered as a potential surrogate for the pollutant.

b Gold standard is defined as the simulated indoor concentrations at every home.

* The reasonable results with regard to the naïve SEs can be explained in
part as follows. When either �x or the measurement error variance is small,
overdispersion does not dramatically inflate the SEs. For example, assum-
ing that only 20% of the original variance in indoor NO2 levels is explained
by the model, the largest of our ORs (2.0) produces an overdispersion esti-
mate of 1.17, or an inflation in the SE of only 8%. This helps to explain why
the coverage probabilities in our simulations are reasonable for small ORs
and for the models with more explanatory power. Given our analytic results
and the fact that in our simulations the coverage probabilities for the previ-
ously developed LUR models are close to 0.95, we did not adjust the SEs in
our analyses.
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To better understand the implications of validation
study models with varying degrees of explanatory power,
we plotted the approximate theoretical relationship be-
tween the power to detect a positive association using the
gold standard and the power using surrogate exposure
models (Figure 13). This relationship is based on the
strength of association between the predicted exposures
from surrogate models and true exposures (equation 15).
We see that the empirical results reasonably follow the the-
oretical relationship, with the power based on a surrogate
model increasing in a nonlinear fashion as a function of
the power under the gold standard, and with low power
for small R2 values. More specifically, there was low power
for EC (R2 = 0.05 for the LUR model across realizations)
under all OR scenarios and for PM2.5 and NO2 when the
gold standard power was low (< 11% for true OR = 1.05).
For PM2.5 and NO2, the gold standard empirical power
was nearly 100% for ORs of 1.5 and 2.0, so the theoretical
model indicated power on the order of 0.6, for PM2.5 (R2 =
0.28), and 0.8, for NO2 (R2 = 0.42), in general agreement
with the simulation findings (Table 25).

DISCUSSION AND CONCLUSIONS

Our study aimed to provide insight about whether a
combination of data from different sources (GIS-based co-
variates, a questionnaire, and central site monitoring), ana-
lyzed with a combination of LUR and factor analytic
methods, could explain variability in indoor and outdoor

concentrations of multiple air pollutants within urban res-
idential areas. We were able to explain 52% to 76% of the
variability in outdoor residential concentrations of EC,
PM2.5, and NO2 with a combination of temporal and spa-
tial terms, although more variability was explained for
PM2.5 (largely temporal) than for EC and NO2. The com-
bined factor analytic and LUR methods for outdoor con-
centrations helped to elucidate key sources, which largely
conformed to expectations, supporting our initial factor in-
terpretations. The explanatory power of the LUR models
for outdoor factors was weaker than that of the LUR mod-
els for individual pollutants, as might be expected, but
these models provided insight about spatially varying
source contributions and site characteristics associated
with that spatial variation.

Furthermore, as expected, indoor–outdoor relationships
varied substantially across pollutants, which helped us
better understand which were dominated by indoor sourc-
es and which were dominated by outdoor sources across
urban settings. We were able to explain a majority of the
variability in many individual indoor particle constituents
using measured outdoor concentrations and a ventilation
proxy. Our study indicates that characterizing indoor con-
centrations of ambient origin is viable, given our reason-
ably interpretable outdoor factors and our ability to
explain variability in both outdoor concentrations and in
effective penetration efficiencies. Further, our factor analy-
ses of indoor concentrations were generally interpretable,
if complicated by the simultaneous contributions of in-
door and outdoor sources. However, our regression models
predicting indoor concentrations or factors as a function of
GIS covariates, questionnaire data, and meteorological
data performed more poorly, with almost no ability to ex-
plain variability in factors attributed to indoor sources.
That said, our epidemiologic simulations demonstrated
that even a modest reduction in exposure misclassification
associated with using indoor rather than outdoor concen-
trations could prove significant for epidemiologic purpos-
es. We provide more detailed discussion, below, about
each of the subanalyses, followed by a more general con-
sideration of the implications of our study for future epide-
miologic studies or exposure models.

LUR MODELS FOR OUTDOOR EC, PM2.5, AND NO2

We found significantly greater variability and stronger
relationships with local traffic for EC and NO2 than for
PM2.5. This was reflected in both covariate significance
and the relative amount of variability explained by spatial
rather than temporal terms. Our findings are consistent
with prior literature (Martuzevicius et al. 2004; Wu et al.
2005), corroborating evidence that PM2.5 patterns are

Figure 13. Power of a hypothetical validation study to detect positive
associations under a surrogate model versus the gold standard, given dif-
ferent R2 values. 
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largely regional in nature for the eastern United States
(Burton et al. 1996; Suh et al. 1997).

One implication of focusing on an urban residential set-
ting is that traffic volumes may vary less there than across
metropolitan areas. As illustrated in Figure 3, across the
entire urban core, 100-m kernel-weighted traffic scores
ranged from 0 to 3,305 vehicle-meters traveled per m2 per
day; at cohort homes, this measure ranged from 5.8 to 168
vehicle-meters traveled per m2 per day. This lower range
in scores observed at cohort homes is likely driven largely
by the fact that relatively few homes are located by major
highways. This observation may be important for exposure
estimation; many models are derived from concentration
data collected near major roads, which may inaccurately
reflect traffic-concentration associations at the lower end.

We can also use our LUR models (Table 9) to gain insight
about the approximate amounts of residential outdoor con-
centrations of PM2.5, EC, and NO2 that are attributable to lo-
cal traffic. For PM2.5, the mean total roadway length within
100 m of the home (1,110 m) accounted for a marginal contri-
bution of 1.2 µg/m3, or 9.7% of predicted PM2.5. Applying
our predictive models with mean values for all terms, the
mean predicted concentration is 13.2 µg/m3; an increase of
one standard deviation in roadway length within 100 m of
the home (371 m) increases concentrations to 13.9 µg/m3.
Population density, which likely captures some traffic-related
influence, adds 1.1 µg/m3 on average. When we use nontrans-
formed PM2.5 data, the predicted local traffic contribution is
somewhat larger (2.6 µg/m3).

For EC, the mean total roadway length within 200 m of the
home (3,560 m) accounted for approximately 0.17 µg/m3, or
36%, of predicted EC. Increasing roadway length by one
standard deviation (1,156 m), with all other parameters at
their mean values, increases predictions from 0.47 to
0.54 µg/m3. Using nontransformed EC concentrations, pre-
dicted local traffic contributions are somewhat larger
(0.39 µg/m3). We observed a gradient of almost 1 µg/m3 in
EC across sampled homes (somewhat greater across individ-
ual measurements) before correcting for temporal variabili-
ty, which is relatively small compared to the variability
observed in European studies (approximately 10 µg/m3), as
expected given the greater use of diesel passenger vehicles
in Europe (Hoek et al. 2002).

Modeled local traffic terms accounted for approximately
2.8 ppb, or 21% of modeled NO2. The mean total roadway
length within 50 m of the home (441 m), with mean values
for other terms, predicts a concentration of 17.8 ppb. An
increase of one standard deviation (179 m) increases con-
centrations to 18.9 ppb. The range of 50-m roadway
lengths observed predicts a NO2 range of 15.4 to 20.9 ppb.

Population density, again, likely captures some local traf-
fic effect and accounts for 4.4 ppb on average.

Interestingly, for all three pollutants modeled, total road-
way length within varying buffer radii provided the greatest
explanatory power, although sensitivity analyses and subse-
quent factor analysis LUR models revealed that diesel cova-
riates, where available, also performed well for EC. Because
actual traffic counts for smaller residential roads are gener-
ally sparse, length measures may provide more stable traffic
indicators in residential areas than estimates based on traf-
fic counts. Also, differential bias in traffic-count accuracy
by roadway size is found in most available traffic databases;
actual traffic counts are generally collected on a regular ba-
sis for highways and major roads, with rough estimates cre-
ated for smaller residential roads.

In addition, we found that accurate modeling of outdoor
concentrations near urban residences required some con-
sideration of site characteristics, such as population densi-
ty and obstructions, which explained significant
variability in concentrations and at times altered traffic-
concentration associations. Population density, significant
for PM2.5 and NO2, may proxy either for other residential
sources or for local traffic and may indicate higher per-
mile emission rates from stop-and-go traffic in denser resi-
dential neighborhoods. We expected obstruction to modify
PM2.5 and EC, in keeping with recent findings suggesting
that roadside barriers reduce PM2.5 concentrations (Chen
et al. 2007). Though we did not expect to find this effect for
a gaseous pollutant such as NO2, this result is supported
by evidence that residential NO2 concentrations differed
significantly depending on whether the home faced onto
the courtyard or street, after accounting for distance to
road (Reungoat et al. 2005). Our findings may also be relat-
ed in part to our passive sampling approach, as an obstruc-
tion could reduce the face velocity on the sampler. This
effect should be limited, however, because we mounted in-
verted dishes over samplers in the field, to protect sam-
plers and moderate face velocity.

CONSTRAINED FACTOR ANALYSIS AND LUR 
MODELS FOR OUTDOOR LATENT VARIABLES

Our approach was effective in deriving source-related
factors from measures of particle constituents and gaseous
pollutants collected across multiple sites, incorporating
both spatial and temporal variability. The GIS-based LUR
models for outdoor concentrations largely corroborated
the hypothesized factor sources, reinforcing the validity of
combining constrained factor analysis and LUR models.
One benefit of our approach was that it enabled some rea-
sonable distinction between PM2.5 factors driven by tem-
poral variability and those driven by spatial variability.
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For example, Factor 1, interpreted as long-range transport,
was predicted largely by central site monitoring data and
season, which vary only over time; as such, this source fac-
tor would not vary in a long-term epidemiologic study in
this urban area.

In contrast, Factors 2 and 5, both of which were hypoth-
esized to capture aspects of local traffic, had no significant
correlation with central site monitoring data in multivari-
ate LUR models. Interestingly, high-density residential
land use significantly predicted lower levels of Factor 2
(brake wear and local traffic) but higher levels of Factor 5
(road dust and resuspension). This could potentially be an
indication of the differential effects of traffic characteris-
tics, including fleet composition and vehicle speed. For
example, prior studies of brake-wear-related exhaust com-
ponents indicate that brake-pad wear can accumulate in-
side the brake housing unit and not be released until the
vehicle reaches higher speeds, thereby forcing more air
through the chamber and releasing encased dusts (Stern-
beck et al. 2002; Schauer et al. 2006). If this is the case,
then we might expect relatively weak spatial correlations
between denser areas where brake dust is created (e.g., by
stop-and-go traffic) and areas of more freely flowing traffic,
where these constituents may ultimately be released into
ambient air. Road dust would similarly have a complex re-
lationship with vehicle speeds and traffic patterns, which
are related to deposition and resuspension patterns. The
complexities of road dust and brake-wear patterns are fur-
ther reinforced by some of the differences between the fac-
tor loadings in our primary model and those in the factor
analysis model derived from CAPs samples (Appendix C),
although these may be attributable to a number of other
differences in settings and the timing of sampling.

Our remaining two factors had very clear hypothesized
sources given the factor loadings, which were well sup-
ported by the LUR models. For Factor 3 (diesel exhaust),
the covariate for the fraction of diesel vehicles on the near-
est major road was significant, but this covariate would not
likely be available in many settings or in a large epidemio-
logic study, as it was based on our traffic-counter data. The
next best univariate traffic-related predictor identified in
sensitivity analyses, however, was distance to the nearest
truck route. This term may therefore serve as a reasonable
proxy in settings where more refined traffic data are not
available. For Factor 4 (fuel oil combustion), the univariate
and multivariate models emphasize strong seasonality,
with higher concentrations during the heating season, cor-
responding to residential fuel oil usage. Although our resi-
dential fuel oil covariate did not retain significance in the
multivariate model, population density served as a highly
correlated proxy in this setting (indeed, fuel oil use was
calculated using population density within 200 m of the

home). In addition, the map of Factor 4 (Figure 5) clearly
shows a high-concentration cluster close to industrial fuel
oil sources, including ports and shipping channels along
waterways near East Boston. We did not consider covari-
ates such as proximity to the port in our regression models,
as, in this case, such covariates could proxy for neighbor-
hood, thus over-modeling our data. Spatial patterns for
this factor as well as other terms could clearly be utilized
in the future to develop more refined models.

We can gain further insight by comparing our LUR mod-
els of outdoor factors (Tables 9 and 11) with those devel-
oped for PM2.5, EC, and NO2 (Table 9). Residential outdoor
total PM2.5 was predicted by central site PM2.5 with little
contribution from traffic and local sources, similar to the
Factor 1 model presented here, reinforcing the interpreta-
tion of Factor 1 as long-range transport. In contrast, residen-
tial outdoor EC was poorly predicted by central site EC,
possibly owing to intraurban variability in EC sources and
differences between EC measurement techniques used in
study homes (reflectance) and at the central site (aethalome-
ter). Similarly, central site EC did not predict Factor 3 (die-
sel exhaust). NO2 had modest loadings across our five
factors (Figure 4) and somewhat low correlations with parti-
cle constituents, but the factor with the greatest NO2 loading
(Factor 2, brake wear and local traffic) was associated with
roadway length (Table 11), which also served as a signifi-
cant predictor in the NO2 regression model, albeit with a
slightly different buffer size (Table 9). In general, the predic-
tive power of our regression models for factor analysis re-
sults is slightly lower than for the individual pollutants; this
observation suggests that our factors are not single well-de-
fined sources, points to the complexity of collecting and an-
alyzing measurements over space and time, and relates to a
more restrictive regression modeling approach for the factor
analysis outputs as well as uncertainties associated with
factor analysis itself.

LUR MODELS FOR INDOOR EC, PM2.5, AND NO2

The predictive power of the LUR models for indoor con-
centrations of EC, PM2.5, and NO2 was somewhat smaller
than the predictive power of the LUR models for outdoor
concentrations. This was expected given the strong effects
of indoor sources and modification by ventilation as well as
the limitations of the covariates associated with these fac-
tors (e.g., the dependence on binary variables and the non-
specificity of covariates such as occupant density). Table 19
shows that the three pollutants have different patterns and
predictors — indoor NO2 is predicted by local traffic, indoor
sources, and ventilation; indoor PM2.5 by indoor sources
and ventilation but not by local traffic; and indoor EC by lo-
cal traffic and ventilation but not by indoor sources.
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Looking at each pollutant in detail, we see that outdoor
NO2 was predicted by central site data, total roadway length
within 50 m of the home, presence of obstructions between
the home and roadway, season, and population density (Ta-
ble 9). Our more restrictive model-building approach for the
indoor environment did not allow all of these terms to be in-
troduced, but there was concordance in the spatial coverage
of the traffic variables, as traffic density within 50 m of the
home was the strongest predictor of indoor NO2. Given the
range of cumulative unweighted traffic density within 50 m
of the home (from 4.1 to 198 vehicle-meters/m2/day), the
indoor LUR model indicates traffic contributions from 0.3
to 14 ppb for homes with open windows, with no signifi-
cant contribution to homes without open windows. As de-
scribed earlier in this report, the range of roadway length
values implies traffic contributions of approximately
5.5 ppb to outdoor concentrations, with population densi-
ty (a potential proxy for traffic) contributing another
4.4 ppb, indicating general concordance between the in-
door and outdoor models. For comparison, gas stove usage
contributed 7 ppb, on average, to indoor NO2 levels, com-
parable to observations from previous studies (Lee et al.
1998; Levy et al. 1998). Thus, our model would imply that
local traffic is a larger contributor to indoor NO2 where
traffic density is high and windows are opened, whereas
indoor sources are a larger contributor when traffic density
is low or windows are closed.

For EC, roadway length was significant in multivariate
outdoor-concentration LUR models, but covariates repre-
senting diesel traffic produced larger model R2 values in
sensitivity analyses. This finding is supported by our in-
door LUR model for EC, which found that distance from a
designated truck route and other diesel-related variables,
such as diesel fraction and trucks per day, had the highest
posterior probabilities (Table 18). The contribution of local
traffic to indoor EC for homes with open windows was ap-
proximately 0.2 µg/m3 (similar to the estimated contribu-
tion from the outdoor LUR model) and was insignificant
for homes with closed windows. For both the indoor and
outdoor LUR models (Tables 17 and 9, respectively), the R2

values for EC were lower than for PM2.5 or NO2, potential-
ly reflecting the different measurement methods employed
at the central site and the residential monitors, greater spa-
tial variability in EC that is difficult to explain with avail-
able traffic covariates (which only weakly capture diesel
effects), and, for the indoor models, additional indoor
sources not captured by questionnaire data.

Finally, for PM2.5, both the indoor and outdoor LUR
models (Tables 17 and 9, respectively) emphasize that
most variability in outdoor concentrations is explained by
temporal factors that are captured well by central site mon-
itoring data. Ambient concentrations contributed an average

of 15 µg/m3 to indoor PM2.5 for homes with open windows,
and 10 µg/m3 for homes where windows were closed. Addi-
tionally, cooking for more than an hour per day contributed
6.2 µg/m3, and average occupant density contributed
6.5 µg/m3. The observed effect of cooking is comparable to
results from prior studies (Ozkaynak et al. 1994; Brunekreef
et al. 2005). Occupant density is likely a proxy for multiple
factors, including resuspension activities. Resuspension has
not been a substantial contributor in previous studies, al-
though the smaller volumes and greater crowding of our
study homes may increase its relative source strength.

CONSTRAINED FACTOR ANALYSIS AND LUR 
MODELS FOR INDOOR LATENT VARIABLES

As with the outdoor-concentration factor analysis, the in-
door-concentration factor analysis was generally effective in
deriving factors that were physically interpretable and logi-
cal. In the six-factor model derived from measured indoor
concentrations, two of the factors (long-range transport, fuel
oil/diesel combustion) represented outdoor sources similar
to those from the outdoor-concentration factor analysis
model, both in terms of their loadings and interpretations.
For those factors hypothesized to have indoor sources (e.g.,
road dust and resuspension, indoor combustion, indoor
smoking, and indoor cleaning), these interpretations were
corroborated in part by the findings from the factor analyses
on residuals from indoor–outdoor regression models. We
can therefore conclude that factor analysis methods can be
successfully utilized in the residential indoor environment,
and insights from indoor–outdoor regression models may
corroborate factor interpretations.

The application of LUR-style modeling techniques to
the indoor factors, however, was less successful. Given
that our LUR- and questionnaire-based regression models
for individual indoor pollutants (Table 19) could only ex-
plain a small portion of the variance in their concentra-
tions, limited success in this model-building step was not
unexpected. The factors driven by outdoor sources were
reasonably interpretable, with some univariate associa-
tions further supporting our factor interpretations. Indoor
factors were poorly predicted, which was attributable in
part to limitations with our questionnaire data and in part
to inherent complexities with indoor sources. For exam-
ple, Factor 4 (indoor combustion) was highly skewed, with
six observations (clustered among three homes) showing
significantly higher factor scores than other observations.
These observations all had Ce and La I/O ratios exceeding
10, with K generally in excess of 2, clearly indicative of in-
door sources. While our questionnaire data were not suc-
cessful in explaining the variability in this factor, the
factor analyses clearly indicated an indoor source present
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at a subset of homes. Similarly, Factor 5 was hypothesized
to capture indoor smoking, but few participants reported
smoking during the sampling period (four participants re-
ported 1-to-4 cigarettes per day inside the home, with the
rest reporting no smoking). Our inability to explain vari-
ability in Factor 5 could be related in part to reporting bias
for questions about smoking behaviors (given that we were
interviewing pregnant women or those with newborns) as
well as the highly skewed distribution of the factor scores.

In general, our ability to use LUR and multivariate mod-
eling to explain variability in indoor factors was likely lim-
ited by multiple issues, including the small sample size,
the skewed distributions anticipated when a significant in-
door source is present in a small number of homes, and the
complex nature of ventilation-modified and correlated in-
door-source activities.

IMPLICATIONS OF EXPOSURE MISCLASSIFICATION

For all pollutants, using LUR models developed from
our air pollution substudy (considered here as a validation
study) resulted in better estimates of the true health effect
coefficients, with relatively small estimated biases and
lower RMSEs compared to exposure models derived from
individual exposure proxies. Our simulations help to con-
firm that individual measures of traffic, often used as ex-
posure indicators in epidemiologic studies (Garshick et al.
2003; Heinrich et al. 2005; Ryan et al. 2005), will not per-
form well if uncorrelated or poorly correlated with the ex-
posure of interest (and may have reduced power, even
given positive correlations, if other factors are not consid-
ered). While this point is not surprising based on first prin-
ciples and other simulation results (Freedman et al. 2008;
Szpiro et al. 2008; Kim et al. 2009), our results demonstrate
the quantitative implications of surrogate selection with
varying degrees of measurement error and emphasize the
importance of using validation studies to select the most
appropriate traffic indicator or exposure model (Gauder-
man et al. 2005).

Perhaps most importantly in the context of our analysis,
these simulations provide reassurance that regression mod-
els with fairly modest R2 values (approximately 0.3 to 0.4)
would substantially improve the ability to detect significant
associations compared to models using individual exposure
surrogates in the absence of validation studies. This is indi-
cated in equation (15) and Figure 13, which show the in-
crease in power with increasing R2 values that would be
expected with improved exposure modeling. Not only is
power improved, but because of the nonlinearities articulat-
ed in Appendix G (Derivation of the Power Expression for
Exposure Misclassification Analysis, available on the HEI
Web site), this power is improved substantially, especially

for larger studies with higher ORs. However, our simula-
tion findings for EC suggest that a minimal performance
threshold for regression models is necessary to yield sig-
nificant associations consistent with our analytic calcula-
tions, presented in Figure 13 and derived in Appendix G.

Even for those exposure models derived from validation
data, some bias still occurs. This bias and the bias seen for
the individual exposure proxies is not surprising in light
of recent analytic and simulation results in the statistical-
measurement-error literature on the complexity of the ef-
fects of exposure-measurement error. The regression struc-
ture induces Berkson-like error in the predicted exposures
because the process of estimating exposures using models
functions as regression calibration in the measurement er-
ror context (Szpiro et al. 2008; Gryparis et al. 2009). This
component of the exposure error should increase uncer-
tainty and decrease power but not induce bias when the
health model is a linear regression. However, in logistic re-
gression, limited bias does occur with Berkson error (Car-
roll et al. 2006). More importantly, imprecision in the
exposure-model parameter estimates can induce bias, par-
ticularly with small exposure data sets (Szpiro et al. 2008),
as is the case in our setting. Note also that Freedman and
colleagues (2008) found bias away from the null in simula-
tions where the measurement error was large.

Additionally, because of outliers, the mean bias calcula-
tion is not very stable for the exposure models derived for
individual surrogates. The weak surrogate–true exposure re-
lationships lead to values of �2 (equation 13) near zero, pro-
ducing little variation in the predicted exposures. This in
turn caused numerical instability in the health effect esti-
mates, producing some extreme values and explaining the
statistical insignificance of some large mean bias estimates.

LIMITATIONS

There were multiple limitations within our individual
analyses as well as in the study as a whole. Our relatively
small sample size was an obvious limitation throughout the
model-building processes. While measuring and analyzing
numerous pollutants both indoors and outdoors at residenc-
es provided unique and important data, it also implied that
a larger sample size would have been cost-prohibitive and
that sampling at numerous sites simultaneously would have
been logistically challenging. Our samples incorporated
both spatial and temporal variability, and many of our ana-
lytic efforts were devoted to attempts to control for time-
varying factors to better understand spatial and home-spe-
cific contributors to variability. Most prior LUR studies
have taken measurements — generally unobstructed road-
side measurements — at numerous sites simultaneously,
obviating the need to control for temporal factors, but such
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an approach is generally infeasible for studies with equip-
ment-intensive, multipollutant-sampling designs, espe-
cially given the need to interact with residents throughout
the sampling process. That said, our study did include
more sites than have been incorporated in PM2.5 factor
analyses and source-apportionment studies to date, and
both our individual-pollutant and our outdoor factor anal-
ysis regression models were able to separate to some extent
pollutants or factors driven by long-range transport and
temporal terms from pollutants or factors driven by spatial
terms. Moreover, our effective sample size was somewhat
greater than the number of samples collected, given the
number of pollutants characterized in our analysis.

There were also limitations in many of the covariates
used in the LUR models. The GIS-based traffic covariates
can be highly correlated with one another and proxy for a
variety of sources, and it is unclear a priori which covari-
ates would be most appropriate within a given geographic
area. In our study, length of roadway within various buff-
ers was often a more robust predictor of pollutant concen-
trations than covariates accounting for traffic counts, but
this was in part due to the degree of missing data for traffic
counts as well as our focus on dense urban areas. The
length of road segments within a defined buffer is a weak
proxy of emissions from those road segments, and it would
have a different interpretation in a dense urban neighbor-
hood with diesel bus and truck traffic than in a suburban
area with mostly smaller roads but possibly near a major
highway. Other geographic areas may also have more ro-
bust local traffic counts, which could increase the predic-
tive power of covariates calculated using traffic counts.
More generally, the available indicators do not necessarily
capture the characteristics of traffic that are most relevant
to concentrations of different pollutants. For example,
dense stop-and-go traffic may create more emissions per
vehicle mile, and total traffic counts fail to capture such re-
alities. In principle, GIS-based traffic covariates that in-
clude prevailing winds are more physically interpretable
and should theoretically better capture the influence of lo-
cal traffic. However, these terms were not always more sig-
nificant in our analyses, although this may have been due
to our consideration of only two candidate traffic variables
with meteorological weighting, and we encourage the fur-
ther development and exploration of GIS covariates that
combine source strength and meteorology.

We used data from a central site monitor in Roxbury to
capture temporal trends and help isolate spatial contribu-
tions to variability. However, this monitor may have been
influenced by local traffic as well as by the same meteoro-
logical factors that can influence our measured concentra-
tions at individual homes, complicating the interpretation

of this term. The central site monitor also used different
measurement methods for EC than were utilized in our sam-
pling, potentially explaining in part the weaker perfor-
mance for EC in both indoor and outdoor models. However,
the monitor used in our primary analyses is at the center of
our relatively small monitoring region and is well correlat-
ed with other ambient monitors in and around Boston, and
our findings were not improved by using other available
monitors.

The indoor-source terms in our models were developed
from questionnaires that are surrogates for the source
emissions rate, have limited resolution, and may be sub-
ject to recall bias or other errors. Some of the indoor-source
covariates that significantly predicted indoor concentra-
tions, such as number of occupants or number of occu-
pants per room, are difficult to interpret and may represent
a variety of occupant activities. However, most of these
limitations are inherent in developing exposure estimates
based on publicly available or questionnaire data and
emphasize the value of more detailed time-activity and
source-utilization data. Similarly, the open-windows vari-
able was the best available predictor of the I/O sulfur ratio,
but it is a crude proxy for that ratio, which itself is a proxy of
the infiltration factor. Measuring AERs in each home clearly
would have reduced the uncertainty in this term, but that
was logistically impractical; it would have required being
able to collect such measurements for all participants in a
cohort study over multiple seasons, which would have been
unlikely. Given these requirements, a simpler proxy based
on questionnaire or home-characteristics data would be
necessary even if measured AERs were available within a
validation study. Our results suggest that window-opening
behavior coupled with season is physically interpretable
and reasonably predictive.

Some additional covariates in our models, such as
obstruction between the home and nearest major road,
would not ordinarily be available or interpretable for all
members of a cohort, complicating interpretation of our
models. These terms can be considered as correction fac-
tors for the restrictions associated with residential moni-
toring — samplers often need to be set up behind the
buildings, wherever power sources are available, on a
porch where smoking or grilling has also occurred, or at
some other nonideal or nonrepresentative location. These
parameters may not be appropriate for extrapolation, as
they may not reflect mean concentrations near the home,
but are important for correctly interpreting residential data.
This complication reinforces the limitations discussed pre-
viously about residential sampling in relation to near-
roadway sampling. Capturing variability in residential
exposures requires accounting for numerous complexities
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not present in other study designs and limits the predictive
power of our models. On the other hand, our models argu-
ably better reflect some of the real-world complexities
associated with personal exposures.

There were some limitations in our exposure misclassi-
fication analysis as well. Our analytical framework pre-
sumed that individual pollutants are the causative agents
in question, but most surrogates do not uniquely identify a
causal pollutant. For example, a traffic indicator repre-
sents a complex mixture of pollution elevated near road-
ways (Jerrett et al. 2005) and may also be a marker for other
factors such as socioeconomic status or noise. It may be a
more appropriate exposure surrogate for simultaneous ex-
posure to multiple factors associated with traffic. Similar-
ly, some indoor-source terms such as occupant density
may not only represent resuspension activities, but may
also be associated with socioeconomic status, housing
type, or related occupant-activity patterns. Our analysis
also does not include a true validation study, in the sense
that the gold standard does not reflect measured exposures
across the entire time window that may be relevant to the
development of health effects. However, rarely in epidemi-
ology is the gold standard a perfect measurement of true
exposure (Wacholder et al. 1993; Brenner 1996; Spiegel-
man et al. 1997). Direct measurements are logistically in-
feasible for a cohort study considering long-term
exposures, so we view our validation study (our short-term
monitoring across multiple seasons with models that ex-
plicitly address seasonally varying factors) as a reasonable
attempt to represent measured exposure. In addition, car-
rying out the estimation step for all 4,500 simulated data
sets addresses the effect of uncertainty in estimating model
coefficients, but does not reflect uncertainty deriving from
the original model-selection process. More generally, the
aim of this simulation study was not to determine the mer-
its of our LUR models per se, but to provide a quantitative
framework within which various exposure models could
be formally evaluated.

Finally, while many aspects of our methods and analysis
can be generalized to other settings, we do not recommend
that our specific LUR models be directly applied elsewhere
without additional data collection and analysis. While
some studies have demonstrated transferability of LUR
models across cities (Briggs et al. 2000; Poplawski et al.
2009), this was only for NO2, given additional local sam-
pling and with demonstrated between-city concordance in
input data. Moreover, other studies (Jerrett et al. 2005) have
shown poor transferability of LUR models. At a minimum,
use of our LUR models would be recommended only with
local sampling at a subset of sites to validate or modify our
models. In terms of the exposure misclassification analysis,

our results should not be used to directly reinterpret previ-
ously published epidemiologic findings (e.g., to draw in-
ferences about studies using distance to the nearest major
road as an exposure surrogate). Multiple traffic covariates
did not predict measured concentrations in our study, but
terms such as distance to the nearest major road may be
more robust predictors of exposures in settings with many
large highways and limited surface traffic, as well as for
pollutants with limited indoor sources or high effective
penetration efficiencies or with both. However, our study
offers a methodology that is generalizable and can be ap-
plied to other studies and data sets.

GENERALIZABLE INSIGHTS AND LESSONS LEARNED

Our study focused on exposure characterization for an ur-
ban cohort, a topic of numerous previous investigations, but
it adopted somewhat different strategies than some studies,
with respect to sampling design (i.e., measurements in in-
door and outdoor residential settings), scope (i.e., consider-
ation of a large number of pollutants at a smaller number of
sites), and analytical approaches (i.e., use of both factor anal-
yses and LUR). It is therefore valuable to consider which of
these strategies would be recommended for future investiga-
tions, and which would not be recommended in light of the
resources deployed relative to the information gained.

First, there are significant tradeoffs associated with char-
acterizing the indoor environment. Monitoring indoors at
all sites involved substantial resources and reduced the
number of sites at which we could take measurements, re-
ducing the statistical power of outdoor LUR models. An al-
ternative strategy would involve developing spatiotemporal
models for outdoor concentrations and using a smaller
number of indoor–outdoor measurements to develop mod-
els of effective penetration efficiency, as is being done in
the MESA Air study (Cohen et al. 2009). This approach has
some appeal, and as our study has shown, would likely
yield more-predictive models. However, capturing only in-
door air pollution of ambient origin will add exposure mis-
classification to resulting epidemiologic analyses. Whether
it makes sense to pursue characterization of indoor sources
depends on the particle constituents of interest given the
health outcome of concern as well as the degree of expo-
sure misclassification induced by a weaker model that in-
cludes a measure more closely related to personal exposure
versus a stronger model that relies on a measure more dis-
tantly related to personal exposure. Our models would sug-
gest that characterizing indoor air pollution of ambient
origin is a more viable approach in the near term, but we
encourage researchers to continue to refine questionnaires,
explore tax assessor databases, and to use other strategies
to better capture indoor sources.
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Our study reflects a multipollutant exposure-assess-
ment strategy that is potentially responsive to the substan-
tial interest in understanding the relative toxicity of
various particle constituents, as well as in developing a hi-
erarchy of sources for air pollution regulations. In general,
studies that are able to measure or model pollutants be-
yond PM2.5 and studies that use factor analysis and related
techniques to determine source contributions are clearly
informative. In particular, it is valuable to understand the
combination of pollutants that may be correlated with ei-
ther a single pollutant or a GIS-based traffic variable, to in-
form the interpretation of epidemiologic investigations.
We recommend that any study collecting particle filters in
the context of LUR modeling conduct some form of ele-
mental or chemical analysis followed by factor analysis, to
help advance the understanding of pollutants and sources
contributing to observed health outcomes. While the cost
of such analysis may not be feasible in some settings, the
value of the information gained is likely to be substantial
relative to the marginal costs incurred. Finally, we encour-
age investigators pursuing this direction to use techniques
for joint factor analysis–LUR modeling, which can help in
source identification and can help avoid statistical issues
associated with modeling numerous individual pollutants.

CONCLUSIONS

Our study offers some insight into intraurban variability
in residential exposures to multiple air pollutants and
demonstrates the utility of various methods to evaluate
these concentrations. We demonstrated, within an urban
area, significant outdoor spatial variability in NO2 and in
multiple particle constituents. LUR techniques combined
with constrained factor analyses for outdoor concentra-
tions helped to disentangle the contributions of local
sources from long-range transport and other sources of
temporal variability. These two techniques have separately
been successful in characterizing different temporal and
spatial aspects of PM2.5, but our analysis leveraged in-
sights from both approaches, using the factor analysis to
provide interpretable source factors and GIS-based LUR
modeling to corroborate source interpretations.

Our analytic methods would allow exposures to a de-
fined source category to be investigated in epidemiologic
studies, potentially moving beyond roadway proximity
measures to examine the differential effects of diesel ex-
haust, brake wear and exhaust, and resuspended road
dust, thus reducing exposure misclassification and ulti-
mately facilitating the identification of constituents that
are causally related to health effects and enabling more ef-
fective interventions. More generally, our analytic meth-
ods can be used in settings in which multipollutant

sampling is desired but only a small number of homes can
be sampled simultaneously, resulting in a need to distin-
guish temporal from spatial effects for exposure modeling.
Our findings suggest that the development of sampling de-
signs with more temporally structured sampling intervals,
especially designs that maximize temporal overlap (e.g.,
systematically staggered sampling with a predictable
amount of temporal overlap at multiple homes), might al-
low for improved distinction of spatial and temporal vari-
ability and improved characterization of intraseason
variability. Such theoretically optimal sampling designs
should be considered, recognizing that residential sam-
pling includes many complications, including visit re-
scheduling. Similarly, site selection can be optimized
given initial characterization of site and traffic characteris-
tics, especially of local sources, site characteristics, and
obstructions that may influence concentrations.

Our outdoor findings also show that multiple categories
of traffic contributions can be isolated and predicted by
different GIS covariates, emphasizing the value of a multi-
pollutant approach and the need to interpret individual
traffic proxies with caution. Within our data set, measures
of roadway length or traffic density were generally more
predictive of exposures than land-use type, which may be
more useful for studies of large geographic domains for
which land-use and other GIS variables display greater
variation. Our findings for outdoor concentrations, with
LUR models that include terms for site and meteorological
characteristics, also emphasize the importance of incorpo-
rating into study models small-scale spatial and temporal
predictors to accurately capture exposure variability in ur-
ban residential settings.

In our analysis of the indoor residential environment,
we demonstrated that indoor–outdoor relationships varied
substantially among particle constituents and that infor-
mation from public databases (e.g., central site monitoring
data, GIS-based traffic data) combined with focused ques-
tionnaire data could predict indoor concentrations for a
subset of key pollutants. Factor analysis methods applied
to the indoor environment, coupled with indoor–outdoor
modeling, helped to separate indoor sources from outdoor
sources to some extent. Although explaining variability in
indoor-source contributions was challenging, our analytical
framework provides direction for future studies characteriz-
ing indoor exposure sources and source-activity patterns.
Because of the differential indoor–outdoor relationships
across constituents and the likelihood that indoor concen-
trations are a more meaningful proxy of personal exposures
than are outdoor concentrations, formal consideration of the
implications of measurement error on epidemiologic study
results is necessary. Our analysis provided a technique by
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which these implications could be quantified. This analysis
also underlined the fact that, because both indoor and out-
door sources importantly influence concentrations of multi-
ple air pollutants, individual exposure proxies are likely to
be less effective predictors of true individual exposures
than are multiple regression models developed through for-
mal validation studies.
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APPENDIX A. Scatterplots of Central Site 
Concentration Data and Residential 
Outdoor Measurements

For our LUR analyses, we matched central site monitoring
data with our indoor and outdoor observations for the pre-
cise hours for which sampling was conducted. The relevant
central site monitors were those with hourly concentration
data throughout the sampling period, collected at a location
relevant to our study domain (which included portions of
Suffolk, Norfolk, and Middlesex counties). While we used
the monitor in Roxbury (Harrison Avenue, U.S. EPA site ID
250250042) for our primary analyses for all three pollutants,
we considered the following monitors for sensitivity analy-
ses (in addition to the average across monitors and a back-
ground monitor for NO2 for summer months only):

• PM2.5 and EC: North End (174 North Street, U.S. EPA 
site ID 250250043)

• NO2: Kenmore Square (U.S. EPA site ID 250250002), 
South Boston (531a East First Street, U.S. EPA site ID 
250250040)

The Roxbury monitor is located on a residential road-
way within a dense urban neighborhood and is considered
a “population-exposure” monitor by the U.S. EPA. The
North End monitor is located in a dense urban neighbor-
hood, proximate to a major highway and multiple surface
roads, and is also considered a population-exposure moni-
tor. The Kenmore Square monitor is located at ground lev-
el on a large urban roadway and is considered a “highest-
concentration” monitor by the U.S. EPA. The South Boston
monitor is located in an industrial zone and is considered
a population-exposure monitor but as part of the industrial
monitoring network. Thus, some differences across moni-
tors would be anticipated, based on neighborhood and
monitoring objectives.

Of note, our residential sampling was not uniform across
the year, with sampling sessions that at times overlapped
between homes, and with sampling durations that varied
slightly across homes. Thus, a time-series analysis of these
central site data was not considered informative, and we in-
stead evaluated scatterplots of central site data against each
other and in comparison with our measurements.

Figure A.1 shows that PM2.5 concentrations as mea-
sured at the central site monitors in Roxbury and the North
End were highly correlated (r = 0.87), indicating that our
LUR models would be relatively insensitive to the choice
of monitor. For EC (Figure A.2), the correlation was slight-
ly lower but still substantial (r = 0.81), with systematically
higher concentrations generally observed at the North End
monitor. For NO2 (Figures A.3 to A.5), there is more scatter
in the associations, although the Roxbury monitor is more

tightly correlated with the other two monitors (r = 0.75 with
Kenmore Square, r = 0.87 with South Boston) than the other
two monitors are with one another (r = 0.59). This is clearly
reflective of the specific sitings of the Kenmore Square and
South Boston monitors, which are meant to capture local
traffic and industrial sources, respectively. The largest dif-
ferentials between these monitors tended to occur during
the summertime when the Boston Red Sox were playing
(given that the Kenmore Square monitor is proximate to
Fenway Park). These analyses emphasize that monitors oth-
er than the one in Roxbury are unlikely to be informative for
our LUR models, either because they provide no additional
information value (for PM2.5 and EC) or because they do not
provide broadly representative concentrations (for NO2).

For our residential outdoor concentrations relative to
central site concentrations at the Roxbury monitoring site,
the correlation was strong for PM2.5 (Figure A.6). Had we
used the North End monitor, the correlation would have
been slightly weaker. For EC, the relationship between the
central site monitor and our residential outdoor concentra-
tions was weaker, although with a more significant associ-
ation during the cooling season (Figure A.7). Correlations

Figure A.2. EC (µg/m3) at Roxbury central site vs. at North End central
site.

Figure A.1. PM2.5 (µg/m3) at Roxbury central site vs. at North End cen-
tral site.
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between the North End monitor and our residential out-
door concentrations were somewhat weaker. Finally, the
residential outdoor concentrations of NO2 were also weak-
ly associated with Roxbury central site concentrations
(Figure A.8), and the association was not improved by us-
ing the alternative central site monitors.

Figure A.5. NO2 (ppb) at Roxbury central site vs. at South Boston central
site.

Figure A.4. NO2 (ppb) at Kenmore Square central site vs. at South Boston
central site.

Figure A.3. NO2 (ppb) at Roxbury central site vs. at Kenmore Square cen-
tral site.

Figure A.6. PM2.5 (µg/m3) measured outside of homes vs. at Roxbury cen-
tral site. 

Figure A.7. EC measured outside of homes (m�1 � 10�5) vs. at Roxbury
central site (µg/m3).

Figure A.8. NO2 (ppb) measured outside of homes vs. at Roxbury central
site.
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APPENDIX B. Results of Sensitivity Analyses for 
Multivariate LUR Model Results for Outdoor PM2.5, 
EC, and NO2

Tables B.1, B.2, and B.3 consider alternative traffic indica-
tors and show the predictor with the highest significance in

each category as well as alternative buffer lengths for the
measures of roadway length. For each pollutant, the final
model from Table 9 is in bold, and models including die-
sel-based variables not available for all observations are
italicized.

Appendix Table B.1. Sensitivity Analyses for PM2.5
a

Indicator
Type

Traffic
Indicator

Estimate(s), P Value(s)
from Multivariate Model

Model
R2

Base model (without traffic) 0.74

Cumulative density scores Unweighted 500-m traffic density
(n = 57)

�1 = 4.74 � 10�4 (0.17) 0.75

Summary measures Total roadway length within: 
50 m (n = 57)
100 m (n = 57)
200 m (n = 57)
300 m (n = 57)

�1 = 1.31 � 10�4 (0.35)
�1 = 1.48 � 10�4 (0.02)
�1 = 1.42 � 10�5 (0.56)
�1 = 5.54 � 10�6 (0.57)

0.74
0.76
0.74
0.74

Distance-based measures Distance to nearest designated truck 
route (n = 57)

�1 = 1.80 � 10�5 (0.62) 0.74

Characteristics of nearest major road ADT (n = 57) �1 = �3.04 � 10�6 (0.25) 0.74

a Bold indicates a selected term in the final model from Table 9.

Appendix Table B.2. Sensitivity Analyses for ECa,b

Indicator
Type

Traffic
Indicator

Estimate(s), P Value(s) from
Multivariate Model

Model
R2

Base model (without traffic) 0.31

Cumulative density scores Unweighted 500-m traffic density
(n = 54)

�1 = 5.39 � 10�4 (0.49)
�2 = 5.63 � 10�3 (0.41)

0.39

Summary measures Total roadway length within 
 50 m 
� Still winds (n = 54)

�1 = 3.94 � 10�4 (0.18)
�2 = 4.08 � 10�3 (0.01) 0.41

100 m 
� Still winds (n = 54)

�1 = 2.15 � 10�4 (0.14)
�2 = 1.27 � 10�3 (0.03) 0.47

200 m 
� Still winds (n = 54)

�1 = 1.10 � 10�4 (0.01)
�2 = 4.38 � 10�4 (0.02) 0.52

 300 m
� Still winds (n = 54)

�1 = 2.99 � 10�5 (0.11)
�2 = 2.01 � 10�4 (0.04) 0.48

Distance-based measures To nearest highway (> 19,000 cars/day)
� Still winds (n = 54)

�1 = 0.452 (0.06)
�2 = 0.549 (0.04) 0.45

Characteristics of nearest 
major road 

Diesel fraction
� Still winds (n = 34)

�1 = �1.06 (0.02)
�2 = 34.6 (0.02) 0.54

Trucks per day 
� Still winds (n = 34)

�1 = � 7.41 � 10�5 (0.06)
�2 = 3.51 � 10�3 (0.02) 0.54

Trucks / distance to major road 
� Still winds (n = 34)

�1 = �6.31 � 10�3 (0.03)
�2 = 0.119 (0.05) 0.54

a Bold indicates a selected term in the final model from Table 9.

b Italics indicate diesel-based variables not available for all observations.
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Appendix Table B.3. Sensitivity Analyses for NO2
a,b

Indicator
Type

Traffic
Indicator

Estimate(s), P Value(s)
from Multivariate Model

Model
R2

Base model (without traffic) 0.39

Cumulative density scores Unweighted 100-m traffic density 
� Obstructed from major road (n = 50)

�1 = 0.055 (0.004) 
�2 = �0.051 (0.004) 0.55

Kernel-weighted 50-m traffic density
� Obstructed (n = 50)

�1 = 0.034 (0.02) 
�2 = �0.056 (0.002) 0.55

Density of larger roads 
(> 8500 cars/ day) within 200 m
� Obstructed (n = 50)

�1 = 589.4 (0.049) 
�2 = �760.9 (0.0095) 0.52

Summary measures Total roadway length within
50 m

� Obstructed (n = 50)
100 m

� Obstructed (n = 50)
200 m

� Obstructed (n = 50)
300 m

� Obstructed (n = 50)

�1 = 0.0144 (< 0.0001) 
�2 = �0.0094 (0.005)
�1 = 0.0022 (0.34) 
�2 = �0.0042 (0.005)
�1 = 9.28 � 10�4 (0.22)
�2 = �1.25 � 10�3 (0.008)
�1 = 2.31 � 10�4 (0.55)
�2 = �6.65 � 10�4 (0.0095)

0.56

0.54

0.52

0.50

ADT � Length within 200 m
� Obstructed (n = 50)

�1 = 1 � 10�7 (0.21)
�2 = �1 � 10�7 (0.10) 0.47

Distance-based measures To nearest highway (>19,000 cars/day)
� Obstructed (n = 50)

�1 = 0.0176 (0.12)
�2 = �0.0195 (0.07) 0.50

Characteristics of nearest 
major road

Trucks per day
� Obstructed (n = 34)

�1 = .0061 (0.01) 
�2 = .00596 (0.01) 0.59 

a Bold indicates a selected term in the final model from Table 9.

b Italics indicate diesel-based variables not available for all observations.
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APPENDIX C. Constrained Factor Analysis for CAPS 
Samples Collected at One Location

In total, 20 ambient and concentrated CAPs samples
were collected from January through February 2008. To
provide qualitative comparisons with our primary factor
analysis, we focused on the CAPs samples, given fewer
LOD issues and the availability of postconcentrator EC
concentrations.

For these CAPs samples, many of the highest correla-
tions among constituents were similar to those observed
for our ACCESS study samples; S was strongly correlated
with Se (r = 0.73), Ni with V (r = 0.90), and Al with Ba (r =
0.92). The correlation structures for the CAPs samples dif-
fered for some constituents, however; while EC was posi-
tively associated with constituents such as S, P, and Ca, it
showed stronger associations with Al, Ba, Ni, and V (corre-
lations not shown). This may have been an indication of
the significant contribution of residential fuel oil for these
heating-season samples, as well as the fact that these sub-
study samples were collected at one location with signifi-
cant diesel traffic. More broadly, there were strong positive
correlations among many CAPs constituents, especially
those analyzed using ICP–MS, emphasizing that meteoro-
logical variability influenced many constituents similarly.

Applying identical factor analytic methods (as de-
scribed in Constrained Factor Analysis, under Statistical
Methods and Data Analysis) to our CAPs samples also re-
sulted in a five-factor model (Figure C.1). In this case,
many of the constituents measured (especially those mea-
sured by ICP–MS), had relatively high loadings on the first
factor, which was likely indicative of the generally high
correlation among constituents and was interpreted as me-
teorological variability influencing all constituents simi-
larly. This would correspond most closely to Factor 1 in
our primary model (Figure 4); note, however, that the use

of samples from only the heating season in this analysis
may have reduced the linkage between meteorological
characteristics and long-range transport of emissions from
electricity generation. This point is reinforced by the sec-
ond factor in Figure C.1, which includes S, Se, and As and
therefore appears indicative of coal combustion, which
was found in Factor 1 in our primary model as well. Load-
ing most heavily on the third factor in Figure C.1 are Ca, Fe
(by XRF analysis), K, and Si, crustal elements indicative of
resuspended road dust (Table 3). This is a somewhat differ-
ent patterning than seen in Factor 5 in our primary model,
which was interpreted as road dust and resuspension, and
is also more closely connected to constituents originally
hypothesized to indicate road dust (Table 3). The CAPs
samples, collected from a single major roadway, may pro-
vide a clearer signal of road dust than samples from our
relatively less trafficked residential settings. The fourth
factor in Figure C.1 includes some loading of constituents
previously associated with fuel oil (Ni, V) and diesel (EC,
S, P, Zn, Fe). The fact that these sources could not be sepa-
rated within the factor analysis may be partly a function of
a small sample size, but may also be attributable to the use
of measurements at a single location in a single season. Fi-
nally, the fifth factor in Figure C.1 includes a number of
constituents associated with brake wear or other forms of
traffic-related road dust (e.g., Tl, Al, Ba). Thus, while the
models in Figure 4 and Figure C.1 differ somewhat (and
would not be anticipated to be identical, given differences
in study design and issues related to sample size), the
CAPs factor analysis generally corroborates the structure
and interpretation of our primary factor analysis, while
pointing out some uncertainties associated with the inter-
pretation of our brake wear and road dust terms. More gen-
erally, both models indicate the viability of disentangling
multiple traffic sources and residential fuel oil from long-
range transport and meteorological influences.
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Figure C.1. Factor loading matrix for CAPs samples using a five-factor model. Particle constituents are sorted by their position in a hierarchical clus-
tering dendrogram to optimize visual interpretation by placing correlated constituents together.
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APPENDICES AVAILABLE ON THE WEB

Appendices D, E, F, and G contain supplemental material
not included in the printed report. They are available on
the HEI Web site http://pubs.healtheffects.org.

Appendix D. Questionnaire Administered to Air Pollution
Study Participants to Gather Housing Characteristics and
Occupant Behavior Data

Appendix E. Supplemental Questionnaire Derived from
ACCESS Prenatal Questionnaire and Administered Directly
to Noncohort Air Pollution Study Participants to Gather
Housing Characteristics and Occupant Behavior Data

Appendix F. Results of Cholesky Residual Analysis of Nor-
mality for Constrained Factor Analyses

Appendix G. Derivation of the Power Expression for Expo-
sure Misclassification Analysis
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XRF x-ray fluorescence spectroscopy

z~ z is distributed as

ELEMENTS

Al aluminum
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Research Report 152, Evaluating Heterogeneity in Indoor and Outdoor Air Pollution Using 
Land-Use Regression and Constrained Factor Analysis, J.I. Levy et al.

INTRODUCTION

The Health Effects Institute has demonstrated a long-
standing interest in research to improve the characteriza-
tion of exposure to air pollutants for epidemiologic
studies. As part of the National Morbidity, Mortality, and
Air Pollution Study (NMMAPS*), methodologic work by
the investigators advanced our understanding of the
effects of error in measuring pollution in time-series
studies (Samet et al. 2000). The Relationships of Indoor,
Outdoor, and Personal Air (RIOPA) studies examined the
relationships between pollutant concentrations in indoor,
outdoor, and personal air (Weisel et al. 2005; Turpin et al.
2007) and established the RIOPA database that continues
to be a resource for research in this area. Brunekreef and
his colleagues (2005) studied correlations between
ambient, indoor, and personal air concentrations of fine
particulate matter with an aerodynamic diameter � 2.5 µm
(PM2.5) and its components measured for groups of elderly
cardiovascular patients in two European cities. Other HEI-
funded studies have focused on improving the character-
ization of exposures to particulates and gases for sensitive
subpopulations in U.S. cities (Koutrakis et al. 2005). The
recent HEI-funded extended analysis of the American
Cancer Society study included detailed studies of Los
Angeles and New York, designed to better understand how
refining exposures at the within-city, or intra-urban, level
might affect the size and significance of health effects esti-
mates (Krewski et al. 2009). Recognizing growing concern
about the role of traffic in urban air pollution, HEI recently
published a critical review of the literature on the emissions,

exposures, and health effects of traffic-related air pollut-
ants (HEI Panel on the Health Effects of Traffic-Related Air
Pollution 2010). The study by Dr. Jonathan I. Levy of the
Harvard School of Public Health falls squarely within this
body of research.  

Levy submitted an application to HEI under Request for
Applications 04-5, the Walter A. Rosenblith New Investi-
gator Award. This award was established to provide sup-
port for an outstanding new investigator at the assistant
professor level to conduct work in the area of air pollution
and health and is unrestricted with respect to the specific
topic of research. In his application, “Using Geographic
Information Systems (GIS) to Evaluate Heterogeneity in
Indoor and Outdoor Concentrations of Particle Constitu-
ents,” Levy proposed an approach to improve existing GIS
methods for predicting intra-urban exposures for use in
epidemiologic studies. His goals were to (1) develop
models for predicting intra-urban variation in outdoor
concentrations of PM2.5, elemental carbon (EC), nitrogen
dioxide (NO2), and selected particle species related to var-
ious sources using monitoring data, GIS data related to
traffic and land-use characteristics, and seasonal and
meteorological factors and (2) develop models that could
explain the influence of housing characteristics and occu-
pant behaviors on indoor levels and sources of these air
pollutants using questionnaire data or publicly available
information or both. Despite some concerns about whether
the models would have adequate predictive power and
about their generalizability to other settings, the HEI
Research Committee thought the project was an innovative
and promising approach to filling critical gaps in the expo-
sure assessment literature.

SCIENTIFIC BACKGROUND 

Epidemiologic studies of exposure to air pollution have
typically relied on data from centrally located ambient air
quality monitors. However, such data are not sufficient for
capturing the spatial variability of pollutant concentra-
tions at the local scale, in particular at the intra-urban
scale at which traffic-related air pollution is both highest
and most variable (HEI Panel on the Health Effects of
Traffic-Related Air Pollution 2010). The ideal approach

Dr. Jonathan I. Levy’s three-year study, “Using Geographic Information Sys-
tems (GIS) to Evaluate Heterogeneity in Indoor and Outdoor Concentrations
of Particle Constituents,” began in September 2005. Total expenditures
were $298,400. The draft Investigators’ Report from Levy and colleagues
was received for review in February 2009. A revised report, received in Sep-
tember 2009, was accepted for publication in October 2009. During the
review process, the HEI Health Review Committee and the investigators had
the opportunity to exchange comments and to clarify issues in both the
Investigators’ Report and the Review Committee’s Critique.     

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views of these parties, and no endorsements by them
should be inferred.

* A list of abbreviations and other terms appears at the end of the Investiga-
tors’ Report.
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would be to measure each individual’s personal exposure
to traffic-specific pollutants over time, but this is difficult,
intrusive, expensive, and generally not feasible for very
large populations. Investigators have consequently sought
ways to predict, or to model, individual-level exposures
from more readily available data.

At the time Levy’s study was considered for funding, a
body of research was emerging that relied on a variety of
surrogates (also referred to as “proxies”) for such expo-
sures, either alone or in combination (Krämer et al. 2000;
Janssen et al. 2001; Hoek et al. 2001, 2002; Gehring et al.
2002). These surrogates included individual pollutants
previously associated with traffic emissions (e.g., carbon
monoxide, NO2, PM2.5, benzene, and EC) and various mea-
sures of traffic levels or density (e.g., vehicle mix and
volume, numbers of vehicles over time) or of proximity to
traffic (e.g., traffic density within varying distances, dis-
tances to roadways, self-reported traffic exposures). 

Each type of surrogate has limitations in predicting per-
sonal exposures to traffic-related pollutants (Jerrett et al.
2005a). An individual’s personal exposure to the few pol-
lutants used as markers for traffic can also be affected by a
number of other factors, including time and activity pat-
terns, indoor sources of pollution, meteorological condi-
tions, land-use patterns, and socioeconomic variables.
Also, traffic is a source of a complex mixture of pollutants,
and the limited set of pollutants studied may not be the
causal agents for the health effects observed.

Land-use regression (LUR) models have been developed
to take advantage of additional types and sources of data to
augment and improve upon these simpler methods (Veen
et al. 1997; Lebret et al. 2000; Hoek et al. 2008). LUR uses a
variety of nearby land-use patterns, traffic data, physical-
site characteristics, and other variables as independent
predictors for concentrations of the pollutants of interest.
Brauer and colleagues (2007), for example, found that
accounting for the compounded influence of multiple
roadways and supplementing basic proximity measures
with more detailed land-use information, such as locations
of heavy traffic and street canyons, substantially improved
regression-based estimates of traffic-related PM2.5 concen-
trations in three European cities. 

The fundamental problem that these developments in
exposure-assessment methods progressively have sought
to address was that of exposure-measurement error — the
error that can arise when surrogate measures are used in
place of “true” individual-level exposures — and the
implications this error could have for the findings of obser-
vational epidemiologic studies of traffic-related air pollu-
tion and health. Exposure-measurement error can take
several forms: Berkson type error, which tends to reduce
the precision of the estimate; “classical” measurement

error, which tends to bias the estimate of the effect toward
the null; or, more commonly, some indeterminate combi-
nation of the two. Each reduces the overall power of a
study to detect an effect of an exposure on health outcomes
(Armstrong 1998; Dominici et al. 2000; Zeger et al. 2000). 

Levy and colleagues set out to improve upon methods
used to characterize individual-level exposure to traffic-
related pollutants for epidemiologic studies. They wanted
to address the limitations of simple proximity models and
other models relying primarily on spatially distributed
land-use characteristics and to incorporate other poten-
tially important time-varying predictors of pollutant con-
centrations. Furthermore, with scientific interest growing
in the application of these newer approaches for character-
izing spatial variability in air pollutants, they wanted to
gain insight into their implications for the findings of epi-
demiologic studies.

The investigators were also concerned about a differen-
tial form of exposure-measurement error — one not
addressed in most studies — that could arise from the use
of residential outdoor air pollutant levels as a measure of
individual-level exposure. People generally spend most of
their time indoors (Leech et al. 2002), and studies have
shown that taking indoor exposures into account is impor-
tant in estimating personal exposures, particularly for pol-
lutants with significant indoor sources (for example, NO2)
(Levy et al. 1998; Zipprich et al. 2002). Levy further
hypothesized that the relationship between indoor and
outdoor concentrations (i.e., indoor/outdoor ratios) of
individual pollutants might be correlated with factors
such as socioeconomic status, housing quality, or other
factors that also independently affect the health outcome
of interest. Use of a surrogate for individual-level exposure
based on outdoor concentrations at a residence might
therefore differ in systematic ways among populations of
different socioeconomic status.

Finally, Levy and his colleagues also sought to define
more clearly the nature of the pollutants and their concen-
trations that could be related to traffic and those that could
have other sources, both outdoor and indoor. As discussed
above, most early studies of traffic-related exposure have
relied on individual pollutants believed to be markers for
traffic (NO2, PM2.5, EC) but which also have other sources.
At the time Levy’s study was initiated, few investigators had
used source apportionment in epidemiologic studies to
attribute exposure to emissions from specific types of
sources, particularly indoor sources. The use of source
apportionment techniques within epidemiologic studies
offers the opportunity to improve the understanding of
potential causal relationships between particular exposures
and observed health outcomes and thus to better inform
policy decisions (Laden et al. 2000; Mar et al. 2000).
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SUMMARY OF STUDY

SPECIFIC AIMS

While the overall objectives of the study remained the
same as those originally stated in the proposal, the specific
objectives were further differentiated and the methods for
meeting them were refined over the course of the study.
The specific aims stated in the report are as follows:

1. Using monitoring data collected as part of a birth
cohort study in Boston, Massachusetts, develop GIS-
based LUR models to explain spatial and temporal
variability in residential outdoor concentrations of
PM2.5, EC, and NO2.

2. Using constrained factor analysis on particle-constit-
uent concentrations and NO2 measures, determine
source types contributing to variability in residential
outdoor concentrations.

3. Apply LUR modeling techniques to the factor scores
estimated through constrained factor analysis on resi-
dential outdoor concentrations, to determine whether
GIS covariates and other predictors explain factor
variability and thereby support initial factor interpre-
tations.

4. Using indoor and outdoor residential monitoring
data, develop physically interpretable regression
models exploring indoor–outdoor relationships for
EC, PM2.5, NO2, and particle constituents, relying on
questionnaire data to characterize indoor sources and
ventilation. 

5. Develop GIS-based LUR models including terms for
indoor sources and ventilation that would be avail-
able for all participants in an epidemiologic cohort
and that could be used to explain spatial and tem-
poral variability in residential indoor concentrations
of PM2.5, EC, and NO2.

6. Using constrained factor analysis on particle-constit-
uent concentrations and NO2 measures, determine
source types contributing to variability in residential
indoor concentrations.

7. Apply LUR modeling techniques to factor scores esti-
mated through constrained factor analysis on residen-
tial indoor concentrations, to determine whether GIS
covariates and other predictors explain factor vari-
ability and thereby support initial factor interpreta-
tions of indoor and outdoor source types.

8. Use a simulation framework to assess the degree to
which the exposure misclassification induced by the
use of a proxy variable for exposure would influence
epidemiologic study findings. 

METHODS

Data Collection

Participant Selection The primary source of study par-
ticipants was a prospective birth cohort study of etiologic
factors in the development of asthma, the Asthma Coali-
tion for Community, Environment, and Social Stress
(ACCESS) study in Boston, Massachusetts. At the time the
Levy et al. project started, the ACCESS study was in the
process of recruiting pregnant women throughout the met-
ropolitan area. Among several etiologic factors under
investigation were indoor and outdoor exposures to air
pollutants, including those potentially related to traffic. 

Air Quality Measurements Levy and colleagues collected
detailed measurements at 43 homes, a subset from the
ACCESS study plus others selected to increase sample size
and capture additional neighborhoods. These homes were
selected to reflect a range of potential exposures to traffic
and a set of neighborhoods broadly representative of
Boston. From 2003 through 2005, consecutive sets of 3- to
4-day samples of NO2 and PM2.5 were collected simulta-
neously indoors and outdoors at each home in two sea-
sons, a cooling season defined as May through October,
and a heating season defined as December through March.
Only a limited number of homes were sampled during
each sampling period. PM2.5 samples were collected on
Teflon filters using a Harvard Personal Environmental
Monitor, and NO2 samples were collected using Yanag-
isawa passive filter badges. Temperature and humidity
measurements were also taken at each home.

The particle filters were analyzed for EC using a reflec-
tance method. To analyze individual elements on the filters,
the investigators first used x-ray fluorescence spectroscopy
(XRF) and then high-resolution inductively coupled
plasma–mass spectrometry (ICP–MS). XRF provides a mea-
sure of the total mass of an element on each filter, whereas
ICP–MS provides a measure of water-soluble metal concen-
trations and has a lower limit of detection.

In addition to obtaining sampling data from individual
homes, the investigators obtained hourly NO2, PM2.5, EC,
and meteorological data for the period of the study from a
Massachusetts Department of Environmental Protection
(MassDEP) monitor centrally located in relation to the indi-
vidual sampling sites, as well as from other nearby moni-
tors. NO2 was measured using a chemiluminescence
method, PM2.5 was measured using a beta-attenuation
method, and EC was measured by optical absorbance. These
central site monitoring data were obtained to represent tem-
poral variability, in meteorological conditions and in the
background concentrations of pollutants in subsequent sta-
tistical analyses, given that sampling at individual homes
was conducted during short, discrete time periods.
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Later in the investigation, Levy and colleagues obtained
supplemental PM2.5 samples collected as part of a separate
study, to assess whether measures of individual particle
components at a single location over a longer period of
time might yield different results in their factor analyses.
Specifically, they obtained ambient PM2.5 and concen-
trated ambient particle samples collected during a 5-hour
period each day in January and February of 2008 using a
Harvard Ambient Fine Particle Concentrator located at the
Harvard School of Public Health on Huntington Avenue in
Boston, not far from a MassDEP central site monitor. These
samples were analyzed for the same particulate matter
components analyzed in the main study.

Traffic, Occupant Behaviors, and Home Characteristics 
Data The investigators collected several different types
of data, to represent each home’s proximity to traffic and
the potential density of traffic nearby. For each home, they
collected continuous traffic counts on the road with the
most traffic within 100 m; they also collected data on road
networks and traffic counts from the Massachusetts
Highway Department. They used these to create several
GIS-based “traffic indicators” — for example, traffic den-
sity per unit area surrounding each home, distance from
the nearest roads of various sizes, and percentage of diesel
traffic — that they might use to predict contributions of
traffic to observed pollutant concentrations. The investiga-
tors also compiled additional GIS data on population den-
sity, a potential proxy for traffic and other sources, within
an area around each home. 

Using a standardized questionnaire administered to par-
ticipants at each home, investigators also compiled data on
occupant behaviors and home characteristics that had
been shown previously to influence pollutant concentra-
tions. They obtained from city authorities data on local
land use and on the age of each home, its living area,
building materials, heating system, and whether or not it
had air conditioning. U.S. Census data were used to deter-
mine the number of homes heated with oil within 200 m of
each sampled home, because home heating oil is a possible
source of air pollutant levels measured.

Statistical Approach and Data Analysis

Outdoor LUR Models The investigators first developed
separate multivariate LUR models to predict measured
outdoor concentrations of EC, NO2, and PM2.5 at partici-
pant homes. These pollutants were selected because they
have been studied using GIS methods in other epidemio-
logic studies. The investigators used a systematic
approach to decide which of the many possible covariates

— representing traffic, other local combustion sources,
population density, home characteristics, or possible influ-
ences of local meteorological conditions — to include in
the individual models. They began with a statistical
assessment of each potential covariate’s ability to explain
variability in the outdoor concentrations of each pollutant
at each home. The final multivariate models for each pol-
lutant were then built through a stepwise regression
approach, a process in which the strongest individual
covariates were progressively included in the model and
tested for their ability to explain additional variability in
the model. The investigators chose to emphasize indica-
tors that were more physically interpretable and thus more
readily generalizable to other locations.

Indoor LUR Models Using a similar multivariate LUR
approach, the investigators sought to predict indoor con-
centrations of the same three pollutants. In building these
models, they emphasized the use of covariates that might
be available for all participants from existing resources,
rather than the development of new covariates specifically
for this study. For example, they used central site moni-
toring data, publicly available traffic data, and other land-
use data rather than the outdoor concentrations measured
at individual homes. In the absence of home-specific air-
exchange rates, they developed indicators for this factor
from models associating indoor/outdoor ratios of sulfur
(which has limited indoor sources) with data on housing
type and age as well as occupant behaviors like window
opening. They also incorporated some study-specific ques-
tionnaire data on potential indoor sources of the various
pollutants (e.g., gas stoves, cleaning activities). 

Source Apportionment Using Constrained Factor 
Analysis To characterize potential contributions of vari-
ous sources to outdoor and indoor concentrations, Levy
and his colleagues evaluated a number of factor analysis
approaches. At the outset of the study, they proposed to use
structural equation modeling (SEM) as an approach to al-
low testing of specific hypotheses about the relationship
between observed data (in this case, NO2 and PM specia-
tion data) and factors representing particular sources (la-
tent variables). However, their preliminary analyses
revealed several weaknesses in the SEM approach, given
the available data, leading them to consider other ap-
proaches. Bayesian approaches were considered but of-
fered little advantage over more traditional approaches.
They therefore decided to use a constrained factor analysis
approach in which the contributions of specific pollutants
to specific factors are constrained to be positive, similar to
a nonnegative matrix factorization approach or positive
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matrix factorization (Hoyer 2004). The investigators report-
ed that this approach both demonstrated desirable statisti-
cal properties and led to more easily interpretable factors. 

In this analysis, they focused on a set of sources that
they hypothesized to be significant contributors to PM2.5
concentrations, including traffic, coal combustion, fuel oil
combustion, and long-range transport. They focused on
NO2 and those particle constituents that had been associ-
ated with one of these sources in other studies and that
were above the limit of detection in 60% or more of the
samples from the study. The same set of constituents was
included in the indoor factor analysis.

The investigators produced models with two to nine
source factors (or latent variables). They evaluated several
formal statistical criteria for determining the optimal
number of source factors for the outdoor and indoor
models, but primarily relied on the Kaiser–Guttman crite-
rion and the Bayesian information criterion, with support
from a separate cross-validation exercise. They resolved
differences in the factors selected by the two criteria based
on their judgment about which factors were the most phys-
ically interpretable.

LUR Modeling to Predict Factor Scores The last formal
modeling step was to develop LUR models that could pre-
dict variability in the outdoor and indoor factor scores,
which were estimated using the constrained factor anal-
ysis described above. Model development followed a sys-
tematic, sequential process similar to that for prediction of
PM2.5, NO2, and EC concentrations. The investigators used
univariate regression to select candidate variables repre-
senting the central site monitor, traffic, population, and
other source terms. They built final multivariate models
using forward stepwise regression, retaining only those
covariates that alone, or in interaction terms, met preset
significance criteria. They conducted several sensitivity
analyses using alternative selection approaches to ascer-
tain the robustness of the covariate selection process for
the final models.

The LUR models for predicting indoor factor scores were
developed following a similar process but using question-
naire data and proxy measures for ventilation in addition to
outdoor source terms. However, the investigators recog-
nized that it would be difficult to separate indoor from out-
door contributions to the indoor factor scores because,
among other reasons, individual constituents might have
multiple sources. Consequently, they conducted additional
exploratory analyses designed to provide insight into the
interpretation of indoor factor analysis scores and the pos-
sible contributions from indoor sources.  

Exposure Misclassification Analysis The final set  of
analyses Levy and his colleagues conducted was designed
to evaluate to what extent the use of various exposure
models, representing different degrees of exposure mis-
classification, affected the power of an epidemiologic
study to detect an adverse health effect. They used a simu-
lation approach to explore the association between pol-
lutant concentrations in the home and wheeze in the first
year of life in a hypothetical epidemiologic study of 1000
participants, patterned on the ACCESS data set. The “gold
standard” for exposure — an ideal not usually attained in
epidemiologic studies in which concentrations are mea-
sured in each home — was represented in this analysis by
predictions of indoor concentrations of EC, NO2, and
PM2.5 at every home using the study’s indoor LUR models.
The investigators developed three alternative sets of expo-
sure estimates to represent decreasing quality of exposure
assessment. The first used the same indoor LUR models for
PM2.5, NO2, and EC concentrations, but for a sample of
homes. The second used models based on a single outdoor
source term or a traffic indicator that had performed well
in the covariate selection process (“good exposure surro-
gates”). The third used models based on traffic indicators
that had not performed well in the covariate selection pro-
cess but that had been used by other investigators (“poor
exposure surrogates”). Using these different estimates as
measures of exposure to indoor pollution, the investigators
then explored the estimated bias, and inflation in the pre-
dicted standard error, of the coefficient representing the
relationship between indoor pollutant concentrations and
wheeze in the first year of life. They conducted simula-
tions under three different scenarios for the strength of the
“true” association (i.e., odds ratios of 1.05, 1.50, and 2.00).

Overview of Key Results

LUR Models for Outdoor EC, PM2.5, and NO2 The final
multivariate LUR models developed were able to explain
52%, 56%, and 76% of the variability in outdoor residen-
tial concentrations of EC, NO2, and PM2.5, respectively,
with a combination of temporal and spatial terms (see
Table 9 in the Investigators’ Report). More of the variability
in PM2.5 was explained by temporal variability (68% for
the term for the central site monitor) than it was for EC
(30% for the combination of terms for the central site mon-
itor and season) and NO2 (33% for the combination of
terms for the central site monitor and season). EC and NO2
had stronger relationships with indicators for local traffic
than did PM2.5. Roadway length within 200 m of the home
accounted for about 14% of the variation in EC, with an
additional 8% explained by the interaction between
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roadway length and wind speed. Roadway length within
50 m, obstruction between the monitor and nearest major
road, and population density collectively accounted for
about 23% of the variability in NO2. Roadway length
within 100 m of the home explained only about 2% of the
variability in PM2.5. The investigators noted that their
study corroborated the findings of other studies that spa-
tial and temporal variations in PM2.5 concentrations are
largely dictated by regional patterns of the pollutant in the
eastern United States. 

Constrained Factor Analysis and LUR Models for Out-
door Source Factors From their constrained factor anal-
yses, Levy and his colleagues selected a five-factor model
representing different sources or latent variables. Factor 1
represented long-range transport; Factor 2, brake wear and
local traffic; Factor 3, diesel exhaust; Factor 4, fuel oil com-
bustion; and Factor 5, road dust and resuspension. 

The investigators reported that the final multivariate
LUR models they developed to predict these outdoor
source factors had weaker explanatory power than the
LUR models for individual pollutants. That is, the LUR
models predicted 69% of the variation in Factor 1, 16% in
Factor 2, 32% in Factor 3, 41% in Factor 4, and 20% in
Factor 5 (see Table 11 in the Investigators’ Report). How-
ever, they found that the terms that remained significant in
the final models were consistent with their interpretation
of the different factors. For example, Factor 1 was most
strongly predicted by central PM2.5 and season, with very
little association with local source terms. Factor 4 was
explained by both central site NO2 and by local measures
of population density. The authors concluded that the
ability of LUR models combined with constrained factor
analysis to disentangle the contributions of long-range
transport from local sources could allow future epidemio-
logic studies to evaluate the effect of certain source catego-
ries on health outcomes.

LUR Models for Indoor EC, PM2.5, and NO2 Levy and
his colleagues reported less success in the ability of their
LUR regression models to predict indoor concentrations of
the three pollutants relative to outdoor concentrations of
these same pollutants. They reported particular difficulty
in identifying traffic terms with strong explanatory power
to include in their models. In their initial models, which
they constructed without accounting for the influence of
ventilation, they found higher indoor NO2 concentrations
to be significantly associated with unweighted cumulative
traffic density within 50 m of the home and to a lesser
degree with gas stove usage and ambient NO2 levels.
Lower EC concentrations were predicted by increasing dis-
tance from a designated truck route; indoor EC concentra-

tions were positively associated with ambient EC
concentrations but had no identified indoor sources.
Indoor PM2.5 was not predicted well by any traffic terms
but was associated with cooking and occupant density as
well as with central site PM2.5 concentrations. The indoor
LUR models for NO2, EC, and PM2.5 predicted 20%, 21%,
and 36%, respectively, of the variation of the three pollut-
ants (see Table 17 in the Investigators’ Report). When ven-
tilation terms were introduced into the models, their
explanatory powers increased slightly to 25%, 32%, and
40% (see Table 19 in the Investigators’ Report). Levy and
colleagues reported substantial variability in indoor–out-
door relationships among particle constituents. 

Constrained Factor Analysis and LUR Models for Indoor 
Source Factors The investigators selected a six-factor
model from their constrained factor analyses as the best
representation of the range of sources explaining the mix-
ture of pollutants measured indoors in their study. Factor 1
represented long-range transport; Factor 2, fuel oil/diesel
combustion; Factor 3, road dust and resuspension; Factor
4, indoor combustion; Factor 5, indoor smoking; and
Factor 6, indoor cleaning.

As in the LUR model with outdoor source factors, the
model predicting Factor 1, long-range transport, had the
highest explanatory power (71% of the variance) with an
interaction term involving the central site monitor and a
variable for open windows playing the strongest role
(68%). The models for the remaining indoor factors had
very little overall ability to explain the variability in those
factors (18% for Factor 2; 8% for Factor 3; 31% for Factor
4; 24% for Factor 5; and 8% for Factor 6 — see Table 21 in
the Investigators’ Report). The authors note that these
results were not unexpected given the poor correlations of
several individual variables observed in the model-devel-
opment process, and given the limited indoor source cova-
riates available. They conducted several sensitivity
analyses designed to further understand the basis for the
poor performance of the multivariate models and to
explore alternative approaches. These analyses confirmed
the general interpretation of certain factors as dominated
by indoor sources but also the difficulty of predicting these
factors (i.e., Factors 4–6) and of separating the influence of
indoor and outdoor sources.

Implications of Exposure-Measurement Error From their
simulation analysis, Levy and his colleagues reported that
their indoor LUR models for NO2, PM2.5, and to a lesser
extent EC resulted in better estimates of the “true” health
effect coefficients, compared with the simpler “good” or
“poor” proxies for exposure represented by individual
variables. That is, they resulted in smaller estimated
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biases, smaller median standard errors, and lower root
mean square errors (see Tables 22–24 in the Investigators’
Report). The power of the LUR models to detect a signifi-
cant association was thus greater than it was for the sim-
pler exposure models. Not surprisingly, the power of these
models was greater for the stronger hypothesized associa-
tions (i.e., with odds ratios of 1.5 or 2.0), although this rela-
tionship varied by pollutant. The NO2 and PM2.5 models
performed much better than did the EC model, which even
for an odds ratio of 2.0 predicted a significant relationship
in only 27% of the simulations (see Table 25 in the Inves-
tigators’ Report). 

From these simulations, the investigators concluded
that epidemiologic studies might benefit from the use of
exposure models or surrogates that offer even a small
reduction in exposure misclassification relative to that
associated with the simple use of models of outdoor con-
centrations. They cite, for example, their indoor LUR
models used in this simulation with modest R2 values of
about 0.3 to 0.4. 

Levy and his colleagues conclude that the combination
of analytical techniques used in their study could eventu-
ally be used to refine characterizations of exposure and to
evaluate the relative contribution of particular sources to
health outcomes in epidemiologic studies. They suggest
that the value of reducing measurement error is particu-
larly evident in the study of exposures to traffic-related air
pollutants, which may be influenced by both indoor and
outdoor sources.

HEI REVIEW COMMITTEE TECHNICAL 
EVALUATION 

Levy and his colleagues took advantage of a small but
rich data source focused on understanding the factors that
contribute to the incidence of childhood asthma in a major
U.S. city to explore important exposure questions that are
of broad interest to environmental health science. They
undertook a number of challenging methodologic
approaches to improving the prediction of personal expo-
sure from indoor and outdoor sources and thus to
improving epidemiologic estimates of the effects of traffic-
related air pollution on health. Their report marks one of
the first efforts to combine LUR models with factor anal-
ysis to assess the spatial aspects of source factors and to
use these combined models to more fully characterize
exposure to both indoor and outdoor sources. 

The overall design of the sampling program was well
conceived although it faced somewhat inevitable limita-

tions. Repeated measurements of air pollution at each of
the homes provided more data, particularly in the tem-
poral dimension. However, the small number of sampling
locations (43) limited the spatial extent of sampling and the
range of residence types from which data could be col-
lected. The design created challenges given the presence of
temporal and spatial variation in pollutant concentrations.
Spatial and temporal contributions to variation were not
always formally separated in the work (i.e., some terms
reflected both spatial and temporal aspects), making it dif-
ficult to know which predominated in explaining variation
or to what extent each contributed to the overall perfor-
mance of a prediction model or clustering of pollutants. 

The statistical methods used in the study were many,
varied, and often sophisticated, creating challenges for
both the investigators and for the reader. However, the
motivation for and description of each method used were
clear and persuasive that each was a defensible approach
to meeting the study objectives. In their systematic and
careful approach to the development of their models, and
particularly in the factor analysis, the investigators struck
a good balance between letting the shape of the data and
letting prior knowledge dictate the model form. This bal-
ance is often a difficult one to achieve.  

LUR MODELING

In earlier LUR models, investigators have primarily
relied on spatial factors (e.g., geographic measures of
traffic density) to predict pollutant levels, dealing with
temporal factors in a separate stage of the modeling, if at
all (Jerrett et al. 2005a; Ryan and LeMasters 2007). Because
the residential multipollutant sampling approach made
simultaneous measurements at numerous sites infeasible,
Levy and his colleagues explicitly included both temporal
and spatial factors in their models by including central site
measurements along with geographic predictors. 

Their LUR models of outdoor pollutant levels per-
formed reasonably well, explaining most of the variance in
PM2.5 and to a lesser extent in NO2 and EC. Their results
essentially confirmed previous findings regarding the rela-
tive importance of temporal and spatial factors in pre-
dicting the concentrations of different pollutants. That is,
they found broader-scale temporal variation, represented
by measurements at the central site monitor, to be an
important determinant of local PM2.5 levels. Spatially dis-
tributed factors, such as traffic, population density, and
other land-use covariates, were more influential in pre-
dicting NO2 and EC variation in the models. The study
provided a clear demonstration of these relationships.
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Nonetheless, the HEI Review Committee commented
that the LUR models used to predict spatial distribution of
the outdoor concentrations would have benefited from
more direct evaluation and validation. That is, the investi-
gators relied heavily on the assessment of the model fit in
their evaluations rather than on a “real-world” check of the
resulting spatial patterns of pollutants predicted by the
model. The Committee suggested that producing visual
spatial surfaces that could be evaluated against the loca-
tion of busy freeways, point sources of emissions, or influ-
ential weather patterns might be informative in modeling
exercises of this kind.

The development of LUR models for predicting indoor
concentrations was a thoughtful innovation beyond stan-
dard LUR models that have focused on outdoor concentra-
tions. However, developing indoor LUR models that
would provide better estimates of individual-level expo-
sure proved to be a much greater challenge than expected.
As the investigators acknowledge, the predictive value of
the indoor LUR models was generally poor; however, their
exploration of the possible explanations and implications
of this finding is thorough and informative. In particular,
their findings that the LUR models’ performance was
poorer when important indoor sources were present
should be highlighted. The related point that — when
indoor sources are minor or nonexistent — the predictive
value of an indoor LUR model built on outdoor source
terms can be improved by the relatively straightforward
addition of a proxy term for ventilation (i.e., open win-
dows) is also noteworthy.

APPLICATION OF LUR TO PREDICTION OF OUTDOOR 
AND INDOOR SOURCE FACTORS

An ultimate, and a most innovative, goal of the study
was to see if LUR and factor analysis together would pro-
vide new insight about the sources contributing to outdoor
and indoor concentrations of pollutants and help explain
why their contributions might differ at individual homes.
The Committee thought the constrained factor analysis
approach decided upon by the investigators was techni-
cally well justified and that they had given plausible inter-
pretations of the resulting outdoor and indoor factor
scores. The Committee noted, however, that it is important
to bear in mind that these interpretations were largely post
hoc given the nature of the analysis, that many of the indi-
vidual constituents were highly skewed, and that conse-
quently other plausible interpretations might exist. As one
can see in the dendrograms provided in the Investigators’
Report (Figures 4 and 8), individual pollutants and PM
constituents identified a priori as markers for particular

sources, and thus influential in factor interpretations, also
contributed to other factors. 

The Committee commented that the application of LUR
to predict the outdoor and indoor factor scores was also
very carefully conducted, but that the analyses had met
with limited success. The analyses did provide some con-
firmation for the investigators’ major source interpreta-
tions (long-range transport, traffic, fuel oil combustion).
However, they were most successful at explaining varia-
tion in sources that are already reasonably well under-
stood. In particular, both the outdoor and indoor LUR
models performed best at predicting variability in the
source factor identified most closely with PM2.5 concen-
trations at the central site monitor, long-range transport.
As for the indoor LUR models developed to predict indi-
vidual pollutant concentrations, incorporating a proxy for
ventilation improved the performance of the indoor LUR
models designed to predict variation in the source cate-
gory of long-range transport. The reasons behind the
poorer performance of the LUR models at predicting
sources relative to their performance at predicting indi-
vidual pollutants are difficult to pinpoint. However, the
small sample sizes in the study, the complications
inherent in predicting indoor sources, and the difficulty in
identifying distinct “fingerprints” for different source
types noted above all likely contributed to this finding. 

ANALYSES OF THE IMPACT OF EXPOSURE 
MISCLASSIFICATION  

The Review Committee thought that the simulation stud-
ies of the impact of exposure misclassification, represented
by the use of different exposure metrics, on the power of
epidemiologic studies were well done and provided a use-
ful perspective. As more sophisticated approaches for esti-
mating spatial variability in concentrations of urban air
pollution have been developed, interest in applying them
in epidemiologic studies has grown (Jerrett et al. 2005b;
Brauer et al. 2007; Slama et al. 2007; Rosenlund et al. 2008).
At the time the Levy study was initiated, however, few ep-
idemiologic studies had been conducted in which the im-
pact of different exposure metrics on estimates of human
health effects had been directly compared in the same
study population (Ryan et al. 2007). Some studies explor-
ing the implications of different measures of traffic-related
exposures for health effect estimates have since begun to
emerge and have suggested the importance of improving
the estimates of individual-level exposures (Jerrett et al.
2005b; Van Roosbroeck et al. 2008). 

In the absence of direct comparisons of different expo-
sure metrics in epidemiologic studies, simulation analyses
like those conducted by Levy and his colleagues could
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provide useful insights that could inform the design of
exposure assessments. Another recent simulation-based
study has suggested that augmenting estimates of indi-
vidual-level exposure with information about personal
mobility patterns is less likely to underestimate health
effects than basing exposures on residential address alone
(Setton et al. 2010). Such studies allow exploration of how
different exposure-assessment designs might affect the
power to detect hypothesized health outcomes. The value
of more complex exposure assessments can theoretically
then be more directly weighed against the cost of the data
necessary to support them.  

The general pattern of results from the simulation anal-
yses conducted by Levy and his colleagues was consistent
with previous findings on the nature of error in exposure
estimates; that is, that the error is a combination of
Berkson-type error and classical statistical error. The loss
of precision and bias downward in the effect estimates is
very evident in the results for the simpler models relative
to the “gold standard” exposure measurements. The ques-
tion of the degree of differential exposure error in the out-
door LUR and indoor LUR models relative to “true”
personal exposures remains unanswered by this study.

Despite the better performance of the LUR models rela-
tive to that of the simpler exposure proxies in this study, it
is important to be aware that these quantitative differences
depend on the underlying simulation scenario and there-
fore may not apply to epidemiologic studies with funda-
mentally different designs. Where these conditions are not
met — that is, where the dominant influences on the vari-
ation in a pollutant concentration are not well known —
LUR models are likely to perform much worse, and in
some cases little better, than a surrogate. Therefore, the
results of these simulations should not be assumed to
apply to all situations. Nonetheless, the HEI Review Com-
mittee concluded that simulation analyses should be
encouraged to the extent that they can provide insights
beyond what general theory might suggest or the assump-
tions embedded in a particular study design. 

CONCLUSIONS AND IMPLICATIONS

Levy and his colleagues undertook a set of challenging
and creative methodologic approaches to answering
important questions related to environmental health. They
sought to build on existing LUR techniques for estimating
individual-level exposures to PM2.5, EC, and NO2 for use
in epidemiologic studies, in particular by developing LUR
models to predict the concentrations of the pollutants
indoors as well as outdoors. They combined LUR tech-
niques with factor analysis of PM2.5 components and other
pollutants in an effort to improve understanding of the

potential contribution of different sources, including
traffic, to human exposures. 

The HEI Review Committee praised the evident care and
competence demonstrated by Levy and his team. The
investigators’ LUR analyses of outdoor pollutant concen-
trations were consistent with previously published find-
ings, performing reasonably well at explaining variation in
concentrations of PM2.5 and to a lesser extent in NO2 and
EC. Their efforts to develop LUR models to predict indoor
concentrations, as a closer proxy for personal exposure,
proved a greater challenge. The predictive value of these
indoor models was generally poor, although the authors
did offer some useful insights about the variables that most
influenced the performance of the models. The limited
predictive value of the LUR models developed to explain
variation in the sources identified in the factor analyses,
particularly of the indoor models, seemed to be attribut-
able more to limitations of the data than to the methods.
However, whether these methods would perform better
with a less limited set of data remains to be demonstrated. 

The Committee found the results of this study to be rel-
evant to epidemiologic studies of air pollution. However,
the Committee thought that the conclusions would have
been more useful had the authors translated the findings
into more explicit, practical suggestions for the design of
questionnaires, exposure monitoring programs, and epide-
miologic analyses in future studies.  

At the same time, the Committee noted that the general-
izability of the findings requires careful caveats. The spa-
tiotemporal sampling design for this study creates
particular challenges for the application of the investiga-
tors’ approach to other epidemiologic studies. Some of the
variation in exposures is temporal and some spatial. Most
epidemiologic studies are likely to be informed by variation
in one or the other dimension only. Even those epidemio-
logic studies using spatiotemporal designs are unlikely to
have quite the same configuration (e.g., number of days in
observation periods, extent of repeated sampling). There-
fore, the study cannot provide a generalized evaluation of
LUR models in other situations. The ultimate challenge for
studies of this nature is to provide some demonstration that
the increased sophistication of the modeling provides suffi-
cient improvement over simpler approaches to warrant the
additional data and computational requirements it imposes.
The authors’ simulation analyses, in which they explore the
implications of different exposure proxies and estimates
for exposure misclassification and for the power of epide-
miologic studies, are a useful step in that direction. Their
conclusion that even the relatively poor estimates of expo-
sure provided by the LUR models might reduce measure-
ment error and thus improve effects estimates in future
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studies warrants further scrutiny. Even when a poor surro-
gate is outperformed by a prediction model, the surrogate
may be the epidemiologist’s “best buy” if the extent of im-
proved performance is outweighed by the costs of collect-
ing the predictor data necessary for the prediction model.
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